
Continuous
Integration (CI)
and Continuous
Delivery (CD)

A Practical Guide to Designing and
Developing Pipelines
—
Henry van Merode

Continuous
Integration (CI)
and Continuous

Delivery (CD)
A Practical Guide to Designing

and Developing Pipelines

Henry van Merode

Continuous Integration (CI) and Continuous Delivery (CD): A Practical

Guide to Designing and Developing Pipelines

ISBN-13 (pbk): 978-1-4842-9227-3		 ISBN-13 (electronic): 978-1-4842-9228-0
https://doi.org/10.1007/978-1-4842-9228-0

Copyright © 2023 by Henry van Merode

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: James Markham
Coordinating Editor: Jessica Vakili
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the GitHub repository: https://github.com/Apress/Continuous-
Integration-(CI)-and-Continuous-Delivery-(CD). For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Henry van Merode
Leeuwarden, The Netherlands

https://doi.org/10.1007/978-1-4842-9228-0

iii

Table of Contents

About the Author��ix

About the Technical Reviewers��xi

Acknowledgments��xiii

Chapter 1: ��The Pitfalls of CI/CD���1

Challenges���1

Oversimplified Diagrams and Misalignment���2

Lack of Design Patterns���3

Vulnerabilities���4

Pipeline Testing��4

Application Code vs. Infrastructure Code���5

Organizing and Maintaining Pipelines��6

Technical Constraints���7

Legacy��7

Summary���9

Chapter 2: ��CI/CD Concepts���11

Principles���12

Positioning of CI/CD��13

Application Lifecycle Management��16

CI/CD Journey���17

Naming Conventions��22

Summary���26

iv

Chapter 3: ��Requirements Analysis��29

Overview��29

Way of Working��32

Technology���34

Information���39

Security (General)��41

Compliance and Auditability��47

Resource Constraints���58

Manageability��59

Operations��62

Quality Assurance��64

Metrics���68

Monitoring��72

Sustainability���74

Governance��74

Summary���76

Chapter 4: ��Pipeline Design��77

Design��78

CI/CD and Pipeline Design Approach���79

BPMN 2.0��79

BPMN Elements Overview��80

BPMN in Action���83

Level of Detail���86

Logical Design vs. Realization��87

The Generic CI/CD Pipeline��87

Validate Entry Criteria���89

Execute Build��91

Table of Contents

v

Perform Unit Tests��91

Analyze Code��92

Package Artifact���94

Publish Artifact���94

Provision Test Environment��95

Deploy Artifact to Test���96

Perform Test���97

Validate Infrastructure Compliance��97

Validate Exit Criteria���98

Perform Dual Control��100

Provision Production Environment���101

Deploy Artifact to Production��101

Notify Actors���102

Design Strategies���102

Context Diagram���103

Branching Strategy���105

Build Strategy���125

Test Strategy���139

Release Strategy��158

Production Deployment Strategy��165

Other Design Considerations��183

Summary���205

Chapter 5: ��Pipeline Development��207

Pipeline Specification��208

Multibranch, Multistage Pipeline��208

User Interface–Based Pipelines���209

Scripted Pipelines���210

Declarative Pipelines��211

Table of Contents

vi

Constructs��216

Plugins and Marketplace Solutions��237

Repositories: Everything as Code���237

Third-Party Libraries and Containers���240

Versioning and Tagging��245

Environment Repository���249

Secrets Management���251

Database Credentials���255

Feature Management���257

Development in the Value Streams��260

Simplified Pipeline Development��265

Extended Pipeline Development���266

Advanced Pipeline Development��267

Develop a Base Pipeline���268

Pipeline Generation��270

Pipeline of Pipelines (DevOps Assembly Line)��273

Sustainable Pipeline Development��279

Summary���283

Chapter 6: ��Testing Pipelines��285

Testing Pipelines��285

Testability of Pipelines���286

Unit Tests���288

Performance Tests���300

Pipeline Compliance and Security Tests��305

Acceptance Tests���307

Summary���307

Table of Contents

vii

Chapter 7: ��Pipeline Implementation��309

Pipeline Implementation��310

Organizational Impact��311

Team Discipline��313

Integration Platform���314

Target Environment Preparations���318

Playbook���318

Application Implementation���319

Runbook���319

Release Note��320

Artifact Promotion��325

Summary���328

Chapter 8: ��Operate and Monitor��331

Manage the Integration Platform���331

Operational Pipelines���332

Monitor���335

Systems Monitoring��336

Platform Monitoring��342

Business Monitoring���343

Security Monitoring��346

Share Information��349

Events, Alerts, Incidents, and Notifications���352

Summary���356

Chapter 9: ��Use Case���359

Requirements Analysis���361

Pipeline Design��365

Branching and Release Strategy��367

Table of Contents

viii

Release Version Generation��369

Pipeline Development��370

Code Repository���371

Pipeline Creation��375

Configure Variable Groups��376

Configure Service Connections��381

Test��384

Integrity of Artifacts��391

Performance and Acceptance Pipelines���394

Implementation��395

Configure the Azure DevOps Prod Environment and Dual Control����������������397

Deploy the Application to Production��399

Quality Gate��403

Summary���405

��References���407

�Index��411

Table of Contents

ix

About the Author

Henry van Merode is a solution architect with more than 30 years of

experience in ICT within several financial organizations. His experience

spans a wide range of technologies and platforms, from IBM mainframes

to cloud systems on AWS and Azure. He developed, designed, and

architected major financial systems such as Internet banking and order

management systems, with a focus on performance, high availability,

reliability, maintainability, and security.

For the last 8 years, Henry’s expertise has been extended with

continuous integration, continuous delivery, and automated pipelines.

As an Azure DevOps community lead, Henry likes to talk about this

subject and promote automating the software supply chain to the teams at

his work.

xi

About the Technical Reviewers

Fred Peek is an IT architect from Utrecht, the Netherlands. He has a

master’s degree in electrical engineering from the Eindhoven University

of Technology. He has more than 20 years of experience in the IT industry,

working in software development (Java, C++), software architecture, and

security. Besides IT, he is involved in the audio and music industry as a

recording/mixing engineer, DJ, and Audio Engineering Society (AES)

member.

Joep Daandels is an enthusiastic DevOps engineer from Maaskantje,

the Netherlands. He graduated as a software engineer from the Avans

University of Applied Sciences and has been working in the IT industry

for the last 20 years. In recent years, he specialized in machine learning/

artificial intelligence and is currently working on a state-of-the-art solution

to enhance IT operations with AIOps. In his spare time, Joep loves to relax

and read a good paper or study some interesting new technology.

Ralph van Beek is a DevOps architect specialized in optimizing the CI/CD

process for the z/OS mainframe. He graduated in business economics

and informatica at Avans Hogeschool for applied sciences. He has been

working in the IT industry for 35 years. The last 15 years he has specialized

in optimizing and automating software delivery processes for z/OS

mainframes, approaching software delivery as a business process. He has

been a guest speaker on this topic at various conferences. In his spare time,

he prefers various outdoor activities such as hiking and biking and travel

photography.

xiii

Acknowledgments

Many thanks to the people of Apress for allowing me to write this book and

for helping me publish it.

Special thanks to my colleagues Fred, Ralph, and Joep for reviewing

the text, providing me with suggestions, and correcting mistakes I made.

And of course, I want to thank my wife Liseth for being supportive.

1

CHAPTER 1

The Pitfalls of CI/CD
This chapter covers the following:

•	 The drivers that started my search for a more structured

way to design and develop pipelines

•	 The challenges I faced during the years I worked with

continuous integration, continuous delivery, and

pipeline development

�Challenges
At work, I once gave a presentation about continuous integration/

continuous delivery and described how it improves the speed of software

delivery. I explained that using pipelines to automate the software delivery

process was a real game changer. I presented the theory that was written

down in books and articles, until someone from the audience asked me

a question about what the development of pipelines looks like and how,

for example, one should perform unit tests of pipelines themselves. This

question confused me a bit because the theory nicely explains how to

unit test an application in the pipeline but never explains how to unit test

pipelines themselves. Unfortunately, I could not give a satisfying answer,

but this question did make me realize that until then my approach to

creating pipelines was a bit naïve and needed a boost. A scan within the

department I worked at told me I wasn’t the only one who could benefit

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_1

https://doi.org/10.1007/978-1-4842-9228-0_1

2

from a more professional approach toward continuous integration/

continuous delivery (CI/CD).

In the beginning, I stumbled upon a lot of problems I needed to solve.

Unfortunately, there aren’t that many tutorials that point out from start to

finish how to make a proper pipeline design, which choices to make, which

issues I would face, and how to solve them (or at least point me in the

right direction). There was no structured way to design, develop, test, and

implement pipelines. After a long journey of trial and error, my approach

to setting up a CI/CD infrastructure and creating pipelines became more

structured and started to show its value. As I watched other teams improve

their CI/CD skills, I realized that everybody faced the same challenges and

encountered the same pitfalls as I did.

Let me first point out that CI/CD itself is not a pitfall. It is an approach

to solving a problem, automating the solution, and implementing a mature

software supply chain. But, if underestimated and not understood very

well, CI/CD can become a problem that gives you lots of headaches.

The realization of pipelines requires a structured approach, similar to

designing, developing, testing, and implementing applications, but there

isn’t much information available that can help you with this journey. My

experience is that CI/CD is also not well-understood. Using automated

pipelines is not the same as CI/CD. This is one of the reasons why I wrote

this book, and this is probably also the reason why you started reading it.

Let me try to emphasize some challenges I faced in the past.

�Oversimplified Diagrams and Misalignment
Most CI/CD diagrams depict similar stages like the ones shown in

Figure 1-1.

Chapter 1 The Pitfalls of CI/CD

3

Source Build Test Deploy

Figure 1-1.  Simplified diagram of CI/CD

The problem with this type of diagram is that it’s fine to explain

the concepts of CI/CD, but I noticed that teams use this as their actual

blueprint and realize along the way that they have to redesign and rewrite

their pipelines. Often, one person is responsible and just starts with a

simple implementation of a pipeline without considering the requirements

or without even knowing that there are (implicit) requirements. For

example, the team works in a certain manner, and that was not taken into

account from the start.

The lack of a structured approach to implementing pipelines is one

of the underlying problems. The “thinking” processes required before the

pipeline implementation starts never happen.

�Lack of Design Patterns
Usually, the Internet is a good source for articles, and there are plenty

of articles about CI/CD, but questions like “How do I design a pipeline

in case the team uses branching strategy X, test strategy Y, and release

strategy Z?” remain unanswered. The topics are pointed out to be relevant,

but it remains unclear how this translates to the realization of a pipeline.

Most articles are either too abstract or too trivial, or they immediately

dive into the technical details, without visualizing the whole picture. There

are books about cloud design patterns, enterprise application architecture

patterns, and even machine learning patterns, but there is no Gang of Four

(see [21]) type of book on CI/CD design patterns. It’s a missed opportunity.

Chapter 1 The Pitfalls of CI/CD

4

�Vulnerabilities
Teams are often unaware that they incorporate solutions in their

pipeline, which perhaps contain severe vulnerabilities. For example,

third-party libraries or software is retrieved directly from the Internet,

but from unauthorized sources. This results in a real security risk. Also,

the propagation of secrets, tokens, and credentials is often insecure.

The CI/CD process should be fully automated, and manually moving

secret information around must be prevented. Some of these risks can be

avoided, or at least reduced, by applying mitigating actions.

�Pipeline Testing
Consider an assembly line of a car-producing company. The company

produces cars 24 hours a day, 7 days a week. At the front of the assembly

line, the car parts enter. The wheels are mounted to the suspension,

the body is placed on the chassis, the engine is installed, and the seats,

steering wheel, and electronic equipment are installed. Everything is

automated, and at the end of the assembly line, a new car sees the light.

What if you are the mechanic who has to replace a large part of this

assembly line? Stopping the assembly line is not an option, and replacing

assembly line parts while running carries a risk. You may end up with a car

with a steering wheel attached to the roof.

This is the underlying problem of the question my colleague

once asked when I gave a presentation about continuous integration

and continuous delivery, “How do I develop and test my pipelines?”

Developing an application and testing it locally works very well for an

application, but not so well for pipeline code. The environment in which

a pipeline builds the application, deploys it, and executes the tests is not

suited to become the develop and test environment of the pipeline itself.

And having a local pipeline environment to develop and test the pipeline is

often not possible.

Chapter 1 The Pitfalls of CI/CD

5

�Application Code vs. Infrastructure Code
Years ago it was common to set up an infrastructure and install

middleware manually. This took ages. You needed various departments to

request servers, storage, MQ queues, load balancer configurations, firewall

rules, etc. Most of these departments wanted you to fill in an extended

request form. If you were lucky, the requested resource was available

within five days. Slowly it became more common to automate parts of this

process, but today large parts of the on-premises infrastructure still have to

be set up manually.1

And then I moved to cloud. Working with cloud providers such as

AWS and Microsoft Azure opened a new world for me. It was possible to

define the whole infrastructure stack using CloudFormation and Azure

Resource Manager (ARM) templates. And it became even better. Bicep was

introduced for Azure, and AWS introduced the Cloud Development Kit

(CDK). This made it possible to program the infrastructure in your favorite

programming language. But, this also blurred the dividing line between

an application and the infrastructure a bit. Things used to be clear. Scripts,

which were used to create (parts of) the infrastructure or middleware,

were not validated against quality rules and were not tested in the pipeline.

The pipeline was focused on the application. With the introduction of

infrastructure as code (IaC), the pipeline should treat infrastructure

code similarly to application code. Infrastructure code must be validated

against security policies and organization guidelines. The provisioned

infrastructure must be “tested” to make sure that the target environment

behaves the way it was intended. This indicates that IaC has an important

role in a pipeline.

1 Organizations with on-premises datacenters are trying to catch up slowly,
implementing platforms such as OpenShift, disclosing their infrastructure using
APIs, and making use of Ansible and Terraform to define infrastructure as code.

Chapter 1 The Pitfalls of CI/CD

6

Note I used to see infrastructure provisioning and application
deployment as two different processes. However, this is “legacy
thinking” and is based upon the fact that this was often done
by different departments and different people, using different
technologies. But if you think about what you want to achieve, it
makes sense not to see this as different processes. A deployment
is putting a business capability into production. It does not matter
if this involves infrastructure, an application, security policies, or
monitoring for that matter. All these components together contribute
to the business capability, and they should not be treated as different
“things.” This becomes more apparent if all resources become
“virtual” and are defined as code.

�Organizing and Maintaining Pipelines
After the first pipeline is created, the second one is created and then the

third and the fourth, until there are dozens of pipelines trying to realize

one or more steps within a CI/CD process. Often code is copied from one

pipeline to the other, making it more complex to maintain. After a while, a

complete restructuring is needed. There is no vision from the start. Various

factors influence the organization of pipelines.

•	 The application architecture is important. Is the

application a monolith, or does it consist of multiple

microservices? In how many pipelines does this result?

•	 What is the teams’ workflow? Do they use a particular

branching strategy, and what is their test strategy, their

deployment strategy, and their release strategy?

Chapter 1 The Pitfalls of CI/CD

7

•	 Also, the arrangement of the application code, the

infrastructure code, and the pipeline code requires

some thinking. Do you put everything in one

repository or not?

•	 Does the pipeline include manual steps, and how do

they reflect in the design?

The number of pipelines may grow if the number of variations is high. I’ve

seen examples in which one small application resulted in multiple pipelines:

one pipeline performing just the CI stage for feature branches, one pipeline

for a regular (snapshot) build, one for a release build, one deployment

pipeline to set up tests, a separate pipeline to perform the—automated—tests,

and a deployment pipeline for the production environment.

�Technical Constraints
Something that comes to the surface only after a while is that you may hit

some constraint, often a compute or storage resource. For example, the

code base becomes bigger and bigger, and the source code analysis stage

runs for hours, basically nullifying the CI/CD concept of fast feedback.

Also, the queuing of build jobs may become an issue in case the build

server cannot handle that many builds at the same time. Unfortunately,

these constraints are often difficult to predict, although some aspects can

already be taken into account from the start.

�Legacy
If we like it or not, a lot of teams still use a legacy way of working. They still

perform too many manual tests, and test environments are often set up manually.

As a branching workflow, Gitflow is still used a lot. This type of workflow has a

few downsides. It is complex, with multiple—long-lived—branches, and it can be

slow to adapt new features because of a strict release cycle.

Chapter 1 The Pitfalls of CI/CD

8

But even if an organization starts to innovate and implements the

principles of CI/CD, there is still a long way to go. People have to realize—

and sometimes be convinced—that things can be improved. They need

to understand how this can be done, and they need to know their role in

this process. CI/CD is not just about the tools, although there were many

times I put a curse on some of them. With most of the current tools, you

can quickly build a simple pipeline in a couple of hours. The challenge

is about shaping the organization, the processes, and the people. Do

not underestimate how much effort that takes, especially in a large

organization.

So, should you send the teams that match the previous description the

message that they aren’t ready yet for CI/CD and leave it to that? Of course

not. I always see CI/CD as a “growing model.” Start small, extend gradually,

inspire people, and help shape a way of working that fits in the CI/CD

philosophy.

These challenges started my search for a structured CI/CD design

approach, but without much success. My CI/CD journey, therefore,

consisted of a lot of trial and error, but I did manage to learn a couple of

things along the way. Coming mainly from a Java/WebLogic/WebSphere/

Spring Boot environment, I designed and built Java-based pipelines for

multiple teams and mastered a bunch of tools that help with automating

builds, setting up test and production environments, deploying

applications, and executing automated tests. Tools like Jenkins, Azure

DevOps, and Ansible come to mind.

I learned what worked and what did not. I realized that more

traditional workflows do not fit very well in the CI/CD concept. I

experienced that the development of pipelines does not always seem like

a team responsibility; I often heard team members talking about “your

pipelines.” So, turning this situation around and making CI/CD a shared

responsibility was also part of the job. Slowly, the approach to designing,

developing, and implementing CI/CD pipelines became more structured.

It would be a shame not to share my experiences.

Chapter 1 The Pitfalls of CI/CD

9

Note T his book is a practical guide to designing and developing
pipelines. The ambition is geared toward CI/CD, but the scope is a
bit broader. As explained, no team can switch to “pure” CI/CD in an
instant, so to accommodate these teams, the book also discusses
workflows that include traditional branching strategies, for example.

�Summary
You learned about the following topics in this chapter:

•	 Teams must be aware of the challenges they face when

they start with continuous integration and continuous

delivery.

•	 These challenges involve the following:

•	 The use of oversimplified diagrams as a blueprint

for pipelines

•	 No clear design patterns

•	 Vulnerabilities in pipelines

•	 Testing pipelines

•	 The use of infrastructure as code in pipelines

•	 Managing pipelines

•	 Technical constraints

•	 Legacy and pipelines

Chapter 1 The Pitfalls of CI/CD

11

CHAPTER 2

CI/CD Concepts
This chapter covers the following:

•	 The principles of continuous integration and

continuous delivery

•	 Continuous integration and continuous delivery in

the context of the Open Groups’ IT4IT Reference

Architecture and the software supply chain

•	 The importance of application life-cycle management

(ALM), with examples of ALM platforms

•	 The bumpy journey of realizing continuous integration

and continuous delivery

•	 Pipeline development with application development

(this forms the basis of this book)

•	 The importance of a thorough requirements analysis,

which forms the basis of your pipeline design and

development

•	 Terms often used in continuous integration and

continuous delivery and what they mean

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_2

https://doi.org/10.1007/978-1-4842-9228-0_2

12

�Principles
The foundations of continuous integration/continuous delivery (CI/CD)

were laid down by people like Paul Duvall, Jez Humble, and David Farley,

and they are thoroughly described in their respective books, Continuous

Integration: Improving Software Quality and Reducing Risk (see [5])

and Continuous Delivery: Reliable Software Release through Build, Test

and Deployment Automation (see [6]). These books present a couple

of concepts and principles that together make up CI/CD. Let’s try to

summarize CI/CD in a few sentences.

The benefit of continuous integration and continuous delivery is that

application code can be delivered faster to production by automating the

software supply chain. This produces secure code of better quality, provides

faster feedback, and results in a faster time to market of the product.

Continuous integration is based on the fact that application code is

stored in a source control management system (SCM). Every change in this

code triggers an automated build process that produces a build artifact,

which is stored in a central, accessible repository. The build process is

reproducible, so every time the build is executed from the same code, the

same result is expected. The build processes run on a specific machine,

the integration or build server. The integration server is sized in such a way

that the build execution is fast.

Continuous delivery is based on the fact that there is always a stable

mainline of the code, and deployment to production can take place

anytime from that mainline. The mainline is kept production-ready,

facilitated by the automation of deployments and tests. An artifact is

built only once and is retrieved from a central repository. Deployments

to test and production environments are performed in the same way,

and the same artifact is used for all target environments. Each build

is automatically tested on a test machine that resembles the actual

production environment. If it runs on a test machine, it should also run

on the production machine. Various tests are performed to guarantee

Chapter 2 CI/CD Concepts

13

that the application meets both the functional and the nonfunctional

requirements. The DevOps team is given full insight into the progress of

the continuous delivery process using fast feedback from the integration

server (via short feedback loops).

This is a concise explanation of CI/CD, which is of course more

thoroughly described in the mentioned books.

�Positioning of CI/CD
The IT value chain provides a view of all activities in an organization that

create value for the organization [7]. The IT value chain concept is defined

in the Open Groups’ IT4IT Reference Architecture and consists of four

pillars, the value streams.

•	 Strategy to portfolio (S2P) value stream: Aligns the IT

and business road maps and includes activities such as

setting up standards and policies, defining the enterprise

architecture, analyzing service demand, and creating

service road maps.

CI/CD practices are implicitly used to support

the portfolio management process by providing a

consistent and repeatable way to build, test, and deliver

new IT investments. Additionally, CI/CD can help to

ensure that IT investments meet required standards

for quality, security, and compliance by automating

the testing and deployment process and by providing

visibility into the status of the delivery pipeline.

•	 Requirement to deploy (R2D) value stream: Provides the

framework for creating/sourcing new services or modifying

those that already exist. This value stream includes the typical

activities to create the services, planning, requirements

analysis, design, development, test, and deployment.

Chapter 2 CI/CD Concepts

14

In essence, this is what CI/CD is mainly about. CI/

CD pipelines implement the activities associated

with the R2D value stream.

•	 Request to fulfill (R2F) value stream: Provides a

framework connecting the various consumers (business

users, IT practitioners, or end customers) with goods

and services that are used to satisfy productivity and

innovation needs. This typically includes activities of

supporting departments that deliver facilities, tools, and

automation support, which help DevOps teams in the

development of their services.

Managing a CI/CD SaaS solution, developing a CI/

CD infrastructure, and hosting a CI/CD platform

infrastructure are typical examples of CI/CD

activities in the R2F value stream.

•	 Detect to correct (D2C) value stream: Deals with

integrating monitoring, management, remediation, and

other operational aspects. Key activities are detecting

events, alarming, diagnostics to determine root causes,

determining business impact in the case of issues, and

resolving incidents.

CI/CD helps to ensure that the fix or update is delivered to the

customer quickly and with a high level of quality.

The IT value chain is more or less a set of interrelated activities that

organizations use to create a competitive advantage. It is valuable in the

sense that it consists of a thorough list of activities that can be mapped on

the software supply chain.

The software supply chain represents activities required to get the

product to the customer. It is a subset of the IT value chain activities,

but more targeted toward the process of idea creation until the actual

Chapter 2 CI/CD Concepts

15

service rollout. CI/CD covers activities of the software supply chain with

a focus to speed up software development and to maintain a high-quality

standard.

Traditionally, CI/CD does not cover all activities associated with

software development. CI/CD is usually restricted to build, test, and

deployment. Activities such as planning, requirements analysis, designing,

operating, and monitoring are usually not considered in the scope of CI/

CD; however, we shouldn’t be too narrow-minded here. It does make

sense to keep these activities in mind when realizing pipelines.

Consider the case in which an artifact is deployed to production. It needs

to be monitored. Incidents may occur, which need to be resolved. What if

application monitoring becomes integrated into the pipeline? Issues and

incidents detected by the monitoring system could lead to the automatic

creation of work items, or it could even lead to automated remediation;

an incident detected results in triggering a pipeline that remediates the

incident. Stretching this thought process a bit more and anomalies detected

by artificial intelligence (AI) monitoring may result in triggering a pipeline

that reconfigures a service even before the incident occurs.

It is good to see in practice that some teams stretch their CI/CD

pipeline setup to the max, looking beyond the scope of traditional CI/CD

and considering all steps in software development.

Strategy to portfolio Requirement to deploy Request to fulfill Detect to correct

IT Value Chain

Drive IT portfolio to
business innovation

Build what the business
needs, when it needs it

Catalog, fulfill & manage
service usage

Anticipate & resolve
production issues

Figure 2-1.  IT value chain

Chapter 2 CI/CD Concepts

16

�Application Lifecycle Management
One of the earlier continuous integration tools was Hudson, maintained

by Oracle and later forked to what is currently known as Jenkins. With its

success, new tools arrived like Travis CI and Circle CI, each extending

the CI concepts. In addition, specific deployment tools popped up,

covering the continuous delivery part of the CI/CD equation. A tool

like Octopus Deploy is such an example. To cover even more aspects of

the software supply chain, the toolset expanded with issue trackers and

monitoring tools.

The problem was—and still is—that integration of all these tools is not

straightforward, and CI/CD requirements cannot always be implemented

easily. This means that time (and money) must be spent to create a fully

integrated toolset, which not only implements all functional requirements

but is also performant, secure, and stable.

Here is where application life-cycle management suites step in. ALM

tools include portfolio management, project management, requirements

management, software architecture, application development, continuous

integration, quality assurance/software testing, software maintenance/

support, change management, release management, and monitoring. It

covers more than only the software development life cycle and focuses

on the whole software supply chain. Examples of ALM suites are Azure

DevOps, a software-as-a-service (SaaS) solution from Microsoft, and

the Atlassian ALM suite consisting of Confluence, Bitbucket, Sourcetree,

HipChat, Jira, and Bamboo.

And even these current-gen ALM platforms cover only parts of the

software supply chain, or they omit certain functionality, which means

that these features must still be added using additional tools, marketplace

solutions, or DIY solutions.

Chapter 2 CI/CD Concepts

17

Note A n ALM platform is a collection of tools and processes that
support the various stages of an application’s life cycle. Specifically,
the software development life cycle (SDLC) tools of the platform play
a crucial role in the context of CI/CD processes.

Throughout this book, the name ALM platform is used. This can also
be read as an integration server, a build server, or a set of individual
but integrated CI and CD tools.

�CI/CD Journey
I do not know one team that implemented CI/CD in the first iteration.

When I ask a team to think about a solution to deliver software in smaller

increments and more frequently, they agree it is a good idea but difficult to

realize in their context. They give various reasons why this is not possible

or at least very difficult. A generic problem seems to be that teams are

used to a certain way of working, often a way of working that does not

necessarily meet the preconditions of a CI/CD implementation. They find

it hard to let go, especially if the new way of working is not crystal clear

to them or if they don’t realize the necessity to change. And even if they

realize it, they still need to adapt. Change remains difficult.

A recurring problem, for example, deals with the granularity of user

stories or tasks. Some stories or tasks are just put down as one-liners, like

“implement the validation of a digital signature.” A developer commits to

this story and starts coding.

This is what happens: After the validation code is written, it needs to

be tested. This requires additional test code to be written. The test code is

needed to create the digital signature that needs to be validated. But testing

also requires a key pair and a certificate. The key pair and a certificate

signing request (CSR) file are created, and the certificate is obtained from

Chapter 2 CI/CD Concepts

18

the local public key infrastructure (PKI) shop (assuming that self-signed

certificates are not allowed in this company). The developer also realizes

that the target environment does not have a file system but an object store.

Storing the certificate on the workstation’s file system works fine for local

testing, but it does not work anymore after the code has been integrated

into the app and deployed to the target environment. So, the code has to

be rewritten, and by the way, additional measures have to be taken from

an access control point of view, so the app can also read the object store.

The story looked simple at glance but expands along the way. The result is

that the developer keeps the code and pushes it to the central repository

only after a couple of days, or even longer. The translation from business

requirements to epics, stories, and tasks is not trivial, and decomposing

the work into small, manageable chunks is often a challenge.

Realizing that implementing CI/CD is a journey is the first step of the

transformation process. It is the first hurdle of a bumpy journey. Setting an

ambition level helps in defining this journey. Team members should ask

themselves a couple of questions. Where do we stand six months or one year

from here? What can be improved in our way of working? What do we need to

fix certain impediments our team deals with? Can they be solved by training?

Determining the ambition level can be done with the help of a

continuous delivery maturity model. This model helps assess the team’s

current maturity and works as guidance in their CI/CD journey. There are

several examples of continuous delivery maturity models. The following

one is from the National Institute for the Software Industry (NISI; see

Reference [36] and Figure 2-2). The vertical axis represents the categories

or steps in software development. The horizontal axis represents five

maturity levels, from foundation to expert. These maturity levels indicate

how well a team performs in its continuous delivery practice. It is up to

the team—also driven by the organization’s ambition—to decide in which

areas they need improvement and to what extent. Maybe they don’t want

to be an expert in each category. Create an initial road map, but start small

and expand over time.

Chapter 2 CI/CD Concepts

19

- Customer behaviour and
feedback server

- Basic monitoring of app
usage and handling
customer feedback

- Advanced customer
monitoring

- A/B testing in place

- All metrics and reports
are predefined

- Decision making based
on detailed analytics

- Realtime data collection,
analysis and reporting
using AI

- Centralized backlog
management server

- All work managed by
means of digital backlog

- Automatic backlog item
creation

- Automatic proposed
backlog prioritization

- Backlog creation and
prioritization using AI

Foundation
Platform for CD 3.0
available, however the
deployment is still poorly
automated

Novice
CD 3.0 with basic
automation on a reactive
level

Intermediate
Average CD 3.0
technologies adopted
with proactive elements

Advanced
Advanced CD 3.0
technologies adopted,
that are quantitively
managed

Expert
Decision making and
execution is increasingly
handed over to machine
learning algorithms

Intelligence

Planning

- Centralized version
control

- Centralized build server

- Nightly builds
- Workflow orchestrator
- C-integration reporting

- Automatic build on
commit

- One build for all
environments

- Staged integration
- Usage of microservices
- Realtime integration

reporting

- Continuous integration
services are
automatically up- and
downscaled

Integration

- Centralized unit-test
server

- Unit tests start manually

- Unit tests run in CD-
pipeline

- Automated Integration
tests started manually

- Integration tests in
pipeline

- Automated acceptance
tests started manually

- Acceptance tests in
pipeline

- Automated performance
and security tests
started manually

- Behaviour driven
development

- Continuous integration
services are
automatically up- and
downscaled

Testing

- Deployment server - Basic deployment scripts
- Automatic deployment

to test environment
after successful build

- Automatic deployment
pipeline from build to
production

- Zero downtime
deployments

- Deployments on endless
scalable platforms

Deployment

Continuous Delivery 3.0 Maturity Model

Figure 2-2.  NISI continuous delivery maturity model

Important in the CI/CD journey is that it must be a team effort. There

are enough cases in which one or two team members are assigned to

“implement CI/CD.” The danger exists that they become too isolated,

and any question about the topic is immediately delegated to them. If the

team is not involved, the knowledge gap becomes bigger and bigger, and

when they leave the team, there is nobody left to take over. So, involve the

whole team and relevant stakeholders and take them along on the CI/

CD journey. And, of course, not everybody needs to know every nitty-

gritty detail, but it must be enough to understand what’s going on. A good

practice is to keep CI/CD realization in sync with the workflow of the team.

Chapter 2 CI/CD Concepts

20

Add CI/CD-related work items to the sprint and keep the same pace as the

rest of the team. Give a sprint demo from time to time. Involve other team

members to take up small bits and pieces, once the pipelines are mature

and more or less stable.

Until now, CI/CD is presented as an abstract concept with a

certain philosophy, but a concept does not run on a real server. The

implementation of CI/CD also involves running pipelines that build, test,

and deploy software. The pipelines themselves are pieces of software

running on a server. This statement forms the basis of this book; a pipeline

is software. So, why shouldn’t you treat pipeline development the same

way as developing an application? With this in mind, consider the steps of

software development.

•	 Requirements analysis: The first step in software

development is the requirements analysis phase. In

our context, it involves gathering requirements to

understand the problem domain of CI/CD. This also

helps in scoping the implementation.

•	 Design: Designing pipelines is the process that helps

you understand the flow of the pipelines. It makes

clear which conditions to consider and where the

pipeline takes an alternative path. A design also helps

to determine which tasks are executed and where they

fit best in the pipeline. The design also visualizes which

external systems are involved and how the pipeline

communicates with them.

•	 Development: This concerns the actual development

of pipelines and the integration with other tools and

surrounding systems.

•	 Test: The context here is about testing the pipelines

themselves, not testing an application within

a pipeline. Pipelines are also software, and the

Chapter 2 CI/CD Concepts

21

preconditions to test a pipeline differ from the

preconditions required to test an application. Is there a

test environment specifically for pipeline testing? What

kind of tests are involved, and is it perhaps possible to

automate these tests?

•	 Implement: Before the pipelines can be used, all

interfaces with external systems are set up, the

configuration is performed, variables are set, and

monitoring dashboards are created. The team is

prepared, and knowledge is shared. Any remaining

issues and improvements have been discussed.

•	 Operate and monitor: The behavior of the pipelines is

checked in the operating and monitoring phases. Does

queuing happen, and is the overall execution time of

the pipeline in order?

This book describes how pipelines are designed and developed from

the viewpoint of software development. Each chapter covers one phase

of the pipeline development process, but on an abstract or semitechnical

level. It provides a structured approach to design and develop pipelines.

The final chapter dives into a use case and uses the strategies of all

previous chapters to design and develop pipelines using Azure DevOps

in combination with AWS. The code used in this chapter is provided as

research material.

If you are looking for an in-depth technical—how-to—book about the

development and implementation of pipelines using specific tools like

Jenkins or Azure DevOps, this is probably not the book you are looking for.

However, if you are looking for guidelines on how to start with CI/CD, how

to design the process and the associated pipelines, and what needs to be

considered during the development and implementation of pipelines, this

book is for you.

Chapter 2 CI/CD Concepts

22

�Naming Conventions
There is no “standard” glossary for CI/CD, and sometimes the same name

is used in a different context. For example, deploy is also referred to as

release (the verb), but release can also refer to the creation of a release

(candidate), as in the noun.

So, to avoid confusion, this book provides the following definitions.

Note that this is not an exhaustive list. Only the words that need

explanation or that might cause confusion are listed.

Analyze code: This is a subset of quality assurance

and includes static code scans to determine code

quality and detect vulnerabilities in the application

code and its dependencies.

Application life-cycle management (ALM): This

integrated toolset covers the main aspects of the

software supply chain.

ALM platform: This is either a real ALM platform,

an integration server, or a set of individual but

integrated CI and CD tools. The ALM platform

covers the complete CI/CD toolchain.

Artifact: An artifact is a package stored in a binary

repository and used for deployment to a target

environment.

Branch: This is a branch used in source control

management.

Build: This means combining source code and its

dependencies and creating a runnable product

(artifact).

Chapter 2 CI/CD Concepts

23

Continuous deployment: This is a process in

which the artifact is built, tested, and deployed

to production unattended. The pipeline validates

whether the artifact meets all quality criteria. This

is in contrast to continuous delivery where an extra

manual step (dual control) is needed.

Deploy: This means installing an artifact on a certain

target environment. This can be a test environment

or a production environment.

Dual control: This is the application of the four-eyes

principle in which one person performs a task and

another person has to approve the execution of

that task.

Environment: In most cases, this refers to the platform/

infrastructure on which the artifact is deployed. In

some cases, the environment is used in the context of

an ALM platform and/or related CI/CD tools.

Package (verb): After an application is built, it is

packaged in a way to make it easily transportable,

like a .zip file or a .jar file. In the case of

commercial off-the-shelf (COTS) products, from

a consumer point of view, this stage is usually

skipped because it is already in a transportable

format. Packaging also implies baselining the

artifact, to make sure that what is deployed to

production is indeed the proper artifact (tested and

uncompromised).

Package (noun): This is the artifact, built by the

integration server or a downloaded file from a

vendor in the case of a COTS application.

Chapter 2 CI/CD Concepts

24

Pipeline: This is the design and implementation of

all steps that define the automation of the software

delivery process. This can be either a real CI/CD

pipeline or a pipeline with a less continuous character.

Promote: This activity “promotes” a release

candidate to a release. The release can be deployed

to a production environment. Sometimes this is an

implicit step: “we now call it a release.” But in some

ALM platforms it is an explicit task.

Publish: After the application has been packaged,

it is stored in an immutable binary repository, such

as Artifactory or Nexus. Downloaded packages

from vendors (COTS) still need to be published to a

secure location within the organization to guarantee

integrity and traceability.

Quality assurance: This process makes sure the

quality of your product meets a certain level.

Release (verb): This is when activities are performed

to deploy an artifact to a production environment.

Release or release version (noun): This is an artifact

that can be deployed to a production environment.

Release build: This is the creation of a release

candidate.

Release candidate: This is an artifact to which no

new features are added anymore. Only bug fixes are

solved in a release candidate, so it becomes a new

release candidate again, but with a different version.

If all bugs are fixed and the release candidate passes

all tests, it is promoted to a release (the noun).

Chapter 2 CI/CD Concepts

25

Snapshot build: This is an old remnant of the Maven

workflow. A snapshot build will never find its way to

production. It is an intermediate build artifact from

a feature or the develop branch and used as input

for a pull request (if a snapshot build fails, the code

is not merged).

Software development life cycle (SDLC): This is the

process of software development, build, test, and

deployment.

Source control management (SCM): This is a system

to perform version control. Examples of SCM

systems are Git, Mercurial, and Subversion.

Stage: This is a group of related activities in a CI/

CD pipeline. Examples of stages are Execute build,

Analyze code, and Perform test.

Tag: A tag is used to identify a group. This group can

consist of code, artifacts, stages, target resources,

etc. A tag is often used to identify a release

(candidate), with all its related code, CI/CD stage(s),

and target resources.

Task: This is one activity in a stage. A testing stage

for example can consist of different test types,

like a regression test or a preproduction test, each

performed as a task.

Target/target environment: This is the environment

in which an artifact is deployed. The target and

target environment are not used in the context

of an ALM platform and/or related CI/CD tools.

Chapter 2 CI/CD Concepts

26

The target environment is either a test server or

a production server. It can also be an account/

subscription on a cloud service provider.

Test: Testing is a subset of quality assurance and

involves automated testing and manual testing.

Trunk: This is the main branch in a source control

management system. It is also called mainline

or master.

Versioning: Artifacts need to be versioned to identify

them. A version is something different than a tag.

The version refers to a specific instance of the

artifact, and a tag is applied to a group of which the

artifact is one. The version and tag can have the

same value, but this is not mandatory. A tag may

refer to a product feature that is associated with

several release candidates, each having its version.

�Summary
You learned about these topics in this chapter:

•	 A brief overview of continuous integration and

continuous delivery outline

•	 Positioning of continuous integration and continuous

delivery in the software supply chain

•	 Application life-cycle management (ALM)

•	 The journey of implementing continuous integration

and continuous delivery

Chapter 2 CI/CD Concepts

27

•	 The process of pipeline development is the same as

the development of an application and involves the

following:

•	 Requirements analysis

•	 Pipeline design

•	 Pipeline development

•	 Testing pipelines

•	 Pipeline implementation

•	 Operate and monitor pipelines

•	 Keywords associated with continuous integration and

continuous delivery

Chapter 2 CI/CD Concepts

29

CHAPTER 3

Requirements
Analysis
This chapter covers the following:

•	 The sources of pipeline requirements

•	 Various categories of requirements

•	 Requirements in detail

This chapter is intended to inspire you by presenting an overview of

requirements, grouped by category.

�Overview
Requirements analysis is the first step before the actual design of the

pipeline is drafted and the pipeline is created. Requirements apply to CI/

CD practices, pipelines, the ALM platform, or a combination of all tools

that make up the integration infrastructure. Requirements are derived

from different sources.

•	 First, there are basic CI/CD principles, which can be

treated as requirements. Become familiar with them. If

you deviate from the basic principles, you must have a

good reason to do so because they form the foundation

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_3

https://doi.org/10.1007/978-1-4842-9228-0_3

30

of CI/CD. Sources like [5] and [6] are excellent in

explaining these principles and helping you grasp the

concepts of CI/CD. To emphasize, CI/CD itself is not

the goal. Delivering quality software at a pace that

satisfies your business is the goal. This could mean that

you deviate from the continuous delivery “theory” in

certain aspects.

•	 There are also best practices. The Internet is full of

them. Some are useful, others are not, but sometimes

they can be helpful sources. Understand these best

practices. A nice source of best (good) practices is, for

example, described in [8].

•	 The business organization has requirements to which

a pipeline must comply. Often this relates to the way

of working in an organization or to specific security

constraints. This poses requirements for the design

and implementation of a pipeline. Organization

requirements are usually published somewhere on an

intranet site. Make sure they are known and understood.

•	 The DevOps team has requirements. Some of

these requirements are explicit, such as “we want a

dashboard of all artifacts and versions deployed on all

test environments.” Some of the requirements are more

implicit. For example, the team might adopt a certain

branching strategy, like a trunk-based workflow, which

poses requirements to the pipeline. The team maybe

has a certain way of testing. Test engineers perform

manual tests on their local workstations in addition to

automated tests in a dedicated test environment. How

does this translate to a pipeline? Gathering the team’s

requirements is essential for a good pipeline design.

Chapter 3 Requirements Analysis

31

Requirements analysis covers various areas, as listed in Table 3-1.

Table 3-1.  Requirements Analysis Areas

Way of working Resource constraints Monitoring

Technology Manageability Sustainability

Information Operations Governance

Security (general) Quality Assurance

Compliance and Auditability Metrics

This list is not exhaustive but gives an idea of which areas must be

considered. Of course, more areas can be identified, and some maturity

models define areas such as business intelligence, planning, culture,

and organization. These maturity models list some expert/advanced

capabilities such as automated remediation based on (AI) monitoring

and automated prioritization of the backlog based on AI. However, this

book intends to give practical guidelines and not an advanced vision of

CI/CD because most companies will never reach that level. Moreover, in

practice, it is not even always possible to achieve a complete hands-off

software supply chain with all the bells and whistles. Just think of manual

intervention by operators because certain situations are not foreseen and

cannot be solved using a pipeline. Also, costs play an important role in the

realization of an automated software supply chain. This means you always

have to make a weighted choice between requirements that are absolutely

necessary and requirements that are not.

The remaining pages of this chapter describe the areas mentioned in

Table 3-1 in more detail and show some examples of requirements that are

worth checking out.1 These requirements serve the purpose to inspire and

1 I tried to prevent being Captain Obvious. A lot of requirements are implicit and
part of CI/CD practice, such as “tests are automated” and “use version control,” so
they are not listed explicitly.

Chapter 3 Requirements Analysis

32

increase awareness of what is possible, what is important, what works for

you, and which requirements are not worth considering right now.

The following are possible requirement suggestions—grouped

per area—with each requirement to be validated for relevance and

applicability to your specific situation. Note that the order of topics in

this chapter has some degree of randomness and says nothing about how

important a requirement is. Additionally, some requirements may feel like

they immediately delve into the subject matter without any introduction.

Do not worry. In the following chapters, we will take a closer look at

the topics.

Before we go into more detail, it is important to stress one (meta)

requirement that applies to all requirements:

Requirement: A requirement has an owner.
It has happened too often—to me and my colleagues—that someone

emphatically introduced a requirement, which entailed a lot of inflexibility

and costs, but where no one could concretely explain why this was

necessary. A requirement without an owner and justification is not a

requirement. Implement a requirement only if there is a need to do so.

�Way of Working
The way of working can be defined on a business organization level or

team level. It defines the following:

•	 The way of working of the business organization: The

business organization may use Agile and Scrum,

biweekly sprints, or multiple DevOps teams working on

the development of one product. In some way, these

aspects influence the pipeline design.

Chapter 3 Requirements Analysis

33

•	 The team’s branching strategy: The team’s branching

strategy plays an important, and even bigger, role.

The CI/CD process, and therefore the pipeline design,

strongly depends on the workflow of the team; do they

use a trunk-based workflow, a feature branch workflow,

or the “old-fashioned” Gitflow?

•	 The test strategy of the team: A CI/CD process consists

of numerous types of tests, some continuous, others

less continuous. Examples are unit tests, integration

tests, functional tests, regression tests, manual tests,

load tests, stress tests, performance tests, break tests,

and preproduction/staging tests.

•	 Release strategy: This defines the cadence to release

artifacts and deploy them to production.

•	 The production deployment strategy: In addition, the

production deployment strategy shapes the pipeline

design. Does the team use a “Re-create deployment”

strategy or a “Blue/Green deployment” strategy?

Requirement: Use a simple branching strategy.
The more complex a workflow is, the less “continuous” the workflow is,

and the more complex pipelines become. Limit your branching strategy to

a trunk-based workflow or feature branch workflow, which is described in

successive chapters.

Requirement: Keep feature branches short-lived.
One of the basic principles of CI/CD is not to use feature branches,

but if you decide to use them, keep the feature branches short-lived.

The longer a feature branch is under development, the more difficult it

becomes to merge other features back to the trunk (or another branch)

because that branch was significantly changed.

Chapter 3 Requirements Analysis

34

Requirement: Choose the release strategy you want, but keep the
mainline production-ready.

Deploying a release once a day, once a week, or once a month is a

requirement the business defines. They probably have good reasons to

release either very often or with larger time intervals. This does not matter.

But it is good practice always to keep your mainline in such a state that

it is possible to deploy whenever you want. Even if you release once a

month, you are still practicing the CI/CD principles if the mainline is in a

production-ready state.

Requirement: Perform manual testing only if needed.
Performing manual testing is a CI/CD anti-pattern, but practice

shows that manual testing or semi-automated testing is still required. The

following are the reasons why:

•	 The QA team has a backlog converting manual tests to

automated tests.

•	 The automated test of a newly developed feature is not

yet integrated into the automated test suite. The trick is

therefore to integrate manual testing somehow into the

CI/CD process.

•	 Automating the test is costly if this particular test is

rarely executed.

•	 Some tests are very specific, so they cannot be

automated. Usability testing is such an example.

�Technology
The target environment, the CI/CD framework, the tools, and the

application architecture all influence the realization of a pipeline and its

flow. Here are a few examples:

Chapter 3 Requirements Analysis

35

•	 A microservice runs independently. This means

the build and deployment process must also be

independent of other microservices.

•	 Often, on-premises target environments are manually

created, or the creation is only partly automated.

Cloud service providers like AWS or Azure offer a lot

of possibilities to create ephemeral test environments,

which are test environments that are automatically

created and destroyed on demand. Tasks to create test

environments should be embedded in the pipeline.

•	 There is a huge difference in the process of self-built

applications compared to commercial off-the-self

(COTS) packages. CI/CD for vendor packages even

sounds like a contradiction from a consumer point of

view, and in essence, it is. But that does not prevent

anyone from creating an automated pipeline that

supports the download, validation, deployment, and

configuration of COTS packages.

Requirement: The availability, integrity, and confidentiality of the
ALM platform/integration server must match those of the application
with the highest classification.

If the deployed application is highly available, has the highest integrity

classification, and processes data that must be treated as confidential,

what does this mean for the software supply chain?

Take availability, for example. If an incident occurs and the application

must be fixed immediately, the ALM platform or integration server should

be available. But if this is not the case, the fix cannot be deployed. There

are a couple of options.

Chapter 3 Requirements Analysis

36

•	 Accept the risk. What is the chance that the ALM

platform/integration server is not available at the same

moment an incident with the application occurs?

•	 Always have a desired path. This is an alternative

shortcut to bypass the pipeline. The use of this shortcut

must be regulated with strict security measures,

of course.

•	 The other alternative is to increase the availability of the

ALM platform/integration server so that the RTO of the

ALM platform/integration server matches the RTO of the

application. From a risk and security point of view, this is

the best solution. From a cost point of view, probably not.

Similar requirements apply to the integrity and confidentiality of

an application. How secure is an application if the tools and libraries

used to create and deploy the application are not secure (enough)? The

requirements analysis sections “Security (General)” and “Compliance and

Auditability” take a closer look at this topic.

Note A n ALM/integration platform runs pipelines of multiple
applications. Even if just one application has the highest availability/
integrity/confidentiality classification, the platform should comply with
this classification.

Requirement: Create a pipeline per microservice.
A microservice is a small, isolated piece of software that runs

independently. The goal is that teams can bring them into production

independent of other microservices. This implies that a microservice must

have its CI (build) and CD (deployment) pipeline. One solution is to use a

base pipeline template or libraries to generalize the pipeline and extend

from the base pipeline for each microservice.

Chapter 3 Requirements Analysis

37

Requirement: Automate the creation of ephemeral test
environments.

Manually created environments take too much time and introduce

the risk of differences between test and production environments.

Keeping permanent environments—when not used anymore or not used

often—are costly. In addition, automated tests should be able to run

independently, which justifies a dedicated test environment.

The use of ephemeral test environments is a solution to this problem

and is strongly recommended. The test environment is created on the fly

and automatically destroyed again when not being used anymore.

Requirement: Don’t re-create test environments in every
pipeline run.

Although cloud service providers provide all the tools that enable

the creation and deletion of test environments on the fly, it is not a very

good approach to do this every time the pipeline runs or after every SCM

push. Creation and deletion of a test environment cost time—even in the

case of a cloud provider, this can take half an hour—which adds up to the

overall execution time of the pipeline. In addition, creating and deleting

a test environment every time the pipeline runs becomes costly in terms

of money.

A better approach is to provision the infrastructure but delete it only

if not used anymore or if not been used for a longer time. Fortunately,

the facilities to create an environment—in the cloud—are idempotent,

so running the provisioning of infrastructure resources multiple times

does not change the test environment if the infrastructure code has not

been changed. And instead of deleting the whole test environment, it may

be useful to include tasks in the pipeline that reset the test environment

to a certain status, after a test was executed (e.g., reset the data in a

database table).

Chapter 3 Requirements Analysis

38

Requirement: Develop an automated pipeline for COTS applications.
Even in the case of vendor packages (commercial off-the-shelf),

the use of an automated pipeline has various benefits. The execution of

downloading the software, validating, installing in the test environment,

configuring, verifying, and installing the software in production is

orchestrated and repeatable. In addition, ALM platforms often have built-

in features that make the audit trail visible.

Requirement: Use the same OS in the pipeline as the runtime
environment OS.

An application may behave differently if built on another OS than the

OS for which it was developed. Make sure that it is built and tested on the

same OS also used in the production environment.

Requirement: Use an ALM platform and limit the number of
additional tools.

In general, a large range of tools is difficult to integrate, and most

modern ALM platforms already consist of features integrated within one

platform. Use additional tools only if the platform itself does not support a

certain feature or if the capabilities of the platform’s feature are too limited.

Using a limited set of tools has some other advantages.

•	 Keeping the number of tools limited means less maintenance.

•	 Knowledge is more consolidated.

•	 Additional tools must be assessed to prove they comply

with the organization’s security policies.

•	 Fewer tools also mean fewer licenses and potentially

fewer costs.

The choice of what platform to use depends on the type of

organization. In some cases, this choice is made at the organizational level,

and teams have to adhere to this choice. In other situations, the team itself

decides; if they feel comfortable with GitHub actions, for example, they are

more likely to choose this option.

Chapter 3 Requirements Analysis

39

�Information
ALM platforms potentially generate a lot of data that the team can use to

keep informed. Even if the platform has default overviews and notification

options, it still makes sense to think about how a team is informed and

what type of information is shared with the team. Often these tools send

a lot of emails, which results in team members not reading their emails

anymore. Information overloading is a common problem and must be

managed using several strategies.

•	 Information pull and push: What type of information

is important enough to push to the team members in

the form of a notification—such as an email—and what

type of information is not? In the latter case, a team

member can also actively search for information if it

is needed.

•	 Display capabilities: Overviews in some ALM tools

don’t always excel in readability. The overview is

often cluttered with all types of build and deployment

information. Sending the information to alternative

tools that provide different views and/or have better

displaying and filtering capabilities may be something

to consider.

•	 Channel: Preferably use a limited number of options

to inform teams. One tool to push information to the

team and one tool to pull (retrieve) information is more

than enough.

•	 Classify: Make a classification of types of information.

For example, information about production

deployments should not be combined with information

about deployments in test environments.

Chapter 3 Requirements Analysis

40

•	 Target: Broadcasting notifications to all team members

isn’t such a good idea. A better way is to target the

information to a specific person. If a team member

pushes code to a specific branch, the result of the build

execution should be sent only to that particular person.

•	 Combine: Information is shared as soon as it is

available, but in some cases, it makes sense to wait for

a while, gather all information during a certain time

interval, combine it in a presentable state, and share it

with the team. An example of combined information is

a release note.

•	 Filter: If information is not used, why bother to burden

the team with it? Make sure only the information that

makes sense is also shared with the team.

•	 Viewpoints: Sometimes you just want to know what

has been deployed to a certain target environment. In

other cases, you want to know who broke the build.

The information must be presented with different

viewpoints in mind. An ALM platform or a specific

reporting tool can help with that.

Requirement: Use short feedback loops, but don’t overload teams
with too much information

Short feedback loops are a core principle of CI/CD, but finding

the right balance between providing enough information or too much

information is difficult. Teams are informed about successful or broken

builds, test results, pending manual actions, etc. The email inbox piles up

with emails, and developers tend not to look at them anymore because

it is also difficult to make a distinction between urgent emails and

informative emails.

Chapter 3 Requirements Analysis

41

Using a good combination of different communication tools, such as

email, Microsoft Teams, Discord, and Slack, and a mix of the information

strategies described at the beginning of this paragraph, reduces the risk of

information overloading.

Requirement: Create feedback loops in every stage.
It may be a no-brainer, but feedback must be given as soon as possible,

so instead of waiting until the pipeline is finished, the result of a failed step

must be sent to the team as soon as the failure occurs.

Requirement: Automate the creation of release notes.
Release notes are useful because they define clearly what is included

in a specific release. However, assembling the information to construct

a release note should not be done by hand. Automate this, based on the

information of the commits, the pull requests associated with a particular

release, and the test results.

Requirement: Provide insight into versions of artifacts installed on
test and production environments.

Teams sometimes use multiple fixed test environments on which

several test types are executed and on which different versions of artifacts

are deployed. Often there is no good insight into which version is installed

where. Provide a dashboard containing all environments—including

production—and all versions of installed artifacts.

�Security (General)
Security plays an important role in developing, implementing, and

managing pipelines. The ALM platform or integration server, the related

tools, and the pipelines themselves are potential attack surfaces, so they

need to be protected and monitored. Don’t forget that if applications have

to meet certain standards, such as the Sarbanes–Oxley Act (SOX), Health

Insurance Portability and Accountability Act (HIPAA), or Payment Card

Industry Data Security Standard (PCI DSS), it might be assumed that the

Chapter 3 Requirements Analysis

42

software supply chain also has to comply with these standards. Most of

these standards have a component focused on security in the software

supply chain.

Here is where the NIST Cybersecurity Framework [13] can play a role.

The NIST Cybersecurity Framework is a valuable source helping business

organizations to identify risks, protect resources, detect vulnerabilities,

and respond to and recover from security incidents. It is an extensive

framework and covers various security aspects targeted at people,

processes, and technology. Use the framework as guidance to define CI/

CD security requirements.

For example, one of the categories in the framework deals with supply

chain risk management. Subcategory ID.SC-2 states the following:

ID.SC-2: Suppliers and third-party partners of information
systems, components, and services are identified, prioritized,
and assessed using a cyber-supply chain risk assessment
process.

If this is brought up in the context of external libraries used for building

an application, it is made clear that the origin of such a library must be

assessed first. Just grabbing some software from the Internet and bringing

it into your production environment is not a good idea.

Requirement: Use a vault to store tokens, keys, secrets, and
passwords.

Ideally, all secrets—passwords, tokens, keys, credentials—used by

the application must be stored in a secure vault. Depending on the exact

requirements, this vault may have certain characteristics. It can be a

software vault or a Federal Information Processing Standard (FIPS) 140-2

level 3 compliant hardware security module (HSM). The pipeline has to

make sure that these secrets are stored in the vault, either by generating

them in the vault itself or by securely transferring the secret to the vault.

Some ALM platforms are supported by a vault to store secrets.

Chapter 3 Requirements Analysis

43

Requirement: Refine access by setting permissions for a user
or group.

Reading or writing actions to an SCM repository, starting a pipeline,

and performing a dual control are typical functions that require access

control because one person may, for example, start a pipeline, but this

person is not allowed to approve their pipeline. This requires a fine-

grained access matrix, realized using a role-based identity and access

management (IAM) setup.

Requirement: Check for drift detection.
Drift detection checks whether the actual infrastructure is still the

same as compared to the infrastructure code. If there is a difference

between the infrastructure code and the actual infrastructure, the change

was applied manually. Drift detection is often done on a scheduled basis.

Requirement: Perform a vulnerability analysis on third-party libraries.
Log4J versions 2.x until 2.16 contained vulnerability CVE-2021-44228.

This was a good example of a vulnerable third-party library. Scanning third-

party libraries in the pipeline on vulnerabilities should be a mandatory task.

Even if you think you don’t even use certain libraries, you may be surprised.

Transitive dependencies, in which a third-party library makes use of another

third-party library, are common. The third-party library you use may not

have vulnerabilities, while the transitive dependency does. The same applies

to COTS software used in organizations. Life-cycle management of software

ensures that the software does not contain vulnerable third-party libraries,

but unfortunately organizations often make use of software, which is beyond

end of life or use an old version of the software.

Requirement: Scan third-party libraries on malware or viruses.
Even if a library comes from an authenticated source and the integrity

is guaranteed and if the library does not contain any vulnerabilities, then

it can still contain malware or viruses. Scanning third-party libraries on

malware and viruses is recommended.

Chapter 3 Requirements Analysis

44

Note T his does not apply only to third-party libraries used to build
an application in the pipeline; it also applies to COTS applications that
make use of third-party libraries.

Requirement: Prevent deletion of resources.
Any resource associated with the creation and deployment of a

release (candidate) artifact must be prevented from being deleted. From

an audit point of view, the resources involved in creating, testing, and

deploying an artifact must be protected from deletion. This applies to code

(repositories), work items, pull requests, pipeline definitions and pipeline

runs, artifacts, testware, etc.

Requirement: Connections between the ALM platform/integration
server and external tooling must be secure.

The ALM platform or integration server deploys artifacts to a

production environment. This implies that the ALM/integration platform

also needs to be a production environment (e.g., running in the same

production network segment). Access to the platform must be secured,

and connections with other tools must also be secured. This is done

using standard solutions, such as an HTTPS connection with mutual

TLS (mTLS). Any data passed between the ALM platform/integration

server and connected systems is encrypted, and mutual authentication is

established.

Requirement: All infrastructure is hardened.
This is related to the previous requirement. If you manage the CI/CD

infrastructure yourself, make sure the servers on which the tooling runs

are hardened. Hardening your servers reduces the attack service of the

infrastructure. If you use a SaaS solution, the provider of the service takes

care of hardening the infrastructure.

Chapter 3 Requirements Analysis

45

Requirement: Clean up and secure your CI/CD workspace.
No, this is not about your desk. It applies to the workspace used

during the execution of a pipeline on a server. Integration servers make

use of a workspace. Often this is a directory on a server. Data is stored

in this workspace. This includes code but also secure files, containing

information that shouldn’t be disclosed. This is, for example, an

application property file with database credentials. In the first place,

other users and other pipelines should not be able to access your pipeline

workspace. Make sure this access is blocked, and the workspace is only

allowed to be accessed by the intended pipeline.

After the pipeline is finished, the whole workspace must be wiped

clean. Dangling workspaces is a risk that should be avoided. Make sure

that the workspace is clean after the pipeline is finished. If not, add a post-

task to the pipeline, which is always executed. The post-tasks perform the

cleanup.

Requirement: Make use of a container-based CI/CD workspace.
As an alternative to storing data on a file system or network-attached

storage (NAS), a container-based workspace can be considered. A newly

running (Docker) container starts with a clean workspace, and when the

container stops, the local data is wiped because data in a container isn’t

persisted by default.

Requirement: Roll back or roll forward if a deployment goes bad.
A deployment can either fail or not fail but the updated service

produces unpredictable or incorrect results. Rolling updates/canary

deployment is a way to mitigate the impact and is highly recommended,

but it does not prevent deployment failure. In all cases, a reaction is

required. You need to do one of the following:

•	 Roll back to the previous version and fix the damage

•	 Fix it and roll forward

Chapter 3 Requirements Analysis

46

There is a tendency to say you always need to roll forward, but that

depends on the viewpoint. A simple web application with a corrupted

layout is something completely different than a payment or trading system

with a recovery point objective (RPO) of zero and an RTO of nearly zero.

Without judging the situation, one can only conclude that “it depends.”

What is more important in this context is the fact that it must be possible

to perform a rollback or roll forward using a pipeline. A rollback not only

means undeploying the new artifact version and redeploying the old

version, but it also has to execute rollback scripts to reverse the changes

already made in the database, roll back messages in a queue, or roll back

any data already propagated to other systems. Also, a roll forward may

involve more than just installing a fixed app. Any corrupted data needs to

be fixed also.

This is not for the faint of heart, and whatever strategy is used, it

requires some thorough thinking up front and needs to become part of

your test strategy. Without a proper rollback/roll-forward vision, you will

continue to work on your pipeline endlessly. Be prepared for that in the

pipeline design.

Requirement: Only deploy artifacts to production with a higher
version.

This requirement seems to be contradicting the previous requirements

because checking whether the deployment always has a higher version

sort of prevents a deployment rollback. That is also not the intention.

In most cases, a deployment just succeeds, and the installed version

is always the latest one, which has a higher version number than the

previously installed version. An additional check on the existing version

on production versus the version that is going to be deployed prevents the

installation of older versions. This requirement implies that the versioning

scheme has an order. Using a commit hash as a version does not work in

combination with this requirement. In the case of a rollback, this check

should be suppressed, of course.

Chapter 3 Requirements Analysis

47

Requirement: Security tests are automated.
Dynamic Application Security Testing (DAST) includes test techniques

that expose security weaknesses and vulnerabilities present in an

application. As the word already suggests, DAST tools perform a dynamic

test that tries to uncover cross-site scripting, SQL injection, cross-site

request forgery, information disclosure, etc. DAST tasks should be

integrated into the pipeline as part of the stage in which tests are executed.

In addition to DAST, a penetration test (pentest) can be executed. Of

course, this depends on the risk appetite you want to prepare to accept.

It is a practice performed by cybersecurity professionals trying to identify

weaknesses in a system. Pentests are often performed as manual tests.

Pentesting as a service (PTaaS) is an emerging technology that helps to fill

this gap by automating parts of the work. Considering the current state of

cybercrime, PTaaS is an interesting area to consider.

�Compliance and Auditability
Although compliance and auditability could be classified under the

“Security (General)” section, the subjects are too dominant not to see them

as a separate requirements analysis area.

Compliance refers to the act of following laws, regulations, guidelines,

and specifications that apply to a company or industry. It is the process

of ensuring that an organization is adhering to the laws, regulations, and

standards that apply to its business.

Auditability is the quality of being capable of being audited or

the ability to be examined and verified. In the context of compliance,

auditability refers to the ability of an organization to provide evidence that

it is complying with laws, regulations, and standards.

Chapter 3 Requirements Analysis

48

Requirement: All changes are traceable.
For auditability reasons, every change in the build and release process

must be traced back to each resource—or entity—that was responsible

for this change. These resources are in some way linked to each other. For

example, if a work item is implemented, it must link to a design, the source

code, the code reviews, the build results, etc.

The following resources play a role in application development:

•	 Requirement: A requirement is described in a design

and referred to by one or more work items.

•	 Design: A design describes one or more requirements.

•	 Work item (epic, story, or task): A work item is referred

to by a requirement and referred to by a pull request.2

•	 Commit: A commit is created by a developer and

implements a work item. The commit refers to the

application code in the repository. A build refers to the

commit, establishing an audit trail.

•	 Application code: The application code is developed by

one or more developers and realized by one or more

commits. The application code is used by a build to

create artifacts.

•	 Pull request: A developer creates a pull request, which

is reviewed by another developer. The pull request

refers to a work item, so the developer knows which

commit was involved and which application code they

have to review.

2 Not all teams use pull requests.

Chapter 3 Requirements Analysis

49

•	 Developer: A developer develops application code,

commits the code to the repository, and creates pull

requests. The developer also reviews the pull requests

of their colleague.

•	 Build: A build uses application code to create artifacts.

•	 Artifact: An artifact is created by a build and deployed

by a release. The artifact runs on test and/or

production environments.

•	 Release: A release deploys one or more artifacts to test

and/or production environments and generates a

release note.

•	 Release note: A release note is generated as part of a

release.

•	 (Prod + test) environment: A test and production

environment runs an artifact, which is deployed by a

release.

•	 Test run: A test run is executed on one or more test

environments.

•	 Test specification: A test specification covers a

requirement and is executed by a test run.

The relations between these resources are visualized in Figure 3-1.

Chapter 3 Requirements Analysis

50

Figure 3-1.  Relations between resources involved in application
development

Each resource in this diagram must be traced back to another resource.

Questions an auditor in your organization could ask are “Which artifact

version runs in the production environment, and which test runs were

executed for this artifact?” or “Which requirements are associated with

a specific version of an artifact, and in which application code is this

realized?”

Traceability is also very valuable to determine the origin of a failed test.

If a test can be traced back to a work item and the associated commit, it

becomes easy to pinpoint the exact code that caused the test to fail. This

even makes it possible to automatically exclude this code and rebuild the

artifact again.

Chapter 3 Requirements Analysis

51

Requirement: Tag everything.
This requirement describes the “how” of the previous requirement.

To make sure that it is clear which version of an application is running

in production, which artifacts were deployed, which code was used

to build an artifact, which pipeline runs were responsible for building

and deploying the artifact, and which test runs were executed, tagging

should be applied. In the ideal world, all resources depicted in Figure 3-1

associated with the creation of the application running in production

should be tagged. Unfortunately, this can become complicated, but in

cases where tagging can be applied, it is recommended to do it. Use a

uniform tag to identify a release; a release version is recommended.

Requirement: All code is peer-reviewed.
Code is checked by a colleague before it is merged into the trunk. This

ensures quality and prevents unauthorized changes. This requirement

does not apply only to application code but also to infrastructure code

and pipeline code. Most ALM platforms include options to create a pull

request.

Requirement: Only artifacts built by a pipeline are allowed to be
deployed to production.

It is important to only allow artifacts that have been built by a pipeline

to be deployed to production because this helps to ensure that the artifact

being deployed has been properly tested and verified. It also helps to

prevent issues such as bugs, security vulnerabilities, or other problems

from being introduced into the production environment, thus preventing

the production environment from becoming unstable and vulnerable.

This requires special measures that prevent the deployment and

installation of artifacts retrieved from untrusted sources. There are several

options to guarantee that artifacts are built only by a pipeline.

•	 The production environment accepts only signed

artifacts. Only artifacts signed by the pipeline are

accepted, and because the private key used for signing

Chapter 3 Requirements Analysis

52

the artifact is managed by the pipeline, there is no

way to create this digital signature in another way.

The validation of the signature is done on the target

platform itself.

•	 The binary repository containing the artifacts is

accessible only using a pipeline. Manual upload of

artifacts to the binary repository is prohibited and

prevented. This gives more comfort knowing that the

artifact was at least created using a pipeline.

•	 Some solutions make sure that each stage in the chain

is executed as planned and that the artifact is not

tampered with in transit. Frameworks like In-toto and

Argos Notary make it possible to validate whether all

steps in the process have been executed as defined.

The framework makes sure that data related to a step

has not been tampered with when passed to the next

step. The metadata of each step is gathered and used

as input to create a digital signature, which guarantees

integrity. The whole process is audited by an external

system that verifies all steps. For more information,

see [22].

Requirement: Deployment to production is allowed only using a
pipeline.

In addition to the previous requirement, not only do safeguards

guarantee that only artifacts built by a pipeline are deployed to production,

but the actual deployment itself must also be restricted, so the deployment

can be performed only using a pipeline. Manual deployments must be

prevented; otherwise, it is impossible to trace back what exactly has been

installed on the target environment.

Chapter 3 Requirements Analysis

53

•	 Access control must be configured in such a way that

only the servers on which CI/CD tools are installed

are allowed to connect to the target environment.

This can be done by a combination of measures,

such as IP whitelisting,3 setting up a local firewall

around the production environment (for example, the

firewall capabilities of NSX virtual networking on top

of a VMWare ESXi cluster), and establishing mTLS

connections.

•	 Access can be limited even more within an ALM/

integration platform or other CI/CD tool. Specific

pipelines should have access only to target

environments, while other pipelines should not. By

using a token or nonpersonal user credentials in

combination with IP whitelisting, the pipeline can

connect to the target environment. The tokens or

credentials are not shared by other pipelines and must

be rotated regularly.

•	 Frameworks like In-toto and Argos Notary (see [22])

provide solutions to guarantee that the deployment was

performed as defined.

Requirement: Verify that an artifact is not altered between creation
and installation.

Created artifacts may never be changed after creation. This ensures

that the artifact deployed to production is the one that was intended and is

not changed in any way. It, therefore, does not become subject to misuse.

3 IP whitelisting is not preferred anymore due to maintenance/error-prone
situations, especially in cloud environments. Use it only when there’s no
other option.

Chapter 3 Requirements Analysis

54

This requirement can be realized by a task in the pipeline. This

task signs the artifact and adds a digital signature to it. This signature

authenticates the artifact, and it is 100 percent sure that the artifact is

created by the pipeline. This implies that the target environment must

have a mechanism in place that allows only signed artifacts to be installed.

The digital signature ensures that the integrity of the artifact remains

throughout all subsequent stages.

An alternative is the use of a hash. The hash of an artifact is created

in the pipeline and deployed together with the artifact to the target

environment. As part of the installation, the hash of the artifact is

generated again on the target environment and compared to the hash that

was delivered as part of the deployment. Needless to say, this method is a

lot less secure.

Requirement: Verify that an artifact after deployment is still
the same.

This requirement is an extension of the previous requirement, “An

artifact is not altered between creation and installation,” but in this context,

it concerns the artifact already installed in the production environment.

A continuous scan of the artifact running in production makes sure

that the artifact has not been changed after it was installed in production.

The scan continuously validates the integrity of the artifact in production,

for example, by checking its signature. AWS Lambda code signing is an

example of a mechanism to determine whether the running code has been

altered.

Requirement: Use only authenticated external libraries and
software.

Third-party libraries must be approved before they can be used. How

do you prove that the library does not do something harmful? Maybe it

does its job but in the meantime also gathers information and sends it to a

server outside the organization. Even in cases in which you think it is the

software you intended, a hacker may have updated it and saved it under

the same name. This means that the location the software is retrieved

Chapter 3 Requirements Analysis

55

from must be approved (by performing an assessment) and authenticated

(as part of downloading the software). The software retrieved from this

location must be validated on integrity (either using a hash or better, using

a digital signature).

This requirement, combined with the previous requirements, implies

a chain of trust, from the external developer creating and publishing a

library until the creation of an artifact (using the library), deploying it, and

running the artifact in a target environment. Figure 3-2 shows an example

of such a chain of trust.

•	 The developer uploads their signed library.

•	 The signature is validated on the central library server.

•	 The organization “trusts” the central library server

because they performed a security assessment.

•	 The CI pipeline retrieves the library from the central

server4 and validates the signature to determine

whether it indeed originated from the developer.

•	 The CI pipeline creates a signed artifact, which is

validated by the CD pipeline to determine whether its

integrity can be trusted.

•	 The target environment continuously validates the

signature of the artifact to make sure it’s still the same

artifact running on the target environment.

4 Maybe not directly, but using a proxy or intermediate repository.

Chapter 3 Requirements Analysis

56

CI CDInternet

Chain of trust

Organization

Create
signature
artifact

Validate
signature

library

Validate
signature
artifact

Continuously validate
signature artifact

Validate
signature

library

Central (trusted)
library server

(External) library
developer

Target
environment

Figure 3-2.  Chain of trust

Requirement: Resources associated with a release cannot be
deleted.

This means that if a release is built and deployed to a production

environment, the code in the code repository, the artifact, the work item,

the pull requests, and all other related resources may not be deleted.

Measures to prevent this have to be taken.

Requirement: Pipelines are scanned for compliance.
Not only applications built by pipelines are subject to code scanning,

but the pipelines themselves can be scanned for compliance. A big

organization with a lot of DevOps teams might impose certain restrictions

or criteria to which a pipeline must adhere. For example, analyzing

application code may be mandatory, which means that the pipeline

must include tasks to scan the application code. Another example is the

availability of a dual control task, which is executed before an artifact is

deployed to production.

Chapter 3 Requirements Analysis

57

Requirement: Test data is anonymous.
Various reasons mandate that personal data (personally identifiable

information [PII] data) in tests cannot be traced back to a real person. The

GDPR rule in Europe is very strict concerning PII data. Data is allowed

to be made visible only on a need-to-know basis, and test engineers and

developers are usually not allowed to have access to this data. In addition,

the use of production data in a test environment also hurts the reputation

of the company when this becomes known. The following are measures:

•	 Use synthetic data: This is generated data as an

alternative to real-world data. Using synthetic data is

preferred over anonymized data because you don’t

have to touch production data.

•	 Anonymize the data: Data anonymization, also

known as data obfuscation or data masking, involves

removing personally identifiable information or

altering (production) data so it cannot be traced back

to a person. Use anonymized data only if you can’t use

synthetic data.

Requirement: Pipeline logs may not contain PII data and secrets.
Derived from the previous requirement, PII data may not be used

at all in a CI/CD pipeline. And even if PII data is needed in the pipeline,

for example, to fill a database table in production, the data needs to be

protected.

Various options are possible to protect the data. The simplest solution

is to store it as a file, secured from reading by other users than the pipeline.

Even better is to encrypt the file. The pipeline decrypts the file as soon

as it is needed to fill the table. The decryption key must also be stored in

a secure location within the pipeline, of course. Another alternative is to

store the file in a vault.

Chapter 3 Requirements Analysis

58

�Resource Constraints
Resource constraints affect the pipeline negatively and introduce queuing,

very long execution times, or even a complete halt of the whole ALM

platform/integration server. The underlying reasons are often a lack

of computing (CPU) resources, insufficient disk space, and network

congestion. These usually occur when the pipelines are already put into

use. It seems like these problems suddenly happen to you and you have to

deal with them as soon as they happen, but that’s very short-sighted.

As soon as you start with the design and development of your

pipelines, you should have some idea about the number of apps, the

number of pipelines, and how many pipeline runs are expected. The

sizing of the CI/CD infrastructure is an educated guess, which should at

least give enough confidence that the pipelines can do their work given all

requirements. In addition, some optimizations can be done.

Requirement: Parallelize code analysis scans.
If code analysis consists of multiple scan types, it may take a long time

to complete if all tasks are executed sequentially. A solution is to parallelize

these tasks. It is good practice to include this already in the design because

the different types of code analysis scans do not have any relation to one

another.

Requirement: Parallelize tests.
Not only can code analysis scans take a long time, but especially test

runs are prone to take a long time. Solutions are to execute multiple types

of tests in parallel or parallelize tests of the same type. In the case of the

latter, tests are divided into small groups, and the groups are executed in

parallel. Other approaches are to group tests based on historic timing data

and combine the tests in such a way that the test time of each group is

(almost) the same.

Chapter 3 Requirements Analysis

59

Requirement: Offload build, source code analysis, and test execution.
Running builds, source code analysis (SCA) tasks, and executing

tests on the same server is not recommended. Pipeline runs get queued

because the server on which everything runs reaches its limits. Running

offloaded builds (e.g., adding nodes to the Jenkins master), running

SCA tasks on dedicated servers, and offloading test runs from the build

server to a test server are good practices. Even if the pipeline runs on an

ALM SaaS solution, this practice still holds in case the servers or agents

on which the pipelines run are shared with other DevOps teams in the

company. Heavy processing may affect other teams because the agent pool

has run out of servers.

�Manageability
Manageability is about organizing your pipelines in such a way that

changes are easy to apply and your code is not redundant and scattered all

over the place.

Requirement: Keep your pipeline code manageable.
Similar to software development, pipeline development can become

complex. Sometimes this cannot be prevented, but that’s all the more reason

to keep development under control. Your pipeline becomes unmanageable

if every hobbyist is given the space to add another hobby script of their

preference. Using technical standards, naming conventions, and development

guidelines is the only way to keep pipeline development manageable.

Requirement: Build once, run anywhere.
“Build once, run anywhere” is a statement originated from the Java and

Docker/container world, which also applies to the context of pipelines.

An application artifact must always be built once using a pipeline, and the

same artifact must be installed in all target environments, both test and

production. Environment-specific properties are deployed as part of the

application deployment.

Chapter 3 Requirements Analysis

60

Requirement: Store binaries (artifacts and dependencies) in an
artifact repository.

In addition to the principle “Maintain a single source repository” (store

your code—including pipeline code—in a source control management

system (SCM)), it is good practice to store all artifacts and dependencies in

an immutable binary repository.

Requirement: Do not retrieve libraries or external resources
directly from an Internet location.

Instead of directly retrieving a library from an authenticated location

on the Internet, it is good practice to store the libraries locally (on-premises

or in your cloud account). Pipelines use the local repository instead. In

addition to security-related issues, pipelines shouldn’t be dependent on

the availability of the external—Internet—location. Chapter 5

describes a few options for how to deal with this.

Requirement: Pipeline code is treated as software.
This was already explained and a basic principle of CI/CD. Pipeline

code, automation and orchestration code, scripts, and pipeline designs

are all stored in a source code management system (e.g., Git), so they are

versioned.

Requirement: Fix variables.
In specific cases, it may be needed to use constant variables in a CI/

CD pipeline or prevent them from being changed at the start or during

a pipeline run because this can lead to unpredictable and potentially

harmful consequences. You can ensure that the pipeline is reliable and

consistent by fixing the variables in a CI/CD pipeline.

For example, if a variable that defines the version of a dependency is

changed during a build process, it could cause the build to fail or produce

an incorrect result.

Requirement: Use one deployment script for all environments.
Not only the same artifact is used throughout all target environments,

but the core deployment scripts must also be the same, which means that

the script to deploy an artifact to a system test environment is also used to

Chapter 3 Requirements Analysis

61

deploy to a production environment. The differences between each target

environment are parameterized.

Requirement: Use one provisioning script for all environments.
Similar to the previous requirement but referring to the infrastructure

code. The infrastructure code used to create a target environment is the

same for all target environments. The differences between each target

environment are parameterized.

Note T he difference between provisioning infrastructure and
deployment of an application begins to fade in the context of
cloud development. Often, both application code and infra code
are combined into one repository, and deployment involves both
the deployment of an application and the deployment of the
infrastructure.

Requirement: Use a release versioning schema that makes sense.
Sometimes people propose to use a Git tag as a release version, but, to be

honest, do you really want an artifact with the name application-4fbed2

57bc4b94a4a042a6e38440a0d2b95c16ac.jar? And how do you

communicate with your business about it? “Hey Jim, we just released

version 4fbed257bc4b94a4a042a6e38440a0d2b95c16ac.”

Use a versioning schema that makes sense and meets the following

criteria:

•	 You must be able to communicate about it.

•	 It must be generated. It is not continuous if you have

to provide the release version to the pipeline yourself

every time.

•	 It must have an order. If you compare release versions,

it must be clear which one was the oldest.

Chapter 3 Requirements Analysis

62

Semantic versioning (major.minor.patch) is still used a lot as a

versioning schema. It is useful when communicating with consumers of

your application about whether a new version is backward compatible or

contains breaking changes. However, it is a bit tricky to generate. A tool

like semantic-release can help you with this. Having said that, one might

question whether this form of versioning is still relevant today. What is the

meaning of a major release if the release frequency is once a day?

Another versioning schema is date-based versioning with a sequence.

The format is similar to yyyyMMdd.<seq>, for example, 20230214.3.

Requirement: Pipeline stages and tasks are orchestrated by the
appropriate tool.

An ALM platform or integration server is at its core an orchestration

tool that executes specific tasks. These tasks may use features, which

are added to the platform. These features are already integrated,

added as plugins or marketplace solutions, or are manually installed

on the platform. But in some cases very specific tooling is required.

One category is, for example, tooling used for deployments. Perhaps it

is possible to develop a deployment tool yourself, but often there are

better solutions available, preferably solutions complying with an open

architecture. Also, make sure where this tool is installed. A deployment

tool is sometimes installed on the ALM platform/integration server

itself (e.g., Cloud Foundry CLI), it is installed on the target environment

(e.g., AWS CodeDeploy), or it can be a stand-alone deployment tool on a

separate server.

�Operations
Operations tasks must be automated as much as possible. Using a pipeline

to orchestrate these tasks is a logical choice.

Chapter 3 Requirements Analysis

63

Requirement: Automate operations tasks.
Pipelines are not only used for provisioning infrastructures or building

and deploying application artifacts. Also, one-off operations tasks should

be automated using a pipeline. Here are some examples:

•	 Renewal of certificates

•	 Inserting data into a configuration table

•	 Creating asymmetric key pairs

•	 Onboarding new clients

Make sure the operations pipelines and associated scripts are

versioned in an SCM.

Requirement: Integration infrastructure requires an SLA and a
business continuity/disaster recovery plan.

Business continuity should not be limited to the business application

itself; it also applies to the software supply chain. Not being able to release

an application may also hurt business continuity. What are the alternatives

to deploy an application in the case of a disaster of the CI/CD platform?

The service must be restored, or an alternative must be considered for the

time being.

So, an SLA must be defined for the pipeline, and based on this

SLA, a business continuity/disaster recovery plan must be created and

regularly tested.

Requirement: Patch the integration infrastructure regularly.
An integration infrastructure must be treated the same way as a

production environment on which an application runs. An unpatched

integration infrastructure is vulnerable, and the latest patches have to be

applied on the servers of the ALM platform and the servers on which other

CI/CD-related tooling is installed.

Chapter 3 Requirements Analysis

64

�Quality Assurance
Quality assurance (QA) involves source code analysis, both static and

dynamic, and testing. Testing is meant here in the broadest sense of the

word. It not only involves various testing types but also the creation and

management of test data and testware. In addition, security testing is

considered part of QA, although security is treated as a separate topic.

Requirement: Application code must be scanned on code quality.
Application code must meet a certain code quality. Static code

scanning is performed on the application code to validate bugs, coding

standards, complexity, bugs, nonperforming code, etc. The code must

also be checked for—security—vulnerabilities. Scanning code provides

confidence that the code quality of the application code is sufficient.

Dynamic scanning is validating the application in the runtime

environment to determine whether it contains security vulnerabilities

(e.g., using automated fuzzing).

Requirement: Infrastructure code must be scanned on code quality.
In addition to scanning application code, also infrastructure code

must be scanned on code quality. This involves both static scanning

of the infrastructure as code (IaC) and dynamic scanning of the target

environment.

Static scanning involves validating infrastructure code such as AWS

CloudFormation and Azure ARM templates. Dynamic scanning involves

validating whether an infrastructure resource in the target environment is

not misconfigured.

Both types of scanning complement each other, but considering the

“shift-left” principle, most of the issues and misconfigurations should

preferably be detected by static IaC scanning.

Requirement: Pipeline code must be scanned on code quality.
Because most pipelines are developed as code, they also need to meet

a certain code quality. Although scanning the pipeline code in the pipeline

itself is an option, it is a bit odd. That would be a bit like a fox guarding

Chapter 3 Requirements Analysis

65

the henhouse. Scanning the pipeline code should preferably be done by

another entity, outside the pipeline.

Requirement: Pipelines are testable.
A realized pipeline must behave as it was intended. This means that

a thorough test is needed in which it is possible to execute test runs with

the given pipeline code, without actually endangering normal pipeline

behavior or deploying artifacts by accident. The pipeline must be

functionally tested, but also nonfunctional aspects must be tested. Is the

performance of the pipeline sufficient?

Requirement: Use quality gates.
Some ALM platforms introduce the concepts of approval and gate. An

approval usually refers to a manual task. A gate, sometimes called quality

gate, often refers to an automated approval. A quality gate is a milestone

where the outcome of a pipeline stage is validated to see if it meets the

necessary criteria to move into the next stage. Here are some examples:

•	 Approve pull request: Before code is merged back into

the main branch, it needs to be approved by colleagues.

Approval is often done using a pull request. This is a

manual validation. Code that is not reviewed using a

pull request cannot be merged with the mainline.

•	 Analyzing code quality: This means that the application

code must meet certain quality criteria. Code scanning

tools must have integrated policies in which thresholds

are defined. Code that exceeds the threshold is

considered “acceptable.” Code that does not reach the

threshold is of poor quality. The pipeline should fail in

these cases. Examples of such thresholds are as follows:

•	 Unit test coverage must be higher than 80 percent.

Chapter 3 Requirements Analysis

66

•	 Code may not contain vulnerabilities with a

Common Vulnerability Scoring System (CVSS)

score of 7 or more.

•	 Code may not contain Blocking or Critical issues.

•	 Code or property files may not contain passwords,

tokens, or any other secrets.

•	 Integrity check on artifact: This refers to performing

an integrity check on an artifact before it is deployed

to production. The artifact must have a valid digital

signature. If not, the deployment cannot proceed.

•	 Validate test results: Not only tests are automated,

but also the validation of tests can be automated. In

principle, all automated tests must pass; otherwise, the

pipeline stops. Release candidates must be earmarked

with the test result to prevent a release candidate is

deployed to production for which not all tests passed or

testing was incomplete.

•	 Validation of the main branch: Only artifacts built

from the main branch are allowed to be deployed to

production. This approval must be automated. Artifacts

originating from other branches are not allowed to be

deployed to production.

•	 Validation of the artifact version: The version of the

artifact must be higher than the version of the artifact

in production. The artifact cannot be deployed if the

version is lower.

Requirement: Define entry and exit criteria.
As already explained in previous chapters, validation of entry

criteria means that the pipeline starts with the correct starting situation.

Chapter 3 Requirements Analysis

67

Arguments are passed from an external system to the pipeline, which

determines whether it can start with the given data. Validating the exit

criteria means that all preconditions to deploy and install the software

in the target environment are met. Here are examples of entry and exit

criteria:

•	 Entry criterion: Committed code must be associated

with a pull request.

•	 Entry criterion: Mandatory variables used in the

pipeline are configured.

•	 Exit criterion: Only signed artifacts may be deployed to

production.

•	 Exit criterion: Verify that an artifact deployed to

production is indeed a release candidate and not a

snapshot build. Deployment to production is possible

only with a release artifact of which the code originates

from the main branch.

More examples are given in Chapter 4.

Requirement: Tests are reusable (for next test cycles/regression).
When running an (automated) test, the starting position must always

be the same to compare different test runs. Starting with the same test

environment, the same initial test data and the same test framework are

key. A “reset” task must therefore be performed before the actual tests are

executed.

Requirement: Tests, test data, stubs, and test reports are versioned
(e.g., in Git).

Similar to pipeline code, all tests, test data, and stubs must also be

treated as software. The set of test resources must be stable and versioned

and therefore be stored in an SCM system.

Chapter 3 Requirements Analysis

68

Requirement: Development tools, test code, and testware may not
be deployed to production.

The pipeline must ensure/have facilities that development tools (such

as compilers), test code, and testware cannot be deployed to production

where they could potentially cause issues or expose sensitive information.

They are not intended for use in live (production) systems.

�Metrics
Metrics are used to assess the state and performance of the teams and the

pipelines.

Define key performance indicators (KPIs) that make sense.
The software supply chain is successful if all PKIs are considered

successful, but defining these KPIs is not easy. When is the software supply

chain considered successful? Of course, this differs for different business

organizations.

KPIs are often defined in business terms that contain words like

efficient, cost-effective, fast time to market, high change success rate,

compliance, etc. However, a good KPI must also be specific, measurable,

achievable, relevant, and time-bound (SMART). So instead of stating that

“the pipelines must be cost-effective,” it is better to define the KPI as “Costs

of the pipelines per month.” The trend of the KPI reveals whether the costs

go up or down, and it is up to the squad or business representative to

determine whether this trend is acceptable.

It is not always possible to find the right metrics in the CI/CD setup

that contribute to a KPI. In the case of the KPI “Costs of the pipelines per

month,” you need to get insight into the actual costs of the ALM platform

or integration server. If the ALM platform is a SaaS solution or if an

integration server runs on the infrastructure of a cloud service provider, it

is easy to get insight into the costs of the resources used. Assume the CI/

CD setup consists of AWS CodeCommit, CodeBuild, and CodeDeploy,

Chapter 3 Requirements Analysis

69

all orchestrated using AWS CodePipeline. With 30 pipelines and 1,000

builds per month, the costs are roughly $50 per month. The actual use of

this setup may differ. If the number of pipelines or the number of builds

increases in time, the trend of this KPI goes up.

A practical approach to defining a KPI is to investigate first what actually

can be measured in the CI/CD setup. Define a sensible subset of metrics.

These metrics form a good starting point for the definition of useful KPIs.

The following are some examples of KPIs in the context of CI/CD. Note

that some KPIs are more related to DevOps and not specifically to CI/CD,

for example, meantime to repair/recover and mean time between failures.

That is the reason why they are not included in the following list. Of course,

the list is not exhaustive (and you don’t have to implement them all).

•	 Execution time of each stage in the pipeline: This

KPI says something about the speed of build and

deployment. If a stage takes a lot of time, search for

the bottleneck. Is the code analysis stage taking a long

time? Determine whether it is possible to execute

the different code analysis tools in parallel instead of

running them in sequence.

•	 Queued pipeline distribution per day: If queuing takes

place during the day, spot how big this queue is. Are all

Jenkins executors occupied (in case you use Jenkins)?

Increase the number of executors or add a slave build

server. Note that this is not necessarily a KPI, but more

a technical metric.

•	 Test success rate: Ideally, the number of failed

automated tests—executed by the pipeline—must

be zero; in other words, the percentage of passed

tests must be 100 percent. As soon as a test fails,

an investigation is needed, which also costs time.

Chapter 3 Requirements Analysis

70

Checking the success rate of the tests says something

about the amount of time spent on the investigation of

failed tests.

•	 The number of failed builds per day: Spot the trend. Is

there an accumulation of failed builds? Then take a

look at what could be the cause.

•	 Costs of the CI/CD pipelines per month: Running

pipelines costs money. This KPI gives insight into the

costs of using the ALM platform/integration server.

•	 Availability of the ALM platform/integration server

per month: If the ALM platform/integration server

has availability issues, it reflects on the capability to

deploy an app. If a hotfix is needed and the integration

infrastructure is not available, this means business

impact. Having insights into the availability of the

platform makes sense in the long run.

•	 The number of production deployments per month: The

number of deployments to production directly gives

insight into the capability of the team to deliver fast

(or not).

•	 The number of work items closed per sprint: Closing

a work item does not always result in a production

deployment, so a low number of production

deployments per month does not necessarily mean that

the team cannot deliver. Some work items are bundled

into one production deployment, so knowing the

number of closed work items in a sprint combined with

the number of deployments in a sprint gives even more

insight into the delivery capabilities of the team.

Chapter 3 Requirements Analysis

71

•	 Change lead time: Another way to look at the team’s

delivery capability is to determine the change lead

time. This can be measured by looking at the time

between the first code commit and the deployment

of the code to production. Please note that this is not

the same as lead time, cycle time, and mean time to

change (MTTC).

•	 Lead time is measured from the moment a work

item was created until the code was deployed to

production. This KPI is useless. There may be good

reasons to create the work item so far in advance.

•	 Mean time to change covers the lead time, but also

includes the business analysis and design phases.

The MTTC is even more difficult to measure

because these metrics are often not registered or

easily available.

•	 Cycle time defines the moment a work item in the

issue tracker is accepted until the code is deployed

to production. It is the only KPI of the trio that has

real value.

•	 The number of dirty and orphan commits per

month: A dirty commit is a commit with an invalid

work item ID in the commit message. An orphan

commit is a commit without a work item ID in

the commit message. These KPIs can be used to

identify whether the teams’ workflow hygiene is in

good order.

Chapter 3 Requirements Analysis

72

�Monitoring
Monitoring is the process to collect data to identify, measure, validate,

visualize, and alert about the following:

•	 Availability

•	 Resource use/capacity

•	 Performance

•	 Security breaches

•	 Events (expiration events, pipeline events, system

events, and so on)

Monitoring tools generate alerts to anomaly events and help

developers to solve issues. Monitoring tools used to monitor CI/CD

pipelines should be flexible enough to do the following:

•	 Monitor KPIs of the CI/CD process

•	 Visualize trends on a (custom) dashboard

•	 Define KPI tracking by setting upper and lower

thresholds

•	 Alert in case a KPI trend goes up or down a predefined

threshold

•	 Perform system monitoring on the ALM platform/

integration infrastructure, validating CPU usage,

storage usage, etc.

Requirement: Monitor KPIs.
Defining a KPI is one thing; retrieving the metrics, making it visual,

and monitoring the KPI is another. The monitoring tool must be flexible

enough to visualize KPIs with custom timeframes, such as a month, week,

or day. Thresholds are defined to determine whether a KPI reaches a

Chapter 3 Requirements Analysis

73

critical or unwanted state. A combination of a time-series database and

interactive analytics and monitoring tool is perfect for this case. Popular is

the combination of InfluxDB and Grafana.

Requirement: Monitoring must be continuous.
A system that monitors the pipelines must always give the current

status of the situation. Immediate feedback also applies to monitoring.

Information feedback is done both on a pull basis, using custom

dashboards to visualize the KPIs, and on a push basis by generating alerts

that actively inform the team about a trend breach.

Requirement: Pipelines to manage infrastructure components
life cycle.

Infrastructure is not a static configuration. It consists of various

components with a certain life cycle; PaaS/IaaS services that need

patching, or secrets that require rotation. One concrete example is

certificate management.

Certificate management is often laborious if not fully automated.

Some systems make use of a large number of certificates, which expire

at different times. The team must have clear insight into when each

certificate expires, so this should be automated. A scheduled pipeline can

check which certificates will expire soon. In addition to notifying the team

about the expiration, the pipeline can even automatically request and

install a new certificate.

Requirement: The ALM platform/integration server is monitored.
Monitoring pipelines involves using metrics to determine KPIs and

determine whether the execution of the pipelines is still in good order.

However, the infrastructure on which the pipelines run should also be

monitored. Checking whether CPU usage is still good, whether there is

sufficient disk space, or validating whether the connection with external

systems is still up are typical aspects to monitor. A tool such as Splunk can

be used to monitor the integration infrastructure.

Chapter 3 Requirements Analysis

74

�Sustainability
Sustainable computing is an emerging trend that focuses on reducing the

carbon footprint generated by the information technology industry. To

put things into perspective, the annual energy consumption of the global

Bitcoin network as of today is roughly 142 TWh, according to the University

of Cambridge (see [1]). That’s about the size of the electric energy

consumption per year of the whole of New York State. These are dazzling

numbers. And not only the carbon dioxide footprint of the Bitcoin network

is huge, but also trends like AI, Big Data, and other compute-intensive

processes have a big impact on the environment.

Sustainable computing becomes an important factor in architecting,

designing, implementing, and operating IT systems. This includes

continuous integration and continuous delivery pipelines.

Requirement: Define sustainability goals.

“Sustainability isn’t one optimization; it’s thousands.”

Reference [29]

It is important to optimize pipeline processing in such a way that

the carbon dioxide footprint is low but the required functionality is still

provided. The team has to realize that, for instance, older hardware and

underutilized server capacity are not optimal for energy consumption,

and executing one unnecessary pipeline run is one too many. It is

recommended to add a sustainability requirement because sustainable

computing is here to stay.

�Governance
Governance involves managing the organization and teams in their CI/CD

journey.

Chapter 3 Requirements Analysis

75

Requirement: Involve the entire team in CI/CD implementation.
Do not fall into the “trap” to assign only one or two people to be

responsible for CI/CD. Instead, encourage all squad members to

contribute something. Let everybody from the squad pick up a small user

story to get them motivated to continuous contributions to the pipeline.

Requirement: Measure the team on CI/CD maturity.
Different DevOps teams have different levels of maturity when it comes

to CI/CD. A continuous delivery maturity model helps in identifying how

a team scores on various topics. There are many models available that

can be used as input to measure a team’s CI/CD maturity. This kind of

assessment is often in the form of a questionnaire. It is a good practice to

assess teams every year.

Requirement: Determine what maturity level is most appropriate.
Teams starting with CI/CD and pipeline development must define

their ambition. A continuous delivery maturity model can also help

in identifying the level of maturity the teams want to aim for. Perform

this exercise at the start and create a road map containing the CI/CD

milestones.

Requirement: Measure CI/CD in the business organization.
Sometimes, a company is organized in such a way that it has an

inhibitory effect on CI/CD. Procedures and supporting departments are

not yet ready for CI/CD, or DevOps teams are not on par with a certain

CI/CD ambition. Assessing teams and the organization as a whole helps

in getting insight into the CI/CD maturity level of the organization. This

assessment should be performed periodically to validate the change

in maturity, which helps to make adjustments in the CI/CD migration

process.

Chapter 3 Requirements Analysis

76

�Summary
You learned about the following topics in this chapter:

•	 A requirements analysis forms the basis of a good

pipeline design and realization.

•	 Pipeline requirements originate from various sources.

You have to make sure that no source is overlooked.

•	 Requirements cover various areas. This chapter

included a large list of potential requirements you can

use in practice, grouped by area.

•	 Be inspired by the list of requirements discussed. Even

if you don’t use them now, you may implement them in

the future.

Chapter 3 Requirements Analysis

77

CHAPTER 4

Pipeline Design
This chapter covers the following:

•	 Why a pipeline design is useful.

•	 Basic BPMN 2.0 concepts to model a pipeline flow, with

a short BPMN introduction.

•	 The Generic CI/CD Pipeline, a blueprint containing the

stages a pipeline should consist of.

•	 The different stages of the Generic CI/CD Pipeline and

their purpose.

•	 Design strategies concerning branching, build, test,

deployment, and release, and how certain aspects of

these strategies affect the design of the pipeline.

•	 Why certain aspects influence the pipeline design.

•	 Branching strategies, like trunk-based, feature branch

workflow, and Gitflow.

•	 The process of building an application, which involves

more than executing a command. Scaling, full builds

versus incremental builds, parallel builds, pipeline

caching, build targets, cross-platform builds, and

multiteam builds will all be covered in this chapter.

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_4

https://doi.org/10.1007/978-1-4842-9228-0_4

78

•	 Aspects related to testing, including the influence of

manual testing on pipelines and the execution order of

certain test types.

•	 The different deployment strategies such as re-create,

blue/green, rollover update/canary, and A/B testing.

•	 The types of release strategies and their differences.

•	 Other considerations that may affect the pipeline

design. Examples are separation of concerns, resource

constraints, and commercial off-the-shelf software.

�Design
A pipeline design is a specification of how to construct a pipeline. It

describes the following:

•	 The CI/CD process in general, the pipeline stages that

make up the process, and the individual tasks within a

stage. It describes the process in words and visualizes

the activities that take place within a pipeline.

•	 The flow of the pipeline. The conditions that shape the

process flow act as gateways, allowing the pipeline to

continue or halt until a certain condition is met. These

gateways also determine possible alternative paths in

the flow.

•	 The interaction with surrounding systems.

•	 Input from external systems needed to execute

activities in the pipeline, for example, a trigger from an

external system to start the pipeline.

•	 Output from the pipeline to external systems to

delegate activities to these systems.

Chapter 4 Pipeline Design

79

In addition, a design helps with understanding the software delivery

process’s behavior and helps structure the pipeline code during

development. If there are a lot of common cases, certain design patterns

emerge. These design patterns provide a good starting point for the design.

Tip A pipeline design is not an extensive book or report, detailed to
the extreme. Its purpose is to understand the problem domain and
support the realization of a pipeline. It is often used as a discussion
document in the team, so try to keep it modest in size. It is important
to realize that a design is a means of eliminating bad decisions. The
rest is a matter of taste.

�CI/CD and Pipeline Design Approach
A pipeline design describes the orchestration of a process or workflow

and has a lot of similarities with modeling business processes. So, the

question is whether the business process modeling paradigm can also be

used as the basis for a pipeline design. The answer is yes, and one method

to visualize the process and its stages is to use BPMN notation (see [2]

and [16]).

�BPMN 2.0
Where the requirements analysis phase helps you understand the

problem domain, the BPMN diagrams help you understand the software

delivery process flow, the individual stages and tasks in the process, and

the interaction with other systems. The notation used in this chapter is

BPMN 2.0.

Chapter 4 Pipeline Design

80

BPMN 2.0 uses a certain notation with specific icons, called elements.

The set of BPMN 2.0 elements is limited, and because the pipeline flows

are not very complex, a subset of these elements is used throughout

this book.

A remark to the BPMN purists out there. You will probably detect

possible improvements in the models. I would like to know that, of course,

but as long as a model describes the essence of the flow, it serves its

purpose. A summary of the most used elements and some basic BPMN

examples are presented in the next paragraphs.

�BPMN Elements Overview
BPMN uses various elements—icons—to model business flows. Table 4-1

presents an overview of the most used ones.

Table 4-1.  BPMN Elements

BPMN Element BPMN Name Description

Start event Starts the flow. The use of a start

event in a BPMN model is optional.

End event Ends the flow. The use of an end event

in a BPMN model is optional.

Error end event Ends the flow with an error.

Message

intermediate

catch event

Acts as a trigger to start a task. It

is used for example to identify the

trigger that starts the pipeline.

(continued)

Chapter 4 Pipeline Design

81

BPMN Element BPMN Name Description

Timer

intermediate

catch event

Acts as a time trigger to start a task. It

is used for example to start a pipeline

based on a schedule.

Task A task is the smallest execution unit in

a pipeline flow. A stage (subprocess)

consists of one or more tasks.

Manual task A task performed by a user, but

without making use of an ICT system.

Searching for an order in a drawer is

an example.

User task A task performed by a user, making

use of an ICT system. An example is

a dual control task right before an

artifact is deployed to production.

Task with looping

marker

Indicates that the task is repeated.

Repeating

task with

intermediate

conditional event

Repeating tasks with a condition, for

example, “This task iterates three

times.” Use this construction to make

clear how often the task is repeated.

Table 4-1.  (continued)

(continued)

Chapter 4 Pipeline Design

82

Table 4-1.  (continued)

BPMN Element BPMN Name Description

Subprocess

collapsed

A subprocess contains other flows,

pipelines, and stages and is used to

simplify a workflow design.

Similar to a regular task, a subprocess

can also be repeated using a looping

marker.

Subprocess

expanded

The subprocess, but then expanded,

so its content is visible.

Pool (with one

lane)

This book mainly uses pools to identify

a system or an actor. This can be Git,

an email server, a wiki, or an issue

tracker, but it can also represent an

ALM platform, an integration server,

or a software delivery pipeline,

depending on the context of the

diagram.

Pool (with two

lanes)

Lanes are used to identify units in the

pool. For example, the pool identifies

a pipeline while the two lanes identify

two stages in the pipeline.

(continued)

Chapter 4 Pipeline Design

83

Table 4-1.  (continued)

BPMN Element BPMN Name Description

Exclusive

gateway

Also called an XOR gateway. The

exclusive gateway splits the flow

into several other paths based on a

condition. Only one of the paths is

executed.

Parallel

gateway

Also called an AND gateway. The

parallel gateway splits the flow into

several other paths. All other paths are

executed.

Comment Comments associated with one of the

BPMN icons.

�BPMN in Action
A workflow usually has a begin and an end element. In BPMN terminology

these are called events. Between these events, one or more tasks are

executed. This can be an automated or a manual task. A simple BPMN

model with two tasks looks like Figure 4-1.

S
ys

te
m

 A

StartStart

Automated task

EndEnd

Manual task

Figure 4-1.  BPMN, example 1

Chapter 4 Pipeline Design

84

Figure 4-1 visualizes system A as a BPMN pool. The pool contains two

tasks enclosed between a start event and an end event. The start and end

events are optional. If the number of tasks becomes very large, they can

be clubbed together into a subprocess. To make BPMN diagrams more

readable, this subprocess can be collapsed, hiding all underlying tasks, as

Figure 4-2 shows.

Sy
st

em
 A

StartStart

Collapsed sub
process with

tasks
EndEnd

Figure 4-2.  BPMN, example 2

Tasks can be executed in parallel, or based on certain conditions,

alternative paths can be followed. Gateways are a way to model this.

Figure 4-3 shows the use of two types of gateways: parallel and exclusive

gateways. The model shows that the automated and manual tasks are

executed in parallel. The parallel gateway element is positioned both

before and after the tasks. The first parallel gateway indicates that both

tasks are executed in parallel. The second parallel gateway acts as a

converging gateway, meaning that the process continues if both parallel

tasks are executed. In addition, the model includes a “happy flow” and an

“error flow.” The result of both parallel tasks is determined, and based on

this condition, the subsequent path either leads to a successful state or

ends in an error state. This condition is depicted as an exclusive gateway.

Chapter 4 Pipeline Design

85

Sy
st

em
 A

Manual task

StartStart

Automated task

EndEnd

Handle error

End with errorEnd with error

Result of both
tasks are

successful

Result of both

successful

At least one task
resulted in error
At least one task
resulted in error

Figure 4-3.  BPMN, example 3

Figure 4-4 adds a bit more complexity to the model. The Handle

error task in system A means that previous changes in system B must be

undone. System B has two subsystems called B.1 and B.2, and they both

must be reset to revert all changes. The two subsystems of system B are

depicted as lanes. To inform system B about the fact that the reset must be

performed, the model makes use of an event. The event in the model is a

message intermediate catch event, indicating that the task Perform reset in

subsystem B.1 can receive and process this event. After subsystem B.1 has

been reset, it calls subsystem B.2 to reset.

Chapter 4 Pipeline Design

86

Sy
st

em
 A

Manual task

StartStart

Automated task

EndEnd

Handle error

End with errorEnd with error

Result of both
tasks are

successful

Result of both

successful

At least one task
resulted in error
At least one task
resulted in error

Sy
st

em
 B

Su
bs

ys
te

m
 B

.2
Su

bs
ys

te
m

 B
.1

Perform reset in
subsystem B.1

Perform reset in
subsystem B.2

Figure 4-4.  BPMN, example 4

It doesn’t become more complicated than this (at least for the scope

of this book). This makes BPMN a good way to describe the workflow of

a pipeline flow and helps with the thinking process required to design

pipelines.

�Level of Detail
A BPMN diagram describes a certain context, which effectively refers to a

certain level of detail. There are multiple levels to distinguish.

•	 Global level, to understand the overall process flow.

•	 Detailed level, to understand the more detailed tasks.

Chapter 4 Pipeline Design

87

•	 The flow. This applies to the conditions that influence

the flow. A condition may result in a split, in which

multiple tasks are executed in parallel, a condition

that defines which path must be followed, or the

aggregation of output from multiple tasks.

It is possible to model all levels and the complete workflow in one big

BPMN model, but often readability is improved when the global and detail

models are separated. This is a matter of taste, of course.

�Logical Design vs. Realization
The BPMN models used in this book represent logical designs. In

most cases, it does not contain any implementation details because

there are thousands of different CI/CD setups, so it is better to avoid

implementation details. Creating these models also means, for example,

that on a logical level two pipelines may be modeled, while technically,

the whole flow can be realized by just one pipeline. In addition, stages and

tasks are used throughout the logical representation of the pipeline. The

implementation of a pipeline, however, may consist of stages, jobs, steps,

and/or tasks, depending on the platform. The developer has to translate

the logical design into the technical implementation.

�The Generic CI/CD Pipeline
The Generic CI/CD Pipeline is the basic blueprint used throughout this

book. It consists of stages, each with a certain purpose. These stages are

deliberately kept abstract because a stage in itself can be decomposed

again into several tasks. These tasks are completely different in another

context, such as the use of the infrastructure, tools, test environment,

security, or other constraints.

Chapter 4 Pipeline Design

88

The stages in the Generic CI/CD Pipeline are positioned in sequential

order. If the implementation in sequential order still guarantees the

requirements—for example, the requirement of fast feedback—there is no

urgent need to restructure the design and the realization of the pipeline,

but if these requirements cannot be met, consider parallelization and/or

combining some of the stages. See Figure 4-5.

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
ActorsDeploy

artifact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure
compliance

Provision
production

environment

Figure 4-5.  The Generic CI/CD Pipeline

Mapping the Generic CI/CD Pipeline to a BMPM diagram is relatively

easy, but remember that it is still a generic workflow. Subsequent chapters

explain the stages of this workflow model in more detail, often in a specific

context. Stages in the Generic CI/CD Pipeline are modeled in BPMN as a

subprocess because each stage consists of [0..n] tasks.1 See Figure 4-6.

1 Some stages are implemented differently, which means that tasks move to a
different stage, and the stage ends up with zero tasks, in other words, the [0..n]
range. In other contexts, some stages are not applicable, meaning that the stage
has zero tasks and is therefore not implemented.

Chapter 4 Pipeline Design

89

Generic CI/CD pipeline

Start pipeline

End pipeline

Validate entry
criteria Analyze code

Provision test
environment Perform test

Execute build Perform
unittests

Package artifact Publish artifact Deploy artifact
to test Notify actors

Deploy artifact
to production

Error

Validate
infrastructure
compliance

Provision
production

environment

Validate exit
criteria

Perform dual
control

Code analysis
failed

Unittests passed

Unittests failed

Entry criteria
correct

Entry criteria
incorrect

Build is OK

Build is not OK

Code analysis
passed

Infrastructure not
compliant

Tests passed

Tests failed

Infrastructure
compliant

Dual control failedExit criteria
incorrect

Exit criteria
correct

Dual control
passed

Figure 4-6.  BPMN, the Generic CI/CD Pipeline

As you can see, Figure 4-6 shows the stages of the Generic CI/CD

Pipeline, most of them ending with an exclusive gateway. The exclusive

gateway is a condition that determines whether the stage result was

successful. The pipeline either ends in a success state or ends an error/

failed state.

The Generic CI/CD Pipeline consists of the following stages.

�Validate Entry Criteria
A pipeline is triggered by a certain event that occurs in another system.2

This often means that an API of the ALM platform/integration server

is called from that system. For example, the trigger can be a scheduled

event, a manual event (the pipeline is manually started), or any SCM event

like Git push, merge, tag, etc. Any webhook implemented by an external

2 Or it is triggered manually, of course.

Chapter 4 Pipeline Design

90

system that calls the ALM platform/integration server API acts as a trigger.3

Pipelines can call other pipelines, and it is even possible to hook up an

advanced AI monitoring system to your production environment that

detects deviating behavior in the application. This may result in triggering

a pipeline to reconfigure the application or performing remediating

activities on the infrastructure.

To make sure that the pipeline is started by a valid trigger using the

correct trigger data and the correct pipeline configuration, a validation

stage—the Validate entry criteria stage—is added to the Generic CI/CD

Pipeline. The pipeline can proceed only if certain criteria are met. The

following are typical entry criteria validated in this stage:

•	 Validate all mandatory pipeline variables in the

Validate entry criteria stage. If one of the variables is

not (properly) configured, the pipeline stops in the first

stage instead of somewhere at the end of a pipeline run.

•	 Add a ping task to the Validate entry criteria stage to

make sure that an external system is reachable. The

ping task could send an HTTP request to an external

system and validate the returned HTTP status. If, for

example, a status 503 is returned, the pipeline stops,

because the external system cannot be accessed.

•	 The branch—passed as an argument in the trigger—for

which a release candidate is going to be built is indeed

the expected branch. For example, only triggers with a

Git event associated with the main branch are allowed,

if the intention is to create a release.

3 On an infrastructure level, this also means that the external system calling the
API of the ALM platform must be an authenticated system. So, connections should
make use of mTLS, OpenID Connect, or at least some basic authentication.

Chapter 4 Pipeline Design

91

•	 Validate whether data passed by a pipeline trigger

meets certain conditions in another external system.

For example, validate whether the code has a reference

to an existing work item in the issue tracker. On ALM

platforms, these types of validations are often easy to

configure. It becomes more complex if the integration

platform consists of multiple independent tools.

�Execute Build
This stage involves building artifacts from code, such as the creation

of a .jar file from Java code or an .exe file from C++ code. The code

associated with a certain branch and certain commit is checked out in the

SCM system, dependencies are downloaded (for example, Java libraries

from Maven Central), and the code is compiled. This is a fully automated

process.

�Perform Unit Tests
Unit tests are automated tests to make sure that components within a

service or application behave as expected. Unit tests are usually isolated

and independent. In principle, unit tests strive for 100 percent code

coverage.

Note A lthough the Generic CI/CD Pipeline defines that, as a
safeguard, the pipeline stops after a failure in the unit test, some
people may decide to implement it differently and continue after a
failure. This is to further validate the code and identify any issues that
may not have been caught by the unit tests.

Chapter 4 Pipeline Design

92

�Analyze Code
The Analyze code stage provides confidence that the code quality

requirements are met. Organizations often demand a combination of

checks, sometimes completed with specific validations. Here are some

examples:

•	 Code quality assurance: Static analyzers that assure

the quality of the software, for example, SonarQube or

SonarCloud to perform static analysis of code to detect

bugs and code smells, OpenClover to validate code

coverage, and Pylint to analyze Python code.

•	 Static application security testing (SAST): Secure

software by reviewing the source code of the software

to identify sources of vulnerabilities. Tools are, for

example, Checkmarx and Fortify Static Code Analyzer.

•	 Software composition analysis (SCA): Automated

scans of an application’s codebase to identify security

vulnerabilities and the type of license of all open-

source components used in the build process. These

types of scanners can detect whether an artifact

contains a vulnerable version of log4j, for example.

Tools like Nexus IQ or JFrog Xray fill in this segment.

•	 Credentials scan: This is an extension of SAST and

scans other types of files for credentials, passwords,

tokens, or other secrets, which are present in a code

repository in plain text. Whispers is an example of such

a tool. Whispers can detect hard-coded credentials in

(property) files.

Chapter 4 Pipeline Design

93

•	 Validation of IaC: This applies to the configuration of

the infrastructure code, such as AWS CloudFormation

or Azure ARM templates, and validates whether

the configuration complies with certain company

policies. Misconfigurations of the infrastructure are

detected by analyzing the infrastructure code. One of

the organization’s policies could be that public access

to an S3 bucket in AWS must always be blocked. If

the infrastructure code defines that public access to

a bucket is not blocked, it is detected by this pipeline

task, which causes the pipeline to break.

•	 Validation of pipeline code: Even pipeline code must

comply with certain quality criteria and policies.

For example, the pipeline must contain certain SCA

or SAST validations because they are mandatory by

company policy. However, this type of validation is a

bit odd because it does not validate the application

code, but the pipeline code; the pipeline validates itself

so to say. Integrating pipeline compliance validations

in the pipeline itself is good, of course, because they

immediately detect whether the pipeline is compliant,

but to guarantee that pipelines comply with certain

policies, the validations must be performed “outside”

the pipeline, integrated into the ALM/integration

platform.

The Analyze code stage may contain multiple tasks that potentially

delay the pipeline, because some of these tasks can be very slow.

Subsequent chapters point out what the options are to mitigate this.

Chapter 4 Pipeline Design

94

�Package Artifact
Packaging an artifact involves all activities to deliver an artifact that can be

deployed to a test or production environment. Think of .zip, .jar, or .exe

files. This also involves the creation of custom packages in cases where a

dedicated deployment tool is used.

To guarantee the integrity of the artifact, specific measures must be

taken, such as signing a package,4 to make sure the artifact deployed to

production is not compromised. For auditability, this is the point at which

we want to ensure that the package goes to production unchanged.

�Publish Artifact
Publishing an artifact means that the artifact is stored in an immutable

binary repository such as Artifactory, Nexus, or Azure DevOps Artifacts.

Docker images are pushed to a Docker repository, for example, Nexus 3

and AWS Amazon Elastic Container Registry (ECR).

Publishing an artifact is typically the last stage of continuous

integration, and this is where continuous delivery begins.5 The continuous

delivery stages retrieve the artifact from the repository and use it for

testing and deployment to production. This ensures that the same artifact

is used throughout all environments and not built for every environment

separately.

In addition to the published artifacts, additional information—

metadata of the continuous integration process—can be published. The

version of the artifact, the commit hash of the code, the work items that are

part of the artifact, the developer of a feature, the pull request reviewer(s),

4 Signing a package means that a digital signature is created and added to an
artifact, to guarantee the integrity of the artifact.
5 Continuous delivery is sometimes used as overarching concept that includes
continuous integration.

Chapter 4 Pipeline Design

95

and the unresolved but accepted issues are typical examples of metadata

gathered during continuous integration. This type of information can be

seen as the “contract” with the continuous delivery part of the pipeline,

and it makes sense to gather this kind of metadata and publish it as a

“release note” in a central place where all interested parties can read it.

If needed, test results can be added later to this metadata, so it becomes

clear whether a release candidate is suitable for production (or not). This

metadata can also be used to determine whether the artifact has gone

through all the mandatory steps before it is deployed to production.

�Provision Test Environment
Infrastructure consists of several layers. The lowest layers may refer to

installing physical hardware or requesting cloud accounts or subscriptions.

These activities are not part of the Provision test environment stage. It can

also be argued that shared infrastructure components, which are created

once and almost never touched upon, should be moved to a separate

base infrastructure pipeline. Base infrastructure involves, for example,

DNS records, virtual networks, and subnets. The highest infrastructure

layer typically contains infrastructure components, associated with a

business feature (and the application). Think of queues, a file system, and

a database.

The infrastructure components are created on the fly using

infrastructure as code (IaC). This results in the creation of a test

environment, which can be destroyed again after the tests are executed;

this is called ephemeral infrastructure. The execution of the IaC code

should be idempotent, meaning that if the same code is executed twice

and not changed in between, nothing changes in the target environment.

An ephemeral test environment has the benefit that it reduces costs

because you pay only for what is used, and the tests always have the

same starting position; they start with a new and clean test environment.

However, be aware that it is not always beneficial to create and delete a test

Chapter 4 Pipeline Design

96

environment on the fly. In cases where you can make use of infrastructure

as code—for example, in the cloud—it is relatively easy to create an

infrastructure, but there still may be some issues. Consider, for example,

a long creation time of your infrastructure, or deleting your stacks is

problematic because they have dependencies with resources that cannot

be deleted or at least not easily. Also, test environments used for load and

performance tests cannot be deleted so easily because they often contain

very large databases. Rebuilding the environment would take several

hours. And if a test environment is almost continuously used, it makes no

sense to tear down the environment and rebuild it a second later. That is

why organizations still make use of fixed test environments, even if they

are created using IaC.

On the other hand, keeping test environments intact and leaving them

unused for a longer time should be avoided. Teams decide whether to

create a test environment once and use it for a longer time and destroy

it if not needed anymore or not needed shortly. Also, a combination of

more or less permanent test environments combined with ephemeral test

environments is possible.

Note I f only Docker containers are used, the situation is a little
different. The Docker containers represent the test environment, and
they can easily be created and removed. However, the whole Docker
runtime environment—the base infrastructure—itself (for example,
Kubernetes) remains.

�Deploy Artifact to Test
Deployment involves all activities required to install the software on a

target environment, so it can be tested. This may involve deployment

to one or more test environments. It also depends on the type of testing

Chapter 4 Pipeline Design

97

to be performed. System tests, for example, need a smaller-sized test

environment compared to test environments in which load, stress, and

performance tests are executed. The Deploy artifact to test stage includes

all deployments of the artifact to all required test environments.

�Perform Test
Testing covers a wide range of types from contract tests and integration

tests to usability tests and production acceptance (preproduction) tests,

except for unit tests, which are performed in a dedicated stage. More

details concerning the different test types are discussed later in this

chapter.

It is important to point out is that tests should not rely on each other.

Each test must be able to be performed individually, which offers the

possibility to perform tests both sequentially and in parallel. Each time a

test is executed, it is initialized to a certain starting point.

�Validate Infrastructure Compliance
Validate infrastructure compliance is a bit of an odd stage. It is an addition

to the Validation of IaC task in the Analyze code stage. The Validation

of IaC task is a static code analysis task of the infrastructure code. The

Validate infrastructure compliance stage involves a dynamic scan of

the target environment, the application running in this environment,

resources used by the application, and application-specific settings. The

scanning is performed according to security compliance rules (guardrails).

The stage checks whether certain (unused) ports are open, whether

restricted protocols are used (e.g., HTTPS in favor of HTTP), and whether

protocols are configured but not used by the application. The list of checks

can be very long.

Chapter 4 Pipeline Design

98

The reason why this is a separate stage, executed only after all tests

have been performed, is that the focus of the pipeline flow should be first

on testing whether the application works properly and second on whether

the infrastructure resources associated with the application are compliant.

Note T here is also an overlap between static scanning of the
infrastructure code (as part of the Analyze code stage) and dynamic
scanning of the infrastructure (as part of the Validate infrastructure
compliance stage). Both could check the same configuration, but a
dynamic scan proves that a certain configuration is also reflected in
the target environment in the way it was meant. A recommendation is
to perform both, if possible.

�Validate Exit Criteria
Validating exit criteria can be considered as a gate that determines

whether the artifact is allowed to be deployed and installed in the

production environment. Some of these validations determine whether

the artifact was built as expected, and other validations are mandatory

because the production target environment itself also assesses whether the

deployed artifact meets certain criteria before it is installed. Here are some

examples of exit criteria validations:

•	 It is not allowed to install software without a valid

digital signature (nonsigned software) because it must

be guaranteed that software can be deployed and

installed from an authenticated pipeline. This prevents

someone from trying to install software manually. If

this criterion is not met, the target environment does

not allow installation or prevents the software from

Chapter 4 Pipeline Design

99

execution. This kind of feature is present in Windows

Defender Application Control (WDAC) on Windows,

for example. The Validate exit criteria stage makes sure

that it does not come to this and stops the pipeline if

the software is not digitally signed.

•	 Another example is that an artifact must be tagged or

versioned; otherwise, it is unknown which version has

been deployed, and the artifact cannot be identified in

production anymore.

•	 An artifact may be built only from the main branch or a

release branch. If the artifact somehow turns out to be

built from another branch, deployment is not allowed.

•	 The artifact is a release candidate that originated

from the main or release branch, but according to the

metadata associated with the artifact, it did not pass

all tests.

•	 The version of the artifact to be deployed is higher than

the version of the artifact running in production.6

•	 There is a change freeze. It is not allowed to deploy

to production during the change freeze period. If the

pipeline detects that the deployment is started in the

change freeze period—which is configured in the ALM

platform/integration server—it aborts the deployment.

6 This applies only to regular deployments and is not a rollback to a previous
version because of an incident.

Chapter 4 Pipeline Design

100

•	 The artifact is expired. Even if the version of the artifact

looks fine, the artifact is built from the main or release

branch, and all tests are passed, deployment still

may be aborted because the artifact is expired. If an

artifact is “too old,” it may pose a risk if deployed to a

production environment.

•	 The artifacts contain development tools, test code, or

testware. They could potentially cause issues or expose

sensitive information.

In principle, the exit criteria of the pipeline are the entry criteria of

the target platform. It makes sense to validate the artifact to determine

whether it does comply with the preconditions of a deployment (to

production), especially in cases in which more teams build artifacts for a

shared production environment. The positioning of this stage before the

actual deployment to production also makes sense because that is the last

possible moment to validate the artifact before it is deployed.

�Perform Dual Control
An artifact may be deployed only if it was approved by a release manager, a

product owner, or a designated person (a delegate). This approval is called

dual control because there is always a second person involved in putting

an artifact into production. This approval is a manual task.

Performing a dual control is conceptually part of the Validate exit

criteria stage, but it is modeled as an explicit stage in the Generic CI/CD

Pipeline. It is such an important step in the process, it is made explicit.

Chapter 4 Pipeline Design

101

This is by definition also the only manual step in the process; all other

stages and tasks are automated.7 Having the dual control stage in the

Generic CI/CD Pipeline also makes sense; otherwise, the pipeline would

have become a continuous deployment pipeline and not a continuous

delivery pipeline.

�Provision Production Environment
This is the same stage as the Provision test environment stage but now for

the production environment. This also means that the same IaC is used

for both the Provision test environment stage and the Provision production

environment stage. The only differences are the target environment and

the environment-specific properties and resources (e.g., certificates).

�Deploy Artifact to Production
This stage is performed if nothing stands in the way anymore to deploy

the artifact to production. The artifact is retrieved from the binary

repository and installed in a production environment. This includes

any configuration change needed in the production environment itself.

Technically, there are various solutions to deploy software, from executing

an scp (Linux) command to securely transferring and installing files to a

production server using a dedicated deployment tool.

The implementation of this stage also depends on the deployment

strategy. A re-create deployment strategy results in a different design and

implementation than a blue/green deployment strategy.

7 In theory, of course. Often there are still manual test tasks to be performed.

Chapter 4 Pipeline Design

102

�Notify Actors
This stage has a generic name. It deals with informing team members

about the pipeline execution result, both success and failure, but it also

deals with notifying other actor types about the result. Other actors are,

for example, external systems, other pipelines, or specific functions of the

ALM platform/integration server. Informing actors can be implemented

as simply as sending an email to the team or a more sophisticated activity

such as performing an outbound API call to an external system.

Note T he Generic CI/CD Pipeline model suggests that the Notify
actors stage is called only if all pipeline stages are executed and
the pipeline ends. That is not true. Each stage has the responsibility
to perform fast feedback and notify its actors. In the model, this is
delegated to the Notify actors stage.

�Design Strategies
As the previous chapter already shows, there are lots of possible

requirements and aspects that influence the design and realization of

a pipeline: the business organizations’ software delivery strategy, the

workflow of the team, security aspects, and certain constraints, both

technical and nontechnical, etc. In the end, the pipeline design and

realization are derivative products of all these aspects, and if one of them is

suboptimal, the pipeline is also suboptimal.

It is important to have a continuous interaction between optimizing

the requirements on one hand and the design and realization of the

pipelines on the other hand. If, for example, the team’s workflow is overly

Chapter 4 Pipeline Design

103

complex, it puts a burden on the software supply chain. An optimized

workflow should lead to a smooth and fast software delivery process

resulting in an optimized pipeline design. See Figure 4-7.

Requirements

Pipeline Design and
Realiza�on

Figure 4-7.  Pipeline design and realization cycle

The next couple of paragraphs handle some common design strategies,

which deal with specific requirements or constraints and visualize how

they shape the design of the pipeline. Although these paragraphs form

only a subset of all possible cases, they still provide a nice profile of various

situations.

�Context Diagram
Although the design phase is abstract, it does make sense to draw a

context diagram containing all actors. Actors are not only the people

who are involved but also the surrounding systems. A context diagram

gives an impression of which interactions take place in the context of CI/

CD. Include everything you already know—including tools—in the context

diagram and use abstract names like SCM, issue tracker, and the SCA tool,

if you do not know which tools are used (yet). A context diagram might

look something like Figure 4-8.

Chapter 4 Pipeline Design

104

DevOps Engineer

@

Product owner

@

DevOps Team

@

Jenkins

SonarQube

E-mail serverNexus

Git

Produc�on
environment

Test
environment

Inform

Inform

Inform

Deploy ar�fact
(to test)

Deploy ar�fact
(to prod)

Internet

Retrieve libraries and
store build ar�facts

Scan code

Send e-mail

Retrieve code

<Produc�on
network segment>

<Development/test
network segment>

Issue Tracker

<CI/CD network segment>

Figure 4-8.  Context diagram

Figure 4-8 shows a central Jenkins setup running on a Linux server in

a special CI/CD network segment. The target environments are also Linux

clusters: one production cluster in the production network segment, and

a cluster in the development and test network segment. In this diagram,

the Jenkins server retrieves code from Git and libraries from Nexus, which

is connected to an external Internet source, Maven Central. Application

code is scanned with SonarQube, and artifacts are stored in the Nexus

repository. Information about the pipeline status is shared—using email—

with three types of roles, the product owner, the product owner delegate,

and the DevOps engineers. The context diagram also shows an issue

tracker, but this is a stand-alone system and not connected to any of the

other systems. It is therefore not possible to automatically check whether a

work item is present in the issue tracker.

Chapter 4 Pipeline Design

105

A context diagram is a good way to discuss with the team how the

pipelines interact with all actors. The first version of the context diagram is

probably a simple diagram with some blocks like the previous one, but the

diagram is extended along the way, with more (technical) details added in

later versions. Use the context diagram in the discussions with the team to

point out what is added or changed in the pipeline setup.

�Branching Strategy
A branching strategy is a critical element in the way a pipeline is shaped.

At the start of a pipeline design, it must be clear how the team works

and which workflow they adopt. Depending on the type of strategy, the

pipeline flow differs. Some of these strategies are discussed in the next

paragraphs and demonstrate what a possible pipeline design could

look like.

�Trunk-Based Workflow

In the context of continuous integration, there is only one workflow, the

trunk-based workflow. All other strategies are not considered continuous

integration, but they are relevant because lots of teams still use a branch-

based workflow.

The trunk-based workflow model is the simplest workflow strategy.

This means that the source code repository (e.g., Git) contains only the

main branch, the trunk. Changes are directly applied to the trunk, and also

release candidates are created from the trunk. The complexity of a trunk-

based pipeline is relatively low compared to other branching strategies.

See Figure 4-9.

main

Figure 4-9.  Trunk-based workflow

Chapter 4 Pipeline Design

106

A developer works on a local copy of the trunk and commits its

changes (locally). As soon as the developer has completed their work,

the code is pushed to the remote trunk. That is the moment the pipeline

starts running, with the intent to deploy the finished work to a production

environment. This means that in the case of a trunk-based workflow, the

main branch is always in a production-ready state. A pipeline associated

with a trunk-based workflow covers all the stages of the Generic CI/CD

Pipeline. See Figure 4-10.

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
ActorsDeploy

artifact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure
compliance

Provision
production

environment
SCM trigger

main

Figure 4-10.  Trunk-based pipeline

What does the workflow look like in practice? Most likely, some kind

of issue-tracking software like Jira is used to register work items. A work

item—also called a user story or a project backlog item—defines the feature

that needs to be built. This feature must be small, preventing the merges

of large pieces of code. Keeping the trunk “clean” requires disciplined

commit hygiene, and big changes to the trunk must be avoided.

The trunk-based workflow fits perfectly in a pair programming way

of working. In pair programming, two developers are working on a local

copy of the trunk and pushing their software code directly to the trunk.

This results in a release build that can be deployed to production if all

intermediate stages are passed.

This workflow makes pull requests obsolete because there isn’t a

separate branch and reviewing the code is done on the spot. This also

reveals an issue with the trunk-based workflow. If not done properly, code

reviews are not administered, and it becomes difficult to trace back the

input of colleague developers.

Chapter 4 Pipeline Design

107

The traceability of a change is important. The work item and code

commit are related, and it must be clear which work item has led to a

certain code change. Most integrated ALM platforms include features that

take care of this. If individual CI and CD applications are used, it becomes

more difficult to establish this relation.

Use case:

A team uses a trunk-based workflow and uses Git as their SCM
system. Team members perform pair programming, which involves
two developers per development session. The review is done by
both developers during development, and one of them performs the
commit/push. There is an organizational audit requirement that states
that all users who reviewed the code need to be registered. It must
be possible to trace back the code commit to a work item. The team
uses an issue tracker system. In this particular case, the test and
production environments are already provisioned.

Considering this use case, a design of a trunk-based workflow contains

the following ingredients:

•	 The commit must contain a well-formatted comment

with a work item reference and the involved

developers. This can be solved by adding a comment

to a code commit and enforcing that the comment

is well-formatted. This policy enforcement can be

established using a server-side Git hook, which forces

code comments such as the following:

git commit -am "- feat(JIRA123): fixed nullpointer

exception - authors: John, Frank"

Chapter 4 Pipeline Design

108

An alternative is the use of a review system such as Gerrit [17] where a

push is intercepted and other people can review changes before they are

applied to the trunk.

•	 The work item must exist in the issue tracker.

•	 The trigger must contain the branch for which the

commit and push are performed. This branch must be

the main branch (trunk).

Modeling this case in BPMN notation results in a design like in

Figure 4-11.

G
it git commit + git

push

Tr
un

k-
ba

se
d

pi
pe

lin
e

End pipelineEnd pipeline

TriggerTrigger

Execute buildValidate entry
criteria

ErrorError

Notify actors

Analyse codePerform
unittests

Package artifactt Deploy artifact
to testPublish artifact Perform testProvision test

environment

Validate
infrastructure
compliancy

Deploy artifact
to production

Provision
production

environment
Validate exit

criteria
Perform dual

control

Validate workitem in message
Validate branch is main
Validate workitem in message
V

Code analysis
failed

Code analysis
failed

Code analysis
passed

Code analysiss
passed

Infrastructure
compliant
rastructureInfr e

compliantccompliantc

Infrastructure not
compliant

Infrastructure notI
compliant

Dual control failedDual control failedD

Unittests
passed
nittests U
passedppassedp

Unittests failedUnittests failedU

Workiten in
message &&

branch is main

Workiten in
message && m

branch is mainnbra

No workiten in
message or

branch is not main

o workiten inNoo workiten inNo

branch is not mainbran

Build is OKBuild is OKBBuild is OKB

Build is not OKBuild is not OK

Tests failedTests failedTests failed

Tests passedp

Dual control
passed

ual controll Du
passedpassed

Exit criteria
correct
xit criteriaEx a
correctccorrectc

Exit criteria
incorrect

Exit criteria E
incorrect

Figure 4-11.  BPMN, trunk-based pipeline

This diagram resembles the Generic CI/CD Pipeline, with some minor

additions. Added to the diagram is a specification of the stage Validate

entry criteria. The first task in this stage is to determine whether the branch

to which the code was pushed is indeed the main branch. The stage

Chapter 4 Pipeline Design

109

also contains tasks to validate whether a commit contains a work item

reference and who were the developers reviewing the code. A check to

determine whether the work item exists is also included.

Zooming in on the Validate entry criteria stage results in the detailed

model shown in Figure 4-12.

Va
lid

at
e

en
try

 c
rit

er
ia

 s
ta

ge

Get commit info
from trigger Check branch

Get the
workitem id

from the commit
message

from the commit

Check whether
the workitem

exists

Is
su

e
tra

ck
er

Check workitem
API

StartStart EndEnd

ErrorError
Commit info not

available
Commit info not C

available
Branch is not

main
Branch is not B

main
Workitem does

not exists
Workitem doesW

not exists

Commit info
available

Commit infoC
availableavailable Branch is mainranch is mainBr Workitem existsWorkitem existss

Figure 4-12.  BPMN, validate entry criteria tasks

The Validate entry criteria model defines several tasks.

•	 Get commit info from the trigger: The trigger consists of

an API call (webhook) to the ALM/integration platform.

The pipeline was triggered after a code push in Git. The

commit info is passed in the request of the API. In this

case, the commit message and the branch name are

expected.

•	 Check branch: The branch name is included in the

commit info and passed to the pipeline through

the trigger. The branch name is validated and must

be main.

•	 Get the work item ID from the commit message: The

code commit message is parsed to get the work item ID

(Jira123) from the message.

Chapter 4 Pipeline Design

110

•	 Check whether the work item exists: If the ALM

platform/integration server and the issue tracker are

not integrated into one system, this task involves an

API call to a remote issue tracking system to validate

whether the work item exists. The result of this API is

used for the subsequent flow of this stage.

•	 Check work item API in issue tracker: The issue tracker

API queries whether a certain work item ID exists.

Modeling the pipeline stages and tasks isn’t that complicated, but

explicitly designing it makes you more aware of the whole process, the

tasks involved, and what exactly needs to be implemented. Because the

trunk-based workflow results in a more or less straightforward pipeline

model, it is the preferred workflow of many teams. There are some

alternatives to the trunk-based workflow, like a trunk with a separate

release branch, but the principle of the workflow remains the same; you

directly push your commit to the trunk.

As shown in the next paragraphs, the pipeline design becomes more

complex as the complexity of the workflow increases.

�Feature Branch Workflow

Despite Dave Farley’s statement that you shouldn't use branching [28],

it is still used a lot. Feature branch workflow is one of the alternatives

to a trunk-based workflow. This means that the repository consists

of the main branch—the trunk—and from the main branch separate

feature branches are spawned. The main branch is a permanent

branch, while the feature branches are short-lived branches in which a

business feature is developed. Feature-based branching models are not

considered continuous delivery unless the features are really small. See

Figure 4-13.

Chapter 4 Pipeline Design

111

main

feature
Create feature branch
from main

Figure 4-13.  Feature branch workflow

The developer commits code to the feature branch. This can be done

several times. If the feature is completed, they create a pull request, so

other developers can review the code. If the colleague developers approve

the pull request, the code of the feature branch is merged back to the main

branch.8 See Figure 4-14.

main

feature

Commit code Commit code

Create feature branch
from main

Merge feature branch
back to main

Figure 4-14.  Feature branch workflow, merging the feature branch
into the main branch

A design principle that works out very well is that “Each branch has an

associated pipeline.” The reason is that each branch has its purpose and

its life cycle, so why would the pipeline execution be the same for different

types of branches?

8 From a technical (Git) point of view, you can decide to merge the feature branch
back to main, or rebase main onto the feature branch, to get a cleaner history. In
addition—if the platform supports it—you may define branch policies on the main
branch to prevent, for example, that a feature is merged that does not even build
successfully.

Chapter 4 Pipeline Design

112

In a feature branch workflow model we deal with two types of

branches. A developer working on a feature branch will commit/push a

couple of times during the day and merge back to the main only at the end

of the day.

If a push to a remote feature branch is done often, feedback from the

pipeline toward the developer is expected to be fast. It does not make

sense to execute the whole cycle of build, quality assurance, deployment,

and test each time a developer pushes code to a feature branch. And if you

also add the provisioning of an ephemeral infrastructure into the equation,

this whole cycle just takes too long.

A practical approach to this is to limit the number of stages of a

pipeline triggered by an activity on a feature branch. Often a few stages are

sufficient to demonstrate that the artifact can be built and unit tests are

performed successfully. See Figure 4-15.

Execute
build

Perform
uni�ests

Analyze
code

Package
ar�fact

Publish
ar�fact

Validate entry
criteria

No�fy
Actors

Figure 4-15.  Feature branch workflow, feature branch pipeline

The pipeline associated with this feature branch looks like Figure 4-16

in BPMN notation.

Chapter 4 Pipeline Design

113

G
it git push

'fe
at

ur
e'

 b
ra

nc
h

C
I p

ip
el

in
e

ErrorError

TriggerTrigger

Validate entry
criteria

EndEnd

Analyze code

Notify actors
Execute build Perform

unittests

Publish artifactPackage artifactt

Unittests passedUnittests passedp

Unittests failedUnittests failed

Entry criteria
correct
try criteriaEnt a
correctccorrectc

Entry criteria
incorrect

Entry criteria E
incorrect

Build is OKBuild is OK

Build is not OKBuild is not OKB

Code analysis
failed

Code analysis Code analysis
failed

Code analysis
passed

Code analysis
passedpassed

Figure 4-16.  BPMN, feature branch workflow; feature
branch pipeline

The pipeline associated with a feature branch is a CI pipeline and not

a full CI/CD pipeline. Provisioning of infrastructure and testing—except

for unit testing—is not part of this pipeline, which makes it lean and mean

and limits the use of resources of the ALM/integration platform. If the CI

pipeline associated with this feature branch executes successfully, the

developer is allowed to create a pull request. If the CI pipeline does not

execute successfully or the quality of the code is not sufficient, it does not

make sense to create a pull request because colleagues will not approve

code that does not build.

Creating a pull request allows co-workers the opportunity to review

the code; if they approve, the feature branch is merged back into the main

branch, and the pipeline of the main branch starts. This pipeline traverses

through all the stages of the Generic CI/CD Pipeline. Similar to the trunk-

based workflow, the main branch in a feature branch workflow must be

production-ready. It is the main branch from where a release is created.

See Figure 4-17.

Chapter 4 Pipeline Design

114

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
ActorsDeploy

artifact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure
compliance

Provision
production

environment
SCM trigger

main

Figure 4-17.  Feature branch workflow, main branch pipeline

The pipeline of the main branch, modeled in BPMN notation, looks

like Figure 4-18.

G
it git merge + git

push

C
I/C

D
 p

la
tfo

rm

Generic CI/CD
pipeline

TriggerTriggerT

Figure 4-18.  BPMN, feature branch workflow; main branch pipeline

Table 4-2 summarizes the tasks performed for, respectively, the feature

and main branch. This is just a proposal, and of course, it is perfectly fine

to deviate from it. Essential, however, is to think about the stages that are

executed for each branch and why.

Chapter 4 Pipeline Design

115

Table 4-2.  Feature Branch Workflow—Branches vs. Pipeline Stages

Branch Stages to execute Rationale

Feature • Validate entry criteria
• Execute build
• Perform unit tests
• Analyze code
• Package artifact
• Publish artifact
• Notify actors

The reason to execute only the CI stages

is that the response to the developer must

be almost immediately. It happens often

that a build succeeds on the developers’

local machine, but not in the pipeline. The

feature branch pipeline is the first step

to making sure that the code can be built

in a pipeline. In addition, the code of a

feature branch is committed frequently (to

the remote server). To minimize resource

consumption, only the proposed stages are

executed.

Main • Validate entry criteria
• Execute build
• Perform unit tests
• Analyze code
• Package artifact
• Publish artifact
• �Provision test

environment
• Deploy artifact to test
• Perform test
• �Validate infrastructure

compliance
• Validate exit criteria
• Perform dual control
• �Provision production

environment

The pipeline associated with the main

branch creates a release (candidate)

artifact. This artifact is tagged and

versioned as a release artifact. All stages of

the Generic CI/CD Pipeline are incorporated

into the pipeline.

Chapter 4 Pipeline Design

116

Note on Implementation
This book intends to be abstract and tool-agnostic as much as possible.

In cases where implementation is discussed, the technical details are kept

to a minimum. But there are some pointers concerning the realization of

the pipelines.

On a design level, two pipelines are distinguished, one associated with

the feature branch and one associated with the main branch. Of course, it

is perfectly possible to develop two pipeline implementations, but it is also

possible to realize one technical pipeline integrating both logical pipelines.

The technical pipeline makes use of a condition to distinguish between

branches and uses templates or libraries to reuse stages. In Azure DevOps,

for example, validating a branch can be defined as follows:

condition: eq(variables['Build.SourceBranch'], 'refs/

heads/main')

This condition determines whether a specific section in the pipeline is

executed only if the current branch is main.

A combined pipeline of a feature and main branch in BPMN notation

looks like Figure 4-19.

Chapter 4 Pipeline Design

117

G
it git push

'm
ai

n'
 +

 'f
ea

tu
re

' b
ra

nc
h

pi
pe

lin
e

EndEnd

ErrorError

Notify actors

TriggerTrigger

Validate entry
criteria

Perform
unittests

Generic CI/CD
pipeline

Execute build

Publish artifactPackage artifacttPackage artifactt

Unittests failedUnittests faileddEntry criteria
incorrect

Entry criteria Entry criteria
incorrect

Build is not OKBuild is not OK

Code analysis
failed

Code analysis C
failed

Branch is not
main

Branch is not ot
mainn

Branch is mainBranch is main

Code analysis
passed

Code analysis
passedpassed

Entry criteria
correct
try criteriaEnt a
correctc Build is OKuild is OKB

Unittests passedUnittests passedp

Figure 4-19.  BPMN, Feature branch workflow; pipelines main and
feature combined

The model starts with a condition to determine whether the Git push

came from the main branch or not. If true, all stages of the Generic CI/D

pipeline are executed. If false, only a subset of these stages is executed.

�Gitflow

Gitflow is still used by a lot of teams. It was one of the first workflows

developed and is still popular.

The repository consists in its core of two branches, master and

develop. These branches have an infinite lifetime. The master contains all

code that is deployed to production. The deploy branch contains the code

that reflects the current state the team is working on. In recent workflows,

the name main branch is used in favor of master. To keep aligned with

the previous paragraphs, the name main branch is used in the remaining

chapters of this book.

Chapter 4 Pipeline Design

118

If a developer starts to work on a feature, a feature branch is created

from the develop branch. The usage of the feature branch is similar to how

it is used in the feature branch workflow; instead, it originates from the

develop branch and not from the main branch. See Figure 4-20.

main

feature

develop

Create feature branch
from develop

Figure 4-20.  Gitflow, create feature branch

As soon as a feature is completed, the feature branch is merged back

into the develop branch. This happens multiple times, so the develop

branch is always [0..x] features ahead of the main branch.

As soon as the code in the develop branch reaches a stable situation,

all tests are performed successfully, and the team is convinced that the

code is in a production state, so a release candidate is created. Instead of

directly merging the code from develop to main, an intermediate branch

is created: the release branch. The release branch contains all the code

of the release candidate, ready to be deployed to production. The release

branch is temporary and is used to align with the release version. It is not

a finalized version yet. It is still possible that the code of a release branch is

updated, but this should include only small bug fixes.

Chapter 4 Pipeline Design

119

To keep the main branch always in a state that reflects production,

the release branch is merged back into the main branch after the code

is deployed to production. This is also done for the develop branch. See

Figure 4-21.

release

develop

main

Merge develop branch
to release

Merge release branch
back to main

Merge release branch back
to develop (bugfixes)

Figure 4-21.  Gitflow, the release branch

Hotfix branches are used to fix a bug in production. Instead of using

the regular workflow that includes feature, develop, and release branches,

the hotfix branch is based on the main branch and is not derived from

the develop branch. After the hotfix is tested, approved, and deployed to

production, it is merged both into the main and develop branches. See

Figure 4-22.

main

ho�ix

develop

Merge ho�ix branch
back to main

Merge ho�ix branch to
develop

Create ho�ix branch
from main

Figure 4-22.  Gitflow, the hotfix

Chapter 4 Pipeline Design

120

Summarized, Gitflow involves five different branch types (see

Figure 4-23).

Main (or master): This branch always contains the

actual production code.

Develop: This branch includes all code of the

main but is normally ahead of the main branch. It

includes features of the upcoming release.

Feature: Feature branches are short-lived branches,

containing the code of each feature. The code is

merged with the develop branch after a pull request

has been opened and approved by other developers.

Release: Release branches are based on the develop

branch and are created as soon as a release

candidate must be created. After the release branch

is created and finalized, it is merged back into the

main and develop branches.

Hotfix: A hotfix branch is created from the main

branch and used to fix bugs in production. It is

merged back into both the main and develop

branches after it is successfully tested.

Chapter 4 Pipeline Design

121

Table 4-3.  Gitflow—Branches vs. Pipeline Stages

Branch Stages to Execute Rationale

Feature • Validate entry criteria
• Execute build
• Perform unit tests
• Package artifact
• Publish artifact
• Notify actors

The reasons to create a pipeline with

these particular stages are the same

as the feature branch workflow,

except for the lack of the Analyze
code stage. This is omitted to provide

even faster feedback and because

it is present in the develop pipeline

anyway.
(continued)

main

ho�ix

develop

release

feature

Merge ho�ix branch
back to main

Create ho�ix branch
from main

Merge ho�ix branch to
develop

Create feature branch
From develop

Merge feature branch
back to develop

Merge develop branch
to release

Merge release branch
back to main

Merge release branch
back to develop (bugfixes)

Figure 4-23.  Gitflow

Because Gitflow works with five types of branches, it potentially results

in five logical pipelines. Table 4-3 presents an overview—a proposal—of

the branches and the associated pipeline stages, which are executed as

soon as a pipeline is triggered.

Chapter 4 Pipeline Design

122

Branch Stages to Execute Rationale

Develop • Validate entry criteria
• Execute build
• Perform unit tests
• Analyze code
• Package artifact
• Publish artifact
• Provision test environment
• Deploy artifact to test
• Perform test
• Notify actors

Changes in the develop branch

must be built and thoroughly tested

because it potentially contains

multiple features, all merged in

the same develop branch. You may

consider testing the functional

aspects as part of the develop

pipeline only, while all test types—

including nonfunctional tests—are

performed as part of the release

pipeline.

Release All stages of the Generic

CI/CD Pipeline

A release branch is typically used

to create a release artifact that is

deployed to production. This justifies

a release pipeline, containing all

stages of the Generic CI/CD Pipeline.

Main No pipeline The sole purpose of the main branch

is just to maintain the state of the code

of the production situation. Unlike the

other branching strategies, an artifact

in Gitflow is not directly built and

deployed from the main branch.

Hotfix All stages of the Generic

CI/CD Pipeline

A release in Gitflow is originated

either from a release branch or from

a hotfix branch. This justifies a hotfix

pipeline, containing all stages of the

Generic CI/CD Pipeline.

Table 4-3.  (continued)

Chapter 4 Pipeline Design

123

Figure 4-24 through Figure 4-27 are the pipelines associated with the

branches of Gitflow.

Execute
build

Perform
uni�ests

Package
ar�fact

Publish
ar�fact

Validate entry
criteria

No�fy
Actors

feature

Figure 4-24.  Gitflow, feature branch pipeline

Execute
build

Perform
uni�ests

Analyze
code

Package
ar�fact

Publish
ar�fact

Validate entry
criteria

No�fy
ActorsDeploy

ar�fact to
test

Perform
test

Provision test
environment

SCM trigger

develop

Figure 4-25.  Gitflow, develop branch pipeline

Execute
build

Perform
uni�ests

Analyze
code

Package
ar�fact

Publish
ar�fact

Validate entry
criteria

No�fy
ActorsDeploy

ar�fact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
ar�fact to
produc�on

Provision test
environment

Validate
infrastructure
compliance

Provision
produc�on

environment
SCM trigger

release

Figure 4-26.  Gitflow, release branch pipeline

ho�ix Execute
build

Perform
uni�ests

Analyze
code

Package
ar�fact

Publish
ar�fact

Validate entry
criteria

No�fy
ActorsDeploy

ar�fact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
ar�fact to
produc�on

Provision test
environment

Validate
infrastructure
compliance

Provision
produc�on

environment
SCM trigger

Figure 4-27.  Gitflow, hotfix branch pipeline

Chapter 4 Pipeline Design

124

All Gitflow pipelines are combined into one BPMN model, as shown in

Figure 4-28.

G
it

git push

git
merge/rebase

main + develop
branch

G
itf

lo
w

 C
I/C

D
 p

ip
el

in
e

git triggergit trigger

End

Pipeline release
branch

Pipeline hotfix
branch

Pipeline develop
branch

Pipeline develop

Pipeline feature
branch

branch is not mainbranch is not mainbranch is not main

branch is developbranch is develop

branch is main or
(something else)
branch is main or
(something else)(something else)

branch is hotfix*branch is hotfix*

branch is release*branch is release*

Figure 4-28.  BPMN, Gitflow combined pipeline

As you noticed, the more branches there are, the more complex the

workflow, which translates to the complexity of the pipeline design. Also

notice that the “continuous” aspect becomes less if more branches are

involved. The Gitflow model is not considered a proper model for CI/CD,

because of its complexity, multiple—long-lived—branches, and slow-to-

adapt new features because of a strict release cycle.

Chapter 4 Pipeline Design

125

�Build Strategy
One could argue there is not much to tell about building an artifact. You

selected the appropriate build tool and apply the principle “Build once,

run anywhere.” In essence, your Execute build stage itself consists of just

one task, often executing one line of code, for example:

mvn clean package

Or

msbuild mySolution.sln /t:Clean,Build

After a couple of minutes, the artifact is created, and that’s it. But,

in reality, the creation of an artifact has lots of aspects to be taken into

account. Maybe the build lasts for 10 minutes, half an hour, or even longer.

This breaks the “fast feedback” principle of CI/CD and asks for a strategy

to decrease the build time. And other factors influence the build strategy or

even shape the whole pipeline. What is the build strategy in case the target

environment is the cloud, or what is the build strategy if there are multiple

DevOps teams involved in the development of one integrated system? Let’s

highlight some of the factors associated with a build strategy.

�Vertical Scaling

If the build time increases, vertical scaling is an option to speed up build

times. Adding a larger server with a faster processor, more processor cores,

and a faster disk is an option. But vertical scaling does not always help in

the long run if more demanding builds occur. Other build strategies are

needed, from which lots of advantages can be gained and which do not

require any additional hardware.

Chapter 4 Pipeline Design

126

�Full Builds vs. Incremental Builds

One thing to take into account concerning build time is the execution of a

full build versus an incremental build. In most pipelines, the build strategy

that is chosen often is a full build strategy. This means that all application

code is compiled and a completely new artifact is created every time

the Execute build stage runs. If the build time is acceptable, this is a safe

approach. If a full build takes too much time, an incremental build can be

considered as an alternative. Figure 4-29 illustrates a full build.

The concept of an incremental build needs a bit more explanation.

Take a Java .jar file, for example. The .jar file is a build artifact composed

of multiple .class files. Each .class file contains compiled Java code

(bytecode). The source is plain Java code, stored in a .java file.

Another example is the compilation of C++ code. The C++ code is

embedded in a .cpp (or .h/.hpp) file, resulting in an .obj (object) file

after compilation. The final executable file consists of .obj files, all linked

together to an .exe artifact (in the case of Microsoft Windows).

The trick with incremental builds is that only changed source code

files are recompiled. If an executable is constructed from 500 .obj files,

a full build recompiles all 500 .cpp files again, even if just one .cpp

file is changed. An incremental build makes use of the output from

Build server

Ar�factBuild taskSCM repository

All files

Figure 4-29.  Full build

Chapter 4 Pipeline Design

127

previous builds, and this results in the compilation of just the changed

.cpp file. This speeds up the build time considerably. An incremental

build is depicted by Figure 4-30. But there are a couple of caveats with

incremental builds.

Incremental builds sometimes give some unpredictable results. It

happens that an incremental build is screwed up somehow, and a changed

file is not recompiled. This results in an unreliable artifact. Unfortunately,

some build tools are a bit buggy, and these issues happen. This results in

the fact that full builds are often preferred over incremental builds; better

be safe than sorry. But this can be avoided. There are solid build tools that

deal with incremental builds in the intended way.

Not all build systems support incremental build. Maven is a build

system that does support some form of incremental build, and it was never

created with the intent to perform incremental builds. So, when choosing

an incremental build strategy, consider the appropriate build tool that was

designed with incremental builds in mind. Gradle or Bazel are alternatives

that natively support incremental builds.

Build server

Ar�factBuild taskSCM repository

• Unchanged files
• One changed file

Remote cache

Already compiled files

Figure 4-30.  Incremental build

Chapter 4 Pipeline Design

128

Note  From an audit point of view, one could raise concerns about
which pipeline run is responsible for the creation of an artifact if
incremental builds are used. The pipeline that creates the artifact
running in production must be traceable. But if more pipelines are
involved in the creation of the artifact, they all need to be part of the
audit chain. Maybe the last pipeline run was responsible for only
1 percent of newly compiled code, while the other 99 percent was
compiled by other pipeline runs, and although the chance that a
clean—full—rebuild would deliver a different artifact compared to
an incremental build is small, it is theoretically not null. In addition, it
may even be difficult or impossible to point out which pipeline builds
contributed to the creation of an artifact. To circumvent this issue and
avoid difficult discussions with the Audit department, it may be wise
still to use full builds if the build time is acceptable.

�Parallel Builds

In addition to full and incremental builds, there is also the option of

parallel builds. A parallel build spreads the compilation of source files over

multiple threads (on one server) or even over multiple servers, depending

on the platform setup. This results in the following strategies:

•	 Multithreaded builds: A multithreaded build makes

use of the fact that a build tool uses multiple threads

on one server to build an artifact. Build tools often

include a flag that can be set to enable multithreading,

even with the option to provide the number of threads

or cores. A build can profit enormously from this

feature; if multithreading is enabled and four threads

are specified, it can make full use of a multicore CPU

Chapter 4 Pipeline Design

129

architecture and compile multiple files in parallel.

Multithreaded builds can be used in combination

with both full builds and incremental builds. See

Figure 4-31.

Build server

Ar�fact Build task
(main thread 0)

Thread 2

Thread 3

Thread 1

Figure 4-31.  Multithreaded build

•	 Distributed builds: Multithreaded builds make use

of a multicore architecture, spreading compilation

over multiple cores in the CPU. But of course, there

are limits to the number of cores on one server. A

distributed build takes the parallel build concept

a step further and distributes the compilation over

multiple servers. Even a combination of multithreaded

distributed builds is possible, allowing for massive

parallel scaling. However, a word of caution is in place

if distributed builds are used. Files must be moved

around over the network, which costs time. Small

projects therefore hardly benefit from distributed

builds and might even build faster on just one server.

Distributed builds can be considered for large-scale

projects.

Chapter 4 Pipeline Design

130

The principle of a distributed build is that the build

of one artifact is split into small individual subtasks,

each executed on a different server. This is not the

same as an offloaded build, in which the build of

one artifact as a whole is offloaded to a separate

build server (see the next paragraph). This makes

distributed builds more complex in nature than

offloaded builds. See Figure 4-32.

Build server

Build task

Build server

Sub task 2

Build server

Sub task 3

Build server

Sub task 1

Split off task 2

Ar�fact

Split off task 1

Split off task 3

Figure 4-32.  Distributed build

•	 Offloaded builds: Most ALM/integration platforms

provide the means to offload a build to a separate

server. The build task that creates an artifact is executed

on a designated server or container (sometimes called

a node or agent), depending on the platform. This

releases the burden of the main server of the ALM/

integration platform and enables parallel builds (of

different artifacts). As explained, an offloaded build is

Chapter 4 Pipeline Design

131

not the same as a distributed build in which the build

task of an artifact is split into subtasks, each executed

on a different server. This means that the build tool can

be simpler and does not need to support a distributed

build option. See Figure 4-33.

Build server

Build task 2

Build server

Build task 3

Build server

Build task r�fact 1

Ar�fact 2

Ar�fact 3

Build server

Offload
pipeline build

Offload
pipeline build

Offload
pipeline build

1 A

Figure 4-33.  Offloaded build

�Pipeline Caching

Deciding on a strategy to reduce the build time involves not only the

execution of a build in terms of CPU usage, but also I/O and networking

are big factors to take into account. External libraries used to build an

artifact may be retrieved from a location not close to the ALM/integration

platform, for example, Maven libraries from Maven Central, Docker images

from Docker Hub, and .NET packages from NuGet. Downloading them

from these external locations adds a lot of time to a build task.

Chapter 4 Pipeline Design

132

Some build tools or ALM/integration platforms themselves support

caching of files. When a pipeline runs for the very first time, the external

files are downloaded, and the cache is created. This cache is stored locally,

“near” the pipeline, and is retrieved again in every new pipeline run. The

time to retrieve the cache is much lesser, though. This type of caching

is also called pipeline caching or remote caching. Applying caching to a

pipeline can decrease the build execution time by 50 percent or more. It is

highly recommended to use caching in a pipeline.

Note  Caching is used not only for external libraries but also for
incremental builds. Compiled files created in an earlier pipeline run
are stored in a cache. A new pipeline run will look into that cache first
before a source code file is recompiled. Another benefit of caching
is that it becomes possible to apply restricted access policies to a
cache and block it for other pipelines.

�Build Targets

In addition to build time, there are other factors to take into account when

a build strategy is defined. Consider the target environment. Some target

environments require the creation of certain types of artifacts, such as a

Spring Boot JAR or a Docker container but also impose some constraints

on these artifacts. Take a Kubernetes cluster, a cloud target, or a mobile

phone, for example. Artifacts must be limited regarding storage size,

memory footprint, or CPU usage. An artifact for an AWS lambda may not

exceed a certain file size; it must have a fast startup time, and memory

consumption must be minimized. So, do not focus only on build time

when defining a build strategy, but also take the target environment and

artifact constraints into account. Tools such as Quarkus, Micronaut, and

GraalVM are focused on these aspects and produce artifacts optimized for

a target environment where these constraints are applicable.

Chapter 4 Pipeline Design

133

�Cross-Platform Builds

There are plenty of situations in which one codebase leads to different

artifacts, each specific to a certain target platform or even certain versions

of that platform. Think of applications that must be able to run on both

Windows and Linux or a mobile app developed for both iOS and Android.

The CI pipeline needs to produce multiple types of artifacts, each one

dedicated to running on a specific target platform. A nice feature of various

CI tools and ALM platforms is the Matrix Build strategy. This allows

building several artifacts at once, based on the permutation of different

language versions, operation systems, and operating system versions. Only

one CI pipeline is required to build all artifacts, although multiple types of

build servers/agents could be needed to perform the build for a specific

operating system.

The deployment (CD) pipeline is separate for each platform. One

deployment pipeline could be dedicated to a Windows environment, while

the other pipeline is based on a deployment to Linux. This is an example of

a fan-out principle. Fan-out applies to stages, tasks, and pipelines.

Figure 4-34 depicts two target environments. The build/deployment

ratio is one-to-many: one continuous integration pipeline and two

continuous delivery pipelines.

CD pipeline (environment A)

CI pipeline

CD pipeline (environment B)

OS

OS

Figure 4-34.  Cross-platform pipelines

Chapter 4 Pipeline Design

134

Separation leads to the distribution of activities shown in Figure 4-35.

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
Actors

SCM trigger

Figure 4-35.  Cross-platform, CI pipeline

CD pipelines of both environment types are triggered by the same

CI pipeline as soon as the CI pipeline is finished. A pipeline-completed

trigger can be used for this (see the next chapter for more information

about triggers). See Figure 4-36 and Figure 4-37.

Notify
ActorsDeploy

artifact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure
compliance

Provision
production

environment

Validate entry
criteria

Pipeline completed
trigger

Figure 4-36.  Cross-platform, CD pipeline environment A

Notify
ActorsDeploy

artifact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure
compliance

Provision
production

environment

Validate entry
criteria

Pipeline completed
trigger

Figure 4-37.  Cross-platform, CD pipeline environment B

�Multiteam Build Strategy

If there is only one production environment to deploy to but multiple

teams are developing apps or submodules for that environment, it makes

sense to centralize the CD pipeline, managed by one team, while the

other teams use their CI pipelines. The reason for just one centralized

CD pipeline is to prevent the installation of apps that become rogue

in the production environment. Inexperienced teams may introduce

vulnerabilities in their apps. These vulnerabilities can be detected by a

central CD pipeline. Security checks and stability tests, such as fuzz testing,

are added to the CD pipeline to guarantee the stability of apps in the target

Chapter 4 Pipeline Design

135

environment. The test scope of a team that builds only a small part of the

whole system would also test this part in isolation; they will never test how

their app behaves as part of a whole system.

Assume a situation that multiple DevOps teams are developing for one

product, running in its specific target environment. Each team delivers

artifacts that must be assembled into one product. The assembling

phase is part of a CD pipeline. A setup to accommodate this is to define

CI pipelines managed by individual teams, while the CD pipeline is

managed by a central team, which is also responsible for the stability and

auditability of the production environment. This setup results in a many-

to-one ratio of the number of CI pipelines that perform the build, related to

the CD pipeline that executes tests and deploys the artifact to production.

See Figure 4-38.

CD pipeline (centralized)

CI pipeline

CI pipeline

CI pipeline

Team A

Team B

Team C

Team D

Figure 4-38.  Multiteam build strategy

Assume your team—team D—is responsible for the design of the

centralized CD pipeline. This means you don’t even know what other

teams—A, B, and C—are doing and what their pipeline looks like. This

leads to a “separation of concerns” situation in which one pipeline

publishes an artifact to a binary repository, which is fetched by a central

CD pipeline, from where it is tested and installed in the central production

environment. This separation of responsibilities leads to the distribution of

activities shown in Figure 4-39 and Figure 4-40.

Chapter 4 Pipeline Design

136

Execute
build

Perform
uni�ests

Analyze
code

Package
ar�fact

Publish
ar�fact

Validate entry
criteria

No�fy
ActorsDeploy

ar�fact to
test

Perform
test

Provision test
environment

SCM trigger
Validate

infrastructure
compliance

Figure 4-39.  Pipeline teams A, B, and C

Notify
ActorsDeploy

artifact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure
compliance

Provision
production

environment

Validate entry
criteria

Pipeline completed
trigger

Figure 4-40.  Pipeline team D

The pipelines of the DevOps teams A, B, and C typically contain all the

CI stages. These pipelines also contain test stages to perform integration,

system, and contract tests. This gives these teams a feeling of confidence

that their app works properly. The pipeline of the central DevOps team (D)

is responsible for the target environment and includes all the CD stages.

This is also the place where artifacts, produced by the other teams, are

integrated and tested as one integral system. The CD pipeline is triggered

by all other pipelines, using a pipeline-completed trigger.

Combined, the BPMN workflow model—with collapsed versions

of all pipelines—looks like the one in Figure 4-41, in which team A has

connected their pipeline to the central CD pipeline through a trigger

mechanism. The pipeline of team A submits a trigger, which executes the

CD pipeline of team D.

Chapter 4 Pipeline Design

137

C
I/C

D
 p

la
tfo

rm

C
on

tin
uo

us
 D

el
iv

er
y

pi
pe

lin
e

Te
am

 D
C

on
tin

uo
us

D
el

iv
er

y
pi

pe
lin

e
Te

am
 D

Pi
pe

lin
e

Te
am

 A

Git triggerGit triggertrig

TriggerTrigger

Decentralized
pipeline

Centralized CD
pipeline

G
it git push

Figure 4-41.  BPMN, multiteam build strategy; CI and
CD pipelines combined

In detail, the design of the CI pipeline of team A could look like

Figure 4-42.

Pi
pe

lin
e

Te
am

 A

Start CI pipelineStart CI pipelineS

End CI pipelineEnd CI pipelinee

ErrorError

Package artifactt Publish artifact Provision test
environment

Deploy artifact
to test Perform test

Validate
infrastructure
compliance

Validate entry
criteria

Trigger CD
pipeline

E

Notify actors

Analyse codeExecute build Perform unittest

Code analysis
passed

Code analysiss
passed

Code analysis
failed

Code analysiss
failed

Unittests
passed

Unittests
passedpassed

Entry criteria
correct
try criteriaEnt a
correctccorrectc Build is OKuild is OKB

Build is not OKBuild is not OK

Infrastructure
compliant

Infrastructure
compliantcompliantTests passedests passedTe p

Infrastructure not
compliant

Infrastructure not
compliant

I f t t tTests failedTests failedT

Unittests failedUnittests failedEntry criteria
incorrect

Entry criteria E
incorrect

Figure 4-42.  BPMN, multiteam build strategy; CI pipeline team A

Chapter 4 Pipeline Design

138

The design of the centralized CD pipeline could look like Figure 4-43.

C
on

tin
uo

us
 D

el
iv

er
y

pi
pe

lin
e

Te
am

 D

ErrorErrorError

End pipelineEnd pipeline

Start pipelineStart pipelineS

Validate entry
criteria

Notify actors

Deploy artifact
to production

Provision
production

environment

Provision test
environment Perform testDeploy artifact

to test

Perform dual
control

Validate exit
criteria

Validate
infrastructure
compliance

Dual control
passed
al controllDua
passedppassedp

Infrastructure
compliant

nfrastructuree In
compliantcompliant

Tests passedTests passed

Entry criteria
correct

Entry criteria
correctcorrect

Infrastructure not
compliant

Infrastructure not
compliant Dual control failedDual control failed

Tests failedTests failedEntry criteria
incorrect

Entry criteria E
incorrect

Exit criteria
correct
xit criteria Ex
correctcorrect

Exit criteria
incorrect

Exit criteria E
incorrect

Figure 4-43.  BPMN, multiteam build strategy; centralized
CD pipeline team D

The first stage of the CD pipeline is the Verify entry criteria stage. In

this stage, the validation of the artifact created by the pipeline of team A is

performed to determine whether it meets certain criteria. For example:

•	 The trigger must supply a valid reference to the artifact.

•	 The artifact can be retrieved from the binary artifact

repository.

•	 The artifact is a release (candidate), so it must be

signed because only signed artifacts are allowed to be

installed into production.

•	 The branch from which the artifact was built is

validated. Only artifacts from the main branch

are allowed

Chapter 4 Pipeline Design

139

The multiteam build strategy looks like a simple model at glance,

but let’s do a small thought experiment. Assume that two teams—A and

B—develop, build, and deliver their artifact. The centralized CD pipeline

of team D is depending on both artifacts, for whatever reason. It cannot

start if one of the artifact versions is not available yet. The problem is, it

is not clear which team delivers their artifact first, team A or team B. The

central CD pipeline requires a special trigger that depends on two events:

pipeline A is finished and pipeline B is finished. This trigger mechanism

can be considered a type of complex event processing (CEP), which

makes it possible to automatically start a pipeline, based on the output of

other pipelines. At the moment, the ALM/integration platforms that were

investigated do not offer this type of trigger, so if your situation demands a

CEP solution, you have to do it yourself, unfortunately.

�Test Strategy
The test strategy outlines the testing approach within the software supply

chain. Decisions about the order of testing, the fact that some tests run

in parallel, the types of tests, which tests are automated, and which are

performed manually all contribute to the test workflow. There is no silver

bullet on how to design the pipeline flow concerning testing, but there are

some typical characteristics of testing that makes certain pipeline flows

more logical than others.

A test strategy cannot be discussed without looking at the different

types of tests in more detail. Tests come in different flavors, each

specialized in a certain area. Some tests focus on functionality, and some

on nonfunctional aspects. Also, the scope of tests differs, from narrow-

scope tests such as unit tests to broad-scope tests such as chain tests.

The question is, how does each type of test impact a pipeline flow? Is

there a logical order for all these different test types? Is there a relation

between the different test types, and to which extent can these test types be

Chapter 4 Pipeline Design

140

automated? For the latter question, the testing pyramid described by Mike

Cohn in his book Succeeding with Agile comes to the rescue (see [4]). But

before the relationship between the testing pyramid and pipeline design is

handled, here is an overview of possible test types:

•	 Unit tests: Validate the functional behavior of an

individual unit of source code by writing unit test cases.

Performing unit tests already has a distinct place in the

Generic CI/CD Pipeline. Unit tests are executed just

after the artifact has been built.

•	 Contract tests: Test the integration between two systems

in isolation, mocking the service provider.

•	 Integration tests: Validate the interaction between

some components. Where unit tests are performed

on individual components, the integration tests are

performed on a group of components. Integration tests

are functional in nature.

•	 System tests: Validate whether the system as a whole

meets the functional and (some) nonfunctional

requirements.

•	 Regression tests: Verify that a code change does not

impact the existing functionality. Regression tests

ensure that the application still performs as expected.

•	 Acceptance tests: Their purpose is to validate whether

the system works as expected. This is a formal test

because the customer accepts the software if all

business requirements are met.

•	 UI tests: These are focused on the user interface of an

application. Of course, not all applications have a user

interface, so UI testing is very context-dependent.

Chapter 4 Pipeline Design

141

•	 Security tests: This includes dynamic application

security testing (DAST), interactive application security

testing (IAST), and penetration testing.

•	 Penetration tests are typically performed by an

experienced ethical hacker trying to penetrate the

system and simulating a cyberattack to validate

the systems’ security weaknesses. These tests are

performed manually.

•	 DAST is similar to pentesting, but all tests are

automated.

•	 IAST tests involve a continuous analysis of a

running application often using an agent running

on the target environment on which the application

is deployed.

•	 Preproduction/staging tests: These validate the

provisioning of the infrastructure resources

(middleware, databases, etc.) and the deployment

and installation of the application artifact on a target

environment that is identical to the actual production

environment.

•	 API tests: Where contract testing focuses on testing an

API in an isolated environment, API tests test the real

API. API tests are focused on testing the API contract,

its functionality, and its performance. Parts of the

API tests are also included in other test types, such as

performance tests. It is considered a specific test type

because an API is an official contract with other parties,

which requires some specific attention.

Chapter 4 Pipeline Design

142

•	 Performance and availability tests: This includes load

tests, stress tests, availability tests, endurance tests, and

break tests. Its purpose is to validate nonfunctional

requirements related to performance and availability.

Tests are executed under heavy load, which is increased

until the moment the application breaks. In addition,

tests under load run for a long time to validate how

the application behaves over time and how stable it

is. Endurance tests are typical tests to check whether

memory leaks occur after some time.

•	 End-to-end tests: These simulate real user scenarios

from beginning to end. It performs the functions within

the application that include communication with

hardware, databases, file integration, API integration,

and messaging with external systems.

•	 Disaster tolerance test: The purpose of disaster

tolerance testing is to identify any weaknesses or

vulnerabilities in an organization’s disaster recovery

plan and to ensure that the plan is effective in

restoring critical functions and operations as quickly

as possible. By conducting regular disaster tolerance

tests, organizations can identify and address any issues

before they become a real problem.

•	 Usability tests: This is a specialized test type. It is

focused on user experience, user-friendliness,

efficiency, and accuracy of the application. Also,

aspects like cross-browser experience are part of the

usability tests. These are manual tests.

Chapter 4 Pipeline Design

143

The testing pyramid of Mike Cohn distinguishes only a few test types.

In Figure 4-44, an attempt is made to map a range of test types to the

testing pyramid.

Figure 4-44.  Testing pyramid

The testing pyramid categorizes these tests. The bottom layer

represents quick wins. These form the bulk of tests that are relatively

easy to automate. The test types at the top are fewer in number but more

difficult to automate and therefore more expensive to automate. The

pyramid, therefore, suggests a certain order in which tests should be

executed. Consider the Perform test stage of the Generic CI/CD Pipeline.

The order of test tasks in the Perform test stage is directly copied from the

testing pyramid (except for unit tests because these are already executed

earlier in the flow). This gives an anchor point for the realization of the test

flow in a pipeline. See Figure 4-45.

Chapter 4 Pipeline Design

144

Pe
rfo

rm
 te

st

Integration tests
Regression and

Acceptance
tests

System tests Security tests Pre-production /
staging tests

StartStart

Contract tests

API tests Performance /
availability tests End-to-end testsEnd-to-end tests Disaster

tolerance tests Usability tests

EndEnd

Figure 4-45.  BPMN, ordering individual test tasks based on potency
to automate

This model ranks the tasks only from “relatively easy to automate” to

“too difficult to automate.” By default, usability and pentests are manual,

and as the model shows, all manual tests are executed at the end of the

stage. We could leave it to this and conclude that a Perform test stage

contains these tasks in the proposed sequence.

But this is not the whole story. Besides the distinction between

“relatively easy to automate” and “too difficult to automate,” there are

more test dimensions to consider. Given the five dimensions listed next,

which one contributes the most to the order of tests? What dimension is

the most important, and which one contributes the least? Let’s propose the

following order:

•	 Automated vs. manual tests: One of the principles of CI/

CD is that all tests must be automated. The next pages

will demonstrate what the impact is on the pipeline if

manual tests are included in the workflow. A general

rule of thumb is that automated tests are executed

before manual tests. This is the first dimension to

consider.

Chapter 4 Pipeline Design

145

•	 Functional vs. nonfunctional: Although nonfunctional

requirements—including security requirements—are

important, the business owner initially focuses on the

functional requirements. This argues in favor of placing

the functional test tasks in front of nonfunctional

test tasks. Note that in cases in which all tests are

automated, the order of these tests usually does not

matter anymore.

•	 Parallel execution vs. sequential execution: The third

dimension determines which tests can be executed

in parallel. Running tests in parallel decreases the

overall test time and increases fast feedback. Group

the automated tasks that can be run in parallel.

This is bound by the ability of the ALM/integration

platform, to which extent parallelization of test tasks is

possible, and this is bound by the capacity of the test

environment. Some ALM/integration platforms contain

features to order tests automatically, based on historic

execution time. This optimizes the overall test time.

If possible, execute manual tests also in parallel. This depends on the

capacity of the QA team and test specialists, of course.

•	 Manual tests performed by specialists: Specific test

types require specialized test engineers. Pentests and

usability tests require certain expertise usually not

found in the team itself. So, these people have to be

arranged, and because specialists are often hard to

allocate, these types of tests must be carefully planned.

Within the group of manual tasks, postpone manual

test tasks performed by a specialist and first focus on

the manual tests that can be performed by the QA

team itself.

Chapter 4 Pipeline Design

146

•	 Long execution time vs. short execution time: Something

that usually cannot be designed up front is the fact

whether a test task runs short or long. This results in

a redesign of the pipeline in a later stage should this

situation occur. In that case, the tests with a shorter

execution time must be placed in front of the test

with a longer execution time, in case not all tests can

be parallelized. There is an exception, though. If the

execution time of the tests takes a long time—think

hours—one must consider isolating this task and

excluding it from the main pipeline. In one of the

following paragraphs, an example of this situation is given.

Keep the order of these dimensions in mind during the upcoming

paragraphs.

�Automated vs. Manual Tests

There are two types of tests, the ones that contribute to CI/CD and the

ones that block CI/CD. In other words, there is only automated testing and

manual testing. Automated testing is repeatable, fast, and reliable, while

manual testing is error-prone and time-consuming.

One of CI/CD foundations is that tests are automated, and an effective

pipeline does not contain manual testing. However, in practice, manual

testing cannot be prevented. As already explained in the requirement

“Only allow manual testing if needed,” there are several reasons why

manual testing is still needed. Here are two examples:

•	 The QA team has a backlog integrating test cases into

the automated test set.

•	 Execution of rare tests is too expensive to automate and

is performed manually.

Chapter 4 Pipeline Design

147

The problem with manual testing is that it blocks a pipeline, causing

the pipeline to become orphaned. This means that the pipeline is not

completely finished. Some tasks are yet to be done, and the pipeline is

just waiting for all tasks to be completed. Consider a case in which the

development team merges three finished features back into the trunk.

With every merge of a feature to the source management system, a

pipeline instance starts, basically resulting in three runs of the pipeline. If

the pipeline contains a manual test task, it halts until the manual test task

is finished. If the QA team has a backlog in executing manual tests, these

three pipeline instances wait in the Perform test stage, waiting for a test

engineer to execute the manual test. The most obvious choice is to test the

three features in one go, which corresponds with the latest pipeline run—

pipeline instance C in Figure 4-46—because it covers all three features. The

other two pipeline instances—A and B—are dangling and must be stopped

manually.

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
Actors

Deploy
artifact to

test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure

compliance

Provision
production

environment

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
Actors

Deploy
artifact to

test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure

compliance

Provision
production

environment

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
Actors

Deploy
artifact to

test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure

compliance

Provision
production

environment

Manual test:
Feature 1

Manual test:
Feature 1
Feature 2
Feature 3

Manual test:
Feature 1
Feature 2

Not tested

Not tested

Tested

Pipeline
instance A

Pipeline
instance B

Pipeline
instance C

main

main

main

Figure 4-46.  Two dangling pipeline instances

Chapter 4 Pipeline Design

148

Dangling pipelines are not a big problem if a manual test can be

performed very fast and the QA team can keep up with the speed of

development. A manual test that takes up an hour doesn’t have to be a big

issue. The pipeline is only temporarily blocked. But this is often not the

case, and manual tests are waiting in the queue for a long time, while the

number of pipeline instances grows.

A question you might ask is what it exactly means when a pipeline is

being blocked by a manual test. A running pipeline itself does not include

any manual test. Manual testing is something performed outside the

pipeline. But, if a QA team is finished with its test, the results need to be

registered and signed off. Registration is required to prove that the test was

executed and record who tested it. The registration is a manual activity in

the pipeline. The test engineer fills in the test results and the location of

the test report in an edit box in the pipeline and clicks Confirm. From that

moment the pipeline continues.

So, what are the options to streamline the pipeline flow and prevent

dangling pipeline instances? First, it must be clear that changing the

pipeline flow does not solve the fact that manual tests are still pending, but

it is a matter of cosmetics to isolate this manual test stage from the main

flow. A few options are at your disposal.

•	 Park the manual test stage: You can split off manual

testing from the Perform test stage and make it a

separate stage. The positioning in the pipeline flow is

arranged in such a way that manual testing is “parked.”

It is still actively waiting to be executed, but it does not

block the pipeline anymore. Figure 4-47 shows that the

stages Validate infrastructure compliance and Validate

exit criteria are executed because manual testing has

been moved to a sidetrack (however, the pipeline will

stop before the Perform dual control stage, as this

involves a manual activity).

Chapter 4 Pipeline Design

149

•	 Note that the Generic CI/CD Pipeline also includes

stages to perform dual control and deployment to the

production environment. The dual control stage is also

a blocking stage, so the gain by parking the manual

tests in the pipeline flow is limited.

•	 A parked manual test stage looks like Figure 4-47 in

BPMN notation; for convenience, the CI stages are

combined into one subprocess called CI stages.

Pi
pe

lin
e

w
ith

 P
er

fo
rm

 m
an

ua
l t

es
t s

ta
ge

ErrorError

CI stages Provision test
environment

Deploy artifact
to test

Notify actors

Perform
automated test

Perform manual
test

Validate
infrastructure
compliancy

Validate exit
criteria

Perform dual
control

Provision
production

environment
Deploy artifact
to production

Park manual testPark manual test

Start pipelineStart pipelineS

End pipelineEnd pipeline

Infrastructure not
compliant

Infrastructure not
compliant

Tests failedTests failedT t f il d

Tests passedsts passedTes dp

Infrastructure
compliant

nfrastructure I
compliantcompliant

Exit criteria
incorrect

Exit criteria
incorrect

Exit criteria
correct

Exit criteria
correctcorrect

Dual control failedDual control failed

Dual control
passed

ual controlDu
passedpassed

Figure 4-47.  BPMN, parking manual test

•	 Split the pipeline: Parking the Perform manual test

stage still results in pipelines with a dangling stage.

Splitting the pipeline is an alternative to resolve this.

Right in the middle of the Perform test stage, between

the automated test tasks and the manual test tasks, the

pipeline is divided, resulting in two separate pipelines.

The first pipeline contains all continuous integration

stages to build the artifact and performs all automated

tests. The trigger to start this pipeline is a push of the

code to the source code management system. After all

automated tests are executed, the pipeline ends. This is

visualized in Figure 4-48.

Chapter 4 Pipeline Design

150

Execute
build

Perform
uni�ests

Analyze
code

Package
ar�fact

Publish
ar�fact

Validate entry
criteria

No�fy
Actors

Deploy
ar�fact to

test

Perform
automated

test

Provision test
environment

Validate
infrastructure

compliance
SCM trigger

main

Figure 4-48.  SCM trigger and automated tests

The second pipeline starts with a manual trigger. The person who

started the pipeline is also the one who performs the manual test. The

Deploy artifact to test stage needs to know which artifact must be deployed,

so the manual trigger must include an option to select the already build

artifact from the repository or uses the latest version by default. If multiple

existing test environments are available, the specific test environment on

which the manual test is executed must also be provided as part of the

manual trigger. See Figure 4-49.

No�fy
Actors

Deploy
ar�fact to

test

Perform
manual test

Validate
exit criteria

Perform
dual control

Deploy
ar�fact to
produc�on

Validate
infrastructure

compliance

Provision
produc�on

environment

Provision test
environment

Manual trigger

latest Validate entry
criteria

Figure 4-49.  Manual trigger and manual tests

The benefit of this approach is that the first pipeline executes all stages

without being blocked by a manual test. The second pipeline is started

only after all manual tests have been executed; otherwise, it makes no

sense to start the pipeline in the first place. Using two pipelines like this

does not result in dangling pipelines.

•	 Separate pipeline for manual tests: Another approach

is to completely isolate the Perform manual test stage

from the main pipeline and wrap it in a pipeline

dedicated to manual tests. This pipeline is either

manually triggered or triggered from the main pipeline

using a webhook, called by the Perform test stage. The

Chapter 4 Pipeline Design

151

downside of this approach is that this pipeline becomes

too isolated from the other pipelines, and the team

probably forgets about its existence.

•	 Auto-cancel: Auto-cancel is a nice feature used by a few

ALM/integration platforms. The idea behind it is that if

a new pipeline instance is started, the already running

pipeline instance stops. This means there is always only

one pipeline instance active. This prevents multiple

dangling pipelines, and it is clear which pipeline run is

the most recent one. Consider Figure 4-46. If an auto-

cancel option would have been activated, pipeline

instances A and B are stopped and only pipeline

instance C is active. For the manual test engineer, only

the active pipeline instance C is important, and they

can ignore pipeline instances A and B.

�Functional vs. Nonfunctional Tests

The test types listed previously can be divided into functional and

nonfunctional tests.

Functional tests

•	 Unit tests

•	 Contract tests

•	 Integration tests

•	 System tests

•	 Acceptance tests

•	 Regression tests

•	 UI testing

•	 API tests

Chapter 4 Pipeline Design

152

•	 End-to-end test

•	 Usability tests

Nonfunctional tests

•	 Security tests

•	 Penetration tests

•	 DAST tests

•	 IAST tests

•	 Preproduction/staging tests

•	 Performance tests

•	 Disaster tolerance tests

The following rule applies: functional tests are executed before

nonfunctional tests. Applying this rule to the sequence defined by the

testing pyramid, the tasks are rearranged a bit. Within the automated tests,

the nonfunctional tests are positioned at the back of the automated tests.

Within the manual tests—notice that more tests in the model are marked

as manual—the nonfunctional manual tests are positioned at the back of

the pipeline. This results in the model shown in Figure 4-50.

Pe
rfo

rm
 te

st

Contract testing

StartStart

System /
Integration tests

Regression
tests,

[Automated
acceptance

tests, UI tests]

R i

es s, U es s]

API tests Security tests
(IAST/DAST)

Pre-production /
staging tests

Acceptance test
(manual)

Acceptance test End-to-end testsEnd-to-end tests Security tests
(Pen test)

Performance
tests

Disaster
tolerance tests

EndEnd

Figure 4-50.  BPMN, ordering test tasks from functional to
nonfunctional

Chapter 4 Pipeline Design

153

The automated security tests (IAST/DAST) and the reproduction/

staging tests are nonfunctional tests and positioned further to the back

of the automated test tasks. The same applies to the manual security test

(pentest), performance tests, and disaster tolerance tests. They close the

rank of the pipeline.

�Parallel Execution vs. Sequential Execution

The outcome of one test type should not be the starting point of

another test type. Different tests must be executed in isolation, and the

configuration of the data of a test is part of the test. The precondition of

a test consists of installing certain data files to a file system, prefilling

database tables, or preparing a Docker container in which the test

is executed. Whether ephemeral test environments or fixed test

environments are used, the principle to perform tests independently

remains. If tests are executed in parallel, certain constraints are applicable;

this applies to both manual and automated tests.

•	 Tests running in parallel should not interfere. If this

happens, some of the tests must be executed on

another test environment.

•	 The number of available test environments could

become a bottleneck. Test environments are either

fixed test environments, ephemeral test environments

created through infrastructure as code, or Docker

containers in which tests are executed (e.g., using

something like testcontainers.org). In the case of

Docker containers, the runtime environment of the

Docker containers must be sufficiently scaled.

•	 The ALM/integration platform must support enough

parallelized tasks (or jobs). In the case of SaaS

platforms, you pay extra for each additional parallel job.

Chapter 4 Pipeline Design

154

In the case of manual tests, another constraint applies:

•	 The availability of the test engineers is important,

either a test engineer from the QA team or a specialized

test engineer. If manual tests are performed in parallel,

a suitable balance must be found in the number of test

types that can be executed in parallel and the (human)

resource capacity.

Going back to our model, some more information needs to be clear

about the availability of test environments and test engineers. Assume the

following conditions:

Conditions:

•	 There is no maximum to the number of test
environments and parallel jobs in the ALM/integration
platform.

•	 The QA team consists of only two test engineers who
can perform manual tests in parallel.

Given these preconditions, the model has been adjusted again, as

shown in Figure 4-51.

Chapter 4 Pipeline Design

155

Pe
rfo

rm
 te

st

System
Integration tests

Regression
tests,

[Automated
acceptance

tests, UI tests]

R i

es s, U es s]

Security tests
(IAST/DAST)

Pre-production /
staging tests

StartStart

Contract tests &
API tests

Acceptance testAcceptance test

End-to-end testsEnd-to-end tests Performance
tests

Security tests
(Pen test)

Disaster
tolerance tests

End

Figure 4-51.  BPMN, applying parallelization

All automated tests run in parallel. For convenience, the API tests are

combined with the contract tests. The difference between functional and

nonfunctional tests does not matter anymore in the case of parallel tests.

The manual tests are also parallelized. Given that the QA team has only

two test engineers, two parallel lanes are defined. The security pentest

is positioned a bit arbitrarily because often this expertise is not present

within a DevOps QA team. That is solved in the next paragraph.

Note T he model defines the different manual tasks as individual
tasks and even takes the size of the QA team into account. Why not
model this as just one task called “Perform manual tests”? This is
possible, but it does not reflect the actual flow. There are different
types of manual tests, and by making them discrete in the model, it
becomes explicit that there are different test types to be dealt with.
This is a matter of taste, of course. You decide whether you want to
model this explicitly or not.

Chapter 4 Pipeline Design

156

�Manual Tests Performed by Specialists

The security pentest is performed by a specialist, a cyberspecialist. In

Figure 4-51, it looks like it is just executed after the Acceptance test. That

will probably not be the case. The pentest can probably be executed

only if the application is stable and tested thoroughly. The pentest task

must therefore be separated from the other manual tests, as shown in

Figure 4-52.

Pe
rfo

rm
 te

st

System /
Integration tests

Regression
tests,

[Automated
acceptance

tests, UI tests]

R i

es s, U es s]

Security tests
(IAST/DAST)

Pre-production /
staging tests

StartStart

Contract tests &
API tests

Acceptance testAcceptance test

End-to-end testsEnd-to-end tests

Disaster
tolerance tests

Performance
tests

Security tests
(Pen test)

EndEnd

Figure 4-52.  Isolating the specialized test task

Positioning the pentest in parallel to the other manual tests is an

option, but this is possible only if the application is stable enough. In this

model, the pentest is moved to the back of the manual tests.

Chapter 4 Pipeline Design

157

�Long Execution Time vs. Short Execution Time

Test execution can take a long time. Assume that one of the test tasks

lasts for two hours. This means that manual tests have to wait until this

automated task is ready. The long-running automated test blocks the

pipeline. To solve this, the specific test task is moved to a different pipeline

with a scheduled trigger.

Condition:

•	 The Automated Security tests last for 2 hours.

Given this condition, the final model of the Perform test stage looks like

Figure 4-53.

Pe
rfo

rm
 te

st

System /
Integration tests

Regression
tests,

[Automated
acceptance

tests, UI tests]

R i

es s, U es s]

StartStart

Contract tests &
API tests

Pre-production /
staging tests

Acceptance testAcceptance test

End-to-end testsEnd-to-end tests

Security tests
(Pen test)

Performance
tests

Disaster
tolerance tests

EndEnd

Figure 4-53.  Removed long-lasting test task

A new pipeline is created, also with a Perform test stage, containing

the task security tests (IAST and DAST). This pipeline is triggered using a

schedule (e.g., starting every evening). Make sure that checking the results

of this pipeline is part of the team’s workflow, as shown in Figure 4-54.

Chapter 4 Pipeline Design

158

Notify
Actors

Perform
test

Provision test
environment

Scheduled
trigger

latest

Contains tasks:
• Perform security test IAST
• Perform security test DAST

Deploy
artifact to

test

Figure 4-54.  Isolating long-lasting tests in a separate pipeline

Note T he different test models shown just represent an example
case. Depending on the context of the tested application, certain test
types are not applicable or are combined, resulting in fewer tasks.

�Release Strategy
Branching strategy, deployment strategy (which is discussed in the next

paragraph), and release strategy sometimes cause confusion, and people

tend to mix them up. Let’s clarify these concepts.

•	 Branching strategy involves the process of bringing a

business feature to the main branch (or to a release

branch), with the intention to deploy it to production.

•	 Deployment strategy defines how the artifact is

deployed to production. The availability classification

of the application is the main driver of the deployment

strategy. If downtime is allowed during deployment,

a different strategy is chosen compared to a case in

which the application must be available 24/7.

Chapter 4 Pipeline Design

159

•	 The release strategy mainly deals with the moment a

deployment to production happens. This can range

from a developer pushing code to a repository that

is put into production within 15 minutes, to a major

release that is deployed after a few months. There may

be good reasons to wait for a longer time, for example,

if the product you deliver needs to go through formal

procedures before it is allowed to be released. The

release cycle of the Java JDK, for example, is six months.

The team chooses the type of release strategy that fits

best in their situation.

�Road Map–Based Release

For lack of a better term, a road map–based release seems the best name

to reflect the strategy, in which a product owner plots business features

on a road map that are linked to a release calendar. This can be a very

useful release strategy if, for example, the product road map is aligned

with a marketing plan to ensure that marketing efforts are closely tied to

the product development process and focused on promoting features and

capabilities that are being released in a particular time frame.

The time between each production release is not fixed. The road

map may contain two releases that need to be deployed within one

month, with a gap of two months until the third release takes place.

During development, the team can still practice the principles of

continuous integration and continuous delivery, keeping the main

branch in a production-ready state. Continuous delivery does not state

that every commit to the mainline also has to be deployed to production

immediately.

This strategy results in two pipelines: a primary pipeline and a

production deployment pipeline (see Figure 4-55).

Chapter 4 Pipeline Design

160

CI CD (test) Deploy pipeline (prod)

Variable time

Figure 4-55.  Road map–based release

The primary pipeline contains all stages, except those related to

the production deployment. The stages Validate exit criteria, Perform

dual control, Provision production environment, and Deploy artifact to

production are part of a separate deployment pipeline. These stages are

decoupled from the primary pipeline because otherwise it would result

in a lot of orphaned pipeline instances. After all, the moment to deploy to

production has not been reached.

Separation results in the two pipelines, as shown in Figure 4-56 and

Figure 4-57.

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
ActorsDeploy

artifact to
test

Perform
test

Provision test
environment

SCM trigger
Validate

infrastructure
compliance

Figure 4-56.  Road map–based release, primary pipeline

Notify
Actors

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision
production

environment
Manual trigger

Figure 4-57.  Road map–based release, production release pipeline

The production release pipeline is manually triggered because the

release date varies. The BPMN model of a road map–based release—

containing only automated tests—looks like Figure 4-58.

Chapter 4 Pipeline Design

161

G
it git commit + git

push

Pr
im

ar
y

pi
pe

lin
e

ErrorError

TriggerTrigger

Publish artifact Notify actors

Validate entry
criteria

Perform testDeploy artifact
to test

End pipelineEnd pipelinep p

Package artifactt

Validate
infrastructure
compliancy

Analyse codePerform
unittestsExecute build

Code analysis
failed

Code analysis
failedfa

Code analysis
passed

Code analysis
passed

Infrastructure not
compliant

Infrastructure not
compliant

Infrastructure
compliant

Infrastructure
compliant

Unittests
passed
nittestsU
passedp

Unittests failedUnittests failed

workiten in
message &&

branch is main

workiten in
&m

ranch is mainbr n

workiten not in
message or

branch is not main

workiten not in

branch is not main

Build is OKBuild is OKKB

Build is not OKBuild is not OK

Tests failedTests failed

Tests passedTests passedT

Pr
od

uc
tio

n
pi

pe
lin

e

End pipelineEnd pipeline

ErrorErrorE

Notify actors

TriggerTrigger

Validate exit
criteria

Deploy artifact
to production

Provision
production

environment

Exit criteria
passed + dual

control passed?

Exit criteria
passed + dual

control passed?

Perform dual
control

Dual control failedDual control failed

Dual control
passed

Dual control
passed

Exit criteria
correct

Exit criteria
correct

Exit criteria
incorrect

Exit criteria
incorrect

R
el

ea
se

 M
an

ag
er

Manually start
deployment to

production

Figure 4-58.  BPMN, road map–based release

�Timeboxed Release

Sometimes, there are valid reasons to deploy to production at regular

intervals. A release is timeboxed, meaning that features are added until the

end of the timebox has been reached and the deployment to production is

performed. A timebox is, for example, a Scrum sprint in which the release

is deployed at the end of each sprint. In his blog, Martin Fowler calls this

a release train. The train arrives and leaves at the scheduled times. When

the train leaves the station, all features that stepped into the train go to

production (see [27]). See Figure 4-59.

Chapter 4 Pipeline Design

162

CI CD (test) Deploy pipeline (prod)

Timebox

Figure 4-59.  Timeboxed release

This results in two pipelines: a primary pipeline and a production

deployment pipeline. See Figure 4-60 and Figure 4-61.

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
ActorsDeploy

artifact to
test

Perform
test

Provision test
environment

SCM trigger
Validate

infrastructure
compliance

Figure 4-60.  Timeboxed release, primary pipeline

Notify
Actors

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision
production

environment
Scheduled

trigger

Figure 4-61.  Timeboxed release, production release pipeline

This strategy looks similar to the road map–based release strategy with

the exception that the intervals between the releases are fixed, and the

production pipeline is triggered using a schedule.

Note T imeboxes are concatenated. If a feature misses the deadline
of a timebox, it is released as part of the next timebox. A variation
on this strategy consists of overlapping timeboxes. The next timebox
does not start if the previous one has ended but starts halfway
through the previous timebox. This allows a feature to be released a
bit earlier.

Chapter 4 Pipeline Design

163

�Regular Release

A regular release means that each business feature committed to the

mainline is deployed to production as soon as possible. This type of

release is possible only if the mainline is kept in a state from where it is

possible to deploy to production at any given moment (this is an important

continuous delivery principle). This is also possible in the two previous

release strategies, but the difference is, in the case of regular releases,

deployments to production are done more often, not once per two weeks,

but maybe once a day or even multiple times a day. In this strategy, just

one pipeline is involved, containing all stages. See Figure 4-62.

CI CD (test and prod deployment)

Short period of �me

Figure 4-62.  Regular release

Unlike the road map–based strategy, the deployment in a regular

release pipeline is not triggered manually. In a road map–based release,

the system owner actively has to start a deployment pipeline and selects

the release version they want to deploy to production. In the case of a

regular release, the process is automatically triggered by an SCM event.

The application is built and tested until the pipeline waits for the system

owner to approve the deployment.

A side effect of a regular release is that the number of pipeline

instances can start to queue if a lot of business features are added to

the mainline in a short time. The system owner probably does not like

to approve multiple times a day and approves only the latest release

version. Older pipeline instances keep “dangling” in the queue. These

older pipeline instances must never be approved anymore; otherwise, this

Chapter 4 Pipeline Design

164

would result in the deployment of an older release version. The pipeline

should always check the release version9 to mitigate this risk. A pipeline

used in a regular release contains all stages, as shown in Figure 4-63.

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
ActorsDeploy

artifact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure
compliance

Provision
production

environment
SCM trigger

main

Figure 4-63.  Regular release pipeline

�Continuous Deployment

Continuous deployment is a “hands-off” process in which the deployment

to production does not pass a manual dual control stage. This means that if

a developer pushes the code to the main branch, the pipeline performs all

stages without manual interference, including deployment to production.

This results in a pipeline that resembles the Generic CI/CD Pipeline but

without the Perform dual control stage. See Figure 4-64.

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
ActorsDeploy

artifact to
test

Perform
test

Validate
exit criteria

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure
compliance

Provision
production

environment
SCM trigger

main

Figure 4-64.  Continuous deployment

�Feature Management–Based Release

A feature management–based release is not a release strategy in itself, but

an approach on top of an existing release strategy. Feature management

involves hiding business functionality using feature toggles. This makes it

possible to release small increments of a business function to production,

9 The release version in production must always be lower than the deployed
release version.

Chapter 4 Pipeline Design

165

without it being activated. Products like Unleash and LaunchDarkly

position themselves in this segment. Feature management can be

combined with all branching and release strategies.

�Production Deployment Strategy
On an abstract level, deployment to production is depicted as one stage

in the pipeline flow, but this stage is sort of an iceberg; it looks simple at a

glance, but it is more complicated when zooming in.

The simplest version of deployment is just to overwrite existing

files and restart the application. If a database is involved, it is a bit more

complicated; a simple deployment already involves creating, altering, and/

or dropping tables. In that case, the application has downtime, but if this

is acceptable, there is no incentive to implement a more sophisticated

deployment mechanism.

But again, real life often poses certain requirements on the system. If

downtime is not allowed or must be kept minimal, deployment becomes

more complex. And maybe the business organization wants to see whether

a certain change in functionality is better received by the target audience

than the existing functionality. Having two flavors of this functionality in

production and measuring and comparing the performance of the two

also poses extra requirements, resulting in a different deployment strategy.

Some of the most common deployment strategies are handled in the next

paragraphs.

�Re-create Deployment

The re-create deployment is best illustrated by an example. See

Figure 4-65.

Chapter 4 Pipeline Design

166

Server 2
App instance 2

Version A

Server 1
App instance 1

Version A

Internet

Hardware
Loadbalancer

Database
Version A

Figure 4-65.  Re-create deployment setup

Example:

Assume the application is a runnable—Spring Boot—jar, deployed
on two Linux servers. The application runs as a Linux service and
receives HTTP(S) requests from clients. Communication takes place
over the public Internet. Server-side load balancing is performed
using a hardware load balancer (for convenience, in this case, there
is no client-side load balancing applied). The load balancer redirects
the requests to the application instances. Both application instances
are connected to a SQL database.

Chapter 4 Pipeline Design

167

Before the new version (version B) of the application is deployed and

the database updates are applied, all communication to both servers is

stopped. The nodes (servers) in the load balancer pool are set to “disabled”

or “maintenance,” which prevents new connections with the servers. HTTP

traffic to the servers bleeds dry, and after some time, the applications on

the servers do not receive requests anymore. The load balancer reroutes

requests from the Internet to a maintenance page informing the client that

the application is in maintenance and not available.

This is the moment to stop the applications (stop the Linux service) and

overwrite them with the new version. Version A is still installed on each server,

but it is replaced by the new version, version B. The database is updated to the

new version by running a SQL script that creates, alters, and/or drops tables,

depending on the changes of the particular version. After the applications

and database are updated, both applications on the servers are started again.

If they pass the boot sequence, the nodes in the load balancer pool can be

enabled again, and the applications become available. See Figure 4-66.

Server 2
App instance 2
Version A

Version B

Server 1
App instance 1

Version A

Version B

Internet

Hardware
Loadbalancer

Database
Version A

Version B

Server 2
App instance 2

Version B

Server 1
App instance 1

Version B

Internet

Hardware
Loadbalancer

Database
Version B

(a) (b)

Figure 4-66.  (a) Installing version B. (b) Version B installed and

available

Chapter 4 Pipeline Design

168

This strategy involves a couple of tasks. All tasks can be automated. See

Table 4-4 and Figure 4-67.

Table 4-4.  Re-create Deployment Tasks

Task Description

Disable nodes in load balancer pool. Disable servers 1 and 2 in the load

balancer pool.

Wait for a short period (until no

requests received).

Wait until the load balancer does not forward

any request to the Linux services and the

current request is completely processed.

Stop the Linux services on

servers 1 and 2.

The Spring Boot app runs as a Linux service.

Stop the service using sudo systemctl

myApp stop.

Copy the JAR file with the new

version to the target environment.

Retrieve all artifacts from the artifact

repository and copy the application JAR to

the target environment.

Copy the DB script to the target

environment and execute.

This is the script to migrate from database

version A to version B.

Start the Linux services on servers

1 and 2.

Start the Spring Boot app again using sudo

systemctl myApp start.

Wait for a couple of seconds. Needed to bootstrap and initialize the apps.

Enable nodes in load balancer pool. Route request to servers 1 and 2 again.

Chapter 4 Pipeline Design

169

D
ep

lo
y

ar
tif

ac
t t

o
pr

od
uc

tio
n

st
ag

e

Disable nodes in
loadbalancer

pool

Disable nodes in Wait for a short
period (until no

requests
received)

Stop the Linux
services on

server 1 and 2

Copy jar file
with new version

to target
environment

with new version

Copy DB script
to target

environment and
execute

environment and

Start Linux
services on

server 1 and 2

Wait for a
couple of
seconds

Enable nodes in
loadbalancer

pool
End stageEnd stage

Start stageStart stageStart stage

Pr
od

uc
tio

n
ta

rg
et

 e
nv

iro
nm

en
t

Set Linux server
to 'healthy'

Set Linux server

Start Linux
services on

server 1 and 2

Copy files

Stop the Linux
services on

server 1 and 2

Set Linux server
to 'unhealty'

Set Linux server

Ar
tif

ac
t r

ep
os

ito
ry Return artifacts

(jar file, db
scripts)

Server becomes
healthy

Server becomes
healthy

Starting Linux
services

Starting Linux
services

Deploy filesDeploy files

Stopping Linux
services

Stopping Linux
services

Server becomes
unhealthy

Figure 4-67.  BPMN, re-create deployment tasks

The model shows how the tasks in the Deploy to production stage result

in the remote execution of these tasks in the production environment.

This also implies the existence of an SSH connection between the ALM/

integration platform and the production environment.

Chapter 4 Pipeline Design

170

Note  Disabling/enabling the nodes in the load balancer pool is
implemented as a validation performed by the load balancer. The load
balancer periodically calls the Linux server with a health request. If
the server is in “maintenance,” regular requests are not sent to the
server anymore, until the load balancer detects that the server is
“available” again. Switching between “maintenance” and “available”
can easily be implemented on the Linux server.

The re-create deployment strategy is the easiest strategy, but it results

in downtime of the application. Other strategies have better ways to reduce

or eliminate downtime.

�Blue/Green Deployment

In a blue/green deployment strategy, the starting point is an infrastructure

with the old version (version A, the blue version) of the application and

the database. In parallel, a new infrastructure is built, which has the

new version (version B, the green version) installed. The load balancer

instantaneously switches from infrastructure A to B, routing the traffic to

the new version. If the system has a database, two options are possible.

•	 The new version of the application can work with the

old version of the database.

•	 The old version of the application can work with the

new version of the database.

Often, the first option is not possible because a new version of the

application usually requires a database change, specific for the new

application version. In the example used in this paragraph, the second

option is used. The starting point in this example is a server pool (server

Chapter 4 Pipeline Design

171

pool A) containing both servers 1 and 2, each running application

version A. The loadbalancer spreads all requests over both servers in the

pool. See Figure 4-68.

Serverpool A
(Server 1 + 2)
Version A

Internet

Hardware
Loadbalancer

Database
Version A

Serverpool A

Lo

D t b

Figure 4-68.  Blue/green deployment, version A installed
and available

The first step in the deployment is to replace the database version from

version A to version B. The database script is executed, but because the old

version of the application still works with the new version of the database,

everything should still be working.10 The assumption is that the database

changes can be performed online, of course. After this has been done, a

new infrastructure is built. The new infrastructure contains a server pool

(server pool B) with servers 3 and 4. Application version B is installed on

both servers, but because no requests are sent to the servers yet, servers 3

and 4 are still idle. See Figure 4-69.

10 Not all database changes are backward compatible. Sometimes, some additional
processing or transformation is required in the database using database triggers,
for example.

Chapter 4 Pipeline Design

172

Figure 4-69.  (a) Installing database version B. (b) Second
infrastructure with version B installed (but still idle)

The setup now consists of two server pools, one with application

version A and one with application version B. Server pool A is enabled and

processes all requests (using database version B). Server pool B is idle.

The essence of a blue/green deployment is that the load balancer switches

from server pool A to server pool B instantly. After the switch, all requests

are sent to the servers in server pool B. Server pool A becomes idle and

does not process any new requests anymore. The infrastructure of server

pool A can be dismantled and used for other purposes. See Figure 4-70.

Chapter 4 Pipeline Design

173

Table 4-5.  Blue/Green Deployment Tasks

Task Description

Provision new infrastructure B. Create the infrastructure with server pool B.

Note that this task is part of the Provision
production environment stage and not of the

Deploy artifact to production stage.

Copy the DB script to the target

environment and execute.

This is the script to migrate from database

version A to version B.
(continued)

Serverpool A
(Server 1 + 2)
Version A

Internet

Hardware
Loadbalancer

Database
Version B

Serverpool B
(Server 3 + 4)
Version B

Internet

Hardware
Loadbalancer

Database
Version B

Serverpool B
(Server 3 + 4)
Version B

Internet

Hardware
Loadbalancer

Database
Version B

Serverpool B
(Server 3 + 4)
Version B

(a) (b)

Figure 4-70.  (a) Switch from server pool A to B (server pool A becomes
idle). (b) Version B available

In contradiction with the re-create deployment strategy, always

one of the application versions is active. There is no downtime, so all

incoming requests are processed by the application. The tasks involved are

summarized in Table 4-5. See Figure 4-71.

Chapter 4 Pipeline Design

174

Task Description

Stop the Linux services in server

pool B.

The apps in server pool B are stopped, although

this is already the case if the new infrastructure

is created.

Copy the JAR file with the new

version to the new environment

(server pool B).

Retrieve all artifacts from the artifact repository

and copy the application JAR to the target

environment. This concerns the deployment of

the new versions on servers in server pool B.

Start the Linux services in server

pool B.

The apps in server pool B are started as a Linux

service but do not process any requests yet.

Enable node B in the load

balancer nodes pool.

Enable servers 3 and 4 of server pool B in the

load balancer nodes pool.

Wait for short period. To allow bootstrapping and initializing the apps,

route traffic to the apps on server pool B. This

is the moment both applications A and B are

active.

Disable nodes A in the load

balancer nodes pool.

Requests to servers 1 and 2 in the server pool

A are blocked. From this moment, requests are

routed only to servers 3 and 4.

Dismantle the old infrastructure. Servers in Server pool A are no longer used and

can be decommissioned.

Table 4-5.  (continued)

Chapter 4 Pipeline Design

175

C
I/C

D
 p

ip
el

in
e

D
ep

lo
y

ar
tif

ac
t t

o
pr

od
uc

tio
n

Pr
ov

is
io

n
pr

od
uc

tio
n

en
vi

ro
nm

en
t

Pr
ov

is
io

n
pr

od
uc

tio
n

en
vi

ro
nm

en
t

Provision new
infrastructure

Copy DB script
to target

environment and
execute

environment and

Stop the Linux
services in

Serverpool ‘B’

Copy jar file
with new version

to new
environment

(Serverpool ‘B’)

C j fil
with new version

(Se e poo)

Start the Linux
services in

Serverpool ‘B’

Enable nodes
‘B’ in the

loadbalancer
nodes pool

Wait
for a short

period

Disable nodes
‘A’ in the

loadbalancer
nodes pool

Figure 4-71.  BPMN, blue/green deployment

For clarity reasons, the BPMN model in Figure 4-71 does not contain a

connection between the pipeline and the artifact repository, a connection

between the pipeline and the production environment, and the execution

of the remote commands in the production environment.

�Rolling Update and Canary Deployment

Rolling update deployments differ from blue/green deployments in such

a way that blue/green deployment requires two identical infrastructures,

while deployment to a new version in a rolling update deployment strategy

is done within the current infrastructure on which also the old version

runs. In a rolling update deployment strategy, a smaller percentage of

the application version is replaced first. If everything looks fine, this

percentage is gradually increased.

A canary deployment is similar, with the difference that with a canary

deployment, a small percentage of the users are routed to the new version

of the application, while the majority of users continue to use the old

Chapter 4 Pipeline Design

176

version. This allows the new version of the application to be tested in a live

environment with a small number of users before being deployed to all

users. Because both strategies are similar and primarily focused on testing

the stability and reliability of a change, they are used interchangeably.

It is best to demonstrate this strategy using an infrastructure with three

servers, each with version A installed. The first step in the deployment

is again replacing the database version from version A to version B. The

database script is executed, but because the old version of the application

still works with the new version of the database, everything should still be

working fine.

The next step is to disable server 1 in the load balancer pool. HTTP

traffic bleeds dry, and after some time the application on server 1 does

not receive requests anymore. All requests from the Internet are routed to

servers 2 and 3, which are still active. In the meantime, application version

B is deployed to server 1. See Figure 4-72.

Server 3
App instance 3
Version A

Server 1
App instance 1
Version A

Internet

Hardware
Loadbalancer

Database
Version A

Server 3erver 1 Server 2
App instance 2
Version A

Server 3
App instance 3
Version A

Server 1
App instance 1
Version A

Internet

Hardware
Loadbalancer

Database
Version A

Version B

Server 3erver 1 Server 2
App instance 2
Version A

Server 3
App instance 3
Version A

Server 1
App instance 1
Version A

Version B

Internet

Hardware
Loadbalancer

Database
Version B

Server 2
App instance 2
Version A

(a) (b) (c)

Figure 4-72.  (a) Version A installed. (b) Installing database
version B. (c) Version B installed and available on server 1

Chapter 4 Pipeline Design

177

After that, server 2 is disabled in the load balancer pool, and server 1

is enabled again. At that moment, server 2 is inactive, and servers 1 and 3

are active. Server 1 serves application version B, while server 3 still serves

application version A. Both application versions run at the same time,

but because the database is compatible with both application versions,

everything works fine. In the meantime, application version B is deployed

on server 2.

The next step is to disable server 3 and enable server 2 again. Servers 1

and 2 are active and run application version B, while version B is installed

on server 3. The last step is to enable server 3, and from that moment all

servers serve application version B. See Figure 4-73.

Figure 4-73.  (a) Installing version B on server 2. (b) Installing
version B on server 3. (c) Version A completely replaced with Version B

Chapter 4 Pipeline Design

178

Table 4-6 summarizes the tasks involved.

Table 4-6.  Rolling Update/Canary Deployment Tasks

Task Description

Copy DB script to target environment and

execute.

This is the script to migrate from

database version A to version B.

Loop; X = Server [1..3].

Disable node [X] in the load balancer nodes

pool.

Block all requests to server [X].

Wait for a short period. Needed to finish requests that are still

processed.

Stop the Linux service on server [X].

Copy the JAR file with new version to

server [X].

Retrieve all artifacts from the artifact

repository and copy the application

JAR to the target environment.

Start the Linux service on server [X]. Start the Spring Boot app.

Wait for a couple of seconds. Needed to bootstrap and initialize

the app.

Enable node [X] in the load balancer

nodes pool.

X = X + 1. Increment X to handle the next server.

This results in the BPMN model shown in Figure 4-74. Take note of

the repeating task with the intermediate conditional event (iteration).

The connection between the pipeline and the artifact repository, the

connection between the pipeline and the production environment, and

the execution of the remote commands in the production environment are

excluded from the model for clarity reasons.

Chapter 4 Pipeline Design

179

D
ep

lo
y

ar
tif

ac
t t

o
pr

od
uc

tio
n

Copy DB script
to target

environment and
execute

environment and

Start
subprocess

Start
subprocess

Disable node [X]
in the

loadbalancer
nodes pool

Disable node [X] Wait
for a short

period

Copy jar file
with new version

to server [X]
with new version

Start the service
on server [X]

Start the service Wait
for a couple of

seconds

Enable node [X]
in the

loadbalancer
nodes pool

End
subprocess

End
subprocess

Stop the Linux
service on
server [X]

X = [1..3]
iterations
X = [1..3]
iterations

Figure 4-74.  Rolling update/canary deployment

The previous example illustrates a situation with three servers. The

processing of application version B is gradually increased in steps by 33⅓

percent. However, in some setups, this may not be sufficient, and other—

more controlled—strategies are needed, for example, to increment the

processing of the new version in steps of 10 percent. In these situations, the

use of specific tooling provides huge benefits. Consider AWS CodeDeploy.

It has a feature to deploy using a canary deployment strategy, and instead

of programming all the tasks, canary deployment is configured more

descriptively by defining a deployment preference type, for example,

Canary10Percent10Minutes. This strategy takes care that every 10 minutes,

10 percent of the functionality is deployed, until, after one hour and

40 minutes, all functionality is deployed. If something goes wrong, the

deployment is automatically rolled back by AWS CodeDeploy. If possible,

use tooling that has deployment strategies built in to avoid programming

all the tasks yourself. This also fits well with the CI/CD requirement

“Pipeline stages and tasks are orchestrated by the appropriate tool.”

Chapter 4 Pipeline Design

180

Note I f an increment of 50 percent is used, the rolling update/
canary deployment looks similar to a blue/green deployment, but
with a difference. In a blue/green deployment strategy, two identical
infrastructures are used. At deployment time, the overall capacity of
the infrastructure in case of blue/green deployment is 200 percent,
but processing capacity during deployment remains 100 percent
(except during the short overlap period in which both application
versions are active). Half of the infrastructure is unutilized. In the
case of a rolling update/canary deployment with an increment of 50
percent, this results in the current infrastructure temporarily serving
two application versions (50-50), and the processing capacity during
deployment remains 100 percent. There is no need for a doubling of
the infrastructure capacity, so rolling updates are more cost-effective.

�A/B Test Strategy

A/B testing is not a real deployment strategy at all. It is a way to test new

features in production with a representative user group. In A/B testing,

both the old version and the new version are active. Some requests are

routed to the old version, and other requests are routed to the new version.

A/B testing can be used in combination with both blue/green and rolling

update/canary deployment strategies.

Note that by default the result of both deployment strategies is a

complete installation of a new version, so the deployment process must

be paused along the way if A/B testing has to be squeezed in, having both

versions running at the same time. This period can take days or even

weeks. After the A/B testing period is finished, the deployment is either

continued or rolled back.

Chapter 4 Pipeline Design

181

Note A /B testing can also be implemented using feature flags.

In the case of blue/green deployment, this means that both the

existing and the new infrastructure are active. Requests are partly routed

to the old infrastructure, running the blue version, and partly routed to

the new infrastructure, running the green version. Using A/B testing in

combination with blue/green deployment is more costly because both

infrastructures run side-by-side.

If A/B testing is used in combination with the rolling update/canary

deployment strategy, the costs are less because the same infrastructure

is used, running both the old and new versions. The combination of A/B

testing with one of the deployment strategies changes the workflow,

though. Let’s take the rolling update/canary deployment strategy and

combine it with A/B testing. The setup in the example consists of three

servers. The deployment stops after version B of the application has

been installed on the first server (server 1). The A/B testing period lasts

for a month, and after a month, version B is rolled out on the rest of the

servers (servers 2 and 3). This means that 33⅓ percent of the requests are

processed by application version B, while 66⅔ percent of the requests are

handled by application version A.

The assumption is that the pipeline includes some logic and contains

a variable with a value indicating the number of servers on which

application B is deployed. In the first run of the pipeline, the value of this

variable is 1, indicating that application B is installed only on server 1.

After a month of A/B testing, the pipeline runs again, with the value of this

variable set to 3, indicating that version B of the application is installed on

servers 1, 2, and 3. The deployment is idempotent, meaning that if version

B is already installed, it is not overwritten with the same version. The list of

tasks differs a bit compared to the previous paragraph. See Table 4-7.

Chapter 4 Pipeline Design

182

Table 4-7.  A/B Testing Tasks

Task Description

Copy DB script to target

environment and execute.

This is the script to migrate from database

version A to version B. This task is idempotent

and not executed if the current version is

equal to the version to be deployed.

First execution of the

pipeline:

Set variable = 1: A/B testing

Second execution of the

pipeline:

Set variable = 3: Complete

deployment of B

1: A/B testing (first run of the pipeline).

3: �Complete deployment of B (second run of

the pipeline).

Loop; X = Server [1..variable] Skip server [X] if installed version is equal to

version to be deployed.

Disable node [X] in the load

balancer nodes pool.

Block all requests to server [X].

Wait for a short period. Needed to finish requests that are still

processed.

Copy the JAR file with the new

version to server [X].

Start the service on server [X]. Start the Spring Boot app.

Wait for a couple of seconds. Needed to bootstrap and initialize the app.

Enable node [X] in the load balancer

nodes pool.

X = X + 1. Increment X to indicate the next server.

Chapter 4 Pipeline Design

183

This results in the BPMN model shown in Figure 4-75.

D
ep

lo
y

ar
tif

ac
t t

o
pr

od
uc

tio
n

Copy DB script
to target

environment and
execute

environment and

Start
subprocess

Start
subprocess

Disable node [X]
in the

loadbalancer
nodes pool

Disable node [X] Wait
for a short

period

Copy jar file
with new version

to server [X]
with new version

Start the service
on server [X]

Start the service Wait
for a couple of

seconds

Enable node [X]
in the

loadbalancer
nodes pool

End
subprocess

End
subprocess

Stop the Linux
service on
server [X]

First pipeline run: variable = 1
A/B testing period between first and second run
Second pipeline run: variable = 3

First pipeline run: variable = 1
A
S

X = [1..variable]
iterations

X = [1..variable]
iterations

Figure 4-75.  BPMN, A/B testing and deployment strategy

The BPMN model of the A/B test strategy is similar to the BPMN model

of the previous paragraph, with the exception that a variable is introduced

for A/B testing to control to which extent version B is deployed.

�Other Design Considerations
Here are some other design considerations:

•	 Separation of concerns: Sometimes there are good

reasons to decompose a single pipeline into multiple

pipelines, each with its specific responsibility. We’ve

seen a few situations in the previous paragraphs, in

which a pipeline was split into multiple pipelines.

But there are other considerations for distributing

responsibilities over multiple pipelines.

Chapter 4 Pipeline Design

184

•	 Role separation: Developers are focused on creating

software and are mainly busy with continuous

integration, while Ops engineers have a better

understanding of the environments and mainly deal

with continuous delivery. In addition, the quality

assurance team is dedicated to automating all tests,

and external teams may have specific knowledge of

certain parts of the infrastructure not managed but

used by the DevOps team.

This knowledge and role separation can also be

extrapolated to separating pipelines for specific

areas of continuous integration, continuous

delivery, quality assurance, and specialized

infrastructure managed by another team.

•	 Resource constraints: Teams may be working very

actively and pushing a lot of code, which results in

queuing of the pipelines because test resources are

limited. Decoupling the CD process from the CI process

could help. For example, the CD pipeline will be started

on a scheduled basis and not after every code push.

•	 Carbon dioxide footprint: Some parts of the pipeline

are perhaps very “compute resource” intensive. Source

code analysis and automated tests are performed the

whole day, sometimes for very small changes that

could easily have been combined with other features.

This puts a larger carbon dioxide footprint on CI/CD

because more energy is used for compute-intensive

tasks. One solution is to combine features, which

leads to features that are not too big but also not too

small. Another solution is to accumulate changes in

Chapter 4 Pipeline Design

185

the pipeline for which resource-intensive tasks are

executed less often; e.g., performing source code

analysis only once a day. This leads to a separation of

pipelines.

•	 Application architecture: One of the requirements in

the previous chapter states that if the system consists

of multiple microservices, each microservice should

have its pipelines to guarantee the isolation of the

microservices. This is similar to the statement in

reference [6] that justifies that an application can have

separate pipelines if parts of the application have

different life cycles.

•	 Operations pipelines: Not part of the application

pipeline, but one-off operations are typically realized

using operations pipelines.

�Delegation

An example of role separation concerns a quality assurance engineer who

defines test cases, performs manual tests of the application, and automates

the test cases as much as possible. Although integration of the automated

tests in the pipeline is essential, some quality assurance engineers

sometimes work in isolation, and the development of automated tests is

separated from application development and pipeline development. At

a certain moment, however, automated tests have to be integrated into

the pipeline. This can be done using different techniques. One option is

to add a Perform test stage to the main pipeline and implement the test

tasks within that stage. Another option is to isolate the Perform test stage,

implement the stage in a separate pipeline, and let the main pipeline

invoke this Perform test pipeline. This means that the main pipeline does

include a Perform test stage, but the execution of this stage is delegated

Chapter 4 Pipeline Design

186

to another pipeline, maintained by the QA engineers. This gives them

complete freedom of realizing automated tests, without much interference.

Especially if the QA engineers are not part of the DevOps team that

develops the application, this freedom is very welcome. This situation is

visualized in Figure 4-76.

CI CD

QA pipeline

Figure 4-76.  Delegation of tests

The separation of activities is visualized in Figure 4-77. The test

pipeline is triggered from the main pipeline using a webhook trigger

(triggers are explained in more detail in the next chapter).

Notify
Actors

Perform
testWebhook

trigger

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
ActorsDeploy

artifact to
test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
artifact to
production

Provision test
environment

Validate
infrastructure
compliance

Provision
production

environment
SCM trigger

Figure 4-77.  Delegated QA pipeline

Application Architecture

The architecture of the application has a large influence on the pipeline

design. The pipeline design of a monolithic application consists of one

artifact or multiple strongly coupled artifacts. This monolithic architecture

differs from a microservice architecture. The pipeline design of an

Chapter 4 Pipeline Design

187

“application” that consists of multiple microservices is a typical textbook

example of a separation of concerns principle. The following are the

characteristics of a microservice:

•	 Small in size

•	 Messaging enabled

•	 Bounded by contexts (organization around [business]

capabilities instead of around technology)

•	 Autonomously developed

•	 Independently deployable, decentralized, and built and

released with automated processes

•	 Can be implemented using different programming

languages, databases, hardware, and software

environment

•	 Decentralized data management with one datastore for

each service

•	 Provides characteristics that are beneficial to scalability

This autonomy justifies separate pipelines for each microservice. So, if

a team is responsible for three microservices, called A, B, and C, they need

to develop three separate pipelines. See Figure 4-78.

CI CDMicroservice A

CI CDMicroservice B

CI CDMicroservice C

Figure 4-78.  Pipeline setup microservice architecture

Chapter 4 Pipeline Design

188

Orchestration

Sometimes it is needed that certain components are deployed in a

particular order, or certain tasks need to be completed before a component

can be deployed. This order of activities can be managed using an

orchestrator pipeline. The orchestrator executes tasks and orchestrates

the invocation of other pipelines. Consider a microservice architecture. In

normal conditions, microservices run independently, so an orchestrator

should not be needed at all. However, there could be a change in all

microservices that justifies an order in deployment.11 In Figure 4-79,

the deployment order is managed by the orchestrator, first deploying

microservice B, then microservice C, and finally microservice A. The

orchestrator acts as an automated “runbook” to guarantee the order.

Orchestrator

CI CD

CI CD

CI CD

Microservice A

Microservice B

Microservice C

Figure 4-79.  Orchestrator

The lifespan of the orchestrator varies, depending on the context.

It may be a permanent pipeline in the pipeline landscape or a one-off

pipeline that takes care of managing activities that are executed only once.

11 Microservices are loosely coupled but not decoupled. If a new mandatory
element is added to an event between two microservices, both microservices are
impacted.

Chapter 4 Pipeline Design

189

Event-Based CI/CD

All design strategies and considerations so far are based on a predefined

workflow model. From a separation of concerns point of view, the

stages of the workflow are divided over different pipelines. But what if

we take this a level higher and consider an event-based CI/CD model?

Similar to an application architecture in which a monolithic application

is broken down into several microservices, it is also possible to do this

for pipelines. The pipeline stages are developed as microservices, using

an event-driven communication model. Each microservice consumes

events and produces events. The events are specified according to a

well-defined schema containing the metadata each microservice needs.

External systems like source code management systems and issue

trackers are hooked into the eventing framework and also produce and/

or consume events.

The event-based CI/CD model of the Generic CI/CD Pipeline is

transformed into Figure 4-80.

Chapter 4 Pipeline Design

190

Provision test
environment

Execute build

Perform test

ALM platform
Eventing framework

Validate
Infrastructure

compliance

Package artifact
Provision

production
environment

Notify actors Perform
unittests

Deploy artifact
to test

Deploy artifact
to production

Perform dual
control Publish artifact

Analyze code

event

eventevent

event

eventevent

event

eventevent

event event

eventevent

Figure 4-80.  Event-based CI/CD model

Each microservice represents a pipeline stage. It is not part of a

pipeline, but it is a self-contained piece of functionality that submits or

listens to events, submitted by other microservices or events from external

tools in the CI/CD ecosystem.

Note T he Validate entry criteria and Validate exit criteria stages
are gone, or at least not realized as separate microservices. These
stages do not make any sense in the event-based model. This does
not mean they are completely gone. Validating entry- and exit criteria
tasks are now embedded in each microservice to guard the integrity
of input and output data.

Chapter 4 Pipeline Design

191

Each microservice publishes events and subscribes to certain topics.

Each event consumed by the microservice is validated, based on the

metadata the event carries. Based on certain rules, the microservices stage

knows what to do and performs its actions.

•	 The Execute build microservice, for example,

subscribes to a git_push topic. A git_push event triggers

the Execute build microservice, which starts building

the artifact.

•	 As soon as the Execute build microservice is

successfully finished, it publishes an artifact_built_

success event.

•	 Microservices Perform unit tests, Analyze code, and

Package artifact are subscribed to the artifact_built_

success topic and are triggered by the artifact_built_

success event.

•	 Publishing an artifact is done only if all previous

stages were successfully finished. The Publish artifact

microservice subscribes to the unit_test_success,

analyze_code_success, and package_artifact_

success topics.

•	 If all three events on this topic are consumed by the

Publish artifact microservice, the artifact is published.

The Publish artifact microservice uses a Complex Event

Processing (CEP) pattern to determine that the package

can be published.

•	 The Notify actors microservice subscribes to any *_

success and *_failed topic and informs the actors in case

such an event occurs.

Chapter 4 Pipeline Design

192

This model has a few benefits over a pipeline model, listed here:

•	 Regular pipelines contain a mix of functionality and

workflow, often closely integrated. In the case of an

event-based CI/CD setup, there is no predefined

workflow,12 which means that if changes are made to a

team’s way of working, the event-based CI/CD setup is

easily adaptable.

•	 A pipeline model still combines several stages into

one pipeline. The development of these pipelines is

difficult to perform in isolation. Even if developers, Ops

engineers, and QA engineers are involved with pipeline

development, they still have to cooperate closely and

work on the same pipeline codebase. The event-based

model decomposes the pipelines into individual

microservices, operating fully independently. This

provides the same benefits as application-based

microservices, including autonomous development,

deployment, and running instances in isolation.

•	 Autonomous development also implies that different

roles can focus on the development of specific

microservices without much interference.

•	 Parallelism is implicit. Multiple microservices

subscribed to the same topic all start their execution as

soon as an event on this topic is published.

12 This is also a downside of an event-based model; if the workflow is not explicit
anymore, one can lose track of the workflow as a whole.

Chapter 4 Pipeline Design

193

Support for event-based CI/CD is limited to nonexistent in major

ALM/integration platforms, but the idea is being embraced by some

companies. Time will tell whether CI/CD migrates to the event-based

model or whether the pipeline model remains the dominant approach.

�Resource Constraints

Resource constraints come to light only when the pipeline is already

developed and deployed. These resource constraints usually manifest

themselves due to a lack of computing or storage resources. This results

in a bad performance of the pipeline, or pipelines are put into a queue,

waiting for an agent or compute node to become available. The simple

answer to this problem is to add more hardware, but this is only one part

of the story as we have seen. At some point, all options are stretched so

far that other solutions have to be considered. Some of these solutions

are ALM or integration platform related. Other options can be found

in redesigning parts of the pipeline in such a way that their resource

consumption is optimized. Here are some other considerations:

•	 Revise the build strategy: The build strategy was already

explained earlier. Take a look at your build strategy

again, and determine whether some things can be

changed. Something as simple as pipeline caching

improves performance a lot.

•	 Priority clause: The regular behavior of ALM/

integration platforms regarding priority is that pipeline

execution is first in, first out (FIFO). The problem is, if

you deploy a “production fix,” the pipeline execution

joins the queue and is executed when all other

pipelines in the queue are processed first. There is

no distinction between a regular pipeline run and a

production deployment. Wouldn’t it be great if we

could add a clause like in Listing 4-1 to our pipelines?

Chapter 4 Pipeline Design

194

Listing 4-1.  Priority Clause

priority:

 scope: global # Concerns the whole organization

 target: prod # Deals with production; increased prio

 management-class: incident # Incident; more important

When using a priority clause like this, the particular pipeline queue

is rearranged, and high-priority pipeline instances are moved to the front

of the queue. Certain properties indicate how the queue is rearranged.

Incidents in production have more priority than regular deployments to

production. Regular deployments to production have more priority than

regular deployments to test, etc. Unfortunately, few ALM/integration

platforms offer prioritization of pipelines, and if they do, it is only

rudimentary.

As an alternative to a priority clause, you can also define a pipeline

setup with different execution environments (e.g., runners, executors, or

agents). This way it becomes possible to define separate pipeline “lanes”

in which pipelines of different categories run but don’t interfere with

each other.

•	 Schedule pipelines: Sometimes there are good reasons

why a stage doesn’t have to be executed multiple times

per day. Analysis of source code can be done as part of

the regular pipeline, but if multiple minor changes are

applied to the codebase daily, the analysis of the source

code often doesn’t show much difference during that

day. It makes sense to schedule source code analysis

once a day in a quiet moment.

•	 Limit continuous deployments: Resource constraints

can also be present in test environments. Even if the

ALM/integration platform itself is capable of executing

all pipelines fast enough, the test environment may

Chapter 4 Pipeline Design

195

become a bottleneck. Separating the CI pipeline from

the CD pipeline can help so the CD pipeline runs

independently. The CI pipeline still runs after every

code push, while the CD pipeline runs less often, and

tests are executed less frequently.

•	 Apply a resource lock: In line with this is the use of a

resource lock. If a test environment is still processing

the tests of one pipeline instance, the next pipeline

should not already be deploying another version of the

application while the previous tests are not completed

yet. To prevent this problem, a resource lock can be

added to the pipeline. The resource lock prevents

other pipelines from continuing their tasks until a

given resource—e.g., a test environment—is ready and

released back to the pool. One example of this is the

Lockable Resources plugin in Jenkins. The downside of

using resource locks is that it causes queuing.

•	 Re-evaluate the execution of stages: If the pipeline is

started because a change has been pushed to a feature

branch, is it really necessary to perform the Analyze

code stage? Maybe the execution of this stage is not

needed for a feature branch. If the team uses a more

complex workflow, it may suffice that certain stages

are executed only for specific branches. So, if there is a

resource constraint, re-evaluate the pipeline stages for

certain branches and decide whether they are required.

•	 Parallelize stages and tasks: Let’s pick one case in which

we look a bit closer at the possibilities of parallelized

stages and/or tasks. If the codebase of the application

is large, the Analyze code stage can become a compute-

intensive stage that takes a long time to run. The

Chapter 4 Pipeline Design

196

Generic CI/CD Pipeline has all stages ordered in

sequence, which results in a pipeline in which Execute

build, Perform unit tests, and Analyze code are executed

after one another. Consider the case in which Analyze

code itself contains three tasks: a SonarQube scan, a

Fortify scan, and a Whispers scan. This results in the

pipeline design shown in Figure 4-81.

Pi
pe

lin
e

Start
pipeline

Start
pipeline

Execute build Perform
unittests

Analyze codeA l d

Start Analyze
code

Start Analyze S
code

End Analyze
code

End Analyze
code

Perform
SonarQube

scan

Perform Fortify
scan

Perform
Whispers scan

End
pipeline

End
pipeline

Figure 4-81.  BPMN, stages and tasks in sequential order

Because the Perform unit tests stage depends on the artifact produced

by the Execute build stage, both stages must be executed in sequence. The

Analyze code stage, however, does not necessarily depend on the artifact,

but on the source code in the repository.13 Reordering the stages would

result in a slight change in the design; see Figure 4-82.

13 SonarQube requires an artifact, but this can still be a task detached from the
creation of a regular build artifact.

Chapter 4 Pipeline Design

197

Pi
pe

lin
e

End
pipeline

End
pipeline

Start
pipeline

Start
pipeline

Execute build Perform
unittests

Analyze codeA l d

Start Analyze
code

Start Analyze S
code

End Analyze
code

End Analyze
code

Perform
SonarQube

scan

Perform Fortify
scan

Perform
Whispers scan

Figure 4-82.  BPMN, analyze code stage in parallel (with barrier)

This design already reduces the overall processing time of the pipeline.

Also, notice the use of the parallel gateway at the end of the Perform

unit tests and Analyze code stages. In workflow modeling, this parallel

gateway represents a “join.” In multithreading, this is called a barrier. The

barrier takes care that both Perform unit tests and Analyze code stages

are completed before the pipeline continues (in this design example, the

pipeline ends). This can be a requirement in case further testing should

be performed; continue only in case both previous stages were completed

successfully. Removing the barrier results in a pipeline design in which

the Analyze code stage still executes in parallel, but the Perform unit

tests stage (which isn’t included in this model) doesn’t wait for it to be

completed, completely disregarding the result of the Analyze code stage.

See Figure 4-83.

Chapter 4 Pipeline Design

198

Pi
pe

lin
e

Start
pipeline

Start
pipeline

Execute build Perform
unittests

Analyze codeA l d

Start Analyze
code

Start Analyze S
code

End Analyze
code

End Analyze
code

Perform
SonarQube

scan

Perform Fortify
scan

Perform
Whispers scan

End 1End 1

End 2End 2

Figure 4-83.  BPMN, analyze code stage in parallel (without barrier)

Taking a closer look at the three code analysis tasks reveals that also

these tasks are independent. Applying further parallelization results

in the design shown in Figure 4-84. The design makes use of a barrier

(parallel gateway) at the end of the Perform unit tests and Analyze

code stages, but also the individual tasks of the Analyze code stage end

with a barrier; the Analyze code stage ends only if all three tasks are

completed.

Chapter 4 Pipeline Design

199

Pi
pe

lin
e

Analyze codeA l d

Start Analyze
code

Start Analyze
code

End Analyze
code

End Analyze
code

Perform
SonarQube

scan

Perform Fortify
scan

Perform
Whispers scan

Start
pipeline

Start
pipeline

End
pipeline

End
pipeline

Perform
unittestsExecute build

Figure 4-84.  BPMN, analyzing code tasks in parallel (with barrier)

If the infrastructure can process everything in parallel, the overall

processing time would decrease even further. Chapter 6 shows that this

theory results in a better performance of the pipeline.

This setup works only if there are enough resources available to

process everything in parallel. If resources are not sufficient, the whole

Analyze code stage can be detached from the main pipeline and wrapped

in a pipeline that runs only once a day, represented in the BPMN diagram

shown in Figure 4-85.

Chapter 4 Pipeline Design

200

Pi
pe

lin
e Perform

SonarQube
scan

Perform Fortify
scan

Perform
Whispers scan

Start pipelineStart pipeline

Pi
pe

lin
e Execute build Perform

unittests

Start
pipeline

Start
pipeline

End
pipeline

End
pipeline

End
pipeline

End
pipeline

Figure 4-85.  BPMN, scheduled Analyze code pipeline

�Commercial Off the Shelf

CI/CD is always discussed in the context of developing software in-house.

Vendor packages—from a consumer point of view—are left out of scope,

which makes perfect sense. Vendor packages, or the so-called commercial

off-the-shelf (COTS) applications, are already developed and tested, so it is

just a matter of downloading, installing, and using them, right?

CI/CD from a vendor point of view also puts constraints on the

process. The client chooses the life cycle of installing the software. This

means that deployment to production has a different meaning for vendors

of software packages. There is a clean separation between delivering

production-ready software and delivering the software to clients.

Clients of COTS software have a hard time understanding how the

installation of vendor packages benefits from the CI/CD concepts. Often,

installation of these packages is a manual or semi-automated process,

prone to errors and with an increased risk of fraudulent handling. While

the activities of installing vendor packages differ from developing software

in-house, there are great benefits to gain in formalizing these activities

Chapter 4 Pipeline Design

201

using a pipeline. When using an (automated) pipeline, the steps are

performed in a controlled way, which makes it possible to have an audit

trail of the process. Let’s look at the steps involved in the case of the

installation of a vendor package. The context is a closed COTS solution

from a consumer point of view, with only binaries supplied.

The following are the stages included in the COTS pipeline:

•	 Validate entry criteria

•	 Download package

•	 Validate integrity

•	 Publish package (internal)

•	 Provision test environment

•	 Install and configure in test

•	 Test/validate the application

•	 Approve production installation

•	 Provision production environment

•	 Install and configure in production

Here they are in more detail:

•	 Validate entry criteria: The first step is to verify the

version that needs to be installed. Also, make sure to

choose the binary for the appropriate operating system.

Check and authenticate the vendors’ endpoint/URL

from where the package is downloaded, especially if it

is one of the first times the package is downloaded.

•	 Download package: Package solutions are often

retrieved from the vendor using a portal to which a user

logs in. The package (application) is downloaded and

stored in a temporary location. Some vendors provide

Chapter 4 Pipeline Design

202

an API that can be used to download the package. The

use of an API is preferred over the use of a portal. Make

sure the metadata is stored; credentials used to log

in on the vendor’s system and the date and time the

package was downloaded. Also, store the downloaded

package in a secure location within the boundaries of

your on-premises datacenter (or cloud account).

•	 Validate integrity and vulnerabilities: After the package

is downloaded and stored in an intermediate storage

location, it is checked for integrity. The integrity of

the downloaded package is validated by verifying

the hash or a digital signature. Validating a digital

signature guarantees that nobody has tampered with

the package. Hash validation is, from a security point

of view, a weak mechanism to validate integrity. In

addition, the package must be scanned for viruses and

malware.

•	 It cannot be assumed that vendor software does not

contain vulnerabilities. That is why this type of software

must also be scanned for vulnerabilities (if possible),

such as the use of third-party libraries and plugins.

•	 Publish package (internal): The artifact downloaded

from the vendor must be stored in an immutable binary

repository, including any additional metadata, such as

release notes from the vendor. Storing the package in

a repository guarantees that its integrity remains. The

intermediate location to store the downloaded package

and the immutable repository can be the same location

by the way.

Chapter 4 Pipeline Design

203

•	 Provision test environment: Depending on the

requirements, it makes sense to provision a

sandbox environment that does not allow outbound

communication and prevents malicious software

from scanning the network and/or setting up a

communication session with a server outside the

organization. This test environment is used as a

sandbox environment to install the downloaded

package. Additional security measures take care that

the software does not become rogue and perform

unintended actions.

•	 Install and configure in test: This step involves the

installation and configuration of the package in the test

environment. This can be a manual, a semi-automated,

or a completely automated task. The complexity of this

stage varies. If the current release is too far behind, a

complete migration needs to be implemented. If the

difference between the old and the new version is

small, the risk to update with the new version is low. A

security test in a sandbox environment may be part of

the tests involved.

•	 Test/validate the application: Although the application

is already fully tested by the vendor, some form of a

smoke test is still needed to determine whether the

configuration is done properly and to test whether the

integration with surrounding systems (still) works.

More extensive testing is needed if the package is

integrated with another system such as an IAM system

or a customer relationship management (CRM)

system. Also, performance testing may be included in

this stage.

Chapter 4 Pipeline Design

204

•	 Approve production installation: If the application

behaves as expected, it is approved. Also, this can and

should be implemented using a dual control step.

•	 Provision production environment: The production

environment—if not already available—is created.

•	 Install and configure in production: This step involves

the installation and configuration of the package in the

production environment. This can be a manual, a semi-

automated, or a completely automated task.

This leads to a pipeline similar to the one in Figure 4-86 and

Figure 4-87.

Manual
trigger

vendor Download
package

Publish
artifact

(internal)

Validate entry
criteria

Notify
Actors

Install and
configure in

test

Test /
validate the
application

Approve
production
installation

Provision test
environment

Validate
infrastructure

compliance

Install and
configure in
production

Validate
integrity and

vulnerabilities

Figure 4-86.  Commercial off-the-shelf pipeline

C
om

m
er

ci
al

 o
f t

he
 s

he
lf

pi
pe

lin
e

StartStart

Validate entry
criteria

Install and
configure in test

Test / validate
the application

Tests passsed?Tests passsed?

Provision test
environment

Install and
configure in
production

EndEnd

ErrorError

Notify actors

Download
package

Provision test
environment

Publish package
(internal)

Publish packageValidate integrityValidate integrity

Approve
production
installation

Integrity OKtegrity OKInt

Integrity not OKIntegrity not OK

Entry criteria
correct

Tests passsedTests passsedT ApprovedApprovedA

Not approvedNot approvedTests failedTests failed

Entry criteria
incorrect

Entry criteria
incorrect

Figure 4-87.  BPMN, commercial off-the-shelf pipeline

Chapter 4 Pipeline Design

205

Note A utomating these stages as much as possible provides great
benefits. It speeds up the process, is more reliable, and is more
secure. But even if the complete process is done manually, a pipeline
with these stages is still useful. The stages in this manual process
are discrete and can be completed with a sign-off task. All pipeline
instances (runs) and meta-information (such as sign-offs, credentials,
and timestamps) are stored in the ALM/integration platform, which
makes the process fully transparent and auditable.

�Summary
You learned about the following topics in this chapter:

•	 Modeling a pipeline flow in BPMN 2.0

•	 Drafting a context diagram and using it as a means to

communicate with the team

•	 Using the Generic CI/CD Pipeline as starting point for

your pipeline design

•	 The effect of certain strategies (branching, build, test,

release, and deployment strategy) on the pipeline

design, how the flow changes if certain choices are

made, and why, when, and how to split a pipeline in

other independent pipelines

•	 How to apply these strategies to your situation

•	 How other factors, such as separation of concerns and

resource constraints, affect the pipeline design

•	 How commercial off-the-shelf application benefit from

a pipeline implementation, because it formalizes the

stages and tasks

Chapter 4 Pipeline Design

207

CHAPTER 5

Pipeline Development
This chapter covers the following:

•	 The different types of pipeline specifications

•	 The features used in the different ALM/integration

platforms, along with some code snippets to show the

pipeline code benefits if these features are offered as

code constructs

•	 The security issues when dealing with external libraries

as well as solutions on how to mitigate them

•	 How the target environment properties can be stored

and used in the pipeline

•	 Secrets management and how to mitigate security risks

concerning secrets used in pipelines

•	 Feature management and the different ways to apply it

•	 The levels in the organization in which CI/CD-related

development occurs and the different ways DevOps

teams develop their pipelines

•	 Practical tips for sustainable pipeline development

A chapter about developing pipelines that still tries to preserve the

abstract character of this book almost seems an impossible assignment.

The platform landscape is wide with a plethora of tools to choose from,

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_5

https://doi.org/10.1007/978-1-4842-9228-0_5

208

each with its characteristics and technical solutions. Still, various generic

topics can be emphasized, even if the implementation is different. This

chapter discusses some of these topics and examples that deal with

pipeline development.

�Pipeline Specification
A pipeline specification covers the translation of the logical pipeline design

into a technical definition. This results in one or more files containing

pipeline code executed on an ALM/integration platform.

�Multibranch, Multistage Pipeline
The features added to the various ALM/integration platforms have

increased over time, and these platforms have become more mature. In

the past, pipelines were simple, but nowadays it is possible to develop

pipelines with a more complex flow. Out-of-the-box functionality,

plugins, and marketplace solutions enable feature-rich pipelines yet avoid

plumbing code. Activities are grouped into discrete stages, jobs, and tasks,

making it possible to parallelize work, reduce execution time, and allow

faster feedback to the developer.

The days that a pipeline could be used in combination with code from

only one SCM branch are over. Pipelines can be triggered if a change in

any branch of the repository has been made. The pipeline decides what to

do, depending on the branch, and certain conditions. These multibranch,

multistage pipelines are very powerful and make it possible to develop

complex automation processes. This chapter shows some features and

possibilities of modern pipeline development and specification.

Pipeline specification cannot be generalized, because different tools

use different language constructions and have different features, but in

general, there are three ways to create a pipeline.

Chapter 5 Pipeline Development

209

•	 Using a user interface

•	 Using a scripted pipeline

•	 Using a declarative pipeline

Let’s go through these options.

�User Interface–Based Pipelines
Most ALM/integration platforms such as Jenkins, Bamboo, and Azure

DevOps include user interfaces to create pipelines. This provides a

graphical view of a pipeline but also offers a fast and more intuitive way

to create pipelines. Using a user interface also has downsides. Some user

interfaces are cluttered, and certain options are well-hidden in the caverns

of the user interface. In addition, user interface–based pipelines usually do

not support version control of the pipelines. Of course, in some cases, it is

possible to export a pipeline as a file and manage it in an SCM, but this is

a rather cumbersome workflow. In general, use a graphical user interface

only in the case of a simple pipeline that can be re-created easily, or use

it to learn how a pipeline is constructed. In all other cases, use scripted or

declarative pipelines.

Figure 5-1 illustrates a Jenkins freestyle project. It shows the user

interface used to create a pipeline. It allows adding multiple build steps to

a pipeline. However, it is also limited in its capabilities.

Chapter 5 Pipeline Development

210

Figure 5-1.  Jenkins freestyle project

�Scripted Pipelines
A scripted pipeline is either a file containing a scripting language or a

domain-specific language (DSL) language, but it can also consist of a

complete project, supported by a general-purpose programming language.

An example of a scripted pipeline is the Groovy pipeline used in Jenkins.

Atlassian’s Bamboo has the option to develop a pipeline based on a

complete Java project (Bamboo Java Specs).

Besides the benefit that scripted pipelines are just files, which can be

put under version control, scripted pipelines are also extremely versatile.

You have full control of the flow and the implementation of the stages

Chapter 5 Pipeline Development

211

and tasks. However, this can also become a pitfall. If not taken care of, the

pipeline code becomes unreadable. Listing 5-1 shows a simple structure of

a scripted Jenkins pipeline.

Listing 5-1.  Jenkins Script

node {

 stage(' Stage 1') {

 //

 }

 stage(' Stage 2') {

 //

 }

 stage(' Stage 3') {

 //

 }

}

�Declarative Pipelines
Declarative pipelines are similar to scripted pipelines, but they have a

more restricted syntax that preserves the pipeline structure and prevents

the code from becoming bloated and unreadable. Declarative pipelines

intend to be better structured, which makes reading and writing the

pipeline code easier. This does not mean you cannot do the things you can

do with scripted pipelines. It is common to add scripting to a declarative

pipeline, but because of the strict syntax, the scripting has a distinctive

place in the pipeline structure. The trend seems to be shifting toward

the use of declarative pipelines, and especially YAML-based pipelines

dominate the pipeline landscape.

Chapter 5 Pipeline Development

212

Consider a team using a feature branch workflow. Their integration
platform of choice is Jenkins. The Jenkins pipeline is stored in a
source code management repository as a file called the Jenkinsfile.

The basic structure of the Generic CI/CD Pipeline in declarative Jenkins

code looks like Listing 5-2.

Listing 5-2.  The Generic CI/CD Pipeline in Jenkins

Declarative Code

pipeline {

 agent any

 stages {

 stage('Validate entry criteria') {

 steps {

 echo 'Stage: Validate entry criteria'

 }

 }

 stage('Execute build') {

 steps {

 echo 'Stage: Execute build'

 }

 }

 stage('Perform unit tests') {

 steps {

 echo 'Stage: Perform unit tests'

 }

 }

 stage('Analyze code') {

 when {

 branch "main"

Chapter 5 Pipeline Development

213

 }

 steps {

 echo 'Stage: Analyze code'

 }

 }

 stage('Package artifact') {

 steps {

 echo 'Stage: Package artifact'

 }

 }

 stage('Publish artifact') {

 steps {

 echo 'Stage: Publish artifact'

 }

 }

 stage('Provision test environment') {

 when {

 branch "main"

 }

 steps {

 echo 'Stage: Provision test environment'

 }

 }

 stage('Deploy artifact to test') {

 when {

 branch "main"

 }

 steps {

 echo 'Stage: Deploy artifact to test'

 }

 }

Chapter 5 Pipeline Development

214

 stage('Perform test') {

 when {

 branch "main"

 }

 steps {

 echo 'Stage: Perform test'

 }

 }

 stage('Validate infrastructure compliance') {

 when {

 branch "main"

 }

 steps {

 �echo 'Stage: Validate infrastructure compliance'

 }

 }

 stage('Validate exit criteria') {

 when {

 branch "main"

 }

 steps {

 echo 'Stage: Validate exit criteria'

 }

 }

 stage('Perform dual control') {

 when {

 branch "main"

 }

 steps {

 echo 'Stage: Perform dual control'

 }

Chapter 5 Pipeline Development

215

 }

 stage('Provision production infrastructure') {

 when {

 branch "main"

 }

 steps {

 echo 'Stage: Provision production infrastructure'

 }

 }

 stage('Deploy artifact to production') {

 when {

 branch "main"

 }

 steps {

 echo 'Stage: Deploy artifact to production'

 }

 }

 }

 // Stage: Notify actors

 post {

 success {

 echo 'Stage: Notify actors - success'

 }

 failure {

 echo 'Stage: Notify actors - failure'

 }

 }

}

Chapter 5 Pipeline Development

216

This Jenkinsfile contains only the skeleton of the feature branch

workflow. Notice that all stages are executed if the branch is main. In the

case of a feature branch, only a subset of the stages is executed.

Assuming that the Jenkinsfile is included in the same repository as the

application, the workflow of the team has to be adopted when changes are

applied to the Jenkinsfile. Changes to the Jenkinsfile are done in a feature

branch and, when finished, merged with the mainline. This makes testing

of the Jenkinsfile a bit problematic because only a subset of the flow can be

tested, namely, the stages associated with the feature branch. Testing the

stages associated with the main branch is not straightforward, and also

destructive actions in the pipeline must be mitigated. To solve this, we

need some way to properly test pipelines. The next chapter shines some

light on testing pipelines.

�Constructs
One of the issues with pipelines is that complex actions sometimes

require a lot of plumbing code. Declarative YAML-based pipelines are

also not very versatile, because YAML is not a real programming language.

Complex setups such as canary deployment or building various versions

for different target environments blow up the pipeline declaration, are

hard to read, and are difficult to maintain unless there are features in the

platform supporting this complexity.

A construct is a generic name for pipeline features that reduce

complexity. Constructs are out-of-the-box features solving problems

not easy to solve otherwise. This paragraph is devoted to some of the

(common) constructs found on various platforms. The examples are not

“taken” from only one platform, but from various ones. Not all platforms

support all constructs. The examples are to show only what is possible.

Chapter 5 Pipeline Development

217

�Triggers

There are several ways to start a pipeline, depending on the context.

Starting a pipeline is based on triggers, and most ALM/integration

platforms support various kinds of triggers. These are the most

common ones:

•	 SCM trigger: Most common is the SCM trigger that

starts a pipeline after code is committed and pushed

to a source code management repository. The pipeline

builds the artifact based on the branch in which the

code was committed. In addition to code pushes, other

SCM events may lead to triggering a pipeline. One

example is an event submitted after a pull request has

been approved. SCM triggers can be implemented

using webhooks or as an integrated feature of an ALM/

integration platform.

Tip I f you plan to incorporate the pipeline file into the same source
code repository as the application, remember that if you use an
SCM trigger, the pipeline by default also runs after you changed the
pipeline code itself, which potentially could lead to the deployment of
the application to production (or at least to a test environment). It is
better to move the pipeline code to a separate directory and exclude
this directory from the trigger; this option is provided by several
platforms. An alternative is to exclude the pipeline file(s) based on the
filename or extension if the platform supports this feature.

•	 Webhook: A webhook refers to an API callback that

starts a pipeline. The API is part of the ALM/integration

platform that can be used by external systems to trigger

Chapter 5 Pipeline Development

218

a pipeline. It receives an HTTP request, containing

meta-information. A big advantage of webhooks is that

the calling system does not have to be an integrated

subsystem of an ALM platform. It can be a stand-

alone tool triggering the pipeline. A nice example is

the support of webhooks in GitHub. The webhook

can be enabled not only when code is pushed but also

for other types of events. By enabling the webhook

in GitHub and configuring the pipeline endpoint,

the endpoint is invoked every time a certain event in

GitHub is published. The pipeline endpoint can be an

external integration server like Jenkins. Webhooks are

usually not defined in the pipeline declaration.

Note  Beware of a potential security vulnerability when using
webhooks. In the case of an SCM trigger or a manual trigger, the
user is known, so a dual control in the pipeline can exclude this user
from approving their own change. In the case of a webhook, the
credentials with which a pipeline is triggered are often different (e.g.,
a nonpersonal account). So, if someone can invoke the webhook,
they may also be able to approve the pipeline in the dual control
(the credentials of the webhook and the credentials of the person
performing the dual control differ).

•	 Schedule: Schedules are a way to define at which

moments the pipeline must start. This can be once a

day, once a month, or every minute. The most versatile

way to specify a schedule is using a cron expression.

Listing 5-3 shows an example.

Chapter 5 Pipeline Development

219

Listing 5-3.  CircleCI, Scheduled Trigger; Every Working Day

at 10 p.m.

workflows:

 at_ten:

 triggers:

 - schedule:

 cron: "0 22 * * 1-5"

In Listing 5-3, a trigger is configured, which starts the pipeline every

working day at 10 p.m.

•	 Pipeline completed: There are several ways a pipeline

can be started by another pipeline. A pipeline can be

triggered using a webhook, in which the invocation of

this webhook is explicitly added to the calling pipeline.

This can be done by adding a curl command (on

Linux) to the pipeline definition, but this is not a very

clever solution. If the endpoint of the other pipeline

changes, the calling pipeline must be changed also. A

better way is to use a pipeline complete construct in

the pipeline that needs to be triggered. In this pipeline,

it is defined to which other pipeline(s) it “listens.” The

pipeline completed construct is a typical example of

an Observer pattern implementation. In the example

shown in Listing 5-4, a pipeline is started as soon

as another pipeline with the name pipeline-that-

triggers-me is completed.

Chapter 5 Pipeline Development

220

Listing 5-4.  Azure DevOps, Pipeline Triggered by Another Pipeline

resources:

 pipelines:

 - pipeline: logical-name-of-this-pipeline

 source: pipeline-that-triggers-me

 trigger: true

This pipeline, with the name logical-name-of-this-

pipeline, is started after the pipeline-that-triggers-

me is completed.

•	 Manual: A pipeline can always be started manually,

of course. Usually, no specific declaration needs to be

added to the pipeline to make this possible.

Execution Environment

Modern platforms provide the option to specify in which environment

a pipeline is supposed to run. The various platforms use concepts like

“slave” nodes, runners, executors, or agents, whether grouped into a

pool of servers or containers. In essence, the execution environment is

the environment in which a pipeline runs. This can be in the form of a

Linux or Windows server, but it is also possible to execute a pipeline in a

Docker container running on a (Kubernetes) cluster. These environments

are preconfigured and registered to the ALM/integration platform. These

environments also consist of preconfigured tools. If you want to build an

artifact using Java or Python, the environment must have pre-installed Java

JDK and Python.

In addition to running the whole pipeline in one specific environment,

it is also possible to decompose the pipeline and have each part of the

pipeline run independently. The pipeline is decomposed, often as so-

called jobs. Each job is executed in a specific environment. Jobs of one

Chapter 5 Pipeline Development

221

pipeline may run in the same environment, but jobs may also run in

separate environments. This also means that in these situations there is no

shared memory and passing information between jobs is not always trivial.

Listing 5-5 and Listing 5-6 show some examples.

Listing 5-5.  CircleCI, Job Executed in a Docker Container

jobs:

 build:

 docker:

 - image: cimg/openjdk:17.0.3

Listing 5-6.  Azure DevOps, Job Executed on a Self-Hosted Server

jobs:

- job: build

 pool: myServerPool

Listing 5-5 defines a Docker container with a base image containing

the OpenJDK. This becomes the runtime environment of the pipeline.

Listing 5-6 defines a self-hosted server pool—myServerPool—consisting

of servers on which the pipeline runs. The pool may consist of one or more

servers with a certain operating system and pre-installed tools.

These constructs are simple yet powerful. With only a few lines of

code, it is possible to declare where a pipeline or even individual jobs are

executed, and the platform takes care of it.

Connections

Pipelines often connect to external systems with a specific endpoint, a

certain protocol, and security credentials. Using curl in the pipeline to

connect to an external Nexus IQ server may work, but this does bloat the

pipeline code. A more elegant way is to make use of connectors or service

Chapter 5 Pipeline Development

222

connections. Various platforms name them differently, but in essence,

these connectors are endpoint specifications defined in a special—and

secured—connection store. This endpoint is referred to in the pipeline

by its logical name, which results in a cleaner and more secure pipeline

declaration, and prevents you from having to store a username and

password in an SCM. In addition, some platforms support options to set

up dual control for creating service connections.

Listing 5-7.  Azure DevOps, Nexus IQ Service Connection

- task: NexusIqPipelineTask@1

 displayName: 'Nexus IQ policy evaluation'

 inputs:

 nexusIqService: 'ServiceConnectionNexusIQ'

 applicationId: myApp

 stage: 'AnalyzeCode'

Listing 5-7 refers to the ServiceConnectionNexusIQ service connection

as the logical endpoint of NexusIQ. This endpoint is specified outside the

pipeline declaration, as shown in Figure 5-2.

Chapter 5 Pipeline Development

223

Figure 5-2.  Azure DevOps, service connection of NexusIQ

Variables

Variables in pipelines are similar to variables in a programming language.

Variables can be defined in a pipeline, but certain platforms also provide

the option to define variables outside the pipeline specification, sometimes

grouped with a logical name. Special care needs to be taken concerning

variable scope. As explained earlier, parts of the pipeline—stages or jobs—

can be executed on different runtime environments, which makes sharing

variables more troublesome, or in some cases even impossible.

Chapter 5 Pipeline Development

224

A special case of variables concerns conditional variables. Conditional

variables are handy to assign a value to a variable, given a certain

condition. For example, an HTTP endpoint of a test environment differs

from the HTTP endpoint of a production environment. The endpoint

variable in Listing 5-11 depends on the target variable.

Listing 5-11.  Azure DevOps, Conditional Variable

variables:

 - name: endpoint

 ${{ if eq(parameters['target'], 'test') }}:

 value: 'https://mycompany.test.com'

 ${{ if eq(parameters['target'], 'production') }}:

 value: 'https://mycompany.com'

Conditions

Conditions in pipelines are indispensable. Conditions in scripted pipelines

are implemented using an if/then/else construction. Conditions in

declarative pipelines often have a different structure and use keywords

like if, when, or condition, depending on the platform. Some examples of

conditions on different platforms are shown in Listing 5-8, Listing 5-9, and

Listing 5-10.

Listing 5-8.  GitLab, if Example

job:

 script: echo " Run Analyze code in case of the main branch"

 rules:

 - if: $CI_COMMIT_BRANCH == "main"

Chapter 5 Pipeline Development

225

Listing 5-9.  Jenkins, when Example

stage('Analyze code') {

 when {

 branch "main"

 }

 steps {

 echo 'Run Analyze code in case of the main branch'

 }

}

Listing 5-10.  Azure DevOps, condition Example

- stage: Analyze_code_stage

 displayName: 'Analyze code'

 condition: eq(variables['Build.SourceBranchName'], 'main')

 jobs:

 - job: Analyze_code_job

 steps:

 - script: echo 'Run Analyze code in case of the

main branch'

Caching

Caching decreases the time to build an artifact. Different platforms have

implemented caching in different ways. In one of the researched platforms

(CircleCI), it is implemented as an integrated construct in the pipeline

declaration and is accessed by using the save_cache and restore_cache

keywords, while in other platforms, caching is added as a marketplace

solution that performs the save and restore actions.

When using the caching feature, it becomes possible to store external

libraries or even compiled code to a “cache store” and use this cache in

subsequent pipeline runs. It is best to explain this using Figure 5-3.

Chapter 5 Pipeline Development

226

CI/CD pla�orm

CI/CD
pipeline

Remote
cache

Internal
repository

First run

Second run
CI/CD

pipeline

Local
filesystem

Local
filesystem

Store local files to cache

Download
libraries

Download
libraries

Download
libraries

Download cache

Figure 5-3.  Pipeline caching

In the first pipeline run, libraries are downloaded from a repository as

part of an artifact build task. These files are locally stored, so the pipeline

can use them. If the pipeline is finished, the files are stored as a persistent

cache (remote cache) for later use. In subsequent pipeline runs, the

libraries are not retrieved anymore from the repository, but instead, the

persistent cache is downloaded. Libraries are not downloaded from the

Internet or a repository anymore in the artifact build task, but the files of

the cache are used instead. This is much faster.

A common pattern in most platforms is to store the cache using a key.

This can be a fixed key, like myCache, but often, caches are immutable,

meaning they cannot be updated anymore after creation. A smart solution

to tackle this problem is to hash specific files that declare the libraries

and use the hash as part of the key. If one of these files changes because a

different library version is defined, the key changes. This results in building

up a new cache.

Chapter 5 Pipeline Development

227

Take a Maven project. The project is configured using a pom.xml file

(or multiple pom.xml files). Part of the key with which the cache is stored

contains the hash of this pom.xml; or in the case of multiple pom.xml files,

all files are hashed, and a new hash is created from the concatenated

hashes. Listing 5-12 contains an example of the definition of an

immutable cache.

Listing 5-12.  Azure DevOps: Immutable Cache Definition

- task: Cache@2

 inputs:

 key: 'maven | "$(Agent.OS)" | **/pom.xml'

 restoreKeys: |

 maven | "$(Agent.OS)"

 maven

 path: $(MAVEN_CACHE_FOLDER) # is ./.m2/repository

 displayName: cache_maven_local_repo

The trick is to assemble a cache key, using the Maven prefix, the

operating system, and all pom.xml files. The **/.pom pattern is used to

calculate the hash of all the pom.xml files. As soon as one of the pom.xml

files changes, the hash changes, and a new cache is saved and restored.

Listing 5-13.  Azure DevOps, Log Determining the Cache Key

Resolving key:

- maven [string]

- "Linux" [string]

- **/pom.xml [file pattern; matches: 3]

- s/pom.xml -->

7CC04B8124B461613E167AA0D15E62306BDF553750988B6BF21355

E641B163DE

Chapter 5 Pipeline Development

228

- s/app-cdk/pom.xml --> 73B0183B69BB3454081CBB6F2CE08176AAD82

D6CCB586ECE6368D617B632FD56

- s/s3-lambda/pom.xml --> 59D32A57C7138664E36F1C56CF319510B2

EC10A438ACB33059AA8DC95E3C0490

Resolved to: maven|"Linux"|L+f1r46o5J7Rhd43eGymkldHfa

5BAH5UHbZevoWBSco=

Note I t is important to realize that the optimization step to
retrieve something from a cache instead of the source should not
compromise security. Platforms should take care that caches are
scoped to specific pipelines and that the integrity of a cache is
guaranteed. For the latter, adding a digital signature to a cache and
verifying it when used would be the best solution. This does not seem
to be a (transparent) feature in the major platforms, but it is possible
to implement it in the pipeline yourself.

Matrix

A matrix is used to declare an action using all permutations of variables

declared in the matrix. The matrix implements a fan-out pattern and can

be used for the implementation of a cross-platform build strategy. Using

a matrix, it becomes possible to define a build for multiple language

versions and multiple target environments. Listing 5-14 shows an example

of a matrix declaration.

Listing 5-14.  GitHub Actions, Matrix Strategy Used in a Build Job

jobs:

 build:

 runs-on: ${{ matrix.os }}

Chapter 5 Pipeline Development

229

 strategy:

 matrix:

 python-version: [3.7, 3.8]

 os: [ubuntu-latest, macOS-latest, windows-latest]

In Listing 5-14, six jobs are instantiated in which an artifact is built

for two Python versions and three operating systems. The syntax of this

declaration is elegant and simple and prevents the same code from being

repeated six times in one pipeline declaration.

A matrix can be used for more than only building artifacts. It can also

be used to test multiple versions of an artifact in parallel.

Deployment Strategy

A deployment strategy can become complex. There are various solutions

to solve this problem. A common—and recommended—solution is to use

a deployment tool with built-in deployment strategies. Examples are AWS

CodeDeploy, which supports canary deployments, and Cloud Foundry CLI

with the blue-green deployment plugin. Using specific deployment tooling

has a lot of benefits, but sometimes it is not possible to use a tool. There

can be a technical or financial constraint that “forces” teams to implement

the deployment strategy in the pipeline itself.

Fortunately, some platforms have features that help implement

deployment strategies in the pipeline. One of these features is the canary

deployment construct shown in Listing 5-15.

Listing 5-15.  Azure DevOps, Canary Deployment Strategy

jobs:

- deployment:

 environment: production

 pool:

 name: myAgentPool

Chapter 5 Pipeline Development

230

 strategy:

 canary:

 increments: [10]

 preDeploy:

 steps:

 - script: "Performing initialization"

 deploy:

 steps:

 - script: echo "Deploying…"

 routeTraffic:

 steps:

 - script: echo "Route traffic to updated version"

 on:

 failure:

 steps:

 - script: echo "Deployment failed"

 success:

 steps:

 - script: echo "Deployment succeeded"

The deployment deploys in increments of 10 percent until it reaches

100 percent. During each increment, the traffic is routed to the new

version until all traffic is directed to the new version and the deployment

is completed. If the deployment fails, the deployment must be rolled back.

This construct helps in structuring the pipeline declaration. Unfortunately,

the actual implementation must still be coded.

Auto-cancel

If a pipeline contains a task to sign off a manual test result and this pipeline

is executed multiple times, multiple orphaned pipeline instances pile up

and wait for a manual sign-off. The previous chapter proposes various

solutions. One of them is to use the “auto-cancel” option. With an auto-

Chapter 5 Pipeline Development

231

cancel construct, all already running instances of the same pipeline are

canceled if a new pipeline instance is started. The new instance always

includes the latest code changes. This means there are no dangling

pipelines anymore.

Listing 5-16.  Semaphore, Auto-cancel

auto_cancel:

 running:

 when: "true"

There are similar constructs that almost do the same, but not quite.

Azure DevOps has a “batch” feature. Enabling the “batch” option does not

start any new instance of the pipeline if there is still a running instance.

On Success/Failure

Just as in regular programming languages, there is a need to add a

try/catch/finally construct in a pipeline. They come in various

flavors. Sometimes—in scripted pipelines—they are just implemented

as try/catch/finally blocks. In declarative pipelines, you see

implementations like a post section, which includes blocks that can be

executed conditionally.

Listing 5-17.  Jenkins, Post Success/Failure

post {

 success {

 echo 'Stage: Notify actors - success'

 }

 failure {

 echo 'Stage: Notify actors - failure'

 }

}

Chapter 5 Pipeline Development

232

Listing 5-18.  Azure DevOps, On Success/Failure

on:

 success:

 - script: "Notify actors - success"

 failure:

 - script: "Notify actors - failure"

It is important that these constructs can be used on different levels

within the pipeline. Using them within a stage deals with stage-scoped

issues. Using them on a pipeline level means that the scope applies to the

whole pipeline.

Fail Fast

One of the key elements in CI/CD is to fail fast and return immediate

feedback. This concept is implemented differently on each platform, and

there is no generic construct that has been adopted by multiple platforms.

A fail fast means that if a stage, job, or task fails, the whole pipeline stops

immediately. The example in Listing 5-19 stops all jobs in the pipeline in

the case of an error.

Listing 5-19.  Semaphore, Fail Fast

fail_fast:

 stop:

 when: "true"

Priority

It was already mentioned earlier, but prioritizing pipelines is a must-have

feature. In addition, it should be possible to define this prioritization on

different levels. A pipeline run solving a production incident should have

priority over previous nonurgent pipeline runs. In addition, priorities

Chapter 5 Pipeline Development

233

should be given on different levels within the organization. Normal

pipeline runs of a security team should have higher priority than normal

pipeline runs of regular DevOps teams. Configuring a priority policy would

be a good solution. As already explained, prioritization constructs could be

improved on all platforms, so no example is given here.

Test Shards

Some platforms—like CircleCI—have the option to “split” one task

and divide the work. The execution of one task is instantiated several

times, and work is distributed over multiple compute nodes. This is very

efficient when performing tests. Assume that a regression test contains

the execution of hundred individual tests. A normal task run executes

these hundred tests sequentially. But the workload can also be spread over

multiple instances of that task, such as in five instances of the same task,

executing five times 20 tests in parallel, for example. Note that this puts

a requirement on the test set. It must be possible to group tests and run

them independently. This group of tests is called a test shard. The process

to create the shards is called test splitting.

Creating test shards is possible in several ways. A simple algorithm just

takes the hundred test cases and distributes them equally over five shards.

The problem, however, is that you could end up with a shard containing

only tests with a long test duration. A better approach is to divide the tests

based on other characteristics. An optimized approach is to spread the test

set over the five shards based on timing data. This is historic data based

on previous test runs. After several runs, the ALM/integration platform

has enough information to equally divide the tests efficiently over the task

instances based on their duration.

Figure 5-4 contains three instances of the same test task. The total work

of Test_task_1.2.1 is spread over the three task instances, each executing

10 tests.

Chapter 5 Pipeline Development

234

Stage_1.1

Stage_1.2

Task_1.2.2

Test_
task_1.2.1

Task_1.1.1

Pipeline

Exectute tests
[1..10]

Exectute tests
[11..20]

Exectute tests
[21..30]

Figure 5-4.  Test splitting

Templates and Libraries

It is possible to put all code in one big pipeline file and duplicate it in other

pipelines if needed, but this does not improve readability or maintenance

very much. By using isolated pipeline code, reuse is encouraged. Using

templates or libraries is a way to move pipeline code to another file so

it can be reused by other pipelines. Template in this context is a generic

name. Some ALM/integration platforms offer the possibility to use some

form of a template, but depending on the platform, the name and concept

may be different. In Jenkins, for example, it is possible to use a shared

library or use the load command to include a Groovy script in a pipeline.

In Azure DevOps, templates are used in the form of include or extend

directives (see also Figure 5-5), which provides a lot of flexibility. Azure

DevOps distinguishes two types of templates.

•	 Extend templates: The pipeline extends code defined

in another file. This is called an extend template. An

extend template works as a skeleton from which other

Chapter 5 Pipeline Development

235

pipelines inherit its functionality. This allows the

development of a generic pipeline structure, while

details are implemented in each specific pipeline.

•	 Include templates: The main pipeline invokes templates

to execute parts of the work. This is called an include

template. An include pipeline includes pipeline code

from another file in a certain section of the pipeline.

There are more options to add additional features to your pipeline.

One example is adding pre- and post-jobs, using a feature called a

decorator or hook (depending on the platform you use, of course). This

makes it possible to add mandatory jobs from a compliance perspective.

For example, a post job is added, which cleans up the workspace of an

agent/node/runner and prevents files from remaining on the file system

after the pipeline ended.

Gates and Approvals

A gate is an automated check to determine whether a pipeline is allowed

to continue. This involves the validation of certain conditions, for example,

the result of the Analyze code stage or the fact that a task is timed out. If the

condition fails, the gate ends the pipeline execution.

Extend stages:
- stage: templates/include.yml
parameters:

- name: project
type: string

- name: pipelineSource
type: string

- name: displayName
type: string

include.yml

Includeextend.yml

pipeline.yml extends:
- template: templates/extend.yml

stages:
- template: template/include.yml
parameters:

project: test
pipelineSource: test-source
displayName: This is a test

Figure 5-5.  Extend and include templates

Chapter 5 Pipeline Development

236

An approval is a manual task that works similarly to a gate. The

approval either allows the continuation of the pipeline or ends the pipeline

execution and always involves a user who approves or declines. The

Perform dual control stage is a typical example of an approval. Both gates

and approvals are available on most platforms.

Workflow

Various platforms support pipeline declarations in which the functionality

of the tasks and the workflow are intertwined. This makes it harder to

distinguish functionality from workflow and makes it harder to understand

the workflow of the pipeline. A good alternative is to separate the

functionality from the workflow. Workflow becomes an isolated section of

the pipeline declaration, which improves readability.

Listing 5-21 declares the workflow in a separate section of the pipeline.

It does not include all the details of the jobs, but only their mutual relation

and execution order. The unit_test and acceptance_test jobs are executed

only after the build job has been finished. If both test jobs are completed,

the deploy job kicks in.

Listing 5-21.  CircleCI Workflow

workflows:

 version: 2

 build_test_deploy:

 jobs:

 - build

 - unit_test:

 requires:

 - build

 - acceptance_test:

 requires:

 - build

Chapter 5 Pipeline Development

237

 - deploy:

 requires:

 - unit_test

 - acceptance_test

�Plugins and Marketplace Solutions
Plugins and marketplace solutions are a perfect way to add new features

to ALM/integration platforms and pipelines. Plugins and marketplace

solutions are available for various purposes, from a dashboard widget

to a task that seamlessly integrates third-party tools with the ALM/

integration platform. Depending on the platform, installing and using

these plugins is straightforward, especially if they are self-contained. Some

platforms, however, have the annoying habit that most of their plugins

have dependencies and transitive dependencies with other plugins, often

with specific versions. The plugins are not self-contained, which can cause

dependency hell. But once you go through this struggle, plugins turn out to

be powerful tools helping you to develop professional pipelines.

�Repositories: Everything as Code
The life cycles of application code, infrastructure code (IaC), and

pipeline code are often different. Does this mean that these types of code

should be distributed over multiple repositories? As usual, it depends.

Sometimes it is a matter of taste to distribute the different types of code

over multiple repositories. Sometimes the CI/CD tooling forces the

structuring of a project and its repositories, but a personal preference

is to store application code, infrastructure code, test code, and pipeline

code that belong to each other in one repository. Especially in the case

of a microservice context, this makes sense. Everything that is part of a

microservice is grouped because of the componentized character of a

Chapter 5 Pipeline Development

238

microservice. And if more microservices are developed and more types

of code, for example, security as code,1 are added to the mix, repositories

must be organized in such a way that everything is still easy to find and not

scattered across various repositories.

In addition, if the different types of code are stored in the same

repository, pipeline development becomes part of the teams’ workflow

and is more of a team effort.

Consider a situation where a DevOps team is responsible for the
development of 15 very similar microservices. The team wants to
make use of generic templates (or libraries), developed by another
IT4IT team. What could a repository setup look like?

If all microservices are generic in nature, it makes sense to create

one generic pipeline skeleton (base pipeline) that can be reused for all

15 microservices. Each microservice has its code repository containing

the infrastructure code, the application code, and also the pipeline code.

The pipeline of each microservice “inherits” from the base pipeline and

adds specific features and variables. The pipeline also uses generic code,

developed by another—IT4IT—team. If during development the DevOps

team notices that some of their pipeline code has a generic character,

they can decide to promote this code to a template library they manage

themselves. A possible repository setup could look like Figure 5-6.

1 Open Policy Agent gets more attention lately and fits nicely into the security-as-
code domain (see [32]).

Chapter 5 Pipeline Development

239

IT4IT repo
pipeline
Base pipeline code for the whole organiza�on

DevOps team repo
pipeline
Microservice base pipeline
(op�onally derived from base pipeline of IT4IT team)

template
Generic pipeline code for the DevOps team

microservice-1
Microservice 1 applica�on code

Microservice 1 repo

infrastructure
Infrastructure code microservice 1

Microservice 15 repo

.

pipeline
Pipeline code microservice 1

microservice-15
Microservice 15 applica�on code

infrastructure
Infrastructure code microservice 15

pipeline
Pipeline code microservice 15

template
Generic pipeline code for the whole organiza�on

template
Generic pipeline code for microservice 1

template
Generic pipeline code for microservice 15

Figure 5-6.  Microservice repository setup

Each microservice is contained in a repository, divided into an

application code, infrastructure code, test code, and pipeline code section.

The pipeline code section may contain multiple pipeline files. This section

also contains a template directory with generic pipeline code, specific to

this microservice. Generic pipeline code, developed by the DevOps team

and used by all microservice pipelines, is moved to a separate repository.

Chapter 5 Pipeline Development

240

Generic pipeline code, developed by an external—IT4IT—team, and used

by all microservice pipelines, is also stored in a separate repository but

managed by the IT4IT team.

Of course, you may decide to use a completely different repository

setup, but the proposal in Figure 5-6 has been proven.

Note  When adding pipeline code to the same repository as the
application code resides, make sure that you have arranged a
process to test the pipeline code properly. Untested or badly tested
pipeline code results in a constant change of the code after it was
merged into another branch. This also affects the application,
because an incorrect working pipeline causes a stall in the software
delivery process.

�Third-Party Libraries and Containers
One of the security requirements listed in Chapter 3 mentions the fact that

retrieving libraries and containers from the Internet must be done with

great care. So, if a build task makes use of external libraries, make sure that

retrieval of these libraries is secure.

Consider Figure 5-7. The pipeline retrieves data from various sources

on the Internet. But what happens if one of these sources contains

malicious code because the source is hosted by someone who does not

have the best intentions? If access is permitted to use any source on the

Internet, the pipeline may retrieve malicious code, include it in the artifact,

and deploy it to production.

Chapter 5 Pipeline Development

241

Figure 5-7.  Retrieve containers/libraries directly from external
repositories

At least one level of security should be considered. Assess which

Internet sources should be authorized and only allow these sources to be

accessed. Use a proxy containing a whitelist of the authorized sources. The

pipelines are allowed to retrieve libraries and code only through the proxy.

A procedure to add new assessed sources must be in place, of course; the

setup must not become too rigid. Figure 5-8 shows a proxy layer denying

access to the unauthorized source.

Chapter 5 Pipeline Development

242

CI/CD
pipeline

Unauthorized source

Proxy layer

Figure 5-8.  Using a proxy to retrieve containers/libraries

Another security layer can be added, using an internal repository, such

as Artifactory or Nexus, or a repository positioned within the organization’s

data center or cloud account. The internal repository is refreshed with

resources from the Internet, which are retrieved via the proxy. The

advantage of using an internal repository is as follows:

•	 If external—Internet—locations are down, the pipeline

still works because it only makes use of the internal

repository.

•	 If resources on the external Internet locations are

moved or not available anymore, the pipeline still

works with the local copy.

Chapter 5 Pipeline Development

243

•	 As part of the refresh action, in which the external

resources are copied to the internal repository, a

prescan can be performed on the resources, before

they are internally exposed within the organization.

Examples are as follows:

•	 Malware and virus scan; resources copied from

an authorized source may still contain malware,

viruses, Bitcoin miners, etc. Scan them using a tool

like Bitdefender.

•	 Vulnerability scan; e.g., a base Docker image is

scanned, and if it contains major vulnerabilities, it

is put into quarantine.

•	 Integrity scan; even if the Internet source is

authorized, the copied resources may still be

tampered with. The integrity scan makes sure that

the downloaded resource is validated against a

valid hash or digital signature.

•	 Authorized IT products; check using Allow list

and Deny list, for example, based on the Product

Compliance List from [12].

A disadvantage of copying resources to an internal repository and

prescanning them is that it is unknown up front which resources are used

by a pipeline. Copying all resources and prescanning them takes a lot of

storage and computing capacity. A practical solution is that pipelines use

both an internal repository and a proxy for retrieving resources. Resources

retrieved by the proxy must be scanned by the pipeline for malware,

viruses, vulnerability, and integrity.

Other solutions make use of tooling with an extensive database that

already performed prescans of a lot of packages and libraries. The tool

prevents vulnerable packages and libraries from being downloaded in the

Chapter 5 Pipeline Development

244

first place. A tool such as Mend Supply Chain Defender—formerly known

as WhiteSource—can be used for this. Other alternatives such as Pyrsia

(see [34]) make use of the power of blockchain to build trust for using

open-source packages. Nexus Pro has the option to verify Pretty Good

Privacy (PGP) signed artifacts.

Figure 5-9 shows the setup of an internal repository.

CI/CD
pipeline

Unauthorized source

Proxy layerInternal
repository

Figure 5-9.  Using an internal repository to retrieve containers/libraries

Various ALM/integration platforms also support a pipeline cache

or remote cache, which not only caches precompiled source files but

also caches libraries and containers retrieved when building the artifact.

If a remote cache is used, the setup looks like the one in Figure 5-10.

The combination of the internal repository and the remote cache is

complementary; the internal repository contains files used by the whole

organization. The remote cache contains a subset of these files and is

positioned very close to the pipelines.

Chapter 5 Pipeline Development

245

CI/CD
pipeline

Unauthorized source

Proxy layer

p pp pp p

Remote
cache

Internal
repository

Figure 5-10.  Pipeline/remote cache and retrieval of containers/
libraries

�Versioning and Tagging
A pipeline usually contains information that defines the state of a resource

in the pipeline. State in this context means the status of the stages in

the pipeline. A resource refers to any component used in the pipeline or

the pipeline as a whole. Resources are work items in the issue tracker,

application code, a build artifact, the pipeline running instance, etc.

Together, these resources represent a certain state of a CI/CD process

occurrence. A resource is represented using an identifier. For example, a

release candidate of an application is represented by the application code, is

identified using a commit hash, is associated with a work item ID, is built by

the pipeline with a certain run ID, and delivers an artifact with a particular

Chapter 5 Pipeline Development

246

version. Together these identifiers form a chain, which makes auditing

the CI/CD process possible. The problem is often that these identifiers are

different for each resource and tracing the chain of steps becomes difficult.

In this situation, tagging comes to the rescue. Tagging is adding a piece

of information to a resource. Tagging can be seen as adding metadata

to describe the state of a resource, and it helps in implementing the

requirement “All changes are traceable.”

In the ideal world, it would be perfect to tag every resource that

contributed to the creation, deployment, and test of a release artifact.

In practice, however, tagging is often restricted to only a subset of these

resources.

Versioning makes it possible to identify the different states, and you

can use tagging as a way to version a resource. This means a tag can be in

the form of a version, but it doesn’t have to be one. A popular versioning

format is the “Semantic Versioning” scheme, which defines the major,

minor, and patch versions. The format is MAJOR.MINOR.PATCH, for

example, version 2.3.1 (see also [19]).

Assuming a team wants to apply tags in the form of a semantic versioning

scheme, they first need to determine which resources support tagging. If a

resource does not support tagging, there may be other ways to identify the

state of a resource, for example adding the version to the name of the resource.

Using a version in the filename of a build artifact is such an example. What

does this mean for the pipeline design? Consider the following case:

A team uses Jira as their issue tracker system and Git as a source
control management system. A Git commit represents one Jira ticket,
which has to be provided in the commit message. The team uses
the Feature branch workflow. Jenkins is used to build and deploy the
artifact—an AWS Lambda app—to an AWS account. Artifacts are
stored in Sonatype Nexus.

Chapter 5 Pipeline Development

247

Semantic versioning is used and tagging is applied only in case an
artifact is built from the main branch. The team wants to tag as many
resources as possible. The tag must contain the release version.

Given this setup, the following are possible actions to be taken in the

pipeline:

•	 Tag the Git commit with the release version (for

example, git tag -a v2.3.1 9fceb02).

•	 The Git commit message contains a reference to the

Jira ticket if the commit is pushed to the repository.

•	 Add a label to the Jira ticket with the release version. A

Jira REST API is used to create this label.

•	 Add the release version to a Jenkins build by setting the

release version in the job display name.

•	 Add the release version to the artifact filename in

Nexus. Tagging is not needed if the artifact name

already contains the version, but it is possible to add a

tag with the Nexus Pro version.

•	 Tag the AWS Lambda or the AWS Stack with the release

version.

The design of the pipeline of the main branch of a feature branch

workflow is extended with tagging tasks, resulting in the BPMN model

shown in Figure 5-11.

Chapter 5 Pipeline Development

248

Figure 5-11.  BPMN, versioning and tagging

Note T agging is done in several stages in the pipeline. Setting the
release version in the Jenkins job is one of the first things done in the
pipeline, but the Execute build may still fail. But this is not a problem.

Chapter 5 Pipeline Development

249

The pipeline intends to create a release candidate with a certain
version that can be deployed to production, but the pipeline job may
still fail along the way. Maybe some resources are already tagged,
and others aren’t. Tracing the tags in the chain reveals that the
pipeline stopped at a certain stage and the artifact was not deployed
to production.

�Environment Repository
A well-developed application does not contain any environmental

properties. The artifact must be built once but must be able to run

anywhere. Environmental properties must be added during deployment,

for example, by enriching placeholders in a property file with the correct

data during deployment. Data such as database credentials or HTTP

endpoints are stored in an environment repository, and as soon as a

deployment starts, the placeholders in the property file are replaced with

the database credentials and HTTP endpoints associated with the target

environment to which the application is deployed.

There are different types of environment repositories. The type of

environment repository to use also depends on the security classification

of a certain property. Database credentials have a higher risk rating than

an HTTP endpoint, so database credentials should be stored in a more

secure environment repository. Here are some examples:

•	 Variable in the pipeline: The simplest solution is to

just define properties as (conditional) variables in the

pipeline code itself. During deployment, the target

environment is determined, and a specific set of

variables is used. This solution is easy to implement.

Chapter 5 Pipeline Development

250

A disadvantage is that the pipeline code cannot contain

sensitive information, and updating a variable means

that the pipeline code must be updated.

•	 Storage on a file system or SCM repository: Properties

are stored on the file system or in a repository—such as

Git—and the files are arranged per target environment;

dev.test.properties, system.test.properties,

acceptance.test.properties, and production.

properties are a few examples. During deployment,

the target environment is determined, and the property

file associated with this environment is determined and

included in the deployment. A disadvantage is that a

property file stored on a file system or a code repository

cannot contain sensitive information. The first layer of

security can be established in such a way that access

to the files is only allowed by the pipeline and by

engineers of the DevOps team. Other people are not

allowed to access the filesystem or repository.

•	 Secret management tools: There are several (open

source) secret management tools that help with

content encryption of files in an SCM (Git). Examples

are SOPS and Blackbox. See [37].

•	 Integrated environment repository: Some ALM/

integration platforms already have an integrated

solution for storing environment properties,

with names such as Library, Config Store Service,

or Credentials store. It is a repository in which

properties—confidential or not—can be stored. Some

of these platforms also offer the possibility to store

complete files. The properties and files are encrypted.

Chapter 5 Pipeline Development

251

The encryption and decryption keys are managed by

the platform. This only leaves the question of whether

the storage of the keys is secure enough. In the case

of Jenkins, keys are stored on the file system on which

Jenkins is installed and can be accessed only by the

Jenkins user (in the case of Linux). For SaaS solutions,

the provider of the solution manages the encryption

keys.2 This solution works fine for medium and low-

security classified properties.

•	 Vault: For really high-security classified information

such as database credentials, it is best to use a vault.

On some ALM/integration platforms, the integrated

environment repository is backed by a vault. The next

section elaborates a bit more on vaults and secrets

management in general.

�Secrets Management
As mentioned in Chapter 3, secrets—passwords, tokens, keys,

credentials—used by an application preferably must be stored in a vault.

This can be Azure Key Vault, AWS Key Management Services, AWS Secrets

Manager, HashiCorp Vault, or a Hardware Security Module (HSM).

Important to consider is where the secret is created and how it can be

used by the application. Is the source location of the secret the same as

the target location? Or in other words, is the secret created in the location

where it is also used by the application, or is it created somewhere else

and must it be transferred to another destination so the application can

use it? This also raises the question of whether the source and target

2 Unclear, however, is whether these encryption/decryption keys are specific to
one tenant or whether they are used across tenants.

Chapter 5 Pipeline Development

252

locations both meet the secret’s security classification and whether the

transport from the source to the target location is secure enough. Cases

exist in which vaults are not used for whatever reason or the secret cannot

be created in the vault itself and it has to be manually transferred from the

source location. Different situations are possible. Let’s go through some

options, in order of most secure to less secure:

	 1.	 The safest solution is that the target platform in

which the application runs also manages the

secret. The target platform creates the secret in

a vault, and the vault maintains its life cycle (see

Figure 5-12). No pipeline is involved. This is a safe

way to deal with secrets because the secret is not

exposed and may even never leave the vault. Key

rotation is managed by the vault by which the key is

automatically renewed.

	 2.	 Often, the vault does not “know” it needs to create

and manage a secret. A pipeline is required to

trigger the creation of the secret in the target vault.

This means that the vault already has functions to

create the secret and the pipeline only executes

these functions. The application can use the secret

directly from the vault or uses the vault’s built-in

Create
secret

Use

App
Vault

Figure 5-12.  The target platform creates a secret in the vault

Chapter 5 Pipeline Development

253

functions to perform an action—e.g., signing data—

that makes use of the secret in the vault. In addition,

the pipeline triggers key rotation, which is managed

either by the pipeline or by the vault. Figure 5-13

shows this setup.

Trigger
create
secret Use

App

CD pipeline

Target
Vault

Figure 5-13.  The pipeline triggers the creation of a secret in the vault

	 3.	 The secret is already precreated by another (source)

system and has to be transferred by the pipeline

to the target vault. The source location can be a

vault again or another system that manages the

secret. It can also be a system that uses a vault as its

secret provider. The transfer of the secret—using a

pipeline—from the source to the target vault is fully

automated and secured. Secure transfer measures

may include mTLS and/or even digitally signing

the secret. The secret is not stored in the integration

platform. Members of the DevOps team are not able

to view the secret’s value. The pipeline should never

expose the secret in logs or any other way. This

process is depicted in Figure 5-14.

Chapter 5 Pipeline Development

254

Retrieve
secret

Insert
secret

Source
Vault

Use

App

CD pipeline

Target
Vault

Create
secret

Figure 5-14.  Transferring a secret from the source to a target vault

	 4.	 The retrieval of the secret from the source cannot be

automated. Maybe the source location is not even a

vault. This means that a DevOps engineer has to log

into the source system, extract the secret, and store

it in the ALM platform. Some of the ALM platforms

support the option of storing secrets, as variables or

in a secret file. The pipeline retrieves the secret from

the ALM platform and inserts it into the target vault.

Figure 5-15 shows this process.

CD pipeline

Insert
secret Use

AppOps
Engineer Target

Vault

Source
Loca�on

Store
secure

Create
secret

Figure 5-15.  Manual transfer from source to target vault

	 5.	 The destination is not a vault. The secret must be

“injected” directly into the application or deployed

as a file accompanied by the application. This is

depicted in Figure 5-16.

Chapter 5 Pipeline Development

255

CD pipeline

Inject
secret

App

Deploy
app

Use

Ops
Engineer

Source
Loca�on

Store
secureCreate

secret

Figure 5-16.  Manual transfer from source and “injecting” the secret
in the artifact

Although this setup is not preferred from a security point of view, it is

used a lot. One of the next paragraphs explains which security issues are

involved with this solution.

�Database Credentials
The secrets management cases in the previous paragraph are a bit abstract,

and a little more clarification seems in order. Consider the credentials of

a database. In Figure 5-17, the database is situated in a highly managed

infrastructure, such as a cloud environment. The pipeline calls an API of

the vault, which acts as an identity provider of the database and creates the

database secret (credentials). Because the app has a trusted relationship

with the vault, it is allowed to use the database secret to access the

database. The vault is responsible for the rotation of the database secret.

The responsibility of the pipeline is limited. After the initial trigger to

create the database secret, the system—consisting of a vault, an app, and a

database—manages and uses the database secret. This is a secure solution

because the secret in the vault is accessible only by a trusted party: the app.

This trust is based on security policies and other infrastructure measures.

Chapter 5 Pipeline Development

256

Create credentials
in database

Retrieve
database
secret

App
Vault

Access database

CD pipeline

Trigger create
database secret

Trusted relation Trusted relation

Trusted relationTrusted relation

Figure 5-17.  Database secrets in a highly managed environment

The second example, depicted in Figure 5-18, is a setup in which

the database secrets (credentials) are generated in the database by an

Ops engineer or database administrator (DBA), who transfers the secret

to secure storage on the ALM/integration platform. As part of the app

deployment, the pipeline contains a task that “injects” the secret into the

app, after which it is deployed to the target environment. The “injected”

secret is used by the app to access the database. Secret rotation is triggered

by the Ops engineer who starts the whole process again.

The pipeline has some more responsibilities compared to the previous

example. The secret is stored in secure storage and must be retrieved by

the pipeline. The pipeline injects the secret into the app, after which the

app is deployed to the target environment. This example, however, suffers

from various attack surfaces.

•	 There are trusted relationships between the ops

engineer and the database, and the ops engineer and

the secure storage. From a security perspective, this

is a very weak point in the chain. Humans cannot be

trusted completely.

Chapter 5 Pipeline Development

257

•	 Storing the secret in the ALM/integration platform is

less secure unless the secret storage is a vault. For a lot

of platforms, this is not the case.

•	 Injecting a secret in the app is an example of bad

engineering, but sometimes these things occur. One of

the security issues is, that from that moment, the secret

is stored in a less secure place, namely, the app.

�Feature Management
Most developers know what a feature flag is. A basic feature flag is an if

statement that determines whether a function in the code is executed

or not. More complex feature flags make it possible to disclose a certain

function only for a specific user group and/or target environment. This

is also the power of using feature flags; functions that were previously

hidden because they were in an experimental state, for example, can

be enabled with the click of a mouse. This makes feature management

CD pipeline

Inject
secret

App

Deploy
app

Ops
Engineer

Store
secure

Create secret Access database

Trusted rela�onTrusted rela�on

Trusted rela�on Trusted rela�on

Figure 5-18.  Manual transfer of database secrets

Chapter 5 Pipeline Development

258

a good alternative for an A/B testing strategy using a canary or blue/

green deployment. In addition, feature flags can also be used to keep the

mainline of the code in a stable state. Unfinished features in the mainline

are hidden in a production environment.

Java developers may be experienced in implementing feature

management with the use of Spring Cloud Config, but it is interesting

to see that several ALM/integration platforms also begin to offer feature

management.

Feature management allows more control over feature flags in

pipelines and beyond. Toggling features on or off can be done at different

stages in the software supply chain. Figure 5-19 visualizes the possibilities.

CI CD

Run�me
produc�on

Run�me test

test

produc�on

test

produc�on

Not environment-specific

Figure 5-19.  Toggle feature in CI, CD, and runtime stages

•	 Build (CI) stage: If a feature flag is toggled in a build

stage, the flag becomes part of the artifact, and

irrespective of where the artifact is deployed, the value

of the flag (true or false) determines whether a certain

function is enabled. Setting feature flags in the build

(CI) stage is static and a bit rigid. If a disabled function

must be enabled, a new artifact version must be built.

•	 Deploy (CD) stage: An alternative is to use feature flags

in the deploy (CD) stage. The value of the feature flag

is “injected” in the artifact at deployment time, which

Chapter 5 Pipeline Development

259

makes it possible to enable a function for one target

environment and disable it for another environment. In

Figure 5-19, a feature flag is enabled on the CD level for

the test environment and disabled for the production

environment.

•	 Runtime: Although using feature flags in the Deploy

(CD) stage provides a bit more flexibility compared

to the Build (CI) stage, it can be improved even more.

Modern feature management makes it possible to use

feature flags in a runtime environment. Functions

that were disabled in the runtime environment can be

enabled dynamically, for all users or a selected group

of users, without the need to rebuild or redeploy a new

instance of the application.

Implementing feature management in this way does pose some

constraints to the way the code is developed. The user interface of the

feature management system makes it possible to toggle a feature with the

click of a mouse. The application code, however, must be able to interact

with the feature management system to make that happen. This is also

one of the drawbacks. The application code needs a third-party library

and includes additional statements from that library. This results in some

intrusive code in the application. Fortunately, this code can be removed

again if the function becomes available to all users. In addition, using

feature flags in a runtime environment also requires a connection between

the feature management system and the application. The application is

packed with an SDK that polls APIs of the feature management system.

The APIs are used to synchronize between the SDK and the feature

management system. The SDK can detect the state of the feature flags in

the feature management system and use them at runtime. You need to

make sure that this connection is secure.

Chapter 5 Pipeline Development

260

Figure 5-20 shows how feature flags can be enabled and disabled—also

for a particular user group and/or environment—in GitLab.

Figure 5-20.  Gitlab, feature flags

Listing 5-20 contains the if statement with a feature flag called add-

additional-costs. It makes use of the feature management system

Unleash (see [24] for more information).

Listing 5-20.  Unleash/Java Example of a Feature Flag

if (unleash.isEnabled("add-additional-costs")) {

 // Additional costs are calculated and added to the booking

} else {

 // The booking is processed without additional costs

}

�Development in the Value Streams
CI/CD development is a container concept that includes aspects that

deal with the automation of the software supply chain. This varies from

setting up the ALM/integration platform to the actual realization of a

specific pipeline. As explained earlier, activities related to CI/CD are

present in different value streams and divided over numerous teams and

organizational units. Development takes place on several levels within

Chapter 5 Pipeline Development

261

the organization. The following development topics provide some insight

into what kind of development and at what organizational level the

responsibilities lie.

•	 CI/CD SaaS solution: A CI/CD SaaS solution is an

ALM/integration platform developed by an external

company. It can be configured using add-ons or

plugins.

Responsibility for the Central Organizational Unit Responsibility for the
DevOps Team

A specific organizational unit, like an IT4IT team,

manages the use of the SaaS solution for the whole

company and is also involved in the integration

and additional development of add-ons/plugins.

However, the management and development of the

SaaS platform itself is the sole responsibility of the

provider of the platform.

Individual DevOps teams

are usually not involved with

the management of SaaS

solutions or the development

of specific add-ons or plugins.

•	 Platform infrastructure development: Instead of using

a SaaS solution, developing your own (reusable)

integration platform using IaC is another option. The

result is code, which is developed once and used to

roll out the complete integration infrastructure. One

example is, for instance, a Docker container containing

a completely integrated setup with Jenkins, InfluxDB,

Grafana, etc.

Chapter 5 Pipeline Development

262

Responsibility for the Central
Organizational Unit

Responsibility for the DevOps Team

This activity is typically done on a

higher organizational level (by an IT4IT

team) because it is costly and requires

specific knowledge.

Although DevOps teams sometimes develop

their own integration infrastructure code,

this is not recommended. It also depends on

the type of organization.

•	 Platform infrastructure hosting: This involves the actual

provisioning of the integration infrastructure and

the hosting. It does not involve much development,

but it does include the configuration of the hosted

infrastructure.

Responsibility for the Central
Organizational Unit

Responsibility for the DevOps Team

A valid use case is a centrally hosted

integration platform, managed by a

specific organizational unit. The platform is

shared with multiple DevOps teams.

The integration platform code can also

be developed (once) by a specific team,

while each DevOps team makes use of

it and manages the hosting.

•	 Development of a base pipeline: Development of a

base pipeline means that the pipeline code itself is

developed once and can be reused by different DevOps

teams. These pipelines are configured as desired.

Responsibility for the Central
Organizational Unit

Responsibility for the DevOps Team

It makes sense that a specific IT4IT

team develops such a base pipeline.

DevOps teams make use of the base

pipeline and configure it according to their

needs.

Chapter 5 Pipeline Development

263

•	 Development of generic templates libraries: If

certain pipeline features are used often by multiple

DevOps teams, it makes sense to develop them as a

template or a library that can be (re)used by multiple

DevOps teams.

Responsibility for the Central
Organizational Unit

Responsibility for the DevOps Team

A specific IT4IT team develops these

templates/libraries.

DevOps teams make use of the generic

template/library in their pipelines.

•	 Pipeline code analysis and compliance scanning:

Because pipelines are just code, they can be scanned

on code quality and validated whether the pipeline is

constructed according to organizational policies.

Responsibility for the Central Organizational
Unit

Responsibility for the
DevOps Team

There are plenty of code analysis tools to integrate

into a pipeline and analyze the applications’ code,

but the tools that analyze the pipeline code itself

are rather scarce. A specific IT4IT team is required

to develop this kind of tooling.

This is usually not something

a DevOps team itself does

because that would be a

bit like a fox guarding the

henhouse.

•	 Development of specific templates/libraries: If certain

pipeline features are used in multiple pipelines

within one DevOps team, it makes sense to create a

template/library from it to prevent redundancy of code.

The templates/libraries are usually not shared with

other teams.

Chapter 5 Pipeline Development

264

Responsibility for the Central Organizational
Unit

Responsibility for the DevOps
Team

This is specific for DevOps teams themselves, so

no central team is involved.

The responsibility lies within the

DevOps team.

•	 Development of pipelines: This concerns the

development of pipelines used by DevOps teams.

Responsibility for the Central Organizational
Unit

Responsibility for the DevOps
Team

This is specific for DevOps teams themselves, so

no central team is involved.

The responsibility lies within the

DevOps team.

Application development is done by an engineer developing code on

their local machine, performing unit tests, and, when finished, pushing

code to a source code management system. This triggers a pipeline on an

ALM platform or integration server, which builds, deploys, and tests the

application.

Throughout this book, the parallel is drawn between pipeline

development and application development, so applying the same

principles to pipeline development means that a developer develops the

pipeline code, performs the unit tests on the pipeline code, and, after

completion, pushes the pipeline code to the source code management

system, which triggers…a pipeline. This introduces the concept of a

pipeline of pipelines: a DevOps assembly line in which pipelines are built,

deployed, and tested using another pipeline.

Let’s elaborate a bit more on this and see where this leads.

Chapter 5 Pipeline Development

265

�Simplified Pipeline Development
Application development has been done the same way for a long time.

The code is created, probably using plugins installed in the integrated

development environment (IDE), to analyze the code for vulnerabilities,

code quality, performance issues, etc. In addition, unit tests are created

and executed within the IDE. If everything is fine, the application code is

committed and pushed to the remote server.

Pipeline development at its simplest is when a developer creates the

pipeline code in their favorite IDE. Pipeline code involves one or more

files. Local testing is hard. The developer does not have a local ALM/

integration platform installed or can make use of a test platform, so the

pipeline code is developed, barely tested, and pushed to the repository;

after that, the developer hopes for the best. This is not a very optimal way

of working, but this does happen a lot.

Figure 5-21 schematically shows how this process works. The

developer creates or updates the pipeline code—for example, in a feature

branch—and pushes it to the remote repository when finished. This

repository also contains the application code. However, the pipeline code

is not unit tested at all.3 As soon as the pipeline code is pushed, it starts

executing, but it was never tested properly, so errors and bugs are to be

expected. That is not a desired workflow, is it? Are there ways we can do

this a bit better? Well, actually we can.

3 Sometimes some form of testing may be possible using a dry-run flag (like
mvn release:prepare -DdryRun=true), but it is still a hacky way of testing the
pipeline code.

Chapter 5 Pipeline Development

266

CI pipeline CD pipeline

Application
code

Application
artifact

Pipeline code

Unittest (local)

Unittest (local)

2

1

Application pipeline

Pipeline test
environmentCI pipeline CD pipeline

Devops team

Figure 5-22.  Extended pipeline development

CI pipeline CD pipeline

Applica�on
code

Applica�on
ar�fact

Pipeline code

Uni�est (local)

1

2

Applica�on pipeline

Devops team

Figure 5-21.  Simplified pipeline development

�Extended Pipeline Development
A bit more sophisticated way is to perform unit tests on the pipeline. How

this can be done is explained in the next chapter that deals with testing

pipelines, but in essence, the developer has a pipeline test environment used

for development, in which the unit tests of the pipeline are executed (see

Figure 5-22). This approach gives more confidence that the pipeline code is

of decent quality. Preferably this test environment is a local environment, for

example, a Jenkins instance installed on the developers’ local workstation.

Chapter 5 Pipeline Development

267

�Advanced Pipeline Development
The extended pipeline development method can be raised to the next

level in which the pipeline is not only unit tested but also undergoes

all—or at least some—stages of the Generic CI/CD Pipeline itself. In this

development method, the pipeline of pipelines concept is applied to the

full extent (see Figure 5-23). Later in this chapter, the stages of the pipeline

of pipelines are explained in more detail.

This development method distinguishes three important phases in the

development process.

•	 Pipeline code is developed on a local machine after

which unit tests are performed. Preferably, unit

tests are performed on a local instance of the ALM/

integration platform.

•	 After pushing the pipeline code to the repository,

it is processed using an assembly line for pipelines.

This assembly line performs similar stages as in the

CI pipeline CD pipeline

Application
code

Application
artifact

Pipeline code

CI pipeline

Pipeline
artifact

CD pipeline

Unittest (local)

Unittest (local)

3

1

2

Pipeline of pipelines

Application pipeline

Pipeline test
environmentCI pipeline CD pipeline

Devops team

Figure 5-23.  Advanced pipeline development

Chapter 5 Pipeline Development

268

case of application development but is now focused

on pipeline code. This assembly line of pipelines is

referred to as the pipeline of pipelines.

•	 The output of this pipeline—the application pipeline—

is a thoroughly tested pipeline artifact; this pipeline is

used to build, test, and deploy the application.

Note A ll three phases involve an integration infrastructure. This
can be the same ALM/integration platform used for running the
application pipeline—on which storage and processing of each
phase are separated—but it is also possible to use three different
physical infrastructures.

The advanced pipeline development approach has some drawbacks.

The team has to set up everything itself. Imagine an organization having

500 teams; this would not make any sense. It is too costly, it takes too

much time, and in addition, not all teams have the expertise to develop

something like this.

In essence, the approach is good, but some of the work needs to

be centralized and moved to a dedicated IT4IT team. The IT4IT team

develops the tools and infrastructure of the pipeline of pipelines. DevOps

teams make use of it.

�Develop a Base Pipeline
In the previous examples, the DevOps team developed the application

pipeline. An alternative is to use a base pipeline that has been developed

by a central IT4IT team. The base pipeline contains default stages and

tasks and is used for a specific context, for example, a Java/Maven/Linux

context or a Python/Windows context. The base pipeline contains some

Chapter 5 Pipeline Development

269

mandatory tasks that should not be overwritten. The DevOps team extends

its pipeline from the base pipeline and configures it to its needs, so it can

be used to build, deploy, and test the application.

Creating the base pipeline requires specific knowledge, but

centralizing the development can save a lot of time and money in the end.

Creating a base pipeline also allows enforcement of certain policies or

security restrictions, which become automatically part of the extended

base pipeline.

In Figure 5-24, the base pipeline is tested by the IT4IT team—also

making use of a pipeline of pipelines—and the resulting base pipeline

artifact is centrally stored and can be used by the DevOps teams. Of course,

after extending and reconfiguring the base pipeline, the DevOps team

can also perform (unit) tests of their pipeline to make sure that it works as

expected.

Base pipeline
code

CI pipeline CD pipeline

Application
code

Application
artifact

IT4IT team

Devops team

Pipeline
Configuration

CI pipeline

Base pipeline
artifact

CD pipeline

Unittest (local)

1

4

2

3

Pipeline of pipelines

Application pipeline

Pipeline test
environmentCI pipeline CD pipeline

Figure 5-24.  Base pipeline

Chapter 5 Pipeline Development

270

�Pipeline Generation
Extending a base pipeline has its limitations. What if the team needs

a completely different pipeline or deviates from the base pipeline so

much that using it is not justified? Instead of creating a base pipeline, the

pipeline used by the DevOps team can also be generated using a pipeline

generator. The feature richness of such a pipeline generator varies from

creating code snippets, which need to be assembled by the DevOps team,

to the generation of a complete customized pipeline that undergoes the

stages also used in regular application-oriented pipelines. The input of

a pipeline generator is a repository managed by a DevOps team. The

pipeline generator scans this repository, detects the configuration,

and starts the creation of artifacts (pipeline code and testware).

Figure 5-25 depicts a setup with a pipeline generator.

These kinds of tools, however, are scarcely available, and if there are

any commercial tools out there, they are not well-known. Until then, it

looks like organizations have to develop these tools themselves. Usually,

this is a task of an IT4IT team dedicated to this job, but to prevent the “not

invented here” syndrome, a cooperation model with DevOps teams is

Figure 5-25.  Pipeline generator

Chapter 5 Pipeline Development

271

needed. In this case, an innersource model seems a good fit. Innersourcing

allows DevOps teams to help with the creation of the tooling. If a DevOps

team has a good idea, it can start working on that idea and, when finished,

create a pull request. The IT4IT team approves the pull request (or not),

and the code is merged into the codebase of the pipeline generator.

The pipeline generator itself is embedded in a pipeline of pipelines,

in the Execute build stage. The produced artifacts consist of pipeline code

and testware. These artifacts are deployed to a “test” integration server/

ALM platform, where they are tested.

The pipeline generator itself is also an application. The development

steps of this tool are not included in the figure.

Of course, this all sounds nice and sophisticated, but essentially a

pipeline generator is a complex piece of software that takes a long time to

develop. And what does such a tool look like? What are the requirements?

Let’s make a small attempt to make it a bit less abstract.

•	 The stages of the Generic CI/CD Pipeline are used as a

pipeline blueprint. Based on the given DevOps teams’

branching strategy (trunk, feature branch, Gitflow, …),

the flow of the pipeline is constructed.

•	 Configuration of the pipeline generator must be as

simple as possible. The tool retrieves most of the

information by scanning the code repositories of the

DevOps team.

•	 Stages, tasks, but also testware to test the application

are automatically constructed based on scanning the

repository. Here are some examples:

Chapter 5 Pipeline Development

272

•	 Based on a given repository, the repository is

scanned for application code, and based on that, a

pipeline with an Execute build stage is constructed.

For example, if the tool finds a pom.xml file in

the repository, it likely is a Maven project and

constructs a Maven build task in the pipeline.

•	 If the pipeline generator finds Postman collections,

a Perform test stage is created, and test tasks are

added to this stage; e.g., the task assumes that a tool

such as Newman is used to execute the Postman

collections in the pipeline.

•	 Similarly, if the tool finds Cucumber tests (e.g.,

based on *.feature files it finds in the repository),

it constructs a test task and adds it to the Perform

test stage.

•	 The tool must contain a library of prefab stages and

tasks, which are configurable by the DevOps team.

These stages and tasks also include unit tests.

•	 Based on corporate policy, mandatory stages and tasks

are added to the generated pipeline. This also means

that a DevOps team is not allowed to delete them when

using the generated pipeline.

•	 The tools contain additional features, which are

added to the generated pipeline, for example, tagging,

generation of a release note, and notifications to

specific communication channels.

•	 DevOps teams must be able to add specific tasks for

their case.

Chapter 5 Pipeline Development

273

•	 DevOps teams must be able to add new, reusable

generic tasks to the prefab library. These tasks can be

used again by other DevOps teams.

•	 The pipeline of pipelines is maintained by an

IT4IT team.

This list of requirements is nonexhaustive, and organizations can make

it as complex, extensive, and feature-rich as they want.

Note  Unfortunately, I never had the chance to develop something
like this, but it is not a completely crazy idea. Some organizations did
develop a pipeline generator, and I’ve seen examples of it, created by
colleagues.

�Pipeline of Pipelines (DevOps Assembly Line)
A few of the pipeline development methods described in the previous

paragraphs have one thing in common. The created pipeline code

undergoes some processing stages similar to application development.

Pipelines are built, deployed, and tested using a pipeline assembly line, the

pipeline of pipelines. Depending on the pipeline development method and

the platform used, the implementation of the pipeline of pipelines may

differ, but it has similarities with the Generic CI/CD pipeline, as shown in

Figure 5-26.

•	 Trigger: After a developer has developed the pipeline

code, changes are committed locally, and preferably

pipeline unit tests are performed. If the developer

is confident about the pipeline code, they push the

code to the remote server. This triggers the pipeline of

pipelines.

Chapter 5 Pipeline Development

274

•	 Validate entry criteria: The input of a pipeline

of pipelines is either pipeline code or a pipeline

declaration file. One of the entry criteria is to

determine whether the file or set of files meets certain

requirements. For example, if the input is a YAML file

that defines the pipeline, the entry criterion is that it

must be a valid YAML file, to be checked using a tool

such as yamllint.

•	 Execute build: Pipelines are usually files, containing

scripts or containing pipeline declarations. These types

of files are interpreted and used as is, so a compilation

of a pipeline artifact is not needed. The Execute build

stage can be omitted in these cases. In other cases, the

pipeline is a project containing programming code.

An example is a Java project in which the pipeline

has been “programmed,” a feature of the Bamboo

platform (Bamboo Java Specs). This results in a Java

build performed by Maven or Gradle. The result

is a pipeline, stored in an artifact repository. If the

pipeline is generated using a Pipeline Generator tool,

the input is the repository of the DevOps team. The

Pipeline Generator tool “builds” the pipeline code after

scanning the repository.

•	 Perform unit tests: The unit tests a pipeline of pipelines

performs are nondestructive. All flows within a pipeline

must be tested.4 Variables must be overridden to

mimic certain behavior. A destructive stage or task

4 Unit tests and integration tests of pipelines can be combined.

Chapter 5 Pipeline Development

275

must be “neutralized” by injecting code to make it a

nondestructive stage/task or using a mock stage/task.

The next chapter goes deeper into testing pipelines.

•	 Analyze code: Different types of pipeline code analysis

are possible. Here’s a summary:

•	 The pipeline code must be valid; this can be

done either as part of the entry criteria validation

(preferred) or in the Analyze code stage.

•	 In the case of a YAML file, the pipeline code

must be valid YAML. Use yamllint, for example.

•	 Validating a Jenkinsfile in Visual Studio Code

(VS Code) can be done using the Jenkins

Pipeline Linter Connector, but it is not very CI/

CD-friendly. Jenkins itself also has a built-in

linter that can be used to validate the Jenkinsfile

in a pipeline.

•	 If the pipeline consists of code written in a

programming language or script, regular code analysis

tools can be used, such as SonarQube.

•	 Pipelines can be analyzed on compliance. A

compliance scanner validates whether company

policies are applied to the pipeline code. Examples

are as follows:

•	 The pipeline must contain certain mandatory

stages or tasks. Perhaps it is mandatory to

include a SonarQube task in the pipeline or

the pipeline must include a dual control stage

before an artifact is allowed to be deployed to

production.

Chapter 5 Pipeline Development

276

•	 It is not allowed to continue if errors occur in

the pipeline. A pipeline must contain quality

gates. If the conditions of the quality gate are

not met, the pipeline should stop and return

an error. If the quality gate is bypassed in the

pipeline and the subsequent stages are still

executed—including the stage in which the

application is deployed to production—the

pipeline violates a policy.

•	 In the case of SaaS solutions, pipelines can run

on generic SaaS nodes, agents, or containers.

However, some organizations use a dedicated

pool of nodes/agents/containers for security

reasons. An organization policy may demand

that pipelines are only allowed to run on a

node/agent/container belonging to this pool.

If the pipeline did not specify this pool, the

compliance scanner marks this pipeline as

noncompliant and cannot be used.

•	 Package artifact: If the artifact is the same as the

original file, this stage has no purpose. If the input

consists of a set of related files, it might be wise to pack

all files into one .zip or .tar file, even if the Execute

build stage is absent.

•	 Publish artifact: It makes sense to publish the pipeline

code to a central repository, similar to what we do with

application artifacts. Especially, if an external IT4IT

team develops a base pipeline, it is convenient for

DevOps teams to grab this base pipeline from a central

repository.

Chapter 5 Pipeline Development

277

•	 Provision test environment: The test environment of

a pipeline is an ALM platform or integration server,

which executes the pipeline tests. This is not the

same environment in which a regular build, test, and

deployment of the application take place. The pipeline

test environment is a separate environment, specific

to testing the pipeline. If, for example, the pipeline

includes a task to tag the code in the SCM repository

and this task is tested, it should not be done in the

original repository. In a test environment, this task can

just be executed, and no harm is done.

If possible, this pipeline test environment is an ephemeral

environment that can be removed after use.

•	 Deploy artifact to test: The pipeline artifact is retrieved

from the repository and deployed to the pipeline test

environment. Additional files—needed by the pipeline

to function properly—are part of this deployment, for

example, a snapshot of the application code for which

the pipeline was developed.

•	 Perform test: Several pipeline tests are performed.

This means that the pipeline is executed in a pipeline

test environment. These tests can be automated or

manually executed. The following are things that make

sense to test:

•	 Validate whether the pipeline runs at all.

•	 Validate whether input variables are defined and

whether they contain the expected data type; e.g.,

validate whether a variable contains a numeric

value or a date.

Chapter 5 Pipeline Development

278

•	 Validate whether the correct application artifacts

are built and deployed.

•	 Validate whether the pipeline flow works when

running in different SCM branches.

•	 Validate whether directories, file locations, and files

used in the pipeline can be reached and read.

•	 Validate whether all paths are executed in certain

conditions.

•	 Validate whether external connections work.

•	 Validate whether the performance of the pipeline is

sufficient.

Note I n addition to a pipeline test environment, an application test
environment is needed to deploy the artifact. This application test
environment is either a fixed or ephemeral test environment.

•	 Validate infrastructure compliance: The production

environment of the pipeline artifact is an ALM/

integration platform. This is the same platform on

which the application is built, tested, and deployed by

the pipeline. Assuming that this platform already exists,

the Validate infrastructure compliance stage and also

the Provision production environment stage are not

relevant.

•	 Deploy artifact to production: The stages Validate exit

criteria, Perform dual control, and Provision production

environment all seem a bit too formal for a pipeline

artifact, and it can be assumed that the production

environment is already present.

Chapter 5 Pipeline Development

279

The question is also what it means to deploy the pipeline

code to production. The formal route would be a

“deployment” of the pipeline code to the production

source code repository. Most likely, this source code

repository is the same as the one that contains the

application code and (the previous version of) the

pipeline code. Creating a pull request—if used—and

having it approved to merge the pipeline code in this

repository seems to summarize the Perform dual control

stage. Pushing the code to the original remote repository

covers the Deploy artifact to production stage.

•	 Notify actors: Informing actors is still needed to keep

them informed about the progress of the pipeline of

pipelines.

Summarized, the pipeline of pipelines looks like a stripped-down

version of the Generic CI/CD Pipeline.

�Sustainable Pipeline Development
At the end of this chapter, it is important to highlight the environmental

impact of pipelines. Sustainable computing is a relatively new topic,

and people are not sure what measures they can take to limit the carbon

dioxide footprint of their system. It is also impossible to come up with a

complete list of recommendations on how to optimize pipelines, but here

are some useful pointers:

Execute
build

Perform
unittests

Analyze
code

Package
artifact

Publish
artifact

Validate entry
criteria

Notify
ActorsDeploy

artifact to
test

Perform
test

Provision test
environment

SCM trigger
Perform

dual control
Deploy

artifact to
production

Figure 5-26.  Pipeline of pipelines

Chapter 5 Pipeline Development

280

•	 If you run an integration infrastructure, it is important

to distribute the workload over smaller-sized (virtual)

servers. Small servers with a higher utilization consume

less energy than large servers that are underutilized. An

underutilized server spends more time in an idle state,

which consumes more energy.

•	 Consider running pipelines in the cloud. There is

heavy pressure on cloud service providers (CSPs) to

make their data centers more sustainable. The scale,

decisiveness, and budget of CSPs go beyond the

possibilities of a company’s data center. Google, for

example, has the option to choose a Google Cloud

region according to the lowest carbon dioxide footprint.

Microsoft claims that using the Microsoft Azure cloud

platform can be up to 93 percent more energy-efficient

and up to 98 percent more carbon dioxide efficient than

on-premises solutions (see [30]). Amazon Web Services

(AWS) is focused on powering its operations with 100

percent renewable energy by the year 2025 (see [31]).

•	 Sustainability of a SaaS ALM platform also depends on

the (serverless) architecture of the platform itself. ALM

platform developers could look into the possibility of

implementing the tooling using functions/Lambdas.

•	 Choosing the right infrastructure definitely can have a

positive impact, but also the use of certain scripts and

the design of the pipelines can influence the carbon

dioxide footprint. In the case of scripting, the language

in which the script was written makes a difference.

The energy consumption of Python, TypeScript, or

JavaScript can be 60 times higher than languages

Chapter 5 Pipeline Development

281

such as C, Rust, or even Java. In general—except for

Java—one can state that compiled languages are

more energy-efficient than interpreted languages [9].

Consider this during the realization of your pipelines.

•	 Even the pipeline design can be optimized to achieve

a lower carbon dioxide footprint. Validating at the

beginning of a pipeline run whether mandatory

pipeline variables are defined and whether an external

system can be reached prevents the pipeline from

failing somewhere at the end, having consumed

unnecessary energy.

•	 In the case of test tasks, some sustainability measures

can be applied. The concept of fail fast implies that a

pipeline stops as soon as a mandatory test task fails.

If, for example, tests run in parallel and one of the

mandatory tests fails, all parallel test tasks must stop

immediately, as if someone presses a red stop button

and the whole assembly line comes to a halt. There is

no need to wait for the last test to finish.

•	 The auto-cancel option can be used if a new pipeline

instance is started and the already running pipeline

instance has become obsolete. The obsolete instance

must stop to prevent burning unnecessary CPU cycles.

•	 Consider scheduling the Analyze code stage to be

executed once a day. This introduces a slight risk,

though. An artifact could be deployed to production

before the scheduled Analyze code stage has run. There

is a chance that this artifact contains a vulnerability.

Accept the risk, and validate the Analyze code report

afterward, as soon as it is available. If the number of

Chapter 5 Pipeline Development

282

application code changes was significant, it is an option

to manually trigger the Analyze code pipeline and

validate the result before the deployment to production

is approved.

•	 Consider moving the Analyze code stage just before the

Validate exit criteria stage. The benefit is that no code is

analyzed that did not pass the tests.

•	 If the team uses feature branches, do not analyze or test

the code in a feature branch pipeline run, but only in

the mainline run.

•	 Decompose the application into multiple independent

components (microservices) and create a pipeline for

each component. The benefit is that instead of building

a big monolithic application after every code commit,

only the components that are changed are built. This

not only speeds up the pipeline execution time but also

reduces compute cycles and saves energy.

•	 Optimize the use of test environments. If you have test

environments that are not being used frequently or at

all, they may still be consuming energy. To save energy

and reduce waste, you can either power them down or

remove them if they are no longer needed.

•	 One can question whether it is always needed to start a

pipeline and execute all stages, even though the change

in the code was very small. Here is where a rule-based

trigger could step in. A rule-based trigger is a—still

theoretical—trigger that decides when a pipeline

starts. We are all familiar with SCM-event triggers and

Chapter 5 Pipeline Development

283

scheduled triggers to start a pipeline. A rule-based

trigger determines whether a pipeline starts based on

certain rules. The following are examples of these rules:

•	 The pipeline does not start if code is committed

with an associated work item with a low priority.

Only code associated with work items with a

medium or high priority results in the start of the

pipeline.

•	 The pipeline starts after only x number of commits.

•	 The pipeline starts only after y percent of the

codebase was changed.

It is unclear whether any tooling offers rule-based triggers out of the

box at the time of writing.

�Summary
You learned about the following topics in this chapter:

•	 There are three ways to create pipelines.

•	 Using a user interface

•	 Using a scripted pipeline

•	 Using a declarative pipeline

•	 Pipeline specifications shift toward declarative

pipelines, often in YAML notation.

•	 Modern platforms share some common features.

Integrating them in pipelines as a pipeline language

construct reduces complexity.

Chapter 5 Pipeline Development

284

•	 External libraries, environmental properties, and

secrets in pipelines are explained.

•	 Security issues concerning external libraries,

environmental properties, and secrets are highlighted.

Solutions are presented on how these risks can be

mitigated.

•	 There are several CI/CD-related development areas at

different places within an organization, with each area

covered by a specific type of team (SaaS provider, IT4IT

team, or DevOps team).

•	 There are different approaches toward pipeline

development, each with its pros and cons.

•	 Simplified development

•	 Extended development

•	 Advanced development

•	 Developing base pipelines

•	 Pipeline generation

•	 The concept of pipeline of pipelines was explained.

•	 Tips were given to develop sustainable pipelines.

Chapter 5 Pipeline Development

285

CHAPTER 6

Testing Pipelines
This chapter covers the following:

•	 The importance of testing pipelines.

•	 How to create a unit test using a test framework. The

chapter describes how the pipeline is manipulated

by the test framework and executed in a pipeline test

environment.

•	 An example of a pipeline performance test and

how overall execution time is improved by the

parallelization of activities.

•	 The concept of pipeline acceptance testing in

simplified and advanced pipeline development.

�Testing Pipelines
Pipelines and testing can be highlighted from different viewpoints. Most

books and articles describe how pipelines are used to test an application,

which test frameworks are used, and how everything integrates into the

pipeline. Chapter 4 highlights the importance of a test strategy and how

this reflects on the pipeline design.

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_6

https://doi.org/10.1007/978-1-4842-9228-0_6

286

What is often neglected, but equally important and interesting, is

testing the pipelines themselves. This chapter is dedicated to pipeline

testing.

�Testability of Pipelines
Pipelines are defined as code. Code can be tested. Most declarative

pipeline code (with some exceptions) consists of YAML files or scripts.

Testing them is a challenge. Teams often test the pipelines using trial and

error, sometimes screwing things up because a wrong version of an app

was deployed by accident. In some cases, code from a feature branch was

accidentally tagged with a release version tag, and because of the trial-and-

error nature of developing and testing pipelines, the number of commits

is very high. The once well-organized overview with regular application

pipeline runs is cluttered with a zillion test runs. Testing pipelines is hard

because teams also don’t have the tools to test properly.

Just as with testing applications, pipeline code must be tested in a

test environment. The pipeline test environment must differ from the

environment in which the business application is built, tested, and

deployed. From a pipeline point of view, the environment used to build,

test, and deploy the business application is considered the production

environment. The pipeline test environment is either a separate ALM

platform or integration server infrastructure or an infrastructure in which

separation between the regular pipeline environment and the pipeline test

environment is established in another way. Important is that the pipeline

must be able to run in a test/sandbox environment, without the destructive

character. It must also be possible to test specific characteristics of the

pipeline. This means the following:

•	 Checking the configuration of the pipeline and its

components to ensure that they are set up properly and

functioning as expected. This can include things like

Chapter 6 Testing Pipelines

287

verifying that the correct tools and dependencies are

being used and that variables are configured.

•	 Pipeline unit tests are focused on testing individual

parts of the pipeline. Pipeline unit tests are performed

on a local development machine (if possible) and also

in the pipeline of pipelines (if used).

•	 All flows within the pipeline are tested by simulating a

real-world deployment scenario and checking that all

components of the pipeline work together properly.

This includes an end-to-end test, in which the entire

pipeline is tested, from code commit to deployment,

to ensure that it works as expected in a real-world

scenario.

•	 Quality gates must be tested; does the pipeline break if

certain quality criteria are not met?

•	 The performance of the pipeline must be tested

to detect queuing or potential bottlenecks in

execution speed.

•	 The pipeline code must be analyzed for quality,

security, and compliance; does it adhere to

organizational policies?

•	 Pipeline tests must be able to run in a “sandbox” or

test environment to prevent destructive actions, for

example, to test tagging of a commit in the repository

with a release version, without actually tagging it

in the original repository in which the pipeline and

application code is stored.

Chapter 6 Testing Pipelines

288

To properly test a pipeline, a few test types must be performed.

•	 Unit (and integration) tests

•	 Performance tests

•	 Pipeline compliance and security tests

•	 Acceptance tests

Let’s discuss them in the next few sections and point out how this can

be done.

�Unit Tests
Let’s face it. Test frameworks for pipelines are almost nonexistent or at

least very scarce. Also, when dealing with SaaS platforms of big-tech

companies, you might expect that there is some information or support

concerning pipeline testing. The platforms are mature, but testing

pipelines are not given that much TLC. Local testing of pipelines within

an IDE is very much desired but often not supported. Mocking a task, so it

is not really executed, is a simple feature, but which provider supports this?

Sometimes the only thing left is to develop something yourself.

As an example, unit testing an Azure DevOps pipeline is explained in

this section. This is a real example using a relatively simple unit test

framework.1

The example makes use of a build unit test framework to manipulate
the pipeline and communicate with the Azure DevOps platform. The
framework makes use of JUnit 5 as a testing framework and uses the
snakeyaml and jgit libraries.

1 The code of this framework is published on the Github page of the author,
however it is still experimental at this stage.

Chapter 6 Testing Pipelines

289

To manipulate the pipeline and make it testable, the unit test

framework implements the following features:

•	 The pipeline, which consists of one or more YAML files,

is wrapped into a Java (pipeline) object and loaded into

the Junit test class. The Junit tests make use of various

methods that help in realizing different test cases.

•	 It must be possible to override variables and

parameters in the pipeline.

•	 It must be possible to skip (disable) certain pipeline

stages, jobs, and steps.

•	 It must be possible to add a clause to continue in

case of an error.

•	 It must be possible to inject custom code into the

pipeline.

•	 It must be possible to stub/mock tasks in the

pipeline. This means it must also be possible to

mock a deployment, for example. This can be

realized by replacing a task with a script task with

some custom code.

•	 If mocking is not used for some reason, it must

be possible to intercept commands to prevent

disruptive actions (using a dry-run flag, for example).

•	 It must be possible to mimic other branches,

replacing the current branch with a given branch.

•	 It must be possible to check on fail-fast behavior; if

a unit test fails, the pipeline must stop immediately

(after notification).

•	 It must be possible to retrieve the results of the

pipeline run.

Chapter 6 Testing Pipelines

290

•	 The manipulated pipeline code (a modified copy of the

original pipeline code) is deployed to an Azure DevOps

test environment (a specific Azure DevOps project used

for testing pipelines) from where it is started.

•	 The pom.xml file is updated; the connection and

developerConnection in the pom.xml file must point to

the Azure DevOps test environment (project) instead of

the original Azure DevOps project.

•	 Pipeline results are retrieved using an Azure DevOps

API and exposed in JUnit tests. They are used to

check whether the outcome matches the prediction.

Unfortunately, the Azure DevOps API provides only

rudimentary test results.

Figure 6-1 visualizes the setup.

Git

Original Project

Pipelines

Git

Sandbox (Test) Project

Pipelines

Update original repo a�er finished tes�ng
(manually)

Push to Git
(automated by test framework)

Get Pipeline Run Result
(automated by test

framework)

IDE +
Uni�est

framework

AWS account

AWS account

App

App

Account: 486439332092
Region: us-east-1
Environment: acctest

Account: 497562947267
Region: us-east-2
Environment: dev

SCM trigger

Clone

SCM trigger

Figure 6-1.  Setup unit test Azure DevOps pipelines

Chapter 6 Testing Pipelines

291

With this picture in mind, consider the following steps. The application

code is located in a Git repository in the original Azure DevOps project.

This code is cloned to another repository in an Azure DevOps test

project. This test repository is checked out (manually) and resides on the

workstation of the developer.

The developer starts developing a pipeline, as listed in Listing 6-1. This

is the YAML file with the name pipeline.yml. For readability reasons,

various stages are omitted from this pipeline.

Listing 6-1.  pipeline.yml

name: $(Date:yyyyMMdd)$(Rev:.r)

parameters:

- name: environment

 type: string

 default: acctest

 values:

 - dev

 - systest

 - acctest

 - prod

variables:

- name: aws_connection

 value: 486439332092

- name: aws_region

 value: us-east-1

stages:

- stage: Execute_build

 displayName: Execute build

 condition: always()

 jobs:

Chapter 6 Testing Pipelines

292

 - job: Tasks

 pool: Default

 steps:

 - script: echo 'Execute build'

 - task: Maven@3

 displayName: Maven Package

 inputs:

 mavenPomFile: pom.xml

 condition: always()

 - task: CopyFiles@2

 displayName: Copy Files to artifact staging directory

 inputs:

 SourceFolder: $(System.DefaultWorkingDirectory)

 Contents: '**/target/*.?(war|jar)'

 TargetFolder: $(Build.ArtifactStagingDirectory)

 - upload: $(Build.ArtifactStagingDirectory)

 artifact: drop

- stage: Analyze_code

 displayName: Analyze code

 condition: eq(variables['Build.SourceBranchName'], 'main')

 jobs:

 - job: Tasks

 pool: Default

 steps:

 - script: |

 pip install whispers

 whispers ./

- stage: Deploy_artifact_to_test

 displayName: Deploy artifact to test

 condition: eq(variables['Build.SourceBranchName'], 'main')

Chapter 6 Testing Pipelines

293

 jobs:

 - deployment: Deploy

 pool: Default

 environment: ${{ parameters.environment }}

 strategy:

 runOnce:

 deploy:

 steps:

 - task: AWSShellScript@1

 inputs:

 awsCredentials: $(aws_connection)

 regionName: $(aws_region)

 scriptType: inline

 inlineScript: |

 #!/bin/bash

 set -ex

 �export artifact=`find $(Pipeline.Workspace)/. -name

'cdk*.jar'`

 echo "Deploying stack"

 �cdk deploy --app '${JAVA_HOME_11_X64}/bin/java -cp

$artifact com.myorg.myapp.Stack' \

 -c env=${{ parameters.environment }} \

 --all \

 --ci \

 --require-approval never

 displayName: Deploy to AWS

This pipeline builds a Java artifact (application) using Maven, after

which a security scan is performed using the tool Whispers. This scan is

performed only in case the branch in which the pipeline resides is the

main branch. If the current branch is the main branch, the artifact is

Chapter 6 Testing Pipelines

294

deployed to an existing AWS account with account ID 486439332092 in a

certain region (us-east-1; N. Virginia). Within each AWS account, virtual

test environments are created, and the artifact runs in one of these

virtual test environments. By default, the virtual test environment is the

acceptance test environment (acctest).

When the pipeline is (unit) tested, a couple of actions are performed.

The developer creates the unit tests, commits them, and runs the unit tests.

This invokes the unit test framework, which makes a copy of the pipeline.

yml files, and manipulates it according to the JUnit test. The manipulated

pipeline file is then pushed to the test repository, and the pipeline in

the Azure Test project starts running. The results of the pipeline run are

retrieved—using an Azure DevOps API call—after each test is finished.

To make manipulation of the pipeline possible, the JUnit tests are

defined as shown in Listing 6-2.

Listing 6-2.  PipelineUnit.java

import org.junit.jupiter.api.AfterAll;

import org.junit.jupiter.api.BeforeAll;

import org.junit.jupiter.api.Test;

import java.io.IOException;

public class PipelineUnit {

 private static AzDoPipeline pipeline;

 @BeforeAll

 public static void setUpClass() {

 System.out.println("setUpClass");

 // Initialize the pipeline

 pipeline = new AzDoPipeline("pipeline.yml");

 }

Chapter 6 Testing Pipelines

295

 @Test

 public void test1() {

 �// Validate the pipeline flow in case the current

branch is a feature branch (instead of the main branch)

 System.out.println("\nPerform unit test: test.test1");

 pipeline.overrideCurrentBranch("myFeature");

 try {

 pipeline.startPipeline();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 �assertEquals (RunResult.succeeded, pipeline.

getRunResult());

 }

 @Test

 public void test2() {

 // Test the build and deploy stages:

 �// - Use a different AWS account (Ohio based) for

deployment

 �// - Use a different environment (dev instead of

acctest) for deployment

 �// - Skip the 'Analyze code' stage, only the deployment

needs to be tested

 System.out.println("\nPerform unit test: test.test2");

 �pipeline.overrideVariable("aws_connection", "

497562947267");

 pipeline.overrideVariable("aws_region", "us-east-2");

 �pipeline.overrideDefaultParameter("environment", "dev");

 pipeline.skipStage("Analyze_code");

Chapter 6 Testing Pipelines

296

 try {

 pipeline.startPipeline();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 �assertEquals (RunResult.succeeded, pipeline.

getRunResult());

 }

 @AfterAll

 public static void tearDown() {

 System.out.println("\ntearDown");

 }

}

Unit test number 1 (test1) mimics the current branch. What happens

in test1 is that the current branch is replaced with myFeature, so the

pipeline behaves as if it resides in the branch myFeature, even if it resides

in another branch.

The pipeline code in unit test number 2 (test2) is changed by the unit

test framework in such a way that deployment of the application artifact

to AWS does not impact the current application in AWS. In test2 the AWS

account variables are replaced by other values, and the Analyze code stage

is set to skip. This results in a unit test that is performed in a different AWS

account, with account ID 497562947267. The application is even deployed

in a different region (us-east-2; Ohio) and a different virtual environment

(dev). To speed up the test, the Analyze code stage is skipped.

The pipeline, manipulated as part of JUnit test2, results in the code in

Listing 6-3.

Chapter 6 Testing Pipelines

297

Listing 6-3.  Manipulated Version of pipeline.yml as a Result of

JUnit test2

name: $(Date:yyyyMMdd)$(Rev:.r)

parameters:

- name: environment

 type: string

 default: dev

 values:

 - dev

 - systest

 - acctest

 - prod

variables:

- name: aws_connection

 value: 497562947267

- name: aws_region

 value: us-east-2

stages:

- stage: Execute_build

 displayName: Execute build

 condition: always()

 jobs:

 - job: Tasks

 pool: Default

 steps:

 - script: echo 'Execute build'

 - task: Maven@3

 displayName: Maven Package

 inputs:

Chapter 6 Testing Pipelines

298

 mavenPomFile: pom.xml

 condition: always()

 - task: CopyFiles@2

 displayName: Copy Files to artifact staging directory

 inputs:

 SourceFolder: $(System.DefaultWorkingDirectory)

 Contents: '**/target/*.?(war|jar)'

 TargetFolder: $(Build.ArtifactStagingDirectory)

 - upload: $(Build.ArtifactStagingDirectory)

 artifact: drop

- stage: Analyze_code

 displayName: Analyze code

 condition: eq(true, false)

 jobs:

 - job: Tasks

 pool: Default

 steps:

 - script: |

 pip install whispers

 whispers ./

- stage: Deploy_artifact_to_test

 displayName: Deploy artifact to test

 condition: eq(variables['Build.SourceBranchName'], 'main')

 jobs:

 - deployment: Deploy

 pool: Default

 environment: ${{ parameters.environment }}

 strategy:

 runOnce:

 deploy:

Chapter 6 Testing Pipelines

299

 steps:

 - task: AWSShellScript@1

 inputs:

 awsCredentials: $(aws_connection)

 regionName: $(aws_region)

 scriptType: inline

 inlineScript: |

 #!/bin/bash

 set -ex

 �export artifact=`find $(Pipeline.Workspace)/. -name

'cdk*.jar'`

 echo "Deploying stack"

 �cdk deploy --app '${JAVA_HOME_11_X64}/bin/

java -cp $artifact com.myorg.myapp.Stack' \

 -c env=${{ parameters.environment }} \

 --all \

 --ci \

 --require-approval never

 displayName: Deploy to AWS

Note A zure DevOps does not support disabling stages at the
moment. To skip a stage, a condition is used.

This way of testing has a lot of advantages. Without constantly

changing the original YAML file and committing it in an SCM, the pipeline

is manipulated by the JUnit test cases instead. This test approach is simple

and also prevents the following:

•	 High commit rates in the original SCM repository

because the original YAML file is not changed

constantly.

Chapter 6 Testing Pipelines

300

•	 Errors slipping in as a result of constantly changing the

YAML file.

•	 Pollution of the SCM history, pipeline dashboards, and

pipeline overviews. Because the tests run in another

Azure DevOps project, the SCM history, the pipeline

dashboards, and the pipeline overviews of the original

Azure DevOps project are not affected.

•	 Long wait times. If you want to focus on the test of a

certain stage or task, it is easy to skip stages or tasks you

don’t want to see run. This only costs time.

•	 Other destructive actions, such as tagging the

application code in the code repository, tagging

the pipeline, or deploying the application to a test

environment, which is already in use by the QA team.

�Performance Tests
Performance testing does not apply to the performance tests of the

application, but to the performance test of the pipeline itself. Important to

keep in mind is that fast feedback is of utmost importance. The processing

time of the pipeline must be as short as possible. Your pipeline may be

affected by various types of performance penalties.

•	 The execution time of the pipeline takes too long. One

underlying problem could be that compute and/or

storage capacity is insufficient. This can be solved by

scaling up the infrastructure.

•	 Another reason why the execution time of a pipeline

takes too long is that the design is not optimized for

speed. The solution can be found in revising the build

strategy and/or redesigning parts of the pipeline.

Chapter 6 Testing Pipelines

301

•	 Queuing occurs. The time a pipeline stays in the

queue adds up to the processing time of the pipeline.

Scaling up the infrastructure and applying fine-grained

prioritization are solutions that could solve this.

Performance tests are focused on both pipeline execution time and

pipeline queuing time. It has been discussed how parallelism helps in

speeding up the pipeline processing time. Let’s put it to the test and look

at a real example of a pipeline containing Execute build, Analyze code, and

Deploy artifact to test stages.2 The Execute build stage contains a Maven

build task, building a Java application.3 The Analyze code stage contains

three tasks: a SonarQube scan, a Fortify scan, and a Whispers scan. The

Deploy artifact to test stage deploys the artifact to an AWS test account.

All stages and tasks are executed in sequential order, resulting in the

execution times shown in Figure 6-2.

Figure 6-2.  Stages in sequential order

2 Queuing time was not measured, so this was not taken into account.
3 This application has a relatively large codebase, so the effect of parallelization
becomes apparent.

Chapter 6 Testing Pipelines

302

Most platforms provide the necessary information related to the

performance of a pipeline. The processing times of stages, jobs, tasks, and

the pipeline as a whole are shown in Figure 6-2. The figure shows that

the overall execution time of this pipeline is 22 minutes and 7 seconds.

This is not very fast. The Analyze code stage costs relatively a lot of time

and contributes a lot to the overall processing time. The Analyze code

stage is a bottleneck. The individual tasks in the Analyze code stage are

set up in such a way that they do not depend on the output of the Execute

build stage.

So, nothing prevents us from executing the Analyze code stage

in parallel instead of sequentially executing the three stages. This

considerably shortens the overall execution time of the pipeline. This is

clearly expressed in the pipeline run in Figure 6-3. The Execute build and

Analyze code stages run in parallel. The Deploy artifact to test stage has a

dependency on the Execute build stage and can be started only after the

artifact has been built. There is little that can be optimized here. Running

the Analyze code stage in parallel reduces the total execution time of the

pipeline to 12 minutes and 43 seconds. Note that the Deploy artifact to test

stage does not wait until the Analyze code stage is finished.

Chapter 6 Testing Pipelines

303

Figure 6-3.  Analyze code stage in parallel

Of course, it is possible to optimize this a bit more. The individual tasks

in the Analyze code stage are still executed sequentially. These can also be

run in parallel. Let’s see what that brings us; see Figure 6-4.

Chapter 6 Testing Pipelines

304

Figure 6-4.  Analyze code tasks in parallel

Again, the total pipeline execution time has been brought back

to normal proportions, and the pipeline fully executes well within 10

minutes. Of course, this is just one of the measures to increase pipeline

performance. Experience showed that after applying a combination of

measures such as pipeline caching, parallelization, and multithreaded

builds, pipeline execution time could be reduced by 75 percent.

Chapter 6 Testing Pipelines

305

As shown in this example, the platform registers the execution times

of multiple levels in the pipeline, and this information can be used to spot

bottlenecks in the pipeline execution.

�Pipeline Compliance and Security Tests
A pipeline must be checked for potential vulnerabilities to ensure that it

is configured properly to protect sensitive data and prevent unauthorized

access. This can include things such as checking for vulnerable

dependencies with external tools, testing authentication, checking access

controls, and conducting regular security audits.

In addition, some business organizations define policies to which

a pipeline must comply. This means certain settings are prohibited or

certain tasks are mandatory. If the pipeline does not meet these policies,

it is blocked from execution or reported to a central department. This

compliance check is not performed by the pipeline itself, of course; that

would not make any sense. The compliance check is integrated into the

platform, as a hook or decorator, for example. This adds a pre-job to the

pipeline, which is always executed as the first action before the pipeline

starts. If the pipeline does not comply, the execution is aborted or the

noncompliant pipeline is reported. Here are some examples of policies

that organizations could enforce:

•	 One of the policies an organization may enforce is the

existence of certain stages and/or tasks. For example,

the pipeline must have an Analyze code stage with two

mandatory tasks that perform a SonarQube, a NexusIQ,

and a Whispers scan.

•	 A deployment to production must have a Perform

dual control stage. Pipelines without this stage are

Chapter 6 Testing Pipelines

306

not compliant. In addition, if the pipeline was started

manually, it may not be approved by the same person.

•	 Some platforms have the opportunity to continue if a

certain error occurs. This could also mean that some

quality gates can be bypassed. Tasks with the setting

continue on error = true are reported or blocked.

•	 Stages or tasks executed on a nonproduction server/

node are reported or blocked. On some platforms,

it is possible to assign your laptop as a server to

execute a pipeline. Consider the risk if the deployment

of an artifact to production is executed on a

nonsecured laptop.

•	 To enforce the requirement “Do not retrieve libraries or

external resources directly from an Internet location,”

the pipeline is scanned for service connections with a

nonauthenticated endpoint. If the pipeline uses such a

service connection, it is reported or blocked.

•	 Artifacts must be stored in a binary repository. One

of the policies may enforce the existence of a Publish

artifact stage using a service connection with a specific

endpoint configured.

•	 All resources that contribute to the creation and

deployment of a release to a production environment

must be prohibited from deletion. This applies to code

repositories, pipelines, and artifacts.

Chapter 6 Testing Pipelines

307

�Acceptance Tests
Whether the development team uses simplified pipeline development

or advanced pipeline development, at some point the pipeline must be

accepted for usage.

Validating the quality of the pipeline in simplified pipeline

development poses risks because the pipeline is not thoroughly tested.

Acceptance tests do not play an explicit role in simplified pipeline

development. Accepting the quality of the pipeline is implicit. It is a

process of changing the pipeline, pushing it to a repo, and watching its

behavior. If it does not work properly, this step is repeated. Accepting the

pipeline is nothing more than continuously implementing the adjusted

pipeline and seeing it working in its normal environment until the

expectations are met.

An acceptance test in advanced pipeline development involves the

execution of all the stages in the assembly line. This includes a Perform test

stage in which the pipeline is executed in a pipeline test environment. If

all stages in the assembly line are passed, the quality of the pipeline can be

considered sufficient, and the pipeline can be implemented (used).

�Summary
You learned about the following topics in this chapter:

•	 Unit testing can be performed using a separate pipeline

test environment; unit testing was demonstrated using

an example in which a unit test framework was used.

•	 Pipeline testing in a separate test environment prevents

high commit rates, destructive actions, pollution of

the SCM history, and pollution of the dashboards and

overviews of the regular pipeline environment.

Chapter 6 Testing Pipelines

308

•	 Executing pipeline performance tests can help with

spotting bottlenecks in execution speed.

•	 Pipeline compliance checks can be used to improve

pipeline quality and to meet organization policies

regarding pipelines.

•	 Pipeline acceptance tests are more explicit if the

pipeline development quality improves.

Chapter 6 Testing Pipelines

309

CHAPTER 7

Pipeline
Implementation
This chapter covers the following:

•	 What pipeline implementation involves

•	 The organizational impact if a new or updated pipeline

is implemented and used

•	 The different types of operating models concerning

integration infrastructure and the responsibilities of the

team and the organization

•	 How an application implementation can benefit from

using additional features such as a runbook, a release

note, and artifact promotion

When an application is deployed to production for the first time,

a lot of things have to be arranged. Certificates must be requested and

installed. Credentials and other secrets must be arranged and stored

safely. Application monitoring must be set up, etc. Assuming that not all

activities in the software supply chain are, or can be, automated, some

manual tasks are involved. In addition, the process of managing and

using the application must be in order. The team must know what to do

if an application fails or behaves badly. Procedures for change, incident,

problem, and availability management must be in place.

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_7

https://doi.org/10.1007/978-1-4842-9228-0_7

310

The same applies to a pipeline. The environment in which the pipeline

runs has to be prepared and scaled. The platform on which the pipeline

runs may have external connections that need to be secured, and both the

integration platform infrastructure and the pipelines themselves need to

be monitored. If a pipeline fails or does not work the way it should, the

team must react properly. Only after these preparations have been done is

the pipeline ready to be used. Implementing a pipeline involves more work

than meets the eye.

�Pipeline Implementation
The implementation of a pipeline itself is a bit odd. If the implementation

of a pipeline is compared with the implementation of an application, the

pipeline needs to be configured for and deployed to a target environment.

But what is the target environment in the case of pipelines, and can

we speak of the deployment of a pipeline? In the pipeline of pipelines

discussion, the conclusion was that deploying a pipeline to production is

nothing more than pushing the pipeline code to the remote repository and

merging it with the mainline. Figure 7-1 illustrates this behavior.

Chapter 7 Pipeline Implementation

311

CD pipeline

Pipeline code

E.g. Repository with
fork (or clone)

CI pipeline

Application
artifact

Trunk
(main branch)

Deploy artifact to production:
Merge (pipeline code to mainline

Application code

CD pipeline

Pipeline code

CI pipeline

Application code

Runtime production

Application
artifact

Runtime test-1

Pipeline test environment

Pipeline regular (production) environment Runtime test-1

Runtime test-2

Figure 7-1.  Pipeline implementation

In Figure 7-1, the new or updated pipeline code resides in another

branch in the same repository as the application, or it resides in another

repository, which is cloned from the original repository. This depends

on the pipeline development method. The pipeline code is tested in a

pipeline test environment, which builds and deploys the application to a

test environment, called Runtime test-1. Merging the pipeline code with

the mainline means that the pipeline from that moment is implemented

and can be used to deploy to all target environments (Runtime test-1,

Runtime test-2, and Runtime production).

�Organizational Impact
A pipeline is developed according to requirements and guidelines and

properly tested before it can be used. This means the functional behavior

is according to the specifications, the performance of the pipeline is tested

and meets the criteria, security measures are in place, and the pipeline

meets the compliance specifications of the organization. Because the

pipeline is used by the DevOps team, all team members must be confident

Chapter 7 Pipeline Implementation

312

that it is usable. If needed, documented instructions about the pipeline’s

use, technical setup, and maintenance are drafted. This is not mandatory,

but it can help to get the whole team prepared. The team decides whether

documentation is needed. They must approve the readiness of the

pipeline.

Every time a new version of a pipeline is used, its limitations must be

recognized, and known issues should be logged. Register the requirements

that were not realized. Register mitigating actions, such as manual checks,

if some requirement is not implemented but may pose a risk.

Both the team and the business evaluate possible gaps and other

improvements that can be made. Each gap is put on the backlog and is

prioritized. The involvement of the business is mainly about the release

strategy and the use of organization policies. Is it needed to deploy each

realized feature to production within 15 minutes, or is it still sufficient to

combine features into small increments and release them with a one-week

frequency? If something changes in these aspects, the workflow of the

team and possibly the design of the pipeline are impacted. A governance

structure has to be in place to perform these evaluations. Make the time

as a team to evaluate or, even better, establish a process of continuous

improvement, not only for application development but also for pipeline

development.

If not configured already, define what the notification structure

should look like. During the development of the pipeline, the whole team

probably receives the same email with the status of the pipeline run and

with the request to approve a deployment. Just before implementing a

pipeline, recipients must be configured, and notifications are assigned,

so every team member receives only the specific information in which

they are interested. Prevent information overloading and make use of

dashboards to visualize important information.

Chapter 7 Pipeline Implementation

313

�Team Discipline
Even if the team is enthusiastic about automation and working with

pipelines, it still happens that certain things are a bit neglected. Pipeline

implementation also means that the team must be disciplined in certain

areas. Some persistent problems are the following:

•	 Breaking builds: One of the principles of continuous

integration is that broken builds must be repaired

immediately. Developers are expected to drop what

they are working on and solve the broken pipeline.

This is a bit of wishful thinking. Developers often don’t

react immediately to this event. That doesn’t have to be

a problem if it doesn’t lead to issues with releasing an

artifact too late. However, leaving the pipeline broken

for one or two days is also not a recommended practice.

One obvious reason why a pipeline can break is that

the committed code is incorrect and cannot be built.

Another reason is that the world around the pipelines

is in flux. External systems can be down, updated,

or not accessible anymore; vulnerability checks are

tightened; credentials or certificates are expired; or the

ALM/integration platform itself suffers from technical

problems. Teams must repair these broken pipelines.

Otherwise, the effort to repair them will increase as

time goes on.

•	 Disabled quality gates: Good practice is that if the code

analysis detects severe or high-ranked vulnerabilities in

the code, the pipeline “breaks” because the quality gate

kicks in. Some pipelines do not have this quality gate

activated, either by accident or on purpose. The latter is

probably because of the following issue.

Chapter 7 Pipeline Implementation

314

•	 Follow-up on code analysis defects: Some teams

have good code analysis hygiene. They solve all the

important vulnerabilities, so the quality gate is passed.

Other teams neglect the code analysis results, disable

the quality gate, and build up technical debt.

•	 Unit test coverage: The same applies to unit test

coverage. Some teams make it a sport to keep the

coverage high. Other teams do not do so. Low unit test

coverage—coverage below a predefined threshold—

should break the pipeline.

•	 Automating tests is lagging: There is often a backlog in

automating tests. Sometimes, the number of people

involved in automating tests is limited, causing a large

backlog in test automation. This can happen if test

automation is performed solely by a (small) QA team.

It helps when test automation activities are spread

over the team and developers are also involved in

developing automated tests.

Depending on the team and its maturity, there are more persistent

problems. Some teams still manage to bypass the pipeline and deploy to

production in another way, or they perform continuous integration of a

develop branch in the pipeline, while still creating a release artifact from

the main branch on their local development machine. If the pressure is on,

pull requests are approved without looking at the code. This is all part of

growing up, but these problems must be addressed.

�Integration Platform
Depending on the type of integration platform used, the responsibilities

of setting up and managing the infrastructure differ. In this context,

Chapter 7 Pipeline Implementation

315

integration infrastructure involves the integration platform (middleware)

like Jenkins and additional tooling used by pipelines such as

SonarQube, deployment tools, etc. Integration infrastructure also

includes the infrastructure on which this all runs. This results in several

operating models.

SaaS model: A complete SaaS solution offers a

full integration platform, creating fewer concerns

for the DevOps team. Because of the shared

responsibilities, the DevOps team can solely

focus on implementing pipelines, while the SaaS

provider is responsible for managing the complete

integration platform stack, including hardening and

scaling servers and regularly patching the software.

Platforms such as Azure DevOps or CircleCI Cloud

fall into this category.

IaaS model: It is also possible to make use of

infrastructure as a service (IaaS) in which the

infrastructure provider manages the server

landscape, while the integration platform stack

is managed by either a separate IT4IT team or

the DevOps team itself. In this context, the IT4IT,

or DevOps, team gets more responsibilities,

from managing a Kubernetes cluster to regularly

upgrading containers, patching software, and

installing plugins. The team also has to determine

whether the platform is sufficiently scaled. Maybe

the infrastructure was set up once, but pipeline

performance tests showed that the capacity is not

enough anymore with the introduction of new

pipelines. Rescaling the infrastructure is required,

so the performance criteria are met again. In

Chapter 7 Pipeline Implementation

316

addition to this, offloading work to separate servers/

containers must be considered. If the build, code

analysis, tests, and deployment are all executed

on the same server, moving certain stages to other

servers/nodes/agents helps with spreading the

load. This type of operating model can typically be

achieved with Jenkins installed on plain servers

such as AWS EC2 and Azure VMs or Jenkins in a

Docker container running on Azure Kubernetes

Service (AKS) or even AWS ECS Fargate.

Self-hosting model: An organization can also decide

that it wants to host the complete integration

platform infrastructure. This means that even

more preparations are needed. The following are

additional responsibilities:

•	 Provision the infrastructure on which the integration

platform runs.

•	 Logging, monitoring, and alerting of the infrastructure

must be set up and configured. Determine which

system metrics need to be validated; for example, an

alert is raised if a server uses more than 90 percent CPU

capacity or an alert is raised if disk space is greater than

80 percent.

•	 The final infrastructure needs to be approved. Use a

reference framework such as ISO 25010 (see [25]) as

a guideline to determine whether all (nonfunctional)

requirements are fulfilled, and make sure that the

infrastructure is secure enough. In the latter case, a

reference framework like the NIST Framework for

Improving Critical Infrastructure Cybersecurity can be

used (see [26]).

Chapter 7 Pipeline Implementation

317

In addition to the already mentioned infrastructure preparations in

the various operating models, security measures need to be applied to the

infrastructure. Here are a few examples:

•	 Is the infrastructure secure enough? Make sure all

servers are hardened and vulnerability management is

in place. Patch the servers regularly.

•	 Are all connections secure? The ALM platform/

integration platform maybe communicates with an

SCM system, a work item management system, servers

performing code analysis, etc. Connections need to

be secured using HTTPS, for example (and preferably

using mTLS instead of single-sided TLS).

•	 This also applies to connections with target

environments—both test and production—on which

the application runs.

•	 Refine access by setting permission for a user or a

group. Users who manually start a deployment are not

allowed to approve the deployment themselves.

•	 Configure branch policies if not done already. If the

team uses branches and the pipeline associated with

a branch fails, it should not be possible to merge that

branch into the mainline.

•	 Configure a vault used to store tokens, keys, credentials,

and other secrets.

•	 Configure the infrastructure in such a way that

application code, pipeline (runs), test runs, work items,

pull requests, etc., involved in the creation of a release

artifact, which is deployed to production, cannot be

deleted.

Chapter 7 Pipeline Implementation

318

•	 Install a pipeline compliance scanner. The scanner

validates whether pipelines comply with company

policies.

�Target Environment Preparations
If the team has adopted extended (or advanced) pipeline development,

most of the development and pipeline tests were executed using a

pipeline development/test environment. If the pipeline is ready to be

implemented and used, it is promoted, so it can build and deploy the

application to various target environments. This may include additional

test environments and a production environment. Configure these target

environments to be accessible to the pipeline and deploy over a secure

connection.

The deployed application probably also needs (database) credentials,

certificates, or static data. This has to be requested or generated and

propagated to the target environment so the application can use it.

Preferably, this is an automated process; use operational pipelines

to establish this. The next chapter deals with operational pipelines in

more detail.

In the case of an application test environment, test data needs to be

arranged. Either generate synthetic data or use a copy from production,

but make sure to anonymize the data.

�Playbook
What is the business impact if an incident or a problem with a pipeline

occurs? A failure of a pipeline may lead to damage. For example, an urgent

application fix is created and needs to be deployed. However, the pipeline

does not work because of an infrastructure failure of the integration

platform. This could damage the continuity of a business process if

Chapter 7 Pipeline Implementation

319

the pipeline is unavailable for a long time. ITIL processes also apply

to pipelines. Playbooks can play a useful role in incident and problem

management processes.

A playbook contains documented investigation methods to detect and

resolve problems. They are useful for investigating incidents or failures.

Playbooks can also be used for pipelines. Drafting pipeline playbooks

can already be started during pipeline testing. Common pipeline failures

and solutions are added to the playbook. Of course, playbooks are never

complete, and after implementation and usage of the pipelines, more

cases will occur. These cases are also added to the playbook.

�Application Implementation
It is hard to speak about pipeline implementation without mentioning

application implementation. Application implementation is, after all,

the goal of using a pipeline in the first place. Adding certain features to a

pipeline can contribute to a solid application implementation experience.

Consider using or implementing these features.

�Runbook
“A runbook is a set of processes and procedures that you
execute repetitively to support various enterprise tasks.”

Reference [33]

Why do you need a runbook if you use automated pipelines? That is a

good question. A pipeline is already orchestrating the implementation of

an application, right? But teams do still work with a runbook even if they

also make use of pipelines. There are a couple of reasons why the use of a

runbook is still valid.

Chapter 7 Pipeline Implementation

320

•	 There are still one-off tasks or activities that are not part

of CI/CD. The start of CI is a commit to a repository.

The end of CD is the deployment of an artifact to

a production environment. Plenty of tasks fall into

the processes before and after CI/CD. Think about

requesting an Azure subscription, configuring the

IAM roles, and assigning team members. In addition,

regular maintenance or migration involves activities

that are also not part of a CI/CD pipeline. Sometimes

these activities are complex and require a detailed

runbook.

•	 Another reason to use a runbook is the first-time

implementation of a complete system. You don’t have

CI/CD arranged on day one. The implementation

of a new system in production maybe requires the

execution of several pipelines in a specific order;

even in the case of a microservice architecture, some

pipelines need to run in a specific order. Think about

setting up the base infrastructure components used by

all microservices.

Everything can be automated, even a runbook. So, if a simple

spreadsheet is not sufficient, use one of the several automated runbook

tools. And because you already developing pipelines, setting up an

orchestration pipeline to implement the runbook is also an option.

However, the question is whether the benefit outweighs the effort and

money spent. That is a question only the team can answer.

�Release Note
A release note is a change log, describing the updates of the software. It

may also include proof that all new features are tested and accepted. So, a

Chapter 7 Pipeline Implementation

321

release note is associated with an artifact and contains information about

the delivered features and (optionally) a test report. Because this book is

about CI/CD design, the creation of release notes should not be done by

hand but created automatically. There is one thing to consider, though.

Between two production releases, there are probably multiple release

candidates, including new features and changes. The last release candidate

is marked as “the release” and deployed to production. Potentially,

multiple release notes are created in between, each one associated with a

release candidate. Only the final artifact deployed to production consists

of all new features since the previous production deployment. Most likely

the latest release note is very concise, describing just a bug fix. This is a bit

unfortunate. The release note of the production artifact ideally consists

of all changes between the previous production release and the current

production release. In addition, the release note should also contain all

test results performed on the release deployed to production.

To solve this problem, the system must keep track of all changes

between the latest and next production releases and assemble all

intermediate metadata to form an aggregated release note. After each

production deployment, the status of the metadata is reset, and the

assemble process restarts again. See Figure 7-2.

Chapter 7 Pipeline Implementation

322

Release candidate 1

Release candidate 2

Release (final)

Final release note

Metadata 1

Release note 2

Release note 1

Metadata 1 + 2

Metadata 1 + 2 + 3

Release in
production

Metadata reset

Figure 7-2.  Aggregation of release note data

Because a release note potentially contains all features of the artifact

and the associated test results, its creation should typically be done after

all tests are performed. The metadata consisting of all features is generated

in the Publish artifact stage, in which all data of the artifacts’ changes and

features are gathered. The Perform test stage generates all test results. It

seems logical that the creation of the release note takes place as part of the

Notify actors stage.

Consider this case:

A team wants to automate the creation of a release note. They use
a separate issue tracker system to register the work items. Code is
stored in Git, and artifacts are stored in an artifact repository.

Chapter 7 Pipeline Implementation

323

The team is informed about each production deployment using an
email (both successful and unsuccessful deployments).

Release notes are published on a wiki page. The team wants to have
an aggregated release note, containing all features since the last
release was deployed to production, including the test results of the
last release.

A typical BPMN model could look like Figure 7-3.

Chapter 7 Pipeline Implementation

324

E-
m

ai
l s

er
ve

r

Send e-mail

Ar
tif

ac
t r

ep
os

ito
ry

Store artifact

C
I/C

D
 P

ip
el

in
e

N
ot

ify
 a

ct
or

 s
ta

ge
Pi

pe
lin

e
st

or
ag

ee
Pe

rfo
rm

 te
st

 s
ta

ge
Pu

bl
is

h
Ar

tif
ac

t s
ta

ge
P

P
e

Store feature
metadata

Publish artifact
to repository

Start "Publish
artifact" stage

tart "Publish S
rtifact" stagegar

Start "Perform
test" stage
tart "Perform St
test stage

Perform tests Store testresultsStore testresults

Event production
deployment (only

successful)

ent production Eve
y dde

successful)s

Inform user
about

deployment to
production

Publish
releasenote

Reset
releasenote
metadata

MetadataMetadataM t d t

W
ik

i

Create wiki pageCreate wiki page

Figure 7-3.  BPMN, creating release notes

Chapter 7 Pipeline Implementation

325

When the Publish artifact stage is executed, the artifact is stored in an

artifact repository, after which a specific task assembles all data associated

with the artifact. This means the code commit message is retrieved and the

work items associated with the release artifact are retrieved (not present in

the diagram for clarity reasons). This information is stored in a database so

it can be used later.

At the end of the Perform test stage, the test results are known. The data

of the test results are gathered and also stored in the same database.

At a certain moment in the CI/CD process, the artifact is (successfully)

deployed to a production environment. The result of the deployment is

passed to the Notify actors stage, and the Publish release note task retrieves

the metadata from the database, assembles the data, formats it to a

release note, and publishes it to a wiki page. After this has been done, the

metadata in the database is reset to the new start situation.

�Artifact Promotion
The result of the build, package, and publish stages is an artifact stored

in a binary repository. This artifact is a release candidate, meaning that it

potentially can be deployed to production. But first, it has to run through

various test cycles, so anything can happen along the way. During the test

process, the artifact moves near production, but only a successfully tested

artifact is allowed to be deployed to production. Release candidates that

get stranded somewhere in the test process should be flagged because

potentially there is a risk that the wrong release is deployed to production.

The problem is that all release candidates, both the ones that failed the tests

and the ones that passed the tests, are kept in the same binary repository.

It must be possible to make a distinction between failed release candidates

and successful releases. To make sure that release candidates that failed

during testing are prevented from being deployed to production, a quality

gate can be added; this is an additional check to determine that the artifact

is valid. This check can be implemented in the Validate exit criteria stage.

Chapter 7 Pipeline Implementation

326

But based on what information does this quality gate work? There are a

couple of options to prevent the wrong release from being deployed.

•	 The artifact is promoted from stage to stage. One type

of implementation is that the artifact moves through

different binary repositories. So after integration

testing, acceptance testing, and performance testing,

the artifact is moved from one repository to the next.

The last repository contains the production-ready

releases, so that is the repository used in the Deploy

artifact to the production stage. An extra condition/

quality gate is not even needed because the correct

repository is already used. A big disadvantage of this

solution is that multiple repositories are required and

the artifact is moved several times.

•	 Another option is to manually promote an artifact.

This feature is offered by some ALM platforms. The

problem with this option is that it is a manual action. A

user must actively change the status of an artifact from

prerelease to release, for example. The dual control

stage is already a manual action, so what is the point

to add more of them? To be honest, manual artifact

promotion is something to avoid.

•	 Instead of dragging the same artifact through different

repositories, there are also options to keep all artifacts

in the same repository and provide metadata. After

specific stages and tasks are finished and testing was

successful, the metadata of the artifact is updated

(using curl or Maven, for example). Based on its

metadata, the status of the artifact is clear.

Chapter 7 Pipeline Implementation

327

Figure 7-4 represents a unit test framework artifact with additional

metadata in the format of an XML file. The metadata file (unittest-1.0-

metadata.xml) contains additional information about the status of the

test tasks.

Figure 7-4.  Storing additional metadata

Before the artifact is downloaded from the artifact repository and

deployed to production, its metadata is read and interpreted (using a

quality gate task in the Validate exit criteria stage). Because the acceptance

test in the metadata on the left of Figure 7-5 indicates that the acceptance

test failed, the pipeline ends here, and deployment to production does not

take place. In the second example, on the right, the metadata shows that

all tests were successful. The quality gate is passed, and the deployment

can start.

Chapter 7 Pipeline Implementation

328

unittest-1.0-metadata.xml

Release failed the tests

unittest-1.0-metadata.xml

Tests are completed successfully

Figure 7-5.  Storing metadata with test results

Note T his is less of an issue if both the CI and CD parts are
implemented as one physical pipeline. The pipeline already fails
before the Validate exit criteria stage is reached. However, it is a risk
if the implementation consists of separate pipelines. One example in
which this is an issue is in the case of a multiteam build strategy, in
which there is one separate CD pipeline, processing artifacts from
multiple CI pipelines.

�Summary
You learned about the following topics in this chapter:

•	 Prepare the team before a pipeline is implemented

and used.

•	 Known issues and limitations of a pipeline should

be logged and possible gaps and improvements

evaluated.

•	 Requirements that were not realized must be

registered, including mitigating actions.

Chapter 7 Pipeline Implementation

329

•	 Address persistent problems in teams (team

discipline).

•	 Depending on the type of integration infrastructure,

a team has more or fewer responsibilities. A few

operational models were covered.

•	 SaaS solution

•	 IaaS solution

•	 Self-hosting solution

•	 If the pipeline is implemented, more application

runtime environments need to be configured.

•	 Consider the use of additional features such as

runbooks, release notes, and artifact promotion to

improve the application implementation experience.

Chapter 7 Pipeline Implementation

331

CHAPTER 8

Operate and Monitor
This chapter covers the following:

•	 How pipelines can be of use in operational processes

•	 The importance of monitoring pipelines and which

types of monitoring are distinguished

•	 Some examples of the types of monitoring

•	 How information overloading can be reduced and

how information can be presented, using different

viewpoints

This chapter discusses what it takes to maintain a pipeline compared

to maintaining an application.

�Manage the Integration Platform
The previous chapter discussed the activities involved with operating

models and setting up the integration platform, so we won’t repeat those

topics here. Summarized, the following operating models were identified:

•	 SaaS solution: The provider of the ALM/integration

platform manages the platform, and the DevOps team

can focus on developing automated pipelines.

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_8

https://doi.org/10.1007/978-1-4842-9228-0_8

332

•	 IaaS solution: The provider of the infrastructure

manages the infrastructure, while the DevOps team

(or IT4IT team) manages the integration platform

middleware.

•	 Self-hosting: The organization is completely responsible

for managing the infrastructure and the integration

platform middleware.

In addition to the initial setup of the infrastructure and platform,

the DevOps/IT4IT team also has to operate, maintain, and monitor the

platform. It is important to emphasize that depending on the chosen

operating model, this can take a significant amount of time and effort from

the team.

�Operational Pipelines
Pipelines are often explained in the context of building, testing, and

deploying an application, but there are plenty of other areas in which

pipelines also play a role. They are not necessarily CI/CD pipelines, but

just pipelines used for different purposes. One area in which the use

of pipelines is beneficial is in performing operational tasks associated

with maintaining an application. Various activities are needed to keep

the application running. These tasks should be automated as much as

possible. Manual operational tasks should be discouraged for several

reasons. Automating tasks speeds up operational activities and makes

them repeatable, which results in more predictable results. In addition, an

automated task is more secure because nobody touches the production

environment with their hands. Here are some examples of operational

pipelines:

Chapter 8 Operate and Monitor

333

•	 Check for almost expired certificates: The pipeline

determines the expiration date of certificates according

to a daily schedule. If a pipeline is almost expired,

an alert is raised to inform the team that a certificate

renewal is needed.

•	 Renew certificates: To extend on the previous bullet, a

more sophisticated pipeline not only warns the team

about the expired certificate but also retrieves a new

certificate and installs it in the target environment.

Any party interested in this renewed certificate is

automatically informed, preferably using a publish/

subscribe mechanism or, as an alternative, by sending

an email.

•	 Infrastructure drift detection: Drift detection means that

the target infrastructure has been changed compared

to the infrastructure code. This is called drift, a topic

explained in the paragraph about ‘Security Monitoring’.

There are multiple ways to detect infrastructure drift

and to warn a team if such a thing happens. One

way is to trigger a function, which detects whether

infrastructure drift happened. This function is invoked

using a pipeline.

•	 Any other repeating function: In addition to the

previous cases, a pipeline can be used for any

repeating operational function. Think about scanning

a production environment for security vulnerabilities,

backing up databases, performing health checks,

and checking deployed artifacts in production to

determine whether they are not compromised (e.g.,

by continuously validating the digital signature of the

artifact).

Chapter 8 Operate and Monitor

334

•	 Configure parameters: Any parameter used by a

running application must be externalized, meaning

that it is not hard-coded. The application reads the

parameter using a file, configuration service, or

database table. To “upload” these parameters, an

operational pipeline can be used.

•	 Upload secrets to a vault: Sometimes secrets like tokens

or database credentials need to be uploaded from a

source location to a target vault. A pipeline can be used

for this.

•	 Manage patches: This means installing infrastructure

patches.

•	 Clean up the test environment: The pipeline contains

scripting to remove unused resources from a target

environment. AWS stacks, for example, are hard

to delete manually if they have dependencies with

certain resources. S3 buckets with versioning enabled

are typically tough to remove by hand. This can be

automated and embedded into an operational pipeline.

Note T he number of operational tasks is infinite. The
recommendation is not to create one operational pipeline per activity
but to add related tasks to one operational pipeline and make it
possible to select a specific task at the start of the pipeline.

Chapter 8 Operate and Monitor

335

�Monitor
There is not much difference between monitoring an application running

in a target environment and monitoring the integration platform and

its pipelines. In both cases, similar characteristics are monitored. Is the

infrastructure healthy? Does the application or pipeline perform well, or

is there a security issue detected? In addition, you may want to monitor

certain business key performance indicators (KPIs), such as what is the

success rate of the pipeline runs, or how long does it take between a work

item being worked on and the actual deployment of the feature associated

with this work item? Generalized, monitoring falls into a few categories.

•	 Systems monitoring: The infrastructure of the

underlying ALM/integration platform is monitored.

This is a type of technical monitoring that covers CPU,

disk and memory usage, network congestion, etc.

•	 Platform monitoring: This can be considered an

extension of systems monitoring. It covers monitoring

the middleware layer of the ALM/integration platform,

including the pipeline performance, health, and

queuing status.

•	 Business monitoring: This covers monitoring KPIs and

relates to metrics of the CI/CD process. It monitors

the functional and process behavior of the platform

and the pipelines. Monitoring KPIs is very specific to a

team’s needs.

•	 Security and compliance monitoring: This has the

responsibility of monitoring all security-related aspects

of the platform and pipelines. Pipeline compliance

monitoring is part of this.

Chapter 8 Operate and Monitor

336

Several websites suggest the top four, six, or ten metrics that you

should monitor. This is arbitrary and should be taken with a grain of salt.

In general, you should always monitor aspects of all categories, such

as the technical health of the system, the performance of the system

and pipelines, and, in the case of organizations with tight security

requirements, the monitoring vulnerabilities or other security-related

aspects of the system. Concerning KPIs, it is up to the team what they think

is important for them. So, no recommendation is given here.

�Systems Monitoring
If the team or organization manages its integration infrastructure, systems

monitoring must also be organized. Systems monitoring is used to validate

whether the infrastructure is still healthy, but it is also used to determine

whether pipelines still run in a decent and fast manner. Bottlenecks in the

infrastructure have an immediate effect on pipeline execution.

Systems monitoring is arranged around various system metrics, such

as the following:

•	 CPU usage

•	 Memory usage

•	 Disk usage

•	 Network usage, like HTTP sessions and HTTP

response times

•	 Errors and logs

•	 Threads and processes

Any anomaly in the behavior is detected by the monitoring and alerted

back to the team. The following case shows why systems monitoring is of

great importance. It shows how CPU usage and the number of executors

on a Jenkins server influence the performance of pipelines.

Chapter 8 Operate and Monitor

337

The Jenkins pipelines of a team run on a (one) Windows server,
with two CPU cores. No additional nodes are used. The number of
executors is set to the default; the pipelines run with two executors.
The Jenkins server runs six pipelines together, implementing a
payment processing system. They developed the following pipelines:

•	 Receive Payment

•	 Process Payment

•	 Process Booking

•	 Book Order

•	 View Payments

•	 Inform Customer

The pipelines represent six microservices that the system
comprises. Each pipeline includes all stages to build, test, and
deploy a microservice. As soon as a code commit occurs, one of the
corresponding pipelines is triggered.

Baseline monitoring of the Windows server reveals that everything

works fine. CPU usage is 45.12 percent, and memory usage is 34.45

percent. This is without any pipeline running. See Figure 8-1.

Chapter 8 Operate and Monitor

338

Figure 8-1.  Baseline systems monitoring

As soon as all the pipelines are triggered at the same time, CPU usage

increases but stays between 90 percent and 95 percent. Memory usage

increases only slightly and stays between 36 percent and 37 percent. CPU

usage is a bit on the high side, but the system is still perfectly able to run

the pipelines. Table 8-1 shows the results.

Table 8-1.  Jenkins Pipeline Runs with Two Executors

Pipeline Start Time with 2
Executors

Execution Time
with 2 Executors

Total Time Until
Completed

(= Start Time +
Execution Time)

Book Order After 0 sec 7 min, 31 sec 7 min, 31 sec

Inform Customer After 0 sec 8 min, 25 sec 8 min, 25 sec

Process Booking After 7 min, 31 sec 8 min, 57 sec 16 min, 28 sec

Process Payment After 8 min, 25 sec 5 min, 5 sec 13 min, 30 sec

Receive Payment After 13 min, 30 sec 4 min, 40 sec 18 min, 10 sec

View Payments After 16 min, 28 sec 9 min, 26 sec 25 min, 54 sec

Chapter 8 Operate and Monitor

339

What stands out is that if all pipelines are triggered at the same time,

not all pipelines start immediately, and the last pipeline (View Payments)

is finished only after 25 minutes and 54 seconds. This means the developer

receives information about the pipeline execution after more than 25

minutes since the code was committed and pushed. This is not a surprise

because the number of executors is set to two, meaning that only two

pipelines are executed at the same time. The other pipelines become

pending until one of the executors is available again. This is problematic if

the commit rate is high because each commit triggers a pipeline.

No problem, you would say. Just increase the number of executors to,

let’s say, four. This changes the results slightly, as shown in Table 8-2.

Table 8-2.  Jenkins Pipeline Runs with Four Executors

Pipeline Start Time with 4
Executors

Execution Time
with 4 Executors

Total Time until
Completed

(= Start Time +
Execution Time)

Book Order After 0 sec 9 min, 19 sec 9 min, 19 sec

Inform Customer After 0 sec 10 min 10 min

Process Booking After 0 sec 14 min 14 min

Process Payment After 0 sec 8 min, 10 sec 8 min, 10 sec

Receive Payment After 8 min, 10 sec 6 min, 12 sec 14 min, 22 sec

View Payments After 9 min, 19 sec 9 min, 2 sec 18 min, 21 sec

The start time of the last pipeline (View Payments) is reduced, from

16 minutes and 28 seconds to 9 minutes and 19 seconds. That is an

improvement, but the overall execution time of most individual pipelines is

Chapter 8 Operate and Monitor

340

increased1 by a couple of minutes. The total time of executing all pipelines,

however, reduces from 25 minutes 54 seconds to 18 minutes 21 seconds.

The CPU capacity is spread over multiple pipelines. This is visible

in the systems monitor as showed in Figure 8-2, which stays most of the

time at 100 percent. Memory usage is still low between 36 percent and

37 percent, meaning that the pipelines are CPU bound and not memory

bound. See Figure 8-2.

Figure 8-2.  Systems monitoring with 100 percent CPU usage

Increasing the number of executors smooths out the Total time until

completed, but it comes with a price. The overall execution time of the

pipelines in concurrent runs increases. This is even more dramatic if the

number of executors is increased to six and all pipelines are started at the

same time. See Table 8-3.

1 Note that the View Payments is even faster with four executors instead of two.
This can be explained because when the pipeline starts, most other pipelines are
already finished, so this pipeline has more CPU resources at its disposal.

Chapter 8 Operate and Monitor

341

Table 8-3.  Jenkins Pipeline Runs with Six Executors

Pipeline Start Time with
6 Executors

Execution Time
with 6 Executors

Total Time until
Completed

(= Start Time +
Execution Time)

Book Order After 0 sec 12 min 12 min

Inform Customer After 0 sec 13 min 13 min

Process Booking After 0 sec 16 min 16 min

Process Payment After 0 sec 11 min 11 min

Receive Payment After 0 sec 10 min 10 min

View Payments After 0 sec 16 min 16 min

Playing with the number of executors results in a shift regarding

Execution time and Total time until completed. If the number of executors

is low, CPU utilization is optimal, resulting in a faster execution time. But

if the number of commits becomes higher, you need to make a choice.

With fewer executors, Execution time of the running pipeline instances is

optimal, but other pipeline instances start to queue. You might want to

increase the number of executors to spread the CPU resources evenly over

the running pipeline. This reduces the Total time until completed but does

increase the Execution time value of all pipelines.

But what if you want a lower Execution time but also a lower Total

time until completed? The only option is to add more computing capacity

because the systems monitor indicates that CPU usage is a bottleneck.

After all, it continuously stays at 100 percent. Adding more capacity can be

achieved by adding more nodes (servers) and offloading pipeline runs to

these nodes so the main Windows server capacity is freed up.

Chapter 8 Operate and Monitor

342

This case shows how to play with the number of executors, and it is a

nice example of using systems monitoring to spot bottlenecks in pipeline

processing.

�Platform Monitoring
Platform monitoring is positioned one level above infrastructural systems

monitoring. Platform monitoring concerns the monitoring of the ALM/

integration platform itself. This includes the platform middleware and the

pipelines. The following are the typical metrics to monitor:

•	 Queue depth of all nodes/servers/agents (to detect

queuing/pending pipelines).

•	 Performance of pipelines.

•	 Number of pipeline runs.

•	 Number of successful and failed pipelines related

to infrastructure problems or issues with external

connections.

•	 Team behavior; a team scheduling thousands of jobs

in a very short time creates a bottleneck for teams

that continuously—but with a low pace—start their

pipelines. When monitoring this, it becomes possible to

address the teams about it (or possibly apply a certain

concurrency policy, if that feature even exists…!).

To be honest, most ALM/integration platforms provide poor support

for dashboards that monitor platform-specific metrics. In general, a lot of

improvements can be made in this department.

Take a look at Figure 8-3. It shows a simple build and deployment

health dashboard, including statistics on the number of (partial)

successful, failed, and canceled pipeline runs in the last 90 days. In

addition, the status of the latest pipeline runs is visible.

Chapter 8 Operate and Monitor

343

Figure 8-3.  Simple health dashboard

Although this dashboard gives some insight into the latest pipeline

runs, it is still a rudimentary dashboard, and in this particular case, it was

not possible to configure a dashboard in such a way that it fulfilled all

the requirements, especially information about pipeline performance is

omitted. Metrics like what is the average processing time? of the various

pipelines and how does it change over time? are hard to monitor. Also

things like how long does a pipeline run remain in the queue before it is

executed? and what are the maximum and average queuing times? are

problematic to monitor, or at least difficult to display in a dashboard.

In general, the requirement to spot any degradation or bottleneck in

pipeline processing because of infrastructure/platform issues was difficult

to be fulfilled with the standard options available for the various analyzed

platforms.

�Business Monitoring
KPIs can be visualized using custom dashboards. A few examples of KPIs

were mentioned in Chapter 3. The next dashboard example visualizes two

KPIs called Lead time and Cycle time. These KPIs need some explanation.

Chapter 8 Operate and Monitor

344

•	 Lead time is the time measured from the moment a

work item is created and the moment it becomes in a

final state (Done). During this time, the code associated

with this work item is developed and tested. The work

item status is set to Done after all tests have been

completed.

Lead time does not say anything about the performance of the

DevOps team. The time between the moment a work item is

created and the moment it is pulled into a sprint and picked up

by a developer can be very long. A work item can stay on the

backlog for a very long time.

•	 Cycle time gives better insight into the performance of

the team. It measures the time between a developer

committing themselves to a work item and the moment

the code for the particular feature has been developed

and tested.

Figure 8-4 visualizes the difference between Lead time and Cycle time.

Workitem (status)

Create
workitem DoneComitted

Cycle time

Lead time

Figure 8-4.  Lead time and Cycle time

The dashboard shows both KPIs. The average Lead time is 91 days,

based on 18 work items (the 10 bugs excluded), while the Cycle time is 23

days on average. This means the 18 work items stayed on the backlog for 68

on average, while the team finished a feature in 23 days on average.

Chapter 8 Operate and Monitor

345

Are there any conclusions to be made, based on this dashboard? The

fact that a work item stays on the backlog for more than two months does

not say anything. Probably there was no real urgency to solve these items.

But based on a Cycle time of 23 days, we can conclude a couple of things

because it takes a relatively long time to finish these work items.

When zooming in on the dashboard, a couple of work items really stand

out. The red-circled dots on the dashboard are work items with a Cycle time of,

respectively, 125.2 days, 74.8 days, and 63.9 days. These work items influence

the average Cycle time negatively. Detailed inspection reveals that these work

items include activities that are performed by another department but are

required to finish the work item. It is not the DevOps team to blame for the

delay, and it may give the wrong impression of the team’s performance; a

careful analysis is required before any conclusion is made.

However, a few conclusions can be made. Splitting work items into

activities performed by the team and activities performed by another

department would have contributed to a more accurate representation of

the teams’ velocity. But even if the outliers are removed, the average Cycle

time is still a couple of days on average. These numbers can be discussed

with the team. See Figure 8-5.

Figure 8-5.  Dashboard, Lead time and Cycle time

Chapter 8 Operate and Monitor

346

�Security Monitoring
Security monitoring covers a broad range of topics. The integration platform

and infrastructure must be secure, and any vulnerabilities or breaches must

be detected by the monitoring systems. In addition, various checks can be

done on the pipelines themselves. For example, a pipeline has to comply

with the company policies. So, let’s zoom in on two examples.

Application monitoring and monitoring of the target environment

on which the application runs are typically not part of integration

platform and infrastructure monitoring. However, there are a few types

of monitoring that do fall into this category. Consider an application

deployed to a certain target environment. The application may not

be altered once deployed, and if it is changed, it can be changed only

using a pipeline redeploy and not manually. The same applies to the

target environment itself. Once the infrastructure has been provisioned

and applications run on it, any manual change of the infrastructure is

not allowed and should be detected. This type of monitoring can be

considered part of pipeline (security) monitoring.

Figure 8-6 shows an example in which part of the infrastructure—a

stack—is provisioned to an AWS account. The infrastructure is provisioned

using IaC, and once provisioned, it can be changed only by re-provisioning

the updated infrastructure code. In this particular screenshot, the stack is

changed manually, indicated by the Drift status. It has the value DRIFTED,

while the default Drift status should be IN_SYNC.

Continuous monitoring of the infrastructure drift or changes in the

applications deployed on this infrastructure is a good way to detect any

manual change in the production environment. A cloud service provider

like AWS has the tools to check for drift of both infrastructure and

Chapter 8 Operate and Monitor

347

applications,2 and continuous monitoring can be done relatively easily.

Any infrastructure drift or nonauthorized application changes are exposed

on the AWS console, as depicted in Figure 8-6.

Figure 8-6.  Drift detection of an AWS stack

Detecting drift of the AWS infrastructure is an automated process, but

it is not triggered automatically. Encapsulating the drift detection function

in a scheduled operational pipeline is one way to detect and monitor drift.

Compliance monitoring validates whether the platform and pipelines

meet the company policies. Any deviation results in a noncompliant flag.

This could mean that the team is just informed about the fact that certain

parts of their setup or pipelines are not compliant, but the compliance

checks could also have a mandatory character. If the pipeline is not

compliant, it is blocked from execution.

The Pipeline Compliance Dashboard in Figure 8-7 shows various

policies that indicate whether a pipeline is compliant. A regular scan is

performed to update the dashboard with the latest information. DevOps

2 Lambda code signing is a way to determine whether running code has been
altered.

Chapter 8 Operate and Monitor

348

teams can view the compliance status of their pipelines. In this particular

example, the pipeline is not compliant because the infrastructure

validation task is omitted from the pipeline. A short explanation of the

problem and the solution are given, as shown here:

This pipeline does not have an ‘AWS Infrastructure scan-
ning’ stage

A production environment must be configured in such a way
that it meets the company security policies. Add the IT4IT
AWS Infrastructure scanning task 2.0 to your pipeline to scan
your infrastructure code and test compliance of the pipeline
using the Validate button.

Perform code analysis
Perform Whispers task

Compliant

Perform SonarQube task

Quality Gates are not by-passed

Perform Infrastructure valida�on task

Book Order pipeline

Inform Customer pipeline

Process Booking pipeline

Process Payment pipeline

Receive Payment pipeline

View Payments pipeline

Dual control stage is available

Devia�on

Validate Close

Use of authorized connec�ons

Repositories cannot be deleted

Pipelines cannot be deleted

Only use produc�on pools

This pipeline does not have a ‘AWS Infrastructure scanning‘ stage

A produc�on environment must be configured in such a way that it meets the company security
policies. Add the IT4IT AWS Infrastructure scanning task 2.0 to your pipeline to scan your
infrastructure code and test compliance of the pipeline by means of the Validate bu�on

Policy

Pipeline Compliance Dashboard

Figure 8-7.  Pipeline Compliance Dashboard

Chapter 8 Operate and Monitor

349

�Share Information
Information can be shared in different ways, but beware that information

overloading of the DevOps team must be prevented. The best way to

demonstrate what an “information sharing” design could look like if

techniques to prevent information overloading are applied is by using a

specific case. Of course, this case depicts only one possible solution, and

teams have to decide for themselves what their information flow will look

like. Consider the following case:

•	 A team uses a feature branch workflow. It makes use
of Microsoft Teams and email to inform the team.

•	 In the case of a feature branch, the results of the
build and unit test stages are sent using an email to
the concerned developer only.

•	 In the case of the trunk (main branch), the pipeline
creates a release. The following requirements apply:

•	 The result of a release build, both successful and
unsuccessful, must be sent to a specific channel
in Microsoft Teams called release build.

•	 The result of all tests (including unit tests), both
successful and unsuccessful, must be sent to a
specific channel in Microsoft Teams called test.

•	 The result of a production deployment, both
successful and unsuccessful, must be sent to
a specific channel in Microsoft Teams called
production deployment.

Chapter 8 Operate and Monitor

350

•	 If a dual control must be performed, an email is sent
to the product owner only; a delegate can view the
product owners’ mailbox.

•	 If a production deployment fails, all team members are
informed about the result using an email. They will not
get any email if the production deployment is successful.

Given these requirements, a design is drafted. The team’s branching

strategy is defined as a feature branch workflow. A typical BPMN model

looks like Figure 8-8.

C
I/C

D
 p

la
tfo

rm

Main + feature branch CI/CD pipelineM i f t b h CI/CD i li

Validate entry
criteria Execute build Perform

unittests

Notify actors

Generic CI/CD
pipeline stages

Package artifactt Publish artifact

TriggerTrigger

Build is OK

Unittests passedUnittests passed

Branch is featureBranch is feature

Branch is mainBranch is main

Entry criteria
correct

Entry criteria
incorrect

Entry criteria
incorrect Build is not OKBuild is not OK

Unittests failedUnittests failed

G
it git push

Figure 8-8.  BPMN, sharing information

It shows the feature branch workflow with a feature branch and a trunk

(the main branch). The Notify actors stage is responsible for communication

with other actors, and the requirements state that both successful and

unsuccessful results must be communicated. This explains the presence of

the parallel gateway after certain stages. Also note that the diagram does not

have an end event; start and end events in BPMN are optional.

Chapter 8 Operate and Monitor

351

The results of executing a stage are passed as arguments to the Notify

actors stage. The following are the input arguments of the Notify actors:

•	 The developer who performed the code push.

•	 The repository branch.

•	 The executed stage is passed as an argument. This

stage is called previous_stage in Figure 8-9.

•	 The results of the stage, success or failure.

If we zoom in on the Notify actors stage, it results in a detailed design,

as depicted in Figure 8-9.

"N
ot

ify
 a

ct
or

s"
 s

ta
ge

Determine e-
mailaddress

product owner
and create e-

mail

D t i

a

Create Message
Card for

"Production
deployment"

Channel

Create Message

C a e

Determine e-
mailaddress

team and create
e-mail

team and create

End "Notify
actors" stage
End "Notify

actors" stagegCreate Message
Card for

"Release build"
Channel

Create Message

Determine e-
mailaddress

developer and
create e-mail

Create Message
Card for "Test"

Channel

Create Message

Start "Notify
actors" stage
Start "Notify
actors" stage

Validate branch
and

previous_stage

End "Notify
actors" stage
End "Notify

actors" stageg

Branch is featureBranch is feature

previous_stage is
"Perform dual

control"

previous_stage is

control

previous_stage is
"Deploy artifact to

production"

previous_stage is
"Deploy artifact to

production

Production
deployment failed

Production
deployment failed

previous_stage is
"Execute build"

previous_stage is
"Execute build"

previous_stage is
Perform unittests"

or
previous_stage is

"Perform test"

previous_stage isprevio
Perform unittests"

previous_stage is
Perform test

Branch is main
(trunk)

previous_stage is
not "Perform dual

control"

previous_stage is
not "Perform dual

control

previous_stage is
not

"Execute build"

previous_stage is
not Perform

unittests" and
previous_stage is

not "Perform
test"?

E-
m

ai
l s

er
ve

r

Send e-mail to
product owner

Send e-mail to
team

Send e-mail to
developer

M
S

Te
am

s

Add message
card to

"Production
deployment"

Channel

Add

C a e

Add message
card to "Release
build" Channel

card to "Release
Add message
card to "Test"

Channel

Figure 8-9.  BPMN, sharing information (Notify actors)

In the Notify actors stage, the first validation is on the branch. A different

path is followed for the main branch compared to the feature branches. In the

case of a feature branch, an email is created for the developer and sent to the

developer using an email server. The path of the feature branch stops here.

Chapter 8 Operate and Monitor

352

In the case of the main branch, multiple validations are performed.

The previous_stage (passed as an argument to the Notify actors stage)

is validated, and based on its value, either emails or message cards in

Microsoft Teams are created.

�Events, Alerts, Incidents, and Notifications
The following are the events, alerts, incidents, and notifications you’ll see:

•	 An event is an occurrence of a situation in the system

that takes place. It can be a certain metric exceeding

a threshold, but it can also be a state change in the

system. If a pipeline fails, it results in the submission

of an event; if storage usage exceeds 80 percent, it

results in an event, an unhealthy pipeline results in an

event, etc.

•	 A notification is a message to inform the user about

a certain—noncritical—event that occurred. The

creation of a release note is not critical, but perhaps it’s

important enough to share with the team.

•	 An alert is an urgent notification, triggered if a certain

event (or multiple events) takes place with a certain

importance. Storage usage exceeding 80 percent is

important enough to be shared with specific people

from the team.

•	 An incident is an alert that causes damage or is a threat

to the system. It is of utmost importance to push this

information to the team because it concerns a blocking

issue, which causes either a serious degradation of

the pipeline performance or the pipelines do not

work at all.

Chapter 8 Operate and Monitor

353

Notifications, alerts, and incidents are shared with the team. In the

case of incidents, the team should be informed proactively, based on a

push mechanism; one or more team members are informed using an

email, an SMS message, or a WhatsApp message because immediate

action is required. Notifications and alerts can be shared by these same

channels, but it is also possible to inform the team with a notification or

alert on a dashboard or overview. The team members have to actively

watch the dashboard to be kept informed.

In all cases, you need to be conservative with the amount of

information you push to the team. Only if needed, information is

actively pushed.

The overview in Figure 8-10 gives a nice example of the pipeline runs

of a process booking pipeline in Jenkins. There are some issues with the

latest runs. In one of these runs, the build failed. In the latest run, all stages

were executed properly again; however, the Deploy artifact to production

stage ended with a warning, although the deployment was successful.

Further investigation is needed. Since the overview already gives a nice

indication that something went wrong, the team has to decide whether

they also want to be alerted actively or whether keeping an eye on the stage

view screen is sufficient.

Chapter 8 Operate and Monitor

354

Figure 8-10.  Jenkins stage view process booking

One problem with these dashboards is that information can be

retrieved, but it takes a couple of clicks. Figure 8-11 represents the Jenkins

Blue Ocean dashboard and shows the latest run of the process booking

pipeline. It shows that artifact version 11.4 was deployed with a warning,

but it requires navigation to this particular screen and selecting the stage

for which the detailed information needs to be displayed.

Figure 8-11.  Jenkins blue ocean process booking

But sometimes you just want to have a different view of the

information. Instead of relying solely on the ALM/integration platform to

provide the information, it is also possible to make use of other channels.

Email, SMS, and WhatsApp were already mentioned, and they form an

Chapter 8 Operate and Monitor

355

excellent way to push information, but communication and collaboration

platforms like Microsoft Teams are also a good addition to the way

information is presented. Take a look at the overview in Figures 8-12 and

8-13. The results of the Execute build and Deploy artifact to production

stages are sent to Microsoft Teams as a message card. This information

is grouped into different communication channels. The Execute build

channel contains all release build notifications, and the Deploy artifact

to production channel contains the notifications related to production

deployments. As you can also see, there are two build notifications in

the Execute build channel. The first build failed, and the next build was

successful. Build artifact version (1.1.4) was successfully deployed to

production, although with warnings, which are displayed in the Deploy

artifact to production channel. Using these kinds of tools makes it possible

to arrange information differently and make it more attractive and

accessible.

Figure 8-12.  Notifications, displayed in the Execute build channel of
Microsoft Teams

Chapter 8 Operate and Monitor

356

Figure 8-13.  Notification displayed in the Deploy artifact to
production channel of Microsoft Teams

�Summary
You learned about the following in this chapter:

•	 Operating and maintaining an ALM/integration

platform can put a burden on the team, depending on

the operating model.

•	 Pipelines are very useful for regular operational tasks

and recurring tasks.

•	 Monitoring pipelines is done on multiple levels.

•	 Systems monitoring

•	 Platform monitoring

•	 Business monitoring

•	 Security monitoring

Chapter 8 Operate and Monitor

357

Make sure to cover them all.

•	 Information overloading must be prevented. Use

different communication channels to present

information from different viewpoints, to make it more

attractive and accessible.

Chapter 8 Operate and Monitor

359

CHAPTER 9

Use Case
This chapter covers the following:

•	 The use case of MyCorp.com and the AWSome team.

•	 An overview of requirements implemented by the

AWSome team.

•	 The design of the pipeline based on the given

requirements.

•	 An implementation of the use case using Azure DevOps

pipelines.

•	 A detailed configuration. With this configuration,

it becomes possible to execute the pipeline code,

provided separately from this book.

•	 The result of the pipeline runs.

•	 The results, the gaps and backlog items, and the output

of a running application.

All the source code is available in the GitHub repository: https://

github.com/Apress/Continuous-Integration-(CI)-and-Continuous-

Delivery-(CD).

Up to now, the approach to designing and developing pipelines has

been discussed on an abstract level, but it has not yet led to a real pipeline

that runs on a machine. This chapter presents a use case and guides you

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_9

https://github.com/Apress/Continuous-Integration-(CI)-and-Continuous-Delivery-(CD)
https://github.com/Apress/Continuous-Integration-(CI)-and-Continuous-Delivery-(CD)
https://github.com/Apress/Continuous-Integration-(CI)-and-Continuous-Delivery-(CD)
https://doi.org/10.1007/978-1-4842-9228-0_9

360

through all the steps explained in this book, from requirements analysis

to the implementation of a pipeline that runs on an ALM platform. Azure

DevOps is the ALM platform that is used to demonstrate the use case.

But even if you don’t know anything about Azure DevOps or AWS, this

chapter is still valuable because it shows a real case from requirements to

implementation.

Note  This chapter is not a tutorial on creating a pipeline in Azure
DevOps, but it does guide you through the steps needed to set up
the pipelines. Details of certain steps have been omitted for clarity
and are believed to be familiar to readers who already have some
experience with Azure DevOps. Also, the combination of Azure
DevOps and AWS is not the most obvious choice, because AWS
also provides the tools, but it demonstrates that you can easily use
different ALM platforms.

The case deals with an imaginary company called myCorp.com. It is

a new startup with several small development teams. One of these teams

is the AWSome team, consisting of a product owner named Emma and

three engineers, named Meera, Tim, and Vinod. Vinod is also a delegated

product owner and approves or declines deployments on behalf of Emma.

The team’s ambitions are huge, but they decide to start small. Their

first application is called myapp, and the first increment consists of only

a healthcheck app. It just listens to an HTTP request and logs a message

if the request is processed. It’s not very exciting, but the team wants to

establish a solid workflow and develop their first automated pipeline.

To make a difference in the world, myCorp.com attaches great

importance to sustainability. The employees do not want to set up an on-

premises data center; everything is done in the cloud, and they decide to

use AWS as the runtime environment for all their apps.

The journey of the AWSome team begins with a requirements analysis.

Chapter 9 Use Case

361

�Requirements Analysis
The requirements of myapp and its first increment—the healthcheck

app—are clear. The healthcheck is realized as an AWS Lambda function

that listens to HTTP requests and writes a log line to a CloudWatch log

after every processed request. The healthcheck Lambda is called every 5

minutes by a CloudWatch schedule.

Because the runtime environment is AWS, the team chooses

infrastructure as code (IaC), but they use the AWS Cloud Development Kit

(CDK) over AWS CloudFormation. By using CDK, the infrastructure is fully

coded in their favorite programming language, Java.1

Defining continuous integration, continuous delivery, and pipeline

requirements take a bit more work, so the AWSome team decides to draft a

table with all the requirements; see Table 9-1.

1 AWS CDK supports multiple languages.

Table 9-1.  Requirements

Sustainability

Define sustainability goals. After validating several ALM platforms, the team

chooses Azure DevOps. This is a cloud solution,

developed by Microsoft, running on Azure.

Way of Working

Use a simple branching

strategy.

The team has experience with a feature-based

branching workflow. The main line is kept in a

production-ready state.

(continued)

Chapter 9 Use Case

362

Table 9-1.  (continued)

Choose the release strategy

you want.

The team works in sprints of two weeks and wants to

deploy to production at the end of every sprint, using

a timeboxed release strategy. Although they want to

deploy in a fully automated way after every sprint, the

decision is made to manually trigger the deployment

for now.

Choose a build, test, and

deployment strategy.

• � The build strategy of the pipeline is kept simple.

The choice is made to perform a full Maven build

in each pipeline run.

• � Also, the deployment strategy is simple. The

AWSome team starts with a re-create deployment

strategy, looking into canary releases in one of

the next increments.

• � No specific requirements for the test strategy are

defined yet. The technical test framework used

for application acceptance tests is Cucumber.

Technology

Automate the creation

of ephemeral test

environments.

The test environment is created or adjusted in each

pipeline run, using AWS CDK. For now, the test

environment is not deleted after every test run.

Decide upon the

development strategy.

The approach is to use the extended pipeline

development strategy. However, the team does not

have a unit testing framework, so they opt for a

process where pipeline development and testing are

done exclusively in a separate Azure DevOps test

project.

(continued)

Chapter 9 Use Case

363

Compliance and Auditability

All changes are traceable/

tag everything.

Tagging—using the release version—is done for

each release. The following resources are tagged:

•  Code in Git

• P ipeline(s)

•  Build artifacts

•  AWS stacks

Only build and deploy

artifacts using a pipeline.

To provide evidence of the integrity of the artifact, an

SHA256 hash of the artifact is generated after the

build and deploy steps and compared with the hash

of the lambda in the AWS account. All hashes must be

the same.

Resources associated with a

release cannot be deleted.

Update the retention time of resources associated

with a production release (to forever).

Security (General)

Refine access by setting

permissions for a user or

group.

Create a separate group for dual control and assign

Emma and Vinod to this group.

Perform a vulnerability

analysis.

The following validations are done:

•  Whispers for hard-coded secrets

•  Lambdaguard for AWS Lambda configuration

Table 9-1.  (continued)

(continued)

Chapter 9 Use Case

364

Manageability

Use a release versioning

schema that makes sense.

Use semantic versioning for releases. Each release

version must be generated.

Pipeline code is treated as

software.

Pipeline code is stored in an Azure DevOps Git

repository.

Store binaries in an artifact

repository.

Azure DevOps has the option to store the artifact

together with the build pipeline. This option is used;

the team does not make use of an external repository

or Azure DevOps Artifacts.

Build once, run anywhere. The artifact is built only once and deployed to

separate AWS test and production accounts.

Quality Assurance

Application code must be

scanned on code quality.

SonarCloud is used for scanning code quality.

Use quality gates. In addition to a quality gate after the SonarCloud

scan, use a quality gate just before the artifact is

deployed to production to guarantee that certain

stages are executed (Analyze code, Perform test,
Validate infrastructure compliance).

Define entry and exit

criteria.

Each pipeline starts with validations to determine

whether variables are configured properly.

Table 9-1.  (continued)

Chapter 9 Use Case

365

�Pipeline Design
To get a clear understanding of the environments, the tools, and how

everything is connected, the context diagrams in Figure 9-1 and Figure 9-2

are drafted.

The first diagram represents the Azure DevOps environment, used to

run the pipelines. It consists of two projects. The application is developed

in the main (production) project. This project is also used to run the

pipelines and deploy them to the AWS test and production environments.

A second project—the test project—is a clone of the main project and

is solely used to develop and test the pipelines.

The main Azure DevOps project is connected to both the AWS test

and the AWS production environments. The Azure DevOps test project is

connected only to the AWS test environment, so it cannot deploy to the

AWS production environment. The AWS test environment is represented

by account2 497562947267. The AWS production account has the ID

486439332092.

Both Azure DevOps projects are connected to SonarCloud. External

libraries are retrieved from the central Maven repository, and emails are

sent from the Azure DevOps pipelines to the team members.

2 Both account numbers 497562947267 and 486439332092 are the account of the
AWSome team. If you want to try the pipelines yourself, you need to request and
use your own AWS accounts, of course.

Chapter 9 Use Case

366

Azure DevOps Project test

Pipelines
Library

Environments

Service Connec�ons

Permissions

Figure 9-2.  Context diagram, Azure DevOps project

MyCorp.com

Internet

AWS Produc�on
account

486439332092
Region us-east-1

AWS Test
account

497562947267
Region us-east-1

MyLambda MyLambda

Download
libraries

DevOps Engineer

@

Product owner

@

AWSome team

@

No�fy actors

Azure
DevOps
Project

test

Azure
DevOps
Project

produc�on

Deploy MyLambda Deploy MyLambda

<s
er

vi
ce

co
nn

ec
�o

n
te

st
>

<s
er

vi
ce

co
nn

ec
�o

n
pr

od
>

Clone (Sync with
latest applica�on and
infrastructure code)

‘Deploy’ pipeline code

<s
er

vi
ce

co
nn

ec
�o

n>
Figure 9-1.  Context diagram

The second context diagram represents an Azure DevOps project.

Each Azure DevOps project consists of Git repositories, environment

configurations, service connections, permissions, and variable groups.

These need to be configured before the pipeline can work.

Chapter 9 Use Case

367

Branching and Release Strategy
As mentioned in the requirements analysis from Table 9-1, the team

decided to adopt a feature-based branching workflow in combination

with a timeboxed release strategy. The branching strategy results in two

pipelines, one associated with a feature branch and another pipeline

associated with the main branch, as depicted in Figure 9-3 and Figure 9-4.

Execute build, Perform unit tests, Package ar	fact, Publish ar	fact Analyze
code

Validate entry
criteria

No	fy
Actor

SCM trigger

feature

Figure 9-3.  Workflow, pipeline of the feature branch

Validate entry
criteria

No�fy
Actor

Deploy
ar�fact to

test

Perform
test

Validate
exit criteria

Perform
dual control

Deploy
ar�fact to
produc�on

Provision test
environment

Validate
infrastructure

compliance

Provision
produc�on

environment

SCM trigger

main
Execute build, Perform unit tests, Package ar�fact, Publish ar�fact Analyze

code

Figure 9-4.  Workflow, pipeline of the main branch

Instead of separating the continuous integration process into

individual stages, the choice is made to combine the Execute build,

Perform unit tests, Package artifact, and Publish artifact stages into one

stage. The reason is that the team uses Maven, which makes it easy to

combine these stages in one command.

As a result of the timeboxed release strategy, the pipeline associated

with the main branch is split into two separate pipelines. The first pipeline

consists of the stages of the Generic CI/CD Pipeline, except for the stages

associated with the deployment to production. These stages are moved to

a separate pipeline. This means that based on the branching and release

strategy, three pipelines are distinguished.

•	 Pipeline 1 is associated with the feature branch.

Chapter 9 Use Case

368

•	 Pipeline 2, the primary pipeline, is associated with

the main branch. The pipeline contains the stages of

the Generic CI/CD Pipeline, until the Validate exit

criteria stage.

•	 Pipeline 3, the production deployment pipeline, is

associated with the main branch. The pipeline contains

the stages of the Generic CI/CD Pipeline, starting from

the Validate exit criteria stage.

The latter two pipelines are represented in Figure 9-5 and Figure 9-6.

Validate entry
criteria

No�fy
Actor

Deploy
ar�fact to

test

Perform
test

Provision test
environment

Validate
infrastructure

compliance

SCM trigger

main
Execute build, Perform unit tests, Package ar�fact, Publish ar�fact Analyze

code

Figure 9-5.  Workflow, primary pipeline

No�fy
Actor

Validate
exit criteria

Perform
dual control

Deploy
ar�fact to
produc�on

Provision
produc�on

environment
Manual trigger

release

Figure 9-6.  Workflow, production deployment pipeline

The three pipelines are logical pipelines and will be implemented

by technical pipelines. Pipelines 1 and 2 are combined in one pipeline

called myapp-pipeline; they cover all continuous integration activities and

all activities associated with testing. For performance reasons, the team

decides to execute the Analyze code stage in parallel with the Execute build

stage. The other pipeline—myapp-production-deployment—covers all

activities dealing with the deployment to production. Both pipelines are

represented in the BPMN models shown in Figure 9-7 and Figure 9-8.

Chapter 9 Use Case

369

m
ya
pp
-p
ip
el
in
e

Validate entry
criteria

Build, Unittests,
Package,
Publish

Analyze code

Notify actors
Validate

infrastructure
compliance

Perform testDeploy artifact
to test

Provision test
environment

Start pipelineStart pipelineS

Entry criteria
correct

ntry criteriaEn
correct

End pipelineEnd pipeline

ErrorError

Entry criteria
incorrect

Entry criteria
incorrect

Build is not OK or
Unittests failed or

Code analysis
failed

Build is not OK or
Unittests failed or

failed

Tests passedsts passedTesT dBranch is mainanch is mainBra n

Build is OK and
Unittests passed

and Code
analysis passed

Build is OK and
Unittests passed

analysis passed

Infrastructure
compliant

Infrastructure
compliant

Infrastructure not
compliant

Infrastructure not
compliantTests failedTests failed

Branch is not
main

Branch is not
main

Figure 9-7.  BPMN, myapp-pipeline

m
ya

pp
-p

ro
du

ct
io

n-
de

pl
oy

m
en

t

Validate
entry/exit criteriaentry/exit criteria

Perform dual
control

Provision
production

environment

Deploy artifact
to production

Notify actors

Start pipelineStart pipeline

Entry/exit criteria
correct

Dual control
passed

End pipelineEnd pipeline

ErrorErrorError

Entry/exit criteria
incorrect

Entry/exit criteria
incorrect Dual control failedDual control failed

Figure 9-8.  BPMN, myapp-production-deployment

Release Version Generation
Concerning release versioning, the semantic versioning schema is used.

The release version is generated to enforce the continuity of the process,

but the team does not want to rely on a specific tool. Based on the schema

shown in Figure 9-9, they decide to generate the release version in the

pipeline code.

Chapter 9 Use Case

370

major.minor.patch
1. 0. 0

• Starts with 1
• [1 .. z]
• Increased by 1 on the first of January of each new year

• Starts with 0
• [0 .. y]
• Increased by 1 a�er every successful deployment
• If ‘major’ changes, ‘minor’ starts with 0 again

• Starts with 0
• [0 .. x]
• Increased by 1 a�er each pipeline run
• If ‘minor’ changes, ‘patch’ starts with 0 again
• If ‘major’ changes, ‘patch’ starts with 0 again

Figure 9-9.  Release version generation

Because a biweekly release schedule is chosen, the “major” part of the

version loses its value because there aren’t any major releases anymore. It

has been decided to increment the major every year, starting on the first of

January. The minor part is incremented after every successful deployment

to production and resets to zero again if the major part is incremented. The

patch part of the version increments after every run of the build pipeline 2.

The patch is reset to zero if the minor part changes.3

�Pipeline Development
Before the Azure DevOps pipeline code can be used, various preparations

must be made, starting with the creation of the two Azure DevOps projects.

As shown in Figure 9-10, the projects are created in the Azure DevOps

organization called mycorp-com. The projects are called MyApp and

MyApp-test.

3 If the major part is incremented, the minor is reset to zero as a result, so the patch
is also reset to zero.

Chapter 9 Use Case

371

MyApp is the main Azure DevOps project. This is where the team

develops all application and infrastructure code. The MyApp-test project

is a cloned version of the MyApp project. Development and testing of

pipelines happen in the MyApp-test project, so the rest of the team is not

disturbed by pipeline tests. The pipeline code is merged with the code in

the MyApp project after each pipeline feature is finished.

The AWSome team was so nice to share their code and their

configuration, and they encourage you to use it and discover what they

developed. The code provided for this book must be imported into the

myapp Git repository in the MyApp project and cloned in the MyApp-

test project. The preparation activities listed in this chapter apply to both

projects.

�Code Repository
Both Azure DevOps projects consist of three Git repositories. Two of

these repositories contain scanning tools used in the pipelines. The tools

Whispers and Lambdaguard are cloned from GitHub (https://github.

com/Skyscanner) into a local repository in the Azure DevOps project to

limit dependencies on Internet sources as much as possible. In addition,

Figure 9-10.  Azure DevOps projects

Chapter 9 Use Case

https://github.com/Skyscanner
https://github.com/Skyscanner

372

these tools can also be prescanned for vulnerabilities themselves, before

they are used. The third repository contains the imported code of myapp.

See Figure 9-11.

Figure 9-11.  Git repositories in Azure DevOps

The code repository of myapp consists of a few directories.

•	 application: The healthcheck app is an AWS Lambda

called myLambda, represented by the file MyHandler.

java. The created healthcheck artifact is called

application*shaded.jar.

•	 cucumber: Testing is still rudimentary, but the structure is

already present in the repository. The cucumber directory

contains a feature file called mylambda.feature, with just

one test. The test invokes the running myLambda in AWS.

•	 infrastructure: The CDK code in this directory

creates the lambda in AWS and installs the compiled

MyHandler.java code. The created infrastructure

artifact is called infrastructure*shaded.jar.

Chapter 9 Use Case

373

•	 pipeline: This directory contains two YAML files,

called pipeline.yml and prod-deployment.yml, and

represents the pipelines.

•	 pipeline/template: This directory contains a couple of

template files used in the files pipeline.yml and prod-

deployment.yml.

•	 deploy.yml: This deploys the infrastructure and

application JAR files to the AWS account. The AWS

account and region are represented by variables,

configured in a variable group (either the test or

prod variable group).

•	 derive-release-version.yml: This is a utility template

to construct the release version, based on major,

minor, and path parameters.

•	 download-artifacts.yml: This downloads the build

artifacts, based on a release version tag.

•	 install-tools.yml: This installs the tools needed to

deploy to AWS.

•	 provision-infra.yml: This bootstraps the AWS

account. Deploying artifacts using CDK requires

some infrastructure resources, such as an S3 bucket

in which the artifacts are stored.

•	 Stage-completed.yml: As soon as a certain stage is

completed (successfully), this template is called.

It creates a “stage completed” file with the name

of the stage. This is used to determine which QA

stages of a release artifact are executed.

Chapter 9 Use Case

374

•	 update-minor.yml: To meet the requirements of

generating the release versions, some additional

code is needed. This file contains the code to

update the variable group semver. This variable

group contains the variable called minor, which is

incremented using an Azure DevOps API.

Figure 9-12 shows the myapp repository.

Figure 9-12.  Git repository of myapp

Chapter 9 Use Case

375

�Pipeline Creation
In the design phase, three logical pipelines were defined and translated

into two BPMN models. The BPMN models, myapp-pipeline and myapp-

production-deployment, map to two technical pipelines with the same

names, as depicted by the schema in Table 9-2.

Table 9-2.  Mapping of Logical Pipelines to Technical Pipelines

Logical Pipeline Technical Pipeline Name Implemented by
YAML File

Pipeline, associated with the

feature branch

myapp-pipeline pipeline.yml

Primary pipeline, associated

with the main branch

myapp-pipeline pipeline.yml

Production deployment

pipeline, associated with the

main branch

prod-deployment.yml prod-

deployment.yml

We’re assuming that the pipelines myapp-pipeline and myapp-

production-deployment have been created in Azure DevOps and we

are referencing the appropriate YAML files. Figure 9-13 shows the two

pipelines.

Chapter 9 Use Case

376

Figure 9-13.  Pipelines myapp-pipeline and myapp-production-
deployment

�Configure Variable Groups
Azure DevOps has a feature called variable groups. This feature can be

found in the main menu item on the left of the window and is called

Library. The pipelines make use of variables defined in variable groups.

Figure 9-14 gives an overview of the four variable groups that are used:

generic, semver, test, and prod. Each of the latter two variable groups

contain variables associated with the AWS test and production accounts.

Figure 9-14.  Variable groups, overview

Chapter 9 Use Case

377

Table 9-3 through Table 9-6 show the configuration of the four

variable groups.

Table 9-3.  Variable Group: generic

Name Value Additional Information

azdo-user myapp@mycorp.com

cdk-version 2.46.0

myapp-email myapp@mycorp.com

nodejs-version 16.15.1

personal-

access-token

******** This is a generated personal

access token (PAT); you need to

generate one yourself in Azure

DevOps and add it here.

pipeline-id 2 This is the pipeline ID of pipeline

myapp-pipeline. This value can be

different in your case.

project MyApp The value is MyApp-test for the

test project.

rest-api-vg https://dev.azure.com/

mycorp-com/MyApp /_

apis/distributedtask/

variablegroups/4?api-

version=5.0-preview.1

The Azure DevOps API to update

the semver variable group. Note

that the project in this URL is

MyApp-test for the test project.

The value 4 in this URL applies to

the semver variable group ID. This

value may be different in your

situation.

(continued)

Chapter 9 Use Case

https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1
https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1
https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1
https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1
https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1

378

Table 9-3.  (continued)

Name Value Additional Information

service-

connection-

sonarcloud

ServiceConnectionSonarCloud The value is one string and

represents the service connection

(to be created).

start-year-

minus-one

2022 The year before the app is released.

This value is used to derive the

major part of a release version.

Table 9-4.  Variable Group, semver

Name Value Additional Information

last-update-year 2023 Used to determine the year of the previous release version.

minor 0 Starts with zero, but is updated after every deployment

to production.

Table 9-5.  Variable Group, test (Represents the AWS Test Environment)

Name Value Additional information

aws-account 497562947267 Use your AWS account if you want to try it yourself.

aws-region us-east-1 And the region of your AWS account.

service-

connection-

aws-account

Service

ConnectionAWS

Test-497562947267

Use your own AWS service connection if you

want to try it yourself.

Chapter 9 Use Case

379

Table 9-6.  Variable Group, prod (Represents the AWS Production

Environment)

Name Value Additional Information

aws-account 486439332092 In the case of Azure DevOps project

MyApp-test, the value 497562947267

is used.

aws-region us-east-1

service-connection-

aws-account

Service

ConnectionAWS

Prod-486439332092

In the case of Azure DevOps project

MyApp-test, the value Service
ConnectionAWSTest-497562947267

is used.

Note  The Azure DevOps project MyApp-test also contains a
variable group called prod, but the variables in this group must refer
to the AWS test account. This is only to test the myapp-production-
deployment pipeline and not to deploy the application to the AWS
production account.

See Figures 9-15 through Figure 9-18.

Chapter 9 Use Case

380

Figure 9-15.  Variable group generic

Figure 9-16.  Variable group semver

Chapter 9 Use Case

381

Figure 9-17.  Variable group test

�Configure Service Connections
Azure DevOps makes use of service connections to connect to the AWS

target environments and SonarCloud. The extensions for AWS and

SonarCloud can be downloaded from the Internet in the Azure DevOps

marketplace. See Figure 9-19.

Figure 9-18.  Variable group prod

Chapter 9 Use Case

382

Figure 9-19.  Azure DevOps marketplace

The pipelines of the AWSome team make use of the following

marketplace extensions:

•	 AWS Toolkit for Azure DevOps

•	 SonarCloud

•	 SonarCloud build breaker

If these extensions are installed in your Azure DevOps organization,

they can be used to create AWS and SonarCloud service connections.

Figure 9-20 shows an overview of the three service connections.

No detailed step-by-step description is given on how to set up a service

connection, but the service connections require at least the information in

Table 9-7 and Table 9-8.

Chapter 9 Use Case

383

Figure 9-20.  Service connections overview

Table 9-7.  Service Connection AWS, test and prod

AWS Service Connection (see Figure 9-21; left image)

Access Key ID Acquired from the AWS account

Secret Access Key Acquired from the AWS account

Service connection

name

Either ServiceConnectionAWSTest-497562947267 (for

test) or ServiceConnectionAWSProd-486439332092 (for

production)

Table 9-8.  Service Connection Sonar Cloud

SonarCloud Service Connection (see Figure 9-21; right image)

SonarCloud Token Acquired from SonarCloud after registration of

the Azure DevOps project.

Service connection name ServiceConnectionSonarCloud

Chapter 9 Use Case

384

Figure 9-21.  Service connections

�Test
This section does not go into much detail on testing pipelines.

Development and testing are done in a separate Azure DevOps project, so

from a pipeline testing point of view, some measures are taken to optimize

pipeline testing.

Executing pipeline myapp-pipeline results in images similar to

Figure 9-22 and Figure 9-23. The first figure represents the stages if the

pipeline is associated with a feature branch. The next figure shows the

stages associated with the main branch. As shown in Figure 9-23, release

version 1.0.3 is created. All the stages are passed, and the application is

deployed to the AWS test environment.

Chapter 9 Use Case

385

Figure 9-22.  Run of pipeline myapp-pipeline associated with a
feature branch

Figure 9-23.  Run of pipeline myapp-pipeline version 1.0.3
(main branch)

Let’s zoom in on some of the stages. The Analyze code stage consists of

a SonarCloud scan with a build breaker and a Whispers scan, represented

respectively by Figure 9-24 and Listing 9-1.

Chapter 9 Use Case

386

Figure 9-24.  SonarCloud scan

Listing 9-1.  Log of the Whispers Scan

Starting: Scan to find hardcoded credentials and dangerous

functions

===

Task : Command line

Description : �Run a command line script using Bash on Linux

and macOS and cmd.exe on Windows

Version : 2.201.1

Author : Microsoft Corporation

Help : �https://docs.microsoft.com/azure/devops/

pipelines/tasks/utility/command-line

===

Generating script.

=================== Starting Command Output ===================

/usr/bin/bash --noprofile --norc /home/vsts/work/_

temp/2a18c6d1-7a8d-4bfc-af91-bea2556185b6.sh

pip3 install -e .

............

Chapter 9 Use Case

387

Installing collected packages: rapidfuzz, Levenshtein, python-

levenshtein, soupsieve, beautifulsoup4, lazy-object-proxy,

wrapt, typing-extensions, astroid, jproperties, luhn, lxml,

whispers

 Running setup.py develop for whispers

Successfully installed Levenshtein-0.20.8 astroid-2.12.12

beautifulsoup4-4.11.1 jproperties-2.1.1 lazy-object-

proxy-1.8.0 luhn-0.2.0 lxml-4.9.1 python-levenshtein-0.20.8

rapidfuzz-2.13.2 soupsieve-2.3.2.post1 typing-extensions-4.4.0

whispers wrapt-1.14.1

Scan myapp

Finishing: Scan to find hardcoded credentials and dangerous

functions

Both scans show that everything is fine. The build passes the

SonarCloud quality gate and the Whispers scan looks fine (no hard-coded

secrets).

The Perform test stage contains a test task invoking a Cucumber test.

The test is still simple and covers only one test, defined in the mylambda.

feature file shown in Listing 9-2.

Listing 9-2.  Feature File

Feature: Is the response ok?

 Sending a request should return a valid response

 Scenario: �Validate status of the response after handling

an event

 Given myLambda is running

 When I send a valid request

 Then I should get status "\"200 OK\""

This results in the output shown in Listing 9-3.

Chapter 9 Use Case

388

Listing 9-3.  Log of the Cucumber Test

┌──┐
│ �Share your Cucumber Report with your team at │
│ https://reports.cucumber.io │
│ �Activate publishing with one of the following: │
│ │
│ src/test/resources/cucumber.properties: │

│ cucumber.publish.enabled=true │
│ src/test/resources/junit-platform.properties: │

│ cucumber.publish.enabled=true │
│ Environment variable: CUCUMBER_PUBLISH_ENABLED=true │
│ JUnit: @CucumberOptions(publish = true) │
│ │
│ More information at https://cucumber.io/docs/ │

│ cucumber/environment-variables/ │
│ │
│ Disable this message with one of the following: │
│ │
│ src/test/resources/cucumber.properties: │

│ cucumber.publish.quiet=true │
│ src/test/resources/junit-platform.properties: │

│ cucumber.publish.quiet=true │
└──┘
[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0,

Time elapsed: 2.757 s - in mylambda.RunCucumberTest

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]

[INFO] --

Chapter 9 Use Case

389

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 12.905 s

[INFO] Finished at: 2022-11-11T18:12:29Z

[INFO] --

The Validate infrastructure compliance stage contains a validation of

the myLambda configuration in the AWS account using Lambdaguard, as

shown in the log (Listing 9-4).

Listing 9-4.  Log of Lambdaguard

 `.::////::.`

 ./osssssoossssso/.

 -osss/-` .-/ssso-

 `osso- .++++: -osso`

 `oss/ .//oss- /sss`

 +ss+ -sss. /sso

.sss` .sssso` `sss. LambdaGuard v2.4.3

-sso :ssooss+ oss-

.sss` /ss+``oss/ `sss.

 +ss+ `oss/ .sss/// /sso

 `oss/`.oso- -ssso+./sso`

 `+sso: .` -oss+`

 -osss+-.` `.-+ssso-

 ./osssssssssssso/.

 `.-:////:-.`

Loading regions (us-east-1)

Loading identity

 UserId......... AKIA32CLB74DMRDERU6Z

 Account........ 497562947267

Chapter 9 Use Case

390

 �Arn............ arn:aws:iam::497562947267:user/

azuredevops

[1/1] myLambda

 Lambdas........ 1

 Security....... 2

 Triggers....... 1

 Resources...... 0

 Layers......... 0

 Runtimes....... 1

 Regions........ 1

 Report......... ./mylambda-report/report.html

 Log............ ./mylambda-report/lambdaguard.log

Finishing: Intall Lambdaguard and validate myLambda in AWS

The report is published as part of this pipeline and can be downloaded.

Some attention is needed because the AWSLambdaBasicExecutionRole

has more privileges than needed; these privileges need to be restricted.

See Figure 9-25.

Figure 9-25.  Lambdaguard report

Chapter 9 Use Case

391

�Integrity of Artifacts
The security requirement “Only build and deploy artifacts using a

pipeline” states that the integrity of the artifact must be guaranteed, from

building the artifact to running the artifact. A simple measure is applied

to meet this requirement. The first step in this process is to visualize

that the integrity remains the same over all stages in the process. This is

done by creating an SHA256 hash of the built artifact. If the hash of the

lambda running in the AWS target environment is the same as the hash of

the artifact in the pipeline(s), there is high confidence that it is the same

artifact. Generating the SHA256 hash is included in the files pipeline.

yml and template/deploy.yml. Pipelines myapp-pipeline and myapp-

production-deployment both print the hash in the log, as shown in

Listing 9-5 and Listing 9-6.

Listing 9-5.  Log of the build, myapp-pipeline

Starting: Calculate SHA256 checksum of the application jar file

===

Task : Command line

Description : �Run a command line script using Bash on Linux

and macOS and cmd.exe on Windows

Version : 2.201.1

Author : Microsoft Corporation

Help : �https://docs.microsoft.com/azure/devops/

pipelines/tasks/utility/command-line

==

Generating script.

================== Starting Command Output ===================

/usr/bin/bash --noprofile --norc /home/vsts/work/_temp/830814d

3- 13e0-40ee-9c2b-9eb5ea3ca74d.sh

Chapter 9 Use Case

392

SHA256 checksum of /home/vsts/work/1/s/application/target/

application-1.3.62-shaded.jar

58c3de378ff9016bdf0c71781134672f1e4efa8801d46ef99427d160

afad3a10 /home/vsts/work/1/s/application/target/

application-1.3.62-shaded.jar

Finishing: Calculate SHA256 checksum of the application

jar file

Listing 9-6.  Log of the Deployment, myapp-production-

deployment

Starting: Deploy to AWS

===

Task : AWS Shell Script

Description : �Run a shell script using Bash with AWS

credentials as environment variables

Version : 1.13.0

Author : Amazon Web Services

Help : Runs a shell script in Bash, setting AWS

credentials and region information into the shell environment

using the standard environment keys _AWS_ACCESS_KEY_ID_, _AWS_

SECRET_ACCESS_KEY_, _AWS_SESSION_TOKEN_ and _AWS_REGION_.

More information on this task can be found in the [task

reference](https://docs.aws.amazon.com/vsts/latest/userguide/

awsshell.html).

####Task Permissions

Permissions for this task to call AWS service APIs depend on

the activities in the supplied script.

===

Configuring credentials for task

Chapter 9 Use Case

393

...configuring AWS credentials from service endpoint 'b43bf

786-1c0c-45f7-9f98-fd31a2d01b0a'

...endpoint defines standard access/secret key credentials

Configuring region for task

...configured to use region us-east-1, defined in task.

/usr/bin/bash /home/vsts/work/_temp/awsshellscript_2012.sh

artifacts/infrastructure-1.3.62-shaded.jar'

Infrastructure artifact name and path: /home/vsts/work/1/

myapp-artifacts/infrastructure-1.3.62-shaded.jar

Application artifact name and path: /home/vsts/work/1/

myapp-artifacts/application-1.3.62-shaded.jar

Version to deploy: 1.3.62

SHA256 checksum of /home/vsts/work/1/myapp-artifacts/

application-1.3.62-shaded.jar

58c3de378ff9016bdf0c71781134672f1e4efa8801d46ef99427

d160afad3a10 /home/vsts/work/1/myapp-artifacts/

application-1.3.62-shaded.jar

The hash of myLambda, deployed to AWS, is displayed in the

AWS console, as depicted in Figure 9-26. This hash, WMPeN4/5AWvfDHF

4ETRnLx5O+ogB1G75lCfRYK+tOhA=, is in Base64 format, though. It

needs to be converted to a hash in Hex format to compare it (you

can use https://base64.guru/converter/decode/hex). This results

in the hash 58c3de378ff9016bdf0c71781134672f1e4efa8801d46ef99

427d160afad3a10, indicating that myLambda, running in AWS, is the same

as built and deployed using the pipelines.

Chapter 9 Use Case

https://base64.guru/converter/decode/hex

394

Figure 9-26.  AWS console, myLambda SHA256 hash

This is a rudimentary integrity check. The integrity is not monitored

throughout the life cycle of the Lambda. If someone were to replace the

Lambda, it can be done without being noticed. Lambda code signing and

monitoring are additional measures to guarantee integrity over the life

cycle of myLambda.

�Performance and Acceptance Pipelines
The performance of myapp-pipeline varies, depending on the time of

the day. The overall execution time approximately lies between 7 and 15

minutes. Caching is enabled, and code analysis is executed in parallel. By

looking at the individual execution times of each stage, there isn’t much

to improve on without doing in-depth research or switching to self-hosted

agents. The performance of the myapp-production-deployment pipeline is

Chapter 9 Use Case

395

a lot faster. The wait time before a dual control is performed is many times

greater than the actual execution time of the stages. With these numbers

and the fact that the outcome of all stages looks good, the AWSome team

approves the pipeline, which can be implemented in the MyApp project.

�Implementation
Implementation means that the pipeline developed and tested in the

MyApp-test project is pushed to the MyApp project. The first increment

does not cover all requirements, and some mitigating actions are applied.

The team puts work items on the backlog that need to be implemented in

the next couple of iterations. Here is a selection from their backlog:

•	 Workitem 1: The requirement “Resources associated

with a release cannot be deleted” is not implemented.

This is put on the backlog. Retaining pipelines for a

long time can be automated, using the Leases API

of Azure DevOps, which sets the retention time of a

pipeline to “forever” after a deployment to production.

Mitigating action: As a contingency measure, the

retention times are increased (see Figure 9-27), and

releases deployed to production are retained manually

(see Figure 9-28).

Chapter 9 Use Case

396

Figure 9-27.  Retention times

Figure 9-28.  Retain the pipeline run manually

•	 Workitem 2: During the build, libraries are directly

retrieved from the central Maven repository (https://

repo.maven.apache.org/maven2/). As the first line

of defense, a proxy must be set up, so the libraries

are retrieved using this proxy. In addition, a Nexus

repository will be installed to store the libraries locally

within the organizations’ boundaries.

Chapter 9 Use Case

https://repo.maven.apache.org/maven2/
https://repo.maven.apache.org/maven2/

397

•	 Workitem 3: The Whispers task does not break the

build, irrespective of the result. Add a check to break

the build if a vulnerability is detected.

Mitigating action: Validate the result manually.

•	 Workitem 4: The AWSLambdaBasicExecutionRole used

to execute myLambda is not restrictive enough. Create

a new role for this Lambda, and apply the principle of

least privilege access.

•	 Workitem 5: The deployment strategy should change

from the re-create to canary deployment strategy using

AWS CodeDeploy.

�Configure the Azure DevOps Prod Environment
and Dual Control
If nothing is specified, Azure DevOps automatically creates an Azure

DevOps environment when it encounters an environment setting in the

pipeline. In the Azure DevOps test environment (MyApps-test), both

the test and prod environments are automatically created when the

pipeline runs. However, as part of the pipeline implementation, the prod

environment needs to be configured in the MyApp project to allow dual

control.

As a result of the requirement “Refine access by setting permissions

for a user or group,” the AWSome team is created in the permissions

configuration of project MyApps, as shown in Figure 9-29. All team

members are added. In addition, a new group is created, called Product

Owner. Figure 9-29 shows the Product Owner group to which Emma and

Vinod are assigned. This group is used in the dual control configuration, so

only Emma and Vinod are allowed to approve a deployment to production.

Chapter 9 Use Case

398

Figure 9-29.  Product Owner group and AWSome team

The test and prod environments as depicted in Figure 9-30 are

manually created, and an Approval is added to the prod environment, as

shown in Figure 9-31. This approval implements the Perform dual control

stage. Also note that members of the Product Owner group are not allowed

to both start and approve a pipeline. This contributes to a more secure

pipeline.

Chapter 9 Use Case

399

Figure 9-30.  Environments prod and test

Figure 9-31.  Configuring approvals for the prod environment

�Deploy the Application to Production
The goal of the pipelines is of course to deploy the application to

production. The deployment to production is performed using the myapp-

production-deployment pipeline. This pipeline is constructed in such a way

that it deploys the artifacts of a certain release, based on the release tag

selected in the start dialog. This is shown in Figure 9-32. In this example,

release 1.0.3 is selected and deployed.

Chapter 9 Use Case

400

Figure 9-32.  Starting the production deployment pipeline

As soon as the pipeline reaches the dual control step, it shows a dialog

similar to Figure 9-33. Members of the Product Owner group must approve

(or reject) it before the deployment to production is performed.

Chapter 9 Use Case

401

Figure 9-33.  Dual control

The stages of the myapp-production-deployment pipeline are depicted

in Figure 9-34. Also, take note of the fact that the pipeline run is tagged

with release version 1.0.3.

Figure 9-34.  Stages production deployment pipeline

The result is the deployment of the artifact stack, which includes the

myLambda resource, in the AWS production account (see Figure 9-35).

Notice the presence of the release version tag in this stack. This completes

the requirement “All changes are traceable/Tag everything.”

Chapter 9 Use Case

402

Figure 9-35.  AWS CloudFormation stack MyAppStack (including
myLambda)

To prove the working of the myLambda healthcheck, an excerpt of the

CloudWatch log is included, which shows the log lines produced by the

myLambda healthcheck. See Figure 9-36.

Chapter 9 Use Case

403

Figure 9-36.  AWS myLambda log

�Quality Gate
To prevent an incorrect release version from being deployed to production,

an additional quality gate is added to the myapp-production-deployment

pipeline. This quality gate prevents that release versions, for which the

stages Analyze code, Perform test, and Validate infrastructure compliance

are not executed, can be deployed to production.

The pipeline myapp-pipeline creates a “stage completed” file after

every successful run of a particular stage. Only release versions for

which the files ANALYZE-CODE-COMPLETED, PERFORM-TEST-COMPLETED,

and VALIDATE-INFRASTRUCTURE-COMPLIANCE-COMPLETED are created

and considered valid releases. The existence of these files is checked

in the Validate entry/exit criteria stage in pipeline myapp-production-

deployment.

Figure 9-37 shows the artifacts of myapp-pipeline. The three “stage

completed” files are listed in the myapp-status folder.

Chapter 9 Use Case

404

Figure 9-37.  All artifacts of myapp-pipeline

If one of these files is not present, the myapp-production-deployment

pipeline fails, as shown in Listing 9-7.

Listing 9-7.  Log of a Failed Deployment (Noncompleted Stage in

myapp-pipeline)

Starting: Validate whether QA stages are completed

===

Task : Command line

Description : �Run a command line script using Bash on Linux

and macOS and cmd.exe on Windows

Version : 2.212.0

Author : Microsoft Corporation

Help : �https://docs.microsoft.com/azure/devops/

pipelines/tasks/utility/command-line

===

Chapter 9 Use Case

405

Generating script.

================== Starting Command Output ====================

/usr/bin/bash --noprofile --norc /home/vsts/work/_temp/

bb88fef0-b881-44a8-b3da-06cc6a165198.sh

Stage [Validate infrastructure compliance] was not executed

##[error]Bash exited with code '1'.

Finishing: Validate whether QA stages are completed

�Summary
You learned about the following topics in this chapter:

•	 You learned, based on requirements, how to derive a

design and how this design translates to a technical

pipeline implementation, based on the approach

described in the previous chapters.

•	 We demonstrated how the structure of the pipeline

repository is set up.

•	 The provided Azure DevOps pipeline code and the

detailed description of the Azure DevOps project

configuration illustrated how to develop pipelines that

meet the requirements.

•	 The execution of the pipeline stages, the code analysis,

the infrastructure compliance results, the test results,

and the output of the running app showed how the

pipelines work.

•	 Attention is given to some specific (security)

requirements, such as the integrity of artifacts and dual

control.

Chapter 9 Use Case

406

•	 Implementation of the pipeline shows that it does

not have to be a problem if not all requirements are

implemented in the first increment, as long as this is

recognized and recorded.

•	 Additional quality gates can be added to a pipeline

to prevent deployments of release candidates that

did not pass all QA tests. A simple example is given,

which makes use of “stage completed” files to earmark

executed QA stages.

Chapter 9 Use Case

407

�References

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0

[1] Cambridge Bitcoin Electricity Consumption Index

https://ccaf.io/cbeci/index

[2] Business Process Model and Notation

https://www.omg.org/spec/BPMN/2.0

[3] Cloudbees CD

https://docs.cloudbees.com/docs/cloudbees-cd/10.0/

[4] Succeeding with Agile
Mike Cohn

Pearson Education, 2009

EAN 9780321579362

[5] Continuous Integration: Improving Software Quality and Reducing Risk
Paul M. Duvall, Steve Matyas, and Andrew Glover.

Addison-Wesley, 2007

EAN 9780321336385

[6] Continuous Delivery: Reliable Software Release through Build, Test and
Deployment Automation
Jez Humble and David Farley

Addison-Wesley, 2010

EAN 9780321601919

https://continuousdelivery.com/

[7] The Open Group IT4IT™ Reference Architecture, Version 2.1

https://pubs.opengroup.org/it4it/refarch21/

https://doi.org/10.1007/978-1-4842-9228-0
https://ccaf.io/cbeci/index
https://www.omg.org/spec/BPMN/2.0
https://docs.cloudbees.com/docs/cloudbees-cd/10.0/
https://continuousdelivery.com/
https://pubs.opengroup.org/it4it/refarch21/

408

[8] Enterprise CI/CD: Best Practices

Kostis Kapelonis (Codefresh)

https://codefresh.io/ebooks/enterprise-ci-cd-best-practices/

[9] Energy Efficiency Across Programming Languages
Rui Pereira e.o.

Universidade do Minho, Portugal

https://www.researchgate.net/publication/320436353_

Energy_efficiency_across_programming_languages_how_do_

energy_time_and_memory_relate

[10] Enforce Signed Software Execution Policies

https://media.defense.gov/2019/Sep/09/2002180334/-1/-1/0/

Enforce%20Signed%20Software%20Execution%20Policies%20-%20

Copy.pdf

[11] National Cyber Security Center

https://www.ncsc.gov.uk/

[12] National Information Assurance Partnership

https://www.niap-ccevs.org/

[13] NIST Cybersecurity Framework

https://www.nist.gov/cyberframework

[14] Rapid Release at Massive Scale: CI/CD at Facebook

https://engineering.fb.com/2017/08/31/web/rapid-release-

at-massive-scale/

[15] Continuous Deployment of Mobile Software at Facebook (Showcase)

https://research.facebook.com/publications/continuous-

deployment-of-mobile-software-at-facebook-showcase/

[16] Workflow Patterns: The Definite Guide
Nick Russel, Wil M.P. van der Aalst, Arthur H.M. ter Hofstede

The MIT Press, 2016

ISBN 978-0-262-02982-7

REFERENCES

https://codefresh.io/ebooks/enterprise-ci-cd-best-practices/
https://www.researchgate.net/publication/320436353_Energy_efficiency_across_programming_languages_how_do_energy_time_and_memory_relate
https://www.researchgate.net/publication/320436353_Energy_efficiency_across_programming_languages_how_do_energy_time_and_memory_relate
https://www.researchgate.net/publication/320436353_Energy_efficiency_across_programming_languages_how_do_energy_time_and_memory_relate
https://media.defense.gov/2019/Sep/09/2002180334/-1/-1/0/Enforce Signed Software Execution Policies - Copy.pdf
https://media.defense.gov/2019/Sep/09/2002180334/-1/-1/0/Enforce Signed Software Execution Policies - Copy.pdf
https://media.defense.gov/2019/Sep/09/2002180334/-1/-1/0/Enforce Signed Software Execution Policies - Copy.pdf
https://www.ncsc.gov.uk/
https://www.niap-ccevs.org/
https://www.nist.gov/cyberframework
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://research.facebook.com/publications/continuous-deployment-of-mobile-software-at-facebook-showcase/
https://research.facebook.com/publications/continuous-deployment-of-mobile-software-at-facebook-showcase/

409

[17] Gerrit Code Review

https://www.gerritcodereview.com/

[18] Gitflow Workflow

https://www.atlassian.com/git/tutorials/comparing-

workflows/gitflow-workflow

[19] Semantic Versioning

https://semver.org/

[20] Microsoft Teams: Webhooks and Connectors

https://docs.microsoft.com/en-us/microsoftteams/platform/

webhooks-and-connectors/what-are-webhooks-and-connectors

[21] Design Patterns: Elements of Reusable Object-Oriented Software
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (the Gang of Four)

Addison-Wesley Professional, 1994

ISBN 978-0201633610

[22] In-toto

https://in-toto.io/

Argos Notary

https://www.argosnotary.com/

[23] GitLab Docs

https://docs.gitlab.com/

[24] Feature Management Systems

https://www.getunleash.io/

https://launchdarkly.com/

[25] ISO 25010

https://iso25000.com/index.php/en/iso-25000-standards/

iso-25010

[26] NIST Framework for Improving Critical Infrastructure Cybersecurity

https://www.nist.gov/publications/framework-improving-

critical-infrastructure-cybersecurity-version-11

REFERENCES

https://www.gerritcodereview.com/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://semver.org/
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/what-are-webhooks-and-connectors
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/what-are-webhooks-and-connectors
https://in-toto.io/
https://www.argosnotary.com/
https://docs.gitlab.com/
https://www.getunleash.io/
https://launchdarkly.com/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.nist.gov/publications/framework-improving-critical-infrastructure-cybersecurity-version-11
https://www.nist.gov/publications/framework-improving-critical-infrastructure-cybersecurity-version-11

410

[27] Patterns for Managing Source Code Branches

https://martinfowler.com/articles/branching-patterns.html

[28] Continuous Delivery

YouTube subscription Dave Farley

https://www.youtube.com/c/ContinuousDelivery

[29] The Principles of Sustainable Green Software Engineering

Asim Hussain, Green Cloud Advocacy Lead at Microsoft

https://principles.green/

[30] Azure Sustainability

https://azure.microsoft.com/en-us/explore/global-

infrastructure/sustainability/#overview

[31] AWS Energy Transition

https://aws.amazon.com/energy/sustainability/

[32] Open Policy Agent

https://www.openpolicyagent.org/

[33] Microsoft Azure Essentials Azure Automation
Michael McKeown

Microsoft Press, 2015

ISBN: 978-0-7456-9815-4

[34] Pyrsia

https://pyrsia.io/

[35] Continuous Delivery Foundation

https://cd.foundation/

[36] National Institute for the Software Industry

https://nisi.nl/

[37] Secret Management Tools

https://github.com/mozilla/sops

https://github.com/StackExchange/blackbox

REFERENCES

https://martinfowler.com/articles/branching-patterns.html
https://www.youtube.com/c/ContinuousDelivery
https://principles.green/
https://azure.microsoft.com/en-us/explore/global-infrastructure/sustainability/#overview
https://azure.microsoft.com/en-us/explore/global-infrastructure/sustainability/#overview
https://aws.amazon.com/energy/sustainability/
https://www.openpolicyagent.org/
https://pyrsia.io/
https://cd.foundation/
https://nisi.nl/
https://github.com/mozilla/sops
https://github.com/StackExchange/blackbox

411

Index

A
A/B testing, 78, 180–183, 253
Acceptance tests, 140, 288, 307, 362
Actors, 102, 103
Alerts, 72, 73, 352–356
Analyze code, 22, 92–93, 195–200
API tests, 141, 151, 155
Application life-cycle management

(ALM), 36, 38, 39, 44, 51, 62,
90, 113, 130, 153, 209, 244,
250, 317

auto-cancel, 151, 230–231
tools, 16, 39

application*shaded.jar, 372
Artifacts, 51, 94, 101, 125, 326
Artificial intelligence (AI), 15,

31, 74, 90
Atlassian’s Bamboo, 210
Automated process, 91, 187, 200,

318, 347
Automated security tests (IAST/

DAST), 153, 157
Automated tests, 8, 30, 37, 66, 144,

155, 185, 314
AWS Key Management

Services, 251

AWSLambdaBasicExecutionRole,
390, 397

AWS Secrets Manager, 251
Azure DevOps, 21, 234, 360, 365

branching strategy, 367
context diagram, 366
environment, 290, 365
exit criteria stage, 368
myapp-pipeline, 368
release strategy, 367
release version generation,

369, 370
Azure Key Vault, 251
Azure resource manager (ARM), 5

B
Binary repository, 22, 24, 52, 60, 94,

135, 325
Blue/green deployment, 170, 173,

175, 181
BPMN 2.0, 80
Branching strategy, 3, 6, 30, 33, 105,

158, 271, 350, 361, 367
Business continuity, 63
Business organization, 30, 32, 40,

68, 75, 165, 305

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0

https://doi.org/10.1007/978-1-4842-9228-0

412

Business process model and
notation (BPMN), 108, 112

in action, 83
diagrams, 79, 86
elements, 80
event, 84
models, 178, 183, 350, 375
notation, 79
parallel gateway element, 84
pipeline flow, 86
workflow model, 136

C
Compliance and auditability, 31,

36, 47–57, 363
Cache, 132, 225–228, 244, 245
Canary deployment, 45, 175–181,

216, 229
Carbon dioxide footprint, 74,

184, 279–281
Certificate management, 73
Certificate signing request

(CSR), 17
CircleCI, 219, 221, 225, 233,

236, 315
Cloud Development Kit (CDK), 5,

361, 362, 372, 373
CloudFormation, 5, 64, 93, 361, 402
Cloud service providers (CSPs), 26,

35, 37, 68, 280, 346
Code analysis, 58, 59, 64, 97, 185,

198, 275, 314, 394
CodeDeploy, 62, 68, 179, 229

Commercial off-the-self (COTS)
packages, 35

Commercial off-the-shelf
(COTS), 200

clients, 200
integrity and vulnerabilities, 202
pipeline, 204
stages, 201
test/validate, application, 203

Complex event processing
(CEP), 139

Compliance and auditability
application development, 48
auditability, 48
requirements analysis, 47

Compliance monitoring, 335, 347
Conditional variables, 224
Connectors/service

connections, 222
Constant variables, 60
Constructs, 216

approvals, 236
auto-cancel construct, 230, 231
caching, 225–227
conditions, 224, 225
connections, 221, 222
deployment strategy, 229, 230
execution environment,

220, 221
fail fast, 232
gate, 235
matrix, 228, 229
priority, 232, 233
success/failure, 231, 232

INDEX

413

templates and libraries, 234, 235
test shards, 233–234
triggers, 217

pipeline completed
construct, 219

schedules, 218
SCM trigger, 217
webhook, 217, 218

variables, 223, 224
workflow, 236

Context diagram, 103–105, 205,
365, 366

Continuous deployment, 23, 101,
164, 194

Continuous integration/continuous
delivery (CI/CD), 2, 313

ALM platforms, 16, 23
articles, 3
benefit, 12
centralized, 138
cloud, 5
concepts, 7, 8, 16
concise explanation, 13
design, 8
design patterns, 3
development, 260
diagrams, 2, 3
event-based, 189, 190, 193
foundations, 12, 146
generic, 87–89, 91, 101, 102, 108,

113, 143, 149, 212
implementing, 18
infrastructure, 2, 44
legacy, 7

migration process, 75
MQ queues, 5
naming conventions, 22
network segment, 104
philosophy, 8
and pipeline development, 75
pipelines, 2, 4, 6–8, 20, 24, 133
positioning, 13
practices, 13
promotes, 24
realization, 19
SaaS, 261
software development, 15
steps, 6
tag, 25
team effort, 19
test environment, 4
tooling, 237
validation code, 17
version, 26
vulnerabilities, 4

CPU capacity, 316, 340
Credentials/certificates, 309, 313
Cucumber directory, 372
Cucumber test, 272, 372, 387, 388
Curl command, 219
Cybersecurity, 42, 47, 316
Cycle time, 71, 343–345

D
Dangling workspaces, 45
Data anonymization, 57
Database administrator (DBA), 256

INDEX

414

Database credentials, 45, 249,
251, 255–257

Decorator/hook, 235
Deployments, 12, 96, 165, 171

canary, 175
re-create, 165
rolling update, 175

deploy.yml, 373
derive-release-version.yml, 373
Design phase, 71, 103, 375
DevOps team, 13, 30, 75, 125, 135,

186, 233, 250, 270
Docker container, 45, 59, 96, 132,

220, 221, 261
Domain-specific language (DSL)

language, 210
download-artifacts.yml, 373
Download package, 201–202
Drift detection, 333, 347
Drift status, 346
Dual control, 23, 43, 100–101, 164,

275, 326
Dynamic Application Security

Testing (DAST), 47, 141,
152, 153, 157

Dynamic scanning, 64, 98

E
Environment repository,

249–251
Ephemeral test environments, 35,

37, 95, 96, 153, 362
Events, 83, 352

Extended pipeline development
method, 267

Extend templates, 234
External libraries, 42, 54, 132, 225,

240, 284, 365

F
Feature-based branching

models, 110
Feature branch workflow

model, 112
Feature flags, 257–260
Feature management,

164–165, 258–260
Federal Information Processing

Standard (FIPS), 42
Full builds vs. incremental builds,

126, 127
Functional and nonfunctional

tests, 151–153

G
Gateways, 78, 84
Gitflow, 7, 33, 117–121, 123, 124
GitHub actions, 38, 228–229
Governance, 74–75

H
Handle error task, 85
Hardware security module

(HSM), 42, 251

INDEX

415

HashiCorp Vault, 251
Healthcheck app, 360, 361, 372
Healthcheck Lambda, 361
Hotfix branches, 119

I
Implementation, 395

application to
production, 399–402

AWSLambdaBasicExecution
Role, 397

Azure DevOps prod
environment/dual control,
397, 398

deployment strategy, 397
libraries, 396
mitigating action, 395
myapp-production-

deployment, 399
quality gate, 403, 404
requirement, 395
test and prod environments,

398, 399
Incidents, 14, 15, 42, 194, 352–356
Include templates, 235
Infrastructure as a service (IaaS),

73, 315, 332
Infrastructure as code (IaC), 5, 95,

237, 261
Infrastructure resources, 37, 98,

141, 373
infrastructure*shaded.jar, 372
install-tools.yml, 373

Integrated development
environment (IDE),
265, 288

Integration platform, 113, 130, 153,
209, 244, 250, 317

Integration server, 12, 35, 39, 45, 70,
90, 110, 264, 286

Interactive application security
testing (IAST), 141, 152,
153, 157

IT value chain, 13–15

J
Jenkins, 16, 59, 104, 209–212,

251, 275
Jenkins Blue Ocean dashboard, 354
Jenkinsfile, 212, 216, 275
Jenkins freestyle project, 209, 210
Jobs, 220, 221, 223, 229, 235
JUnit tests, 289, 290, 294

K
Key performance indicators (KPIs),

68–73, 335, 336, 343, 344

L
Lead time, 71, 343–345
Life-cycle management, 16, 43
Logical design vs. realization

BPMN models, 87
CI/CD setups, 87

INDEX

416

Long execution time vs. short
execution time, 146

Long-lasting tests, 158
Long-running automated test, 157

M
Manageability, 59

binary repository, 60
deployment scripts, 60
infrastructure code, 61
libraries, 60
pipeline development, 59
run anywhere, 59
versioning schema, 61

Manual tests, 145, 150, 153
Matrix, 43, 228, 229
Matrix Build strategy, 133
Mend Supply Chain Defender, 244
Metrics, 68

KPIs, 68
PKIs, 68

Microservice, 35, 36,
185–192, 237–239

Monitoring, 72
pipelines, 73
tools, 72

Monitoring pipelines
business monitoring, 343–345

(see also Key performance
indicators (KPIs)

information sharing, 349
events, alerts, incidents and

notifications, 352–355

notify actors stage, 350, 351
team’s branching

strategy, 350
integration platform, 335
platform monitoring, 335,

342, 343
security monitoring, 346–348
systems monitoring, 335–342

Monitors, 73, 335
Multiteam build strategy, 135, 139

environment, 134
multiple DevOps teams, 135

Multithreaded builds, 128, 129, 304
Myapp, 360, 368, 369, 375, 376, 384,

385, 391, 394, 401, 403, 404
MyCorp.com, 359, 360, 370
mylambda.feature file, 372, 387
myLambda healthcheck, 402
myServerPool, 221

N
National Institute for the Software

Industry (NISI), 18, 19, 42
Network-attached storage

(NAS), 45
NexusIQ, 222, 223, 305
Nexus repository, 104, 396
Notifications, 40, 272, 312, 352–356

O
Offloaded build, 59, 130, 131
Operational pipelines, 332

INDEX

417

AWS stacks, 334
drift detection, 333
expiration date, certificates, 333
manual operational tasks, 332
parameter, configuration

service, 334
renewed certificate, 333
repeating operational

function, 333
tokens/database

credentials, 334
Operations tasks, 62

business continuity, 63
integration infrastructure, 63
pipelines, 63
scripts, 63

Orchestration, 60, 62, 79, 188, 320
Orchestrator, 19, 188
Organization policies, 93, 263, 276,

287, 312

P
Packaging, 23, 94
Parallel build, 128–131
Parallel execution vs. sequential

execution, 145
Parallelize tests, 58
Performance tests, 33, 96, 97, 152,

153, 300–302, 304
Perform manual test, 30, 34, 149,

150, 155
Perform reset, 85, 86
Perform tests, 97, 185, 196, 198

Personally identifiable information
(PII), 57

Pipeline code, 4, 51, 60, 64, 67, 93,
192, 221, 235, 249, 267

Pipeline Compliance Dashboard,
347, 348

Pipeline design, 186
BPMN, 80
BPMN 2.0, 79
business process

modeling, 79
construct, 78
dangling, 148
manual test, 148
patterns, 79
realization cycle, 103

Pipeline development, 59
environment repository, 249
feature flags, 257–260
Git repositories, 371
MyApp, 371, 372, 374
mycorp-com, 370
pipeline creation, 375

myapp-pipeline, 375
myapp-production-

deployment, 375
technical pipelines, 375

secrets management
database

credentials, 255–257
retrieval, secret, 254
safest solution, 252
secret, 253
signing data, 253

Index

418

service connections, 384
AWS and SonarCloud, 381
AWS, test and prod, 383
marketplace, 382
overview, 383
SonarCloud, 383

third-party libraries and
containers, 240–244

value streams, 260
advanced pipeline

development, 267, 268
application

development, 264
base pipeline, 262, 268, 269
CI/CD SaaS solution, 261
compliance scanning, 263
extended pipeline

development, 266
generic templates

libraries, 263
pipeline code analysis, 263
pipeline generation, 270–273
pipeline of

pipelines, 273–279
platform infrastructure

development, 261
platform infrastructure

hosting, 262
simplified pipeline

development, 265, 266
specific templates/

libraries, 263

variable groups, 376
configuration, 377
generic, 377, 380
overview, 376
prod, 379, 381
sever, 378, 380
test, 378, 381

versioning and tagging, 246–248
Pipeline generator, 270–274
Pipeline implementation, 310, 311

application
implementation, 319

artifact promotion, 326–328
release note, 320–325
runbook, 319, 320

integration platform
deployment tools, 315
IaaS model, 315
ISO 25010, 316
Jenkins, 315
logging, monitoring and

alerting, 316
SaaS model, 315
self-hosting model, 316
SonarQube, 315

organizational impact, 311–314
pipeline code, 311
target environment

preparations, 318
automated process, 318
playbook, 319
test and production

environment, 318

Pipeline development (cont.)

Index

419

Pipelines
caching, 132, 225–227
cross-platform, 133
dangling, 148
declarative, 211, 212
designing, 20
implementations, 116
Java-based, 8
monitoring (see Monitoring

pipelines)
operational (see Operational

pipelines)
pipeline of, 268, 269, 271, 273,

274, 279
regular release pipeline,

163, 164
scripted, 210–211, 224, 231
setup, 187
user interface-based, 209
use scripted/declarative, 209
YAML-based, 211, 216

Pipeline specification
complex setups, 216
constructs (see Constructs)
declarative pipelines, 211, 212
multibranch, multistage

pipelines, 208, 209
plugins and marketplace

solutions, 237
repositories, 237–240
scripted pipeline, 210
user interface-based

pipelines, 209

Pipeline testing, 290, 384
analyze code stage, 385
infrastructure compliance

stage, 389
integrity of artifacts, 391–394
performance and acceptance

pipelines, 394
performance test, 300–305
perform test stage, 387
testability, 286–288
testing applications, 286
test specific

characteristics, 286–288
unit test framework (see Unit

testing)
pipeline-that-triggers-me, 219
PipelineUnit.java, 294
pipeline.yml files, 291, 294,

297, 373
Platform monitoring, 335, 342–343
Playbooks, 319
**/.pom pattern, 227
pom.xml file, 227, 290
Pretty Good Privacy (PGP), 244
prod-deployment.yml, 373
provision-infra.yml, 373
Provision test environment, 95–96,

101, 122, 203, 277
Public key infrastructure

(PKI), 18, 68
Publish package (internal),

201, 202
Pyrsia, 244

Index

420

Q
Quality assurance (QA), 64

ALM platforms, 65
application code, 64
entry criteria, 66
exit criteria, 67
infrastructure code, 64
pipelines, 64, 65

Quality gates, 65, 276, 287, 313, 314,
325, 326, 403–405

R
Recovery point objective (RPO), 46
Re-create deployment, 33, 101,

165–170, 173, 362
Register mitigating actions, 312
Regular deployments, 99, 194
Release build, 7, 24, 106, 349, 355
Release notes, 41, 202, 320–325
Release strategy, 3, 33, 34, 158, 159,

164, 312, 362, 367–369
Requirements analysis, 20, 29

areas, 31
CI/CD practices, 29
complex pipelines, 33
costs, 31
feature branches short-lived, 33
inflexibility and costs, 32
manual testing, 34
maturity models, 31
microservice, 36
principles, 29

suggestions, 32
way of working, 32

Requirements of myapp, 361
manageability, 364
security, 363
sustainability, 361
technology, 362
way of working, 361

Resource, 24, 44, 48–49, 60, 101,
141, 195, 245, 334, 341, 395

Resource constraints, 31, 58–59,
184, 193–200

Road map–based release, 159–163
Rolling update

deployments, 175–180
Runbook, 188, 319, 320
Runtime test-1, 311

S
Scanning complement, 64
Schedules, 218
Scripting language, 210
Secret management tools, 250
Security, 41

ALM platform, 41
DAST, 47
deployment, 45
monitoring, 346
requirement, 46
RTO, 46

Security pentest, 155, 156
Self-hosting, 316, 332

Index

421

Semantic versioning, 62, 246, 247,
364, 369

ServiceConnectionNexusIQ service
connection, 222

Shards, 233
Short feedback loops, 13, 40
Software-as-a-service (SaaS), 14,

44, 68, 153, 261, 280,
315, 331

Software delivery strategy, 102
Software development, 15–18, 20,

21, 25, 59
Software supply chain, 2, 12, 14–16,

35, 42, 68, 103, 258, 309
SonarCloud, 92, 364, 365, 381, 383,

386, 387
SonarQube, 92, 104, 196, 275,

305, 315
Source code analysis (SCA), 7, 59,

64, 184, 185, 195
Source control management

system (SCM), 12, 25, 26,
43, 60, 217, 218, 246

Stage-completed.yml, 373
State, 42, 68, 106, 118, 245, 344,

352, 391
Static code scanning, 64
Sustainable computing, 74, 279
Sustainable pipeline development

analyze code stage, 281, 282
auto-cancel option, 281
concept of fail fast, 281
CSPs, 280
rule-based trigger, 283

SaaS ALM platform,
sustainability, 280

servers, 280
sustainable computing, 279
test environments, 282
validation, 281

Systems monitoring, 335–342

T
Tagging, 51, 245–249, 272, 287, 300
Target environments, 12, 34, 53,

59–61, 104, 132, 133, 216,
311, 381

Team’s branching
strategy, 33, 350

Test environments, 37, 224, 259,
266, 277, 278, 282

Testing pyramid, 140, 143, 152
Test shards, 233–234
Test splitting, 233, 234
Test strategy, 3, 6, 33, 46, 139–146,

183, 285, 362
Test_task_1.2.1, 233, 234
Thinking processes, 3
Third-party libraries, 4, 43, 44, 54,

202, 240–245
Timeboxed release, 161, 162,

362, 367
Toggle feature, 258
Traceability, 24, 50, 107
Trunk-based workflow model,

105, 106
try/catch/finally construct, 231

Index

422

U
Unit testing

acceptance tests, 307
analyze code stage, 296
application code, 291
Azure DevOps pipeline, 288
compliance and security tests,

305, 306
features, framework, 289, 290
Java artifact, 293
JUnit tests, 294, 297
JUnit test2, 296
myFeature, 296
test approach, 299
YAML file, 291

Unit tests, 33, 91, 112, 140, 151, 191,
264–267, 274, 288–300

update-minor.yml, 374

V
Validate entry criteria, 89–91,

108–110, 115, 121, 201, 274
Validate exit criteria stage, 99, 100,

190, 282, 325, 327, 328
Validate infrastructure compliance,

97–98, 115, 148, 278,
389, 403

Validating exit criteria, 98–100

Variables, 60, 90, 223, 224, 254, 274,
287, 373, 376

Vault, 42, 251–257, 317, 334
Versioning, 26, 61, 62, 245–249,

334, 364
Vertical scaling, 125
Vinod, 360, 363, 397

W, X
Way of working

business organization, 32
CI/CD process, 33
definition, 32
production deployment

strategy, 33
release artifacts, 33
team’s branching strategy, 33

Web application, 46
Webhook, 89, 109, 150, 217–219
WhiteSource, 244

Y
YAML-based pipelines,

211, 216

Z
zip or .tar file, 276

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: The Pitfalls of CI/CD
	Challenges
	Oversimplified Diagrams and Misalignment
	Lack of Design Patterns
	Vulnerabilities
	Pipeline Testing
	Application Code vs. Infrastructure Code
	Organizing and Maintaining Pipelines
	Technical Constraints
	Legacy

	Summary

	Chapter 2: CI/CD Concepts
	Principles
	Positioning of CI/CD
	Application Lifecycle Management
	CI/CD Journey
	Naming Conventions

	Summary

	Chapter 3: Requirements Analysis
	Overview
	Way of Working
	Technology
	Information
	Security (General)
	Compliance and Auditability
	Resource Constraints
	Manageability
	Operations
	Quality Assurance
	Metrics
	Monitoring
	Sustainability
	Governance
	Summary

	Chapter 4: Pipeline Design
	Design
	CI/CD and Pipeline Design Approach
	BPMN 2.0
	BPMN Elements Overview
	BPMN in Action
	Level of Detail
	Logical Design vs. Realization

	The Generic CI/CD Pipeline
	Validate Entry Criteria
	Execute Build
	Perform Unit Tests
	Analyze Code
	Package Artifact
	Publish Artifact
	Provision Test Environment
	Deploy Artifact to Test
	Perform Test
	Validate Infrastructure Compliance
	Validate Exit Criteria
	Perform Dual Control
	Provision Production Environment
	Deploy Artifact to Production
	Notify Actors

	Design Strategies
	Context Diagram
	Branching Strategy
	Trunk-Based Workflow
	Feature Branch Workflow
	Gitflow

	Build Strategy
	Vertical Scaling
	Full Builds vs. Incremental Builds
	Parallel Builds
	Pipeline Caching
	Build Targets
	Cross-Platform Builds
	Multiteam Build Strategy

	Test Strategy
	Automated vs. Manual Tests
	Functional vs. Nonfunctional Tests
	Parallel Execution vs. Sequential Execution
	Manual Tests Performed by Specialists
	Long Execution Time vs. Short Execution Time

	Release Strategy
	Road Map–Based Release
	Timeboxed Release
	Regular Release
	Continuous Deployment
	Feature Management–Based Release

	Production Deployment Strategy
	Re-create Deployment
	Blue/Green Deployment
	Rolling Update and Canary Deployment
	A/B Test Strategy

	Other Design Considerations
	Delegation
	Application Architecture
	Orchestration
	Event-Based CI/CD

	Resource Constraints
	Commercial Off the Shelf

	Summary

	Chapter 5: Pipeline Development
	Pipeline Specification
	Multibranch, Multistage Pipeline
	User Interface–Based Pipelines
	Scripted Pipelines
	Declarative Pipelines
	Constructs
	Triggers
	Execution Environment
	Connections
	Variables
	Conditions
	Caching
	Matrix
	Deployment Strategy
	Auto-cancel
	On Success/Failure
	Fail Fast
	Priority
	Test Shards
	Templates and Libraries
	Gates and Approvals
	Workflow

	Plugins and Marketplace Solutions
	Repositories: Everything as Code

	Third-Party Libraries and Containers
	Versioning and Tagging
	Environment Repository
	Secrets Management
	Database Credentials

	Feature Management
	Development in the Value Streams
	Simplified Pipeline Development
	Extended Pipeline Development
	Advanced Pipeline Development
	Develop a Base Pipeline
	Pipeline Generation
	Pipeline of Pipelines (DevOps Assembly Line)

	Sustainable Pipeline Development
	Summary

	Chapter 6: Testing Pipelines
	Testing Pipelines
	Testability of Pipelines
	Unit Tests
	Performance Tests
	Pipeline Compliance and Security Tests
	Acceptance Tests
	Summary

	Chapter 7: Pipeline Implementation
	Pipeline Implementation
	Organizational Impact
	Team Discipline

	Integration Platform
	Target Environment Preparations
	Playbook

	Application Implementation
	Runbook
	Release Note
	Artifact Promotion

	Summary

	Chapter 8: Operate and Monitor
	Manage the Integration Platform
	Operational Pipelines
	Monitor
	Systems Monitoring
	Platform Monitoring
	Business Monitoring
	Security Monitoring

	Share Information
	Events, Alerts, Incidents, and Notifications

	Summary

	Chapter 9: Use Case
	Requirements Analysis
	Pipeline Design
	Branching and Release Strategy
	Release Version Generation

	Pipeline Development
	Code Repository
	Pipeline Creation
	Configure Variable Groups
	Configure Service Connections

	Test
	Integrity of Artifacts
	Performance and Acceptance Pipelines

	Implementation
	Configure the Azure DevOps Prod Environment and Dual Control
	Deploy the Application to Production
	Quality Gate

	Summary

	References
	Index

