Continuous
Integration (Cl)
and Continuous
Delivery (CD)

A Practical Guide to Designing and
Developing Pipelines

Henry van Merode

ApPress’

Continuous
Integration (Cl)
and Continuous

Delivery (CD)

A Practical Guide to Designing
and Developing Pipelines

Henry van Merode

Apress’

Continuous Integration (CI) and Continuous Delivery (CD): A Practical
Guide to Designing and Developing Pipelines

Henry van Merode
Leeuwarden, The Netherlands

ISBN-13 (pbk): 978-1-4842-9227-3 ISBN-13 (electronic): 978-1-4842-9228-0
https://doi.org/10.1007/978-1-4842-9228-0

Copyright © 2023 by Henry van Merode

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the GitHub repository: https://github.com/Apress/Continuous-
Integration-(CI)-and-Continuous-Delivery-(CD). For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9228-0

Table of Contents

About the AUthOrccccmminmmmmnesnsses s ix
About the Technical REVIEWEISccccsmssemmmssnsmmsnsmsssnsmsssnsssssnsssssnssnns xi
Acknowledgments........cccuuimsssmmnmmmmmmmssssssssssnsnseessssssssssssnnsseesssssnnnnnns Xiii
Chapter 1: The Pitfalls of CI/CDcccccumrrrmsssssssnsssnsnsssssssssssssssssssssssnns 1
L1 LTy 1
Oversimplified Diagrams and Misalignment..........c.coccvvvieriennnnsensenienessensenens 2

Lack of DeSign PAtternsccccveevvrninieniennsensese s sessessessssessessessssessessessens 3
VUINEraDIlitIEScvceccerrrirscre s 4
PIpEling TESHING .cvvevreierierere s sr e s sa e e 4
Application Code vs. Infrastructure Codecurrerrerrrerierienensensessesesessessenees 5
Organizing and Maintaining PipeliNesScouvvverrernnensensenesessessesessesessesensens 6
Technical CoNStraints ..o 7
072 TSSO 7

£ 11114 7 9
Chapter 2: CI/CD CONCEPLS....ccceurrrsssnnnsrsssssnnssssssssnsssssssnnsssssssnnssssssnnnnss 11
PrINCIPIES ..ot e 12
POSitioning Of CI/CDcoeccvrerereercserirerere s se s e e ssnas 13
Application Lifecycle Management...........cccoovcvininninsnnnnnsnsesese s sensennens 16

0 00 T O 17
Naming CoNVENLIONS..........ccovevrererercrnerire s saeaes 22
SUMMANY....eeeeeereserre e r e e s e e nr e e 26

ii

TABLE OF CONTENTS

Chapter 3: Requirements Analysisccucemmrmsssnnnmsssssnsnesssssssssssssnnnnes 29
OVEIVIBW ...coecerereeseeese et sa e 29
Way OF WOTKINGcoveeereerecc s s 32
L= 110 T TSRS 34
INFOPMALION.....covieeriectr e 39
Lo U T (1T =T ¢) 4
Compliance and AUditability........covrevererrerieriennsenserese s sessessesses 47
ReSoUrce CONSIIAINTS........cccovurreeererereseesese e es 58
Manageability ..o s 59
OPEIALIONS....c.veiicerere e e nae s 62
QUAITtY ASSUFANCEoveveeeucererirseseese e s se s se e se s nes 64
MEIFICS ... s 68
MONITOFING....ce e e s 72
SUSTAINADIIIEYoveeeeee e ——————— 74
GOVEIMANGCEcoveeeereeerreereeesessesesseeses e sessee s e e sse e ses e e sss e sse e sessesessssessesesssseenns 74
SUMMANY....ceieerrresere e s e e s e e nre e 76

Chapter 4: Pipeline DeSignccccuummssssssssmmmmsssssssssssssssssssssssssssssssssssnss 77
DESION .ot ——————————— 78
CI/CD and Pipeline Design APProach.........ccceeevrrerieressssessessessessssessessessesessessesaes 79

BPIMIN 2.0.....cuieieiiriiese e 79
BPMN EIements OVEIVIBWcccorurincseseresssssssse e sesssssssses 80
3 L 1T (o N 83
Level of DEtall.........corrrnenmnererss s 86
Logical Design vs. Realization...........ccuveennemnnnsnsnnsssssse s 87
The Generic CI/CD PIPEIINEccvvereverrersereressssessessessesessessessesssssssessessessssessessenes 87
Validate Entry Criteria......cccoovvvreriererenserseressssensesesssssssessesssssssessessessssessessens 89
EXECULE BUIl.......cceeccecirrcere s 91

iv

TABLE OF CONTENTS

Perform UNit TESESccccerrcririrerne s 91
ANAIYZE COUBerverrerrrrererereeserere e sas e ssessess e s e s ssesas e ssesaesas e saessesasensessens 92
Package ArtifaCtc.ccverininiinnn s 9
PUDIISh ArtIfaCtcoveieirrrcrese s 94
Provision Test ENVIrONMENt ... 95
Deploy Artifact 10 TESH......cccccvvrirnrrrrrrr e 96
Perform TESE ..o 97
Validate Infrastructure COMPlIanCec.ccocevvverierevnsensessesesesseressessssessensens 97
Validate EXit Criteria.........ccorrrmnnmsmserisssssssese s sessssssssssens 98
Perform Dual CoNtrol.........ccceevenernnnncesessss s s ssas 100
Provision Production Environment ... 101
Deploy Artifact 10 Production..........ccccvvevenininsnnnsnsensee s s 101
NOUITY ACLOIS ..ceeeie e 102
DeSign STrategies......ccovvrreierrrerr s 102
Context Diagram..........ccccvreeverenresrrse e 103
Branching Strategy........ccccvrrrrnirnic s 105
BUIIA STrategyccoeeerrercrirerirr s rene e se s se e 125
TeSt SIrAtegy.....ccceevirererr e e 139
Release SIrategyc.ccccvvrererrneririerine s ses et sesae e 158
Production Deployment Strategy........cccceverrvrniennissnncesneses e 165
Other Design Considerations...........cccvvcevrerresernsesensesesss s ses s seseeaes 183

ES 10T 111 T o 205
Chapter 5: Pipeline Developmentccccccininseessmmnnnnnmsssssssssnnns 207
Pipeline Specificationccucvvrininnin s 208
Multibranch, Multistage Pipeline............coocovvevnnennisnrnsesessesese s 208
User Interface—Based Pipelings.........ccccvvvnvneninnsnnnens s sesenes 209
Scripted PIPelines........ccvivrinennnnsn s 210
Declarative PIpelinesS ..o e ssssessesnens 211

TABLE OF CONTENTS

(00411 3 216
Plugins and Marketplace SOIULIONSccccvvververernrenseseresesseressesessessensens 237
Repositories: Everything as CoUecovevrrerveriernsensessesessssessessessssessessens 237
Third-Party Libraries and COntainers..........ccccvrvevresernsesensesenesesesesesesesenens 240
Versioning and TAgQing........ccveecrrerrrerereneresseresesessesesesse s e s e ssssesessssesssnens 245
Environment REPOSITOrY.......cccuveernrmrnesmrsnerssesssese s s seenes 249
Secrets Management.........covcvvernnnnsesnes e 251
Database Credentialsccuervverneninesennse s 255
Feature Management..........cccoiirvnnnnninsin s 257
Development in the Value Streams........cceevrevvrnieniennnensensesesessesessesessessessenes 260
Simplified Pipeline Development.........ccoovvvvrnierenennensenenessessesessesessessesees 265
Extended Pipeline Development...........ccccvervnvninnninsensen s s 266
Advanced Pipeline Development ..o sesenenns 267
Develop a Base PIpeling.......c.ccocvveririninne s ssesses s s 268
Pipeling GENErationcccvvvverierenenseriesessssere e ssesessesse e sessessessessssessessens 270
Pipeline of Pipelines (DevOps ASSEMDIY LiNE)........ccocvverererersersersesessensensens 273
Sustainable Pipeline Developmentccorevrninncsnnsern e 279
3101111 T o 283
Chapter 6: Testing Pipelingsccuuunmmmmmmmmnmnsmssssssssssnnsssesssssssssssssnsnnas 285
Testing PIPEIINESccovevereeree s 285
Testability of PIpeliNeScccvveernienncsirese s 286
UNIt TESES...cviiicccri i 288
Performance TESES ..o s 300
Pipeline Compliance and Security TESEScccccvvierrierrninnie e 305
ACCEPIANCE TESES ...civerieircirer s 307
SUMMANY....ceiveereresesese s e e e e s s e e nenssnenns 307

TABLE OF CONTENTS

Chapter 7: Pipeline Implementationcccccunsemmmnnssssnnnmnsssssnnsssnns 309
Pipeline Implementation ... 310
Organizational IMPACt........c.ccccvcririninnrr s 311

Team DiSCIPINEcccevivricrre e e 313
Integration Platformcccovenernnnnnesersse e 314
Target Environment Preparations...........coccvvennenenesesnsesssesssssessssesessesssseens 318

PIAYDOOKcoceeereecieserer et 318
Application Implementation ... ———— 319

RUNDOOK ... 319

Release NOE ... 320

Artifact Promotion ... 325
SUMMAIY v itetrereresessere e s e s e e s ssesae e s e saesaese e e saesaesae e s e saesaesseenaesnens 328

Chapter 8: Operate and Monitorccccusseenrrsssssnnsrsssssnnsesssssnsssssssnns 331
Manage the Integration Platform...........ccccoinninininncncnr s 331
Operational PIpeliNeS........cccvivrvnininnsne s 332
1110 111 (0) ST 335

Systems MONITONING......ccuovrerenernsrreresere s 336
Platform MONItOriNG.......ccoveeeerenernseresesesese s sese s s s sesessenens 342
BUSINESS MONILOIiNG......cccveererrenerrnseresesesrese s sese s s s e e sensesessenens 343

Security MONItOringc.cooveerenernsesrsesere s s s 346
Share INformation ..o —————— 349

Events, Alerts, Incidents, and NotificationS.........ccvvvinnninnnnnnnienns 352
SUMMAIY . eeiteirerere e s e s s a e e s e s ae st e e s e s aesa e e s e s aesae e e e nannnees 356

Chapter 9: Use CaSe......uussmmemsnmmmss 399

Requirements ANalYSiS........ccvriininnnnniensin e ses 361
Pipeling DESIQNccccoeviririrer et 365
Branching and Release Strategycccoovrrnvernienrinsnnccsnesene s 367

vii

TABLE OF CONTENTS

Release Version GENeration............c.ucveresnnnssssesessssssssesesssssssssesesssssssas 369
Pipeline Development ... s 370
00 T 0 T0 L (0] O 371
Pipeling Creationccccerecrnievncnse s sesseens 375
Configure Variable GrOUPSccocvecrrcvnerire s 376
Configure Service CONNECLIONScccveeverererererinrerense e 381

2] TR 384
Integrity Of ArIfACES........cocveeeee s 391
Performance and Acceptance Pipelings.........cccccvvvnvninnnnsnicniensssensennens 394
IMplementation ... —————————— 395
Configure the Azure DevOps Prod Environment and Dual Control............... 397
Deploy the Application to Production...........cccucvivnininiennnnsnenesensensennens 399
QUALILY GALEeueeeeeeeresee et 403
SUMMANY....ctivicertrerreese e e e e nrn e 405
References........uosmvesmmsmsmsssmsssmmsmsssssssss s s s s s s sas s s nan s s 407
INA@X..ueeeiiienssinnsssnnsssssnsssssnssssannssssnsssssnnsnssnnssssnnnnssnnsnssnnnnssnnnnssnnnnnnns 411

viii

About the Author

Henry van Merode is a solution architect with more than 30 years of
experience in ICT within several financial organizations. His experience
spans a wide range of technologies and platforms, from IBM mainframes
to cloud systems on AWS and Azure. He developed, designed, and
architected major financial systems such as Internet banking and order
management systems, with a focus on performance, high availability,
reliability, maintainability, and security.

For the last 8 years, Henry’s expertise has been extended with
continuous integration, continuous delivery, and automated pipelines.
As an Azure DevOps community lead, Henry likes to talk about this
subject and promote automating the software supply chain to the teams at
his work.

ix

About the Technical Reviewers

Fred Peek is an IT architect from Utrecht, the Netherlands. He has a
master’s degree in electrical engineering from the Eindhoven University
of Technology. He has more than 20 years of experience in the IT industry,
working in software development (Java, C++), software architecture, and
security. Besides IT, he is involved in the audio and music industry as a
recording/mixing engineer, DJ, and Audio Engineering Society (AES)
member.

Joep Daandels is an enthusiastic DevOps engineer from Maaskantje,

the Netherlands. He graduated as a software engineer from the Avans
University of Applied Sciences and has been working in the IT industry

for the last 20 years. In recent years, he specialized in machine learning/
artificial intelligence and is currently working on a state-of-the-art solution
to enhance IT operations with AIOps. In his spare time, Joep loves to relax
and read a good paper or study some interesting new technology.

Ralph van Beek is a DevOps architect specialized in optimizing the CI/CD
process for the z/OS mainframe. He graduated in business economics

and informatica at Avans Hogeschool for applied sciences. He has been
working in the IT industry for 35 years. The last 15 years he has specialized
in optimizing and automating software delivery processes for z/OS
mainframes, approaching software delivery as a business process. He has
been a guest speaker on this topic at various conferences. In his spare time,
he prefers various outdoor activities such as hiking and biking and travel
photography.

Acknowledgments

Many thanks to the people of Apress for allowing me to write this book and
for helping me publish it.
Special thanks to my colleagues Fred, Ralph, and Joep for reviewing
the text, providing me with suggestions, and correcting mistakes I made.
And of course, I want to thank my wife Liseth for being supportive.

xiii

CHAPTER 1

The Pitfalls of CI/CD

This chapter covers the following:

e The drivers that started my search for a more structured
way to design and develop pipelines

e The challenges I faced during the years I worked with
continuous integration, continuous delivery, and

pipeline development

Challenges

At work, I once gave a presentation about continuous integration/
continuous delivery and described how it improves the speed of software
delivery. I explained that using pipelines to automate the software delivery
process was a real game changer. I presented the theory that was written
down in books and articles, until someone from the audience asked me

a question about what the development of pipelines looks like and how,
for example, one should perform unit tests of pipelines themselves. This
question confused me a bit because the theory nicely explains how to
unit test an application in the pipeline but never explains how to unit test
pipelines themselves. Unfortunately, I could not give a satisfying answer,
but this question did make me realize that until then my approach to
creating pipelines was a bit naive and needed a boost. A scan within the
department I worked at told me I wasn'’t the only one who could benefit

© Henry van Merode 2023 1
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_1

https://doi.org/10.1007/978-1-4842-9228-0_1

CHAPTER 1 THE PITFALLS OF CI/CD

from a more professional approach toward continuous integration/
continuous delivery (CI/CD).

In the beginning, I stumbled upon a lot of problems I needed to solve.
Unfortunately, there aren’t that many tutorials that point out from start to
finish how to make a proper pipeline design, which choices to make, which
issues I would face, and how to solve them (or at least point me in the
right direction). There was no structured way to design, develop, test, and
implement pipelines. After a long journey of trial and error, my approach
to setting up a CI/CD infrastructure and creating pipelines became more
structured and started to show its value. As I watched other teams improve
their CI/CD skills, I realized that everybody faced the same challenges and
encountered the same pitfalls as I did.

Let me first point out that CI/CD itself is not a pitfall. It is an approach
to solving a problem, automating the solution, and implementing a mature
software supply chain. But, if underestimated and not understood very
well, CI/CD can become a problem that gives you lots of headaches.

The realization of pipelines requires a structured approach, similar to
designing, developing, testing, and implementing applications, but there
isn’t much information available that can help you with this journey. My
experience is that CI/CD is also not well-understood. Using automated
pipelines is not the same as CI/CD. This is one of the reasons why [wrote
this book, and this is probably also the reason why you started reading it.

Let me try to emphasize some challenges I faced in the past.

Oversimplified Diagrams and Misalignment

Most CI/CD diagrams depict similar stages like the ones shown in
Figure 1-1.

CHAPTER 1 THE PITFALLS OF CI/CD

I S ST ST

Figure 1-1. Simplified diagram of CI/CD

The problem with this type of diagram is that it’s fine to explain
the concepts of CI/CD, but I noticed that teams use this as their actual
blueprint and realize along the way that they have to redesign and rewrite
their pipelines. Often, one person is responsible and just starts with a
simple implementation of a pipeline without considering the requirements
or without even knowing that there are (implicit) requirements. For
example, the team works in a certain manner, and that was not taken into
account from the start.

The lack of a structured approach to implementing pipelines is one
of the underlying problems. The “thinking” processes required before the
pipeline implementation starts never happen.

Lack of Design Patterns

Usually, the Internet is a good source for articles, and there are plenty

of articles about CI/CD, but questions like “How do I design a pipeline

in case the team uses branching strategy X, test strategy Y, and release

strategy Z?” remain unanswered. The topics are pointed out to be relevant,

but it remains unclear how this translates to the realization of a pipeline.
Most articles are either too abstract or too trivial, or they immediately

dive into the technical details, without visualizing the whole picture. There

are books about cloud design patterns, enterprise application architecture

patterns, and even machine learning patterns, but there is no Gang of Four

(see [21]) type of book on CI/CD design patterns. It’s a missed opportunity.

CHAPTER 1 THE PITFALLS OF CI/CD

Vulnerabilities

Teams are often unaware that they incorporate solutions in their
pipeline, which perhaps contain severe vulnerabilities. For example,
third-party libraries or software is retrieved directly from the Internet,
but from unauthorized sources. This results in a real security risk. Also,
the propagation of secrets, tokens, and credentials is often insecure.

The CI/CD process should be fully automated, and manually moving
secret information around must be prevented. Some of these risks can be
avoided, or at least reduced, by applying mitigating actions.

Pipeline Testing

Consider an assembly line of a car-producing company. The company
produces cars 24 hours a day, 7 days a week. At the front of the assembly
line, the car parts enter. The wheels are mounted to the suspension,
the body is placed on the chassis, the engine is installed, and the seats,
steering wheel, and electronic equipment are installed. Everything is
automated, and at the end of the assembly line, a new car sees the light.
What if you are the mechanic who has to replace a large part of this
assembly line? Stopping the assembly line is not an option, and replacing
assembly line parts while running carries a risk. You may end up with a car
with a steering wheel attached to the roof.

This is the underlying problem of the question my colleague
once asked when I gave a presentation about continuous integration
and continuous delivery, “How do I develop and test my pipelines?”
Developing an application and testing it locally works very well for an
application, but not so well for pipeline code. The environment in which
a pipeline builds the application, deploys it, and executes the tests is not
suited to become the develop and test environment of the pipeline itself.
And having a local pipeline environment to develop and test the pipeline is
often not possible.

CHAPTER 1 THE PITFALLS OF CI/CD

Application Code vs. Infrastructure Code

Years ago it was common to set up an infrastructure and install
middleware manually. This took ages. You needed various departments to
request servers, storage, MQ queues, load balancer configurations, firewall
rules, etc. Most of these departments wanted you to fill in an extended
request form. If you were lucky, the requested resource was available
within five days. Slowly it became more common to automate parts of this
process, but today large parts of the on-premises infrastructure still have to
be set up manually.!

And then I moved to cloud. Working with cloud providers such as
AWS and Microsoft Azure opened a new world for me. It was possible to
define the whole infrastructure stack using CloudFormation and Azure
Resource Manager (ARM) templates. And it became even better. Bicep was
introduced for Azure, and AWS introduced the Cloud Development Kit
(CDK). This made it possible to program the infrastructure in your favorite
programming language. But, this also blurred the dividing line between
an application and the infrastructure a bit. Things used to be clear. Scripts,
which were used to create (parts of) the infrastructure or middleware,
were not validated against quality rules and were not tested in the pipeline.
The pipeline was focused on the application. With the introduction of
infrastructure as code (IaC), the pipeline should treat infrastructure
code similarly to application code. Infrastructure code must be validated
against security policies and organization guidelines. The provisioned
infrastructure must be “tested” to make sure that the target environment
behaves the way it was intended. This indicates that IaC has an important
role in a pipeline.

! Organizations with on-premises datacenters are trying to catch up slowly,
implementing platforms such as OpenShift, disclosing their infrastructure using
APIs, and making use of Ansible and Terraform to define infrastructure as code.

CHAPTER 1 THE PITFALLS OF CI/CD

Note | used to see infrastructure provisioning and application
deployment as two different processes. However, this is “legacy
thinking” and is based upon the fact that this was often done

by different departments and different people, using different
technologies. But if you think about what you want to achieve, it
makes sense not to see this as different processes. A deployment

is putting a business capability into production. It does not matter

if this involves infrastructure, an application, security policies, or
monitoring for that matter. All these components together contribute
to the business capability, and they should not be treated as different
“things.” This becomes more apparent if all resources become
“virtual” and are defined as code.

Organizing and Maintaining Pipelines

After the first pipeline is created, the second one is created and then the
third and the fourth, until there are dozens of pipelines trying to realize
one or more steps within a CI/CD process. Often code is copied from one
pipeline to the other, making it more complex to maintain. After a while, a
complete restructuring is needed. There is no vision from the start. Various
factors influence the organization of pipelines.

e The application architecture is important. Is the
application a monolith, or does it consist of multiple
microservices? In how many pipelines does this result?

e What is the teams” workflow? Do they use a particular
branching strategy, and what is their test strategy, their
deployment strategy, and their release strategy?

CHAPTER 1 THE PITFALLS OF CI/CD

e Also, the arrangement of the application code, the
infrastructure code, and the pipeline code requires
some thinking. Do you put everything in one
repository or not?

e Does the pipeline include manual steps, and how do
they reflect in the design?

The number of pipelines may grow if the number of variations is high. I've
seen examples in which one small application resulted in multiple pipelines:
one pipeline performing just the CI stage for feature branches, one pipeline
for a regular (snapshot) build, one for a release build, one deployment
pipeline to set up tests, a separate pipeline to perform the—automated—tests,
and a deployment pipeline for the production environment.

Technical Constraints

Something that comes to the surface only after a while is that you may hit
some constraint, often a compute or storage resource. For example, the
code base becomes bigger and bigger, and the source code analysis stage
runs for hours, basically nullifying the CI/CD concept of fast feedback.
Also, the queuing of build jobs may become an issue in case the build
server cannot handle that many builds at the same time. Unfortunately,
these constraints are often difficult to predict, although some aspects can
already be taken into account from the start.

Legacy

If we like it or not, a lot of teams still use a legacy way of working. They still
perform too many manual tests, and test environments are often set up manually.
As a branching workflow, Gitflow is still used a lot. This type of workflow has a
few downsides. It is complex, with multiple—long-lived—branches, and it can be
slow to adapt new features because of a strict release cycle.

CHAPTER 1 THE PITFALLS OF CI/CD

But even if an organization starts to innovate and implements the
principles of CI/CD, there is still a long way to go. People have to realize—
and sometimes be convinced—that things can be improved. They need
to understand how this can be done, and they need to know their role in
this process. CI/CD is not just about the tools, although there were many
times I put a curse on some of them. With most of the current tools, you
can quickly build a simple pipeline in a couple of hours. The challenge
is about shaping the organization, the processes, and the people. Do
not underestimate how much effort that takes, especially in a large
organization.

So, should you send the teams that match the previous description the
message that they aren’t ready yet for CI/CD and leave it to that? Of course
not. I always see CI/CD as a “growing model.” Start small, extend gradually,
inspire people, and help shape a way of working that fits in the CI/CD
philosophy.

These challenges started my search for a structured CI/CD design
approach, but without much success. My CI/CD journey, therefore,
consisted of a lot of trial and error, but I did manage to learn a couple of
things along the way. Coming mainly from a Java/WebLogic/WebSphere/
Spring Boot environment, I designed and built Java-based pipelines for
multiple teams and mastered a bunch of tools that help with automating
builds, setting up test and production environments, deploying
applications, and executing automated tests. Tools like Jenkins, Azure
DevOps, and Ansible come to mind.

Ilearned what worked and what did not. I realized that more
traditional workflows do not fit very well in the CI/CD concept. I
experienced that the development of pipelines does not always seem like
a team responsibility; I often heard team members talking about “your
pipelines.” So, turning this situation around and making CI/CD a shared
responsibility was also part of the job. Slowly, the approach to designing,
developing, and implementing CI/CD pipelines became more structured.
It would be a shame not to share my experiences.

CHAPTER 1 THE PITFALLS OF CI/CD

Note This book is a practical guide to designing and developing
pipelines. The ambition is geared toward CI/CD, but the scope is a
bit broader. As explained, no team can switch to “pure” CI/CD in an
instant, so to accommodate these teams, the book also discusses
workflows that include traditional branching strategies, for example.

Summary

You learned about the following topics in this chapter:

o Teams must be aware of the challenges they face when

they start with continuous integration and continuous

delivery.

o These challenges involve the following:

The use of oversimplified diagrams as a blueprint
for pipelines

No clear design patterns

Vulnerabilities in pipelines

Testing pipelines

The use of infrastructure as code in pipelines
Managing pipelines

Technical constraints

Legacy and pipelines

CHAPTER 2

Cl/CD Concepts

This chapter covers the following:

The principles of continuous integration and
continuous delivery

Continuous integration and continuous delivery in
the context of the Open Groups’ IT4IT Reference
Architecture and the software supply chain

The importance of application life-cycle management
(ALM), with examples of ALM platforms

The bumpy journey of realizing continuous integration
and continuous delivery

Pipeline development with application development
(this forms the basis of this book)

The importance of a thorough requirements analysis,
which forms the basis of your pipeline design and
development

Terms often used in continuous integration and
continuous delivery and what they mean

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_2

11

https://doi.org/10.1007/978-1-4842-9228-0_2

CHAPTER 2 CI/CD CONCEPTS

Principles

The foundations of continuous integration/continuous delivery (CI/CD)
were laid down by people like Paul Duvall, Jez Humble, and David Farley,
and they are thoroughly described in their respective books, Continuous
Integration: Improving Software Quality and Reducing Risk (see [5])

and Continuous Delivery: Reliable Software Release through Build, Test
and Deployment Automation (see [6]). These books present a couple

of concepts and principles that together make up CI/CD. Let’s try to
summarize CI/CD in a few sentences.

The benefit of continuous integration and continuous delivery is that
application code can be delivered faster to production by automating the
software supply chain. This produces secure code of better quality, provides
faster feedback, and results in a faster time to market of the product.

Continuous integration is based on the fact that application code is
stored in a source control management system (SCM). Every change in this
code triggers an automated build process that produces a build artifact,
which is stored in a central, accessible repository. The build process is
reproducible, so every time the build is executed from the same code, the
same result is expected. The build processes run on a specific machine,
the integration or build server. The integration server is sized in such a way
that the build execution is fast.

Continuous delivery is based on the fact that there is always a stable
mainline of the code, and deployment to production can take place
anytime from that mainline. The mainline is kept production-ready,
facilitated by the automation of deployments and tests. An artifact is
built only once and is retrieved from a central repository. Deployments
to test and production environments are performed in the same way,
and the same artifact is used for all target environments. Each build
is automatically tested on a test machine that resembles the actual
production environment. If it runs on a test machine, it should also run
on the production machine. Various tests are performed to guarantee

12

CHAPTER 2 CI/CD CONCEPTS

that the application meets both the functional and the nonfunctional
requirements. The DevOps team is given full insight into the progress of
the continuous delivery process using fast feedback from the integration
server (via short feedback loops).

This is a concise explanation of CI/CD, which is of course more
thoroughly described in the mentioned books.

Positioning of CI/CD

The IT value chain provides a view of all activities in an organization that
create value for the organization [7]. The IT value chain concept is defined
in the Open Groups’ IT4IT Reference Architecture and consists of four
pillars, the value streams.

o Strategy to portfolio (S2P) value stream: Aligns the IT
and business road maps and includes activities such as
setting up standards and policies, defining the enterprise
architecture, analyzing service demand, and creating
service road maps.

CI/CD practices are implicitly used to support

the portfolio management process by providing a
consistent and repeatable way to build, test, and deliver
new IT investments. Additionally, CI/CD can help to
ensure that IT investments meet required standards

for quality, security, and compliance by automating
the testing and deployment process and by providing
visibility into the status of the delivery pipeline.

e Requirement to deploy (R2D) value stream: Provides the
framework for creating/sourcing new services or modifying
those that already exist. This value stream includes the typical
activities to create the services, planning, requirements
analysis, design, development, test, and deployment.

13

CHAPTER 2 CI/CD CONCEPTS

In essence, this is what CI/CD is mainly about. CI/
CD pipelines implement the activities associated
with the R2D value stream.

e Request to fulfill (R2F) value stream: Provides a
framework connecting the various consumers (business
users, IT practitioners, or end customers) with goods
and services that are used to satisfy productivity and
innovation needs. This typically includes activities of
supporting departments that deliver facilities, tools, and
automation support, which help DevOps teams in the
development of their services.

Managing a CI/CD SaasS solution, developing a CI/
CD infrastructure, and hosting a CI/CD platform
infrastructure are typical examples of CI/CD
activities in the R2F value stream.

e Detect to correct (D2C) value stream: Deals with
integrating monitoring, management, remediation, and
other operational aspects. Key activities are detecting
events, alarming, diagnostics to determine root causes,
determining business impact in the case of issues, and
resolving incidents.

CI/CD helps to ensure that the fix or update is delivered to the
customer quickly and with a high level of quality.

The IT value chain is more or less a set of interrelated activities that
organizations use to create a competitive advantage. It is valuable in the
sense that it consists of a thorough list of activities that can be mapped on
the software supply chain.

The software supply chain represents activities required to get the
product to the customer. It is a subset of the IT value chain activities,
but more targeted toward the process of idea creation until the actual

14

CHAPTER 2 CI/CD CONCEPTS

service rollout. CI/CD covers activities of the software supply chain with
a focus to speed up software development and to maintain a high-quality
standard.

Traditionally, CI/CD does not cover all activities associated with
software development. CI/CD is usually restricted to build, test, and
deployment. Activities such as planning, requirements analysis, designing,
operating, and monitoring are usually not considered in the scope of CI/
CD; however, we shouldn’t be too narrow-minded here. It does make
sense to keep these activities in mind when realizing pipelines.

Consider the case in which an artifact is deployed to production. It needs
to be monitored. Incidents may occur, which need to be resolved. What if
application monitoring becomes integrated into the pipeline? Issues and
incidents detected by the monitoring system could lead to the automatic
creation of work items, or it could even lead to automated remediation;
an incident detected results in triggering a pipeline that remediates the
incident. Stretching this thought process a bit more and anomalies detected
by artificial intelligence (AI) monitoring may result in triggering a pipeline
that reconfigures a service even before the incident occurs.

Itis good to see in practice that some teams stretch their CI/CD
pipeline setup to the max, looking beyond the scope of traditional CI/CD
and considering all steps in software development.

[)

[I I I)

Drive IT portfolio to Build what the business Catalog, fulfill & manage Anticipate & resolve
business innovation needs, when it needs it service usage production issues

Figure 2-1. IT value chain

15

CHAPTER 2 CI/CD CONCEPTS

Application Lifecycle Management

One of the earlier continuous integration tools was Hudson, maintained
by Oracle and later forked to what is currently known as Jenkins. With its
success, new tools arrived like Travis CI and Circle CI, each extending
the CI concepts. In addition, specific deployment tools popped up,
covering the continuous delivery part of the CI/CD equation. A tool

like Octopus Deploy is such an example. To cover even more aspects of
the software supply chain, the toolset expanded with issue trackers and
monitoring tools.

The problem was—and still is—that integration of all these tools is not
straightforward, and CI/CD requirements cannot always be implemented
easily. This means that time (and money) must be spent to create a fully
integrated toolset, which not only implements all functional requirements
but is also performant, secure, and stable.

Here is where application life-cycle management suites step in. ALM
tools include portfolio management, project management, requirements
management, software architecture, application development, continuous
integration, quality assurance/software testing, software maintenance/
support, change management, release management, and monitoring. It
covers more than only the software development life cycle and focuses
on the whole software supply chain. Examples of ALM suites are Azure
DevOps, a software-as-a-service (SaaS) solution from Microsoft, and
the Atlassian ALM suite consisting of Confluence, Bitbucket, Sourcetree,
HipChat, Jira, and Bamboo.

And even these current-gen ALM platforms cover only parts of the
software supply chain, or they omit certain functionality, which means
that these features must still be added using additional tools, marketplace
solutions, or DIY solutions.

16

CHAPTER 2 CI/CD CONCEPTS

Note AnALM platform is a collection of tools and processes that
support the various stages of an application’s life cycle. Specifically,
the software development life cycle (SDLC) tools of the platform play
a crucial role in the context of CI/CD processes.

Throughout this book, the name ALM platform is used. This can also
be read as an integration server, a build server, or a set of individual
but integrated Cl and CD tools.

CI/CD Journey

I do not know one team that implemented CI/CD in the first iteration.
When I ask a team to think about a solution to deliver software in smaller
increments and more frequently, they agree it is a good idea but difficult to
realize in their context. They give various reasons why this is not possible
or at least very difficult. A generic problem seems to be that teams are
used to a certain way of working, often a way of working that does not
necessarily meet the preconditions of a CI/CD implementation. They find
it hard to let go, especially if the new way of working is not crystal clear

to them or if they don't realize the necessity to change. And even if they
realize it, they still need to adapt. Change remains difficult.

A recurring problem, for example, deals with the granularity of user
stories or tasks. Some stories or tasks are just put down as one-liners, like
“implement the validation of a digital signature.” A developer commits to
this story and starts coding.

This is what happens: After the validation code is written, it needs to
be tested. This requires additional test code to be written. The test code is
needed to create the digital signature that needs to be validated. But testing
also requires a key pair and a certificate. The key pair and a certificate
signing request (CSR) file are created, and the certificate is obtained from

17

CHAPTER 2 CI/CD CONCEPTS

the local public key infrastructure (PKI) shop (assuming that self-signed
certificates are not allowed in this company). The developer also realizes
that the target environment does not have a file system but an object store.
Storing the certificate on the workstation’s file system works fine for local
testing, but it does not work anymore after the code has been integrated
into the app and deployed to the target environment. So, the code has to
be rewritten, and by the way, additional measures have to be taken from
an access control point of view, so the app can also read the object store.
The story looked simple at glance but expands along the way. The result is
that the developer keeps the code and pushes it to the central repository
only after a couple of days, or even longer. The translation from business
requirements to epics, stories, and tasks is not trivial, and decomposing
the work into small, manageable chunks is often a challenge.

Realizing that implementing CI/CD is a journey is the first step of the
transformation process. It is the first hurdle of a bumpy journey. Setting an
ambition level helps in defining this journey. Team members should ask
themselves a couple of questions. Where do we stand six months or one year
from here? What can be improved in our way of working? What do we need to
fix certain impediments our team deals with? Can they be solved by training?

Determining the ambition level can be done with the help of a
continuous delivery maturity model. This model helps assess the team’s
current maturity and works as guidance in their CI/CD journey. There are
several examples of continuous delivery maturity models. The following
one is from the National Institute for the Software Industry (NISI; see
Reference [36] and Figure 2-2). The vertical axis represents the categories
or steps in software development. The horizontal axis represents five
maturity levels, from foundation to expert. These maturity levels indicate
how well a team performs in its continuous delivery practice. It is up to
the team—also driven by the organization’s ambition—to decide in which
areas they need improvement and to what extent. Maybe they don’t want
to be an expert in each category. Create an initial road map, but start small
and expand over time.

18

CHAPTER 2

Continuous Delivery 3.0 Maturity Model

Foundation
Platform for CD 3.0
available, however the
deployment is still poorly
automated

Novice

CD 3.0 with basic
automation on a reactive
level

Intermediate
Average CD 3.0
technologies adopted
with proactive elements

Advanced
Advanced CD 3.0
technologies adopted,
that are quantitively
managed

Cl/CD CONCEPTS

Expert

Decision making and
execution is increasingly
handed over to machine
learning algorithms

Intelligence - Customer behaviour and -Basic monitoring of app -Advanced customer - All metrics and reports -Realtime data collection,
feedback server usage and handling monitoring are predefined analysis and reporting
customer feedback -A/B testing in place - Decision making based using Al
on detailed analytics
Planning ~Centralized backlog - All work managed by - Automatic backlog item - Automatic proposed -Backlog creation and

Integration

management server

-Centralized version
control
- Centralized build server

means of digital backlog

- Nightly builds
-Workflow orchestrator
- C-integration reporting

creation

-Automatic build on

commit

-One build for all

environments

backlog prioritization

-Staged integration
- Usage of microservices
-Realtime integration

reporting

prioritization using Al

- Continuous integration
services are
automatically up- and
downscaled

Testing - Centralized unit-test - Unit tests run in CD- - Integration tests in - Acceptance tests in - Continuous integration
server pipeline pipeline pipeline services are
- Unit tests start manually 5 . performance automatically up- and
tests started manually tests started manually and security tests downscaled
started manually
-Behaviour driven
development
Deployment -Deployment server -Basic deployment scripts - Automatic deployment -Zero downtime -Deployments on endless

- Automatic deployment

to test environment
after successful build

pipeline from build to
production

deployments

scalable platforms

Figure 2-2. NISI continuous delivery maturity model

Important in the CI/CD journey is that it must be a team effort. There
are enough cases in which one or two team members are assigned to
“implement CI/CD.” The danger exists that they become too isolated,
and any question about the topic is immediately delegated to them. If the
team is not involved, the knowledge gap becomes bigger and bigger, and
when they leave the team, there is nobody left to take over. So, involve the
whole team and relevant stakeholders and take them along on the CI/

CD journey. And, of course, not everybody needs to know every nitty-
gritty detail, but it must be enough to understand what'’s going on. A good
practice is to keep CI/CD realization in sync with the workflow of the team.

19

CHAPTER 2 CI/CD CONCEPTS

Add CI/CD-related work items to the sprint and keep the same pace as the
rest of the team. Give a sprint demo from time to time. Involve other team
members to take up small bits and pieces, once the pipelines are mature
and more or less stable.

Until now, CI/CD is presented as an abstract concept with a
certain philosophy, but a concept does not run on a real server. The
implementation of CI/CD also involves running pipelines that build, test,
and deploy software. The pipelines themselves are pieces of software
running on a server. This statement forms the basis of this book; a pipeline
is software. So, why shouldn’t you treat pipeline development the same
way as developing an application? With this in mind, consider the steps of
software development.

e Requirements analysis: The first step in software
development is the requirements analysis phase. In
our context, it involves gathering requirements to
understand the problem domain of CI/CD. This also
helps in scoping the implementation.

o Design: Designing pipelines is the process that helps
you understand the flow of the pipelines. It makes
clear which conditions to consider and where the
pipeline takes an alternative path. A design also helps
to determine which tasks are executed and where they
fit best in the pipeline. The design also visualizes which
external systems are involved and how the pipeline
communicates with them.

e Development: This concerns the actual development
of pipelines and the integration with other tools and

surrounding systems.

o Test: The context here is about testing the pipelines
themselves, not testing an application within
a pipeline. Pipelines are also software, and the

20

CHAPTER 2 CI/CD CONCEPTS

preconditions to test a pipeline differ from the
preconditions required to test an application. Is there a
test environment specifically for pipeline testing? What
kind of tests are involved, and is it perhaps possible to
automate these tests?

o Implement: Before the pipelines can be used, all
interfaces with external systems are set up, the
configuration is performed, variables are set, and
monitoring dashboards are created. The team is
prepared, and knowledge is shared. Any remaining
issues and improvements have been discussed.

e Operate and monitor: The behavior of the pipelines is
checked in the operating and monitoring phases. Does
queuing happen, and is the overall execution time of
the pipeline in order?

This book describes how pipelines are designed and developed from
the viewpoint of software development. Each chapter covers one phase
of the pipeline development process, but on an abstract or semitechnical
level. It provides a structured approach to design and develop pipelines.
The final chapter dives into a use case and uses the strategies of all
previous chapters to design and develop pipelines using Azure DevOps
in combination with AWS. The code used in this chapter is provided as
research material.

If you are looking for an in-depth technical —how-to—book about the
development and implementation of pipelines using specific tools like
Jenkins or Azure DevOps, this is probably not the book you are looking for.
However, if you are looking for guidelines on how to start with CI/CD, how
to design the process and the associated pipelines, and what needs to be
considered during the development and implementation of pipelines, this
book s for you.

21

CHAPTER 2 CI/CD CONCEPTS

Naming Conventions

There is no “standard” glossary for CI/CD, and sometimes the same name
is used in a different context. For example, deploy is also referred to as
release (the verb), but release can also refer to the creation of a release
(candidate), as in the noun.

So, to avoid confusion, this book provides the following definitions.
Note that this is not an exhaustive list. Only the words that need
explanation or that might cause confusion are listed.

Analyze code: This is a subset of quality assurance
and includes static code scans to determine code
quality and detect vulnerabilities in the application
code and its dependencies.

Application life-cycle management (ALM): This
integrated toolset covers the main aspects of the
software supply chain.

ALM platform: This is either a real ALM platform,
an integration server, or a set of individual but
integrated CI and CD tools. The ALM platform
covers the complete CI/CD toolchain.

Artifact: An artifact is a package stored in a binary
repository and used for deployment to a target

environment.

Branch: This is a branch used in source control
management.

Build: This means combining source code and its
dependencies and creating a runnable product
(artifact).

22

CHAPTER 2 CI/CD CONCEPTS

Continuous deployment: This is a process in

which the artifact is built, tested, and deployed

to production unattended. The pipeline validates
whether the artifact meets all quality criteria. This
is in contrast to continuous delivery where an extra
manual step (dual control) is needed.

Deploy: This means installing an artifact on a certain
target environment. This can be a test environment
or a production environment.

Dual control: This is the application of the four-eyes
principle in which one person performs a task and
another person has to approve the execution of
that task.

Environment. In most cases, this refers to the platform/
infrastructure on which the artifact is deployed. In
some cases, the environment is used in the context of
an ALM platform and/or related CI/CD tools.

Package (verb): After an application is built, it is
packaged in a way to make it easily transportable,
like a . zip file or a . jar file. In the case of
commercial off-the-shelf (COTS) products, from

a consumer point of view, this stage is usually
skipped because it is already in a transportable
format. Packaging also implies baselining the
artifact, to make sure that what is deployed to
production is indeed the proper artifact (tested and
uncompromised).

Package (noun): This is the artifact, built by the
integration server or a downloaded file from a
vendor in the case of a COTS application.

23

CHAPTER 2

24

CI/CD CONCEPTS

Pipeline: This is the design and implementation of

all steps that define the automation of the software
delivery process. This can be either a real CI/CD
pipeline or a pipeline with a less continuous character.

Promote: This activity “promotes” a release
candidate to a release. The release can be deployed
to a production environment. Sometimes this is an
implicit step: “we now call it a release.” But in some
ALM platforms it is an explicit task.

Publish: After the application has been packaged,
itis stored in an immutable binary repository, such
as Artifactory or Nexus. Downloaded packages

from vendors (COTS) still need to be published to a
secure location within the organization to guarantee
integrity and traceability.

Quality assurance: This process makes sure the
quality of your product meets a certain level.

Release (verb): This is when activities are performed
to deploy an artifact to a production environment.

Release or release version (noun): This is an artifact
that can be deployed to a production environment.

Release build: This is the creation of a release
candidate.

Release candidate: This is an artifact to which no
new features are added anymore. Only bug fixes are
solved in a release candidate, so it becomes a new
release candidate again, but with a different version.
If all bugs are fixed and the release candidate passes
all tests, it is promoted to a release (the noun).

CHAPTER 2 CI/CD CONCEPTS

Snapshot build: This is an old remnant of the Maven
workflow. A snapshot build will never find its way to
production. It is an intermediate build artifact from
a feature or the develop branch and used as input
for a pull request (if a snapshot build fails, the code
is not merged).

Software development life cycle (SDLC): This is the
process of software development, build, test, and
deployment.

Source control management (SCM): This is a system
to perform version control. Examples of SCM
systems are Git, Mercurial, and Subversion.

Stage: This is a group of related activities in a CI/
CD pipeline. Examples of stages are Execute build,
Analyze code, and Perform test.

Tag: A tag is used to identify a group. This group can
consist of code, artifacts, stages, target resources,
etc. A tag is often used to identify a release
(candidate), with all its related code, CI/CD stage(s),
and target resources.

Task: This is one activity in a stage. A testing stage
for example can consist of different test types,

like a regression test or a preproduction test, each
performed as a task.

Target/target environment: This is the environment
in which an artifact is deployed. The target and
target environment are not used in the context

of an ALM platform and/or related CI/CD tools.

25

CHAPTER 2 CI/CD CONCEPTS

The target environment is either a test server or
a production server. It can also be an account/
subscription on a cloud service provider.

Test: Testing is a subset of quality assurance and
involves automated testing and manual testing.

Trunk: This is the main branch in a source control
management system. It is also called mainline
or master.

Versioning: Artifacts need to be versioned to identify
them. A version is something different than a tag.
The version refers to a specific instance of the
artifact, and a tag is applied to a group of which the
artifact is one. The version and tag can have the
same value, but this is not mandatory. A tag may
refer to a product feature that is associated with
several release candidates, each having its version.

Summary

You learned about these topics in this chapter:

e A brief overview of continuous integration and

continuous delivery outline

e Positioning of continuous integration and continuous
delivery in the software supply chain

e Application life-cycle management (ALM)

o The journey of implementing continuous integration

and continuous delivery

26

CHAPTER 2 CI/CD CONCEPTS

The process of pipeline development is the same as

the development of an application and involves the

following:

Requirements analysis
Pipeline design

Pipeline development
Testing pipelines
Pipeline implementation

Operate and monitor pipelines

Keywords associated with continuous integration and

continuous delivery

27

CHAPTER 3

Requirements
Analysis

This chapter covers the following:
e The sources of pipeline requirements
e Various categories of requirements
e Requirements in detail

This chapter is intended to inspire you by presenting an overview of
requirements, grouped by category.

Overview

Requirements analysis is the first step before the actual design of the
pipeline is drafted and the pipeline is created. Requirements apply to CI/
CD practices, pipelines, the ALM platform, or a combination of all tools
that make up the integration infrastructure. Requirements are derived
from different sources.

o First, there are basic CI/CD principles, which can be
treated as requirements. Become familiar with them. If
you deviate from the basic principles, you must have a
good reason to do so because they form the foundation

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_3

29

https://doi.org/10.1007/978-1-4842-9228-0_3

CHAPTER 3

30

REQUIREMENTS ANALYSIS

of CI/CD. Sources like [5] and [6] are excellent in
explaining these principles and helping you grasp the
concepts of CI/CD. To emphasize, CI/CD itself is not
the goal. Delivering quality software at a pace that
satisfies your business is the goal. This could mean that
you deviate from the continuous delivery “theory” in
certain aspects.

There are also best practices. The Internet is full of
them. Some are useful, others are not, but sometimes
they can be helpful sources. Understand these best
practices. A nice source of best (good) practices is, for
example, described in [8].

The business organization has requirements to which

a pipeline must comply. Often this relates to the way

of working in an organization or to specific security
constraints. This poses requirements for the design

and implementation of a pipeline. Organization
requirements are usually published somewhere on an
intranet site. Make sure they are known and understood.

The DevOps team has requirements. Some of

these requirements are explicit, such as “we want a
dashboard of all artifacts and versions deployed on all
test environments.” Some of the requirements are more
implicit. For example, the team might adopt a certain
branching strategy, like a trunk-based workflow, which
poses requirements to the pipeline. The team maybe
has a certain way of testing. Test engineers perform
manual tests on their local workstations in addition to
automated tests in a dedicated test environment. How
does this translate to a pipeline? Gathering the team’s
requirements is essential for a good pipeline design.

CHAPTER 3 REQUIREMENTS ANALYSIS
Requirements analysis covers various areas, as listed in Table 3-1.

Table 3-1. Requirements Analysis Areas

Way of working Resource constraints Monitoring
Technology Manageability Sustainability
Information Operations Governance
Security (general) Quality Assurance

Compliance and Auditability Metrics

This list is not exhaustive but gives an idea of which areas must be
considered. Of course, more areas can be identified, and some maturity
models define areas such as business intelligence, planning, culture,
and organization. These maturity models list some expert/advanced
capabilities such as automated remediation based on (Al) monitoring
and automated prioritization of the backlog based on Al. However, this
book intends to give practical guidelines and not an advanced vision of
CI/CD because most companies will never reach that level. Moreover, in
practice, it is not even always possible to achieve a complete hands-off
software supply chain with all the bells and whistles. Just think of manual
intervention by operators because certain situations are not foreseen and
cannot be solved using a pipeline. Also, costs play an important role in the
realization of an automated software supply chain. This means you always
have to make a weighted choice between requirements that are absolutely
necessary and requirements that are not.

The remaining pages of this chapter describe the areas mentioned in
Table 3-1 in more detail and show some examples of requirements that are
worth checking out.! These requirements serve the purpose to inspire and

T tried to prevent being Captain Obvious. A lot of requirements are implicit and
part of CI/CD practice, such as “tests are automated” and “use version control,” so
they are not listed explicitly.

31

CHAPTER 3 REQUIREMENTS ANALYSIS

increase awareness of what is possible, what is important, what works for
you, and which requirements are not worth considering right now.

The following are possible requirement suggestions—grouped
per area—with each requirement to be validated for relevance and
applicability to your specific situation. Note that the order of topics in
this chapter has some degree of randomness and says nothing about how
important a requirement is. Additionally, some requirements may feel like
they immediately delve into the subject matter without any introduction.
Do not worry. In the following chapters, we will take a closer look at
the topics.

Before we go into more detail, it is important to stress one (meta)
requirement that applies to all requirements:

Requirement: A requirement has an owner.

It has happened too often—to me and my colleagues—that someone
emphatically introduced a requirement, which entailed a lot of inflexibility
and costs, but where no one could concretely explain why this was
necessary. A requirement without an owner and justification is not a
requirement. Implement a requirement only if there is a need to do so.

Way of Working

The way of working can be defined on a business organization level or
team level. It defines the following:

o The way of working of the business organization: The
business organization may use Agile and Scrum,
biweekly sprints, or multiple DevOps teams working on
the development of one product. In some way, these
aspects influence the pipeline design.

32

CHAPTER 3 REQUIREMENTS ANALYSIS

e The team’s branching strategy: The team’s branching
strategy plays an important, and even bigger, role.
The CI/CD process, and therefore the pipeline design,
strongly depends on the workflow of the team; do they
use a trunk-based workflow, a feature branch workflow,
or the “old-fashioned” Gitflow?

o The test strategy of the team: A CI/CD process consists
of numerous types of tests, some continuous, others
less continuous. Examples are unit tests, integration
tests, functional tests, regression tests, manual tests,
load tests, stress tests, performance tests, break tests,
and preproduction/staging tests.

e Release strategy: This defines the cadence to release
artifacts and deploy them to production.

o The production deployment strategy: In addition, the
production deployment strategy shapes the pipeline
design. Does the team use a “Re-create deployment”
strategy or a “Blue/Green deployment” strategy?

Requirement: Use a simple branching strategy.

The more complex a workflow is, the less “continuous” the workflow is,
and the more complex pipelines become. Limit your branching strategy to
a trunk-based workflow or feature branch workflow, which is described in
successive chapters.

Requirement: Keep feature branches short-lived.

One of the basic principles of CI/CD is not to use feature branches,
but if you decide to use them, keep the feature branches short-lived.

The longer a feature branch is under development, the more difficult it
becomes to merge other features back to the trunk (or another branch)
because that branch was significantly changed.

33

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Choose the release strategy you want, but keep the
mainline production-ready.

Deploying a release once a day, once a week, or once a month is a
requirement the business defines. They probably have good reasons to
release either very often or with larger time intervals. This does not matter.
But itis good practice always to keep your mainline in such a state that
it is possible to deploy whenever you want. Even if you release once a
month, you are still practicing the CI/CD principles if the mainline is in a
production-ready state.

Requirement: Perform manual testing only if needed.

Performing manual testing is a CI/CD anti-pattern, but practice
shows that manual testing or semi-automated testing is still required. The
following are the reasons why:

e The QA team has a backlog converting manual tests to
automated tests.

e The automated test of a newly developed feature is not
yet integrated into the automated test suite. The trick is
therefore to integrate manual testing somehow into the
CI/CD process.

o Automating the test is costly if this particular test is
rarely executed.

e Some tests are very specific, so they cannot be
automated. Usability testing is such an example.

Technology

The target environment, the CI/CD framework, the tools, and the
application architecture all influence the realization of a pipeline and its

flow. Here are a few examples:

34

CHAPTER 3 REQUIREMENTS ANALYSIS

A microservice runs independently. This means
the build and deployment process must also be
independent of other microservices.

Often, on-premises target environments are manually
created, or the creation is only partly automated.
Cloud service providers like AWS or Azure offer a lot
of possibilities to create ephemeral test environments,
which are test environments that are automatically
created and destroyed on demand. Tasks to create test
environments should be embedded in the pipeline.

There is a huge difference in the process of self-built
applications compared to commercial off-the-self
(COTS) packages. CI/CD for vendor packages even
sounds like a contradiction from a consumer point of
view, and in essence, it is. But that does not prevent
anyone from creating an automated pipeline that
supports the download, validation, deployment, and
configuration of COTS packages.

Requirement: The availability, integrity, and confidentiality of the

ALM platform/integration server must match those of the application

with the highest classification.

If the deployed application is highly available, has the highest integrity

classification, and processes data that must be treated as confidential,

what does this mean for the software supply chain?

Take availability, for example. If an incident occurs and the application

must be fixed immediately, the ALM platform or integration server should

be available. But if this is not the case, the fix cannot be deployed. There

are a couple of options.

35

CHAPTER 3 REQUIREMENTS ANALYSIS

e Accept the risk. What is the chance that the ALM
platform/integration server is not available at the same
moment an incident with the application occurs?

o Always have a desired path. This is an alternative
shortcut to bypass the pipeline. The use of this shortcut
must be regulated with strict security measures,
of course.

o The other alternative is to increase the availability of the
ALM platform/integration server so that the RTO of the
ALM platform/integration server matches the RTO of the
application. From a risk and security point of view, this is
the best solution. From a cost point of view, probably not.

Similar requirements apply to the integrity and confidentiality of
an application. How secure is an application if the tools and libraries
used to create and deploy the application are not secure (enough)? The
requirements analysis sections “Security (General)” and “Compliance and
Auditability” take a closer look at this topic.

Note An ALM/integration platform runs pipelines of multiple
applications. Even if just one application has the highest availability/
integrity/confidentiality classification, the platform should comply with
this classification.

Requirement: Create a pipeline per microservice.

A microservice is a small, isolated piece of software that runs
independently. The goal is that teams can bring them into production
independent of other microservices. This implies that a microservice must
have its CI (build) and CD (deployment) pipeline. One solution is to use a
base pipeline template or libraries to generalize the pipeline and extend
from the base pipeline for each microservice.

36

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Automate the creation of ephemeral test
environments.

Manually created environments take too much time and introduce
the risk of differences between test and production environments.
Keeping permanent environments—when not used anymore or not used
often—are costly. In addition, automated tests should be able to run
independently, which justifies a dedicated test environment.

The use of ephemeral test environments is a solution to this problem
and is strongly recommended. The test environment is created on the fly
and automatically destroyed again when not being used anymore.

Requirement: Don’t re-create test environments in every
pipeline run.

Although cloud service providers provide all the tools that enable
the creation and deletion of test environments on the fly, it is not a very
good approach to do this every time the pipeline runs or after every SCM
push. Creation and deletion of a test environment cost time—even in the
case of a cloud provider, this can take half an hour—which adds up to the
overall execution time of the pipeline. In addition, creating and deleting
a test environment every time the pipeline runs becomes costly in terms
of money.

A better approach is to provision the infrastructure but delete it only
if not used anymore or if not been used for a longer time. Fortunately,
the facilities to create an environment—in the cloud—are idempotent,
so running the provisioning of infrastructure resources multiple times
does not change the test environment if the infrastructure code has not
been changed. And instead of deleting the whole test environment, it may
be useful to include tasks in the pipeline that reset the test environment
to a certain status, after a test was executed (e.g., reset the datain a
database table).

37

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Develop an automated pipeline for COTS applications.

Even in the case of vendor packages (commercial off-the-shelf),
the use of an automated pipeline has various benefits. The execution of
downloading the software, validating, installing in the test environment,
configuring, verifying, and installing the software in production is
orchestrated and repeatable. In addition, ALM platforms often have built-
in features that make the audit trail visible.

Requirement: Use the same OS in the pipeline as the runtime
environment OS.

An application may behave differently if built on another OS than the
OS for which it was developed. Make sure that it is built and tested on the
same OS also used in the production environment.

Requirement: Use an ALM platform and limit the number of
additional tools.

In general, a large range of tools is difficult to integrate, and most
modern ALM platforms already consist of features integrated within one
platform. Use additional tools only if the platform itself does not support a
certain feature or if the capabilities of the platform’s feature are too limited.
Using a limited set of tools has some other advantages.

o Keeping the number of tools limited means less maintenance.
¢ Knowledge is more consolidated.

o Additional tools must be assessed to prove they comply
with the organization’s security policies.

o Fewer tools also mean fewer licenses and potentially

fewer costs.

The choice of what platform to use depends on the type of
organization. In some cases, this choice is made at the organizational level,
and teams have to adhere to this choice. In other situations, the team itself
decides; if they feel comfortable with GitHub actions, for example, they are
more likely to choose this option.

38

CHAPTER 3 REQUIREMENTS ANALYSIS

Information

ALM platforms potentially generate a lot of data that the team can use to

keep informed. Even if the platform has default overviews and notification

options, it still makes sense to think about how a team is informed and

what type of information is shared with the team. Often these tools send

a lot of emails, which results in team members not reading their emails

anymore. Information overloading is a common problem and must be

managed using several strategies.

Information pull and push: What type of information

is important enough to push to the team members in
the form of a notification—such as an email—and what
type of information is not? In the latter case, a team
member can also actively search for information if it

is needed.

Display capabilities: Overviews in some ALM tools
don’t always excel in readability. The overview is
often cluttered with all types of build and deployment
information. Sending the information to alternative
tools that provide different views and/or have better
displaying and filtering capabilities may be something
to consider.

Channel: Preferably use a limited number of options

to inform teams. One tool to push information to the
team and one tool to pull (retrieve) information is more
than enough.

Classify: Make a classification of types of information.
For example, information about production
deployments should not be combined with information
about deployments in test environments.

39

CHAPTER 3

Requirement: Use short feedback loops, but don’t overload teams

REQUIREMENTS ANALYSIS

Target: Broadcasting notifications to all team members
isn’t such a good idea. A better way is to target the
information to a specific person. If a team member
pushes code to a specific branch, the result of the build
execution should be sent only to that particular person.

Combine: Information is shared as soon as it is
available, but in some cases, it makes sense to wait for
a while, gather all information during a certain time
interval, combine it in a presentable state, and share it
with the team. An example of combined information is
arelease note.

Filter: If information is not used, why bother to burden
the team with it? Make sure only the information that
makes sense is also shared with the team.

Viewpoints: Sometimes you just want to know what
has been deployed to a certain target environment. In
other cases, you want to know who broke the build.
The information must be presented with different
viewpoints in mind. An ALM platform or a specific
reporting tool can help with that.

with too much information

Short feedback loops are a core principle of CI/CD, but finding

the right balance between providing enough information or too much
information is difficult. Teams are informed about successful or broken
builds, test results, pending manual actions, etc. The email inbox piles up
with emails, and developers tend not to look at them anymore because

itis also difficult to make a distinction between urgent emails and

informative emails.

40

CHAPTER 3 REQUIREMENTS ANALYSIS

Using a good combination of different communication tools, such as
email, Microsoft Teams, Discord, and Slack, and a mix of the information
strategies described at the beginning of this paragraph, reduces the risk of
information overloading.

Requirement: Create feedback loops in every stage.

It may be a no-brainer, but feedback must be given as soon as possible,
so instead of waiting until the pipeline is finished, the result of a failed step
must be sent to the team as soon as the failure occurs.

Requirement: Automate the creation of release notes.

Release notes are useful because they define clearly what is included
in a specific release. However, assembling the information to construct
arelease note should not be done by hand. Automate this, based on the
information of the commits, the pull requests associated with a particular
release, and the test results.

Requirement: Provide insight into versions of artifacts installed on
test and production environments.

Teams sometimes use multiple fixed test environments on which
several test types are executed and on which different versions of artifacts
are deployed. Often there is no good insight into which version is installed
where. Provide a dashboard containing all environments—including
production—and all versions of installed artifacts.

Security (General)

Security plays an important role in developing, implementing, and
managing pipelines. The ALM platform or integration server, the related
tools, and the pipelines themselves are potential attack surfaces, so they
need to be protected and monitored. Don’t forget that if applications have
to meet certain standards, such as the Sarbanes-Oxley Act (SOX), Health
Insurance Portability and Accountability Act (HIPAA), or Payment Card
Industry Data Security Standard (PCI DSS), it might be assumed that the

41

CHAPTER 3 REQUIREMENTS ANALYSIS

software supply chain also has to comply with these standards. Most of
these standards have a component focused on security in the software
supply chain.

Here is where the NIST Cybersecurity Framework [13] can play a role.
The NIST Cybersecurity Framework is a valuable source helping business
organizations to identify risks, protect resources, detect vulnerabilities,
and respond to and recover from security incidents. It is an extensive
framework and covers various security aspects targeted at people,
processes, and technology. Use the framework as guidance to define CI/
CD security requirements.

For example, one of the categories in the framework deals with supply
chain risk management. Subcategory ID.SC-2 states the following:

ID.SC-2: Suppliers and third-party partners of information
systems, components, and services are identified, prioritized,
and assessed using a cyber-supply chain risk assessment
process.

If this is brought up in the context of external libraries used for building
an application, it is made clear that the origin of such a library must be
assessed first. Just grabbing some software from the Internet and bringing
it into your production environment is not a good idea.

Requirement: Use a vault to store tokens, keys, secrets, and
passwords.

Ideally, all secrets—passwords, tokens, keys, credentials—used by
the application must be stored in a secure vault. Depending on the exact
requirements, this vault may have certain characteristics. It can be a
software vault or a Federal Information Processing Standard (FIPS) 140-2
level 3 compliant hardware security module (HSM). The pipeline has to
make sure that these secrets are stored in the vault, either by generating
them in the vault itself or by securely transferring the secret to the vault.
Some ALM platforms are supported by a vault to store secrets.

42

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Refine access by setting permissions for a user
or group.

Reading or writing actions to an SCM repository, starting a pipeline,
and performing a dual control are typical functions that require access
control because one person may, for example, start a pipeline, but this
person is not allowed to approve their pipeline. This requires a fine-
grained access matrix, realized using a role-based identity and access
management (IAM) setup.

Requirement: Check for drift detection.

Drift detection checks whether the actual infrastructure is still the
same as compared to the infrastructure code. If there is a difference
between the infrastructure code and the actual infrastructure, the change
was applied manually. Drift detection is often done on a scheduled basis.

Requirement: Perform a vulnerability analysis on third-party libraries.

Log4] versions 2.x until 2.16 contained vulnerability CVE-2021-44228.
This was a good example of a vulnerable third-party library. Scanning third-
party libraries in the pipeline on vulnerabilities should be a mandatory task.
Even if you think you don’t even use certain libraries, you may be surprised.
Transitive dependencies, in which a third-party library makes use of another
third-party library, are common. The third-party library you use may not
have vulnerabilities, while the transitive dependency does. The same applies
to COTS software used in organizations. Life-cycle management of software
ensures that the software does not contain vulnerable third-party libraries,
but unfortunately organizations often make use of software, which is beyond
end of life or use an old version of the software.

Requirement: Scan third-party libraries on malware or viruses.

Even if a library comes from an authenticated source and the integrity
is guaranteed and if the library does not contain any vulnerabilities, then
it can still contain malware or viruses. Scanning third-party libraries on

malware and viruses is recommended.

43

CHAPTER 3 REQUIREMENTS ANALYSIS

Note This does not apply only to third-party libraries used to build
an application in the pipeline; it also applies to COTS applications that
make use of third-party libraries.

Requirement: Prevent deletion of resources.

Any resource associated with the creation and deployment of a
release (candidate) artifact must be prevented from being deleted. From
an audit point of view, the resources involved in creating, testing, and
deploying an artifact must be protected from deletion. This applies to code
(repositories), work items, pull requests, pipeline definitions and pipeline
runs, artifacts, testware, etc.

Requirement: Connections between the ALM platform/integration
server and external tooling must be secure.

The ALM platform or integration server deploys artifacts to a
production environment. This implies that the ALM/integration platform
also needs to be a production environment (e.g., running in the same
production network segment). Access to the platform must be secured,
and connections with other tools must also be secured. This is done
using standard solutions, such as an HTTPS connection with mutual
TLS (mTLS). Any data passed between the ALM platform/integration
server and connected systems is encrypted, and mutual authentication is
established.

Requirement: All infrastructure is hardened.

This is related to the previous requirement. If you manage the CI/CD
infrastructure yourself, make sure the servers on which the tooling runs
are hardened. Hardening your servers reduces the attack service of the
infrastructure. If you use a SaaS$ solution, the provider of the service takes
care of hardening the infrastructure.

44

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Clean up and secure your CI/CD workspace.

No, this is not about your desk. It applies to the workspace used
during the execution of a pipeline on a server. Integration servers make
use of a workspace. Often this is a directory on a server. Data is stored
in this workspace. This includes code but also secure files, containing
information that shouldn’t be disclosed. This is, for example, an
application property file with database credentials. In the first place,
other users and other pipelines should not be able to access your pipeline
workspace. Make sure this access is blocked, and the workspace is only
allowed to be accessed by the intended pipeline.

After the pipeline is finished, the whole workspace must be wiped
clean. Dangling workspaces is a risk that should be avoided. Make sure
that the workspace is clean after the pipeline is finished. If not, add a post-
task to the pipeline, which is always executed. The post-tasks perform the
cleanup.

Requirement: Make use of a container-based CI/CD workspace.

As an alternative to storing data on a file system or network-attached
storage (NAS), a container-based workspace can be considered. A newly
running (Docker) container starts with a clean workspace, and when the
container stops, the local data is wiped because data in a container isn’t
persisted by default.

Requirement: Roll back or roll forward if a deployment goes bad.

A deployment can either fail or not fail but the updated service
produces unpredictable or incorrect results. Rolling updates/canary
deployment is a way to mitigate the impact and is highly recommended,
but it does not prevent deployment failure. In all cases, a reaction is
required. You need to do one of the following:

e Roll backto the previous version and fix the damage

o Fixitand roll forward

45

CHAPTER 3 REQUIREMENTS ANALYSIS

There is a tendency to say you always need to roll forward, but that
depends on the viewpoint. A simple web application with a corrupted
layout is something completely different than a payment or trading system
with a recovery point objective (RPO) of zero and an RTO of nearly zero.
Without judging the situation, one can only conclude that “it depends.”
What is more important in this context is the fact that it must be possible
to perform a rollback or roll forward using a pipeline. A rollback not only
means undeploying the new artifact version and redeploying the old
version, but it also has to execute rollback scripts to reverse the changes
already made in the database, roll back messages in a queue, or roll back
any data already propagated to other systems. Also, a roll forward may
involve more than just installing a fixed app. Any corrupted data needs to
be fixed also.

This is not for the faint of heart, and whatever strategy is used, it
requires some thorough thinking up front and needs to become part of
your test strategy. Without a proper rollback/roll-forward vision, you will
continue to work on your pipeline endlessly. Be prepared for that in the
pipeline design.

Requirement: Only deploy artifacts to production with a higher
version.

This requirement seems to be contradicting the previous requirements
because checking whether the deployment always has a higher version
sort of prevents a deployment rollback. That is also not the intention.

In most cases, a deployment just succeeds, and the installed version

is always the latest one, which has a higher version number than the
previously installed version. An additional check on the existing version
on production versus the version that is going to be deployed prevents the
installation of older versions. This requirement implies that the versioning
scheme has an order. Using a commit hash as a version does not work in
combination with this requirement. In the case of a rollback, this check
should be suppressed, of course.

46

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Security tests are automated.

Dynamic Application Security Testing (DAST) includes test techniques
that expose security weaknesses and vulnerabilities present in an
application. As the word already suggests, DAST tools perform a dynamic
test that tries to uncover cross-site scripting, SQL injection, cross-site
request forgery, information disclosure, etc. DAST tasks should be
integrated into the pipeline as part of the stage in which tests are executed.

In addition to DAST, a penetration test (pentest) can be executed. Of
course, this depends on the risk appetite you want to prepare to accept.

It is a practice performed by cybersecurity professionals trying to identify
weaknesses in a system. Pentests are often performed as manual tests.
Pentesting as a service (PTaaS) is an emerging technology that helps to fill
this gap by automating parts of the work. Considering the current state of
cybercrime, PTaaS is an interesting area to consider.

Compliance and Auditability

Although compliance and auditability could be classified under the
“Security (General)” section, the subjects are too dominant not to see them
as a separate requirements analysis area.

Compliance refers to the act of following laws, regulations, guidelines,
and specifications that apply to a company or industry. It is the process
of ensuring that an organization is adhering to the laws, regulations, and
standards that apply to its business.

Auditability is the quality of being capable of being audited or
the ability to be examined and verified. In the context of compliance,
auditability refers to the ability of an organization to provide evidence that
itis complying with laws, regulations, and standards.

47

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: All changes are traceable.

For auditability reasons, every change in the build and release process
must be traced back to each resource—or entity—that was responsible
for this change. These resources are in some way linked to each other. For
example, if a work item is implemented, it must link to a design, the source
code, the code reviews, the build results, etc.

The following resources play a role in application development:

e Requirement: A requirement is described in a design
and referred to by one or more work items.

e Design: A design describes one or more requirements.

o Work item (epic, story, or task): A work item is referred
to by a requirement and referred to by a pull request.?

o Commit: A commit is created by a developer and
implements a work item. The commit refers to the
application code in the repository. A build refers to the
commit, establishing an audit trail.

o Application code: The application code is developed by
one or more developers and realized by one or more
commits. The application code is used by a build to
create artifacts.

e Pull request: A developer creates a pull request, which
is reviewed by another developer. The pull request
refers to a work item, so the developer knows which
commit was involved and which application code they
have to review.

2Not all teams use pull requests.

48

CHAPTER 3 REQUIREMENTS ANALYSIS

e Developer: A developer develops application code,
commits the code to the repository, and creates pull
requests. The developer also reviews the pull requests
of their colleague.

e Build: A build uses application code to create artifacts.

e Artifact: An artifact is created by a build and deployed
by a release. The artifact runs on test and/or
production environments.

e Release: A release deploys one or more artifacts to test
and/or production environments and generates a
release note.

e Release note: A release note is generated as part of a
release.

o (Prod + test) environment: A test and production
environment runs an artifact, which is deployed by a
release.

o Testrun: A test run is executed on one or more test
environments.

o Test specification: A test specification covers a
requirement and is executed by a test run.

The relations between these resources are visualized in Figure 3-1.

49

CHAPTER 3 REQUIREMENTS ANALYSIS

Figure 3-1. Relations between resources involved in application
development

Each resource in this diagram must be traced back to another resource.
Questions an auditor in your organization could ask are “Which artifact
version runs in the production environment, and which test runs were
executed for this artifact?” or “Which requirements are associated with
a specific version of an artifact, and in which application code is this
realized?”

Traceability is also very valuable to determine the origin of a failed test.
If a test can be traced back to a work item and the associated commit, it
becomes easy to pinpoint the exact code that caused the test to fail. This
even makes it possible to automatically exclude this code and rebuild the
artifact again.

50

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Tag everything.

This requirement describes the “how” of the previous requirement.

To make sure that it is clear which version of an application is running
in production, which artifacts were deployed, which code was used
to build an artifact, which pipeline runs were responsible for building
and deploying the artifact, and which test runs were executed, tagging
should be applied. In the ideal world, all resources depicted in Figure 3-1
associated with the creation of the application running in production
should be tagged. Unfortunately, this can become complicated, but in
cases where tagging can be applied, it is recommended to do it. Use a
uniform tag to identify a release; a release version is recommended.

Requirement: All code is peer-reviewed.

Code is checked by a colleague before it is merged into the trunk. This
ensures quality and prevents unauthorized changes. This requirement
does not apply only to application code but also to infrastructure code
and pipeline code. Most ALM platforms include options to create a pull
request.

Requirement: Only artifacts built by a pipeline are allowed to be
deployed to production.

It is important to only allow artifacts that have been built by a pipeline
to be deployed to production because this helps to ensure that the artifact
being deployed has been properly tested and verified. It also helps to
prevent issues such as bugs, security vulnerabilities, or other problems
from being introduced into the production environment, thus preventing
the production environment from becoming unstable and vulnerable.

This requires special measures that prevent the deployment and
installation of artifacts retrieved from untrusted sources. There are several
options to guarantee that artifacts are built only by a pipeline.

e The production environment accepts only signed
artifacts. Only artifacts signed by the pipeline are
accepted, and because the private key used for signing

51

CHAPTER 3 REQUIREMENTS ANALYSIS

the artifact is managed by the pipeline, there is no
way to create this digital signature in another way.
The validation of the signature is done on the target
platform itself.

o The binary repository containing the artifacts is
accessible only using a pipeline. Manual upload of
artifacts to the binary repository is prohibited and
prevented. This gives more comfort knowing that the
artifact was at least created using a pipeline.

o Some solutions make sure that each stage in the chain
is executed as planned and that the artifact is not
tampered with in transit. Frameworks like In-toto and
Argos Notary make it possible to validate whether all
steps in the process have been executed as defined.
The framework makes sure that data related to a step
has not been tampered with when passed to the next
step. The metadata of each step is gathered and used
as input to create a digital signature, which guarantees
integrity. The whole process is audited by an external
system that verifies all steps. For more information,
see [22].

Requirement: Deployment to production is allowed only using a
pipeline.

In addition to the previous requirement, not only do safeguards
guarantee that only artifacts built by a pipeline are deployed to production,
but the actual deployment itself must also be restricted, so the deployment
can be performed only using a pipeline. Manual deployments must be
prevented; otherwise, it is impossible to trace back what exactly has been

installed on the target environment.

52

CHAPTER 3 REQUIREMENTS ANALYSIS

Access control must be configured in such a way that
only the servers on which CI/CD tools are installed
are allowed to connect to the target environment.
This can be done by a combination of measures,

such as IP whitelisting,® setting up a local firewall
around the production environment (for example, the
firewall capabilities of NSX virtual networking on top
of a VMWare ESXi cluster), and establishing mTLS
connections.

Access can be limited even more within an ALM/
integration platform or other CI/CD tool. Specific
pipelines should have access only to target
environments, while other pipelines should not. By
using a token or nonpersonal user credentials in
combination with IP whitelisting, the pipeline can
connect to the target environment. The tokens or
credentials are not shared by other pipelines and must
be rotated regularly.

Frameworks like In-toto and Argos Notary (see [22])
provide solutions to guarantee that the deployment was
performed as defined.

Requirement: Verify that an artifact is not altered between creation

and installation.

Created artifacts may never be changed after creation. This ensures

that the artifact deployed to production is the one that was intended and is

not changed in any way. It, therefore, does not become subject to misuse.

1P whitelisting is not preferred anymore due to maintenance/error-prone
situations, especially in cloud environments. Use it only when there’s no
other option.

53

CHAPTER 3 REQUIREMENTS ANALYSIS

This requirement can be realized by a task in the pipeline. This
task signs the artifact and adds a digital signature to it. This signature
authenticates the artifact, and it is 100 percent sure that the artifact is
created by the pipeline. This implies that the target environment must
have a mechanism in place that allows only signed artifacts to be installed.
The digital signature ensures that the integrity of the artifact remains
throughout all subsequent stages.

An alternative is the use of a hash. The hash of an artifact is created
in the pipeline and deployed together with the artifact to the target
environment. As part of the installation, the hash of the artifact is
generated again on the target environment and compared to the hash that
was delivered as part of the deployment. Needless to say, this method is a
lot less secure.

Requirement: Verify that an artifact after deployment is still
the same.

This requirement is an extension of the previous requirement, “An
artifact is not altered between creation and installation,” but in this context,
it concerns the artifact already installed in the production environment.

A continuous scan of the artifact running in production makes sure
that the artifact has not been changed after it was installed in production.
The scan continuously validates the integrity of the artifact in production,
for example, by checking its signature. AWS Lambda code signing is an
example of a mechanism to determine whether the running code has been
altered.

Requirement: Use only authenticated external libraries and
software.

Third-party libraries must be approved before they can be used. How
do you prove that the library does not do something harmful? Maybe it
does its job but in the meantime also gathers information and sends it to a
server outside the organization. Even in cases in which you think it is the
software you intended, a hacker may have updated it and saved it under
the same name. This means that the location the software is retrieved

54

CHAPTER 3 REQUIREMENTS ANALYSIS

from must be approved (by performing an assessment) and authenticated
(as part of downloading the software). The software retrieved from this
location must be validated on integrity (either using a hash or better, using
a digital signature).

This requirement, combined with the previous requirements, implies
a chain of trust, from the external developer creating and publishing a
library until the creation of an artifact (using the library), deploying it, and
running the artifact in a target environment. Figure 3-2 shows an example
of such a chain of trust.

e The developer uploads their signed library.
o The signature is validated on the central library server.

e The organization “trusts” the central library server
because they performed a security assessment.

o The CI pipeline retrieves the library from the central
server® and validates the signature to determine
whether it indeed originated from the developer.

o The CI pipeline creates a signed artifact, which is
validated by the CD pipeline to determine whether its
integrity can be trusted.

o The target environment continuously validates the
signature of the artifact to make sure it’s still the same

artifact running on the target environment.

*Maybe not directly, but using a proxy or intermediate repository.

55

CHAPTER 3 REQUIREMENTS ANALYSIS

Central (trusted)
library server

Organization

4)

Continuously validate
signature artifact

R

. Internet

e J—
1T 1

Cl
- I ‘T Target
(External) library environment

developer @ g go& R

ya\idate Validate Create Validate

sxgnaturc signature signature signature

library library artifact artifact /
L
Y

Figure 3-2. Chain of trust

Chain of trust

Requirement: Resources associated with a release cannot be

deleted.

This means that if a release is built and deployed to a production

environment, the code in the code repository, the artifact, the work item,

the pull requests, and all other related resources may not be deleted.

Measures to prevent this have to be taken.

Requirement: Pipelines are scanned for compliance.

Not only applications built by pipelines are subject to code scanning,

but the pipelines themselves can be scanned for compliance. A big

organization with a lot of DevOps teams might impose certain restrictions

or criteria to which a pipeline must adhere. For example, analyzing

application code may be mandatory, which means that the pipeline

must include tasks to scan the application code. Another example is the

availability of a dual control task, which is executed before an artifact is

deployed to production.

56

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Test data is anonymous.

Various reasons mandate that personal data (personally identifiable
information [PII] data) in tests cannot be traced back to a real person. The
GDPR rule in Europe is very strict concerning PII data. Data is allowed
to be made visible only on a need-to-know basis, and test engineers and
developers are usually not allowed to have access to this data. In addition,
the use of production data in a test environment also hurts the reputation
of the company when this becomes known. The following are measures:

o Use synthetic data: This is generated data as an
alternative to real-world data. Using synthetic data is
preferred over anonymized data because you don’t
have to touch production data.

e Anonymize the data: Data anonymization, also
known as data obfuscation or data masking, involves
removing personally identifiable information or
altering (production) data so it cannot be traced back
to a person. Use anonymized data only if you can’t use
synthetic data.

Requirement: Pipeline logs may not contain PII data and secrets.

Derived from the previous requirement, PII data may not be used
atall in a CI/CD pipeline. And even if PII data is needed in the pipeline,
for example, to fill a database table in production, the data needs to be
protected.

Various options are possible to protect the data. The simplest solution
is to store it as a file, secured from reading by other users than the pipeline.
Even better is to encrypt the file. The pipeline decrypts the file as soon
as itis needed to fill the table. The decryption key must also be stored in
a secure location within the pipeline, of course. Another alternative is to
store the file in a vault.

57

CHAPTER 3 REQUIREMENTS ANALYSIS

Resource Constraints

Resource constraints affect the pipeline negatively and introduce queuing,
very long execution times, or even a complete halt of the whole ALM
platform/integration server. The underlying reasons are often a lack

of computing (CPU) resources, insufficient disk space, and network
congestion. These usually occur when the pipelines are already put into
use. It seems like these problems suddenly happen to you and you have to
deal with them as soon as they happen, but that’s very short-sighted.

As soon as you start with the design and development of your
pipelines, you should have some idea about the number of apps, the
number of pipelines, and how many pipeline runs are expected. The
sizing of the CI/CD infrastructure is an educated guess, which should at
least give enough confidence that the pipelines can do their work given all
requirements. In addition, some optimizations can be done.

Requirement: Parallelize code analysis scans.

If code analysis consists of multiple scan types, it may take a long time
to complete if all tasks are executed sequentially. A solution is to parallelize
these tasks. It is good practice to include this already in the design because
the different types of code analysis scans do not have any relation to one
another.

Requirement: Parallelize tests.

Not only can code analysis scans take a long time, but especially test
runs are prone to take a long time. Solutions are to execute multiple types
of tests in parallel or parallelize tests of the same type. In the case of the
latter, tests are divided into small groups, and the groups are executed in
parallel. Other approaches are to group tests based on historic timing data
and combine the tests in such a way that the test time of each group is
(almost) the same.

58

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Offload build, source code analysis, and test execution.
Running builds, source code analysis (SCA) tasks, and executing
tests on the same server is not recommended. Pipeline runs get queued
because the server on which everything runs reaches its limits. Running
offloaded builds (e.g., adding nodes to the Jenkins master), running
SCA tasks on dedicated servers, and offloading test runs from the build
server to a test server are good practices. Even if the pipeline runs on an
ALM SaasS solution, this practice still holds in case the servers or agents
on which the pipelines run are shared with other DevOps teams in the
company. Heavy processing may affect other teams because the agent pool

has run out of servers.

Manageability

Manageability is about organizing your pipelines in such a way that
changes are easy to apply and your code is not redundant and scattered all
over the place.

Requirement: Keep your pipeline code manageable.

Similar to software development, pipeline development can become
complex. Sometimes this cannot be prevented, but that’s all the more reason
to keep development under control. Your pipeline becomes unmanageable
if every hobbyist is given the space to add another hobby script of their
preference. Using technical standards, naming conventions, and development
guidelines is the only way to keep pipeline development manageable.

Requirement: Build once, run anywhere.

“Build once, run anywhere” is a statement originated from the Java and
Docker/container world, which also applies to the context of pipelines.

An application artifact must always be built once using a pipeline, and the
same artifact must be installed in all target environments, both test and
production. Environment-specific properties are deployed as part of the
application deployment.

59

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Store binaries (artifacts and dependencies) in an
artifact repository.

In addition to the principle “Maintain a single source repository” (store
your code—including pipeline code—in a source control management
system (SCM)), it is good practice to store all artifacts and dependencies in
an immutable binary repository.

Requirement: Do not retrieve libraries or external resources
directly from an Internet location.

Instead of directly retrieving a library from an authenticated location
on the Internet, it is good practice to store the libraries locally (on-premises
or in your cloud account). Pipelines use the local repository instead. In
addition to security-related issues, pipelines shouldn’t be dependent on
the availability of the external—Internet—location. Chapter 5
describes a few options for how to deal with this.

Requirement: Pipeline code is treated as software.

This was already explained and a basic principle of CI/CD. Pipeline
code, automation and orchestration code, scripts, and pipeline designs
are all stored in a source code management system (e.g., Git), so they are
versioned.

Requirement: Fix variables.

In specific cases, it may be needed to use constant variables in a CI/
CD pipeline or prevent them from being changed at the start or during
a pipeline run because this can lead to unpredictable and potentially
harmful consequences. You can ensure that the pipeline is reliable and
consistent by fixing the variables in a CI/CD pipeline.

For example, if a variable that defines the version of a dependency is
changed during a build process, it could cause the build to fail or produce
an incorrect result.

Requirement: Use one deployment script for all environments.

Not only the same artifact is used throughout all target environments,
but the core deployment scripts must also be the same, which means that
the script to deploy an artifact to a system test environment is also used to

60

CHAPTER 3 REQUIREMENTS ANALYSIS

deploy to a production environment. The differences between each target
environment are parameterized.
Requirement: Use one provisioning script for all environments.
Similar to the previous requirement but referring to the infrastructure
code. The infrastructure code used to create a target environment is the
same for all target environments. The differences between each target
environment are parameterized.

Note The difference between provisioning infrastructure and
deployment of an application begins to fade in the context of
cloud development. Often, both application code and infra code
are combined into one repository, and deployment involves both
the deployment of an application and the deployment of the
infrastructure.

Requirement: Use a release versioning schema that makes sense.

Sometimes people propose to use a Git tag as a release version, but, to be
honest, do you really want an artifact with the name application-4fbed2
57bc4b94a4a042a6e38440a0d2b95c16ac. jar? And how do you
communicate with your business about it? “Hey Jim, we just released
version 4fbed257bc4b94a4a042a6e38440a0d2b95c16ac.”

Use a versioning schema that makes sense and meets the following
criteria:

¢ You must be able to communicate about it.

o It must be generated. It is not continuous if you have
to provide the release version to the pipeline yourself
every time.

o It must have an order. If you compare release versions,
it must be clear which one was the oldest.

61

CHAPTER 3 REQUIREMENTS ANALYSIS

Semantic versioning (major.minor.patch)is still used alotas a
versioning schema. It is useful when communicating with consumers of
your application about whether a new version is backward compatible or
contains breaking changes. However, it is a bit tricky to generate. A tool
like semantic-release can help you with this. Having said that, one might
question whether this form of versioning is still relevant today. What is the
meaning of a major release if the release frequency is once a day?

Another versioning schema is date-based versioning with a sequence.
The format is similar to yyyyMMdd.<seq>, for example, 20230214.3.

Requirement: Pipeline stages and tasks are orchestrated by the
appropriate tool.

An ALM platform or integration server is at its core an orchestration
tool that executes specific tasks. These tasks may use features, which
are added to the platform. These features are already integrated,
added as plugins or marketplace solutions, or are manually installed
on the platform. But in some cases very specific tooling is required.

One category is, for example, tooling used for deployments. Perhaps it

is possible to develop a deployment tool yourself, but often there are
better solutions available, preferably solutions complying with an open
architecture. Also, make sure where this tool is installed. A deployment
tool is sometimes installed on the ALM platform/integration server
itself (e.g., Cloud Foundry CLI), it is installed on the target environment
(e.g., AWS CodeDeploy), or it can be a stand-alone deployment tool on a
separate server.

Operations

Operations tasks must be automated as much as possible. Using a pipeline
to orchestrate these tasks is a logical choice.

62

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Automate operations tasks.

Pipelines are not only used for provisioning infrastructures or building
and deploying application artifacts. Also, one-off operations tasks should
be automated using a pipeline. Here are some examples:

o Renewal of certificates

o Inserting data into a configuration table
o Creating asymmetric key pairs

e Onboarding new clients

Make sure the operations pipelines and associated scripts are
versioned in an SCM.

Requirement: Integration infrastructure requires an SLA and a
business continuity/disaster recovery plan.

Business continuity should not be limited to the business application
itself; it also applies to the software supply chain. Not being able to release
an application may also hurt business continuity. What are the alternatives
to deploy an application in the case of a disaster of the CI/CD platform?
The service must be restored, or an alternative must be considered for the
time being.

So, an SLA must be defined for the pipeline, and based on this
SLA, a business continuity/disaster recovery plan must be created and
regularly tested.

Requirement: Patch the integration infrastructure regularly.

An integration infrastructure must be treated the same way as a
production environment on which an application runs. An unpatched
integration infrastructure is vulnerable, and the latest patches have to be
applied on the servers of the ALM platform and the servers on which other
CI/CD-related tooling is installed.

63

CHAPTER 3 REQUIREMENTS ANALYSIS

Quality Assurance

Quality assurance (QA) involves source code analysis, both static and
dynamic, and testing. Testing is meant here in the broadest sense of the
word. It not only involves various testing types but also the creation and
management of test data and testware. In addition, security testing is
considered part of QA, although security is treated as a separate topic.

Requirement: Application code must be scanned on code quality.

Application code must meet a certain code quality. Static code
scanning is performed on the application code to validate bugs, coding
standards, complexity, bugs, nonperforming code, etc. The code must
also be checked for—security—vulnerabilities. Scanning code provides
confidence that the code quality of the application code is sufficient.

Dynamic scanning is validating the application in the runtime
environment to determine whether it contains security vulnerabilities
(e.g., using automated fuzzing).

Requirement: Infrastructure code must be scanned on code quality.

In addition to scanning application code, also infrastructure code
must be scanned on code quality. This involves both static scanning
of the infrastructure as code (IaC) and dynamic scanning of the target
environment.

Static scanning involves validating infrastructure code such as AWS
CloudFormation and Azure ARM templates. Dynamic scanning involves
validating whether an infrastructure resource in the target environment is
not misconfigured.

Both types of scanning complement each other, but considering the
“shift-left” principle, most of the issues and misconfigurations should
preferably be detected by static IaC scanning.

Requirement: Pipeline code must be scanned on code quality.

Because most pipelines are developed as code, they also need to meet
a certain code quality. Although scanning the pipeline code in the pipeline
itself is an option, it is a bit odd. That would be a bit like a fox guarding

64

CHAPTER 3 REQUIREMENTS ANALYSIS

the henhouse. Scanning the pipeline code should preferably be done by
another entity, outside the pipeline.

Requirement: Pipelines are testable.

A realized pipeline must behave as it was intended. This means that
a thorough test is needed in which it is possible to execute test runs with
the given pipeline code, without actually endangering normal pipeline
behavior or deploying artifacts by accident. The pipeline must be
functionally tested, but also nonfunctional aspects must be tested. Is the
performance of the pipeline sufficient?

Requirement: Use quality gates.

Some ALM platforms introduce the concepts of approval and gate. An
approval usually refers to a manual task. A gate, sometimes called quality
gate, often refers to an automated approval. A quality gate is a milestone
where the outcome of a pipeline stage is validated to see if it meets the
necessary criteria to move into the next stage. Here are some examples:

o Approve pull request: Before code is merged back into
the main branch, it needs to be approved by colleagues.
Approval is often done using a pull request. This is a
manual validation. Code that is not reviewed using a
pull request cannot be merged with the mainline.

o Analyzing code quality: This means that the application
code must meet certain quality criteria. Code scanning
tools must have integrated policies in which thresholds
are defined. Code that exceeds the threshold is
considered “acceptable.” Code that does not reach the
threshold is of poor quality. The pipeline should fail in
these cases. Examples of such thresholds are as follows:

o Unit test coverage must be higher than 80 percent.

65

CHAPTER 3 REQUIREMENTS ANALYSIS

e Code may not contain vulnerabilities with a
Common Vulnerability Scoring System (CVSS)
score of 7 or more.

o Code may not contain Blocking or Critical issues.

o Code or property files may not contain passwords,
tokens, or any other secrets.

o Integrity check on artifact: This refers to performing
an integrity check on an artifact before it is deployed
to production. The artifact must have a valid digital
signature. If not, the deployment cannot proceed.

o Validate test results: Not only tests are automated,
but also the validation of tests can be automated. In
principle, all automated tests must pass; otherwise, the
pipeline stops. Release candidates must be earmarked
with the test result to prevent a release candidate is
deployed to production for which not all tests passed or
testing was incomplete.

o Validation of the main branch: Only artifacts built
from the main branch are allowed to be deployed to
production. This approval must be automated. Artifacts
originating from other branches are not allowed to be
deployed to production.

o Validation of the artifact version: The version of the
artifact must be higher than the version of the artifact
in production. The artifact cannot be deployed if the
version is lower.

Requirement: Define entry and exit criteria.
As already explained in previous chapters, validation of entry
criteria means that the pipeline starts with the correct starting situation.

66

CHAPTER 3 REQUIREMENTS ANALYSIS

Arguments are passed from an external system to the pipeline, which
determines whether it can start with the given data. Validating the exit
criteria means that all preconditions to deploy and install the software
in the target environment are met. Here are examples of entry and exit
criteria:

e Entry criterion: Committed code must be associated
with a pull request.

o Entry criterion: Mandatory variables used in the
pipeline are configured.

e Exit criterion: Only signed artifacts may be deployed to
production.

o Exit criterion: Verify that an artifact deployed to
production is indeed a release candidate and not a
snapshot build. Deployment to production is possible
only with a release artifact of which the code originates
from the main branch.

More examples are given in Chapter 4.

Requirement: Tests are reusable (for next test cycles/regression).

When running an (automated) test, the starting position must always
be the same to compare different test runs. Starting with the same test
environment, the same initial test data and the same test framework are
key. A “reset” task must therefore be performed before the actual tests are
executed.

Requirement: Tests, test data, stubs, and test reports are versioned
(e.g., in Git).

Similar to pipeline code, all tests, test data, and stubs must also be
treated as software. The set of test resources must be stable and versioned
and therefore be stored in an SCM system.

67

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Development tools, test code, and testware may not
be deployed to production.

The pipeline must ensure/have facilities that development tools (such
as compilers), test code, and testware cannot be deployed to production
where they could potentially cause issues or expose sensitive information.
They are not intended for use in live (production) systems.

Metrics

Metrics are used to assess the state and performance of the teams and the
pipelines.

Define key performance indicators (KPIs) that make sense.

The software supply chain is successful if all PKIs are considered
successful, but defining these KPIs is not easy. When is the software supply
chain considered successful? Of course, this differs for different business
organizations.

KPIs are often defined in business terms that contain words like
efficient, cost-effective, fast time to market, high change success rate,
compliance, etc. However, a good KPI must also be specific, measurable,
achievable, relevant, and time-bound (SMART). So instead of stating that
“the pipelines must be cost-effective,” it is better to define the KPI as “Costs
of the pipelines per month.” The trend of the KPI reveals whether the costs
go up or down, and it is up to the squad or business representative to
determine whether this trend is acceptable.

It is not always possible to find the right metrics in the CI/CD setup
that contribute to a KPI. In the case of the KPI “Costs of the pipelines per
month,” you need to get insight into the actual costs of the ALM platform
or integration server. If the ALM platform is a SaaS solution or if an
integration server runs on the infrastructure of a cloud service provider, it
is easy to get insight into the costs of the resources used. Assume the CI/
CD setup consists of AWS CodeCommit, CodeBuild, and CodeDeploy,

68

CHAPTER 3 REQUIREMENTS ANALYSIS

all orchestrated using AWS CodePipeline. With 30 pipelines and 1,000
builds per month, the costs are roughly $50 per month. The actual use of
this setup may differ. If the number of pipelines or the number of builds
increases in time, the trend of this KPI goes up.

A practical approach to defining a KPI is to investigate first what actually
can be measured in the CI/CD setup. Define a sensible subset of metrics.
These metrics form a good starting point for the definition of useful KPIs.

The following are some examples of KPIs in the context of CI/CD. Note
that some KPIs are more related to DevOps and not specifically to CI/CD,
for example, meantime to repair/recover and mean time between failures.
That is the reason why they are not included in the following list. Of course,
the list is not exhaustive (and you don’t have to implement them all).

o Execution time of each stage in the pipeline: This
KPI says something about the speed of build and
deployment. If a stage takes a lot of time, search for
the bottleneck. Is the code analysis stage taking a long
time? Determine whether it is possible to execute
the different code analysis tools in parallel instead of
running them in sequence.

o Queued pipeline distribution per day: If queuing takes
place during the day, spot how big this queue is. Are all
Jenkins executors occupied (in case you use Jenkins)?
Increase the number of executors or add a slave build
server. Note that this is not necessarily a KPI, but more
a technical metric.

o Test success rate: Ideally, the number of failed
automated tests—executed by the pipeline—must
be zero; in other words, the percentage of passed
tests must be 100 percent. As soon as a test fails,
an investigation is needed, which also costs time.

69

CHAPTER 3

70

REQUIREMENTS ANALYSIS

Checking the success rate of the tests says something
about the amount of time spent on the investigation of
failed tests.

The number of failed builds per day: Spot the trend. Is
there an accumulation of failed builds? Then take a
look at what could be the cause.

Costs of the C1/CD pipelines per month: Running
pipelines costs money. This KPI gives insight into the
costs of using the ALM platform/integration server.

Availability of the ALM platform/integration server
per month: If the ALM platform/integration server

has availability issues, it reflects on the capability to
deploy an app. If a hotfix is needed and the integration
infrastructure is not available, this means business
impact. Having insights into the availability of the
platform makes sense in the long run.

The number of production deployments per month: The
number of deployments to production directly gives
insight into the capability of the team to deliver fast

(or not).

The number of work items closed per sprint: Closing

a work item does not always result in a production
deployment, so a low number of production
deployments per month does not necessarily mean that
the team cannot deliver. Some work items are bundled
into one production deployment, so knowing the
number of closed work items in a sprint combined with
the number of deployments in a sprint gives even more
insight into the delivery capabilities of the team.

CHAPTER 3 REQUIREMENTS ANALYSIS

Change lead time: Another way to look at the team’s

delivery capability is to determine the change lead

time. This can be measured by looking at the time

between the first code commit and the deployment

of the code to production. Please note that this is not

the same as lead time, cycle time, and mean time to
change (MTTC).

Lead time is measured from the moment a work
item was created until the code was deployed to
production. This KPI is useless. There may be good
reasons to create the work item so far in advance.

Mean time to change covers the lead time, but also
includes the business analysis and design phases.
The MTTC is even more difficult to measure
because these metrics are often not registered or
easily available.

Cycle time defines the moment a work item in the
issue tracker is accepted until the code is deployed
to production. It is the only KPI of the trio that has
real value.

The number of dirty and orphan commits per
month: A dirty commit is a commit with an invalid
work item ID in the commit message. An orphan
commit is a commit without a work item ID in

the commit message. These KPIs can be used to
identify whether the teams’ workflow hygiene is in
good order.

71

CHAPTER 3 REQUIREMENTS ANALYSIS

Monitoring

Monitoring is the process to collect data to identify, measure, validate,
visualize, and alert about the following:

e Availability

e Resource use/capacity
e Performance

e Security breaches

o Events (expiration events, pipeline events, system
events, and so on)

Monitoring tools generate alerts to anomaly events and help
developers to solve issues. Monitoring tools used to monitor CI/CD
pipelines should be flexible enough to do the following:

e Monitor KPIs of the CI/CD process
e Visualize trends on a (custom) dashboard

o Define KPI tracking by setting upper and lower
thresholds

e Alertin case a KPI trend goes up or down a predefined
threshold

e Perform system monitoring on the ALM platform/
integration infrastructure, validating CPU usage,
storage usage, etc.

Requirement: Monitor KPIs.

Defining a KPI is one thing; retrieving the metrics, making it visual,
and monitoring the KPI is another. The monitoring tool must be flexible
enough to visualize KPIs with custom timeframes, such as a month, week,
or day. Thresholds are defined to determine whether a KPI reaches a

72

CHAPTER 3 REQUIREMENTS ANALYSIS

critical or unwanted state. A combination of a time-series database and
interactive analytics and monitoring tool is perfect for this case. Popular is
the combination of InfluxDB and Grafana.

Requirement: Monitoring must be continuous.

A system that monitors the pipelines must always give the current
status of the situation. Immediate feedback also applies to monitoring.
Information feedback is done both on a pull basis, using custom
dashboards to visualize the KPIs, and on a push basis by generating alerts
that actively inform the team about a trend breach.

Requirement: Pipelines to manage infrastructure components
life cycle.

Infrastructure is not a static configuration. It consists of various
components with a certain life cycle; PaaS/IaaS services that need
patching, or secrets that require rotation. One concrete example is
certificate management.

Certificate management is often laborious if not fully automated.
Some systems make use of a large number of certificates, which expire
at different times. The team must have clear insight into when each
certificate expires, so this should be automated. A scheduled pipeline can
check which certificates will expire soon. In addition to notifying the team
about the expiration, the pipeline can even automatically request and
install a new certificate.

Requirement: The ALM platform/integration server is monitored.

Monitoring pipelines involves using metrics to determine KPIs and
determine whether the execution of the pipelines is still in good order.
However, the infrastructure on which the pipelines run should also be
monitored. Checking whether CPU usage is still good, whether there is
sufficient disk space, or validating whether the connection with external
systems is still up are typical aspects to monitor. A tool such as Splunk can
be used to monitor the integration infrastructure.

73

CHAPTER 3 REQUIREMENTS ANALYSIS

Sustainability

Sustainable computing is an emerging trend that focuses on reducing the
carbon footprint generated by the information technology industry. To

put things into perspective, the annual energy consumption of the global
Bitcoin network as of today is roughly 142 TWh, according to the University
of Cambridge (see [1]). That’s about the size of the electric energy
consumption per year of the whole of New York State. These are dazzling
numbers. And not only the carbon dioxide footprint of the Bitcoin network
is huge, but also trends like Al, Big Data, and other compute-intensive
processes have a big impact on the environment.

Sustainable computing becomes an important factor in architecting,
designing, implementing, and operating IT systems. This includes
continuous integration and continuous delivery pipelines.

Requirement: Define sustainability goals.

“Sustainability isn’t one optimization; it’s thousands.”

Reference [29]

It is important to optimize pipeline processing in such a way that
the carbon dioxide footprint is low but the required functionality is still
provided. The team has to realize that, for instance, older hardware and
underutilized server capacity are not optimal for energy consumption,
and executing one unnecessary pipeline run is one too many. It is
recommended to add a sustainability requirement because sustainable
computing is here to stay.

Governance

Governance involves managing the organization and teams in their CI/CD
journey.

74

CHAPTER 3 REQUIREMENTS ANALYSIS

Requirement: Involve the entire team in CI/CD implementation.

Do not fall into the “trap” to assign only one or two people to be
responsible for CI/CD. Instead, encourage all squad members to
contribute something. Let everybody from the squad pick up a small user
story to get them motivated to continuous contributions to the pipeline.

Requirement: Measure the team on CI/CD maturity.

Different DevOps teams have different levels of maturity when it comes
to CI/CD. A continuous delivery maturity model helps in identifying how
a team scores on various topics. There are many models available that
can be used as input to measure a team’s CI/CD maturity. This kind of
assessment is often in the form of a questionnaire. It is a good practice to
assess teams every year.

Requirement: Determine what maturity level is most appropriate.

Teams starting with CI/CD and pipeline development must define
their ambition. A continuous delivery maturity model can also help
in identifying the level of maturity the teams want to aim for. Perform
this exercise at the start and create a road map containing the CI/CD
milestones.

Requirement: Measure CI/CD in the business organization.

Sometimes, a company is organized in such a way that it has an
inhibitory effect on CI/CD. Procedures and supporting departments are
not yet ready for CI/CD, or DevOps teams are not on par with a certain
CI/CD ambition. Assessing teams and the organization as a whole helps
in getting insight into the CI/CD maturity level of the organization. This
assessment should be performed periodically to validate the change
in maturity, which helps to make adjustments in the CI/CD migration

process.

75

CHAPTER 3 REQUIREMENTS ANALYSIS

Summary

You learned about the following topics in this chapter:

e Arequirements analysis forms the basis of a good
pipeline design and realization.

e Pipeline requirements originate from various sources.
You have to make sure that no source is overlooked.

e Requirements cover various areas. This chapter
included a large list of potential requirements you can
use in practice, grouped by area.

o Beinspired by the list of requirements discussed. Even
ifyou don’t use them now, you may implement them in
the future.

76

CHAPTER 4

Pipeline Design

This chapter covers the following:

Why a pipeline design is useful.

Basic BPMN 2.0 concepts to model a pipeline flow, with
a short BPMN introduction.

The Generic CI/CD Pipeline, a blueprint containing the
stages a pipeline should consist of.

The different stages of the Generic CI/CD Pipeline and
their purpose.

Design strategies concerning branching, build, test,
deployment, and release, and how certain aspects of
these strategies affect the design of the pipeline.

Why certain aspects influence the pipeline design.

Branching strategies, like trunk-based, feature branch
workflow, and Gitflow.

The process of building an application, which involves
more than executing a command. Scaling, full builds
versus incremental builds, parallel builds, pipeline
caching, build targets, cross-platform builds, and
multiteam builds will all be covered in this chapter.

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_4

77

https://doi.org/10.1007/978-1-4842-9228-0_4

CHAPTER 4 PIPELINE DESIGN

e Aspects related to testing, including the influence of
manual testing on pipelines and the execution order of
certain test types.

o The different deployment strategies such as re-create,
blue/green, rollover update/canary, and A/B testing.

e The types of release strategies and their differences.

o Other considerations that may affect the pipeline
design. Examples are separation of concerns, resource
constraints, and commercial off-the-shelf software.

Design

A pipeline design is a specification of how to construct a pipeline. It
describes the following:

o The CI/CD process in general, the pipeline stages that
make up the process, and the individual tasks within a
stage. It describes the process in words and visualizes
the activities that take place within a pipeline.

e The flow of the pipeline. The conditions that shape the
process flow act as gateways, allowing the pipeline to
continue or halt until a certain condition is met. These
gateways also determine possible alternative paths in
the flow.

e The interaction with surrounding systems.

e Input from external systems needed to execute
activities in the pipeline, for example, a trigger from an
external system to start the pipeline.

e Output from the pipeline to external systems to
delegate activities to these systems.

78

CHAPTER 4 PIPELINE DESIGN

In addition, a design helps with understanding the software delivery
process’s behavior and helps structure the pipeline code during
development. If there are a lot of common cases, certain design patterns
emerge. These design patterns provide a good starting point for the design.

Tip A pipeline design is not an extensive book or report, detailed to
the extreme. Its purpose is to understand the problem domain and
support the realization of a pipeline. It is often used as a discussion
document in the team, so try to keep it modest in size. It is important
to realize that a design is @ means of eliminating bad decisions. The
rest is a matter of taste.

CI/CD and Pipeline Design Approach

A pipeline design describes the orchestration of a process or workflow
and has a lot of similarities with modeling business processes. So, the
question is whether the business process modeling paradigm can also be
used as the basis for a pipeline design. The answer is yes, and one method
to visualize the process and its stages is to use BPMN notation (see [2]

and [16]).

BPMN 2.0

Where the requirements analysis phase helps you understand the
problem domain, the BPMN diagrams help you understand the software
delivery process flow, the individual stages and tasks in the process, and
the interaction with other systems. The notation used in this chapter is
BPMN 2.0.

79

CHAPTER 4 PIPELINE DESIGN

BPMN 2.0 uses a certain notation with specific icons, called elements.
The set of BPMN 2.0 elements is limited, and because the pipeline flows
are not very complex, a subset of these elements is used throughout
this book.

A remark to the BPMN purists out there. You will probably detect
possible improvements in the models. I would like to know that, of course,
but as long as a model describes the essence of the flow, it serves its
purpose. A summary of the most used elements and some basic BPMN
examples are presented in the next paragraphs.

BPMN Elements Overview

BPMN uses various elements—icons—to model business flows. Table 4-1
presents an overview of the most used ones.

Table 4-1. BPMN Elements

BPMN Element BPMN Name Description

Start event Starts the flow. The use of a start
event in a BPMN model is optional.

End event Ends the flow. The use of an end event
in a BPMN model is optional.

Error end event Ends the flow with an error.

Message Acts as a trigger to start a task. It

intermediate is used for example to identify the

catch event trigger that starts the pipeline.
(continued)

80

Table 4-1. (continued)

CHAPTER 4 PIPELINE DESIGN

BPMN Element BPMN Name Description

Timer Acts as a time trigger to start a task. It

intermediate is used for example to start a pipeline

catch event based on a schedule.

Task A task is the smallest execution unit in
a pipeline flow. A stage (subprocess)
consists of one or more tasks.

Manual task A task performed by a user, but
without making use of an ICT system.
Searching for an order in a drawer is
an example.

User task A task performed by a user, making
use of an ICT system. An example is
a dual control task right before an
artifact is deployed to production.

Task with looping Indicates that the task is repeated.

marker

)
Repeating Repeating tasks with a condition, for
task with example, “This task iterates three

intermediate

times.” Use this construction to make

conditional event clear how often the task is repeated.

(continued)

81

CHAPTER 4 PIPELINE DESIGN

Table 4-1. (continued)

BPMN Element BPMN Name Description

Subprocess A subprocess contains other flows,

collapsed pipelines, and stages and is used to
simplify a workflow design.
Similar to a regular task, a subprocess
can also be repeated using a looping
marker.

Subprocess The subprocess, but then expanded,

expanded S0 its content is visible.

Pool (with one
lane)

Pool (with two
lanes)

This book mainly uses pools to identify
a system or an actor. This can be Git,
an email server, a wiki, or an issue
tracker, but it can also represent an
ALM platform, an integration server,

or a software delivery pipeline,
depending on the context of the
diagram.

Lanes are used to identify units in the
pool. For example, the pool identifies
a pipeline while the two lanes identify
two stages in the pipeline.

82

(continued)

Table 4-1. (continued)

CHAPTER 4 PIPELINE DESIGN

BPMN Element BPMN Name Description

Exclusive Also called an XOR gateway. The

gateway exclusive gateway splits the flow
into several other paths based on a
condition. Only one of the paths is
executed.

Parallel Also called an AND gateway. The

gateway parallel gateway splits the flow into
several other paths. All other paths are
executed.

Comment Comments associated with one of the

BPMN icons.

BPMN in Action

A workflow usually has a begin and an end element. In BPMN terminology

these are called events. Between these events, one or more tasks are

executed. This can be an automated or a manual task. A simple BPMN
model with two tasks looks like Figure 4-1.

Automated task

System A

&

Manual task

Figure 4-1. BPMN, example 1

83

CHAPTER 4 PIPELINE DESIGN

Figure 4-1 visualizes system A as a BPMN pool. The pool contains two
tasks enclosed between a start event and an end event. The start and end
events are optional. If the number of tasks becomes very large, they can
be clubbed together into a subprocess. To make BPMN diagrams more
readable, this subprocess can be collapsed, hiding all underlying tasks, as
Figure 4-2 shows.

Collapsed sub
process with
tasks

Start

System A

Figure 4-2. BPMN, example 2

Tasks can be executed in parallel, or based on certain conditions,
alternative paths can be followed. Gateways are a way to model this.
Figure 4-3 shows the use of two types of gateways: parallel and exclusive
gateways. The model shows that the automated and manual tasks are
executed in parallel. The parallel gateway element is positioned both
before and after the tasks. The first parallel gateway indicates that both
tasks are executed in parallel. The second parallel gateway acts as a
converging gateway, meaning that the process continues if both parallel
tasks are executed. In addition, the model includes a “happy flow” and an
“error flow.” The result of both parallel tasks is determined, and based on
this condition, the subsequent path either leads to a successful state or
ends in an error state. This condition is depicted as an exclusive gateway.

84

CHAPTER 4 PIPELINE DESIGN

)

P| Automated task

~— Result of both

tasks are
successful =O

Start

At least one task
resulted in error

System A

2y

P Manual task

Handle error

End with error

Figure 4-3. BPMN, example 3

Figure 4-4 adds a bit more complexity to the model. The Handle
error task in system A means that previous changes in system B must be
undone. System B has two subsystems called B.1 and B.2, and they both
must be reset to revert all changes. The two subsystems of system B are
depicted as lanes. To inform system B about the fact that the reset must be
performed, the model makes use of an event. The event in the model is a
message intermediate catch event, indicating that the task Perform reset in
subsystem B.1 can receive and process this event. After subsystem B.1 has
been reset, it calls subsystem B.2 to reset.

85

CHAPTER 4 PIPELINE DESIGN

Automated task

Result of both

tasks are
: =O

End

Start

System A

i)

At least one task
resulted in error

Manual task

End with error

Perform reset in
subsystem B.1

Subsystem B.1

System B

Perform reset in
subsystem B.2

Subsystem B.2

Figure 4-4. BPMN, example 4

It doesn’t become more complicated than this (at least for the scope
of this book). This makes BPMN a good way to describe the workflow of
a pipeline flow and helps with the thinking process required to design
pipelines.

Level of Detail

A BPMN diagram describes a certain context, which effectively refers to a
certain level of detail. There are multiple levels to distinguish.

e Global level, to understand the overall process flow.

e Detailed level, to understand the more detailed tasks.

86

CHAPTER 4 PIPELINE DESIGN

o The flow. This applies to the conditions that influence
the flow. A condition may result in a split, in which
multiple tasks are executed in parallel, a condition
that defines which path must be followed, or the
aggregation of output from multiple tasks.

It is possible to model all levels and the complete workflow in one big
BPMN model, but often readability is improved when the global and detail
models are separated. This is a matter of taste, of course.

Logical Design vs. Realization

The BPMN models used in this book represent logical designs. In

most cases, it does not contain any implementation details because

there are thousands of different CI/CD setups, so it is better to avoid
implementation details. Creating these models also means, for example,
that on a logical level two pipelines may be modeled, while technically,
the whole flow can be realized by just one pipeline. In addition, stages and
tasks are used throughout the logical representation of the pipeline. The
implementation of a pipeline, however, may consist of stages, jobs, steps,
and/or tasks, depending on the platform. The developer has to translate
the logical design into the technical implementation.

The Generic CI/CD Pipeline

The Generic CI/CD Pipeline is the basic blueprint used throughout this
book. It consists of stages, each with a certain purpose. These stages are
deliberately kept abstract because a stage in itself can be decomposed
again into several tasks. These tasks are completely different in another
context, such as the use of the infrastructure, tools, test environment,
security, or other constraints.

87

CHAPTER 4 PIPELINE DESIGN

The stages in the Generic CI/CD Pipeline are positioned in sequential
order. If the implementation in sequential order still guarantees the
requirements—for example, the requirement of fast feedback—there is no
urgent need to restructure the design and the realization of the pipeline,
but if these requirements cannot be met, consider parallelization and/or
combining some of the stages. See Figure 4-5.

Validate entry Execute Perform Analyze Package Publish Provision test
criteria build unittests. code artifact artifact environment
Notify
Actors
Deploy Validate B Provision Deploy
= Perform . Validate Perform i 5
artifact to infrastructure o R production artifact to
> test b compliance exitcriSl dualiceiss environment production

Figure 4-5. The Generic CI/CD Pipeline

Mapping the Generic CI/CD Pipeline to a BMPM diagram is relatively
easy, but remember that it is still a generic workflow. Subsequent chapters
explain the stages of this workflow model in more detail, often in a specific
context. Stages in the Generic CI/CD Pipeline are modeled in BPMN as a
subprocess because each stage consists of [0..n] tasks.! See Figure 4-6.

!Some stages are implemented differently, which means that tasks move to a
different stage, and the stage ends up with zero tasks, in other words, the [0..n]
range. In other contexts, some stages are not applicable, meaning that the stage
has zero tasks and is therefore not implemented.

88

CHAPTER 4 PIPELINE DESIGN

Start pipeline

assed

>
o i Provision test Deploy artifact Tests failed
Package Publs atfact Proision s oy Perorm est X oty actrs
Tt passes

Deploy artifact
to production

Figure 4-6. BPMN, the Generic CI/CD Pipeline

As you can see, Figure 4-6 shows the stages of the Generic CI/CD
Pipeline, most of them ending with an exclusive gateway. The exclusive
gateway is a condition that determines whether the stage result was
successful. The pipeline either ends in a success state or ends an error/
failed state.

The Generic CI/CD Pipeline consists of the following stages.

Validate Entry Criteria

A pipeline is triggered by a certain event that occurs in another system.?
This often means that an API of the ALM platform/integration server

is called from that system. For example, the trigger can be a scheduled
event, a manual event (the pipeline is manually started), or any SCM event
like Git push, merge, tag, etc. Any webhook implemented by an external

2Qr it is triggered manually, of course.

89

CHAPTER 4 PIPELINE DESIGN

system that calls the ALM platform/integration server API acts as a trigger.’
Pipelines can call other pipelines, and it is even possible to hook up an
advanced Al monitoring system to your production environment that
detects deviating behavior in the application. This may result in triggering
a pipeline to reconfigure the application or performing remediating
activities on the infrastructure.

To make sure that the pipeline is started by a valid trigger using the
correct trigger data and the correct pipeline configuration, a validation
stage—the Validate entry criteria stage—is added to the Generic CI/CD
Pipeline. The pipeline can proceed only if certain criteria are met. The
following are typical entry criteria validated in this stage:

o Validate all mandatory pipeline variables in the
Validate entry criteria stage. If one of the variables is
not (properly) configured, the pipeline stops in the first
stage instead of somewhere at the end of a pipeline run.

e Add a ping task to the Validate entry criteria stage to
make sure that an external system is reachable. The
ping task could send an HTTP request to an external
system and validate the returned HTTP status. If, for
example, a status 503 is returned, the pipeline stops,
because the external system cannot be accessed.

e The branch—passed as an argument in the trigger—for
which a release candidate is going to be built is indeed
the expected branch. For example, only triggers with a
Git event associated with the main branch are allowed,
if the intention is to create a release.

30n an infrastructure level, this also means that the external system calling the
API of the ALM platform must be an authenticated system. So, connections should
make use of mTLS, OpenID Connect, or at least some basic authentication.

90

CHAPTER 4 PIPELINE DESIGN

e Validate whether data passed by a pipeline trigger
meets certain conditions in another external system.
For example, validate whether the code has a reference
to an existing work item in the issue tracker. On ALM
platforms, these types of validations are often easy to
configure. It becomes more complex if the integration
platform consists of multiple independent tools.

Execute Build

This stage involves building artifacts from code, such as the creation

of a . jar file from Java code or an . exe file from C++ code. The code
associated with a certain branch and certain commit is checked out in the
SCM system, dependencies are downloaded (for example, Java libraries
from Maven Central), and the code is compiled. This is a fully automated
process.

Perform Unit Tests

Unit tests are automated tests to make sure that components within a
service or application behave as expected. Unit tests are usually isolated
and independent. In principle, unit tests strive for 100 percent code
coverage.

Note Although the Generic CI/CD Pipeline defines that, as a
safeguard, the pipeline stops after a failure in the unit test, some
people may decide to implement it differently and continue after a
failure. This is to further validate the code and identify any issues that
may not have been caught by the unit tests.

91

CHAPTER 4 PIPELINE DESIGN

Analyze Code

The Analyze code stage provides confidence that the code quality
requirements are met. Organizations often demand a combination of
checks, sometimes completed with specific validations. Here are some
examples:

o Code quality assurance: Static analyzers that assure
the quality of the software, for example, SonarQube or
SonarCloud to perform static analysis of code to detect
bugs and code smells, OpenClover to validate code
coverage, and Pylint to analyze Python code.

e Static application security testing (SAST): Secure
software by reviewing the source code of the software
to identify sources of vulnerabilities. Tools are, for
example, Checkmarx and Fortify Static Code Analyzer.

e Software composition analysis (SCA): Automated
scans of an application’s codebase to identify security
vulnerabilities and the type of license of all open-
source components used in the build process. These
types of scanners can detect whether an artifact
contains a vulnerable version of log4j, for example.
Tools like Nexus IQ or JFrog Xray fill in this segment.

e Credentials scan: This is an extension of SAST and
scans other types of files for credentials, passwords,
tokens, or other secrets, which are present in a code
repository in plain text. Whispers is an example of such
a tool. Whispers can detect hard-coded credentials in

(property) files.

92

CHAPTER 4 PIPELINE DESIGN

o Validation of IaC: This applies to the configuration of
the infrastructure code, such as AWS CloudFormation
or Azure ARM templates, and validates whether
the configuration complies with certain company
policies. Misconfigurations of the infrastructure are
detected by analyzing the infrastructure code. One of
the organization’s policies could be that public access
to an S3 bucket in AWS must always be blocked. If
the infrastructure code defines that public access to
a bucket is not blocked, it is detected by this pipeline
task, which causes the pipeline to break.

o Validation of pipeline code: Even pipeline code must
comply with certain quality criteria and policies.
For example, the pipeline must contain certain SCA
or SAST validations because they are mandatory by
company policy. However, this type of validation is a
bit odd because it does not validate the application
code, but the pipeline code; the pipeline validates itself
so to say. Integrating pipeline compliance validations
in the pipeline itself is good, of course, because they
immediately detect whether the pipeline is compliant,
but to guarantee that pipelines comply with certain
policies, the validations must be performed “outside”
the pipeline, integrated into the ALM/integration
platform.

The Analyze code stage may contain multiple tasks that potentially
delay the pipeline, because some of these tasks can be very slow.
Subsequent chapters point out what the options are to mitigate this.

93

CHAPTER 4 PIPELINE DESIGN

Package Artifact

Packaging an artifact involves all activities to deliver an artifact that can be
deployed to a test or production environment. Think of .zip, . jar, or .exe
files. This also involves the creation of custom packages in cases where a
dedicated deployment tool is used.

To guarantee the integrity of the artifact, specific measures must be
taken, such as signing a package,* to make sure the artifact deployed to
production is not compromised. For auditability, this is the point at which
we want to ensure that the package goes to production unchanged.

Publish Artifact

Publishing an artifact means that the artifact is stored in an immutable
binary repository such as Artifactory, Nexus, or Azure DevOps Artifacts.
Docker images are pushed to a Docker repository, for example, Nexus 3
and AWS Amazon Elastic Container Registry (ECR).

Publishing an artifact is typically the last stage of continuous
integration, and this is where continuous delivery begins.® The continuous
delivery stages retrieve the artifact from the repository and use it for
testing and deployment to production. This ensures that the same artifact
is used throughout all environments and not built for every environment
separately.

In addition to the published artifacts, additional information—
metadata of the continuous integration process—can be published. The
version of the artifact, the commit hash of the code, the work items that are
part of the artifact, the developer of a feature, the pull request reviewer(s),

*Signing a package means that a digital signature is created and added to an
artifact, to guarantee the integrity of the artifact.

®Continuous delivery is sometimes used as overarching concept that includes
continuous integration.

94

CHAPTER 4 PIPELINE DESIGN

and the unresolved but accepted issues are typical examples of metadata
gathered during continuous integration. This type of information can be
seen as the “contract” with the continuous delivery part of the pipeline,
and it makes sense to gather this kind of metadata and publish it as a
“release note” in a central place where all interested parties can read it.
If needed, test results can be added later to this metadata, so it becomes
clear whether a release candidate is suitable for production (or not). This
metadata can also be used to determine whether the artifact has gone
through all the mandatory steps before it is deployed to production.

Provision Test Environment

Infrastructure consists of several layers. The lowest layers may refer to
installing physical hardware or requesting cloud accounts or subscriptions.
These activities are not part of the Provision test environment stage. It can
also be argued that shared infrastructure components, which are created
once and almost never touched upon, should be moved to a separate

base infrastructure pipeline. Base infrastructure involves, for example,
DNS records, virtual networks, and subnets. The highest infrastructure
layer typically contains infrastructure components, associated with a
business feature (and the application). Think of queues, a file system, and
a database.

The infrastructure components are created on the fly using
infrastructure as code (IaC). This results in the creation of a test
environment, which can be destroyed again after the tests are executed;
this is called ephemeral infrastructure. The execution of the IaC code
should be idempotent, meaning that if the same code is executed twice
and not changed in between, nothing changes in the target environment.

An ephemeral test environment has the benefit that it reduces costs
because you pay only for what is used, and the tests always have the
same starting position; they start with a new and clean test environment.
However, be aware that it is not always beneficial to create and delete a test

95

CHAPTER 4 PIPELINE DESIGN

environment on the fly. In cases where you can make use of infrastructure
as code—for example, in the cloud—it is relatively easy to create an
infrastructure, but there still may be some issues. Consider, for example,
a long creation time of your infrastructure, or deleting your stacks is
problematic because they have dependencies with resources that cannot
be deleted or at least not easily. Also, test environments used for load and
performance tests cannot be deleted so easily because they often contain
very large databases. Rebuilding the environment would take several
hours. And if a test environment is almost continuously used, it makes no
sense to tear down the environment and rebuild it a second later. That is
why organizations still make use of fixed test environments, even if they
are created using IaC.

On the other hand, keeping test environments intact and leaving them
unused for a longer time should be avoided. Teams decide whether to
create a test environment once and use it for a longer time and destroy
it if not needed anymore or not needed shortly. Also, a combination of
more or less permanent test environments combined with ephemeral test

environments is possible.

Note If only Docker containers are used, the situation is a little
different. The Docker containers represent the test environment, and
they can easily be created and removed. However, the whole Docker
runtime environment—the base infrastructure—itself (for example,
Kubernetes) remains.

Deploy Artifact to Test

Deployment involves all activities required to install the software on a
target environment, so it can be tested. This may involve deployment
to one or more test environments. It also depends on the type of testing

96

CHAPTER 4 PIPELINE DESIGN

to be performed. System tests, for example, need a smaller-sized test
environment compared to test environments in which load, stress, and
performance tests are executed. The Deploy artifact to test stage includes
all deployments of the artifact to all required test environments.

Perform Test

Testing covers a wide range of types from contract tests and integration
tests to usability tests and production acceptance (preproduction) tests,
except for unit tests, which are performed in a dedicated stage. More
details concerning the different test types are discussed later in this
chapter.

It is important to point out is that tests should not rely on each other.
Each test must be able to be performed individually, which offers the
possibility to perform tests both sequentially and in parallel. Each time a
test is executed, it is initialized to a certain starting point.

Validate Infrastructure Compliance

Validate infrastructure compliance is a bit of an odd stage. It is an addition
to the Validation of IaC task in the Analyze code stage. The Validation

of IaC task is a static code analysis task of the infrastructure code. The
Validate infrastructure compliance stage involves a dynamic scan of

the target environment, the application running in this environment,
resources used by the application, and application-specific settings. The
scanning is performed according to security compliance rules (guardrails).
The stage checks whether certain (unused) ports are open, whether
restricted protocols are used (e.g., HTTPS in favor of HTTP), and whether
protocols are configured but not used by the application. The list of checks
can be very long.

97

CHAPTER 4 PIPELINE DESIGN

The reason why this is a separate stage, executed only after all tests
have been performed, is that the focus of the pipeline flow should be first
on testing whether the application works properly and second on whether
the infrastructure resources associated with the application are compliant.

Note There is also an overlap between static scanning of the
infrastructure code (as part of the Analyze code stage) and dynamic
scanning of the infrastructure (as part of the Validate infrastructure
compliance stage). Both could check the same configuration, but a
dynamic scan proves that a certain configuration is also reflected in
the target environment in the way it was meant. A recommendation is
to perform both, if possible.

Validate Exit Criteria

Validating exit criteria can be considered as a gate that determines
whether the artifact is allowed to be deployed and installed in the
production environment. Some of these validations determine whether
the artifact was built as expected, and other validations are mandatory
because the production target environment itself also assesses whether the
deployed artifact meets certain criteria before it is installed. Here are some
examples of exit criteria validations:

o Itisnotallowed to install software without a valid
digital signature (nonsigned software) because it must
be guaranteed that software can be deployed and
installed from an authenticated pipeline. This prevents
someone from trying to install software manually. If
this criterion is not met, the target environment does
not allow installation or prevents the software from

98

CHAPTER 4 PIPELINE DESIGN

execution. This kind of feature is present in Windows
Defender Application Control (WDAC) on Windows,
for example. The Validate exit criteria stage makes sure
that it does not come to this and stops the pipeline if
the software is not digitally signed.

¢ Another example is that an artifact must be tagged or
versioned; otherwise, it is unknown which version has
been deployed, and the artifact cannot be identified in
production anymore.

e An artifact may be built only from the main branch or a
release branch. If the artifact somehow turns out to be
built from another branch, deployment is not allowed.

e The artifact is a release candidate that originated
from the main or release branch, but according to the
metadata associated with the artifact, it did not pass
all tests.

o Theversion of the artifact to be deployed is higher than
the version of the artifact running in production.®

e There is a change freeze. It is not allowed to deploy
to production during the change freeze period. If the
pipeline detects that the deployment is started in the
change freeze period—which is configured in the ALM
platform/integration server—it aborts the deployment.

6This applies only to regular deployments and is not a rollback to a previous
version because of an incident.

99

CHAPTER 4 PIPELINE DESIGN

o The artifact is expired. Even if the version of the artifact
looks fine, the artifact is built from the main or release
branch, and all tests are passed, deployment still
may be aborted because the artifact is expired. If an
artifact is “too old,” it may pose a risk if deployed to a
production environment.

e The artifacts contain development tools, test code, or
testware. They could potentially cause issues or expose
sensitive information.

In principle, the exit criteria of the pipeline are the entry criteria of
the target platform. It makes sense to validate the artifact to determine
whether it does comply with the preconditions of a deployment (to
production), especially in cases in which more teams build artifacts for a
shared production environment. The positioning of this stage before the
actual deployment to production also makes sense because that is the last
possible moment to validate the artifact before it is deployed.

Perform Dual Control

An artifact may be deployed only if it was approved by a release manager, a
product owner, or a designated person (a delegate). This approval is called
dual control because there is always a second person involved in putting
an artifact into production. This approval is a manual task.

Performing a dual control is conceptually part of the Validate exit
criteria stage, but it is modeled as an explicit stage in the Generic CI/CD
Pipeline. It is such an important step in the process, it is made explicit.

100

CHAPTER 4 PIPELINE DESIGN

This is by definition also the only manual step in the process; all other
stages and tasks are automated.” Having the dual control stage in the
Generic CI/CD Pipeline also makes sense; otherwise, the pipeline would
have become a continuous deployment pipeline and not a continuous
delivery pipeline.

Provision Production Environment

This is the same stage as the Provision test environment stage but now for
the production environment. This also means that the same IaC is used
for both the Provision test environment stage and the Provision production
environment stage. The only differences are the target environment and
the environment-specific properties and resources (e.g., certificates).

Deploy Artifact to Production

This stage is performed if nothing stands in the way anymore to deploy
the artifact to production. The artifact is retrieved from the binary
repository and installed in a production environment. This includes
any configuration change needed in the production environment itself.
Technically, there are various solutions to deploy software, from executing
an scp (Linux) command to securely transferring and installing files to a
production server using a dedicated deployment tool.

The implementation of this stage also depends on the deployment
strategy. A re-create deployment strategy results in a different design and
implementation than a blue/green deployment strategy.

“In theory, of course. Often there are still manual test tasks to be performed.

101

CHAPTER 4 PIPELINE DESIGN

Notify Actors

This stage has a generic name. It deals with informing team members
about the pipeline execution result, both success and failure, but it also
deals with notifying other actor types about the result. Other actors are,
for example, external systems, other pipelines, or specific functions of the
ALM platform/integration server. Informing actors can be implemented
as simply as sending an email to the team or a more sophisticated activity
such as performing an outbound API call to an external system.

Note The Generic CI/CD Pipeline model suggests that the Notify
actors stage is called only if all pipeline stages are executed and
the pipeline ends. That is not true. Each stage has the responsibility
to perform fast feedback and notify its actors. In the model, this is
delegated to the Notify actors stage.

Design Strategies

As the previous chapter already shows, there are lots of possible
requirements and aspects that influence the design and realization of
a pipeline: the business organizations’ software delivery strategy, the
workflow of the team, security aspects, and certain constraints, both
technical and nontechnical, etc. In the end, the pipeline design and
realization are derivative products of all these aspects, and if one of them is
suboptimal, the pipeline is also suboptimal.

Itis important to have a continuous interaction between optimizing
the requirements on one hand and the design and realization of the
pipelines on the other hand. If, for example, the team’s workflow is overly

102

CHAPTER 4 PIPELINE DESIGN

complex, it puts a burden on the software supply chain. An optimized
workflow should lead to a smooth and fast software delivery process
resulting in an optimized pipeline design. See Figure 4-7.

Requirements

Pipeline Design and
Realization

Figure 4-7. Pipeline design and realization cycle

The next couple of paragraphs handle some common design strategies,
which deal with specific requirements or constraints and visualize how
they shape the design of the pipeline. Although these paragraphs form
only a subset of all possible cases, they still provide a nice profile of various
situations.

Context Diagram

Although the design phase is abstract, it does make sense to draw a
context diagram containing all actors. Actors are not only the people

who are involved but also the surrounding systems. A context diagram
gives an impression of which interactions take place in the context of CI/
CD. Include everything you already know—including tools—in the context
diagram and use abstract names like SCM, issue tracker, and the SCA tool,
if you do not know which tools are used (yet). A context diagram might
look something like Figure 4-8.

103

CHAPTER 4 PIPELINE DESIGN

LTI RePOSITORY

<Cl/CD network segment>

Product owner

Figure 4-8. Context diagram

Figure 4-8 shows a central Jenkins setup running on a Linux server in
a special CI/CD network segment. The target environments are also Linux
clusters: one production cluster in the production network segment, and
a cluster in the development and test network segment. In this diagram,
the Jenkins server retrieves code from Git and libraries from Nexus, which
is connected to an external Internet source, Maven Central. Application
code is scanned with SonarQube, and artifacts are stored in the Nexus
repository. Information about the pipeline status is shared—using email—
with three types of roles, the product owner, the product owner delegate,
and the DevOps engineers. The context diagram also shows an issue
tracker, but this is a stand-alone system and not connected to any of the
other systems. It is therefore not possible to automatically check whether a
work item is present in the issue tracker.

104

CHAPTER 4 PIPELINE DESIGN

A context diagram is a good way to discuss with the team how the
pipelines interact with all actors. The first version of the context diagram is
probably a simple diagram with some blocks like the previous one, but the
diagram is extended along the way, with more (technical) details added in
later versions. Use the context diagram in the discussions with the team to
point out what is added or changed in the pipeline setup.

Branching Strategy

A branching strategy is a critical element in the way a pipeline is shaped.
At the start of a pipeline design, it must be clear how the team works
and which workflow they adopt. Depending on the type of strategy, the
pipeline flow differs. Some of these strategies are discussed in the next
paragraphs and demonstrate what a possible pipeline design could

look like.

Trunk-Based Workflow

In the context of continuous integration, there is only one workflow, the
trunk-based workflow. All other strategies are not considered continuous
integration, but they are relevant because lots of teams still use a branch-
based workflow.

The trunk-based workflow model is the simplest workflow strategy.
This means that the source code repository (e.g., Git) contains only the
main branch, the trunk. Changes are directly applied to the trunk, and also
release candidates are created from the trunk. The complexity of a trunk-
based pipeline is relatively low compared to other branching strategies.
See Figure 4-9.

Figure 4-9. Trunk-based workflow

105

CHAPTER 4 PIPELINE DESIGN

A developer works on a local copy of the trunk and commits its
changes (locally). As soon as the developer has completed their work,
the code is pushed to the remote trunk. That is the moment the pipeline
starts running, with the intent to deploy the finished work to a production
environment. This means that in the case of a trunk-based workflow, the
main branch is always in a production-ready state. A pipeline associated
with a trunk-based workflow covers all the stages of the Generic CI/CD
Pipeline. See Figure 4-10.

Cmain) Validate entry Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
o = Actors
Deploy Validate - Provision Deploy
artifact to Pet:s"t"" infrastructure e;’i:l::‘:iat?rla d: :Irt:::;lr] production artifact to
test compliance, environment production

SCM trigger

Figure 4-10. Trunk-based pipeline

What does the workflow look like in practice? Most likely, some kind
of issue-tracking software like Jira is used to register work items. A work
item—also called a user story or a project backlog item—defines the feature
that needs to be built. This feature must be small, preventing the merges
of large pieces of code. Keeping the trunk “clean” requires disciplined
commit hygiene, and big changes to the trunk must be avoided.

The trunk-based workflow fits perfectly in a pair programming way
of working. In pair programming, two developers are working on a local
copy of the trunk and pushing their software code directly to the trunk.
This results in a release build that can be deployed to production if all
intermediate stages are passed.

This workflow makes pull requests obsolete because there isn’t a
separate branch and reviewing the code is done on the spot. This also
reveals an issue with the trunk-based workflow. If not done properly, code
reviews are not administered, and it becomes difficult to trace back the
input of colleague developers.

106

CHAPTER 4 PIPELINE DESIGN

The traceability of a change is important. The work item and code
commit are related, and it must be clear which work item has led to a
certain code change. Most integrated ALM platforms include features that
take care of this. If individual CI and CD applications are used, it becomes
more difficult to establish this relation.

Use case:

A team uses a trunk-based workflow and uses Git as their SCM
system. Team members perform pair programming, which involves
two developers per development session. The review is done by

both developers during development, and one of them performs the
commit/push. There is an organizational audit requirement that states
that all users who reviewed the code need to be registered. It must
be possible to trace back the code commit to a work item. The team
uses an issue tracker system. In this particular case, the test and
production environments are already provisioned.

Considering this use case, a design of a trunk-based workflow contains
the following ingredients:

e The commit must contain a well-formatted comment
with a work item reference and the involved
developers. This can be solved by adding a comment
to a code commit and enforcing that the comment
is well-formatted. This policy enforcement can be
established using a server-side Git hook, which forces
code comments such as the following:

git commit -am "- feat(JIRA123): fixed nullpointer
exception - authors: John, Frank"

107

CHAPTER 4 PIPELINE DESIGN

An alternative is the use of a review system such as Gerrit [17] where a
push is intercepted and other people can review changes before they are
applied to the trunk.

o The work item must exist in the issue tracker.

o The trigger must contain the branch for which the
commit and push are performed. This branch must be
the main branch (trunk).

Modeling this case in BPMN notation results in a design like in
Figure 4-11.

ait

Trunk-based pipeline

cccccccc

Validate
infrastructure
compliancy

Figure 4-11. BPMN, trunk-based pipeline

This diagram resembles the Generic CI/CD Pipeline, with some minor
additions. Added to the diagram is a specification of the stage Validate
entry criteria. The first task in this stage is to determine whether the branch
to which the code was pushed is indeed the main branch. The stage

108

CHAPTER 4 PIPELINE DESIGN

also contains tasks to validate whether a commit contains a work item

reference and who were the developers reviewing the code. A check to

determine whether the work item exists is also included.

Zooming in on the Validate entry criteria stage results in the detailed

model shown in Figure 4-12.

stage

Get the
workitem id
from the commit

Validate entry criteria

eee

Get commit info
from trigger

Figure 4-12. BPMN, validate entry criteria tasks

The Validate entry criteria model defines several tasks.

o Get commit info from the trigger: The trigger consists of

an API call (webhook) to the ALM/integration platform.

The pipeline was triggered after a code push in Git. The
commit info is passed in the request of the API. In this
case, the commit message and the branch name are
expected.

e Check branch: The branch name is included in the
commit info and passed to the pipeline through
the trigger. The branch name is validated and must
be main.

o Getthe work item ID from the commit message: The
code commit message is parsed to get the work item ID
(Jira123) from the message.

109

CHAPTER 4 PIPELINE DESIGN

o Check whether the work item exists: If the ALM
platform/integration server and the issue tracker are
not integrated into one system, this task involves an
API call to a remote issue tracking system to validate
whether the work item exists. The result of this API is
used for the subsequent flow of this stage.

o Check work item API in issue tracker: The issue tracker
API queries whether a certain work item ID exists.

Modeling the pipeline stages and tasks isn’t that complicated, but
explicitly designing it makes you more aware of the whole process, the
tasks involved, and what exactly needs to be implemented. Because the
trunk-based workflow results in a more or less straightforward pipeline
model, it is the preferred workflow of many teams. There are some
alternatives to the trunk-based workflow, like a trunk with a separate
release branch, but the principle of the workflow remains the same; you
directly push your commit to the trunk.

As shown in the next paragraphs, the pipeline design becomes more
complex as the complexity of the workflow increases.

Feature Branch Workflow

Despite Dave Farley’s statement that you shouldn't use branching [28],
it is still used a lot. Feature branch workflow is one of the alternatives
to a trunk-based workflow. This means that the repository consists

of the main branch—the trunk—and from the main branch separate
feature branches are spawned. The main branch is a permanent
branch, while the feature branches are short-lived branches in which a
business feature is developed. Feature-based branching models are not
considered continuous delivery unless the features are really small. See
Figure 4-13.

110

CHAPTER 4 PIPELINE DESIGN

The developer commits code to the feature branch. This can be done

Create feature branch
from main

Figure 4-13. Feature branch workflow

several times. If the feature is completed, they create a pull request, so
other developers can review the code. If the colleague developers approve
the pull request, the code of the feature branch is merged back to the main
branch.? See Figure 4-14.

Commit code Commit code

O feature
Create feature branch Merge feature branch

from main back to main
Figure 4-14. Feature branch workflow, merging the feature branch
into the main branch

A design principle that works out very well is that “Each branch has an
associated pipeline.” The reason is that each branch has its purpose and
its life cycle, so why would the pipeline execution be the same for different
types of branches?

8From a technical (Git) point of view, you can decide to merge the feature branch
back to main, or rebase main onto the feature branch, to get a cleaner history. In
addition—if the platform supports it—you may define branch policies on the main
branch to prevent, for example, that a feature is merged that does not even build
successfully.

111

CHAPTER 4 PIPELINE DESIGN

In a feature branch workflow model we deal with two types of
branches. A developer working on a feature branch will commit/push a
couple of times during the day and merge back to the main only at the end
of the day.

If a push to a remote feature branch is done often, feedback from the
pipeline toward the developer is expected to be fast. It does not make
sense to execute the whole cycle of build, quality assurance, deployment,
and test each time a developer pushes code to a feature branch. And if you
also add the provisioning of an ephemeral infrastructure into the equation,
this whole cycle just takes too long.

A practical approach to this is to limit the number of stages of a
pipeline triggered by an activity on a feature branch. Often a few stages are
sufficient to demonstrate that the artifact can be built and unit tests are
performed successfully. See Figure 4-15.

Validate entry’ Execute Perform Analyze Package Publish
criteria build unittests code artifact artifact
Notify
> > Actors

Figure 4-15. Feature branch workflow, feature branch pipeline

The pipeline associated with this feature branch looks like Figure 4-16
in BPMN notation.

112

CHAPTER 4 PIPELINE DESIGN

)
[fc]
bl git push

Build is not OK Unittests failed

Perform
unittests

Execute build

Unittests passed

Code analysis
passed
Package artifact Publish artifact

Figure 4-16. BPMN, feature branch workflow; feature
branch pipeline

‘feature’ branch Cl pipeline

The pipeline associated with a feature branch is a CI pipeline and not
a full CI/CD pipeline. Provisioning of infrastructure and testing—except
for unit testing—is not part of this pipeline, which makes it lean and mean
and limits the use of resources of the ALM/integration platform. If the CI
pipeline associated with this feature branch executes successfully, the
developer is allowed to create a pull request. If the CI pipeline does not
execute successfully or the quality of the code is not sufficient, it does not
make sense to create a pull request because colleagues will not approve
code that does not build.

Creating a pull request allows co-workers the opportunity to review
the code; if they approve, the feature branch is merged back into the main
branch, and the pipeline of the main branch starts. This pipeline traverses
through all the stages of the Generic CI/CD Pipeline. Similar to the trunk-
based workflow, the main branch in a feature branch workflow must be
production-ready. It is the main branch from where a release is created.
See Figure 4-17.

113

CHAPTER 4 PIPELINE DESIGN

_ Validate entry’ Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
n — Actors
Deploy Validate " Provision Deploy
i Perform : Validate Perform v :
artifact to infrastructure ot production artifact to
> test test compliance exit criteria dual control environment production

SCM trigger

Figure 4-17. Feature branch workflow, main branch pipeline

The pipeline of the main branch, modeled in BPMN notation, looks
like Figure 4-18.

)

git merge + git
push

Git

CI/CD platform

Generic CI/CD

pipeline

Figure 4-18. BPMN, feature branch workflow; main branch pipeline

Table 4-2 summarizes the tasks performed for, respectively, the feature
and main branch. This is just a proposal, and of course, it is perfectly fine
to deviate from it. Essential, however, is to think about the stages that are

executed for each branch and why.

114

CHAPTER 4 PIPELINE DESIGN

Table 4-2. Feature Branch Workflow—Branches vs. Pipeline Stages

Branch Stages to execute Rationale
Feature e Validate entry criteria The reason to execute only the Cl stages
e Execute build is that the response to the developer must
e Perform unit tests be almost immediately. It happens often
e Analyze code that a build succeeds on the developers’
e Package artifact local machine, but not in the pipeline. The
e Publish artifact feature branch pipeline is the first step
e Notify actors to making sure that the code can be built
in a pipeline. In addition, the code of a
feature branch is committed frequently (to
the remote server). To minimize resource
consumption, only the proposed stages are
executed.
Main e lalidate entry criteria The pipeline associated with the main

e Execute build

e Perform unit tests

e Analyze code

e Package artifact

e Publish artifact

e Provision test
environment

e Deploy artifact to test

e Perform test

e Validate infrastructure
compliance

e lalidate exit criteria

e Perform dual control

e Provision production
environment

branch creates a release (candidate)
artifact. This artifact is tagged and
versioned as a release artifact. All stages of
the Generic Cl/CD Pipeline are incorporated
into the pipeline.

115

CHAPTER 4 PIPELINE DESIGN

Note on Implementation

This book intends to be abstract and tool-agnostic as much as possible.
In cases where implementation is discussed, the technical details are kept
to a minimum. But there are some pointers concerning the realization of
the pipelines.

On a design level, two pipelines are distinguished, one associated with
the feature branch and one associated with the main branch. Of course, it
is perfectly possible to develop two pipeline implementations, but it is also
possible to realize one technical pipeline integrating both logical pipelines.
The technical pipeline makes use of a condition to distinguish between
branches and uses templates or libraries to reuse stages. In Azure DevOps,
for example, validating a branch can be defined as follows:

condition: eq(variables['Build.SourceBranch'], 'refs/
heads/main")

This condition determines whether a specific section in the pipeline is
executed only if the current branch is main.

A combined pipeline of a feature and main branch in BPMN notation
looks like Figure 4-19.

116

CHAPTER 4 PIPELINE DESIGN

Git
8 o
Q
H
£

Unittests failed
mmmmmmm

Branchisnot | Validate entry | o /Ng\ correct t uldis Perform
xecute buil "
unittests.

Unittests passed

is
Package artifact Publish artifact

Branch is main Generic CI/CD
pipeline

‘main’ + 'feature’ branch pipeline

o
8
8

{ @
X

Figure 4-19. BPMN, Feature branch workflow; pipelines main and
feature combined

The model starts with a condition to determine whether the Git push
came from the main branch or not. If true, all stages of the Generic CI/D
pipeline are executed. If false, only a subset of these stages is executed.

Gitflow

Gitflow is still used by a lot of teams. It was one of the first workflows
developed and is still popular.

The repository consists in its core of two branches, master and
develop. These branches have an infinite lifetime. The master contains all
code that is deployed to production. The deploy branch contains the code
that reflects the current state the team is working on. In recent workflows,
the name main branch is used in favor of master. To keep aligned with
the previous paragraphs, the name main branch is used in the remaining
chapters of this book.

117

CHAPTER 4 PIPELINE DESIGN

If a developer starts to work on a feature, a feature branch is created
from the develop branch. The usage of the feature branch is similar to how
itis used in the feature branch workflow; instead, it originates from the
develop branch and not from the main branch. See Figure 4-20.

feature

Create feature branch
from develop

develop

Figure 4-20. Gitflow, create feature branch

As soon as a feature is completed, the feature branch is merged back
into the develop branch. This happens multiple times, so the develop
branch is always [0..x] features ahead of the main branch.

As soon as the code in the develop branch reaches a stable situation,
all tests are performed successfully, and the team is convinced that the
code is in a production state, so a release candidate is created. Instead of
directly merging the code from develop to main, an intermediate branch
is created: the release branch. The release branch contains all the code
of the release candidate, ready to be deployed to production. The release
branch is temporary and is used to align with the release version. It is not
a finalized version yet. It is still possible that the code of a release branch is
updated, but this should include only small bug fixes.

118

CHAPTER 4 PIPELINE DESIGN

To keep the main branch always in a state that reflects production,
the release branch is merged back into the main branch after the code
is deployed to production. This is also done for the develop branch. See
Figure 4-21.

develop

Merge develop branch

Merge release branch back
to release

to develop (bugfixes)

Merge release branch
back to main

Figure 4-21. Gitflow, the release branch

Hotfix branches are used to fix a bug in production. Instead of using
the regular workflow that includes feature, develop, and release branches,
the hotfix branch is based on the main branch and is not derived from
the develop branch. After the hotfix is tested, approved, and deployed to
production, it is merged both into the main and develop branches. See
Figure 4-22.

develop
Merge hotfix branch to
develop

Create hotfix branch
from main

Merge hotfix branch
back to main

Figure 4-22. Gitflow, the hotfix

119

CHAPTER 4 PIPELINE DESIGN

Summarized, Gitflow involves five different branch types (see
Figure 4-23).

Main (or master): This branch always contains the
actual production code.

Develop: This branch includes all code of the
main but is normally ahead of the main branch. It
includes features of the upcoming release.

Feature: Feature branches are short-lived branches,
containing the code of each feature. The code is
merged with the develop branch after a pull request
has been opened and approved by other developers.

Release: Release branches are based on the develop
branch and are created as soon as a release
candidate must be created. After the release branch
is created and finalized, it is merged back into the
main and develop branches.

Hotfix: A hotfix branch is created from the main
branch and used to fix bugs in production. It is
merged back into both the main and develop
branches after it is successfully tested.

120

CHAPTER 4 PIPELINE DESIGN

Merge feature branch feature
Create feature branch back to develop

From develop

develop

Merge hotfix branch to
develop

Merge develop branch
to release

Merge release branch
back to develop (bugfixes)

Merge release branch
back to main

Create hotfix branch
from main

Merge hotfix branch
back to main

Figure 4-23. Gitflow

Because Gitflow works with five types of branches, it potentially results
in five logical pipelines. Table 4-3 presents an overview—a proposal—of
the branches and the associated pipeline stages, which are executed as
soon as a pipeline is triggered.

Table 4-3. Gitflow—Branches vs. Pipeline Stages

Branch Stages to Execute Rationale
Feature e lalidate entry criteria The reasons to create a pipeline with
e [xecute build these particular stages are the same
e Perform unit tests as the feature branch workflow,
e Package artifact except for the lack of the Analyze
e Publish artifact code stage. This is omitted to provide
e Notify actors even faster feedback and because
it is present in the develop pipeline
anyway.

(continued)

121

CHAPTER 4 PIPELINE DESIGN

Table 4-3. (continued)

Branch Stages to Execute

Rationale

Develop e Validate entry criteria
e Execute build
e Perform unit tests
e Analyze code
e Package artifact
e Publish artifact
e Provision test environment
e Deploy artifact to test
e Perform test
e Notify actors

Release All stages of the Generic

CI/CD Pipeline

Main No pipeline

Hotfix All stages of the Generic
CI/CD Pipeline

Changes in the develop branch
must be built and thoroughly tested
because it potentially contains
multiple features, all merged in

the same develop branch. You may
consider testing the functional
aspects as part of the develop
pipeline only, while all test types—
including nonfunctional tests—are
performed as part of the release
pipeline.

A release branch is typically used

to create a release artifact that is
deployed to production. This justifies
a release pipeline, containing all
stages of the Generic CI/CD Pipeline.

The sole purpose of the main branch
is just to maintain the state of the code
of the production situation. Unlike the
other branching strategies, an artifact
in Gitflow is not directly built and
deployed from the main branch.

A release in Gitflow is originated
either from a release branch or from
a hotfix branch. This justifies a hotfix
pipeline, containing all stages of the
Generic Cl/CD Pipeline.

122

CHAPTER 4 PIPELINE DESIGN

Figure 4-24 through Figure 4-27 are the pipelines associated with the

branches of Gitflow.

[Lfeature } Validate entry Execute Perform Package Publish
criteria build unittests artifact artifact

Notify

> > Actors

Figure 4-24. Gitflow, feature branch pipeline

(Cdevelop } "\ validate entr Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
Deploy Actors
> artifact to >> Pt:;fsotrm >> >
test

SCM trigger

Figure 4-25. Gitflow, develop branch pipeline

_ Validate entr Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
= — Actors
Deploy Validate N Provision Deploy
artifact to Pet:sotrm frastructure e:(li:I::‘:iatteeria d::lrfc%rrmol production artifact to
test compliance environment, production

SCM trigger

Figure 4-26. Gitflow, release branch pipeline

_ Validate ents Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
= T Actors
Deploy Validate " Provision Deploy
artifact to Petgf;rm infrastructure e;’i:lgiatteiia d:aelrt:‘;:'t‘rnl production artifact to
test /compliance environment, production

SCM trigger

Figure 4-27. Gitflow, hotfix branch pipeline

123

CHAPTER 4 PIPELINE DESIGN

All Gitflow pipelines are combined into one BPMN model, as shown in
Figure 4-28.

&] git
merge/rebase
main + develop

branch

git push

Git

branch is release* Pipeline release

branch

@-{---+
\><

git trigger

branch is hotfix*

Pipeline hotfix
branch

R

branch is develop
Pipeline develop End
branch

— =
SE—

Gitflow CI/CD pipeline

branch is not main Pipeline feature
branch

branch is main or
(something else)

Figure 4-28. BPMN, Gitflow combined pipeline

As you noticed, the more branches there are, the more complex the
workflow, which translates to the complexity of the pipeline design. Also
notice that the “continuous” aspect becomes less if more branches are
involved. The Gitflow model is not considered a proper model for CI/CD,
because of its complexity, multiple—long-lived—branches, and slow-to-
adapt new features because of a strict release cycle.

124

CHAPTER 4 PIPELINE DESIGN

Build Strategy

One could argue there is not much to tell about building an artifact. You
selected the appropriate build tool and apply the principle “Build once,

run anywhere.” In essence, your Execute build stage itself consists of just
one task, often executing one line of code, for example:

mvn clean package
Or
msbuild mySolution.sln /t:Clean,Build

After a couple of minutes, the artifact is created, and that’s it. But,
in reality, the creation of an artifact has lots of aspects to be taken into
account. Maybe the build lasts for 10 minutes, half an hour, or even longer.
This breaks the “fast feedback” principle of CI/CD and asks for a strategy
to decrease the build time. And other factors influence the build strategy or
even shape the whole pipeline. What is the build strategy in case the target
environment is the cloud, or what is the build strategy if there are multiple
DevOps teams involved in the development of one integrated system? Let’s
highlight some of the factors associated with a build strategy.

Vertical Scaling

If the build time increases, vertical scaling is an option to speed up build
times. Adding a larger server with a faster processor, more processor cores,
and a faster disk is an option. But vertical scaling does not always help in
the long run if more demanding builds occur. Other build strategies are
needed, from which lots of advantages can be gained and which do not
require any additional hardware.

125

CHAPTER 4 PIPELINE DESIGN

Full Builds vs. Incremental Builds

One thing to take into account concerning build time is the execution of a
full build versus an incremental build. In most pipelines, the build strategy
that is chosen often is a full build strategy. This means that all application
code is compiled and a completely new artifact is created every time

the Execute build stage runs. If the build time is acceptable, this is a safe
approach. If a full build takes too much time, an incremental build can be
considered as an alternative. Figure 4-29 illustrates a full build.

Build server

Artifact

SCM repository Build task

All files

Figure 4-29. Full build

The concept of an incremental build needs a bit more explanation.
Take a Java . jar file, for example. The . jar file is a build artifact composed
of multiple .class files. Each .class file contains compiled Java code
(bytecode). The source is plain Java code, stored in a . java file.

Another example is the compilation of C++ code. The C++ code is
embedded in a . cpp (or .h/.hpp) file, resulting in an .ob7j (object) file
after compilation. The final executable file consists of .obj files, all linked
together to an . exe artifact (in the case of Microsoft Windows).

The trick with incremental builds is that only changed source code
files are recompiled. If an executable is constructed from 500 . obj files,

a full build recompiles all 500 . cpp files again, even if just one . cpp
file is changed. An incremental build makes use of the output from

126

CHAPTER 4 PIPELINE DESIGN

previous builds, and this results in the compilation of just the changed
.cpp file. This speeds up the build time considerably. An incremental
build is depicted by Figure 4-30. But there are a couple of caveats with
incremental builds.

I SCM repository | | Artifact |

* Unchanged files
* One changed file

Already compiled files

| Remote cache l

Figure 4-30. Incremental build

Incremental builds sometimes give some unpredictable results. It
happens that an incremental build is screwed up somehow, and a changed
file is not recompiled. This results in an unreliable artifact. Unfortunately,
some build tools are a bit buggy, and these issues happen. This results in
the fact that full builds are often preferred over incremental builds; better
be safe than sorry. But this can be avoided. There are solid build tools that
deal with incremental builds in the intended way.

Not all build systems support incremental build. Maven is a build
system that does support some form of incremental build, and it was never
created with the intent to perform incremental builds. So, when choosing
an incremental build strategy, consider the appropriate build tool that was
designed with incremental builds in mind. Gradle or Bazel are alternatives
that natively support incremental builds.

127

CHAPTER 4 PIPELINE DESIGN

Note From an audit point of view, one could raise concerns about
which pipeline run is responsible for the creation of an artifact if
incremental builds are used. The pipeline that creates the artifact
running in production must be traceable. But if more pipelines are
involved in the creation of the artifact, they all need to be part of the
audit chain. Maybe the last pipeline run was responsible for only

1 percent of newly compiled code, while the other 99 percent was
compiled by other pipeline runs, and although the chance that a
clean—full—rebuild would deliver a different artifact compared to
an incremental build is small, it is theoretically not null. In addition, it
may even be difficult or impossible to point out which pipeline builds
contributed to the creation of an artifact. To circumvent this issue and
avoid difficult discussions with the Audit department, it may be wise
still to use full builds if the build time is acceptable.

Parallel Builds

In addition to full and incremental builds, there is also the option of
parallel builds. A parallel build spreads the compilation of source files over
multiple threads (on one server) or even over multiple servers, depending
on the platform setup. This results in the following strategies:

e Multithreaded builds: A multithreaded build makes
use of the fact that a build tool uses multiple threads
on one server to build an artifact. Build tools often
include a flag that can be set to enable multithreading,
even with the option to provide the number of threads
or cores. A build can profit enormously from this
feature; if multithreading is enabled and four threads
are specified, it can make full use of a multicore CPU

128

CHAPTER 4 PIPELINE DESIGN

architecture and compile multiple files in parallel.
Multithreaded builds can be used in combination
with both full builds and incremental builds. See
Figure 4-31.

Build task
in threa

Figure 4-31. Multithreaded build

o Distributed builds: Multithreaded builds make use
of a multicore architecture, spreading compilation
over multiple cores in the CPU. But of course, there
are limits to the number of cores on one server. A
distributed build takes the parallel build concept
a step further and distributes the compilation over
multiple servers. Even a combination of multithreaded
distributed builds is possible, allowing for massive
parallel scaling. However, a word of caution is in place
if distributed builds are used. Files must be moved
around over the network, which costs time. Small
projects therefore hardly benefit from distributed
builds and might even build faster on just one server.
Distributed builds can be considered for large-scale
projects.

129

CHAPTER 4 PIPELINE DESIGN

The principle of a distributed build is that the build
of one artifact is split into small individual subtasks,
each executed on a different server. This is not the
same as an offloaded build, in which the build of
one artifact as a whole is offloaded to a separate
build server (see the next paragraph). This makes
distributed builds more complex in nature than
offloaded builds. See Figure 4-32.

Build server

Split off task 1

Build server

. Build task ;
i Split off task 3

| Split off task 2

Figure 4-32. Distributed build

130

Offloaded builds: Most ALM/integration platforms
provide the means to offload a build to a separate
server. The build task that creates an artifact is executed
on a designated server or container (sometimes called
a node or agent), depending on the platform. This
releases the burden of the main server of the ALM/
integration platform and enables parallel builds (of
different artifacts). As explained, an offloaded build is

CHAPTER 4 PIPELINE DESIGN

not the same as a distributed build in which the build
task of an artifact is split into subtasks, each executed
on a different server. This means that the build tool can
be simpler and does not need to support a distributed
build option. See Figure 4-33.

Build task 1

Offload
pipeline build

pipeline buila Build task 2

Offload
pipeline build

Build task 3

Figure 4-33. Offloaded build

Pipeline Caching

Deciding on a strategy to reduce the build time involves not only the
execution of a build in terms of CPU usage, but also I/0 and networking
are big factors to take into account. External libraries used to build an
artifact may be retrieved from a location not close to the ALM/integration
platform, for example, Maven libraries from Maven Central, Docker images
from Docker Hub, and .NET packages from NuGet. Downloading them
from these external locations adds a lot of time to a build task.

131

CHAPTER 4 PIPELINE DESIGN

Some build tools or ALM/integration platforms themselves support
caching of files. When a pipeline runs for the very first time, the external
files are downloaded, and the cache is created. This cache is stored locally,
“near” the pipeline, and is retrieved again in every new pipeline run. The
time to retrieve the cache is much lesser, though. This type of caching
is also called pipeline caching or remote caching. Applying caching to a
pipeline can decrease the build execution time by 50 percent or more. It is
highly recommended to use caching in a pipeline.

Note Caching is used not only for external libraries but also for
incremental builds. Compiled files created in an earlier pipeline run
are stored in a cache. A new pipeline run will look into that cache first
before a source code file is recompiled. Another benefit of caching

is that it becomes possible to apply restricted access policies to a
cache and block it for other pipelines.

Build Targets

In addition to build time, there are other factors to take into account when
a build strategy is defined. Consider the target environment. Some target
environments require the creation of certain types of artifacts, such as a
Spring Boot JAR or a Docker container but also impose some constraints
on these artifacts. Take a Kubernetes cluster, a cloud target, or a mobile
phone, for example. Artifacts must be limited regarding storage size,
memory footprint, or CPU usage. An artifact for an AWS lambda may not
exceed a certain file size; it must have a fast startup time, and memory
consumption must be minimized. So, do not focus only on build time
when defining a build strategy, but also take the target environment and
artifact constraints into account. Tools such as Quarkus, Micronaut, and
GraalVM are focused on these aspects and produce artifacts optimized for
a target environment where these constraints are applicable.

132

CHAPTER 4 PIPELINE DESIGN

Cross-Platform Builds

There are plenty of situations in which one codebase leads to different
artifacts, each specific to a certain target platform or even certain versions
of that platform. Think of applications that must be able to run on both
Windows and Linux or a mobile app developed for both iOS and Android.
The CI pipeline needs to produce multiple types of artifacts, each one
dedicated to running on a specific target platform. A nice feature of various
CI tools and ALM platforms is the Matrix Build strategy. This allows
building several artifacts at once, based on the permutation of different
language versions, operation systems, and operating system versions. Only
one CI pipeline is required to build all artifacts, although multiple types of
build servers/agents could be needed to perform the build for a specific
operating system.

The deployment (CD) pipeline is separate for each platform. One
deployment pipeline could be dedicated to a Windows environment, while
the other pipeline is based on a deployment to Linux. This is an example of
a fan-out principle. Fan-out applies to stages, tasks, and pipelines.

Figure 4-34 depicts two target environments. The build/deployment

ratio is one-to-many: one continuous integration pipeline and two

CD pipeline (environment A) @
CD pipeline (environment B) (@

Figure 4-34. Cross-platform pipelines

continuous delivery pipelines.

[Cl pipeline

133

CHAPTER 4 PIPELINE DESIGN
Separation leads to the distribution of activities shown in Figure 4-35.

Validate entry Execute Perform Analyze Package Publish
criteria build unittests code artifact artifact
Notify
Actors
SCM trigger > >

Figure 4-35. Cross-platform, CI pipeline

CD pipelines of both environment types are triggered by the same
CI pipeline as soon as the CI pipeline is finished. A pipeline-completed
trigger can be used for this (see the next chapter for more information
about triggers). See Figure 4-36 and Figure 4-37.

Validate ent \Provision test
/ criteria ‘'environment
otify
= Actors.
Deploy Perforii Validate Validate Perfortl Provision Derloy
Pipeline completed > artifact to infrastructure i+ crtrasl production artifact to
p P! > test test exit criteria ‘dual control environfitih producHE

trigger

Figure 4-36. Cross-platform, CD pipeline environment A

Validate entn \Provision test
/ criteria ‘environment
Notify
= T Actors
Deploy Validate N Provision Deploy
P perform f Validate Perform : :
Pipeline completed) artifact to infrastructure it criteri production artifact to
P P! teot test / compliance ‘exit criteria dual control environment production

trigger

Figure 4-37. Cross-platform, CD pipeline environment B

Multiteam Build Strategy

If there is only one production environment to deploy to but multiple
teams are developing apps or submodules for that environment, it makes
sense to centralize the CD pipeline, managed by one team, while the

other teams use their CI pipelines. The reason for just one centralized

CD pipeline is to prevent the installation of apps that become rogue

in the production environment. Inexperienced teams may introduce
vulnerabilities in their apps. These vulnerabilities can be detected by a
central CD pipeline. Security checks and stability tests, such as fuzz testing,
are added to the CD pipeline to guarantee the stability of apps in the target

134

CHAPTER 4 PIPELINE DESIGN

environment. The test scope of a team that builds only a small part of the
whole system would also test this part in isolation; they will never test how
their app behaves as part of a whole system.

Assume a situation that multiple DevOps teams are developing for one
product, running in its specific target environment. Each team delivers
artifacts that must be assembled into one product. The assembling
phase is part of a CD pipeline. A setup to accommodate this is to define
CI pipelines managed by individual teams, while the CD pipeline is
managed by a central team, which is also responsible for the stability and
auditability of the production environment. This setup results in a many-
to-one ratio of the number of CI pipelines that perform the build, related to
the CD pipeline that executes tests and deploys the artifact to production.
See Figure 4-38.

Team A Cl pipeline
Team B Cl pipeline CD pipeline (centralized)

Team D
Team C Cl pipeline

Figure 4-38. Multiteam build strategy

Assume your team—team D—is responsible for the design of the
centralized CD pipeline. This means you don’t even know what other
teams—A, B, and C—are doing and what their pipeline looks like. This
leads to a “separation of concerns” situation in which one pipeline
publishes an artifact to a binary repository, which is fetched by a central
CD pipeline, from where it is tested and installed in the central production
environment. This separation of responsibilities leads to the distribution of
activities shown in Figure 4-39 and Figure 4-40.

135

CHAPTER 4 PIPELINE DESIGN

Validate entry Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
n Actors
Deploy Validate
artifact to Peéfst:rm infrastructure
SCM trigger test compliance,

Figure 4-39. Pipeline teams A, B, and C

Validate ent N\Provision test
criteria ‘environment
otify
n = Actors
Deploy Perf Validate Vali Provision Deploy
- : ; alidate Perform : :
Pipeline com Ieted\ artifact to ertorm infrastructure alidate production artifact to
P triggerp test test compliance, exit criteria dual control environment production

Figure 4-40. Pipeline team D

The pipelines of the DevOps teams A, B, and C typically contain all the
Cl stages. These pipelines also contain test stages to perform integration,
system, and contract tests. This gives these teams a feeling of confidence
that their app works properly. The pipeline of the central DevOps team (D)
is responsible for the target environment and includes all the CD stages.
This is also the place where artifacts, produced by the other teams, are
integrated and tested as one integral system. The CD pipeline is triggered
by all other pipelines, using a pipeline-completed trigger.

Combined, the BPMN workflow model—with collapsed versions
of all pipelines—looks like the one in Figure 4-41, in which team A has
connected their pipeline to the central CD pipeline through a trigger
mechanism. The pipeline of team A submits a trigger, which executes the
CD pipeline of team D.

136

CHAPTER 4 PIPELINE DESIGN

5 git push
O
|
< [
IS
§ V
° Decentralized
2 o
£ pipeline
el s
Ke) o | Gittrigger
©
Qo
8 >
s 5%
S §
» = .
32 Centralized CD
2% pipeline
= g
=g
8 o Trigger

Figure 4-41. BPMN, multiteam build strategy; CI and
CD pipelines combined

In detail, the design of the CI pipeline of team A could look like
Figure 4-42.

Pipeline Team A

Figure 4-42. BPMN, multiteam build strategy; CI pipeline team A

137

CHAPTER 4 PIPELINE DESIGN

The design of the centralized CD pipeline could look like Figure 4-43.

.......

nnnnnn

Deploy artifact
totest

Start pipeline

s Delivery pipeline Team D

ontinuous

C

Figure 4-43. BPMN, multiteam build strategy; centralized
CD pipeline team D

The first stage of the CD pipeline is the Verify entry criteria stage. In
this stage, the validation of the artifact created by the pipeline of team A is

performed to determine whether it meets certain criteria. For example:
o The trigger must supply a valid reference to the artifact.

e The artifact can be retrieved from the binary artifact

repository.

e The artifact is a release (candidate), so it must be
signed because only signed artifacts are allowed to be
installed into production.

e The branch from which the artifact was built is
validated. Only artifacts from the main branch

are allowed

138

CHAPTER 4 PIPELINE DESIGN

The multiteam build strategy looks like a simple model at glance,
but let’s do a small thought experiment. Assume that two teams—A and
B—develop, build, and deliver their artifact. The centralized CD pipeline
of team D is depending on both artifacts, for whatever reason. It cannot
start if one of the artifact versions is not available yet. The problem is, it
is not clear which team delivers their artifact first, team A or team B. The
central CD pipeline requires a special trigger that depends on two events:
pipeline A is finished and pipeline B is finished. This trigger mechanism
can be considered a type of complex event processing (CEP), which
makes it possible to automatically start a pipeline, based on the output of
other pipelines. At the moment, the ALM/integration platforms that were
investigated do not offer this type of trigger, so if your situation demands a
CEP solution, you have to do it yourself, unfortunately.

Test Strategy

The test strategy outlines the testing approach within the software supply
chain. Decisions about the order of testing, the fact that some tests run

in parallel, the types of tests, which tests are automated, and which are
performed manually all contribute to the test workflow. There is no silver
bullet on how to design the pipeline flow concerning testing, but there are
some typical characteristics of testing that makes certain pipeline flows
more logical than others.

A test strategy cannot be discussed without looking at the different
types of tests in more detail. Tests come in different flavors, each
specialized in a certain area. Some tests focus on functionality, and some
on nonfunctional aspects. Also, the scope of tests differs, from narrow-
scope tests such as unit tests to broad-scope tests such as chain tests.

The question is, how does each type of test impact a pipeline flow? Is
there a logical order for all these different test types? Is there a relation
between the different test types, and to which extent can these test types be

139

CHAPTER 4 PIPELINE DESIGN

automated? For the latter question, the testing pyramid described by Mike

Cohn in his book Succeeding with Agile comes to the rescue (see [4]). But

before the relationship between the testing pyramid and pipeline design is

handled, here is an overview of possible test types:

140

Unit tests: Validate the functional behavior of an
individual unit of source code by writing unit test cases.
Performing unit tests already has a distinct place in the
Generic CI/CD Pipeline. Unit tests are executed just
after the artifact has been built.

Contract tests: Test the integration between two systems
in isolation, mocking the service provider.

Integration tests: Validate the interaction between
some components. Where unit tests are performed

on individual components, the integration tests are
performed on a group of components. Integration tests
are functional in nature.

System tests: Validate whether the system as a whole
meets the functional and (some) nonfunctional

requirements.

Regression tests: Verify that a code change does not
impact the existing functionality. Regression tests
ensure that the application still performs as expected.

Acceptance tests: Their purpose is to validate whether
the system works as expected. This is a formal test
because the customer accepts the software if all
business requirements are met.

Ul tests: These are focused on the user interface of an
application. Of course, not all applications have a user
interface, so Ul testing is very context-dependent.

CHAPTER 4 PIPELINE DESIGN

Security tests: This includes dynamic application
security testing (DAST), interactive application security
testing (IAST), and penetration testing.

e Penetration tests are typically performed by an
experienced ethical hacker trying to penetrate the
system and simulating a cyberattack to validate
the systems’ security weaknesses. These tests are
performed manually.

e DAST is similar to pentesting, but all tests are
automated.

o JAST tests involve a continuous analysis of a
running application often using an agent running
on the target environment on which the application
is deployed.

Preproduction/staging tests: These validate the
provisioning of the infrastructure resources
(middleware, databases, etc.) and the deployment
and installation of the application artifact on a target
environment that is identical to the actual production
environment.

API tests: Where contract testing focuses on testing an
API in an isolated environment, API tests test the real
API. API tests are focused on testing the API contract,
its functionality, and its performance. Parts of the

API tests are also included in other test types, such as
performance tests. It is considered a specific test type
because an API is an official contract with other parties,
which requires some specific attention.

141

CHAPTER 4 PIPELINE DESIGN

142

Performance and availability tests: This includes load
tests, stress tests, availability tests, endurance tests, and
break tests. Its purpose is to validate nonfunctional
requirements related to performance and availability.
Tests are executed under heavy load, which is increased
until the moment the application breaks. In addition,
tests under load run for a long time to validate how

the application behaves over time and how stable it

is. Endurance tests are typical tests to check whether
memory leaks occur after some time.

End-to-end tests: These simulate real user scenarios
from beginning to end. It performs the functions within
the application that include communication with
hardware, databases, file integration, API integration,
and messaging with external systems.

Disaster tolerance test: The purpose of disaster
tolerance testing is to identify any weaknesses or
vulnerabilities in an organization’s disaster recovery
plan and to ensure that the plan is effective in
restoring critical functions and operations as quickly
as possible. By conducting regular disaster tolerance
tests, organizations can identify and address any issues
before they become a real problem.

Usability tests: This is a specialized test type. It is
focused on user experience, user-friendliness,
efficiency, and accuracy of the application. Also,
aspects like cross-browser experience are part of the
usability tests. These are manual tests.

CHAPTER 4 PIPELINE DESIGN

The testing pyramid of Mike Cohn distinguishes only a few test types.
In Figure 4-44, an attempt is made to map a range of test types to the
testing pyramid.

Usability tests
Disaster tolerance tests

End-to-end tests

Performance/availability tests

Pre-production/staging tests

{ \Security tests

/ Regression and acceptance tests [Ul tests]

Xystem tests

/ wtegraﬁon tests
f Contract tests

/
/ e

Figure 4-44. Testing pyramid

The testing pyramid categorizes these tests. The bottom layer
represents quick wins. These form the bulk of tests that are relatively
easy to automate. The test types at the top are fewer in number but more
difficult to automate and therefore more expensive to automate. The
pyramid, therefore, suggests a certain order in which tests should be
executed. Consider the Perform test stage of the Generic CI/CD Pipeline.
The order of test tasks in the Perform test stage is directly copied from the
testing pyramid (except for unit tests because these are already executed
earlier in the flow). This gives an anchor point for the realization of the test
flow in a pipeline. See Figure 4-45.

143

CHAPTER 4 PIPELINE DESIGN

Regression and Pre-production /
Contract tests Integration tests System tests Acceptance Security tests Pre
staging tests
tests
Start

~
))
APl tests Performance / End-to-end tests Disaster Usabiliy tests
availability tests tolerance tests
End

Figure 4-45. BPMN, ordering individual test tasks based on potency
to automate

Perform test

This model ranks the tasks only from “relatively easy to automate” to
“too difficult to automate.” By default, usability and pentests are manual,
and as the model shows, all manual tests are executed at the end of the
stage. We could leave it to this and conclude that a Perform test stage
contains these tasks in the proposed sequence.

But this is not the whole story. Besides the distinction between
“relatively easy to automate” and “too difficult to automate,” there are
more test dimensions to consider. Given the five dimensions listed next,
which one contributes the most to the order of tests? What dimension is
the most important, and which one contributes the least? Let’s propose the
following order:

o Automated vs. manual tests: One of the principles of CI/
CD is that all tests must be automated. The next pages
will demonstrate what the impact is on the pipeline if
manual tests are included in the workflow. A general
rule of thumb is that automated tests are executed
before manual tests. This is the first dimension to
consider.

144

CHAPTER 4 PIPELINE DESIGN

e Functional vs. nonfunctional: Although nonfunctional
requirements—including security requirements—are
important, the business owner initially focuses on the
functional requirements. This argues in favor of placing
the functional test tasks in front of nonfunctional
test tasks. Note that in cases in which all tests are
automated, the order of these tests usually does not
matter anymore.

e Parallel execution vs. sequential execution: The third
dimension determines which tests can be executed
in parallel. Running tests in parallel decreases the
overall test time and increases fast feedback. Group
the automated tasks that can be run in parallel.
This is bound by the ability of the ALM/integration
platform, to which extent parallelization of test tasks is
possible, and this is bound by the capacity of the test
environment. Some ALM/integration platforms contain
features to order tests automatically, based on historic
execution time. This optimizes the overall test time.

If possible, execute manual tests also in parallel. This depends on the
capacity of the QA team and test specialists, of course.

e Manual tests performed by specialists: Specific test
types require specialized test engineers. Pentests and
usability tests require certain expertise usually not
found in the team itself. So, these people have to be
arranged, and because specialists are often hard to
allocate, these types of tests must be carefully planned.
Within the group of manual tasks, postpone manual
test tasks performed by a specialist and first focus on
the manual tests that can be performed by the QA
team itself.

145

CHAPTER 4 PIPELINE DESIGN

o Long execution time vs. short execution time: Something
that usually cannot be designed up front is the fact
whether a test task runs short or long. This results in
aredesign of the pipeline in a later stage should this
situation occur. In that case, the tests with a shorter
execution time must be placed in front of the test
with a longer execution time, in case not all tests can
be parallelized. There is an exception, though. If the
execution time of the tests takes a long time—think
hours—one must consider isolating this task and
excluding it from the main pipeline. In one of the
following paragraphs, an example of this situation is given.

Keep the order of these dimensions in mind during the upcoming
paragraphs.

Automated vs. Manual Tests

There are two types of tests, the ones that contribute to CI/CD and the
ones that block CI/CD. In other words, there is only automated testing and
manual testing. Automated testing is repeatable, fast, and reliable, while
manual testing is error-prone and time-consuming.

One of CI/CD foundations is that tests are automated, and an effective
pipeline does not contain manual testing. However, in practice, manual
testing cannot be prevented. As already explained in the requirement
“Only allow manual testing if needed,” there are several reasons why
manual testing is still needed. Here are two examples:

o The QA team has a backlog integrating test cases into
the automated test set.

o Execution of rare tests is too expensive to automate and
is performed manually.

146

CHAPTER 4 PIPELINE DESIGN

The problem with manual testing is that it blocks a pipeline, causing
the pipeline to become orphaned. This means that the pipeline is not
completely finished. Some tasks are yet to be done, and the pipeline is
just waiting for all tasks to be completed. Consider a case in which the
development team merges three finished features back into the trunk.
With every merge of a feature to the source management system, a
pipeline instance starts, basically resulting in three runs of the pipeline. If
the pipeline contains a manual test task, it halts until the manual test task
is finished. If the QA team has a backlog in executing manual tests, these
three pipeline instances wait in the Perform test stage, waiting for a test
engineer to execute the manual test. The most obvious choice is to test the
three features in one go, which corresponds with the latest pipeline run—
pipeline instance C in Figure 4-46—because it covers all three features. The
other two pipeline instances—A and B—are dangling and must be stopped
manually.

Validate entry Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
" Actors
De""” Perform Validate Validate Perform Provision Deploy
anlhn to mimsnuaure e production artifact to
test exit criteria dual control 4 8
test compliance environment production
Pipeline Manual test:
instance A Feature 1

Validate entry Execute perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
n I Validate Provision Deploy Actors
eploy " Y
m.vm to lnfrasuuuure Validate perform production artifact to
exit criteria dual control > .
test compliance ‘environment production
Not tested

Pipeline Manual test:

instance B Feature 1
Feature 2

Validate entry Execute perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
— Actors
Deploy P Validate Validate perform Provision Deploy
arﬂhﬂ to |nirastruc!ure 20 crloart: production artifact to
test exit criteria dual control 4 ’
test compliance environment production

Not tested

Pipeline Manual test: Tested
instance C Feature 1
Feature 2
Feature 3

Figure 4-46. Two dangling pipeline instances

147

CHAPTER 4 PIPELINE DESIGN

Dangling pipelines are not a big problem if a manual test can be
performed very fast and the QA team can keep up with the speed of
development. A manual test that takes up an hour doesn’t have to be a big
issue. The pipeline is only temporarily blocked. But this is often not the
case, and manual tests are waiting in the queue for a long time, while the
number of pipeline instances grows.

A question you might ask is what it exactly means when a pipeline is
being blocked by a manual test. A running pipeline itself does not include
any manual test. Manual testing is something performed outside the
pipeline. But, if a QA team is finished with its test, the results need to be
registered and signed off. Registration is required to prove that the test was
executed and record who tested it. The registration is a manual activity in
the pipeline. The test engineer fills in the test results and the location of
the test report in an edit box in the pipeline and clicks Confirm. From that
moment the pipeline continues.

So, what are the options to streamline the pipeline flow and prevent
dangling pipeline instances? First, it must be clear that changing the
pipeline flow does not solve the fact that manual tests are still pending, but
it is a matter of cosmetics to isolate this manual test stage from the main
flow. A few options are at your disposal.

e Park the manual test stage: You can split off manual
testing from the Perform test stage and make it a
separate stage. The positioning in the pipeline flow is
arranged in such a way that manual testing is “parked.”
It is still actively waiting to be executed, but it does not
block the pipeline anymore. Figure 4-47 shows that the
stages Validate infrastructure compliance and Validate
exit criteria are executed because manual testing has
been moved to a sidetrack (however, the pipeline will
stop before the Perform dual control stage, as this
involves a manual activity).

148

CHAPTER 4 PIPELINE DESIGN

e Note that the Generic CI/CD Pipeline also includes
stages to perform dual control and deployment to the
production environment. The dual control stage is also
a blocking stage, so the gain by parking the manual
tests in the pipeline flow is limited.

o A parked manual test stage looks like Figure 4-47 in
BPMN notation; for convenience, the CI stages are
combined into one subprocess called CI stages.

Pipeline with Perform manual test stage

Figure 4-47. BPMN, parking manual test

o Split the pipeline: Parking the Perform manual test
stage still results in pipelines with a dangling stage.
Splitting the pipeline is an alternative to resolve this.
Right in the middle of the Perform test stage, between
the automated test tasks and the manual test tasks, the
pipeline is divided, resulting in two separate pipelines.
The first pipeline contains all continuous integration
stages to build the artifact and performs all automated
tests. The trigger to start this pipeline is a push of the
code to the source code management system. After all
automated tests are executed, the pipeline ends. This is
visualized in Figure 4-48.

149

CHAPTER 4 PIPELINE DESIGN

Cmain 3 Vet e pubtih P e
ria b Ild artifact wironment
Deploy Perform Validate
amlacl to aut Iomaled infrastructure
complian

Figure 4-48. SCM trigger and automated tests

SCM trigger

The second pipeline starts with a manual trigger. The person who
started the pipeline is also the one who performs the manual test. The
Deploy artifact to test stage needs to know which artifact must be deployed,
so the manual trigger must include an option to select the already build
artifact from the repository or uses the latest version by default. If multiple
existing test environments are available, the specific test environment on
which the manual test is executed must also be provided as part of the
manual trigger. See Figure 4-49.

Notify.

Actors
Deploy. Validate I Provision Deploy
riacto rericrin infrastructure e P production artifact to
mans compliance environment production

Figure 4-49. Manual trigger and manual tests

Manual trigger

The benefit of this approach is that the first pipeline executes all stages
without being blocked by a manual test. The second pipeline is started
only after all manual tests have been executed; otherwise, it makes no
sense to start the pipeline in the first place. Using two pipelines like this
does not result in dangling pipelines.

o Separate pipeline for manual tests: Another approach
is to completely isolate the Perform manual test stage
from the main pipeline and wrap it in a pipeline
dedicated to manual tests. This pipeline is either
manually triggered or triggered from the main pipeline
using a webhook, called by the Perform test stage. The

150

CHAPTER 4 PIPELINE DESIGN

downside of this approach is that this pipeline becomes
too isolated from the other pipelines, and the team
probably forgets about its existence.

Auto-cancel: Auto-cancel is a nice feature used by a few
ALM/integration platforms. The idea behind it is that if
anew pipeline instance is started, the already running
pipeline instance stops. This means there is always only
one pipeline instance active. This prevents multiple
dangling pipelines, and it is clear which pipeline run is
the most recent one. Consider Figure 4-46. If an auto-
cancel option would have been activated, pipeline
instances A and B are stopped and only pipeline
instance C is active. For the manual test engineer, only
the active pipeline instance C is important, and they
can ignore pipeline instances A and B.

Functional vs. Nonfunctional Tests

The test types listed previously can be divided into functional and

nonfunctional tests.

Functional tests

Unit tests
Contract tests
Integration tests
System tests
Acceptance tests
Regression tests
Ul testing

API tests

151

CHAPTER 4 PIPELINE DESIGN

¢ End-to-end test
e Usability tests
Nonfunctional tests
e Security tests
e Penetration tests
e DAST tests
o IAST tests
e Preproduction/staging tests
¢ Performance tests
¢ Disaster tolerance tests

The following rule applies: functional tests are executed before
nonfunctional tests. Applying this rule to the sequence defined by the
testing pyramid, the tasks are rearranged a bit. Within the automated tests,
the nonfunctional tests are positioned at the back of the automated tests.
Within the manual tests—notice that more tests in the model are marked
as manual—the nonfunctional manual tests are positioned at the back of
the pipeline. This results in the model shown in Figure 4-50.

(p (Regression D (M
System / tests, Security tests Pre-production /
Contract testing Integration tests Ei\él;;l::: — API tests (IASTIDAST) staging tests
Start _) L tests, Ul tests]) L)

(A (a (A
() S S 2 fa
Acceptance test Security tests > Performance Disaster
(manual) End-to-end tests (Pen test) tests tolerance tests
\ J \ J \ J End

Figure 4-50. BPMN, ordering test tasks from functional to
nonfunctional

Perform test

A

152

CHAPTER 4 PIPELINE DESIGN

The automated security tests (IAST/DAST) and the reproduction/
staging tests are nonfunctional tests and positioned further to the back
of the automated test tasks. The same applies to the manual security test
(pentest), performance tests, and disaster tolerance tests. They close the
rank of the pipeline.

Parallel Execution vs. Sequential Execution

The outcome of one test type should not be the starting point of

another test type. Different tests must be executed in isolation, and the
configuration of the data of a test is part of the test. The precondition of

a test consists of installing certain data files to a file system, prefilling
database tables, or preparing a Docker container in which the test

is executed. Whether ephemeral test environments or fixed test
environments are used, the principle to perform tests independently
remains. If tests are executed in parallel, certain constraints are applicable;
this applies to both manual and automated tests.

e Tests running in parallel should not interfere. If this
happens, some of the tests must be executed on
another test environment.

¢ The number of available test environments could
become a bottleneck. Test environments are either
fixed test environments, ephemeral test environments
created through infrastructure as code, or Docker
containers in which tests are executed (e.g., using
something like testcontainers.org). In the case of
Docker containers, the runtime environment of the
Docker containers must be sufficiently scaled.

o The ALM/integration platform must support enough
parallelized tasks (or jobs). In the case of SaaS
platforms, you pay extra for each additional parallel job.

153

CHAPTER 4 PIPELINE DESIGN

In the case of manual tests, another constraint applies:

o The availability of the test engineers is important,
either a test engineer from the QA team or a specialized
test engineer. If manual tests are performed in parallel,
a suitable balance must be found in the number of test
types that can be executed in parallel and the (human)

resource capacity.

Going back to our model, some more information needs to be clear
about the availability of test environments and test engineers. Assume the

following conditions:

Conditions:

e There is no maximum to the number of test
environments and parallel jobs in the ALM/integration
platform.

e The QA team consists of only two test engineers who
can perform manual tests in parallel.

Given these preconditions, the model has been adjusted again, as

shown in Figure 4-51.

154

CHAPTER 4 PIPELINE DESIGN

)

System
Integration tests

~———

o
Regression &] &] &]
N tests, Security tests Disaster
L Acceptance test
(Pen test) tolerance tests
acceptance
tests, Ul tests]
—

SR
Y
Contract tests &
API tests

Perform test

Start y
Iy! 3]
() [}
Security tests Performance
(IAST/DAST) End-to-end tests tests
~—
'R
Py ion /
staging tests
~—

Figure 4-51. BPMN, applying parallelization

All automated tests run in parallel. For convenience, the API tests are
combined with the contract tests. The difference between functional and
nonfunctional tests does not matter anymore in the case of parallel tests.
The manual tests are also parallelized. Given that the QA team has only
two test engineers, two parallel lanes are defined. The security pentest
is positioned a bit arbitrarily because often this expertise is not present
within a DevOps QA team. That is solved in the next paragraph.

Note The model defines the different manual tasks as individual
tasks and even takes the size of the QA team into account. Why not
model this as just one task called “Perform manual tests”? This is
possible, but it does not reflect the actual flow. There are different
types of manual tests, and by making them discrete in the model, it
becomes explicit that there are different test types to be dealt with.
This is a matter of taste, of course. You decide whether you want to
model this explicitly or not.

155

CHAPTER 4 PIPELINE DESIGN

Manual Tests Performed by Specialists

The security pentest is performed by a specialist, a cyberspecialist. In
Figure 4-51, it looks like it is just executed after the Acceptance test. That
will probably not be the case. The pentest can probably be executed
only if the application is stable and tested thoroughly. The pentest task
must therefore be separated from the other manual tests, as shown in
Figure 4-52.

SEm—

System /
Integration tests

~—

(o
Regression 31 31
tosts, o = Disaster
P> [Automated Acceptance test
tolerance tests
acceptance
tests, Ul tests]
Y

Y
)
Contract tests & Security tests
AP tests (Pen test)

Perform test

Start A A End
& &
Security tests Performance
| (1ASTIDAST) A{E"dme”d'es's]_'[tests]‘
—
)
Pre-production /
staging tests
——

Figure 4-52. Isolating the specialized test task

Positioning the pentest in parallel to the other manual tests is an
option, but this is possible only if the application is stable enough. In this
model, the pentest is moved to the back of the manual tests.

156

CHAPTER 4 PIPELINE DESIGN

Long Execution Time vs. Short Execution Time

Test execution can take a long time. Assume that one of the test tasks

lasts for two hours. This means that manual tests have to wait until this
automated task is ready. The long-running automated test blocks the
pipeline. To solve this, the specific test task is moved to a different pipeline
with a scheduled trigger.

Condition:

e The Automated Security tests last for 2 hours.

Given this condition, the final model of the Perform test stage looks like
Figure 4-53.

)

System /
Integration tests

—

e
Regression ﬂ;’u ﬂ’_‘,‘]
| tests, Disaster
[Acceptance test
tolerance tests
acceptance
tests, Ul tests]
~—

G

Contract tests &
APl tests

Start

S
() &
Pre-production / Endto-end fests Performance
staging tests tests

Figure 4-53. Removed long-lasting test task

Perform test

Security tests
(Pen test)

A new pipeline is created, also with a Perform test stage, containing
the task security tests (IAST and DAST). This pipeline is triggered using a
schedule (e.g., starting every evening). Make sure that checking the results
of this pipeline is part of the team’s workflow, as shown in Figure 4-54.

157

CHAPTER 4 PIPELINE DESIGN

_ Provision test
environment
Notify
Deploy Actors
r Perform
artifact to
D i > i > >
Scheduled
trigger I

Contains tasks:
e Perform security test IAST
* Perform security test DAST

Figure 4-54. Isolating long-lasting tests in a separate pipeline

Note The different test models shown just represent an example
case. Depending on the context of the tested application, certain test
types are not applicable or are combined, resulting in fewer tasks.

Release Strategy

Branching strategy, deployment strategy (which is discussed in the next
paragraph), and release strategy sometimes cause confusion, and people
tend to mix them up. Let’s clarify these concepts.

e Branching strategy involves the process of bringing a
business feature to the main branch (or to a release
branch), with the intention to deploy it to production.

o Deployment strategy defines how the artifact is
deployed to production. The availability classification
of the application is the main driver of the deployment
strategy. If downtime is allowed during deployment,

a different strategy is chosen compared to a case in
which the application must be available 24/7.

158

CHAPTER 4 PIPELINE DESIGN

o The release strategy mainly deals with the moment a
deployment to production happens. This can range
from a developer pushing code to a repository that
is put into production within 15 minutes, to a major
release that is deployed after a few months. There may
be good reasons to wait for a longer time, for example,
if the product you deliver needs to go through formal
procedures before it is allowed to be released. The
release cycle of the Java JDK, for example, is six months.
The team chooses the type of release strategy that fits
best in their situation.

Road Map-Based Release

For lack of a better term, a road map-based release seems the best name
to reflect the strategy, in which a product owner plots business features
on a road map that are linked to a release calendar. This can be a very
useful release strategy if, for example, the product road map is aligned
with a marketing plan to ensure that marketing efforts are closely tied to
the product development process and focused on promoting features and
capabilities that are being released in a particular time frame.

The time between each production release is not fixed. The road
map may contain two releases that need to be deployed within one
month, with a gap of two months until the third release takes place.
During development, the team can still practice the principles of
continuous integration and continuous delivery, keeping the main
branch in a production-ready state. Continuous delivery does not state
that every commit to the mainline also has to be deployed to production
immediately.

This strategy results in two pipelines: a primary pipeline and a
production deployment pipeline (see Figure 4-55).

159

CHAPTER 4 PIPELINE DESIGN

Variable time

[Cl I CD (test)] [Deploy pipeline (prod)]

Figure 4-55. Road map-based release

The primary pipeline contains all stages, except those related to
the production deployment. The stages Validate exit criteria, Perform
dual control, Provision production environment, and Deploy artifact to
production are part of a separate deployment pipeline. These stages are
decoupled from the primary pipeline because otherwise it would result
in a lot of orphaned pipeline instances. After all, the moment to deploy to
production has not been reached.

Separation results in the two pipelines, as shown in Figure 4-56 and
Figure 4-57.

Validate entry Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
= Actol
Deploy Validate
. artifact to Petmz"" infrastructure
SCM trigger test o compliance

Figure 4-56. Road map-based release, primary pipeline

> > Notify
— Actors
. Provision Deploy
Validate Perform i i
bagiatc” production artifact to
> >> exit crlterla>> dual contr¢> environmen>>productinn>

Figure 4-57. Road map-based release, production release pipeline

Manual trigger

The production release pipeline is manually triggered because the
release date varies. The BPMN model of a road map-based release—
containing only automated tests—looks like Figure 4-58.

160

CHAPTER 4 PIPELINE DESIGN

Git

)
(o]
git commit + git
push
Q

Unittests failed

Ermor

workiten in

Y message 88 Unittests
Valdate entry branch is main passed
crteria
Trigger
Code analysis
passed

2
g Toss
£ Package artfact Perform test Notify actors
&

&2}

Tests passed
Infrastructure not
Validate ‘/X\ P
compliancy
Infrastructure
complant I
End pipoline
Error
g Notify actors
§
]
H r
8 rigger
& 9 i) Dual control N
4 passed rovision .
correc Perform dual arodueion Deploy artifact
control o o production
End pipeline

Exit criteria

ssed + dual
control passed?

nually start
2 || deploymentto
s production
&

Figure 4-58. BPMN, road map-based release

Timeboxed Release

Sometimes, there are valid reasons to deploy to production at regular
intervals. A release is timeboxed, meaning that features are added until the
end of the timebox has been reached and the deployment to production is
performed. A timebox is, for example, a Scrum sprint in which the release
is deployed at the end of each sprint. In his blog, Martin Fowler calls this

a release train. The train arrives and leaves at the scheduled times. When
the train leaves the station, all features that stepped into the train go to
production (see [27]). See Figure 4-59.

161

CHAPTER 4 PIPELINE DESIGN

Timebox

[Cl 1 CD (test)] [Deploy pipeline (prod)]

Figure 4-59. Timeboxed release

This results in two pipelines: a primary pipeline and a production
deployment pipeline. See Figure 4-60 and Figure 4-61.

Validate ent: Execute Perform Analyze Package Publ:sh rov:smn test
criteria unittests code artifact artlfact enwronment
Notify
Actors
Deploy Valldate
> artifact to Perft:rm |nfrastructure
SCM trigger test : compliance

Figure 4-60. Timeboxed release, primary pipeline

> Notify
Provision Deploy Acog
Validate orm -
h 1 b production > artifact to
Scl ledU ed > >>ex|t cnterla>> dual °°""°I>>envnronment produmon

trigger

Figure 4-61. Timeboxed release, production release pipeline

This strategy looks similar to the road map-based release strategy with
the exception that the intervals between the releases are fixed, and the
production pipeline is triggered using a schedule.

Note Timeboxes are concatenated. If a feature misses the deadline
of a timebox, it is released as part of the next timebox. A variation

on this strategy consists of overlapping timeboxes. The next timebox
does not start if the previous one has ended but starts halfway
through the previous timebox. This allows a feature to be released a
bit earlier.

162

CHAPTER 4 PIPELINE DESIGN

Regular Release

A regular release means that each business feature committed to the
mainline is deployed to production as soon as possible. This type of
release is possible only if the mainline is kept in a state from where it is
possible to deploy to production at any given moment (this is an important
continuous delivery principle). This is also possible in the two previous
release strategies, but the difference is, in the case of regular releases,
deployments to production are done more often, not once per two weeks,
but maybe once a day or even multiple times a day. In this strategy, just
one pipeline is involved, containing all stages. See Figure 4-62.

Short period of time

[Cl I CD (test and prod deployment)]

Figure 4-62. Regular release

Unlike the road map-based strategy, the deployment in a regular
release pipeline is not triggered manually. In a road map-based release,
the system owner actively has to start a deployment pipeline and selects
the release version they want to deploy to production. In the case of a
regular release, the process is automatically triggered by an SCM event.
The application is built and tested until the pipeline waits for the system
owner to approve the deployment.

A side effect of a regular release is that the number of pipeline
instances can start to queue if a lot of business features are added to
the mainline in a short time. The system owner probably does not like
to approve multiple times a day and approves only the latest release
version. Older pipeline instances keep “dangling” in the queue. These
older pipeline instances must never be approved anymore; otherwise, this

163

CHAPTER 4 PIPELINE DESIGN

would result in the deployment of an older release version. The pipeline
should always check the release version® to mitigate this risk. A pipeline
used in a regular release contains all stages, as shown in Figure 4-63.

_ Validate entry’ Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
= rory Actors
Deploy Validate . Provision Deploy
+ Perform f Validate Perform : :
artifact to test |nfrast|:ucture exit criteria dual control prqductlon amfa:t}to
test compliance, environment production

SCM trigger

Figure 4-63. Regular release pipeline

Continuous Deployment

Continuous deployment is a “hands-off” process in which the deployment
to production does not pass a manual dual control stage. This means that if
a developer pushes the code to the main branch, the pipeline performs all
stages without manual interference, including deployment to production.
This results in a pipeline that resembles the Generic CI/CD Pipeline but
without the Perform dual control stage. See Figure 4-64.

_ Validate entry’ Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
— Actors
Deploy Validate - Provision Deploy
artifact to Pet:s“t"“ infrastructure e)(’izl::‘:iat;eri 5 production artifact to
test compliance, environmenj production

SCM trigger

Figure 4-64. Continuous deployment

Feature Management—Based Release

A feature management-based release is not a release strategy in itself, but
an approach on top of an existing release strategy. Feature management

involves hiding business functionality using feature toggles. This makes it
possible to release small increments of a business function to production,

9The release version in production must always be lower than the deployed
release version.

164

CHAPTER 4 PIPELINE DESIGN

without it being activated. Products like Unleash and LaunchDarkly
position themselves in this segment. Feature management can be
combined with all branching and release strategies.

Production Deployment Strategy

On an abstract level, deployment to production is depicted as one stage
in the pipeline flow, but this stage is sort of an iceberg; it looks simple at a
glance, but it is more complicated when zooming in.

The simplest version of deployment is just to overwrite existing
files and restart the application. If a database is involved, it is a bit more
complicated; a simple deployment already involves creating, altering, and/
or dropping tables. In that case, the application has downtime, but if this
is acceptable, there is no incentive to implement a more sophisticated
deployment mechanism.

But again, real life often poses certain requirements on the system. If
downtime is not allowed or must be kept minimal, deployment becomes
more complex. And maybe the business organization wants to see whether
a certain change in functionality is better received by the target audience
than the existing functionality. Having two flavors of this functionality in
production and measuring and comparing the performance of the two
also poses extra requirements, resulting in a different deployment strategy.
Some of the most common deployment strategies are handled in the next
paragraphs.

Re-create Deployment

The re-create deployment is best illustrated by an example. See
Figure 4-65.

165

CHAPTER 4 PIPELINE DESIGN

Internet

Hardware
Loadbalancer

S(.erver 1 Database Sc.erver 2
App instance 1 Version A App instance 2
Version A Version A

Figure 4-65. Re-create deployment setup

Example:

Assume the application is a runnable—Spring Boot—jar, deployed
on two Linux servers. The application runs as a Linux service and
receives HTTP(S) requests from clients. Communication takes place
over the public Internet. Server-side load balancing is performed
using a hardware load balancer (for convenience, in this case, there
is no client-side load balancing applied). The load balancer redirects
the requests to the application instances. Both application instances
are connected to a SQL database.

166

CHAPTER 4 PIPELINE DESIGN

Before the new version (version B) of the application is deployed and
the database updates are applied, all communication to both servers is
stopped. The nodes (servers) in the load balancer pool are set to “disabled”
or “maintenance,” which prevents new connections with the servers. HTTP
traffic to the servers bleeds dry, and after some time, the applications on
the servers do not receive requests anymore. The load balancer reroutes
requests from the Internet to a maintenance page informing the client that
the application is in maintenance and not available.

This is the moment to stop the applications (stop the Linux service) and
overwrite them with the new version. Version A is still installed on each server,
but it is replaced by the new version, version B. The database is updated to the
new version by running a SQL script that creates, alters, and/or drops tables,
depending on the changes of the particular version. After the applications
and database are updated, both applications on the servers are started again.
If they pass the boot sequence, the nodes in the load balancer pool can be
enabled again, and the applications become available. See Figure 4-66.

(@ (b)

Internet
Internet

Hardware

Loadbalancer Hardware

Loadbalancer

Server 2 S

Sf.erver 1 Database N
App instance 1 Version A App instance 2 Server 1 Database Server 2
Version A Version A App |ns'tance 1 Version B App ms_tance 2
. Version B Version B
) Version B)
Version B Version B

Figure 4-66. (a) Installing version B. (b) Version B installed and
available

167

CHAPTER 4 PIPELINE DESIGN

This strategy involves a couple of tasks. All tasks can be automated. See

Table 4-4 and Figure 4-67.

Table 4-4. Re-create Deployment Tasks

Task

Description

Disable nodes in load balancer pool.

Wait for a short period (until no
requests received).

Stop the Linux services on
servers 1 and 2.

Copy the JAR file with the new
version to the target environment.

Copy the DB script to the target
environment and execute.

Start the Linux services on servers
1and 2.

Wait for a couple of seconds.

Enable nodes in load balancer pool.

Disable servers 1 and 2 in the load
balancer pool.

Wait until the load balancer does not forward
any request to the Linux services and the
current request is completely processed.

The Spring Boot app runs as a Linux service.
Stop the service using sudo systemctl
myApp stop.

Retrieve all artifacts from the artifact
repository and copy the application JAR to
the target environment.

This is the script to migrate from database
version A to version B.

Start the Spring Boot app again using sudo
systemctl myApp start.

Needed to bootstrap and initialize the apps.

Route request to servers 1 and 2 again.

168

CHAPTER 4 PIPELINE DESIGN

Artifact repository

Return artifacts
(jar file, db
scripts)

Deploy artifact to production stage

Start stage

. Wait for a short
Disable nodes in . "
period (until no .
loadbalancer services on
requests to target
pool " server 1 and 2
received) environment

Copy jar file

Stop the Linux with new version

Start Linux Wait for a

Copy DB script
to target .
. services on couple of
environment and
server 1 and 2 seconds pool
execute
End stage

Enable nodes in
loadbalancer

Production target environment

Server becomes

unhealthy Set Linux server
to 'unhealty

Stopping Linux
services

Deploy files

Stop the Linux

services on
server 1and 2

Copy files

Starting Linux

services Start Linux

services on
server 1 and 2

Server becomes
healthy Set Linux server

to 'healthy’

Figure 4-67. BPMN, re-create deployment tasks

The model shows how the tasks in the Deploy to production stage result

in the remote execution of these tasks in the production environment.

This also implies the existence of an SSH connection between the ALM/

integration platform and the production environment.

169

CHAPTER 4 PIPELINE DESIGN

Note Disabling/enabling the nodes in the load balancer pool is
implemented as a validation performed by the load balancer. The load
balancer periodically calls the Linux server with a health request. If
the server is in “maintenance,” regular requests are not sent to the
server anymore, until the load balancer detects that the server is
“available” again. Switching between “maintenance” and “available”
can easily be implemented on the Linux server.

The re-create deployment strategy is the easiest strategy, but it results
in downtime of the application. Other strategies have better ways to reduce
or eliminate downtime.

Blue/Green Deployment

In a blue/green deployment strategy, the starting point is an infrastructure
with the old version (version A, the blue version) of the application and
the database. In parallel, a new infrastructure is built, which has the

new version (version B, the green version) installed. The load balancer
instantaneously switches from infrastructure A to B, routing the traffic to
the new version. If the system has a database, two options are possible.

e The new version of the application can work with the
old version of the database.

e The old version of the application can work with the
new version of the database.

Often, the first option is not possible because a new version of the
application usually requires a database change, specific for the new
application version. In the example used in this paragraph, the second
option is used. The starting point in this example is a server pool (server

170

CHAPTER 4 PIPELINE DESIGN

pool A) containing both servers 1 and 2, each running application
version A. The loadbalancer spreads all requests over both servers in the
pool. See Figure 4-68.

Internet

Hardware
Loadbalancer

Serverpool A
(Server1+2)
Version A

Database
Version A

Figure 4-68. Blue/green deployment, version A installed
and available

The first step in the deployment is to replace the database version from
version A to version B. The database script is executed, but because the old
version of the application still works with the new version of the database,
everything should still be working." The assumption is that the database
changes can be performed online, of course. After this has been done, a
new infrastructure is built. The new infrastructure contains a server pool
(server pool B) with servers 3 and 4. Application version B is installed on
both servers, but because no requests are sent to the servers yet, servers 3
and 4 are still idle. See Figure 4-69.

1°Not all database changes are backward compatible. Sometimes, some additional
processing or transformation is required in the database using database triggers,
for example.

171

CHAPTER 4 PIPELINE DESIGN

@)

Internet

Hardware
Loadbalancer

Serverpool A

Database

(Serve.r 1+2) Version A
Version A

Version B

(b)

Internet

Hardware
Loadbalancer

Serverpool A Database Serverpool B
(Serve.r 1+2) Version B (Server 3 +4)
Version A Version B

Figure 4-69. (a) Installing database version B. (b) Second
infrastructure with version B installed (but still idle)

The setup now consists of two server pools, one with application
version A and one with application version B. Server pool A is enabled and

processes all requests (using database version B). Server pool B is idle.
The essence of a blue/green deployment is that the load balancer switches
from server pool A to server pool B instantly. After the switch, all requests

are sent to the servers in server pool B. Server pool A becomes idle and

does not process any new requests anymore. The infrastructure of server
pool A can be dismantled and used for other purposes. See Figure 4-70.

172

@)

Internet

Hardware
Loadbalancer

Serverpool A
(Server 1 + 2)
Version A

Serverpool B
(Server 3 + 4)
Version B

Database
Version B

CHAPTER 4 PIPELINE DESIGN

(b)

Internet

Hardware
Loadbalancer

Serverpool B
(Server 3 + 4)
Version B

Database
Version B

Figure 4-70. (a) Switch from server pool A to B (server pool A becomes

idle). (b) Version B available

In contradiction with the re-create deployment strategy, always

one of the application versions is active. There is no downtime, so all

incoming requests are processed by the application. The tasks involved are

summarized in Table 4-5. See Figure 4-71.

Table 4-5. Blue/Green Deployment Tasks

Task Description

Provision new infrastructure B.

Create the infrastructure with server pool B.

Note that this task is part of the Provision
production environment stage and not of the
Deploy artifact to production stage.

Copy the DB script to the target
environment and execute.

This is the script to migrate from database
version A to version B.

(continued)

173

CHAPTER 4 PIPELINE DESIGN

Table 4-5. (continued)

Task

Description

Stop the Linux services in server
pool B.

Copy the JAR file with the new
version to the new environment
(server pool B).

Start the Linux services in server
pool B.

Enable node B in the load
balancer nodes pool.

Wait for short period.

Disable nodes A in the load
balancer nodes pool.

Dismantle the old infrastructure.

The apps in server pool B are stopped, although
this is already the case if the new infrastructure
is created.

Retrieve all artifacts from the artifact repository
and copy the application JAR to the target
environment. This concerns the deployment of
the new versions on servers in server pool B.

The apps in server pool B are started as a Linux
service but do not process any requests yet.

Enable servers 3 and 4 of server pool B in the
load balancer nodes pool.

To allow bootstrapping and initializing the apps,
route traffic to the apps on server pool B. This
is the moment both applications A and B are
active.

Requests to servers 1 and 2 in the server pool
A are blocked. From this moment, requests are
routed only to servers 3 and 4.

Servers in Server pool A are no longer used and
can be decommissioned.

174

CHAPTER 4 PIPELINE DESIGN

c
.S
= ——
JC
o O
S E -
ag Provision new
5= infrastructure
» ©
25
< —
o

r a —

. Copy jar file
COF:Z tDa? Sei”pt Stop the Linux with new version Start the Linux
. g services in to new services in
environment and . N R
Serverpool ‘B environment Serverpool ‘B
execute e
(Serverpool ‘B’)

g J

Enable nodes Wait Disable nodes
‘B’in the ‘Ain the
for a short
loadbalancer N loadbalancer
period
nodes pool nodes pool

CI/CD pipeline

Deploy artifact to production

Figure 4-71. BPMN, blue/green deployment

For clarity reasons, the BPMN model in Figure 4-71 does not contain a
connection between the pipeline and the artifact repository, a connection
between the pipeline and the production environment, and the execution
of the remote commands in the production environment.

Rolling Update and Canary Deployment

Rolling update deployments differ from blue/green deployments in such
a way that blue/green deployment requires two identical infrastructures,
while deployment to a new version in a rolling update deployment strategy
is done within the current infrastructure on which also the old version
runs. In a rolling update deployment strategy, a smaller percentage of
the application version is replaced first. If everything looks fine, this
percentage is gradually increased.

A canary deployment is similar, with the difference that with a canary
deployment, a small percentage of the users are routed to the new version
of the application, while the majority of users continue to use the old

175

CHAPTER 4 PIPELINE DESIGN

version. This allows the new version of the application to be tested in a live
environment with a small number of users before being deployed to all
users. Because both strategies are similar and primarily focused on testing
the stability and reliability of a change, they are used interchangeably.

It is best to demonstrate this strategy using an infrastructure with three
servers, each with version A installed. The first step in the deployment
is again replacing the database version from version A to version B. The
database script is executed, but because the old version of the application
still works with the new version of the database, everything should still be
working fine.

The next step is to disable server 1 in the load balancer pool. HTTP
traffic bleeds dry, and after some time the application on server 1 does
not receive requests anymore. All requests from the Internet are routed to
servers 2 and 3, which are still active. In the meantime, application version

B is deployed to server 1. See Figure 4-72.

(a) (b) (©)

Internet Internet Internet

Hardware
Loadbalancer

Hardware
Loadbalancer

Hardware
Loadbalancer

Server 1 Server 2 Server 3 Server 1 Server 2 Server 3 Server 1 Server 2 Server 3
Appinstancel Appinsiance2 Appinstance3 APPINStancel Appinstance2 Appinstance3 APRINSIaNCel appinstance2 App instance 3
Version A Version A Version A Version A Version A Version A Version A Version A

Version B

Database
Version B

Database
Version A

Database
Version A

Version B

Figure 4-72. (a) Version A installed. (b) Installing database
version B. (c) Version B installed and available on server 1

176

CHAPTER 4 PIPELINE DESIGN

After that, server 2 is disabled in the load balancer pool, and server 1
is enabled again. At that moment, server 2 is inactive, and servers 1 and 3
are active. Server 1 serves application version B, while server 3 still serves
application version A. Both application versions run at the same time,
but because the database is compatible with both application versions,
everything works fine. In the meantime, application version B is deployed
on server 2.

The next step is to disable server 3 and enable server 2 again. Servers 1
and 2 are active and run application version B, while version B is installed
on server 3. The last step is to enable server 3, and from that moment all
servers serve application version B. See Figure 4-73.

(@) (b) ()

Internet Internet Internet

Hardware

Hardware
Loadbalancer

Loadbalancer

Hardware
Loadbalancer

Server 1 Server 2 Server 3

App instance 1 App instance 2 AP\D; 1”5“3":\ Server 1 Server 2 Server 3 Server 1 Server 2 Server 3
Version B Version A fersion A App |ns.tance 1 Appinstance 2 Appinstanc App instance 1 Appinstance 2 App instanc
Version B Version B VersionA Version B Version B Version B

Version B
Version B

Database DataAbase Database
Version B

Version B Version B

Figure 4-73. (a) Installing version B on server 2. (b) Installing
version B on server 3. (c) Version A completely replaced with Version B

177

CHAPTER 4 PIPELINE DESIGN

Table 4-6 summarizes the tasks involved.

Table 4-6. Rolling Update/Canary Deployment Tasks

Task

Description

Copy DB script to target environment and
execute.

Loop; X = Server [1..3].

Disable node [X] in the load balancer nodes

pool.

Wait for a short period.

Stop the Linux service on server [X].

Copy the JAR file with new version to
server [X].

Start the Linux service on server [X].

Wait for a couple of seconds.

Enable node [X] in the load balancer
nodes pool.

X=X+1.

This is the script to migrate from
database version A to version B.

Block all requests to server [X].

Needed to finish requests that are still
processed.

Retrieve all artifacts from the artifact
repository and copy the application
JAR to the target environment.

Start the Spring Boot app.

Needed to bootstrap and initialize
the app.

Increment X to handle the next server.

This results in the BPMN model shown in Figure 4-74. Take note of

the repeating task with the intermediate conditional event (iteration).

The connection between the pipeline and the artifact repository, the

connection between the pipeline and the production environment, and

the execution of the remote commands in the production environment are

excluded from the model for clarity reasons.

178

CHAPTER 4 PIPELINE DESIGN

Copy DB script Disable node [X] Wait Stop the Linux Copy jar file
to target in the N N 5
for a short service on with new version
environment and loadbalancer
period server [X] to server [X]
execute nodes pool
Start
subprocess
Enable node [X]
Start the serwce Wait in the
for a couple of
on server [X] loadbalancer
seconds
nodes pool
End

subprocess

Deploy artifact to production

-) f

X=[1.3]
iterations

Figure 4-74. Rolling update/canary deployment

The previous example illustrates a situation with three servers. The
processing of application version B is gradually increased in steps by 33%
percent. However, in some setups, this may not be sufficient, and other—
more controlled—strategies are needed, for example, to increment the
processing of the new version in steps of 10 percent. In these situations, the
use of specific tooling provides huge benefits. Consider AWS CodeDeploy.
It has a feature to deploy using a canary deployment strategy, and instead
of programming all the tasks, canary deployment is configured more
descriptively by defining a deployment preference type, for example,
CanarylOPercentl0Minutes. This strategy takes care that every 10 minutes,
10 percent of the functionality is deployed, until, after one hour and
40 minutes, all functionality is deployed. If something goes wrong, the
deployment is automatically rolled back by AWS CodeDeploy. If possible,
use tooling that has deployment strategies built in to avoid programming
all the tasks yourself. This also fits well with the CI/CD requirement
“Pipeline stages and tasks are orchestrated by the appropriate tool.”

179

CHAPTER 4 PIPELINE DESIGN

Note If an increment of 50 percent is used, the rolling update/
canary deployment looks similar to a blue/green deployment, but
with a difference. In a blue/green deployment strategy, two identical
infrastructures are used. At deployment time, the overall capacity of
the infrastructure in case of blue/green deployment is 200 percent,
but processing capacity during deployment remains 100 percent
(except during the short overlap period in which both application
versions are active). Half of the infrastructure is unutilized. In the
case of a rolling update/canary deployment with an increment of 50
percent, this results in the current infrastructure temporarily serving
two application versions (50-50), and the processing capacity during
deployment remains 100 percent. There is no need for a doubling of
the infrastructure capacity, so rolling updates are more cost-effective.

A/B Test Strategy

A/B testing is not a real deployment strategy at all. It is a way to test new
features in production with a representative user group. In A/B testing,
both the old version and the new version are active. Some requests are
routed to the old version, and other requests are routed to the new version.
A/B testing can be used in combination with both blue/green and rolling
update/canary deployment strategies.

Note that by default the result of both deployment strategies is a
complete installation of a new version, so the deployment process must
be paused along the way if A/B testing has to be squeezed in, having both
versions running at the same time. This period can take days or even
weeks. After the A/B testing period is finished, the deployment is either
continued or rolled back.

180

CHAPTER 4 PIPELINE DESIGN

Note A/B testing can also be implemented using feature flags.

In the case of blue/green deployment, this means that both the
existing and the new infrastructure are active. Requests are partly routed
to the old infrastructure, running the blue version, and partly routed to
the new infrastructure, running the green version. Using A/B testing in
combination with blue/green deployment is more costly because both
infrastructures run side-by-side.

If A/B testing is used in combination with the rolling update/canary
deployment strategy, the costs are less because the same infrastructure
is used, running both the old and new versions. The combination of A/B
testing with one of the deployment strategies changes the workflow,
though. Let’s take the rolling update/canary deployment strategy and
combine it with A/B testing. The setup in the example consists of three
servers. The deployment stops after version B of the application has
been installed on the first server (server 1). The A/B testing period lasts
for a month, and after a month, version B is rolled out on the rest of the
servers (servers 2 and 3). This means that 33% percent of the requests are
processed by application version B, while 6624 percent of the requests are
handled by application version A.

The assumption is that the pipeline includes some logic and contains
avariable with a value indicating the number of servers on which
application B is deployed. In the first run of the pipeline, the value of this
variable is 1, indicating that application B is installed only on server 1.
After a month of A/B testing, the pipeline runs again, with the value of this
variable set to 3, indicating that version B of the application is installed on
servers 1, 2, and 3. The deployment is idempotent, meaning that if version
B is already installed, it is not overwritten with the same version. The list of
tasks differs a bit compared to the previous paragraph. See Table 4-7.

181

CHAPTER 4 PIPELINE DESIGN

Table 4-7. A/B Testing Tasks

Task Description
Copy DB script to target This is the script to migrate from database
environment and execute. version A to version B. This task is idempotent

and not executed if the current version is
equal to the version to be deployed.

First execution of the 1: A/B testing (first run of the pipeline).

pipeline: 3: Complete deployment of B (second run of

Set variable = 1: A/B testing the pipeline).

Second execution of the

pipeline:

Set variable = 3: Complete

deployment of B

Loop; X = Server [1..variable] Skip server [X] if installed version is equal to
version to be deployed.

Disable node [X] in the load Block all requests to server [X].

balancer nodes pool.

Wait for a short period. Needed to finish requests that are still
processed.

Copy the JAR file with the new
version to server [X].

Start the service on server [X]. Start the Spring Boot app.
Wait for a couple of seconds. Needed to bootstrap and initialize the app.

Enable node [X] in the load balancer
nodes pool.

X=X+1. Increment X to indicate the next server.

182

CHAPTER 4 PIPELINE DESIGN

This results in the BPMN model shown in Figure 4-75.

AJB testing period between first and second run

First pipeline run: variable = 1
Second pipeline run: variable = 3

— N

Copy DB seript Disable hode | Wait Stop the Linux Copy jar file
9 for a short service on with new version
environment and loadbalancer
period server [X] to server [X]
execute nodes pool
Start)
subprocess
Enable node [X]
Startthe service oraat in the
on server [X] e loadbalancer
nodes pool
End

subprocess

Deploy artifact to production

L O @

X = [1..variable]
iterations

Figure 4-75. BPMN, A/B testing and deployment strategy

The BPMN model of the A/B test strategy is similar to the BPMN model
of the previous paragraph, with the exception that a variable is introduced
for A/B testing to control to which extent version B is deployed.

Other Design Considerations

Here are some other design considerations:

e Separation of concerns: Sometimes there are good
reasons to decompose a single pipeline into multiple
pipelines, each with its specific responsibility. We've
seen a few situations in the previous paragraphs, in
which a pipeline was split into multiple pipelines.
But there are other considerations for distributing
responsibilities over multiple pipelines.

183

CHAPTER 4 PIPELINE DESIGN

184

Role separation: Developers are focused on creating
software and are mainly busy with continuous
integration, while Ops engineers have a better
understanding of the environments and mainly deal
with continuous delivery. In addition, the quality
assurance team is dedicated to automating all tests,
and external teams may have specific knowledge of
certain parts of the infrastructure not managed but
used by the DevOps team.

This knowledge and role separation can also be
extrapolated to separating pipelines for specific
areas of continuous integration, continuous
delivery, quality assurance, and specialized
infrastructure managed by another team.

Resource constraints: Teams may be working very
actively and pushing a lot of code, which results in
queuing of the pipelines because test resources are
limited. Decoupling the CD process from the CI process
could help. For example, the CD pipeline will be started
on a scheduled basis and not after every code push.

Carbon dioxide footprint: Some parts of the pipeline
are perhaps very “compute resource” intensive. Source
code analysis and automated tests are performed the
whole day, sometimes for very small changes that
could easily have been combined with other features.
This puts a larger carbon dioxide footprint on CI/CD
because more energy is used for compute-intensive
tasks. One solution is to combine features, which
leads to features that are not too big but also not too
small. Another solution is to accumulate changes in

CHAPTER 4 PIPELINE DESIGN

the pipeline for which resource-intensive tasks are
executed less often; e.g., performing source code
analysis only once a day. This leads to a separation of
pipelines.

o Application architecture: One of the requirements in
the previous chapter states that if the system consists
of multiple microservices, each microservice should
have its pipelines to guarantee the isolation of the
microservices. This is similar to the statement in
reference [6] that justifies that an application can have
separate pipelines if parts of the application have
different life cycles.

e Operations pipelines: Not part of the application
pipeline, but one-off operations are typically realized
using operations pipelines.

Delegation

An example of role separation concerns a quality assurance engineer who
defines test cases, performs manual tests of the application, and automates
the test cases as much as possible. Although integration of the automated
tests in the pipeline is essential, some quality assurance engineers
sometimes work in isolation, and the development of automated tests is
separated from application development and pipeline development. At

a certain moment, however, automated tests have to be integrated into
the pipeline. This can be done using different techniques. One option is
to add a Perform test stage to the main pipeline and implement the test
tasks within that stage. Another option is to isolate the Perform test stage,
implement the stage in a separate pipeline, and let the main pipeline
invoke this Perform test pipeline. This means that the main pipeline does
include a Perform test stage, but the execution of this stage is delegated

185

CHAPTER 4 PIPELINE DESIGN

to another pipeline, maintained by the QA engineers. This gives them
complete freedom of realizing automated tests, without much interference.
Especially if the QA engineers are not part of the DevOps team that
develops the application, this freedom is very welcome. This situation is
visualized in Figure 4-76.

[cl I Ccbh]

QA pipeline }

Figure 4-76. Delegation of tests

The separation of activities is visualized in Figure 4-77. The test
pipeline is triggered from the main pipeline using a webhook trigger
(triggers are explained in more detail in the next chapter).

Validate entry Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
o = Actors
Deploy Validate . Provision Deploy
artifact to Pet::trm infrastructure e:izlgftt:ri a d: :Irz%:;‘r Al production artifact to
test i environment production

SCM trigger

2 N2
5{5\‘2 M D >>Am

Figure 4-77. Delegated QA pipeline

Application Architecture

The architecture of the application has a large influence on the pipeline
design. The pipeline design of a monolithic application consists of one
artifact or multiple strongly coupled artifacts. This monolithic architecture
differs from a microservice architecture. The pipeline design of an

186

CHAPTER 4 PIPELINE DESIGN

“application” that consists of multiple microservices is a typical textbook

example of a separation of concerns principle. The following are the

characteristics of a microservice:

Small in size
Messaging enabled

Bounded by contexts (organization around [business]
capabilities instead of around technology)

Autonomously developed

Independently deployable, decentralized, and built and
released with automated processes

Can be implemented using different programming
languages, databases, hardware, and software

environment

Decentralized data management with one datastore for
each service

Provides characteristics that are beneficial to scalability

This autonomy justifies separate pipelines for each microservice. So, if

a team is responsible for three microservices, called A, B, and C, they need

to develop three separate pipelines. See Figure 4-78.

Microservice A @) Cl I CD]
weoserie s (@) o | o |
weoserie ¢ (@) o | o |

Figure 4-78. Pipeline setup microservice architecture

187

CHAPTER 4 PIPELINE DESIGN

Orchestration

Sometimes it is needed that certain components are deployed in a
particular order, or certain tasks need to be completed before a component
can be deployed. This order of activities can be managed using an
orchestrator pipeline. The orchestrator executes tasks and orchestrates
the invocation of other pipelines. Consider a microservice architecture. In
normal conditions, microservices run independently, so an orchestrator
should not be needed at all. However, there could be a change in all
microservices that justifies an order in deployment.'* In Figure 4-79,

the deployment order is managed by the orchestrator, first deploying
microservice B, then microservice C, and finally microservice A. The
orchestrator acts as an automated “runbook” to guarantee the order.

estrator
m Qe

C)
S R .

Figure 4-79. Orchestrator

The lifespan of the orchestrator varies, depending on the context.
It may be a permanent pipeline in the pipeline landscape or a one-off
pipeline that takes care of managing activities that are executed only once.

"' Microservices are loosely coupled but not decoupled. If a new mandatory
element is added to an event between two microservices, both microservices are
impacted.

188

CHAPTER 4 PIPELINE DESIGN

Event-Based CI/CD

All design strategies and considerations so far are based on a predefined
workflow model. From a separation of concerns point of view, the
stages of the workflow are divided over different pipelines. But what if
we take this a level higher and consider an event-based CI/CD model?
Similar to an application architecture in which a monolithic application
is broken down into several microservices, it is also possible to do this
for pipelines. The pipeline stages are developed as microservices, using
an event-driven communication model. Each microservice consumes
events and produces events. The events are specified according to a
well-defined schema containing the metadata each microservice needs.
External systems like source code management systems and issue
trackers are hooked into the eventing framework and also produce and/
or consume events.

The event-based CI/CD model of the Generic CI/CD Pipeline is

transformed into Figure 4-80.

189

CHAPTER 4 PIPELINE DESIGN

Notify actors
event

Deploy artifact

to production

Provision
production
environment

event
Perform dual
control

event

Execute build

7

Perform
unittests
\ event
Analyze code

Package artifact
event
Publish artifact

event

Provision test
environment
Perform test Deploy artifact
to test

Figure 4-80. Event-based CI/CD model

ALM platform

Eventing framework

Validate
Infrastructure
compliance

event event

Each microservice represents a pipeline stage. It is not part of a
pipeline, but it is a self-contained piece of functionality that submits or
listens to events, submitted by other microservices or events from external

tools in the CI/CD ecosystem.

Note The Validate entry criteria and Validate exit criteria stages

are gone, or at least not realized as separate microservices. These
stages do not make any sense in the event-based model. This does
not mean they are completely gone. Validating entry- and exit criteria
tasks are now embedded in each microservice to guard the integrity
of input and output data.

190

CHAPTER 4 PIPELINE DESIGN

Each microservice publishes events and subscribes to certain topics.

Each event consumed by the microservice is validated, based on the

metadata the event carries. Based on certain rules, the microservices stage

knows what to do and performs its actions.

The Execute build microservice, for example,
subscribes to a git_push topic. A git_push event triggers
the Execute build microservice, which starts building
the artifact.

As soon as the Execute build microservice is
successfully finished, it publishes an artifact_built_
success event.

Microservices Perform unit tests, Analyze code, and
Package artifact are subscribed to the artifact_built_
success topic and are triggered by the artifact_built_
success event.

Publishing an artifact is done only if all previous
stages were successfully finished. The Publish artifact
microservice subscribes to the unit_test success,
analyze_code_success, and package_artifact_

success topics.

If all three events on this topic are consumed by the
Publish artifact microservice, the artifact is published.
The Publish artifact microservice uses a Complex Event
Processing (CEP) pattern to determine that the package
can be published.

The Notify actors microservice subscribes to any *_
success and *_failed topic and informs the actors in case

such an event occurs.

191

CHAPTER 4 PIPELINE DESIGN

This model has a few benefits over a pipeline model, listed here:

e Regular pipelines contain a mix of functionality and
workflow, often closely integrated. In the case of an
event-based CI/CD setup, there is no predefined
workflow,'> which means that if changes are made to a
team’s way of working, the event-based CI/CD setup is
easily adaptable.

e A pipeline model still combines several stages into
one pipeline. The development of these pipelines is
difficult to perform in isolation. Even if developers, Ops
engineers, and QA engineers are involved with pipeline
development, they still have to cooperate closely and
work on the same pipeline codebase. The event-based
model decomposes the pipelines into individual
microservices, operating fully independently. This
provides the same benefits as application-based
microservices, including autonomous development,

deployment, and running instances in isolation.

e Autonomous development also implies that different
roles can focus on the development of specific
microservices without much interference.

o Parallelism is implicit. Multiple microservices
subscribed to the same topic all start their execution as
soon as an event on this topic is published.

2This is also a downside of an event-based model; if the workflow is not explicit
anymore, one can lose track of the workflow as a whole.

192

CHAPTER 4 PIPELINE DESIGN

Support for event-based CI/CD is limited to nonexistent in major
ALM/integration platforms, but the idea is being embraced by some
companies. Time will tell whether CI/CD migrates to the event-based
model or whether the pipeline model remains the dominant approach.

Resource Constraints

Resource constraints come to light only when the pipeline is already
developed and deployed. These resource constraints usually manifest
themselves due to a lack of computing or storage resources. This results
in a bad performance of the pipeline, or pipelines are put into a queue,
waiting for an agent or compute node to become available. The simple
answer to this problem is to add more hardware, but this is only one part
of the story as we have seen. At some point, all options are stretched so
far that other solutions have to be considered. Some of these solutions
are ALM or integration platform related. Other options can be found

in redesigning parts of the pipeline in such a way that their resource
consumption is optimized. Here are some other considerations:

e Revise the build strategy: The build strategy was already
explained earlier. Take a look at your build strategy
again, and determine whether some things can be
changed. Something as simple as pipeline caching
improves performance a lot.

e Priority clause: The regular behavior of ALM/
integration platforms regarding priority is that pipeline
execution is first in, first out (FIFO). The problem is, if
you deploy a “production fix,” the pipeline execution
joins the queue and is executed when all other
pipelines in the queue are processed first. There is
no distinction between a regular pipeline run and a
production deployment. Wouldn't it be great if we
could add a clause like in Listing 4-1 to our pipelines?

193

CHAPTER 4 PIPELINE DESIGN

Listing 4-1. Priority Clause

priority:
scope: global # Concerns the whole organization
target: prod # Deals with production; increased prio
management-class: incident # Incident; more important

When using a priority clause like this, the particular pipeline queue
is rearranged, and high-priority pipeline instances are moved to the front
of the queue. Certain properties indicate how the queue is rearranged.
Incidents in production have more priority than regular deployments to
production. Regular deployments to production have more priority than
regular deployments to test, etc. Unfortunately, few ALM/integration
platforms offer prioritization of pipelines, and if they do, it is only
rudimentary.

As an alternative to a priority clause, you can also define a pipeline
setup with different execution environments (e.g., runners, executors, or
agents). This way it becomes possible to define separate pipeline “lanes”
in which pipelines of different categories run but don’t interfere with
each other.

o Schedule pipelines: Sometimes there are good reasons
why a stage doesn’t have to be executed multiple times
per day. Analysis of source code can be done as part of
the regular pipeline, but if multiple minor changes are
applied to the codebase daily, the analysis of the source
code often doesn’t show much difference during that
day. It makes sense to schedule source code analysis
once a day in a quiet moment.

e Limit continuous deployments: Resource constraints
can also be present in test environments. Even if the
ALM/integration platform itself is capable of executing
all pipelines fast enough, the test environment may

194

CHAPTER 4 PIPELINE DESIGN

become a bottleneck. Separating the CI pipeline from
the CD pipeline can help so the CD pipeline runs
independently. The CI pipeline still runs after every
code push, while the CD pipeline runs less often, and
tests are executed less frequently.

Apply a resource lock: In line with this is the use of a
resource lock. If a test environment is still processing
the tests of one pipeline instance, the next pipeline
should not already be deploying another version of the
application while the previous tests are not completed
yet. To prevent this problem, a resource lock can be
added to the pipeline. The resource lock prevents
other pipelines from continuing their tasks until a
given resource—e.g., a test environment—is ready and
released back to the pool. One example of this is the
Lockable Resources plugin in Jenkins. The downside of
using resource locks is that it causes queuing.

Re-evaluate the execution of stages: If the pipeline is
started because a change has been pushed to a feature
branch, is it really necessary to perform the Analyze
code stage? Maybe the execution of this stage is not
needed for a feature branch. If the team uses a more
complex workflow, it may suffice that certain stages

are executed only for specific branches. So, if there is a
resource constraint, re-evaluate the pipeline stages for
certain branches and decide whether they are required.

Parallelize stages and tasks: Let’s pick one case in which
we look a bit closer at the possibilities of parallelized
stages and/or tasks. If the codebase of the application
is large, the Analyze code stage can become a compute-
intensive stage that takes a long time to run. The

195

CHAPTER 4 PIPELINE DESIGN

Generic CI/CD Pipeline has all stages ordered in
sequence, which results in a pipeline in which Execute
build, Perform unit tests, and Analyze code are executed
after one another. Consider the case in which Analyze
code itself contains three tasks: a SonarQube scan, a
Fortify scan, and a Whispers scan. This results in the

pipeline design shown in Figure 4-81.

Analyze code

Perform "
Perform Perform Fortify Perform
Execute build
unittests SonarQube scan Whispers scan
scan
Start Start Analyze End Analyze End
ipeline code code

pipel pipeline

Pipeline

Figure 4-81. BPMN, stages and tasks in sequential order

Because the Perform unit tests stage depends on the artifact produced
by the Execute build stage, both stages must be executed in sequence. The
Analyze code stage, however, does not necessarily depend on the artifact,
but on the source code in the repository.'* Reordering the stages would
result in a slight change in the design; see Figure 4-82.

13SonarQube requires an artifact, but this can still be a task detached from the
creation of a regular build artifact.

196

CHAPTER 4 PIPELINE DESIGN

Perform
unittests

O~ ‘

Analyze code
Start

pipeline
S:::rgﬂe Perform Fortify Perform
scan scan Whispers scan
Start Analyze End Analyze
code code

Figure 4-82. BPMN, analyze code stage in parallel (with barrier)

Execute build

End
pipeline

Pipeline

This design already reduces the overall processing time of the pipeline.
Also, notice the use of the parallel gateway at the end of the Perform
unit tests and Analyze code stages. In workflow modeling, this parallel
gateway represents a “join.” In multithreading, this is called a barrier. The
barrier takes care that both Perform unit tests and Analyze code stages
are completed before the pipeline continues (in this design example, the
pipeline ends). This can be a requirement in case further testing should
be performed; continue only in case both previous stages were completed
successfully. Removing the barrier results in a pipeline design in which
the Analyze code stage still executes in parallel, but the Perform unit
tests stage (which isn’t included in this model) doesn’t wait for it to be
completed, completely disregarding the result of the Analyze code stage.
See Figure 4-83.

197

CHAPTER 4 PIPELINE DESIGN

Execute build

Perform
unittests

End 1

O=p \

Analyze code
Start

pipeline
Sg’:;gﬂe Perform Fortify Perform
scan scan Whispers scan
Start Analyze End Analyze End 2
code Anal

Pipeline

Figure 4-83. BPMN, analyze code stage in parallel (without barrier)

Taking a closer look at the three code analysis tasks reveals that also
these tasks are independent. Applying further parallelization results
in the design shown in Figure 4-84. The design makes use of a barrier
(parallel gateway) at the end of the Perform unit tests and Analyze
code stages, but also the individual tasks of the Analyze code stage end
with a barrier; the Analyze code stage ends only if all three tasks are
completed.

198

CHAPTER 4 PIPELINE DESIGN

Perform
unittests

Execute build

Analyze code v

)
O_<I Perform <I>_O
>
Start SonarQube

scan A End
pipeline
——

pipeline

Pipeline

)

Perform Fortify
scan

Start Analyze End Analyze

code code

)

Perform
Whispers scan

A

——

Figure 4-84. BPMN, analyzing code tasks in parallel (with barrier)

If the infrastructure can process everything in parallel, the overall
processing time would decrease even further. Chapter 6 shows that this
theory results in a better performance of the pipeline.

This setup works only if there are enough resources available to
process everything in parallel. If resources are not sufficient, the whole
Analyze code stage can be detached from the main pipeline and wrapped
in a pipeline that runs only once a day, represented in the BPMN diagram
shown in Figure 4-85.

199

CHAPTER 4 PIPELINE DESIGN

Perform

unittests =O

Start End

pipeline pipeline

Execute build

Pipeline

Perform
SonarQube
scan

Perform Fortify Perform
scan Whispers scan

Pipeline

Start pipeline End

pipeline

Figure 4-85. BPMN, scheduled Analyze code pipeline

Commercial Off the Shelf

CI/CD is always discussed in the context of developing software in-house.
Vendor packages—from a consumer point of view—are left out of scope,
which makes perfect sense. Vendor packages, or the so-called commercial
off-the-shelf (COTS) applications, are already developed and tested, so it is
just a matter of downloading, installing, and using them, right?

CI/CD from a vendor point of view also puts constraints on the
process. The client chooses the life cycle of installing the software. This
means that deployment to production has a different meaning for vendors
of software packages. There is a clean separation between delivering
production-ready software and delivering the software to clients.

Clients of COTS software have a hard time understanding how the
installation of vendor packages benefits from the CI/CD concepts. Often,
installation of these packages is a manual or semi-automated process,
prone to errors and with an increased risk of fraudulent handling. While
the activities of installing vendor packages differ from developing software
in-house, there are great benefits to gain in formalizing these activities

200

CHAPTER 4 PIPELINE DESIGN

using a pipeline. When using an (automated) pipeline, the steps are
performed in a controlled way, which makes it possible to have an audit
trail of the process. Let’s look at the steps involved in the case of the
installation of a vendor package. The context is a closed COTS solution
from a consumer point of view, with only binaries supplied.

The following are the stages included in the COTS pipeline:

o Validate entry criteria

o Download package

o Validate integrity

e Publish package (internal)

e Provision test environment

o Install and configure in test

o Test/validate the application

o Approve production installation

e Provision production environment

e Install and configure in production
Here they are in more detail:

o Validate entry criteria: The first step is to verify the
version that needs to be installed. Also, make sure to
choose the binary for the appropriate operating system.
Check and authenticate the vendors’ endpoint/URL
from where the package is downloaded, especially if it
is one of the first times the package is downloaded.

e Download package: Package solutions are often
retrieved from the vendor using a portal to which a user
logs in. The package (application) is downloaded and
stored in a temporary location. Some vendors provide

201

CHAPTER 4 PIPELINE DESIGN

202

an API that can be used to download the package. The
use of an API is preferred over the use of a portal. Make
sure the metadata is stored; credentials used to log

in on the vendor’s system and the date and time the
package was downloaded. Also, store the downloaded
package in a secure location within the boundaries of
your on-premises datacenter (or cloud account).

Validate integrity and vulnerabilities: After the package
is downloaded and stored in an intermediate storage
location, it is checked for integrity. The integrity of

the downloaded package is validated by verifying

the hash or a digital signature. Validating a digital
signature guarantees that nobody has tampered with
the package. Hash validation is, from a security point
of view, a weak mechanism to validate integrity. In
addition, the package must be scanned for viruses and

malware.

It cannot be assumed that vendor software does not
contain vulnerabilities. That is why this type of software
must also be scanned for vulnerabilities (if possible),
such as the use of third-party libraries and plugins.

Publish package (internal): The artifact downloaded
from the vendor must be stored in an immutable binary
repository, including any additional metadata, such as
release notes from the vendor. Storing the package in

a repository guarantees that its integrity remains. The
intermediate location to store the downloaded package
and the immutable repository can be the same location
by the way.

CHAPTER 4 PIPELINE DESIGN

Provision test environment: Depending on the
requirements, it makes sense to provision a

sandbox environment that does not allow outbound
communication and prevents malicious software
from scanning the network and/or setting up a
communication session with a server outside the
organization. This test environment is used as a
sandbox environment to install the downloaded
package. Additional security measures take care that
the software does not become rogue and perform

unintended actions.

Install and configure in test: This step involves the
installation and configuration of the package in the test
environment. This can be a manual, a semi-automated,
or a completely automated task. The complexity of this
stage varies. If the current release is too far behind, a
complete migration needs to be implemented. If the
difference between the old and the new version is
small, the risk to update with the new version is low. A
security test in a sandbox environment may be part of
the tests involved.

Test/validate the application: Although the application
is already fully tested by the vendor, some form of a
smoke test is still needed to determine whether the
configuration is done properly and to test whether the
integration with surrounding systems (still) works.
More extensive testing is needed if the package is
integrated with another system such as an IAM system
or a customer relationship management (CRM)
system. Also, performance testing may be included in
this stage.

203

CHAPTER 4 PIPELINE DESIGN

Approve production installation: If the application
behaves as expected, it is approved. Also, this can and
should be implemented using a dual control step.

Provision production environment: The production
environment—if not already available—is created.

Install and configure in production: This step involves
the installation and configuration of the package in the
production environment. This can be a manual, a semi-
automated, or a completely automated task.

This leads to a pipeline similar to the one in Figure 4-86 and

Figure 4-87.

(Cvendor) Validate entry pownload Validate Publish Provision test
criteria package lnltegrlty_;_ar!d artifact environment
- - Notify
Actors
Install and Test/ Validate Approve Install and
configure in validate the infrastructure production configure in
test application compliance installation production
Manual
trigger

Figure 4-86. Commercial off-the-shelf pipeline

Validate entry
criteria

=X

Entry criteria

try criteria
correct

Download
package

Validate integrity

Integrity not OK

Imegmy oK

Publish package
(internal)

Provision test
environment

Commercial of the shelf pipeline

Install and
configure in test

Test] validate
the application

Error

Notify actors

Tests failed

Tests passsed?

Tests passsed

8

=) Approve
production
installation

Notapproved

Provision test
environment

Install and
configure in
production

Figure 4-87. BPMN, commercial off-the-shelf pipeline

204

CHAPTER 4 PIPELINE DESIGN

Note

Automating these stages as much as possible provides great

benefits. It speeds up the process, is more reliable, and is more
secure. But even if the complete process is done manually, a pipeline
with these stages is still useful. The stages in this manual process
are discrete and can be completed with a sign-off task. All pipeline
instances (runs) and meta-information (such as sign-offs, credentials,
and timestamps) are stored in the ALM/integration platform, which
makes the process fully transparent and auditable.

Summary

You learned about the following topics in this chapter:

Modeling a pipeline flow in BPMN 2.0

Drafting a context diagram and using it as a means to
communicate with the team

Using the Generic CI/CD Pipeline as starting point for
your pipeline design

The effect of certain strategies (branching, build, test,
release, and deployment strategy) on the pipeline
design, how the flow changes if certain choices are
made, and why, when, and how to split a pipeline in
other independent pipelines

How to apply these strategies to your situation

How other factors, such as separation of concerns and
resource constraints, affect the pipeline design

How commercial off-the-shelf application benefit from
a pipeline implementation, because it formalizes the
stages and tasks

205

CHAPTER 5

Pipeline Development

This chapter covers the following:
o The different types of pipeline specifications

o The features used in the different ALM/integration
platforms, along with some code snippets to show the
pipeline code benefits if these features are offered as
code constructs

e The security issues when dealing with external libraries
as well as solutions on how to mitigate them

o How the target environment properties can be stored
and used in the pipeline

o Secrets management and how to mitigate security risks
concerning secrets used in pipelines

o Feature management and the different ways to apply it

o Thelevels in the organization in which CI/CD-related
development occurs and the different ways DevOps
teams develop their pipelines

e Practical tips for sustainable pipeline development

A chapter about developing pipelines that still tries to preserve the
abstract character of this book almost seems an impossible assignment.
The platform landscape is wide with a plethora of tools to choose from,

© Henry van Merode 2023 207
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_5

https://doi.org/10.1007/978-1-4842-9228-0_5

CHAPTER 5 PIPELINE DEVELOPMENT

each with its characteristics and technical solutions. Still, various generic
topics can be emphasized, even if the implementation is different. This
chapter discusses some of these topics and examples that deal with
pipeline development.

Pipeline Specification

A pipeline specification covers the translation of the logical pipeline design
into a technical definition. This results in one or more files containing
pipeline code executed on an ALM/integration platform.

Multibranch, Multistage Pipeline

The features added to the various ALM/integration platforms have
increased over time, and these platforms have become more mature. In
the past, pipelines were simple, but nowadays it is possible to develop
pipelines with a more complex flow. Out-of-the-box functionality,
plugins, and marketplace solutions enable feature-rich pipelines yet avoid
plumbing code. Activities are grouped into discrete stages, jobs, and tasks,
making it possible to parallelize work, reduce execution time, and allow
faster feedback to the developer.

The days that a pipeline could be used in combination with code from
only one SCM branch are over. Pipelines can be triggered if a change in
any branch of the repository has been made. The pipeline decides what to
do, depending on the branch, and certain conditions. These multibranch,
multistage pipelines are very powerful and make it possible to develop
complex automation processes. This chapter shows some features and
possibilities of modern pipeline development and specification.

Pipeline specification cannot be generalized, because different tools
use different language constructions and have different features, but in
general, there are three ways to create a pipeline.

208

CHAPTER 5 PIPELINE DEVELOPMENT

e Using a user interface
o Using a scripted pipeline
e Using a declarative pipeline

Let’s go through these options.

User Interface-Based Pipelines

Most ALM/integration platforms such as Jenkins, Bamboo, and Azure
DevOps include user interfaces to create pipelines. This provides a
graphical view of a pipeline but also offers a fast and more intuitive way
to create pipelines. Using a user interface also has downsides. Some user
interfaces are cluttered, and certain options are well-hidden in the caverns
of the user interface. In addition, user interface-based pipelines usually do
not support version control of the pipelines. Of course, in some cases, it is
possible to export a pipeline as a file and manage it in an SCM, but this is
arather cumbersome workflow. In general, use a graphical user interface
only in the case of a simple pipeline that can be re-created easily, or use
it to learn how a pipeline is constructed. In all other cases, use scripted or
declarative pipelines.

Figure 5-1 illustrates a Jenkins freestyle project. It shows the user
interface used to create a pipeline. It allows adding multiple build steps to
a pipeline. However, it is also limited in its capabilities.

209

CHAPTER 5 PIPELINE DEVELOPMENT

Figure 5-1. Jenkins freestyle project

Scripted Pipelines

A scripted pipeline is either a file containing a scripting language or a
domain-specific language (DSL) language, but it can also consist of a
complete project, supported by a general-purpose programming language.
An example of a scripted pipeline is the Groovy pipeline used in Jenkins.
Atlassian’s Bamboo has the option to develop a pipeline based on a
complete Java project (Bamboo Java Specs).

Besides the benefit that scripted pipelines are just files, which can be
put under version control, scripted pipelines are also extremely versatile.
You have full control of the flow and the implementation of the stages

210

CHAPTER 5 PIPELINE DEVELOPMENT

and tasks. However, this can also become a pitfall. If not taken care of, the
pipeline code becomes unreadable. Listing 5-1 shows a simple structure of
a scripted Jenkins pipeline.

Listing 5-1. Jenkins Script

node {
stage(' Stage 1") {
//
}
stage(' Stage 2") {
//
}
stage(' Stage 3") {
//
}
}

Declarative Pipelines

Declarative pipelines are similar to scripted pipelines, but they have a
more restricted syntax that preserves the pipeline structure and prevents
the code from becoming bloated and unreadable. Declarative pipelines
intend to be better structured, which makes reading and writing the
pipeline code easier. This does not mean you cannot do the things you can
do with scripted pipelines. It is common to add scripting to a declarative
pipeline, but because of the strict syntax, the scripting has a distinctive
place in the pipeline structure. The trend seems to be shifting toward

the use of declarative pipelines, and especially YAML-based pipelines
dominate the pipeline landscape.

211

CHAPTER 5 PIPELINE DEVELOPMENT

Consider a team using a feature branch workflow. Their integration
platform of choice is Jenkins. The Jenkins pipeline is stored in a
source code management repository as a file called the Jenkinsfile.

The basic structure of the Generic CI/CD Pipeline in declarative Jenkins
code looks like Listing 5-2.

Listing 5-2. The Generic CI/CD Pipeline in Jenkins
Declarative Code

pipeline {
agent any
stages {
stage('Validate entry criteria') {
steps {
echo 'Stage: Validate entry criteria’
}
}
stage('Execute build') {
steps {
echo 'Stage: Execute build'
}
}
stage('Perform unit tests') {
steps {
echo 'Stage: Perform unit tests'
}
}
stage('Analyze code') {
when {

branch "main"

212

CHAPTER 5 PIPELINE DEVELOPMENT

}
steps {
echo 'Stage: Analyze code'
}
}
stage('Package artifact') {
steps {
echo 'Stage: Package artifact’
}
}
stage('Publish artifact') {
steps {
echo 'Stage: Publish artifact'
}
}
stage('Provision test environment') {
when {
branch "main"
}
steps {
echo 'Stage: Provision test environment'
}
}
stage('Deploy artifact to test') {
when {
branch "main"
}
steps {
echo 'Stage: Deploy artifact to test'
}
}

213

CHAPTER 5 PIPELINE DEVELOPMENT

stage('Perform test') {

when {
branch "main"
}
steps {
echo 'Stage: Perform test'
}
}
stage('Validate infrastructure compliance') {
when {
branch "main"
}
steps {
echo 'Stage: Validate infrastructure compliance’
}
}
stage('Validate exit criteria') {
when {
branch "main"
}
steps {
echo 'Stage: Validate exit criteria’
}
}
stage('Perform dual control') {
when {
branch "main"
}
steps {
echo 'Stage: Perform dual control'
}

214

CHAPTER 5 PIPELINE DEVELOPMENT

}
stage('Provision production infrastructure') {
when {
branch "main"
}
steps {
echo 'Stage: Provision production infrastructure'
}
}
stage('Deploy artifact to production') {
when {
branch "main"
}
steps {
echo 'Stage: Deploy artifact to production’
}
}
}
// Stage: Notify actors
post {
success {
echo 'Stage: Notify actors - success'
}
failure {
echo 'Stage: Notify actors - failure'
}

215

CHAPTER 5 PIPELINE DEVELOPMENT

This Jenkinsfile contains only the skeleton of the feature branch
workflow. Notice that all stages are executed if the branch is main. In the
case of a feature branch, only a subset of the stages is executed.

Assuming that the Jenkinsfile is included in the same repository as the
application, the workflow of the team has to be adopted when changes are
applied to the Jenkinsfile. Changes to the Jenkinsfile are done in a feature
branch and, when finished, merged with the mainline. This makes testing
of the Jenkinsfile a bit problematic because only a subset of the flow can be
tested, namely, the stages associated with the feature branch. Testing the
stages associated with the main branch is not straightforward, and also
destructive actions in the pipeline must be mitigated. To solve this, we
need some way to properly test pipelines. The next chapter shines some
light on testing pipelines.

Constructs

One of the issues with pipelines is that complex actions sometimes
require a lot of plumbing code. Declarative YAML-based pipelines are
also not very versatile, because YAML is not a real programming language.
Complex setups such as canary deployment or building various versions
for different target environments blow up the pipeline declaration, are
hard to read, and are difficult to maintain unless there are features in the
platform supporting this complexity.

A construct is a generic name for pipeline features that reduce
complexity. Constructs are out-of-the-box features solving problems
not easy to solve otherwise. This paragraph is devoted to some of the
(common) constructs found on various platforms. The examples are not
“taken” from only one platform, but from various ones. Not all platforms
support all constructs. The examples are to show only what is possible.

216

CHAPTER 5 PIPELINE DEVELOPMENT

Triggers

There are several ways to start a pipeline, depending on the context.
Starting a pipeline is based on triggers, and most ALM/integration
platforms support various kinds of triggers. These are the most
common ones:

e SCM trigger: Most common is the SCM trigger that
starts a pipeline after code is committed and pushed
to a source code management repository. The pipeline
builds the artifact based on the branch in which the
code was committed. In addition to code pushes, other
SCM events may lead to triggering a pipeline. One
example is an event submitted after a pull request has
been approved. SCM triggers can be implemented
using webhooks or as an integrated feature of an ALM/
integration platform.

Tip If you plan to incorporate the pipeline file into the same source
code repository as the application, remember that if you use an

SCM trigger, the pipeline by default also runs after you changed the
pipeline code itself, which potentially could lead to the deployment of
the application to production (or at least to a test environment). It is
better to move the pipeline code to a separate directory and exclude
this directory from the trigger; this option is provided by several
platforms. An alternative is to exclude the pipeline file(s) based on the
filename or extension if the platform supports this feature.

e Webhook: A webhook refers to an API callback that
starts a pipeline. The AP is part of the ALM/integration
platform that can be used by external systems to trigger

217

CHAPTER 5 PIPELINE DEVELOPMENT

a pipeline. It receives an HTTP request, containing
meta-information. A big advantage of webhooks is that
the calling system does not have to be an integrated
subsystem of an ALM platform. It can be a stand-
alone tool triggering the pipeline. A nice example is
the support of webhooks in GitHub. The webhook
can be enabled not only when code is pushed but also
for other types of events. By enabling the webhook

in GitHub and configuring the pipeline endpoint,

the endpoint is invoked every time a certain event in
GitHub is published. The pipeline endpoint can be an
external integration server like Jenkins. Webhooks are
usually not defined in the pipeline declaration.

Note Beware of a potential security vulnerability when using
webhooks. In the case of an SCM trigger or a manual trigger, the
user is known, so a dual control in the pipeline can exclude this user
from approving their own change. In the case of a webhook, the
credentials with which a pipeline is triggered are often different (e.qg.,
a nonpersonal account). So, if someone can invoke the webhook,
they may also be able to approve the pipeline in the dual control

(the credentials of the webhook and the credentials of the person
performing the dual control differ).

e Schedule: Schedules are a way to define at which
moments the pipeline must start. This can be once a
day, once a month, or every minute. The most versatile
way to specify a schedule is using a cron expression.
Listing 5-3 shows an example.

218

CHAPTER 5 PIPELINE DEVELOPMENT

Listing 5-3. CircleCl, Scheduled Trigger; Every Working Day
at 10 p.m.

workflows:

at_ten:
triggers:
- schedule:

cron: "0 22 * * 1-5"

In Listing 5-3, a trigger is configured, which starts the pipeline every

working day at 10 p.m.

Pipeline completed: There are several ways a pipeline
can be started by another pipeline. A pipeline can be
triggered using a webhook, in which the invocation of
this webhook is explicitly added to the calling pipeline.
This can be done by adding a curl command (on
Linux) to the pipeline definition, but this is not a very
clever solution. If the endpoint of the other pipeline
changes, the calling pipeline must be changed also. A
better way is to use a pipeline complete construct in
the pipeline that needs to be triggered. In this pipeline,
it is defined to which other pipeline(s) it “listens.” The
pipeline completed construct is a typical example of
an Observer pattern implementation. In the example
shown in Listing 5-4, a pipeline is started as soon

as another pipeline with the name pipeline-that-
triggers-me is completed.

219

CHAPTER 5 PIPELINE DEVELOPMENT

Listing 5-4. Azure DevOps, Pipeline Triggered by Another Pipeline

resources:
pipelines:
- pipeline: logical-name-of-this-pipeline
source: pipeline-that-triggers-me
trigger: true

This pipeline, with the name logical-name-of-this-
pipeline, is started after the pipeline-that-triggers-
me is completed.

e Manual: A pipeline can always be started manually,
of course. Usually, no specific declaration needs to be
added to the pipeline to make this possible.

Execution Environment

Modern platforms provide the option to specify in which environment

a pipeline is supposed to run. The various platforms use concepts like
“slave” nodes, runners, executors, or agents, whether grouped into a

pool of servers or containers. In essence, the execution environment is
the environment in which a pipeline runs. This can be in the form of a
Linux or Windows server, but it is also possible to execute a pipeline in a
Docker container running on a (Kubernetes) cluster. These environments
are preconfigured and registered to the ALM/integration platform. These
environments also consist of preconfigured tools. If you want to build an
artifact using Java or Python, the environment must have pre-installed Java
JDK and Python.

In addition to running the whole pipeline in one specific environment,
it is also possible to decompose the pipeline and have each part of the
pipeline run independently. The pipeline is decomposed, often as so-
called jobs. Each job is executed in a specific environment. Jobs of one

220

CHAPTER 5 PIPELINE DEVELOPMENT

pipeline may run in the same environment, but jobs may also run in
separate environments. This also means that in these situations there is no
shared memory and passing information between jobs is not always trivial.
Listing 5-5 and Listing 5-6 show some examples.

Listing 5-5. CircleClI, Job Executed in a Docker Container

jobs:
build:
docker:
- image: cimg/openjdk:17.0.3

Listing 5-6. Azure DevOps, Job Executed on a Self-Hosted Server

jobs:
- job: build
pool: myServerPool

Listing 5-5 defines a Docker container with a base image containing
the Open]JDK. This becomes the runtime environment of the pipeline.
Listing 5-6 defines a self-hosted server pool—myServerPool—consisting
of servers on which the pipeline runs. The pool may consist of one or more
servers with a certain operating system and pre-installed tools.

These constructs are simple yet powerful. With only a few lines of
code, it is possible to declare where a pipeline or even individual jobs are
executed, and the platform takes care of it.

Connections

Pipelines often connect to external systems with a specific endpoint, a
certain protocol, and security credentials. Using curl in the pipeline to
connect to an external Nexus IQ server may work, but this does bloat the
pipeline code. A more elegant way is to make use of connectors or service

221

CHAPTER 5 PIPELINE DEVELOPMENT

connections. Various platforms name them differently, but in essence,
these connectors are endpoint specifications defined in a special—and
secured—connection store. This endpoint is referred to in the pipeline
by its logical name, which results in a cleaner and more secure pipeline
declaration, and prevents you from having to store a username and
password in an SCM. In addition, some platforms support options to set
up dual control for creating service connections.

Listing 5-7. Azure DevOps, Nexus IQ Service Connection

- task: NexusIgPipelineTask@1
displayName: 'Nexus IQ policy evaluation'
inputs:
nexusIqService: 'ServiceConnectionNexusIOQ'
applicationId: myApp
stage: 'AnalyzeCode'

Listing 5-7 refers to the ServiceConnectionNexusIQ service connection
as the logical endpoint of NexusIQ. This endpoint is specified outside the
pipeline declaration, as shown in Figure 5-2.

222

CHAPTER 5 PIPELINE DEVELOPMENT

Figure 5-2. Azure DevOps, service connection of NexusIQ

Variables

Variables in pipelines are similar to variables in a programming language.
Variables can be defined in a pipeline, but certain platforms also provide
the option to define variables outside the pipeline specification, sometimes
grouped with a logical name. Special care needs to be taken concerning
variable scope. As explained earlier, parts of the pipeline—stages or jobs—
can be executed on different runtime environments, which makes sharing

variables more troublesome, or in some cases even impossible.

223

CHAPTER 5 PIPELINE DEVELOPMENT

A special case of variables concerns conditional variables. Conditional
variables are handy to assign a value to a variable, given a certain
condition. For example, an HTTP endpoint of a test environment differs
from the HTTP endpoint of a production environment. The endpoint
variable in Listing 5-11 depends on the target variable.

Listing 5-11. Azure DevOps, Conditional Variable

variables:
- name: endpoint
${{ if eq(parameters['target'], 'test') }}:
value: 'https://mycompany.test.com'
${{ if eq(parameters['target'], 'production') }}:
value: 'https://mycompany.com’

Conditions

Conditions in pipelines are indispensable. Conditions in scripted pipelines
are implemented using an if/then/else construction. Conditions in
declarative pipelines often have a different structure and use keywords

like if, when, or condition, depending on the platform. Some examples of
conditions on different platforms are shown in Listing 5-8, Listing 5-9, and
Listing 5-10.

Listing 5-8. GitLab, if Example

job:
script: echo

Run Analyze code in case of the main branch"
rules:
- if: $CI_COMMIT BRANCH == "main"

224

CHAPTER 5 PIPELINE DEVELOPMENT
Listing 5-9. Jenkins, when Example

stage('Analyze code') {

when {
branch "main"
}
steps {
echo 'Run Analyze code in case of the main branch'
}

}

Listing 5-10. Azure DevOps, condition Example

- stage: Analyze code stage
displayName: 'Analyze code'
condition: eq(variables['Build.SourceBranchName'], 'main')
jobs:
- job: Analyze code job
steps:
- script: echo 'Run Analyze code in case of the
main branch'

Caching

Caching decreases the time to build an artifact. Different platforms have
implemented caching in different ways. In one of the researched platforms
(CircleCl), it is implemented as an integrated construct in the pipeline
declaration and is accessed by using the save_cache and restore_cache
keywords, while in other platforms, caching is added as a marketplace
solution that performs the save and restore actions.

When using the caching feature, it becomes possible to store external
libraries or even compiled code to a “cache store” and use this cache in
subsequent pipeline runs. It is best to explain this using Figure 5-3.

225

CHAPTER 5 PIPELINE DEVELOPMENT
CI/CD platform

Download Download

) Cl/CD libraries libraries
First run . . <—
ipeline

Local
filesystem

Remote
cache

Download cache

Internal
repository
Store local files to cache

Download

CI/CD libraries
Second run . R <
ipeline

Local
filesystem

Figure 5-3. Pipeline caching

In the first pipeline run, libraries are downloaded from a repository as
part of an artifact build task. These files are locally stored, so the pipeline
can use them. If the pipeline is finished, the files are stored as a persistent
cache (remote cache) for later use. In subsequent pipeline runs, the
libraries are not retrieved anymore from the repository, but instead, the
persistent cache is downloaded. Libraries are not downloaded from the
Internet or a repository anymore in the artifact build task, but the files of
the cache are used instead. This is much faster.

A common pattern in most platforms is to store the cache using a key.
This can be a fixed key, like myCache, but often, caches are immutable,
meaning they cannot be updated anymore after creation. A smart solution
to tackle this problem is to hash specific files that declare the libraries
and use the hash as part of the key. If one of these files changes because a
different library version is defined, the key changes. This results in building
up a new cache.

226

CHAPTER 5 PIPELINE DEVELOPMENT

Take a Maven project. The project is configured using a pom.xml file
(or multiple pom.xml files). Part of the key with which the cache is stored
contains the hash of this pom.xml; or in the case of multiple pom.xml files,
all files are hashed, and a new hash is created from the concatenated
hashes. Listing 5-12 contains an example of the definition of an
immutable cache.

Listing 5-12. Azure DevOps: Immutable Cache Definition

- task: Cache@2

inputs:
key: 'maven | "$(Agent.0S)" | **/pom.xml’
restoreKeys: |
maven | "$(Agent.0S)"
maven

path: $(MAVEN_CACHE_FOLDER) # is ./.m2/repository
displayName: cache maven_local repo

The trick is to assemble a cache key, using the Maven prefix, the
operating system, and all pom. xml1 files. The **/. pom pattern is used to
calculate the hash of all the pom. xml files. As soon as one of the pom.xml
files changes, the hash changes, and a new cache is saved and restored.

Listing 5-13. Azure DevOps, Log Determining the Cache Key

Resolving key:

- maven [string]

- "Linux" [string]

- **/pom.xml [file pattern; matches: 3]

- s/pom.xml -->
7CC04B8124B461613E167AA0D15E62306BDF553750988B6BF21355
E641B163DE

227

CHAPTER 5 PIPELINE DEVELOPMENT

- s/app-cdk/pom.xml --> 73B0183B69BB3454081CBB6F2CE08176AADS2
D6CCB586ECE6368D617B632FD56

- s/s3-lambda/pom.xml --> 59D32A57C7138664E36F1C56CF319510B2
EC10A438ACB33059AA8DC95E3C0490

Resolved to: maven|"Linux"|L+f1r4605J7Rhd43eGymkldHfa
5BAH5UHbZevoWBSco=

Note It is important to realize that the optimization step to

retrieve something from a cache instead of the source should not
compromise security. Platforms should take care that caches are
scoped to specific pipelines and that the integrity of a cache is
guaranteed. For the latter, adding a digital signature to a cache and
verifying it when used would be the best solution. This does not seem
to be a (transparent) feature in the major platforms, but it is possible
to implement it in the pipeline yourself.

Matrix

A matrix is used to declare an action using all permutations of variables
declared in the matrix. The matrix implements a fan-out pattern and can
be used for the implementation of a cross-platform build strategy. Using

a matrix, it becomes possible to define a build for multiple language
versions and multiple target environments. Listing 5-14 shows an example
of a matrix declaration.

Listing 5-14. GitHub Actions, Matrix Strategy Used in a Build Job

jobs:
build:
runs-on: ${{ matrix.os }}

228

CHAPTER 5 PIPELINE DEVELOPMENT

strategy:
matrix:
python-version: [3.7, 3.8]
os: [ubuntu-latest, mac0S-latest, windows-latest]

In Listing 5-14, six jobs are instantiated in which an artifact is built
for two Python versions and three operating systems. The syntax of this
declaration is elegant and simple and prevents the same code from being
repeated six times in one pipeline declaration.

A matrix can be used for more than only building artifacts. It can also
be used to test multiple versions of an artifact in parallel.

Deployment Strategy

A deployment strategy can become complex. There are various solutions
to solve this problem. A common—and recommended—solution is to use
a deployment tool with built-in deployment strategies. Examples are AWS
CodeDeploy, which supports canary deployments, and Cloud Foundry CLI
with the blue-green deployment plugin. Using specific deployment tooling
has a lot of benefits, but sometimes it is not possible to use a tool. There
can be a technical or financial constraint that “forces” teams to implement
the deployment strategy in the pipeline itself.

Fortunately, some platforms have features that help implement
deployment strategies in the pipeline. One of these features is the canary
deployment construct shown in Listing 5-15.

Listing 5-15. Azure DevOps, Canary Deployment Strategy

jobs:

- deployment:
environment: production
pool:

name: myAgentPool

229

CHAPTER 5 PIPELINE DEVELOPMENT

strategy:
canary:
increments: [10]
preDeploy:
steps:
- script: "Performing initialization"
deploy:
steps:
- script: echo "Deploying.."
routeTraffic:
steps:
- script: echo "Route traffic to updated version”
on:
failure:
steps:
- script: echo "Deployment failed"
success:
steps:
- script: echo "Deployment succeeded"

The deployment deploys in increments of 10 percent until it reaches
100 percent. During each increment, the traffic is routed to the new
version until all traffic is directed to the new version and the deployment
is completed. If the deployment fails, the deployment must be rolled back.
This construct helps in structuring the pipeline declaration. Unfortunately,
the actual implementation must still be coded.

Auto-cancel

If a pipeline contains a task to sign off a manual test result and this pipeline
is executed multiple times, multiple orphaned pipeline instances pile up
and wait for a manual sign-off. The previous chapter proposes various
solutions. One of them is to use the “auto-cancel” option. With an auto-

230

CHAPTER 5 PIPELINE DEVELOPMENT

cancel construct, all already running instances of the same pipeline are
canceled if a new pipeline instance is started. The new instance always
includes the latest code changes. This means there are no dangling

pipelines anymore.

Listing 5-16. Semaphore, Auto-cancel

auto_cancel:
running:
when: "true"

There are similar constructs that almost do the same, but not quite.
Azure DevOps has a “batch” feature. Enabling the “batch” option does not
start any new instance of the pipeline if there is still a running instance.

On Success/Failure

Just as in regular programming languages, there is a need to add a
try/catch/finally construct in a pipeline. They come in various
flavors. Sometimes—in scripted pipelines—they are just implemented
as try/catch/finally blocks. In declarative pipelines, you see
implementations like a post section, which includes blocks that can be
executed conditionally.

Listing 5-17. Jenkins, Post Success/Failure

post {
success {
echo 'Stage: Notify actors - success'
}
failure {
echo 'Stage: Notify actors - failure'
}
}

231

CHAPTER 5 PIPELINE DEVELOPMENT

Listing 5-18. Azure DevOps, On Success/Failure

on:
success:
- script: "Notify actors - success"
failure:
- script: "Notify actors - failure"

It is important that these constructs can be used on different levels
within the pipeline. Using them within a stage deals with stage-scoped
issues. Using them on a pipeline level means that the scope applies to the
whole pipeline.

Fail Fast

One of the key elements in CI/CD is to fail fast and return immediate
feedback. This concept is implemented differently on each platform, and
there is no generic construct that has been adopted by multiple platforms.
A fail fast means that if a stage, job, or task fails, the whole pipeline stops
immediately. The example in Listing 5-19 stops all jobs in the pipeline in
the case of an error.

Listing 5-19. Semaphore, Fail Fast

fail fast:
stop:
when: "true"

Priority

It was already mentioned earlier, but prioritizing pipelines is a must-have
feature. In addition, it should be possible to define this prioritization on
different levels. A pipeline run solving a production incident should have
priority over previous nonurgent pipeline runs. In addition, priorities

232

CHAPTER 5 PIPELINE DEVELOPMENT

should be given on different levels within the organization. Normal
pipeline runs of a security team should have higher priority than normal
pipeline runs of regular DevOps teams. Configuring a priority policy would
be a good solution. As already explained, prioritization constructs could be
improved on all platforms, so no example is given here.

Test Shards

Some platforms—Ilike CircleCI—have the option to “split” one task

and divide the work. The execution of one task is instantiated several
times, and work is distributed over multiple compute nodes. This is very
efficient when performing tests. Assume that a regression test contains
the execution of hundred individual tests. A normal task run executes
these hundred tests sequentially. But the workload can also be spread over
multiple instances of that task, such as in five instances of the same task,
executing five times 20 tests in parallel, for example. Note that this puts
arequirement on the test set. It must be possible to group tests and run
them independently. This group of tests is called a test shard. The process
to create the shards is called test splitting.

Creating test shards is possible in several ways. A simple algorithm just
takes the hundred test cases and distributes them equally over five shards.
The problem, however, is that you could end up with a shard containing
only tests with a long test duration. A better approach is to divide the tests
based on other characteristics. An optimized approach is to spread the test
set over the five shards based on timing data. This is historic data based
on previous test runs. After several runs, the ALM/integration platform
has enough information to equally divide the tests efficiently over the task
instances based on their duration.

Figure 5-4 contains three instances of the same test task. The total work
of Test_task_1.2.1 is spread over the three task instances, each executing
10 tests.

233

CHAPTER 5 PIPELINE DEVELOPMENT

/ Pipeline \
4)

Stage_1.1
Task_1.1.1
N\ J)
Kﬁ Exectute tests
Stage 1.2 [1..10]
= -
//

Test_

Exectute tests
task_1.2.1 >

[11..20]

M
\ Exectute tests
Task_1.2.2 [21..30]
———

Figure 5-4. Test splitting

Templates and Libraries

It is possible to put all code in one big pipeline file and duplicate it in other
pipelines if needed, but this does not improve readability or maintenance
very much. By using isolated pipeline code, reuse is encouraged. Using
templates or libraries is a way to move pipeline code to another file so
it can be reused by other pipelines. Template in this context is a generic
name. Some ALM/integration platforms offer the possibility to use some
form of a template, but depending on the platform, the name and concept
may be different. In Jenkins, for example, it is possible to use a shared
library or use the load command to include a Groovy script in a pipeline.
In Azure DevOps, templates are used in the form of include or extend
directives (see also Figure 5-5), which provides a lot of flexibility. Azure
DevOps distinguishes two types of templates.

o Extend templates: The pipeline extends code defined
in another file. This is called an extend template. An
extend template works as a skeleton from which other

234

CHAPTER 5 PIPELINE DEVELOPMENT

pipelines inherit its functionality. This allows the
development of a generic pipeline structure, while
details are implemented in each specific pipeline.

e Include templates: The main pipeline invokes templates
to execute parts of the work. This is called an include
template. An include pipeline includes pipeline code
from another file in a certain section of the pipeline.

pipeline.yml

: templates/extend.yml

Extend H include.yml

extend.yml : Include
: template/include.yml

Figure 5-5. Extend and include templates

There are more options to add additional features to your pipeline.
One example is adding pre- and post-jobs, using a feature called a
decorator or hook (depending on the platform you use, of course). This
makes it possible to add mandatory jobs from a compliance perspective.
For example, a post job is added, which cleans up the workspace of an
agent/node/runner and prevents files from remaining on the file system
after the pipeline ended.

Gates and Approvals

A gateis an automated check to determine whether a pipeline is allowed
to continue. This involves the validation of certain conditions, for example,
the result of the Analyze code stage or the fact that a task is timed out. If the
condition fails, the gate ends the pipeline execution.

235

CHAPTER 5 PIPELINE DEVELOPMENT

An approval is a manual task that works similarly to a gate. The
approval either allows the continuation of the pipeline or ends the pipeline
execution and always involves a user who approves or declines. The
Perform dual control stage is a typical example of an approval. Both gates
and approvals are available on most platforms.

Workflow

Various platforms support pipeline declarations in which the functionality
of the tasks and the workflow are intertwined. This makes it harder to
distinguish functionality from workflow and makes it harder to understand
the workflow of the pipeline. A good alternative is to separate the
functionality from the workflow. Workflow becomes an isolated section of
the pipeline declaration, which improves readability.

Listing 5-21 declares the workflow in a separate section of the pipeline.
It does not include all the details of the jobs, but only their mutual relation
and execution order. The unit_test and acceptance_test jobs are executed
only after the build job has been finished. If both test jobs are completed,
the deploy job kicks in.

Listing 5-21. CircleCI Workflow

workflows:
version: 2
build test_deploy:
jobs:
- build
- unit_test:
requires:
- build
- acceptance_test:
requires:
- build

236

CHAPTER 5 PIPELINE DEVELOPMENT

- deploy:
requires:
- unit_test
- acceptance_test

Plugins and Marketplace Solutions

Plugins and marketplace solutions are a perfect way to add new features
to ALM/integration platforms and pipelines. Plugins and marketplace
solutions are available for various purposes, from a dashboard widget

to a task that seamlessly integrates third-party tools with the ALM/
integration platform. Depending on the platform, installing and using
these plugins is straightforward, especially if they are self-contained. Some
platforms, however, have the annoying habit that most of their plugins
have dependencies and transitive dependencies with other plugins, often
with specific versions. The plugins are not self-contained, which can cause
dependency hell. But once you go through this struggle, plugins turn out to
be powerful tools helping you to develop professional pipelines.

Repositories: Everything as Code

The life cycles of application code, infrastructure code (IaC), and
pipeline code are often different. Does this mean that these types of code
should be distributed over multiple repositories? As usual, it depends.
Sometimes it is a matter of taste to distribute the different types of code
over multiple repositories. Sometimes the CI/CD tooling forces the
structuring of a project and its repositories, but a personal preference

is to store application code, infrastructure code, test code, and pipeline
code that belong to each other in one repository. Especially in the case
of a microservice context, this makes sense. Everything that is part of a
microservice is grouped because of the componentized character of a

237

CHAPTER 5 PIPELINE DEVELOPMENT

microservice. And if more microservices are developed and more types
of code, for example, security as code,' are added to the mix, repositories
must be organized in such a way that everything is still easy to find and not
scattered across various repositories.

In addition, if the different types of code are stored in the same
repository, pipeline development becomes part of the teams’ workflow
and is more of a team effort.

Consider a situation where a DevOps team is responsible for the
development of 15 very similar microservices. The team wants to
make use of generic templates (or libraries), developed by another
IT4IT team. What could a repository setup look like?

If all microservices are generic in nature, it makes sense to create
one generic pipeline skeleton (base pipeline) that can be reused for all
15 microservices. Each microservice has its code repository containing
the infrastructure code, the application code, and also the pipeline code.
The pipeline of each microservice “inherits” from the base pipeline and
adds specific features and variables. The pipeline also uses generic code,
developed by another—IT4IT—team. If during development the DevOps
team notices that some of their pipeline code has a generic character,
they can decide to promote this code to a template library they manage
themselves. A possible repository setup could look like Figure 5-6.

! Open Policy Agent gets more attention lately and fits nicely into the security-as-
code domain (see [32]).

238

CHAPTER 5 PIPELINE DEVELOPMENT

IT4IT repo
- pipeline

Base pipeline code for the whole organization

\- template
Generic pipeline code for the whole organization

DevOps team repo -
\- pipeline

Microservice base pipeline
VOpt'ionalIy derived from base pipeline of IT4IT team)

- template
Generic pipeline code for the DevOps team

Microservice 1 repo
microservice-1
Microservice 1 application code

- infrastructure
Infrastructure code microservice 1
- pipeline

Pipeline code microservice 1

\- template

Generic pipeline code for microservice 1

Microservice 15 repo
microservice-15
Microservice 15 application code

- infrastructure
Infrastructure code microservice 15
- pipeline

Pipeline code microservice 15

\. template

Generic pipeline code for microservice 15

Figure 5-6. Microservice repository setup

Each microservice is contained in a repository, divided into an
application code, infrastructure code, test code, and pipeline code section.
The pipeline code section may contain multiple pipeline files. This section
also contains a template directory with generic pipeline code, specific to
this microservice. Generic pipeline code, developed by the DevOps team
and used by all microservice pipelines, is moved to a separate repository.

239

CHAPTER 5 PIPELINE DEVELOPMENT

Generic pipeline code, developed by an external —IT4IT—team, and used
by all microservice pipelines, is also stored in a separate repository but
managed by the IT4IT team.

Of course, you may decide to use a completely different repository
setup, but the proposal in Figure 5-6 has been proven.

Note When adding pipeline code to the same repository as the
application code resides, make sure that you have arranged a
process to test the pipeline code properly. Untested or badly tested
pipeline code results in a constant change of the code after it was
merged into another branch. This also affects the application,
because an incorrect working pipeline causes a stall in the software
delivery process.

Third-Party Libraries and Containers

One of the security requirements listed in Chapter 3 mentions the fact that
retrieving libraries and containers from the Internet must be done with
great care. So, if a build task makes use of external libraries, make sure that
retrieval of these libraries is secure.

Consider Figure 5-7. The pipeline retrieves data from various sources
on the Internet. But what happens if one of these sources contains
malicious code because the source is hosted by someone who does not
have the best intentions? If access is permitted to use any source on the
Internet, the pipeline may retrieve malicious code, include it in the artifact,
and deploy it to production.

240

CHAPTER 5 PIPELINE DEVELOPMENT

[picri/efilge]

Unauthorized source

Figure 5-7. Retrieve containers/libraries directly from external
repositories

At least one level of security should be considered. Assess which
Internet sources should be authorized and only allow these sources to be
accessed. Use a proxy containing a whitelist of the authorized sources. The
pipelines are allowed to retrieve libraries and code only through the proxy.
A procedure to add new assessed sources must be in place, of course; the
setup must not become too rigid. Figure 5-8 shows a proxy layer denying
access to the unauthorized source.

241

CHAPTER 5 PIPELINE DEVELOPMENT

Cl/CD
pipeline

Proxy layer

N

Unauthorized source

Figure 5-8. Using a proxy to retrieve containers/libraries

Another security layer can be added, using an internal repository, such
as Artifactory or Nexus, or a repository positioned within the organization’s
data center or cloud account. The internal repository is refreshed with
resources from the Internet, which are retrieved via the proxy. The
advantage of using an internal repository is as follows:

o Ifexternal—Internet—locations are down, the pipeline
still works because it only makes use of the internal
repository.

o Ifresources on the external Internet locations are
moved or not available anymore, the pipeline still
works with the local copy.

242

CHAPTER 5 PIPELINE DEVELOPMENT

As part of the refresh action, in which the external

resources are copied to the internal repository, a

prescan can be performed on the resources, before

they are internally exposed within the organization.

Examples are as follows:

Malware and virus scan; resources copied from

an authorized source may still contain malware,
viruses, Bitcoin miners, etc. Scan them using a tool
like Bitdefender.

Vulnerability scan; e.g., a base Docker image is
scanned, and if it contains major vulnerabilities, it
is put into quarantine.

Integrity scan; even if the Internet source is
authorized, the copied resources may still be
tampered with. The integrity scan makes sure that
the downloaded resource is validated against a
valid hash or digital signature.

Authorized IT products; check using Allow list
and Deny list, for example, based on the Product
Compliance List from [12].

A disadvantage of copying resources to an internal repository and
prescanning them is that it is unknown up front which resources are used
by a pipeline. Copying all resources and prescanning them takes a lot of
storage and computing capacity. A practical solution is that pipelines use
both an internal repository and a proxy for retrieving resources. Resources
retrieved by the proxy must be scanned by the pipeline for malware,
viruses, vulnerability, and integrity.

Other solutions make use of tooling with an extensive database that
already performed prescans of a lot of packages and libraries. The tool
prevents vulnerable packages and libraries from being downloaded in the

243

CHAPTER 5 PIPELINE DEVELOPMENT

first place. A tool such as Mend Supply Chain Defender—formerly known
as WhiteSource—can be used for this. Other alternatives such as Pyrsia
(see [34]) make use of the power of blockchain to build trust for using
open-source packages. Nexus Pro has the option to verify Pretty Good
Privacy (PGP) signed artifacts.

Figure 5-9 shows the setup of an internal repository.

Cl/CD
pipeline

Proxy layer

A

Unauthorized source

repQsitory

Figure 5-9. Using an internal repository to retrieve containers/libraries

Various ALM/integration platforms also support a pipeline cache
or remote cache, which not only caches precompiled source files but
also caches libraries and containers retrieved when building the artifact.
If a remote cache is used, the setup looks like the one in Figure 5-10.
The combination of the internal repository and the remote cache is
complementary; the internal repository contains files used by the whole
organization. The remote cache contains a subset of these files and is
positioned very close to the pipelines.

244

CHAPTER 5 PIPELINE DEVELOPMENT

Cl/CD
pipeline

Proxy layer

N

Unauthorized source

repgsitory

Figure 5-10. Pipeline/remote cache and retrieval of containers/
libraries

Versioning and Tagging

A pipeline usually contains information that defines the state of a resource
in the pipeline. State in this context means the status of the stages in

the pipeline. A resource refers to any component used in the pipeline or

the pipeline as a whole. Resources are work items in the issue tracker,
application code, a build artifact, the pipeline running instance, etc.
Together, these resources represent a certain state of a CI/CD process
occurrence. A resource is represented using an identifier. For example, a
release candidate of an application is represented by the application code, is
identified using a commit hash, is associated with a work item ID, is built by
the pipeline with a certain run ID, and delivers an artifact with a particular

245

CHAPTER 5 PIPELINE DEVELOPMENT

version. Together these identifiers form a chain, which makes auditing
the CI/CD process possible. The problem is often that these identifiers are
different for each resource and tracing the chain of steps becomes difficult.

In this situation, tagging comes to the rescue. Tagging is adding a piece
of information to a resource. Tagging can be seen as adding metadata
to describe the state of a resource, and it helps in implementing the
requirement “All changes are traceable.”

In the ideal world, it would be perfect to tag every resource that
contributed to the creation, deployment, and test of a release artifact.
In practice, however, tagging is often restricted to only a subset of these
resources.

Versioning makes it possible to identify the different states, and you
can use tagging as a way to version a resource. This means a tag can be in
the form of a version, but it doesn’t have to be one. A popular versioning
format is the “Semantic Versioning” scheme, which defines the major,
minor, and patch versions. The format is MAJOR.MINOR.PATCH, for
example, version 2.3.1 (see also [19]).

Assuming a team wants to apply tags in the form of a semantic versioning
scheme, they first need to determine which resources support tagging. If a
resource does not support tagging, there may be other ways to identify the
state of a resource, for example adding the version to the name of the resource.
Using a version in the filename of a build artifact is such an example. What
does this mean for the pipeline design? Consider the following case:

A team uses Jira as their issue tracker system and Git as a source
control management system. A Git commit represents one Jira ticket,
which has to be provided in the commit message. The team uses

the Feature branch workflow. Jenkins is used to build and deploy the
artifact—an AWS Lambda app—to an AWS account. Artifacts are
stored in Sonatype Nexus.

246

CHAPTER 5 PIPELINE DEVELOPMENT

Semantic versioning is used and tagging is applied only in case an
artifact is built from the main branch. The team wants to tag as many
resources as possible. The tag must contain the release version.

Given this setup, the following are possible actions to be taken in the

pipeline:

Tag the Git commit with the release version (for
example, git tag -a v2.3.1 9fceb02).

The Git commit message contains a reference to the
Jira ticket if the commit is pushed to the repository.

Add alabel to the Jira ticket with the release version. A
Jira REST API is used to create this label.

Add the release version to a Jenkins build by setting the
release version in the job display name.

Add the release version to the artifact filename in
Nexus. Tagging is not needed if the artifact name
already contains the version, but it is possible to add a
tag with the Nexus Pro version.

Tag the AWS Lambda or the AWS Stack with the release
version.

The design of the pipeline of the main branch of a feature branch

workflow is extended with tagging tasks, resulting in the BPMN model

shown in Figure 5-11.

247

CHAPTER 5 PIPELINE DEVELOPMENT

Figure 5-11. BPMN, versioning and tagging

Note Tagging is done in several stages in the pipeline. Setting the
release version in the Jenkins job is one of the first things done in the
pipeline, but the Execute build may still fail. But this is not a problem.

248

CHAPTER 5 PIPELINE DEVELOPMENT

The pipeline intends to create a release candidate with a certain
version that can be deployed to production, but the pipeline job may
still fail along the way. Maybe some resources are already tagged,
and others aren’t. Tracing the tags in the chain reveals that the
pipeline stopped at a certain stage and the artifact was not deployed
to production.

Environment Repository

A well-developed application does not contain any environmental
properties. The artifact must be built once but must be able to run
anywhere. Environmental properties must be added during deployment,
for example, by enriching placeholders in a property file with the correct
data during deployment. Data such as database credentials or HTTP
endpoints are stored in an environment repository, and as soon as a
deployment starts, the placeholders in the property file are replaced with
the database credentials and HTTP endpoints associated with the target
environment to which the application is deployed.

There are different types of environment repositories. The type of
environment repository to use also depends on the security classification
of a certain property. Database credentials have a higher risk rating than
an HTTP endpoint, so database credentials should be stored in a more
secure environment repository. Here are some examples:

o Variable in the pipeline: The simplest solution is to
just define properties as (conditional) variables in the
pipeline code itself. During deployment, the target
environment is determined, and a specific set of
variables is used. This solution is easy to implement.

249

CHAPTER 5

250

PIPELINE DEVELOPMENT

A disadvantage is that the pipeline code cannot contain
sensitive information, and updating a variable means
that the pipeline code must be updated.

Storage on a file system or SCM repository: Properties
are stored on the file system or in a repository—such as
Git—and the files are arranged per target environment;
dev.test.properties, system.test.properties,
acceptance.test.properties, and production.
properties are a few examples. During deployment,
the target environment is determined, and the property
file associated with this environment is determined and
included in the deployment. A disadvantage is that a
property file stored on a file system or a code repository
cannot contain sensitive information. The first layer of
security can be established in such a way that access

to the files is only allowed by the pipeline and by
engineers of the DevOps team. Other people are not
allowed to access the filesystem or repository.

Secret management tools: There are several (open
source) secret management tools that help with
content encryption of files in an SCM (Git). Examples
are SOPS and Blackbox. See [37].

Integrated environment repository: Some ALM/
integration platforms already have an integrated
solution for storing environment properties,

with names such as Library, Config Store Service,

or Credentials store. It is a repository in which
properties—confidential or not—can be stored. Some
of these platforms also offer the possibility to store
complete files. The properties and files are encrypted.

CHAPTER 5 PIPELINE DEVELOPMENT

The encryption and decryption keys are managed by
the platform. This only leaves the question of whether
the storage of the keys is secure enough. In the case
of Jenkins, keys are stored on the file system on which
Jenkins is installed and can be accessed only by the
Jenkins user (in the case of Linux). For SaaS solutions,
the provider of the solution manages the encryption
keys.? This solution works fine for medium and low-
security classified properties.

e Vault: For really high-security classified information
such as database credentials, it is best to use a vault.
On some ALM/integration platforms, the integrated
environment repository is backed by a vault. The next
section elaborates a bit more on vaults and secrets
management in general.

Secrets Management

As mentioned in Chapter 3, secrets—passwords, tokens, keys,
credentials—used by an application preferably must be stored in a vault.
This can be Azure Key Vault, AWS Key Management Services, AWS Secrets
Manager, HashiCorp Vault, or a Hardware Security Module (HSM).
Important to consider is where the secret is created and how it can be
used by the application. Is the source location of the secret the same as
the target location? Or in other words, is the secret created in the location
where it is also used by the application, or is it created somewhere else
and must it be transferred to another destination so the application can
use it? This also raises the question of whether the source and target

2Unclear, however, is whether these encryption/decryption keys are specific to
one tenant or whether they are used across tenants.

251

CHAPTER 5 PIPELINE DEVELOPMENT

locations both meet the secret’s security classification and whether the
transport from the source to the target location is secure enough. Cases
exist in which vaults are not used for whatever reason or the secret cannot
be created in the vault itself and it has to be manually transferred from the
source location. Different situations are possible. Let’s go through some
options, in order of most secure to less secure:

1. The safest solution is that the target platform in
which the application runs also manages the
secret. The target platform creates the secret in
a vault, and the vault maintains its life cycle (see
Figure 5-12). No pipeline is involved. This is a safe
way to deal with secrets because the secret is not
exposed and may even never leave the vault. Key
rotation is managed by the vault by which the key is

automatically renewed.
Create
secret
Use
—_—
App
Vault

Figure 5-12. The target platform creates a secret in the vault

2. Often, the vault does not “know” it needs to create
and manage a secret. A pipeline is required to
trigger the creation of the secret in the target vault.
This means that the vault already has functions to
create the secret and the pipeline only executes
these functions. The application can use the secret
directly from the vault or uses the vault’s built-in

252

CHAPTER 5 PIPELINE DEVELOPMENT

functions to perform an action—e.g., signing data—
that makes use of the secret in the vault. In addition,
the pipeline triggers key rotation, which is managed
either by the pipeline or by the vault. Figure 5-13
shows this setup.

Trigger
create
secret (Use
[CD pipeline]—> | Q —
1= 1= App
Target
Vault

Figure 5-13. The pipeline triggers the creation of a secret in the vault

3. The secret is already precreated by another (source)
system and has to be transferred by the pipeline
to the target vault. The source location can be a
vault again or another system that manages the
secret. It can also be a system that uses a vault as its
secret provider. The transfer of the secret—using a
pipeline—from the source to the target vault is fully
automated and secured. Secure transfer measures
may include mTLS and/or even digitally signing
the secret. The secret is not stored in the integration
platform. Members of the DevOps team are not able
to view the secret’s value. The pipeline should never
expose the secret in logs or any other way. This
process is depicted in Figure 5-14.

253

CHAPTER 5 PIPELINE DEVELOPMENT

Create
secret
Retrieve Insert
secret L secret Use
CD pipeline _—
App

Source Target
Vault Vault

Figure 5-14. Transferring a secret from the source to a target vault

4. The retrieval of the secret from the source cannot be
automated. Maybe the source location is not even a
vault. This means that a DevOps engineer has to log
into the source system, extract the secret, and store
itin the ALM platform. Some of the ALM platforms
support the option of storing secrets, as variables or
in a secret file. The pipeline retrieves the secret from
the ALM platform and inserts it into the target vault.
Figure 5-15 shows this process.

Create Store
secret secure Insert
o secret Use
—_— CD pipeline _—
Source Ops App
Location Engineer Target
Vault

Figure 5-15. Manual transfer from source to target vault

5. The destination is not a vault. The secret must be
“injected” directly into the application or deployed
as a file accompanied by the application. This is
depicted in Figure 5-16.

254

CHAPTER 5 PIPELINE DEVELOPMENT

Store Inject
Create
secret secure secret Deploy
app
LQ CD pipeline
Source
Location Engmeer

Figure 5-16. Manual transfer from source and “injecting” the secret
in the artifact

Although this setup is not preferred from a security point of view, it is
used a lot. One of the next paragraphs explains which security issues are
involved with this solution.

Database Credentials

The secrets management cases in the previous paragraph are a bit abstract,
and a little more clarification seems in order. Consider the credentials of
a database. In Figure 5-17, the database is situated in a highly managed
infrastructure, such as a cloud environment. The pipeline calls an API of
the vault, which acts as an identity provider of the database and creates the
database secret (credentials). Because the app has a trusted relationship
with the vault, it is allowed to use the database secret to access the
database. The vault is responsible for the rotation of the database secret.
The responsibility of the pipeline is limited. After the initial trigger to
create the database secret, the system—consisting of a vault, an app, and a
database—manages and uses the database secret. This is a secure solution
because the secret in the vault is accessible only by a trusted party: the app.
This trust is based on security policies and other infrastructure measures.

255

CHAPTER 5 PIPELINE DEVELOPMENT

Access database

Create credentials

Trusted relation — in database — Trusted relation
Retrieve
Trigger create database
o database secret — secret
CD pipeline -~
App
Vault
L J \ J
Y Y
Trusted relation Trusted relation

Figure 5-17. Database secrets in a highly managed environment

The second example, depicted in Figure 5-18, is a setup in which
the database secrets (credentials) are generated in the database by an
Ops engineer or database administrator (DBA), who transfers the secret
to secure storage on the ALM/integration platform. As part of the app
deployment, the pipeline contains a task that “injects” the secret into the
app, after which it is deployed to the target environment. The “injected”
secret is used by the app to access the database. Secret rotation is triggered
by the Ops engineer who starts the whole process again.

The pipeline has some more responsibilities compared to the previous
example. The secret is stored in secure storage and must be retrieved by
the pipeline. The pipeline injects the secret into the app, after which the
app is deployed to the target environment. This example, however, suffers
from various attack surfaces.

e There are trusted relationships between the ops
engineer and the database, and the ops engineer and
the secure storage. From a security perspective, this
is a very weak point in the chain. Humans cannot be
trusted completely.

256

CHAPTER 5 PIPELINE DEVELOPMENT

o Storing the secret in the ALM/integration platform is
less secure unless the secret storage is a vault. For a lot
of platforms, this is not the case.

o Injecting a secret in the app is an example of bad
engineering, but sometimes these things occur. One of
the security issues is, that from that moment, the secret
is stored in a less secure place, namely, the app.

Create secret Access database
— — -
Trusted relation — — Trusted relation
Store Inject
secure secret Deploy
o app
- L CD pipeline -
Ops App
Engineer
L) \—?I
Y
Trusted relation Trusted relation

Figure 5-18. Manual transfer of database secrets

Feature Management

Most developers know what a feature flag is. A basic feature flag is an if
statement that determines whether a function in the code is executed
or not. More complex feature flags make it possible to disclose a certain
function only for a specific user group and/or target environment. This
is also the power of using feature flags; functions that were previously
hidden because they were in an experimental state, for example, can
be enabled with the click of a mouse. This makes feature management

257

CHAPTER 5 PIPELINE DEVELOPMENT

a good alternative for an A/B testing strategy using a canary or blue/
green deployment. In addition, feature flags can also be used to keep the
mainline of the code in a stable state. Unfinished features in the mainline
are hidden in a production environment.

Java developers may be experienced in implementing feature
management with the use of Spring Cloud Config, but it is interesting
to see that several ALM/integration platforms also begin to offer feature
management.

Feature management allows more control over feature flags in
pipelines and beyond. Toggling features on or off can be done at different
stages in the software supply chain. Figure 5-19 visualizes the possibilities.

Runtime test

Runtime
production
production

Figure 5-19. Toggle feature in CI, CD, and runtime stages

s

test

Not environment-specific
production

e Build (CI) stage: If a feature flag is toggled in a build
stage, the flag becomes part of the artifact, and
irrespective of where the artifact is deployed, the value
of the flag (true or false) determines whether a certain
function is enabled. Setting feature flags in the build
(CI) stage is static and a bit rigid. If a disabled function
must be enabled, a new artifact version must be built.

e Deploy (CD) stage: An alternative is to use feature flags
in the deploy (CD) stage. The value of the feature flag
is “injected” in the artifact at deployment time, which

258

CHAPTER 5 PIPELINE DEVELOPMENT

makes it possible to enable a function for one target
environment and disable it for another environment. In
Figure 5-19, a feature flag is enabled on the CD level for
the test environment and disabled for the production
environment.

e Runtime: Although using feature flags in the Deploy
(CD) stage provides a bit more flexibility compared
to the Build (CI) stage, it can be improved even more.
Modern feature management makes it possible to use
feature flags in a runtime environment. Functions
that were disabled in the runtime environment can be
enabled dynamically, for all users or a selected group
of users, without the need to rebuild or redeploy a new
instance of the application.

Implementing feature management in this way does pose some
constraints to the way the code is developed. The user interface of the
feature management system makes it possible to toggle a feature with the
click of a mouse. The application code, however, must be able to interact
with the feature management system to make that happen. This is also
one of the drawbacks. The application code needs a third-party library
and includes additional statements from that library. This results in some
intrusive code in the application. Fortunately, this code can be removed
again if the function becomes available to all users. In addition, using
feature flags in a runtime environment also requires a connection between
the feature management system and the application. The application is
packed with an SDK that polls APIs of the feature management system.
The APIs are used to synchronize between the SDK and the feature
management system. The SDK can detect the state of the feature flags in
the feature management system and use them at runtime. You need to
make sure that this connection is secure.

259

CHAPTER 5 PIPELINE DEVELOPMENT

Figure 5-20 shows how feature flags can be enabled and disabled—also
for a particular user group and/or environment—in GitLab.

Figure 5-20. Gitlab, feature flags

Listing 5-20 contains the if statement with a feature flag called add-
additional-costs. It makes use of the feature management system
Unleash (see [24] for more information).

Listing 5-20. Unleash/Java Example of a Feature Flag

if (unleash.isEnabled("add-additional-costs")) {

// Additional costs are calculated and added to the booking
} else {

// The booking is processed without additional costs

Development in the Value Streams

CI/CD development is a container concept that includes aspects that
deal with the automation of the software supply chain. This varies from
setting up the ALM/integration platform to the actual realization of a
specific pipeline. As explained earlier, activities related to CI/CD are
present in different value streams and divided over numerous teams and
organizational units. Development takes place on several levels within

260

CHAPTER 5 PIPELINE DEVELOPMENT

the organization. The following development topics provide some insight

into what kind of development and at what organizational level the

responsibilities lie.

CI/CD SaasS solution: A CI/CD SaaS solution is an
ALM/integration platform developed by an external
company. It can be configured using add-ons or
plugins.

Responsibility for the Gentral Organizational Unit Responsibility for the

DevOps Team
A specific organizational unit, like an IT4IT team, Individual DevOps teams
manages the use of the Saa$S solution for the whole are usually not involved with
company and is also involved in the integration the management of SaaS
and additional development of add-ons/plugins. solutions or the development

However, the management and development of the of specific add-ons or plugins.
SaaS platform itself is the sole responsibility of the
provider of the platform.

Platform infrastructure development: Instead of using

a SaaS solution, developing your own (reusable)
integration platform using IaC is another option. The
result is code, which is developed once and used to

roll out the complete integration infrastructure. One
example is, for instance, a Docker container containing
a completely integrated setup with Jenkins, InfluxDB,
Grafana, etc.

261

CHAPTER 5 PIPELINE DEVELOPMENT

Responsibility for the Gentral Responsibility for the DevOps Team
Organizational Unit

This activity is typically done on a Although DevOps teams sometimes develop
higher organizational level (by an IT4IT their own integration infrastructure code,
team) because it is costly and requires this is not recommended. It also depends on
specific knowledge. the type of organization.

e Platform infrastructure hosting: This involves the actual
provisioning of the integration infrastructure and
the hosting. It does not involve much development,
but it does include the configuration of the hosted

infrastructure.
Responsibility for the Central Responsibility for the DevOps Team
Organizational Unit
A valid use case is a centrally hosted The integration platform code can also
integration platform, managed by a be developed (once) by a specific team,
specific organizational unit. The platform is while each DevOps team makes use of
shared with multiple DevOps teams. it and manages the hosting.

o Development of a base pipeline: Development of a
base pipeline means that the pipeline code itself is
developed once and can be reused by different DevOps
teams. These pipelines are configured as desired.

Responsibility for the Central Responsibility for the DevOps Team
Organizational Unit

It makes sense that a specific ITAIT ~ DevOps teams make use of the base
team develops such a base pipeline. pipeline and configure it according to their
needs.

262

CHAPTER 5 PIPELINE DEVELOPMENT

Development of generic templates libraries: If

certain pipeline features are used often by multiple
DevOps teams, it makes sense to develop them as a
template or a library that can be (re)used by multiple
DevOps teams.

Responsibility for the Central Responsibility for the DevOps Team
Organizational Unit

A specific IT4IT team develops these DevOps teams make use of the generic
templates/libraries. template/library in their pipelines.

Pipeline code analysis and compliance scanning:
Because pipelines are just code, they can be scanned
on code quality and validated whether the pipeline is
constructed according to organizational policies.

Responsibility for the Gentral Organizational Responsibility for the

Unit

DevOps Team

There are plenty of code analysis tools to integrate This is usually not something
into a pipeline and analyze the applications’ code, a DevOps team itself does
but the tools that analyze the pipeline code itself because that would be a

are rather scarce. A specific IT4IT team is required bit like a fox guarding the

to develop this kind of tooling. henhouse.

Development of specific templates/libraries: If certain
pipeline features are used in multiple pipelines

within one DevOps team, it makes sense to create a
template/library from it to prevent redundancy of code.
The templates/libraries are usually not shared with
other teams.

263

CHAPTER 5 PIPELINE DEVELOPMENT

Responsibility for the Gentral Organizational Responsibility for the DevOps
Unit Team

This is specific for DevOps teams themselves, so The responsibility lies within the
no central team is involved. DevOps team.

o Development of pipelines: This concerns the
development of pipelines used by DevOps teams.

Responsibility for the Gentral Organizational Responsibility for the DevOps
Unit Team

This is specific for DevOps teams themselves, so The responsibility lies within the
no central team is involved. DevOps team.

Application development is done by an engineer developing code on
their local machine, performing unit tests, and, when finished, pushing
code to a source code management system. This triggers a pipeline on an
ALM platform or integration server, which builds, deploys, and tests the
application.

Throughout this book, the parallel is drawn between pipeline
development and application development, so applying the same
principles to pipeline development means that a developer develops the
pipeline code, performs the unit tests on the pipeline code, and, after
completion, pushes the pipeline code to the source code management
system, which triggers...a pipeline. This introduces the concept of a
pipeline of pipelines: a DevOps assembly line in which pipelines are built,
deployed, and tested using another pipeline.

Let’s elaborate a bit more on this and see where this leads.

264

CHAPTER 5 PIPELINE DEVELOPMENT

Simplified Pipeline Development

Application development has been done the same way for a long time.
The code is created, probably using plugins installed in the integrated
development environment (IDE), to analyze the code for vulnerabilities,
code quality, performance issues, etc. In addition, unit tests are created
and executed within the IDE. If everything is fine, the application code is
committed and pushed to the remote server.

Pipeline development at its simplest is when a developer creates the
pipeline code in their favorite IDE. Pipeline code involves one or more
files. Local testing is hard. The developer does not have a local ALM/
integration platform installed or can make use of a test platform, so the
pipeline code is developed, barely tested, and pushed to the repository;
after that, the developer hopes for the best. This is not a very optimal way
of working, but this does happen a lot.

Figure 5-21 schematically shows how this process works. The
developer creates or updates the pipeline code—for example, in a feature
branch—and pushes it to the remote repository when finished. This
repository also contains the application code. However, the pipeline code
is not unit tested at all.> As soon as the pipeline code is pushed, it starts
executing, but it was never tested properly, so errors and bugs are to be
expected. That is not a desired workflow, is it? Are there ways we can do
this a bit better? Well, actually we can.

3Sometimes some form of testing may be possible using a dry-run flag (like
mvn release:prepare -DdryRun=true), butitis still a hacky way of testing the
pipeline code.

265

CHAPTER 5 PIPELINE DEVELOPMENT

@

Pipeline code

-

[
1 ! Lo L
! Cl pipeline CD pipeline \¢mmm Application pipeline
28 [ctppeine] i
1 . .
Devops team ! APP"Fahon !
artifact 7
T S P
|
1 Unittest (local)
1
1 Application
1 code
1

Figure 5-21. Simplified pipeline development

Extended Pipeline Development

A bit more sophisticated way is to perform unit tests on the pipeline. How
this can be done is explained in the next chapter that deals with testing
pipelines, but in essence, the developer has a pipeline test environment used
for development, in which the unit tests of the pipeline are executed (see
Figure 5-22). This approach gives more confidence that the pipeline code is
of decent quality. Preferably this test environment is a local environment, for
example, a Jenkins instance installed on the developers’ local workstation.

(
1
1
1

1
. Pipeline test
Cl pipeline I CD pipeline] P ipeline tes:

1 environment
@ !
N Y

Pipeline code

Unittest (local)

Cl pipeline CD pipeline

|
|
I
I
I
I
|
:
1
CUCY
1

1

I

I

|

|

I

|

|

|

Devops team

e ————

1
Application H
N . artifact . /
Unittest (local)
Application
code

Figure 5-22. Extended pipeline development
266

CHAPTER 5 PIPELINE DEVELOPMENT

Advanced Pipeline Development

The extended pipeline development method can be raised to the next

level in which the pipeline is not only unit tested but also undergoes
all—or at least some—stages of the Generic CI/CD Pipeline itself. In this
development method, the pipeline of pipelines concept is applied to the
full extent (see Figure 5-23). Later in this chapter, the stages of the pipeline
of pipelines are explained in more detail.

Pipeline test
environment

Pipeline code

Unittest (local)

.............................

Pipeline
artifact

X0

Devops team

Cl pipeline % CD pipeline 1@ Application pipeline

Application

artifact
Unittest (local)

Application
code

®
Figure 5-23. Advanced pipeline development

—

’

This development method distinguishes three important phases in the
development process.

o Pipeline code is developed on a local machine after
which unit tests are performed. Preferably, unit
tests are performed on a local instance of the ALM/
integration platform.

o After pushing the pipeline code to the repository,
itis processed using an assembly line for pipelines.
This assembly line performs similar stages as in the

267

CHAPTER 5 PIPELINE DEVELOPMENT

case of application development but is now focused
on pipeline code. This assembly line of pipelines is
referred to as the pipeline of pipelines.

e The output of this pipeline—the application pipeline—
is a thoroughly tested pipeline artifact; this pipeline is
used to build, test, and deploy the application.

Note All three phases involve an integration infrastructure. This
can be the same ALM/integration platform used for running the
application pipeline—on which storage and processing of each
phase are separated—nbut it is also possible to use three different
physical infrastructures.

The advanced pipeline development approach has some drawbacks.
The team has to set up everything itself. Imagine an organization having
500 teams; this would not make any sense. It is too costly, it takes too
much time, and in addition, not all teams have the expertise to develop
something like this.

In essence, the approach is good, but some of the work needs to
be centralized and moved to a dedicated IT4IT team. The IT4IT team
develops the tools and infrastructure of the pipeline of pipelines. DevOps
teams make use of it.

Develop a Base Pipeline

In the previous examples, the DevOps team developed the application
pipeline. An alternative is to use a base pipeline that has been developed
by a central IT4IT team. The base pipeline contains default stages and
tasks and is used for a specific context, for example, a Java/Maven/Linux
context or a Python/Windows context. The base pipeline contains some

268

CHAPTER 5 PIPELINE DEVELOPMENT

mandatory tasks that should not be overwritten. The DevOps team extends
its pipeline from the base pipeline and configures it to its needs, so it can
be used to build, deploy, and test the application.

Creating the base pipeline requires specific knowledge, but
centralizing the development can save a lot of time and money in the end.
Creating a base pipeline also allows enforcement of certain policies or
security restrictions, which become automatically part of the extended
base pipeline.

In Figure 5-24, the base pipeline is tested by the IT4IT team—also
making use of a pipeline of pipelines—and the resulting base pipeline
artifact is centrally stored and can be used by the DevOps teams. Of course,
after extending and reconfiguring the base pipeline, the DevOps team
can also perform (unit) tests of their pipeline to make sure that it works as
expected.

1
1
Base pipeline { H
! H L P, H Pipeline test
1 + Cl pipeline I CD pipeline] :_envimnment
: Unittest (local) —— A !
L R e e L EE L L L P E P e PR PP L e .
1 [1
1 H . !
. H Base pipeline :
ITAIT team | : artifact :
m : ! Cl pipeline CD pipeline] :,_ Pipeline of pipelines
1
I i T v J
______ TS eyl g enogleslgylosyiogesigefylepb U U I S S
Pipeline
Configuration
282 L R .
\
1
Cl pipeline CD pipeline \@um Application pipeline

1

Application :

artifact ;

Application
code

@
Figure 5-24. Base pipeline

269

CHAPTER 5 PIPELINE DEVELOPMENT

Pipeline Generation

Extending a base pipeline has its limitations. What if the team needs

a completely different pipeline or deviates from the base pipeline so
much that using it is not justified? Instead of creating a base pipeline, the
pipeline used by the DevOps team can also be generated using a pipeline
generator. The feature richness of such a pipeline generator varies from
creating code snippets, which need to be assembled by the DevOps team,
to the generation of a complete customized pipeline that undergoes the
stages also used in regular application-oriented pipelines. The input of

a pipeline generator is a repository managed by a DevOps team. The
pipeline generator scans this repository, detects the configuration,

and starts the creation of artifacts (pipeline code and testware).

Figure 5-25 depicts a setup with a pipeline generator.

1 : .
Cl pipeline I CD pipeline] hP!pdlnetest
I

environment

..............................

ettt bttty sl
[Pipeline
: generator

Generated pipeline

artifact

1
I
1
!
1
!
1
1
1
IT4IT team |
1
I
1

) .) \¢mm Pipeline of pipelines
L)]
_____ R e N g g
1

000 i \
1 [%] CD pipeline \@mmm Application pipeline
Devops team . 1 1
N Pipeline Application : Application :
. Configuration code H artifact H
\ ’
T N 7
@ ®

Figure 5-25. Pipeline generator

These kinds of tools, however, are scarcely available, and if there are
any commercial tools out there, they are not well-known. Until then, it
looks like organizations have to develop these tools themselves. Usually,
this is a task of an IT4IT team dedicated to this job, but to prevent the “not
invented here” syndrome, a cooperation model with DevOps teams is

270

CHAPTER 5 PIPELINE DEVELOPMENT

needed. In this case, an innersource model seems a good fit. Innersourcing
allows DevOps teams to help with the creation of the tooling. If a DevOps
team has a good idea, it can start working on that idea and, when finished,
create a pull request. The IT4IT team approves the pull request (or not),
and the code is merged into the codebase of the pipeline generator.

The pipeline generator itself is embedded in a pipeline of pipelines,
in the Execute build stage. The produced artifacts consist of pipeline code
and testware. These artifacts are deployed to a “test” integration server/
ALM platform, where they are tested.

The pipeline generator itself is also an application. The development
steps of this tool are not included in the figure.

Of course, this all sounds nice and sophisticated, but essentially a
pipeline generator is a complex piece of software that takes a long time to
develop. And what does such a tool look like? What are the requirements?
Let’s make a small attempt to make it a bit less abstract.

o The stages of the Generic CI/CD Pipeline are used as a
pipeline blueprint. Based on the given DevOps teams’
branching strategy (trunk, feature branch, Gitflow, ...),
the flow of the pipeline is constructed.

o Configuration of the pipeline generator must be as
simple as possible. The tool retrieves most of the
information by scanning the code repositories of the
DevOps team.

o Stages, tasks, but also testware to test the application
are automatically constructed based on scanning the
repository. Here are some examples:

271

CHAPTER 5

272

PIPELINE DEVELOPMENT

o Based on a given repository, the repository is
scanned for application code, and based on that, a
pipeline with an Execute build stage is constructed.
For example, if the tool finds a pom.xml file in
the repository, it likely is a Maven project and
constructs a Maven build task in the pipeline.

o Ifthe pipeline generator finds Postman collections,
a Perform test stage is created, and test tasks are
added to this stage; e.g., the task assumes that a tool
such as Newman is used to execute the Postman
collections in the pipeline.

o Similarly, if the tool finds Cucumber tests (e.g.,
based on *.feature files it finds in the repository),
it constructs a test task and adds it to the Perform
test stage.

The tool must contain a library of prefab stages and
tasks, which are configurable by the DevOps team.
These stages and tasks also include unit tests.

Based on corporate policy, mandatory stages and tasks
are added to the generated pipeline. This also means
that a DevOps team is not allowed to delete them when
using the generated pipeline.

The tools contain additional features, which are
added to the generated pipeline, for example, tagging,
generation of a release note, and notifications to

specific communication channels.

DevOps teams must be able to add specific tasks for
their case.

CHAPTER 5 PIPELINE DEVELOPMENT

o DevOps teams must be able to add new, reusable
generic tasks to the prefab library. These tasks can be
used again by other DevOps teams.

o The pipeline of pipelines is maintained by an
IT4IT team.

This list of requirements is nonexhaustive, and organizations can make
it as complex, extensive, and feature-rich as they want.

Note Unfortunately, | never had the chance to develop something
like this, but it is not a completely crazy idea. Some organizations did
develop a pipeline generator, and I've seen examples of it, created by
colleagues.

Pipeline of Pipelines (DevOps Assembly Line)

A few of the pipeline development methods described in the previous
paragraphs have one thing in common. The created pipeline code
undergoes some processing stages similar to application development.
Pipelines are built, deployed, and tested using a pipeline assembly line, the
pipeline of pipelines. Depending on the pipeline development method and
the platform used, the implementation of the pipeline of pipelines may
differ, but it has similarities with the Generic CI/CD pipeline, as shown in
Figure 5-26.

o Trigger: After a developer has developed the pipeline
code, changes are committed locally, and preferably
pipeline unit tests are performed. If the developer
is confident about the pipeline code, they push the
code to the remote server. This triggers the pipeline of
pipelines.

273

CHAPTER 5

PIPELINE DEVELOPMENT

Validate entry criteria: The input of a pipeline

of pipelines is either pipeline code or a pipeline
declaration file. One of the entry criteria is to
determine whether the file or set of files meets certain
requirements. For example, if the input is a YAML file
that defines the pipeline, the entry criterion is that it
must be a valid YAML file, to be checked using a tool
such as yamllint.

Execute build: Pipelines are usually files, containing
scripts or containing pipeline declarations. These types
of files are interpreted and used as is, so a compilation
of a pipeline artifact is not needed. The Execute build
stage can be omitted in these cases. In other cases, the
pipeline is a project containing programming code.

An example is a Java project in which the pipeline

has been “programmed,” a feature of the Bamboo
platform (Bamboo Java Specs). This results in a Java
build performed by Maven or Gradle. The result

is a pipeline, stored in an artifact repository. If the
pipeline is generated using a Pipeline Generator tool,
the input is the repository of the DevOps team. The
Pipeline Generator tool “builds” the pipeline code after
scanning the repository.

Perform unit tests: The unit tests a pipeline of pipelines
performs are nondestructive. All flows within a pipeline
must be tested.* Variables must be overridden to

mimic certain behavior. A destructive stage or task

*Unit tests and integration tests of pipelines can be combined.

274

CHAPTER 5 PIPELINE DEVELOPMENT

must be “neutralized” by injecting code to make it a
nondestructive stage/task or using a mock stage/task.
The next chapter goes deeper into testing pipelines.

Analyze code: Different types of pipeline code analysis
are possible. Here’s a summary:

o The pipeline code must be valid; this can be
done either as part of the entry criteria validation
(preferred) or in the Analyze code stage.

o Inthe case of a YAML file, the pipeline code
must be valid YAML. Use yamllint, for example.

o Validating a Jenkinsfile in Visual Studio Code
(VS Code) can be done using the Jenkins
Pipeline Linter Connector, but it is not very CI/
CD-friendly. Jenkins itself also has a built-in
linter that can be used to validate the Jenkinsfile
in a pipeline.

If the pipeline consists of code written in a
programming language or script, regular code analysis
tools can be used, such as SonarQube.

o Pipelines can be analyzed on compliance. A
compliance scanner validates whether company
policies are applied to the pipeline code. Examples
are as follows:

e The pipeline must contain certain mandatory
stages or tasks. Perhaps it is mandatory to
include a SonarQube task in the pipeline or
the pipeline must include a dual control stage
before an artifact is allowed to be deployed to
production.

275

CHAPTER 5 PIPELINE DEVELOPMENT

o Itisnotallowed to continue if errors occur in
the pipeline. A pipeline must contain quality
gates. If the conditions of the quality gate are
not met, the pipeline should stop and return
an error. If the quality gate is bypassed in the
pipeline and the subsequent stages are still
executed—including the stage in which the
application is deployed to production—the
pipeline violates a policy.

o Inthe case of SaaS solutions, pipelines can run
on generic SaaS nodes, agents, or containers.
However, some organizations use a dedicated
pool of nodes/agents/containers for security
reasons. An organization policy may demand
that pipelines are only allowed to run on a
node/agent/container belonging to this pool.
If the pipeline did not specify this pool, the
compliance scanner marks this pipeline as
noncompliant and cannot be used.

e Package artifact: If the artifact is the same as the
original file, this stage has no purpose. If the input
consists of a set of related files, it might be wise to pack
all files into one .zip or . tar file, even if the Execute
build stage is absent.

o Publish artifact: It makes sense to publish the pipeline
code to a central repository, similar to what we do with
application artifacts. Especially, if an external IT41T
team develops a base pipeline, it is convenient for
DevOps teams to grab this base pipeline from a central
repository.

276

CHAPTER 5 PIPELINE DEVELOPMENT

Provision test environment: The test environment of

a pipeline is an ALM platform or integration server,
which executes the pipeline tests. This is not the

same environment in which a regular build, test, and
deployment of the application take place. The pipeline
test environment is a separate environment, specific
to testing the pipeline. If, for example, the pipeline
includes a task to tag the code in the SCM repository
and this task is tested, it should not be done in the
original repository. In a test environment, this task can
just be executed, and no harm is done.

If possible, this pipeline test environment is an ephemeral

environment that can be removed after use.

Deploy artifact to test: The pipeline artifact is retrieved
from the repository and deployed to the pipeline test
environment. Additional files—needed by the pipeline
to function properly—are part of this deployment, for
example, a snapshot of the application code for which
the pipeline was developed.

Perform test: Several pipeline tests are performed.

This means that the pipeline is executed in a pipeline
test environment. These tests can be automated or
manually executed. The following are things that make
sense to test:

o Validate whether the pipeline runs at all.

o Validate whether input variables are defined and
whether they contain the expected data type; e.g.,
validate whether a variable contains a numeric
value or a date.

277

CHAPTER 5 PIPELINE DEVELOPMENT

o Validate whether the correct application artifacts
are built and deployed.

e Validate whether the pipeline flow works when
running in different SCM branches.

o Validate whether directories, file locations, and files
used in the pipeline can be reached and read.

o Validate whether all paths are executed in certain
conditions.

e Validate whether external connections work.

o Validate whether the performance of the pipeline is
sufficient.

Note In addition to a pipeline test environment, an application test
environment is needed to deploy the artifact. This application test
environment is either a fixed or ephemeral test environment.

o Validate infrastructure compliance: The production
environment of the pipeline artifact is an ALM/
integration platform. This is the same platform on
which the application is built, tested, and deployed by
the pipeline. Assuming that this platform already exists,
the Validate infrastructure compliance stage and also
the Provision production environment stage are not
relevant.

o Deploy artifact to production: The stages Validate exit
criteria, Perform dual control, and Provision production
environment all seem a bit too formal for a pipeline
artifact, and it can be assumed that the production
environment is already present.

278

CHAPTER 5 PIPELINE DEVELOPMENT

The question is also what it means to deploy the pipeline
code to production. The formal route would be a
“deployment” of the pipeline code to the production
source code repository. Most likely, this source code
repository is the same as the one that contains the
application code and (the previous version of) the
pipeline code. Creating a pull request—if used—and
having it approved to merge the pipeline code in this
repository seems to summarize the Perform dual control
stage. Pushing the code to the original remote repository
covers the Deploy artifact to production stage.

e Notify actors: Informing actors is still needed to keep
them informed about the progress of the pipeline of
pipelines.

Summarized, the pipeline of pipelines looks like a stripped-down
version of the Generic CI/CD Pipeline.

Validate entry’ Execute Perform Analyze Package Publish Provision test
criteria build unittests code artifact artifact environment
Notify
Deploy Deploy Actors
ata 3> Peem e arioe
SCM trigger test production

Figure 5-26. Pipeline of pipelines

Sustainable Pipeline Development

At the end of this chapter, it is important to highlight the environmental
impact of pipelines. Sustainable computing is a relatively new topic,

and people are not sure what measures they can take to limit the carbon
dioxide footprint of their system. It is also impossible to come up with a
complete list of recommendations on how to optimize pipelines, but here
are some useful pointers:

279

CHAPTER 5

280

PIPELINE DEVELOPMENT

If you run an integration infrastructure, it is important
to distribute the workload over smaller-sized (virtual)
servers. Small servers with a higher utilization consume
less energy than large servers that are underutilized. An
underutilized server spends more time in an idle state,
which consumes more energy.

Consider running pipelines in the cloud. There is

heavy pressure on cloud service providers (CSPs) to
make their data centers more sustainable. The scale,
decisiveness, and budget of CSPs go beyond the
possibilities of a company’s data center. Google, for
example, has the option to choose a Google Cloud
region according to the lowest carbon dioxide footprint.
Microsoft claims that using the Microsoft Azure cloud
platform can be up to 93 percent more energy-efficient
and up to 98 percent more carbon dioxide efficient than
on-premises solutions (see [30]). Amazon Web Services
(AWS) is focused on powering its operations with 100
percent renewable energy by the year 2025 (see [31]).

Sustainability of a SaaS ALM platform also depends on
the (serverless) architecture of the platform itself. ALM
platform developers could look into the possibility of
implementing the tooling using functions/Lambdas.

Choosing the right infrastructure definitely can have a
positive impact, but also the use of certain scripts and
the design of the pipelines can influence the carbon
dioxide footprint. In the case of scripting, the language
in which the script was written makes a difference.
The energy consumption of Python, TypeScript, or
JavaScript can be 60 times higher than languages

CHAPTER 5 PIPELINE DEVELOPMENT

such as C, Rust, or even Java. In general—except for
Java—one can state that compiled languages are
more energy-efficient than interpreted languages [9].
Consider this during the realization of your pipelines.

Even the pipeline design can be optimized to achieve
a lower carbon dioxide footprint. Validating at the
beginning of a pipeline run whether mandatory
pipeline variables are defined and whether an external
system can be reached prevents the pipeline from
failing somewhere at the end, having consumed
unnecessary energy.

In the case of test tasks, some sustainability measures
can be applied. The concept of fail fast implies that a
pipeline stops as soon as a mandatory test task fails.
If, for example, tests run in parallel and one of the
mandatory tests fails, all parallel test tasks must stop
immediately, as if someone presses a red stop button
and the whole assembly line comes to a halt. There is
no need to wait for the last test to finish.

The auto-cancel option can be used if a new pipeline
instance is started and the already running pipeline
instance has become obsolete. The obsolete instance
must stop to prevent burning unnecessary CPU cycles.

Consider scheduling the Analyze code stage to be
executed once a day. This introduces a slight risk,
though. An artifact could be deployed to production
before the scheduled Analyze code stage has run. There
is a chance that this artifact contains a vulnerability.
Accept the risk, and validate the Analyze code report
afterward, as soon as it is available. If the number of

281

CHAPTER 5

282

PIPELINE DEVELOPMENT

application code changes was significant, it is an option
to manually trigger the Analyze code pipeline and
validate the result before the deployment to production
is approved.

Consider moving the Analyze code stage just before the
Validate exit criteria stage. The benefit is that no code is
analyzed that did not pass the tests.

If the team uses feature branches, do not analyze or test
the code in a feature branch pipeline run, but only in

the mainline run.

Decompose the application into multiple independent
components (microservices) and create a pipeline for
each component. The benefit is that instead of building
a big monolithic application after every code commit,
only the components that are changed are built. This
not only speeds up the pipeline execution time but also
reduces compute cycles and saves energy.

Optimize the use of test environments. If you have test
environments that are not being used frequently or at
all, they may still be consuming energy. To save energy
and reduce waste, you can either power them down or
remove them if they are no longer needed.

One can question whether it is always needed to start a
pipeline and execute all stages, even though the change
in the code was very small. Here is where a rule-based
trigger could step in. A rule-based trigger is a—still
theoretical—trigger that decides when a pipeline

starts. We are all familiar with SCM-event triggers and

CHAPTER 5 PIPELINE DEVELOPMENT

scheduled triggers to start a pipeline. A rule-based
trigger determines whether a pipeline starts based on
certain rules. The following are examples of these rules:

o The pipeline does not start if code is committed
with an associated work item with a low priority.
Only code associated with work items with a
medium or high priority results in the start of the
pipeline.

e The pipeline starts after only x number of commits.

o The pipeline starts only after y percent of the
codebase was changed.
It is unclear whether any tooling offers rule-based triggers out of the
box at the time of writing.

Summary

You learned about the following topics in this chapter:
e There are three ways to create pipelines.
e Using a user interface
o Using a scripted pipeline
o Using a declarative pipeline

o Pipeline specifications shift toward declarative
pipelines, often in YAML notation.

e Modern platforms share some common features.
Integrating them in pipelines as a pipeline language
construct reduces complexity.

283

CHAPTER 5 PIPELINE DEVELOPMENT

o External libraries, environmental properties, and

secrets in pipelines are explained.

e Security issues concerning external libraries,
environmental properties, and secrets are highlighted.
Solutions are presented on how these risks can be
mitigated.

e There are several CI/CD-related development areas at
different places within an organization, with each area
covered by a specific type of team (SaaS provider, IT4IT
team, or DevOps team).

e There are different approaches toward pipeline
development, each with its pros and cons.

o Simplified development
o Extended development
e Advanced development
o Developing base pipelines
o Pipeline generation
o The concept of pipeline of pipelines was explained.

o Tips were given to develop sustainable pipelines.

284

CHAPTER 6

Testing Pipelines

This chapter covers the following:
o The importance of testing pipelines.

o How to create a unit test using a test framework. The
chapter describes how the pipeline is manipulated
by the test framework and executed in a pipeline test
environment.

e An example of a pipeline performance test and
how overall execution time is improved by the
parallelization of activities.

e The concept of pipeline acceptance testing in
simplified and advanced pipeline development.

Testing Pipelines

Pipelines and testing can be highlighted from different viewpoints. Most
books and articles describe how pipelines are used to test an application,
which test frameworks are used, and how everything integrates into the
pipeline. Chapter 4 highlights the importance of a test strategy and how
this reflects on the pipeline design.

© Henry van Merode 2023 285
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_6

https://doi.org/10.1007/978-1-4842-9228-0_6

CHAPTER 6 TESTING PIPELINES

What is often neglected, but equally important and interesting, is
testing the pipelines themselves. This chapter is dedicated to pipeline
testing.

Testability of Pipelines

Pipelines are defined as code. Code can be tested. Most declarative
pipeline code (with some exceptions) consists of YAML files or scripts.
Testing them is a challenge. Teams often test the pipelines using trial and
error, sometimes screwing things up because a wrong version of an app
was deployed by accident. In some cases, code from a feature branch was
accidentally tagged with a release version tag, and because of the trial-and-
error nature of developing and testing pipelines, the number of commits
is very high. The once well-organized overview with regular application
pipeline runs is cluttered with a zillion test runs. Testing pipelines is hard
because teams also don’t have the tools to test properly.

Just as with testing applications, pipeline code must be tested in a
test environment. The pipeline test environment must differ from the
environment in which the business application is built, tested, and
deployed. From a pipeline point of view, the environment used to build,
test, and deploy the business application is considered the production
environment. The pipeline test environment is either a separate ALM
platform or integration server infrastructure or an infrastructure in which
separation between the regular pipeline environment and the pipeline test
environment is established in another way. Important is that the pipeline
must be able to run in a test/sandbox environment, without the destructive
character. It must also be possible to test specific characteristics of the
pipeline. This means the following:

e Checking the configuration of the pipeline and its
components to ensure that they are set up properly and
functioning as expected. This can include things like

286

CHAPTER 6 TESTING PIPELINES

verifying that the correct tools and dependencies are
being used and that variables are configured.

Pipeline unit tests are focused on testing individual
parts of the pipeline. Pipeline unit tests are performed
on a local development machine (if possible) and also
in the pipeline of pipelines (if used).

All flows within the pipeline are tested by simulating a
real-world deployment scenario and checking that all
components of the pipeline work together properly.
This includes an end-to-end test, in which the entire
pipeline is tested, from code commit to deployment,
to ensure that it works as expected in a real-world

scenario.

Quality gates must be tested; does the pipeline break if
certain quality criteria are not met?

The performance of the pipeline must be tested
to detect queuing or potential bottlenecks in
execution speed.

The pipeline code must be analyzed for quality,
security, and compliance; does it adhere to
organizational policies?

Pipeline tests must be able to run in a “sandbox” or
test environment to prevent destructive actions, for
example, to test tagging of a commit in the repository
with a release version, without actually tagging it

in the original repository in which the pipeline and
application code is stored.

287

CHAPTER 6 TESTING PIPELINES

To properly test a pipeline, a few test types must be performed.
e Unit (and integration) tests
e Performance tests
o Pipeline compliance and security tests
e Acceptance tests

Let’s discuss them in the next few sections and point out how this can
be done.

Unit Tests

Let’s face it. Test frameworks for pipelines are almost nonexistent or at

least very scarce. Also, when dealing with SaaS$ platforms of big-tech

companies, you might expect that there is some information or support

concerning pipeline testing. The platforms are mature, but testing

pipelines are not given that much TLC. Local testing of pipelines within

an IDE is very much desired but often not supported. Mocking a task, so it

is not really executed, is a simple feature, but which provider supports this?
Sometimes the only thing left is to develop something yourself.

As an example, unit testing an Azure DevOps pipeline is explained in

this section. This is a real example using a relatively simple unit test

framework.!

The example makes use of a build unit test framework to manipulate
the pipeline and communicate with the Azure DevOps platform. The
framework makes use of JUnit 5 as a testing framework and uses the
snakeyaml and jgit libraries.

'The code of this framework is published on the Github page of the author,
however it is still experimental at this stage.

288

CHAPTER 6 TESTING PIPELINES

To manipulate the pipeline and make it testable, the unit test

framework implements the following features:

The pipeline, which consists of one or more YAML files,
is wrapped into a Java (pipeline) object and loaded into
the Junit test class. The Junit tests make use of various
methods that help in realizing different test cases.

o It mustbe possible to override variables and
parameters in the pipeline.

o It must be possible to skip (disable) certain pipeline
stages, jobs, and steps.

e It must be possible to add a clause to continue in
case of an error.

o It must be possible to inject custom code into the
pipeline.

o It must be possible to stub/mock tasks in the
pipeline. This means it must also be possible to
mock a deployment, for example. This can be
realized by replacing a task with a script task with
some custom code.

o Ifmocking is not used for some reason, it must
be possible to intercept commands to prevent
disruptive actions (using a dry-run flag, for example).

e It must be possible to mimic other branches,
replacing the current branch with a given branch.

o Itmust be possible to check on fail-fast behavior; if
a unit test fails, the pipeline must stop immediately
(after notification).

e It must be possible to retrieve the results of the

pipeline run.

289

CHAPTER 6 TESTING PIPELINES

o The manipulated pipeline code (a modified copy of the

original pipeline code) is deployed to an Azure DevOps

test environment (a specific Azure DevOps project used

for testing pipelines) from where it is started.

o The pom.xml file is updated; the connection and
developerConnection in the pom.xml file must point to

the Azure DevOps test environment (project) instead of

the original Azure DevOps project.

e Pipeline results are retrieved using an Azure DevOps

API and exposed in JUnit tests. They are used to

check whether the outcome matches the prediction.

Unfortunately, the Azure DevOps API provides only

rudimentary test results.

Figure 6-1 visualizes the setup.

Update original repo after finished testing
(manually)

/

Clone

IDE + |

. Push to Git
Unittest whio

: Git

I N[aw)
Azure DevOps ficasd
/" Original Project "\ (' AWS account

Account: 486439332092
Region: us-east-1
Environment: acctest

(automated by test framework)

framework

Get Pipeline Run Result

= Git

(automated by test
framework)

Figure 6-1. Setup unit test Azure DevOps pipelines

290

@SCM trigger
' Pipelines 7
> pp
_ L J —
(Sandbox (Test) Projech AWS account

Account: 497562947267
Region: us-east-2
Environment: dev

SCM trigger
Pipelines
N\t /

CHAPTER 6 TESTING PIPELINES

With this picture in mind, consider the following steps. The application
code is located in a Git repository in the original Azure DevOps project.
This code is cloned to another repository in an Azure DevOps test
project. This test repository is checked out (manually) and resides on the
workstation of the developer.

The developer starts developing a pipeline, as listed in Listing 6-1. This
is the YAML file with the name pipeline.yml. For readability reasons,
various stages are omitted from this pipeline.

Listing 6-1. pipeline.yml
name: $(Date:yyyyMMdd)$(Rev:.r)

parameters:

- name: environment
type: string
default: acctest
values:

- dev

- systest
- acctest
- prod

variables:

- name: aws_connection
value: 486439332092

- name: aws_region
value: us-east-1

stages:

- stage: Execute build
displayName: Execute build
condition: always()
jobs:

291

CHAPTER 6 TESTING PIPELINES

- job: Tasks
pool: Default
steps:

- script: echo 'Execute build'
- task: Maven@3
displayName: Maven Package
inputs:
mavenPomFile: pom.xml
condition: always()
- task: CopyFiles@2
displayName: Copy Files to artifact staging directory
inputs:
SourceFolder: $(System.DefaultWorkingDirectory)
Contents: '**/target/*.?(war|jar)'
TargetFolder: $(Build.ArtifactStagingDirectory)
- upload: $(Build.ArtifactStagingDirectory)
artifact: drop

- stage: Analyze code
displayName: Analyze code
condition: eq(variables['Build.SourceBranchName'], 'main')
jobs:
- job: Tasks
pool: Default
steps:
- script: |
pip install whispers
whispers ./

- stage: Deploy artifact to_test
displayName: Deploy artifact to test
condition: eq(variables['Build.SourceBranchName'], 'main')

292

CHAPTER 6 TESTING PIPELINES

jobs:
- deployment: Deploy
pool: Default
environment: ${{ parameters.environment }}
strategy:
runOnce:
deploy:
steps:
- task: AWSShellScript@1
inputs:
awsCredentials: $(aws_connection)
regionName: $(aws_region)
scriptType: inline
inlineScript: |
#!/bin/bash
set -ex
export artifact="find $(Pipeline.Workspace)/. -name
"cdk*.jar'"

echo "Deploying stack"
cdk deploy --app '${JAVA HOME 11 X64}/bin/java -cp
$artifact com.myorg.myapp.Stack' \
-c env=${{ parameters.environment }} \
--all \
--ci \
--require-approval never
displayName: Deploy to AWS

This pipeline builds a Java artifact (application) using Maven, after
which a security scan is performed using the tool Whispers. This scan is
performed only in case the branch in which the pipeline resides is the
main branch. If the current branch is the main branch, the artifact is

293

CHAPTER 6 TESTING PIPELINES

deployed to an existing AWS account with account ID 486439332092 in a
certain region (us-east-1; N. Virginia). Within each AWS account, virtual
test environments are created, and the artifact runs in one of these
virtual test environments. By default, the virtual test environment is the
acceptance test environment (acctest).

When the pipeline is (unit) tested, a couple of actions are performed.
The developer creates the unit tests, commits them, and runs the unit tests.
This invokes the unit test framework, which makes a copy of the pipeline.
yml files, and manipulates it according to the JUnit test. The manipulated
pipeline file is then pushed to the test repository, and the pipeline in
the Azure Test project starts running. The results of the pipeline run are
retrieved—using an Azure DevOps API call—after each test is finished.

To make manipulation of the pipeline possible, the JUnit tests are
defined as shown in Listing 6-2.

Listing 6-2. PipelineUnit.java

import org.junit.jupiter.api.AfterAll;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import java.io.IOException;

public class PipelineUnit {
private static AzDoPipeline pipeline;

@BeforeAll
public static void setUpClass() {
System.out.println("setUpClass");

// Initialize the pipeline
pipeline = new AzDoPipeline("pipeline.yml");

294

CHAPTER 6 TESTING PIPELINES

@Test
public void test1() {

}

// Validate the pipeline flow in case the current
branch is a feature branch (instead of the main branch)
System.out.println("\nPerform unit test: test.test1");
pipeline.overrideCurrentBranch("myFeature");

try {
pipeline.startPipeline();

}

catch (IOException e) {
e.printStackTrace();

}

assertEquals (RunResult.succeeded, pipeline.
getRunResult());

@Test
public void test2() {

// Test the build and deploy stages:

// - Use a different AWS account (Ohio based) for
deployment

// - Use a different environment (dev instead of
acctest) for deployment

// - Skip the 'Analyze code' stage, only the deployment
needs to be tested

System.out.println("\nPerform unit test: test.test2");
pipeline.overrideVariable("aws_connection”, "
497562947267") ;

pipeline.overrideVariable("aws_region", "us-east-2");
pipeline.overrideDefaultParameter("environment”, "dev");
pipeline.skipStage("Analyze_code");

295

CHAPTER 6 TESTING PIPELINES

try {
pipeline.startPipeline();
}
catch (IOException e) {
e.printStackTrace();
}
assertEquals (RunResult.succeeded, pipeline.
getRunResult());

}

@AfterAll
public static void tearDown() {
System.out.println("\ntearDown");

Unit test number 1 (test1) mimics the current branch. What happens
in test1 is that the current branch is replaced with myFeature, so the
pipeline behaves as if it resides in the branch myFeature, even if it resides
in another branch.

The pipeline code in unit test number 2 (test2) is changed by the unit
test framework in such a way that deployment of the application artifact
to AWS does not impact the current application in AWS. In test2 the AWS
account variables are replaced by other values, and the Analyze code stage
is set to skip. This results in a unit test that is performed in a different AWS
account, with account ID 497562947267. The application is even deployed
in a different region (us-east-2; Ohio) and a different virtual environment
(dev). To speed up the test, the Analyze code stage is skipped

The pipeline, manipulated as part of JUnit test2, results in the code in
Listing 6-3.

296

CHAPTER 6 TESTING PIPELINES

Listing 6-3. Manipulated Version of pipeline.yml as a Result of
JUnit test2

name: $(Date:yyyyMMdd)$(Rev:.r)

parameters:

- name: environment
type: string
default: dev
values:

- dev

- systest
- acctest
- prod

variables:

- name: aws_connection
value: 497562947267

- name: aws_region
value: us-east-2

stages:

- stage: Execute_build
displayName: Execute build
condition: always()

jobs:

- job: Tasks
pool: Default
steps:

- script: echo 'Execute build'
- task: Maven@3
displayName: Maven Package
inputs:

297

CHAPTER 6 TESTING PIPELINES

mavenPomFile: pom.xml
condition: always()
- task: CopyFiles@2
displayName: Copy Files to artifact staging directory
inputs:
SourceFolder: $(System.DefaultWorkingDirectory)
Contents: '**/target/*.?(war|jar)’
TargetFolder: $(Build.ArtifactStagingDirectory)
- upload: $(Build.ArtifactStagingDirectory)
artifact: drop

- stage: Analyze code
displayName: Analyze code
condition: eq(true, false)
jobs:

- job: Tasks
pool: Default
steps:
- script: |
pip install whispers
whispers ./

- stage: Deploy artifact to test
displayName: Deploy artifact to test
condition: eq(variables['Build.SourceBranchName'], 'main')
jobs:
- deployment: Deploy
pool: Default
environment: ${{ parameters.environment }}
strategy:
runOnce:
deploy:

298

CHAPTER 6 TESTING PIPELINES

steps:
- task: AWSShellScript@1
inputs:
awsCredentials: $(aws_connection)
regionName: $(aws_region)
scriptType: inline
inlineScript: |
#!/bin/bash
set -ex
export artifact="find $(Pipeline.Workspace)/. -name
"cdk*.jar"'"

echo "Deploying stack"

cdk deploy --app '${JAVA _HOME_11 X64}/bin/

java -cp $artifact com.myorg.myapp.Stack' \
-c env=${{ parameters.environment }} \
--all \
--ci\
--require-approval never

displayName: Deploy to AWS

Note Azure DevOps does not support disabling stages at the
moment. To skip a stage, a condition is used.

This way of testing has a lot of advantages. Without constantly
changing the original YAML file and committing it in an SCM, the pipeline
is manipulated by the JUnit test cases instead. This test approach is simple
and also prevents the following:

e High commit rates in the original SCM repository
because the original YAML file is not changed
constantly.

299

CHAPTER 6 TESTING PIPELINES

Errors slipping in as a result of constantly changing the
YAML file.

Pollution of the SCM history, pipeline dashboards, and
pipeline overviews. Because the tests run in another
Azure DevOps project, the SCM history, the pipeline
dashboards, and the pipeline overviews of the original
Azure DevOps project are not affected.

Long wait times. If you want to focus on the test of a
certain stage or task, it is easy to skip stages or tasks you
don’t want to see run. This only costs time.

Other destructive actions, such as tagging the
application code in the code repository, tagging

the pipeline, or deploying the application to a test
environment, which is already in use by the QA team.

Performance Tests

Performance testing does not apply to the performance tests of the

application, but to the performance test of the pipeline itself. Important to

keep in mind is that fast feedback is of utmost importance. The processing

time of the pipeline must be as short as possible. Your pipeline may be

affected by various types of performance penalties.

300

The execution time of the pipeline takes too long. One
underlying problem could be that compute and/or
storage capacity is insufficient. This can be solved by
scaling up the infrastructure.

Another reason why the execution time of a pipeline
takes too long is that the design is not optimized for
speed. The solution can be found in revising the build
strategy and/or redesigning parts of the pipeline.

CHAPTER 6 TESTING PIPELINES

e Queuing occurs. The time a pipeline stays in the
queue adds up to the processing time of the pipeline.
Scaling up the infrastructure and applying fine-grained
prioritization are solutions that could solve this.

Performance tests are focused on both pipeline execution time and
pipeline queuing time. It has been discussed how parallelism helps in
speeding up the pipeline processing time. Let’s put it to the test and look
at areal example of a pipeline containing Execute build, Analyze code, and
Deploy artifact to test stages.” The Execute build stage contains a Maven
build task, building a Java application.® The Analyze code stage contains
three tasks: a SonarQube scan, a Fortify scan, and a Whispers scan. The
Deploy artifact to test stage deploys the artifact to an AWS test account.

All stages and tasks are executed in sequential order, resulting in the
execution times shown in Figure 6-2.

y and version

Test

¥ main % 6a97ees7

ecute build # Stage - Analyze code ¥ Stage - Deploy artifa...
beted

Figure 6-2. Stages in sequential order

2Queuing time was not measured, so this was not taken into account.

3This application has a relatively large codebase, so the effect of parallelization
becomes apparent.

301

CHAPTER 6 TESTING PIPELINES

Most platforms provide the necessary information related to the
performance of a pipeline. The processing times of stages, jobs, tasks, and
the pipeline as a whole are shown in Figure 6-2. The figure shows that
the overall execution time of this pipeline is 22 minutes and 7 seconds.
This is not very fast. The Analyze code stage costs relatively a lot of time
and contributes a lot to the overall processing time. The Analyze code
stage is a bottleneck. The individual tasks in the Analyze code stage are
set up in such a way that they do not depend on the output of the Execute
build stage.

So, nothing prevents us from executing the Analyze code stage
in parallel instead of sequentially executing the three stages. This
considerably shortens the overall execution time of the pipeline. This is
clearly expressed in the pipeline run in Figure 6-3. The Execute build and
Analyze code stages run in parallel. The Deploy artifact to test stage has a
dependency on the Execute build stage and can be started only after the
artifact has been built. There is little that can be optimized here. Running
the Analyze code stage in parallel reduces the total execution time of the
pipeline to 12 minutes and 43 seconds. Note that the Deploy artifact to test
stage does not wait until the Analyze code stage is finished.

302

Repository and version

Test
¥ main ° 6a97ee97

Stages Jobs

¥ Stage - Execute build

1 job completed om 38s

» Job_Maven 6m 34s

Rerun stage

¥ Stage - Analyze code

1 job completed 12m 38s

¥ Job_SonarQube_Fortify_...12m...

Rerun stage

CHAPTER 6 TESTING PIPELINES

Time started and elapsed
[Today at 18:21
® 12m 43s

¥ Stage - Deploy artifa...

1 job completed 2m 11s

¥ Job_Deploy 2m 7s

Rerun stage

Figure 6-3. Analyze code stage in parallel

Of course, it is possible to optimize this a bit more. The individual tasks

in the Analyze code stage are still executed sequentially. These can also be

run in parallel. Let’s see what that brings us; see Figure 6-4.

303

CHAPTER 6 TESTING PIPELINES

y and version Time started and elapsed
i Today at 18:07
¥ main ¢ 6a97ee97 ® 9m 2s

Stages Jobs

¥ Stage - Execute build ¥ Stage - Deploy artifa...

1 job completed bm 36s 1 job completed 2m 9s

» Job_Maven n 33s ¥ Job_Deploy 2m7s

Rerun stage Rerun stage

¥ Stage - Analyze code

3 jobs completed

» Job_SonarQube 4m 50s
¥ Job_Fortify

» Job_Whispers

Rerun stage

Figure 6-4. Analyze code tasks in parallel

Again, the total pipeline execution time has been brought back
to normal proportions, and the pipeline fully executes well within 10
minutes. Of course, this is just one of the measures to increase pipeline
performance. Experience showed that after applying a combination of
measures such as pipeline caching, parallelization, and multithreaded
builds, pipeline execution time could be reduced by 75 percent.

304

CHAPTER 6 TESTING PIPELINES

As shown in this example, the platform registers the execution times
of multiple levels in the pipeline, and this information can be used to spot
bottlenecks in the pipeline execution.

Pipeline Compliance and Security Tests

A pipeline must be checked for potential vulnerabilities to ensure that it
is configured properly to protect sensitive data and prevent unauthorized
access. This can include things such as checking for vulnerable
dependencies with external tools, testing authentication, checking access
controls, and conducting regular security audits.

In addition, some business organizations define policies to which
a pipeline must comply. This means certain settings are prohibited or
certain tasks are mandatory. If the pipeline does not meet these policies,
itis blocked from execution or reported to a central department. This
compliance check is not performed by the pipeline itself, of course; that
would not make any sense. The compliance check is integrated into the
platform, as a hook or decorator, for example. This adds a pre-job to the
pipeline, which is always executed as the first action before the pipeline
starts. If the pipeline does not comply, the execution is aborted or the
noncompliant pipeline is reported. Here are some examples of policies
that organizations could enforce:

e One of the policies an organization may enforce is the
existence of certain stages and/or tasks. For example,
the pipeline must have an Analyze code stage with two
mandatory tasks that perform a SonarQube, a NexusIQ,
and a Whispers scan.

¢ A deployment to production must have a Perform
dual control stage. Pipelines without this stage are

305

CHAPTER 6 TESTING PIPELINES

306

not compliant. In addition, if the pipeline was started
manually, it may not be approved by the same person.

Some platforms have the opportunity to continue if a
certain error occurs. This could also mean that some
quality gates can be bypassed. Tasks with the setting

continue on error = true arereported or blocked.

Stages or tasks executed on a nonproduction server/
node are reported or blocked. On some platforms,

it is possible to assign your laptop as a server to
execute a pipeline. Consider the risk if the deployment
of an artifact to production is executed on a
nonsecured laptop.

To enforce the requirement “Do not retrieve libraries or
external resources directly from an Internet location,”
the pipeline is scanned for service connections with a
nonauthenticated endpoint. If the pipeline uses such a
service connection, it is reported or blocked.

Artifacts must be stored in a binary repository. One

of the policies may enforce the existence of a Publish
artifact stage using a service connection with a specific
endpoint configured.

All resources that contribute to the creation and
deployment of a release to a production environment
must be prohibited from deletion. This applies to code
repositories, pipelines, and artifacts.

CHAPTER 6 TESTING PIPELINES

Acceptance Tests

Whether the development team uses simplified pipeline development
or advanced pipeline development, at some point the pipeline must be
accepted for usage.

Validating the quality of the pipeline in simplified pipeline
development poses risks because the pipeline is not thoroughly tested.
Acceptance tests do not play an explicit role in simplified pipeline
development. Accepting the quality of the pipeline is implicit. It is a
process of changing the pipeline, pushing it to a repo, and watching its
behavior. If it does not work properly, this step is repeated. Accepting the
pipeline is nothing more than continuously implementing the adjusted
pipeline and seeing it working in its normal environment until the
expectations are met.

An acceptance test in advanced pipeline development involves the
execution of all the stages in the assembly line. This includes a Perform test
stage in which the pipeline is executed in a pipeline test environment. If
all stages in the assembly line are passed, the quality of the pipeline can be
considered sufficient, and the pipeline can be implemented (used).

Summary

You learned about the following topics in this chapter:

o Unit testing can be performed using a separate pipeline
test environment; unit testing was demonstrated using
an example in which a unit test framework was used.

o Pipeline testing in a separate test environment prevents
high commit rates, destructive actions, pollution of
the SCM history, and pollution of the dashboards and
overviews of the regular pipeline environment.

307

CHAPTER 6 TESTING PIPELINES

o Executing pipeline performance tests can help with
spotting bottlenecks in execution speed.

¢ Pipeline compliance checks can be used to improve
pipeline quality and to meet organization policies
regarding pipelines.

o Pipeline acceptance tests are more explicit if the
pipeline development quality improves.

308

CHAPTER 7

Pipeline
Implementation

This chapter covers the following:
e What pipeline implementation involves

e The organizational impact if a new or updated pipeline
is implemented and used

o The different types of operating models concerning
integration infrastructure and the responsibilities of the
team and the organization

e How an application implementation can benefit from
using additional features such as a runbook, a release
note, and artifact promotion

When an application is deployed to production for the first time,
a lot of things have to be arranged. Certificates must be requested and
installed. Credentials and other secrets must be arranged and stored
safely. Application monitoring must be set up, etc. Assuming that not all
activities in the software supply chain are, or can be, automated, some
manual tasks are involved. In addition, the process of managing and
using the application must be in order. The team must know what to do
if an application fails or behaves badly. Procedures for change, incident,
problem, and availability management must be in place.

© Henry van Merode 2023 309
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_7

https://doi.org/10.1007/978-1-4842-9228-0_7

CHAPTER 7 PIPELINE IMPLEMENTATION

The same applies to a pipeline. The environment in which the pipeline
runs has to be prepared and scaled. The platform on which the pipeline
runs may have external connections that need to be secured, and both the
integration platform infrastructure and the pipelines themselves need to
be monitored. If a pipeline fails or does not work the way it should, the
team must react properly. Only after these preparations have been done is
the pipeline ready to be used. Implementing a pipeline involves more work
than meets the eye.

Pipeline Implementation

The implementation of a pipeline itself is a bit odd. If the implementation
of a pipeline is compared with the implementation of an application, the
pipeline needs to be configured for and deployed to a target environment.
But what is the target environment in the case of pipelines, and can

we speak of the deployment of a pipeline? In the pipeline of pipelines
discussion, the conclusion was that deploying a pipeline to production is
nothing more than pushing the pipeline code to the remote repository and
merging it with the mainline. Figure 7-1 illustrates this behavior.

310

CHAPTER 7 PIPELINE IMPLEMENTATION

E.g. Repository with Pipeline test environment

fork (or clone)

Application
artifact

\
1
1
1
1

c pipeline €O ppeline I
1
1
1
1
1

I
\:pelne code
4
N mmm e e e
n

Application code

_’__t____

/! Pipeline regular (production) environment

N
I 1
1 1
1 1
1 i
1
Cl pipeline H CD pipeline 1
1 1
1]
1 1
I 1
;

Runtime test-1
Runtime test-2
Runtime production

Trunk
(main branch)

Application
artifact

Pipeline code

Application code

Figure 7-1. Pipeline implementation

In Figure 7-1, the new or updated pipeline code resides in another
branch in the same repository as the application, or it resides in another
repository, which is cloned from the original repository. This depends
on the pipeline development method. The pipeline code is tested in a
pipeline test environment, which builds and deploys the application to a
test environment, called Runtime test-1. Merging the pipeline code with
the mainline means that the pipeline from that moment is implemented
and can be used to deploy to all target environments (Runtime test-1,
Runtime test-2, and Runtime production).

Organizational Impact

A pipeline is developed according to requirements and guidelines and
properly tested before it can be used. This means the functional behavior
is according to the specifications, the performance of the pipeline is tested
and meets the criteria, security measures are in place, and the pipeline
meets the compliance specifications of the organization. Because the
pipeline is used by the DevOps team, all team members must be confident

311

CHAPTER 7 PIPELINE IMPLEMENTATION

that it is usable. If needed, documented instructions about the pipeline’s
use, technical setup, and maintenance are drafted. This is not mandatory,
but it can help to get the whole team prepared. The team decides whether
documentation is needed. They must approve the readiness of the
pipeline.

Every time a new version of a pipeline is used, its limitations must be
recognized, and known issues should be logged. Register the requirements
that were not realized. Register mitigating actions, such as manual checks,
if some requirement is not implemented but may pose a risk.

Both the team and the business evaluate possible gaps and other
improvements that can be made. Each gap is put on the backlog and is
prioritized. The involvement of the business is mainly about the release
strategy and the use of organization policies. Is it needed to deploy each
realized feature to production within 15 minutes, or is it still sufficient to
combine features into small increments and release them with a one-week
frequency? If something changes in these aspects, the workflow of the
team and possibly the design of the pipeline are impacted. A governance
structure has to be in place to perform these evaluations. Make the time
as a team to evaluate or, even better, establish a process of continuous
improvement, not only for application development but also for pipeline
development.

If not configured already, define what the notification structure
should look like. During the development of the pipeline, the whole team
probably receives the same email with the status of the pipeline run and
with the request to approve a deployment. Just before implementing a
pipeline, recipients must be configured, and notifications are assigned,
so every team member receives only the specific information in which
they are interested. Prevent information overloading and make use of
dashboards to visualize important information.

312

CHAPTER 7 PIPELINE IMPLEMENTATION

Team Discipline

Even if the team is enthusiastic about automation and working with

pipelines, it still happens that certain things are a bit neglected. Pipeline

implementation also means that the team must be disciplined in certain

areas. Some persistent problems are the following:

Breaking builds: One of the principles of continuous
integration is that broken builds must be repaired
immediately. Developers are expected to drop what
they are working on and solve the broken pipeline.
This is a bit of wishful thinking. Developers often don’t
react immediately to this event. That doesn’t have to be
a problem if it doesn’t lead to issues with releasing an
artifact too late. However, leaving the pipeline broken
for one or two days is also not a recommended practice.
One obvious reason why a pipeline can break is that
the committed code is incorrect and cannot be built.
Another reason is that the world around the pipelines
is in flux. External systems can be down, updated,

or not accessible anymore; vulnerability checks are
tightened; credentials or certificates are expired; or the
ALM/integration platform itself suffers from technical
problems. Teams must repair these broken pipelines.
Otherwise, the effort to repair them will increase as
time goes on.

Disabled quality gates: Good practice is that if the code
analysis detects severe or high-ranked vulnerabilities in
the code, the pipeline “breaks” because the quality gate
kicks in. Some pipelines do not have this quality gate
activated, either by accident or on purpose. The latter is
probably because of the following issue.

313

CHAPTER 7 PIPELINE IMPLEMENTATION

o Follow-up on code analysis defects: Some teams
have good code analysis hygiene. They solve all the
important vulnerabilities, so the quality gate is passed.
Other teams neglect the code analysis results, disable
the quality gate, and build up technical debt.

o Unit test coverage: The same applies to unit test
coverage. Some teams make it a sport to keep the
coverage high. Other teams do not do so. Low unit test
coverage—coverage below a predefined threshold—
should break the pipeline.

o Automating tests is lagging: There is often a backlog in
automating tests. Sometimes, the number of people
involved in automating tests is limited, causing a large
backlog in test automation. This can happen if test
automation is performed solely by a (small) QA team.
It helps when test automation activities are spread
over the team and developers are also involved in
developing automated tests.

Depending on the team and its maturity, there are more persistent
problems. Some teams still manage to bypass the pipeline and deploy to
production in another way, or they perform continuous integration of a
develop branch in the pipeline, while still creating a release artifact from
the main branch on their local development machine. If the pressure is on,
pull requests are approved without looking at the code. This is all part of
growing up, but these problems must be addressed.

Integration Platform

Depending on the type of integration platform used, the responsibilities
of setting up and managing the infrastructure differ. In this context,

314

CHAPTER 7 PIPELINE IMPLEMENTATION

integration infrastructure involves the integration platform (middleware)
like Jenkins and additional tooling used by pipelines such as

SonarQube, deployment tools, etc. Integration infrastructure also
includes the infrastructure on which this all runs. This results in several
operating models.

SaaS model: A complete Saa$ solution offers a

full integration platform, creating fewer concerns
for the DevOps team. Because of the shared
responsibilities, the DevOps team can solely

focus on implementing pipelines, while the SaaS
provider is responsible for managing the complete
integration platform stack, including hardening and
scaling servers and regularly patching the software.
Platforms such as Azure DevOps or CircleCI Cloud
fall into this category.

IaaS model: 1t is also possible to make use of
infrastructure as a service (IaaS) in which the
infrastructure provider manages the server
landscape, while the integration platform stack

is managed by either a separate IT4IT team or

the DevOps team itself. In this context, the IT4IT,
or DevOps, team gets more responsibilities,

from managing a Kubernetes cluster to regularly
upgrading containers, patching software, and
installing plugins. The team also has to determine
whether the platform is sufficiently scaled. Maybe
the infrastructure was set up once, but pipeline
performance tests showed that the capacity is not
enough anymore with the introduction of new
pipelines. Rescaling the infrastructure is required,
so the performance criteria are met again. In

315

CHAPTER 7 PIPELINE IMPLEMENTATION

316

addition to this, offloading work to separate servers/
containers must be considered. If the build, code
analysis, tests, and deployment are all executed

on the same server, moving certain stages to other
servers/nodes/agents helps with spreading the
load. This type of operating model can typically be
achieved with Jenkins installed on plain servers
such as AWS EC2 and Azure VMs or Jenkins in a
Docker container running on Azure Kubernetes
Service (AKS) or even AWS ECS Fargate.

Self-hosting model: An organization can also decide
that it wants to host the complete integration
platform infrastructure. This means that even
more preparations are needed. The following are
additional responsibilities:

Provision the infrastructure on which the integration
platform runs.

Logging, monitoring, and alerting of the infrastructure
must be set up and configured. Determine which
system metrics need to be validated; for example, an
alert is raised if a server uses more than 90 percent CPU
capacity or an alert is raised if disk space is greater than
80 percent.

The final infrastructure needs to be approved. Use a
reference framework such as ISO 25010 (see [25]) as

a guideline to determine whether all (nonfunctional)
requirements are fulfilled, and make sure that the
infrastructure is secure enough. In the latter case, a
reference framework like the NIST Framework for
Improving Critical Infrastructure Cybersecurity can be
used (see [26]).

CHAPTER 7 PIPELINE IMPLEMENTATION

In addition to the already mentioned infrastructure preparations in

the various operating models, security measures need to be applied to the

infrastructure. Here are a few examples:

Is the infrastructure secure enough? Make sure all
servers are hardened and vulnerability management is
in place. Patch the servers regularly.

Are all connections secure? The ALM platform/
integration platform maybe communicates with an
SCM system, a work item management system, servers
performing code analysis, etc. Connections need to

be secured using HTTPS, for example (and preferably
using mTLS instead of single-sided TLS).

This also applies to connections with target
environments—both test and production—on which
the application runs.

Refine access by setting permission for a user or a
group. Users who manually start a deployment are not
allowed to approve the deployment themselves.

Configure branch policies if not done already. If the
team uses branches and the pipeline associated with
a branch fails, it should not be possible to merge that

branch into the mainline.

Configure a vault used to store tokens, keys, credentials,
and other secrets.

Configure the infrastructure in such a way that
application code, pipeline (runs), test runs, work items,
pull requests, etc., involved in the creation of a release
artifact, which is deployed to production, cannot be
deleted.

317

CHAPTER 7 PIPELINE IMPLEMENTATION

o Install a pipeline compliance scanner. The scanner
validates whether pipelines comply with company
policies.

Target Environment Preparations

If the team has adopted extended (or advanced) pipeline development,
most of the development and pipeline tests were executed using a
pipeline development/test environment. If the pipeline is ready to be
implemented and used, it is promoted, so it can build and deploy the
application to various target environments. This may include additional
test environments and a production environment. Configure these target
environments to be accessible to the pipeline and deploy over a secure
connection.

The deployed application probably also needs (database) credentials,
certificates, or static data. This has to be requested or generated and
propagated to the target environment so the application can use it.
Preferably, this is an automated process; use operational pipelines
to establish this. The next chapter deals with operational pipelines in
more detail.

In the case of an application test environment, test data needs to be
arranged. Either generate synthetic data or use a copy from production,
but make sure to anonymize the data.

Playbook

What is the business impact if an incident or a problem with a pipeline
occurs? A failure of a pipeline may lead to damage. For example, an urgent
application fix is created and needs to be deployed. However, the pipeline
does not work because of an infrastructure failure of the integration
platform. This could damage the continuity of a business process if

318

CHAPTER 7 PIPELINE IMPLEMENTATION

the pipeline is unavailable for a long time. ITIL processes also apply
to pipelines. Playbooks can play a useful role in incident and problem
management processes.

A playbook contains documented investigation methods to detect and
resolve problems. They are useful for investigating incidents or failures.
Playbooks can also be used for pipelines. Drafting pipeline playbooks
can already be started during pipeline testing. Common pipeline failures
and solutions are added to the playbook. Of course, playbooks are never
complete, and after implementation and usage of the pipelines, more
cases will occur. These cases are also added to the playbook.

Application Implementation

It is hard to speak about pipeline implementation without mentioning
application implementation. Application implementation is, after all,

the goal of using a pipeline in the first place. Adding certain features to a
pipeline can contribute to a solid application implementation experience.
Consider using or implementing these features.

Runbook

A runbook is a set of processes and procedures that you
execute repetitively to support various enterprise tasks.”

Reference [33]

Why do you need a runbook if you use automated pipelines? That is a
good question. A pipeline is already orchestrating the implementation of
an application, right? But teams do still work with a runbook even if they
also make use of pipelines. There are a couple of reasons why the use of a
runbook is still valid.

319

CHAPTER 7 PIPELINE IMPLEMENTATION

o There are still one-off tasks or activities that are not part
of CI/CD. The start of CI is a commit to a repository.
The end of CD is the deployment of an artifact to
a production environment. Plenty of tasks fall into
the processes before and after CI/CD. Think about
requesting an Azure subscription, configuring the
IAM roles, and assigning team members. In addition,
regular maintenance or migration involves activities
that are also not part of a CI/CD pipeline. Sometimes
these activities are complex and require a detailed

runbook.

e Another reason to use a runbook is the first-time
implementation of a complete system. You don’t have
CI/CD arranged on day one. The implementation
of a new system in production maybe requires the
execution of several pipelines in a specific order;
even in the case of a microservice architecture, some
pipelines need to run in a specific order. Think about
setting up the base infrastructure components used by
all microservices.

Everything can be automated, even a runbook. So, if a simple
spreadsheet is not sufficient, use one of the several automated runbook
tools. And because you already developing pipelines, setting up an
orchestration pipeline to implement the runbook is also an option.
However, the question is whether the benefit outweighs the effort and
money spent. That is a question only the team can answer.

Release Note

A release note is a change log, describing the updates of the software. It
may also include proof that all new features are tested and accepted. So, a

320

CHAPTER 7 PIPELINE IMPLEMENTATION

release note is associated with an artifact and contains information about
the delivered features and (optionally) a test report. Because this book is
about CI/CD design, the creation of release notes should not be done by
hand but created automatically. There is one thing to consider, though.
Between two production releases, there are probably multiple release
candidates, including new features and changes. The last release candidate
is marked as “the release” and deployed to production. Potentially,
multiple release notes are created in between, each one associated with a
release candidate. Only the final artifact deployed to production consists
of all new features since the previous production deployment. Most likely
the latest release note is very concise, describing just a bug fix. This is a bit
unfortunate. The release note of the production artifact ideally consists

of all changes between the previous production release and the current
production release. In addition, the release note should also contain all
test results performed on the release deployed to production.

To solve this problem, the system must keep track of all changes
between the latest and next production releases and assemble all
intermediate metadata to form an aggregated release note. After each
production deployment, the status of the metadata is reset, and the
assemble process restarts again. See Figure 7-2.

321

CHAPTER 7 PIPELINE IMPLEMENTATION

EE- (e)=

Release note 1
Metadata 1

EE-)

Release note 2
Metadata 1 +2

) = ()=

Final release note

Metadatal+2+3

Metadata reset

Figure 7-2. Aggregation of release note data

Because a release note potentially contains all features of the artifact
and the associated test results, its creation should typically be done after
all tests are performed. The metadata consisting of all features is generated
in the Publish artifact stage, in which all data of the artifacts’ changes and
features are gathered. The Perform test stage generates all test results. It
seems logical that the creation of the release note takes place as part of the
Notify actors stage.

Consider this case:

A team wants to automate the creation of a release note. They use
a separate issue tracker system to register the work items. Code is
stored in Git, and artifacts are stored in an artifact repository.

322

CHAPTER 7 PIPELINE IMPLEMENTATION

The team is informed about each production deployment using an
email (both successful and unsuccessful deployments).

Release notes are published on a wiki page. The team wants to have
an aggregated release note, containing all features since the last
release was deployed to production, including the test results of the
last release.

A typical BPMN model could look like Figure 7-3.

323

CHAPTER 7 PIPELINE IMPLEMENTATION

g
5 Store artifact
4
I
k)
8
b=
<
2y Metadata
o
i<)
]
o
£
©
=3
o
(o)
=3
£ — -
» L -
E)) -
& Publish artifact Store feature Pid
f(to repository metadata
<
]
= Start "Publish \ J \ J .
T artifact” stage .
2 .
= ol e A e A .
- .
Tl ® .
8 E O—D Perform tests Store testresults
3| E
L Start "Perform _ J q J
2 test" stage
SRR
Inform user
(o)
g about Publish Reset
% releasenote
o deployment to releasenote
5 . metadata
1 production
g Event production
= deployment (only Q T
° successful) |
= |
! |
! |
I
[}
<
Q
@
E
W Send e-mail
=
=
Create wiki page

Figure 7-3. BPMN, creating release notes

324

CHAPTER 7 PIPELINE IMPLEMENTATION

When the Publish artifact stage is executed, the artifact is stored in an
artifact repository, after which a specific task assembles all data associated
with the artifact. This means the code commit message is retrieved and the
work items associated with the release artifact are retrieved (not present in
the diagram for clarity reasons). This information is stored in a database so
it can be used later.

At the end of the Perform test stage, the test results are known. The data
of the test results are gathered and also stored in the same database.

At a certain moment in the CI/CD process, the artifact is (successfully)
deployed to a production environment. The result of the deployment is
passed to the Notify actors stage, and the Publish release note task retrieves
the metadata from the database, assembles the data, formats it to a
release note, and publishes it to a wiki page. After this has been done, the
metadata in the database is reset to the new start situation.

Artifact Promotion

The result of the build, package, and publish stages is an artifact stored

in a binary repository. This artifact is a release candidate, meaning that it
potentially can be deployed to production. But first, it has to run through
various test cycles, so anything can happen along the way. During the test
process, the artifact moves near production, but only a successfully tested
artifact is allowed to be deployed to production. Release candidates that
get stranded somewhere in the test process should be flagged because
potentially there is a risk that the wrong release is deployed to production.
The problem is that all release candidates, both the ones that failed the tests
and the ones that passed the tests, are kept in the same binary repository.
It must be possible to make a distinction between failed release candidates
and successful releases. To make sure that release candidates that failed
during testing are prevented from being deployed to production, a quality
gate can be added; this is an additional check to determine that the artifact
is valid. This check can be implemented in the Validate exit criteria stage.

325

CHAPTER 7 PIPELINE IMPLEMENTATION

But based on what information does this quality gate work? There are a

couple of options to prevent the wrong release from being deployed.

326

The artifact is promoted from stage to stage. One type
of implementation is that the artifact moves through
different binary repositories. So after integration
testing, acceptance testing, and performance testing,
the artifact is moved from one repository to the next.
The last repository contains the production-ready
releases, so that is the repository used in the Deploy
artifact to the production stage. An extra condition/
quality gate is not even needed because the correct
repository is already used. A big disadvantage of this
solution is that multiple repositories are required and

the artifact is moved several times.

Another option is to manually promote an artifact.
This feature is offered by some ALM platforms. The
problem with this option is that it is a manual action. A
user must actively change the status of an artifact from
prerelease to release, for example. The dual control
stage is already a manual action, so what is the point
to add more of them? To be honest, manual artifact
promotion is something to avoid.

Instead of dragging the same artifact through different
repositories, there are also options to keep all artifacts
in the same repository and provide metadata. After
specific stages and tasks are finished and testing was
successful, the metadata of the artifact is updated
(using curl or Maven, for example). Based on its
metadata, the status of the artifact is clear.

CHAPTER 7 PIPELINE IMPLEMENTATION

Figure 7-4 represents a unit test framework artifact with additional
metadata in the format of an XML file. The metadata file (unittest-1.0-
metadata.xml) contains additional information about the status of the
test tasks.

Figure 7-4. Storing additional metadata

Before the artifact is downloaded from the artifact repository and
deployed to production, its metadata is read and interpreted (using a
quality gate task in the Validate exit criteria stage). Because the acceptance
test in the metadata on the left of Figure 7-5 indicates that the acceptance
test failed, the pipeline ends here, and deployment to production does not
take place. In the second example, on the right, the metadata shows that
all tests were successful. The quality gate is passed, and the deployment
can start.

327

CHAPTER 7 PIPELINE IMPLEMENTATION

v <metadata>
<version>1.8</version>
v <test>
<integration>success</integration>
<acceptance>failed</acceptance>
</test>
</metadata>

v <metadata>
<version>1.8</version>
v <test>
<integration>success</integration>
<acceptance>success</acceptance>
<performance>success</performance>
</test>
</metadata>

unittest-1.0-metadata.xml
Release failed the tests

unittest-1.0-metadata.xml
Tests are completed successfully

Figure 7-5. Storing metadata with test results

Note

This is less of an issue if both the Cl and CD parts are

implemented as one physical pipeline. The pipeline already fails
before the Validate exit criteria stage is reached. However, it is a risk
if the implementation consists of separate pipelines. One example in
which this is an issue is in the case of a multiteam build strategy, in
which there is one separate CD pipeline, processing artifacts from

multiple CI pipelines.

Summary

You learned about the following topics in this chapter:

o Prepare the team before a pipeline is implemented

and used.

e Known issues and limitations of a pipeline should
be logged and possible gaps and improvements

evaluated.

e Requirements that were not realized must be

registered, including mitigating actions.

328

CHAPTER 7 PIPELINE IMPLEMENTATION

o Address persistent problems in teams (team
discipline).

Depending on the type of integration infrastructure,
a team has more or fewer responsibilities. A few

operational models were covered.
¢ SaaS solution

e TaaS solution

o Self-hosting solution

If the pipeline is implemented, more application

runtime environments need to be configured.

Consider the use of additional features such as
runbooks, release notes, and artifact promotion to

improve the application implementation experience.

329

CHAPTER 8

Operate and Monitor

This chapter covers the following:
e How pipelines can be of use in operational processes

e The importance of monitoring pipelines and which
types of monitoring are distinguished

o Some examples of the types of monitoring

o How information overloading can be reduced and
how information can be presented, using different
viewpoints

This chapter discusses what it takes to maintain a pipeline compared
to maintaining an application.

Manage the Integration Platform

The previous chapter discussed the activities involved with operating
models and setting up the integration platform, so we won’t repeat those
topics here. Summarized, the following operating models were identified:

e Saas solution: The provider of the ALM/integration
platform manages the platform, and the DevOps team
can focus on developing automated pipelines.

© Henry van Merode 2023 331
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_8

https://doi.org/10.1007/978-1-4842-9228-0_8

CHAPTER 8 OPERATE AND MONITOR

e IaaS solution: The provider of the infrastructure
manages the infrastructure, while the DevOps team
(or IT4IT team) manages the integration platform

middleware.

o Self-hosting: The organization is completely responsible
for managing the infrastructure and the integration
platform middleware.

In addition to the initial setup of the infrastructure and platform,
the DevOps/IT4IT team also has to operate, maintain, and monitor the
platform. It is important to emphasize that depending on the chosen
operating model, this can take a significant amount of time and effort from
the team.

Operational Pipelines

Pipelines are often explained in the context of building, testing, and
deploying an application, but there are plenty of other areas in which
pipelines also play a role. They are not necessarily CI/CD pipelines, but
just pipelines used for different purposes. One area in which the use

of pipelines is beneficial is in performing operational tasks associated
with maintaining an application. Various activities are needed to keep
the application running. These tasks should be automated as much as
possible. Manual operational tasks should be discouraged for several
reasons. Automating tasks speeds up operational activities and makes
them repeatable, which results in more predictable results. In addition, an
automated task is more secure because nobody touches the production
environment with their hands. Here are some examples of operational

pipelines:

332

CHAPTER 8 OPERATE AND MONITOR

Check for almost expired certificates: The pipeline
determines the expiration date of certificates according
to a daily schedule. If a pipeline is almost expired,

an alert is raised to inform the team that a certificate
renewal is needed.

Renew certificates: To extend on the previous bullet, a
more sophisticated pipeline not only warns the team
about the expired certificate but also retrieves a new
certificate and installs it in the target environment.
Any party interested in this renewed certificate is
automatically informed, preferably using a publish/
subscribe mechanism or, as an alternative, by sending
an email.

Infrastructure drift detection: Drift detection means that
the target infrastructure has been changed compared
to the infrastructure code. This is called drift, a topic
explained in the paragraph about ‘Security Monitoring’
There are multiple ways to detect infrastructure drift
and to warn a team if such a thing happens. One

way is to trigger a function, which detects whether
infrastructure drift happened. This function is invoked
using a pipeline.

Any other repeating function: In addition to the
previous cases, a pipeline can be used for any
repeating operational function. Think about scanning
a production environment for security vulnerabilities,
backing up databases, performing health checks,

and checking deployed artifacts in production to
determine whether they are not compromised (e.g.,
by continuously validating the digital signature of the
artifact).

333

CHAPTER 8 OPERATE AND MONITOR

o Configure parameters: Any parameter used by a
running application must be externalized, meaning
that it is not hard-coded. The application reads the
parameter using a file, configuration service, or
database table. To “upload” these parameters, an
operational pipeline can be used.

e Upload secrets to a vault: Sometimes secrets like tokens
or database credentials need to be uploaded from a
source location to a target vault. A pipeline can be used
for this.

e Manage patches: This means installing infrastructure
patches.

e Clean up the test environment: The pipeline contains
scripting to remove unused resources from a target
environment. AWS stacks, for example, are hard
to delete manually if they have dependencies with
certain resources. S3 buckets with versioning enabled
are typically tough to remove by hand. This can be
automated and embedded into an operational pipeline.

Note The number of operational tasks is infinite. The
recommendation is not to create one operational pipeline per activity
but to add related tasks to one operational pipeline and make it
possible to select a specific task at the start of the pipeline.

334

CHAPTER 8 OPERATE AND MONITOR

Monitor

There is not much difference between monitoring an application running

in a target environment and monitoring the integration platform and

its pipelines. In both cases, similar characteristics are monitored. Is the

infrastructure healthy? Does the application or pipeline perform well, or

is there a security issue detected? In addition, you may want to monitor

certain business key performance indicators (KPIs), such as what is the

success rate of the pipeline runs, or how long does it take between a work

item being worked on and the actual deployment of the feature associated

with this work item? Generalized, monitoring falls into a few categories.

Systems monitoring: The infrastructure of the
underlying ALM/integration platform is monitored.
This is a type of technical monitoring that covers CPU,
disk and memory usage, network congestion, etc.

Platform monitoring: This can be considered an
extension of systems monitoring. It covers monitoring
the middleware layer of the ALM/integration platform,
including the pipeline performance, health, and
queuing status.

Business monitoring: This covers monitoring KPIs and
relates to metrics of the CI/CD process. It monitors
the functional and process behavior of the platform
and the pipelines. Monitoring KPIs is very specific to a

team’s needs.

Security and compliance monitoring: This has the
responsibility of monitoring all security-related aspects
of the platform and pipelines. Pipeline compliance
monitoring is part of this.

335

CHAPTER 8 OPERATE AND MONITOR

Several websites suggest the top four, six, or ten metrics that you
should monitor. This is arbitrary and should be taken with a grain of salt.
In general, you should always monitor aspects of all categories, such
as the technical health of the system, the performance of the system
and pipelines, and, in the case of organizations with tight security
requirements, the monitoring vulnerabilities or other security-related
aspects of the system. Concerning KPIs, it is up to the team what they think
is important for them. So, no recommendation is given here.

Systems Monitoring

If the team or organization manages its integration infrastructure, systems
monitoring must also be organized. Systems monitoring is used to validate
whether the infrastructure is still healthy, but it is also used to determine
whether pipelines still run in a decent and fast manner. Bottlenecks in the
infrastructure have an immediate effect on pipeline execution.

Systems monitoring is arranged around various system metrics, such
as the following:

e CPU usage
¢ Memory usage
o Diskusage

o Network usage, like HTTP sessions and HTTP
response times

o Errors and logs
e Threads and processes

Any anomaly in the behavior is detected by the monitoring and alerted
back to the team. The following case shows why systems monitoring is of
great importance. It shows how CPU usage and the number of executors
on a Jenkins server influence the performance of pipelines.

336

CHAPTER 8 OPERATE AND MONITOR

The Jenkins pipelines of a team run on a (one) Windows server,

with two CPU cores. No additional nodes are used. The number of
executors is set to the default; the pipelines run with two executors.
The Jenkins server runs six pipelines together, implementing a
payment processing system. They developed the following pipelines:

« Receive Payment
o Process Payment
o Process Booking
o Book Order

o View Payments

e Inform Customer

The pipelines represent six microservices that the system
comprises. Each pipeline includes all stages to build, test, and
deploy a microservice. As soon as a code commit occurs, one of the
corresponding pipelines is triggered.

Baseline monitoring of the Windows server reveals that everything
works fine. CPU usage is 45.12 percent, and memory usage is 34.45
percent. This is without any pipeline running. See Figure 8-1.

337

CHAPTER 8 OPERATE AND MONITOR

Figure 8-1. Baseline systems monitoring

As soon as all the pipelines are triggered at the same time, CPU usage

increases but stays between 90 percent and 95 percent. Memory usage

increases only slightly and stays between 36 percent and 37 percent. CPU

usage is a bit on the high side, but the system is still perfectly able to run
the pipelines. Table 8-1 shows the results.

Table 8-1. Jenkins Pipeline Runs with Two Executors

Pipeline Start Time with 2 Execution Time Total Time Until
Executors with 2 Executors Gompleted

(= Start Time +

Execution Time)
Book Order After 0 sec 7 min, 31 sec 7 min, 31 sec
Inform Customer After 0 sec 8 min, 25 sec 8 min, 25 sec
Process Booking After 7 min, 31 sec 8 min, 57 sec 16 min, 28 sec
Process Payment After 8 min, 25sec 5 min, 5 sec 13 min, 30 sec
Receive Payment After 13 min, 30 sec 4 min, 40 sec 18 min, 10 sec
View Payments After 16 min, 28 sec 9 min, 26 sec 25 min, 54 sec

338

CHAPTER 8 OPERATE AND MONITOR

What stands out is that if all pipelines are triggered at the same time,
not all pipelines start immediately, and the last pipeline (View Payments)
is finished only after 25 minutes and 54 seconds. This means the developer
receives information about the pipeline execution after more than 25
minutes since the code was committed and pushed. This is not a surprise
because the number of executors is set to two, meaning that only two
pipelines are executed at the same time. The other pipelines become
pending until one of the executors is available again. This is problematic if
the commit rate is high because each commit triggers a pipeline.

No problem, you would say. Just increase the number of executors to,
let’s say, four. This changes the results slightly, as shown in Table 8-2.

Table 8-2. Jenkins Pipeline Runs with Four Executors

Pipeline Start Time with 4 Execution Time Total Time until
Executors with 4 Executors Completed
(= Start Time +
Execution Time)
Book Order After 0 sec 9 min, 19 sec 9 min, 19 sec
Inform Customer After 0 sec 10 min 10 min
Process Booking After 0 sec 14 min 14 min
Process Payment After 0 sec 8 min, 10 sec 8 min, 10 sec
Receive Payment After 8 min, 10 sec 6 min, 12 sec 14 min, 22 sec
View Payments After 9 min, 19sec 9 min, 2 sec 18 min, 21 sec

The start time of the last pipeline (View Payments) is reduced, from
16 minutes and 28 seconds to 9 minutes and 19 seconds. That is an

improvement, but the overall execution time of most individual pipelines is

339

CHAPTER 8 OPERATE AND MONITOR

increased' by a couple of minutes. The total time of executing all pipelines,

however, reduces from 25 minutes 54 seconds to 18 minutes 21 seconds.
The CPU capacity is spread over multiple pipelines. This is visible

in the systems monitor as showed in Figure 8-2, which stays most of the

time at 100 percent. Memory usage is still low between 36 percent and

37 percent, meaning that the pipelines are CPU bound and not memory

bound. See Figure 8-2.

Figure 8-2. Systems monitoring with 100 percent CPU usage

Increasing the number of executors smooths out the Total time until
completed, but it comes with a price. The overall execution time of the
pipelines in concurrent runs increases. This is even more dramatic if the
number of executors is increased to six and all pipelines are started at the
same time. See Table 8-3.

'Note that the View Payments is even faster with four executors instead of two.
This can be explained because when the pipeline starts, most other pipelines are
already finished, so this pipeline has more CPU resources at its disposal.

340

CHAPTER 8 OPERATE AND MONITOR

Table 8-3. Jenkins Pipeline Runs with Six Executors

Pipeline Start Time with Execution Time Total Time until
6 Executors with 6 Executors Completed

(= Start Time +
Execution Time)

Book Order After 0 sec 12 min 12 min

Inform Customer After 0 sec 13 min 13 min

Process Booking After 0 sec 16 min 16 min

Process Payment After 0 sec 11 min 11 min

Receive Payment After 0 sec 10 min 10 min

View Payments After 0 sec 16 min 16 min

Playing with the number of executors results in a shift regarding
Execution time and Total time until completed. If the number of executors
is low, CPU utilization is optimal, resulting in a faster execution time. But
if the number of commits becomes higher, you need to make a choice.
With fewer executors, Execution time of the running pipeline instances is
optimal, but other pipeline instances start to queue. You might want to
increase the number of executors to spread the CPU resources evenly over
the running pipeline. This reduces the Total time until completed but does
increase the Execution time value of all pipelines.

But what if you want a lower Execution time but also a lower Total
time until completed? The only option is to add more computing capacity
because the systems monitor indicates that CPU usage is a bottleneck.
After all, it continuously stays at 100 percent. Adding more capacity can be
achieved by adding more nodes (servers) and offloading pipeline runs to
these nodes so the main Windows server capacity is freed up.

341

CHAPTER 8 OPERATE AND MONITOR

This case shows how to play with the number of executors, and it is a
nice example of using systems monitoring to spot bottlenecks in pipeline
processing.

Platform Monitoring

Platform monitoring is positioned one level above infrastructural systems
monitoring. Platform monitoring concerns the monitoring of the ALM/
integration platform itself. This includes the platform middleware and the
pipelines. The following are the typical metrics to monitor:

e Queue depth of all nodes/servers/agents (to detect
queuing/pending pipelines).

e Performance of pipelines.
e Number of pipeline runs.

o Number of successful and failed pipelines related
to infrastructure problems or issues with external

connections.

e Team behavior; a team scheduling thousands of jobs
in a very short time creates a bottleneck for teams
that continuously—but with a low pace—start their
pipelines. When monitoring this, it becomes possible to
address the teams about it (or possibly apply a certain
concurrency policy, if that feature even exists...!).

To be honest, most ALM/integration platforms provide poor support
for dashboards that monitor platform-specific metrics. In general, a lot of
improvements can be made in this department.

Take a look at Figure 8-3. It shows a simple build and deployment
health dashboard, including statistics on the number of (partial)
successful, failed, and canceled pipeline runs in the last 90 days. In
addition, the status of the latest pipeline runs is visible.

342

CHAPTER 8 OPERATE AND MONITOR

Countdown until end of sprint

Figure 8-3. Simple health dashboard

Although this dashboard gives some insight into the latest pipeline
runs, it is still a rudimentary dashboard, and in this particular case, it was
not possible to configure a dashboard in such a way that it fulfilled all
the requirements, especially information about pipeline performance is
omitted. Metrics like what is the average processing time? of the various
pipelines and how does it change over time? are hard to monitor. Also
things like how long does a pipeline run remain in the queue before it is
executed? and what are the maximum and average queuing times? are
problematic to monitor, or at least difficult to display in a dashboard.

In general, the requirement to spot any degradation or bottleneck in
pipeline processing because of infrastructure/platform issues was difficult
to be fulfilled with the standard options available for the various analyzed
platforms.

Business Monitoring

KPIs can be visualized using custom dashboards. A few examples of KPIs
were mentioned in Chapter 3. The next dashboard example visualizes two
KPIs called Lead time and Cycle time. These KPIs need some explanation.

343

CHAPTER 8 OPERATE AND MONITOR

e Lead time is the time measured from the moment a
work item is created and the moment it becomes in a
final state (Done). During this time, the code associated
with this work item is developed and tested. The work
item status is set to Done after all tests have been
completed.

Lead time does not say anything about the performance of the
DevOps team. The time between the moment a work item is
created and the moment it is pulled into a sprint and picked up
by a developer can be very long. A work item can stay on the
backlog for a very long time.

e Cycle time gives better insight into the performance of
the team. It measures the time between a developer
committing themselves to a work item and the moment
the code for the particular feature has been developed
and tested.

Figure 8-4 visualizes the difference between Lead time and Cycle time.

Workitem (status)

Cregte Comitted Done
workitem

l |

Cycle time

l |

Lead time

Figure 8-4. Lead time and Cycle time

The dashboard shows both KPIs. The average Lead timeis 91 days,
based on 18 work items (the 10 bugs excluded), while the Cycle time is 23
days on average. This means the 18 work items stayed on the backlog for 68
on average, while the team finished a feature in 23 days on average.

344

CHAPTER 8 OPERATE AND MONITOR

Are there any conclusions to be made, based on this dashboard? The
fact that a work item stays on the backlog for more than two months does
not say anything. Probably there was no real urgency to solve these items.
But based on a Cycle time of 23 days, we can conclude a couple of things
because it takes a relatively long time to finish these work items.

When zooming in on the dashboard, a couple of work items really stand
out. The red-circled dots on the dashboard are work items with a Cycle time of,
respectively, 125.2 days, 74.8 days, and 63.9 days. These work items influence
the average Cycle time negatively. Detailed inspection reveals that these work
items include activities that are performed by another department but are
required to finish the work item. It is not the DevOps team to blame for the
delay, and it may give the wrong impression of the team’s performance; a
careful analysis is required before any conclusion is made.

However, a few conclusions can be made. Splitting work items into
activities performed by the team and activities performed by another
department would have contributed to a more accurate representation of
the teams’ velocity. But even if the outliers are removed, the average Cycle
time s still a couple of days on average. These numbers can be discussed
with the team. See Figure 8-5.

Dashboard with ‘Lead time' and "Cycle time'

Team Lead Tiena

Figure 8-5. Dashboard, Lead time and Cycle time

345

CHAPTER 8 OPERATE AND MONITOR

Security Monitoring

Security monitoring covers a broad range of topics. The integration platform
and infrastructure must be secure, and any vulnerabilities or breaches must
be detected by the monitoring systems. In addition, various checks can be
done on the pipelines themselves. For example, a pipeline has to comply
with the company policies. So, let’s zoom in on two examples.

Application monitoring and monitoring of the target environment
on which the application runs are typically not part of integration
platform and infrastructure monitoring. However, there are a few types
of monitoring that do fall into this category. Consider an application
deployed to a certain target environment. The application may not
be altered once deployed, and if it is changed, it can be changed only
using a pipeline redeploy and not manually. The same applies to the
target environment itself. Once the infrastructure has been provisioned
and applications run on it, any manual change of the infrastructure is
not allowed and should be detected. This type of monitoring can be
considered part of pipeline (security) monitoring.

Figure 8-6 shows an example in which part of the infrastructure—a
stack—is provisioned to an AWS account. The infrastructure is provisioned
using IaC, and once provisioned, it can be changed only by re-provisioning
the updated infrastructure code. In this particular screenshot, the stack is
changed manually, indicated by the Drift status. It has the value DRIFTED,
while the default Drift status should be IN_SYNC.

Continuous monitoring of the infrastructure drift or changes in the
applications deployed on this infrastructure is a good way to detect any
manual change in the production environment. A cloud service provider
like AWS has the tools to check for drift of both infrastructure and

346

CHAPTER 8 OPERATE AND MONITOR

applications,” and continuous monitoring can be done relatively easily.
Any infrastructure drift or nonauthorized application changes are exposed
on the AWS console, as depicted in Figure 8-6.

Figure 8-6. Drift detection of an AWS stack

Detecting drift of the AWS infrastructure is an automated process, but
itis not triggered automatically. Encapsulating the drift detection function
in a scheduled operational pipeline is one way to detect and monitor drift.

Compliance monitoring validates whether the platform and pipelines
meet the company policies. Any deviation results in a noncompliant flag.
This could mean that the team is just informed about the fact that certain
parts of their setup or pipelines are not compliant, but the compliance
checks could also have a mandatory character. If the pipeline is not
compliant, it is blocked from execution.

The Pipeline Compliance Dashboard in Figure 8-7 shows various
policies that indicate whether a pipeline is compliant. A regular scan is
performed to update the dashboard with the latest information. DevOps

?Lambda code signing is a way to determine whether running code has been
altered.

347

CHAPTER 8 OPERATE AND MONITOR

teams can view the compliance status of their pipelines. In this particular
example, the pipeline is not compliant because the infrastructure
validation task is omitted from the pipeline. A short explanation of the

problem and the solution are given, as shown here:

This pipeline does not have an AWS Infrastructure scan-
ning’ stage

A production environment must be configured in such a way
that it meets the company security policies. Add the IT4IT
AWS Infrastructure scanning task 2.0 to your pipeline to scan
your infrastructure code and test compliance of the pipeline
using the Validate button.

Pipeline Compliance Dashboard

Policy Deviation

4 Perform code analysis
P Perform Whispers task
P> Perform SonarQube task

A Perform Infrastructure validation taskj

This pipeline does not have|

ust be configured in such a way that it meets the company security
Infrastructure scanning task 2.0 to your pipeline to scan your
compliance of the pipeline by means of the Validate button

Quality Gates are not by-passed
Dual control stage is available
Use of authorized connections
Repositories cannot be deleted

Pipelines cannot be deleted

Only use production pools

Validate

Figure 8-7. Pipeline Compliance Dashboard

348

CHAPTER 8 OPERATE AND MONITOR

Share Information

Information can be shared in different ways, but beware that information
overloading of the DevOps team must be prevented. The best way to
demonstrate what an “information sharing” design could look like if
techniques to prevent information overloading are applied is by using a
specific case. Of course, this case depicts only one possible solution, and
teams have to decide for themselves what their information flow will look
like. Consider the following case:

e A team uses a feature branch workflow. It makes use
of Microsoft Teams and email to inform the team.

* [n the case of a feature branch, the results of the
build and unit test stages are sent using an email to
the concerned developer only.

e In the case of the trunk (main branch), the pipeline
creates a release. The following requirements apply:

e The result of a release build, both successful and
unsuccessful, must be sent to a specific channel
in Microsoft Teams called release build.

e The result of all tests (including unit tests), both
successful and unsuccessful, must be sent to a
specific channel in Microsoft Teams called test.

e The result of a production deployment, both
successful and unsuccessful, must be sent to
a specific channel in Microsoft Teams called
production deployment.

349

CHAPTER 8 OPERATE AND MONITOR

e [fa dual control must be performed, an email is sent
to the product owner only; a delegate can view the
product owners’ mailbox.

e [fa proaduction deployment fails, all team members are
informed about the result using an email. They will not
get any email if the production deployment is successful.

Given these requirements, a design is drafted. The team’s branching
strategy is defined as a feature branch workflow. A typical BPMN model
looks like Figure 8-8.

)
O

(. Main + feature branch CI/CD pipeline D

Notify actors
Unittests failed 3

' 3
Package artifact A{Pubsh arlfaci]

)

CI/CD platform

.

Generic CI/CD
pipeline stages

Figure 8-8. BPMN, sharing information

It shows the feature branch workflow with a feature branch and a trunk
(the main branch). The Notify actors stage is responsible for communication
with other actors, and the requirements state that both successful and
unsuccessful results must be communicated. This explains the presence of
the parallel gateway after certain stages. Also note that the diagram does not
have an end event; start and end events in BPMN are optional.

350

CHAPTER 8 OPERATE AND MONITOR

The results of executing a stage are passed as arguments to the Notify

actors stage. The following are the input arguments of the Notify actors:

e The developer who performed the code push.
e The repository branch.

o The executed stage is passed as an argument. This
stage is called previous_stage in Figure 8-9.

o The results of the stage, success or failure.

If we zoom in on the Notify actors stage, it results in a detailed design,

as depicted in Figure 8-9.

Send e-mail to Send e-mail to Send e-mail to
5 developer product owner team
8
T
E
u
—0
Determine e- e Determine e-
Branch is feature | mailaddress rodust owner mailaddress
developer and "an N ereote o team and create
create e-mail el e-mail
previous_stage is previous._stage is
"Perform dual
9 control” E
k1 previous_stage is previous._stage is v Notly
o not
K Validate branch g " t
4 ‘Execute build test'? Production
g previous._stage previous_stage is deployment failed
> not "Perform dual
£ Start "Notify previous_stage is control”
2 | actors’ stage N Perform unittests” previous_stage is
E previous_stage is or I S
i s s Oeploy et
"Perform test"
End "Notify
Create Message Create Message aclors” stage
o tor 9 Create Message Card for
\ . Card for "Test" "Production
Release build o
Channel deployment
Channel
Channel
O
v v
E
3
2
P ‘Add message
= Add message Add message card to
card to "Release card to "Test" “"Production
build” Channel Channel deployment*
Channel

Figure 8-9. BPMN, sharing information (Notify actors)

In the Notify actors stage, the first validation is on the branch. A different

path is followed for the main branch compared to the feature branches. In the
case of a feature branch, an email is created for the developer and sent to the

developer using an email server. The path of the feature branch stops here.

351

CHAPTER 8 OPERATE AND MONITOR

In the case of the main branch, multiple validations are performed.
The previous_stage (passed as an argument to the Notify actors stage)
is validated, and based on its value, either emails or message cards in
Microsoft Teams are created.

Events, Alerts, Incidents, and Notifications

The following are the events, alerts, incidents, and notifications you'll see:

e An event is an occurrence of a situation in the system
that takes place. It can be a certain metric exceeding
a threshold, but it can also be a state change in the
system. If a pipeline fails, it results in the submission
of an event; if storage usage exceeds 80 percent, it
results in an event, an unhealthy pipeline results in an
event, etc.

e Anotification is a message to inform the user about
a certain—noncritical—event that occurred. The
creation of a release note is not critical, but perhaps it’s
important enough to share with the team.

e Analertis an urgent notification, triggered if a certain
event (or multiple events) takes place with a certain
importance. Storage usage exceeding 80 percent is
important enough to be shared with specific people
from the team.

e Anincident is an alert that causes damage or is a threat
to the system. It is of utmost importance to push this
information to the team because it concerns a blocking
issue, which causes either a serious degradation of
the pipeline performance or the pipelines do not
work at all.

352

CHAPTER 8 OPERATE AND MONITOR

Notifications, alerts, and incidents are shared with the team. In the
case of incidents, the team should be informed proactively, based on a
push mechanism; one or more team members are informed using an
email, an SMS message, or a WhatsApp message because immediate
action is required. Notifications and alerts can be shared by these same
channels, but it is also possible to inform the team with a notification or
alert on a dashboard or overview. The team members have to actively
watch the dashboard to be kept informed.

In all cases, you need to be conservative with the amount of
information you push to the team. Only if needed, information is
actively pushed.

The overview in Figure 8-10 gives a nice example of the pipeline runs
of a process booking pipeline in Jenkins. There are some issues with the
latest runs. In one of these runs, the build failed. In the latest run, all stages
were executed properly again; however, the Deploy artifact to production
stage ended with a warning, although the deployment was successful.
Further investigation is needed. Since the overview already gives a nice
indication that something went wrong, the team has to decide whether
they also want to be alerted actively or whether keeping an eye on the stage

view screen is sufficient.

353

CHAPTER 8 OPERATE AND MONITOR

Figure 8-10. Jenkins stage view process booking

One problem with these dashboards is that information can be
retrieved, but it takes a couple of clicks. Figure 8-11 represents the Jenkins
Blue Ocean dashboard and shows the latest run of the process booking
pipeline. It shows that artifact version 11.4 was deployed with a warning,
but it requires navigation to this particular screen and selecting the stage
for which the detailed information needs to be displayed.

Figure 8-11. Jenkins blue ocean process booking

But sometimes you just want to have a different view of the
information. Instead of relying solely on the ALM/integration platform to
provide the information, it is also possible to make use of other channels.
Email, SMS, and WhatsApp were already mentioned, and they form an

354

CHAPTER 8 OPERATE AND MONITOR

excellent way to push information, but communication and collaboration
platforms like Microsoft Teams are also a good addition to the way
information is presented. Take a look at the overview in Figures 8-12 and
8-13. The results of the Execute build and Deploy artifact to production
stages are sent to Microsoft Teams as a message card. This information

is grouped into different communication channels. The Execute build
channel contains all release build notifications, and the Deploy artifact

to production channel contains the notifications related to production
deployments. As you can also see, there are two build notifications in

the Execute build channel. The first build failed, and the next build was
successful. Build artifact version (1.1.4) was successfully deployed to
production, although with warnings, which are displayed in the Deploy
artifact to production channel. Using these kinds of tools makes it possible
to arrange information differently and make it more attractive and

accessible.

Figure 8-12. Notifications, displayed in the Execute build channel of
Microsoft Teams

355

CHAPTER 8 OPERATE AND MONITOR

Figure 8-13. Notification displayed in the Deploy artifact to
production channel of Microsoft Teams

Summary

You learned about the following in this chapter:

e Operating and maintaining an ALM/integration
platform can put a burden on the team, depending on
the operating model.

o Pipelines are very useful for regular operational tasks
and recurring tasks.

e Monitoring pipelines is done on multiple levels.
o Systems monitoring
e Platform monitoring
¢ Business monitoring

e Security monitoring

356

CHAPTER 8 OPERATE AND MONITOR

Make sure to cover them all.

o Information overloading must be prevented. Use
different communication channels to present
information from different viewpoints, to make it more
attractive and accessible.

357

CHAPTER 9

Use Case

This chapter covers the following:
o The use case of MyCorp.com and the AWSome team.

e Anoverview of requirements implemented by the
AWSome team.

e The design of the pipeline based on the given
requirements.

e Animplementation of the use case using Azure DevOps
pipelines.

e Adetailed configuration. With this configuration,
it becomes possible to execute the pipeline code,
provided separately from this book.

e The result of the pipeline runs.

o Theresults, the gaps and backlog items, and the output
of a running application.

All the source code is available in the GitHub repository: https://
github.com/Apress/Continuous-Integration-(CI)-and-Continuous-
Delivery-(CD).

Up to now, the approach to designing and developing pipelines has
been discussed on an abstract level, but it has not yet led to a real pipeline
that runs on a machine. This chapter presents a use case and guides you

© Henry van Merode 2023 359
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0_9

https://github.com/Apress/Continuous-Integration-(CI)-and-Continuous-Delivery-(CD)
https://github.com/Apress/Continuous-Integration-(CI)-and-Continuous-Delivery-(CD)
https://github.com/Apress/Continuous-Integration-(CI)-and-Continuous-Delivery-(CD)
https://doi.org/10.1007/978-1-4842-9228-0_9

CHAPTER9 USE CASE

through all the steps explained in this book, from requirements analysis
to the implementation of a pipeline that runs on an ALM platform. Azure
DevOps is the ALM platform that is used to demonstrate the use case.
But even if you don’t know anything about Azure DevOps or AWS, this
chapter is still valuable because it shows a real case from requirements to
implementation.

Note This chapter is not a tutorial on creating a pipeline in Azure
DevOps, but it does guide you through the steps needed to set up
the pipelines. Details of certain steps have been omitted for clarity
and are believed to be familiar to readers who already have some
experience with Azure DevOps. Also, the combination of Azure
DevOps and AWS is not the most obvious choice, because AWS
also provides the tools, but it demonstrates that you can easily use
different ALM platforms.

The case deals with an imaginary company called myCorp.com. It is
a new startup with several small development teams. One of these teams
is the AWSome team, consisting of a product owner named Emma and
three engineers, named Meera, Tim, and Vinod. Vinod is also a delegated
product owner and approves or declines deployments on behalf of Emma.

The team’s ambitions are huge, but they decide to start small. Their
first application is called myapp, and the first increment consists of only
a healthcheck app. It just listens to an HTTP request and logs a message
if the request is processed. It’s not very exciting, but the team wants to
establish a solid workflow and develop their first automated pipeline.

To make a difference in the world, myCorp.com attaches great
importance to sustainability. The employees do not want to set up an on-
premises data center; everything is done in the cloud, and they decide to
use AWS as the runtime environment for all their apps.

The journey of the AWSome team begins with a requirements analysis.

360

CHAPTER9 USE CASE

Requirements Analysis

The requirements of myapp and its first increment—the healthcheck
app—are clear. The healthcheck is realized as an AWS Lambda function
that listens to HTTP requests and writes a log line to a CloudWatch log
after every processed request. The healthcheck Lambda is called every 5
minutes by a CloudWatch schedule.

Because the runtime environment is AWS, the team chooses
infrastructure as code (IaC), but they use the AWS Cloud Development Kit
(CDK) over AWS CloudFormation. By using CDK, the infrastructure is fully
coded in their favorite programming language, Java.'

Defining continuous integration, continuous delivery, and pipeline
requirements take a bit more work, so the AWSome team decides to draft a
table with all the requirements; see Table 9-1.

Table 9-1. Requirements

Sustainability

Define sustainability goals. After validating several ALM platforms, the team
chooses Azure DevOps. This is a cloud solution,
developed by Microsoft, running on Azure.

Way of Working
Use a simple branching The team has experience with a feature-based
strategy. branching workflow. The main line is kept in a

production-ready state.

(continued)

' AWS CDK supports multiple languages.

361

CHAPTER9 USE CASE

Table 9-1. (continued)

Choose the release strategy
you want.

Choose a build, test, and
deployment strategy.

Technology

Automate the creation
of ephemeral test
environments.

Decide upon the
development strategy.

The team works in sprints of two weeks and wants to
deploy to production at the end of every sprint, using
a timeboxed release strategy. Although they want to
deploy in a fully automated way after every sprint, the
decision is made to manually trigger the deployment
for now.

e The build strategy of the pipeline is kept simple.
The choice is made to perform a full Maven build
in each pipeline run.

e Also, the deployment strategy is simple. The
AWSome team starts with a re-create deployment
strategy, looking into canary releases in one of
the next increments.

e No specific requirements for the test strategy are
defined yet. The technical test framework used
for application acceptance tests is Cucumber.

The test environment is created or adjusted in each
pipeline run, using AWS CDK. For now, the test
environment is not deleted after every test run.

The approach is to use the extended pipeline
development strategy. However, the team does not
have a unit testing framework, so they opt for a
process where pipeline development and testing are
done exclusively in a separate Azure DevOps test
project.

362

(continued)

CHAPTER9 USE CASE

Table 9-1. (continued)

Compliance and Auditability

All changes are traceable/ Tagging—using the release version—is done for
tag everything. each release. The following resources are tagged:
e (Codein Git
e Pipeling(s)
e Build artifacts
e AWS stacks

Only build and deploy To provide evidence of the integrity of the artifact, an

artifacts using a pipeline. SHA256 hash of the artifact is generated after the
build and deploy steps and compared with the hash
of the lambda in the AWS account. All hashes must be
the same.

Resources associated with a Update the retention time of resources associated
release cannot be deleted. with a production release (to foreven).

Security (General)

Refine access by setting Create a separate group for dual control and assign
permissions for a user or Emma and Vinod to this group.

group.

Perform a vulnerability The following validations are done:

analysis. e Whispers for hard-coded secrets

e Lambdaguard for AWS Lambda configuration

(continued)

363

CHAPTER9 USE CASE

Table 9-1. (continued)

Manageability

Use a release versioning Use semantic versioning for releases. Each release
schema that makes sense. version must be generated.

Pipeline code is treated as Pipeline code is stored in an Azure DevOps Git
software. repository.

Store binaries in an artifact ~ Azure DevOps has the option to store the artifact

repository. together with the build pipeline. This option is used,;
the team does not make use of an external repository
or Azure DevOps Artifacts.

Build once, run anywhere. The artifact is built only once and deployed to
separate AWS test and production accounts.

Quality Assurance

Application code must be SonarCloud is used for scanning code quality.
scanned on code quality.

Use quality gates. In addition to a quality gate after the SonarCloud
scan, use a quality gate just before the artifact is
deployed to production to guarantee that certain
stages are executed (Analyze code, Perform test,
Validate infrastructure compliance).

Define entry and exit Each pipeline starts with validations to determine
criteria. whether variables are configured properly.

364

CHAPTER9 USE CASE

Pipeline Design

To get a clear understanding of the environments, the tools, and how
everything is connected, the context diagrams in Figure 9-1 and Figure 9-2
are drafted.

The first diagram represents the Azure DevOps environment, used to
run the pipelines. It consists of two projects. The application is developed
in the main (production) project. This project is also used to run the
pipelines and deploy them to the AWS test and production environments.

A second project—the test project—is a clone of the main project and
is solely used to develop and test the pipelines.

The main Azure DevOps project is connected to both the AWS test
and the AWS production environments. The Azure DevOps test project is
connected only to the AWS test environment, so it cannot deploy to the
AWS production environment. The AWS test environment is represented
by account? 497562947267. The AWS production account has the ID
486439332092.

Both Azure DevOps projects are connected to SonarCloud. External
libraries are retrieved from the central Maven repository, and emails are
sent from the Azure DevOps pipelines to the team members.

2Both account numbers 497562947267 and 486439332092 are the account of the
AWSome team. If you want to try the pipelines yourself, you need to request and
use your own AWS accounts, of course.

365

CHAPTER9 USE CASE

Clone (Sync with
latest application and

Azure

<service connection:

MyCorp.com

Product owner

Azure N
infrastructure code)
DevOps DevOps 1@;
Project Project m M

test

roducti

‘Deploy’ pipeline code

Deploy MyLambda

Notify actors [A
de >
%

Internet

Download
libraries N

AWS Test
account
497562947267
Region us-east-1

AWS Production
account
486439332092
Region us-east-1

MyLambda MyLambda

Figure 9-1. Context diagram

The second context diagram represents an Azure DevOps project.
Each Azure DevOps project consists of Git repositories, environment
configurations, service connections, permissions, and variable groups.
These need to be configured before the pipeline can work.

Azure DevOps Project test

Environments
["]\ Library

Service Connections

Pipelines

Permissions

Figure 9-2. Context diagram, Azure DevOps project

366

CHAPTER9 USE CASE

Branching and Release Strategy

As mentioned in the requirements analysis from Table 9-1, the team
decided to adopt a feature-based branching workflow in combination
with a timeboxed release strategy. The branching strategy results in two
pipelines, one associated with a feature branch and another pipeline
associated with the main branch, as depicted in Figure 9-3 and Figure 9-4.

eature Validate entry § . 3 - Analyze
criteria Execute build, Perform unit tests, Package artifact, Publish artifact code

SCM trigger

Figure 9-3. Workflow, pipeline of the feature branch

Deploy . Deploy
artifact to perform int Validate perform production artifact to
test exit criteria dual control ; A
test c environment production

Figure 9-4. Workflow, pipeline of the main branch

SCM trigger

Instead of separating the continuous integration process into
individual stages, the choice is made to combine the Execute build,
Perform unit tests, Package artifact, and Publish artifact stages into one
stage. The reason is that the team uses Maven, which makes it easy to
combine these stages in one command.

As aresult of the timeboxed release strategy, the pipeline associated
with the main branch is split into two separate pipelines. The first pipeline
consists of the stages of the Generic CI/CD Pipeline, except for the stages
associated with the deployment to production. These stages are moved to
a separate pipeline. This means that based on the branching and release
strategy, three pipelines are distinguished.

o Pipeline 1 is associated with the feature branch.

367

CHAPTER9 USE CASE

o Pipeline 2, the primary pipeline, is associated with
the main branch. The pipeline contains the stages of
the Generic CI/CD Pipeline, until the Validate exit
criteria stage.

e Pipeline 3, the production deployment pipeline, is
associated with the main branch. The pipeline contains
the stages of the Generic CI/CD Pipeline, starting from
the Validate exit criteria stage.

The latter two pipelines are represented in Figure 9-5 and Figure 9-6.

777177 AN ep— - Provison test
el Execute build, Perform unit tests, Package artifact, Publish artfact g irontil
Deploy Validate
artifact to e infrastructure
test g compliance

Figure 9-5. Workflow, primary pipeline

> > Notify
Provision Deploy Actor
Validate perform production artifact to
exit criteria dual control ° !
nnnnnnnnnn t production

Manual trigger

Notify
Actor

SCM trigger

Figure 9-6. Workflow, production deployment pipeline

The three pipelines are logical pipelines and will be implemented
by technical pipelines. Pipelines 1 and 2 are combined in one pipeline
called myapp-pipeline; they cover all continuous integration activities and
all activities associated with testing. For performance reasons, the team
decides to execute the Analyze code stage in parallel with the Execute build
stage. The other pipeline—myapp-production-deployment—covers all
activities dealing with the deployment to production. Both pipelines are
represented in the BPMN models shown in Figure 9-7 and Figure 9-8.

368

CHAPTER9 USE CASE

Build is not OK or
Unittests failed or
Code analysis

Entry criteria
incorrect

failed
Build, Unittests,
Package,
Publish
Build is OK and
Unittests passed

and Code
analysis passed

Validate entry
criteria

Entry criteria
0 cormect

Start pipeline

Analyze code

myapp-pipeline

Infrastructure not

compliant
Branch is main Validate
Provision test Deploy artifact Perform test infrastructure X
environment to test
compliance

Infrastructure
compliant

Nolify actors

Branch is not
main

End pipeline

Figure 9-7. BPMN, myapp-pipeline

Entrylexit criteria

incorrect Dual control failed

Notify actors

myapp-production-deployment

Entrylexit criteria
correct

Validate
entrylexit criteria

Dual control
$ passed

Perform dual Provision Deploy artifact
production !
control to production
environment

Figure 9-8. BPMN, myapp-production-deployment

Start pipeline End pipeline

Release Version Generation

Concerning release versioning, the semantic versioning schema is used.
The release version is generated to enforce the continuity of the process,
but the team does not want to rely on a specific tool. Based on the schema
shown in Figure 9-9, they decide to generate the release version in the
pipeline code.

369

CHAPTER9 USE CASE

maj or. m nor. patch
1. 0. 0

Starts with 0

[0..x]

Increased by 1 after each pipeline run

If ‘minor’ changes, ‘patch’ starts with 0 again
If ‘major’ changes, ‘patch’ starts with 0 again

Starts with 0

* [0.y]
—>

¢ Increased by 1 after every successful deployment

* If ‘major’ changes, ‘minor’ starts with 0 again

* Startswith 1
—» - (1.7

Increased by 1 on the first of January of each new year

Figure 9-9. Release version generation

Because a biweekly release schedule is chosen, the “major” part of the
version loses its value because there aren’t any major releases anymore. It
has been decided to increment the major every year, starting on the first of
January. The minor part is incremented after every successful deployment
to production and resets to zero again if the major part is incremented. The
patch part of the version increments after every run of the build pipeline 2.
The patch is reset to zero if the minor part changes.?

Pipeline Development

Before the Azure DevOps pipeline code can be used, various preparations
must be made, starting with the creation of the two Azure DevOps projects.
As shown in Figure 9-10, the projects are created in the Azure DevOps
organization called mycorp-com. The projects are called MyApp and
MyApp-test.

31f the major part is incremented, the minor is reset to zero as a result, so the patch
is also reset to zero.

370

CHAPTER9 USE CASE

MyApp is the main Azure DevOps project. This is where the team
develops all application and infrastructure code. The MyApp-test project
is a cloned version of the MyApp project. Development and testing of
pipelines happen in the MyApp-test project, so the rest of the team is not
disturbed by pipeline tests. The pipeline code is merged with the code in
the MyApp project after each pipeline feature is finished.

Figure 9-10. Azure DevOps projects

The AWSome team was so nice to share their code and their
configuration, and they encourage you to use it and discover what they
developed. The code provided for this book must be imported into the
myapp Git repository in the MyApp project and cloned in the MyApp-
test project. The preparation activities listed in this chapter apply to both
projects.

Code Repository

Both Azure DevOps projects consist of three Git repositories. Two of
these repositories contain scanning tools used in the pipelines. The tools
Whispers and Lambdaguard are cloned from GitHub (https://github.
com/Skyscanner) into a local repository in the Azure DevOps project to
limit dependencies on Internet sources as much as possible. In addition,

371

https://github.com/Skyscanner
https://github.com/Skyscanner

CHAPTER9 USE CASE

these tools can also be prescanned for vulnerabilities themselves, before
they are used. The third repository contains the imported code of myapp.
See Figure 9-11.

Figure 9-11. Git repositories in Azure DevOps

The code repository of myapp consists of a few directories.

e application: The healthcheck app is an AWS Lambda
called myLambda, represented by the file MyHandler.
java. The created healthcheck artifact is called
application*shaded. jar.

e cucumber: Testing is still rudimentary, but the structure is
already present in the repository. The cucumber directory
contains a feature file called mylambda. feature, with just
one test. The test invokes the running myLambda in AWS.

e infrastructure: The CDK code in this directory
creates the lambda in AWS and installs the compiled
MyHandler.java code. The created infrastructure
artifact is called infrastructure*shaded. jar.

372

CHAPTER 9

pipeline: This directory contains two YAML files,

called pipeline.yml and prod-deployment.yml, and

represents the pipelines.

pipeline/template: This directory contains a couple of

template files used in the files pipeline.yml and prod-

deployment.yml.

deploy.yml: This deploys the infrastructure and
application JAR files to the AWS account. The AWS
account and region are represented by variables,
configured in a variable group (either the test or
prod variable group).

derive-release-version.yml: This is a utility template
to construct the release version, based on major,
minor, and path parameters.

download-artifacts.yml: This downloads the build
artifacts, based on a release version tag.

install-tools.yml: This installs the tools needed to
deploy to AWS.

provision-infra.yml: This bootstraps the AWS
account. Deploying artifacts using CDK requires
some infrastructure resources, such as an S3 bucket
in which the artifacts are stored.

Stage-completed.yml: As soon as a certain stage is
completed (successfully), this template is called.
It creates a “stage completed” file with the name
of the stage. This is used to determine which QA
stages of a release artifact are executed.

USE CASE

373

CHAPTER9 USE CASE

o update-minor.yml: To meet the requirements of

generating the release versions, some additional

code is needed. This file contains the code to

update the variable group semver. This variable

group contains the variable called minor, which is

incremented using an Azure DevOps API.

Figure 9-12 shows the myapp repository.

[®] Project =

v g myapp [mylambda]
B .idea
Irg application

cucumber

W5 infrastructure
v M pipeline
v [template

erive-releas
download-artifacts.yml
install-tools.yml
provision-infra.yml
stage-completed.yml
update-minor.yml
3 pipeline.yml

wn prod-deployment.yml

1 pomxml
> |l External Libraries

“@ Scratches and Consoles

Figure 9-12. Git repository of myapp

374

CHAPTER9 USE CASE

Pipeline Creation

In the design phase, three logical pipelines were defined and translated
into two BPMN models. The BPMN models, myapp-pipeline and myapp-
production-deployment, map to two technical pipelines with the same
names, as depicted by the schema in Table 9-2.

Table 9-2. Mapping of Logical Pipelines to Technical Pipelines

Logical Pipeline Technical Pipeline Name Implemented by
YAML File

Pipeline, associated with the myapp-pipeline pipeline.yml

feature branch

Primary pipeline, associated ~ myapp-pipeline pipeline.yml

with the main branch

Production deployment prod-deployment.yml prod-

pipeline, associated with the deployment.yml

main branch

We're assuming that the pipelines myapp-pipeline and myapp-
production-deployment have been created in Azure DevOps and we
are referencing the appropriate YAML files. Figure 9-13 shows the two
pipelines.

375

CHAPTER9 USE CASE

Pipelines

Recent All Runs

Recently run pipelines
Pipeline Last run

114.11 - Updated pipeline.yml L3 9m ago

* myapp-pipeline <
Tyapp-pipel A Manualy triggered for M ¥ main G &m 265

= oA Updated deploy.yml B3 Yesterday
YRR Production opeyment R gered for M <1.3.62 @ 16m 515

Figure 9-13. Pipelines myapp-pipeline and myapp-production-
deployment

Configure Variable Groups

Azure DevOps has a feature called variable groups. This feature can be
found in the main menu item on the left of the window and is called
Library. The pipelines make use of variables defined in variable groups.
Figure 9-14 gives an overview of the four variable groups that are used:
generic, semver, test, and prod. Each of the latter two variable groups
contain variables associated with the AWS test and production accounts.

Figure 9-14. Variable groups, overview

376

CHAPTER9 USE CASE

Table 9-3 through Table 9-6 show the configuration of the four

variable groups.

Table 9-3. Variable Group: generic

Name Value

Additional Information

azdo-user myapp@mycorp.com
cdk-version 2.46.0

myapp-email myapp@mycorp.com
nodejs-version 16.15.1

personal- T
access-token

pipeline-id 2
project MyApp
rest-api-vg https://dev.azure.com/

mycorp-com/MyApp /_

apis/distributedtask/
variablegroups/4?api-
version=5.0-preview.1

This is a generated personal
access token (PAT); you need to
generate one yourself in Azure
DevOps and add it here.

This is the pipeline ID of pipeline
myapp-pipeline. This value can be
different in your case.

The value is MyApp-test for the
test project.

The Azure DevOps API to update
the semver variable group. Note
that the project in this URL is
MyApp-test for the test project.
The value 4 in this URL applies to
the semver variable group ID. This
value may be different in your
situation.

(continued)

377

https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1
https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1
https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1
https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1
https://dev.azure.com/mycorp-com/MyApp/_apis/distributedtask/variablegroups/4?api-version=5.0-preview.1

CHAPTER9 USE CASE

Table 9-3. (continued)

Name Value Additional Information

service- ServiceConnectionSonarCloud The value is one string and
connection- represents the service connection
sonarcloud (to be created).

start-year- 2022 The year before the app is released.
minus-one This value is used to derive the

major part of a release version.

Table 9-4. Variable Group, semver

Name Value Additional Information

last-update-year 2023 Used to determine the year of the previous release version.

minor 0 Starts with zero, but is updated after every deployment
to production.

Table 9-5. Variable Group, test (Represents the AWS Test Environment)

Name Value Additional information

aws-account 497562947267 Use your AWS account if you want to try it yourself.

aws-region us-east-1 And the region of your AWS account.
service- Service Use your own AWS service connection if you
connection- ConnectionAWS want to try it yourself.

aws-account Test-497562947267

378

CHAPTER9 USE CASE

Table 9-6. Variable Group, prod (Represents the AWS Production
Environment)

Name Value Additional Information

aws-account 486439332092 In the case of Azure DevOps project
MyApp-test, the value 497562947267
is used.

aws-region us-east-1

service-connection- Service In the case of Azure DevOps project

aws-account ConnectionAWS MyApp-test, the value Service

Prod-486439332092 ConnectionAWSTest-497562947267

is used.

Note The Azure DevOps project MyApp-test also contains a
variable group called prod, but the variables in this group must refer
to the AWS test account. This is only to test the myapp-production-
deployment pipeline and not to deploy the application to the AWS
production account.

See Figures 9-15 through Figure 9-18.

379

CHAPTER9 USE CASE

(]) Link secrets from an Azure key vault as variables O

Variables

Mame Value

azdo-user myapp@&m

cdk-version

myapp-email 2 yCorp.com
nodejs-version

personal-access-token

pipeline-id

project MyApp-t

rest-api-vg hitps://dev.azure.com/my:
service-connection-sonarcloud ServiceConnec

start-year-mini

Figure 9-15. Variable group generic

Properties
Vanable group name
semver

vault as variables

Figure 9-16. Variable group semver

380

com/MyApp-test/_:

Properties

Variable group name

test

(] Link secrets from an Azure key vault as variables (D

Variables

Name | Value

aws-account 497562947267
aws-region

us-east-1

service-connection-aws-account ServiceConnectionAWSTest-49

Figure 9-17. Variable group test

Properties
Variable group name
prod

(] Link secrets from an Azure key vault as variables (@

service-connection-aws-account

Figure 9-18. Variable group prod

Configure Service Connections

CHAPTER9 USE CASE

Azure DevOps makes use of service connections to connect to the AWS
target environments and SonarCloud. The extensions for AWS and
SonarCloud can be downloaded from the Internet in the Azure DevOps

marketplace. See Figure 9-19.

381

CHAPTER9 USE CASE

MyCorplser luser@mycopoom) Sanowt O

*q vl

Studio | Marketplace

Visual Studio Code Subscriptions Budd your own Publsh extensions

Wisual Studio

Extensions for Azure DevOps

Featured
f

I &

Timetracker Azure Cost Insights Visual Studio Intellic Code Quality NDep« Bravo Motes Azure Boards Slack

Toacacom B Lo @ y
&k g ok ok FREF TRIAS ook ek FREE TRIAL * ok k FREE

ok FREE TRIAL ok FREE ok FREE

Mest Popular

-1
B 6 & W
SO 2| 2
Azure DevOps Open Code Search SARIF SAST Scans Tab Test & Feedback Replace Tokens SonarQube >
B i I v & 156K . iy i 5 - " i
* ok FREF L &) FRFF FRFF &k FREE Rkl FREF ko FREF

Figure 9-19. Azure DevOps marketplace

The pipelines of the AWSome team make use of the following

marketplace extensions:
e AWS Toolkit for Azure DevOps
e SonarCloud
e SonarCloud build breaker

If these extensions are installed in your Azure DevOps organization,
they can be used to create AWS and SonarCloud service connections.
Figure 9-20 shows an overview of the three service connections.
No detailed step-by-step description is given on how to set up a service
connection, but the service connections require at least the information in
Table 9-7 and Table 9-8.

382

CHAPTER9 USE CASE

Figure 9-20. Service connections overview

Table 9-7. Service Connection AWS, test and prod

AWS Service Connection (see Figure 9-21; left image)

Access Key ID Acquired from the AWS account
Secret Access Key Acquired from the AWS account

Service connection Either ServiceConnectionAWSTest-497562947267 (for
name test) or ServiceConnectionAWSProd-486439332092 (for
production)

Table 9-8. Service Connection Sonar Cloud

SonarCloud Service Gonnection (see Figure 9-21; right image)

SonarCloud Token Acquired from SonarCloud after registration of
the Azure DevOps project.

Service connection name ServiceConnectionSonarCloud

383

CHAPTER9 USE CASE

Figure 9-21. Service connections

Test

This section does not go into much detail on testing pipelines.
Development and testing are done in a separate Azure DevOps project, so
from a pipeline testing point of view, some measures are taken to optimize
pipeline testing.

Executing pipeline myapp-pipeline results in images similar to
Figure 9-22 and Figure 9-23. The first figure represents the stages if the
pipeline is associated with a feature branch. The next figure shows the
stages associated with the main branch. As shown in Figure 9-23, release
version 1.0.3 is created. All the stages are passed, and the application is
deployed to the AWS test environment.

384

CHAPTER9 USE CASE

Figure 9-22. Run of pipeline myapp-pipeline associated with a
feature branch

Figure 9-23. Run of pipeline myapp-pipeline version 1.0.3
(main branch)

Let’s zoom in on some of the stages. The Analyze code stage consists of
a SonarCloud scan with a build breaker and a Whispers scan, represented
respectively by Figure 9-24 and Listing 9-1.

385

CHAPTER9 USE CASE

Figure 9-24. SonarCloud scan

Listing 9-1. Log of the Whispers Scan

Starting: Scan to find hardcoded credentials and dangerous
functions

Task : Command line

Description : Run a command line script using Bash on Linux
and mac0S and cmd.exe on Windows

Version 1 2.201.1

Author : Microsoft Corporation

Help : https://docs.microsoft.com/azure/devops/

pipelines/tasks/utility/command-1line

=================== Starting Command Output ===================
/usr/bin/bash --noprofile --norc /home/vsts/work/_
temp/2a18c6d1-7a8d-4bfc-af91-bea2556185b6.sh

pip3 install -e .

386

CHAPTER9 USE CASE

Installing collected packages: rapidfuzz, Levenshtein, python-
levenshtein, soupsieve, beautifulsoup4, lazy-object-proxy,
wrapt, typing-extensions, astroid, jproperties, luhn, 1xml,
whispers

Running setup.py develop for whispers
Successfully installed Levenshtein-0.20.8 astroid-2.12.12
beautifulsoup4-4.11.1 jproperties-2.1.1 lazy-object-
proxy-1.8.0 luhn-0.2.0 1xml-4.9.1 python-levenshtein-0.20.8
rapidfuzz-2.13.2 soupsieve-2.3.2.postl typing-extensions-4.4.0
whispers wrapt-1.14.1
Scan myapp
Finishing: Scan to find hardcoded credentials and dangerous
functions

Both scans show that everything is fine. The build passes the
SonarCloud quality gate and the Whispers scan looks fine (no hard-coded
secrets).

The Perform test stage contains a test task invoking a Cucumber test.
The test is still simple and covers only one test, defined in the mylambda.
feature file shown in Listing 9-2.

Listing 9-2. Feature File

Feature: Is the response ok?
Sending a request should return a valid response

Scenario: Validate status of the response after handling
an event
Given mylLambda is running
When I send a valid request
Then I should get status "\"200 OK\""

This results in the output shown in Listing 9-3.

387

CHAPTER9 USE CASE

Listing 9-3. Log of the Cucumber Test

Share your Cucumber Report with your team at
https://reports.cucumber.io
Activate publishing with one of the following:

|
|

|

|

|

| src/test/resources/cucumber.properties:

| cucumber.publish.enabled=true

| src/test/resources/junit-platform.properties:

| cucumber.publish.enabled=true

| Environment variable: CUCUMBER _PUBLISH _ENABLED=true
| Junit: @CucumberOptions(publish = true)
|

|

|

|

|

|

|

|

|

|

|

More information at https://cucumber.io/docs/
cucumber/environment-variables/

Disable this message with one of the following:

src/test/resources/cucumber.properties:
cucumber.publish.quiet=true
src/test/resources/junit-platform.properties:
cucumber.publish.quiet=true

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0,
Time elapsed: 2.757 s - in mylambda.RunCucumberTest
INFO]
INFO] Results:
INFO]
INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
INFO]

]

[
[
[
[
[
[INFO

388

CHAPTER9 USE CASE

[INFO] BUILD SUCCESS
[INFO] = mmmmmmm e e e e e e e
[INFO] Total time: 12.905 s
[INFO]
[INFO]

INFO| Finished at: 2022-11-11T18:12:297
INFO] =--mmmmm e e e e e e e e e e

The Validate infrastructure compliance stage contains a validation of
the myLambda configuration in the AWS account using Lambdaguard, as

shown in the log (Listing 9-4).

Listing 9-4. Log of Lambdaguard

VIV VAR
./05555500555550/ .
-0sss/-" .-/5ss0-
T0SSO- LA+t -0SS0°
“oss/ .//0ss- /sss”
+55+ -SSS. /sso0
.SSS° .55550° “sss. LambdaGuard v2.4.3

-SS0 15S00SS+ 0SS-

.SSS° /ss+” " 0ss/ "sss.
+ss+ ~oss/ .sss/// /sso

“0ss/” .0s0- -5550+./550°
T+550: . -0SS+

-0SSS+-. . -+55S0-
./05555555555550/ .
o=l -0

Loading regions (us-east-1)

Loading identity
UserId......... AKTA32CLB74DMRDERU6Z
Account........ 497562947267

389

CHAPTER9 USE CASE

Atn....oooee.n. arn:aws:iam::497562947267:user/
azuredevops

[1/1] myLambda

Lambdas........ 1

Security....... 2

Triggers....... 1

Resources...... 0

Layers......... 0

Runtimes....... 1

Regions........ 1

Report......... ./mylambda-report/report.html
Log.eeeeennnnn. ./mylambda-report/lambdaguard.log

Finishing: Intall Lambdaguard and validate mylLambda in AWS

The report is published as part of this pipeline and can be downloaded.
Some attention is needed because the AWSLambdaBasicExecutionRole
has more privileges than needed; these privileges need to be restricted.
See Figure 9-25.

Figure 9-25. Lambdaguard report

390

CHAPTER9 USE CASE

Integrity of Artifacts

The security requirement “Only build and deploy artifacts using a
pipeline” states that the integrity of the artifact must be guaranteed, from
building the artifact to running the artifact. A simple measure is applied
to meet this requirement. The first step in this process is to visualize

that the integrity remains the same over all stages in the process. This is
done by creating an SHA256 hash of the built artifact. If the hash of the
lambda running in the AWS target environment is the same as the hash of
the artifact in the pipeline(s), there is high confidence that it is the same
artifact. Generating the SHA256 hash is included in the files pipeline.
yml and template/deploy.yml. Pipelines myapp-pipeline and myapp-
production-deployment both print the hash in the log, as shown in
Listing 9-5 and Listing 9-6.

Listing 9-5. Log of the build, myapp-pipeline

Starting: Calculate SHA256 checksum of the application jar file

Task : Command line
Description : Run a command line script using Bash on Linux
and macOS and cmd.exe on Windows

Version : 2.201.1
Author : Microsoft Corporation
Help : https://docs.microsoft.com/azure/devops/

pipelines/tasks/utility/command-1line

—================= Starting Command Output —==—================
/usr/bin/bash --noprofile --norc /home/vsts/work/_temp/830814d
3-13e0-40ee-9c2b-9eb5ea3ca74d. sh

391

CHAPTER9 USE CASE

SHA256 checksum of /home/vsts/work/1/s/application/target/
application-1.3.62-shaded.jar
58c3de378ff9016bdf0c71781134672f1e4efa8801d46ef99427d160
afad3a10 /home/vsts/work/1/s/application/target/
application-1.3.62-shaded.jar

Finishing: Calculate SHA256 checksum of the application
jar file

Listing 9-6. Log of the Deployment, myapp-production-
deployment

Starting: Deploy to AWS

Task : AWS Shell Script
Description : Run a shell script using Bash with AWS
credentials as environment variables

Version : 1.13.0
Author : Amazon Web Services
Help : Runs a shell script in Bash, setting AWS

credentials and region information into the shell environment
using the standard environment keys AWS ACCESS KEY ID , AWS_
SECRET_ACCESS KEY , AWS SESSION TOKEN and AWS REGION .

More information on this task can be found in the [task
reference](https://docs.aws.amazon.com/vsts/latest/userguide/
awsshell.html).

####Task Permissions
Permissions for this task to call AWS service APIs depend on
the activities in the supplied script.

Configuring credentials for task

392

CHAPTER9 USE CASE

...configuring AWS credentials from service endpoint 'b43bf
786-1c0c-457-9f98-fd31a2do1boa’

...endpoint defines standard access/secret key credentials
Configuring region for task

...configured to use region us-east-1, defined in task.
/usr/bin/bash /home/vsts/work/_temp/awsshellscript 2012.sh
artifacts/infrastructure-1.3.62-shaded.jar'

Infrastructure artifact name and path: /home/vsts/work/1/
myapp-artifacts/infrastructure-1.3.62-shaded.jar
Application artifact name and path: /home/vsts/work/1/
myapp-artifacts/application-1.3.62-shaded.jar

Version to deploy: 1.3.62

SHA256 checksum of /home/vsts/work/1/myapp-artifacts/
application-1.3.62-shaded.jar
58c3de378ff9016bdf0c71781134672f1e4efa8801d46e99427
di160afad3a10 /home/vsts/work/1/myapp-artifacts/
application-1.3.62-shaded.jar

The hash of myLambda, deployed to AWS, is displayed in the
AWS console, as depicted in Figure 9-26. This hash, WMPeN4/5AWvfDHF
AETRnLx50+0gB1G751CfRYK+tOhA=, is in Base64 format, though. It
needs to be converted to a hash in Hex format to compare it (you
can use https://base64.guru/converter/decode/hex). This results
in the hash 58c3de378ff9016bdf0c71781134672f1e4efa8801d46ef99
427d160afad3a10, indicating that myLambda, running in AWS, is the same
as built and deployed using the pipelines.

393

https://base64.guru/converter/decode/hex

CHAPTER9 USE CASE

Figure 9-26. AWS console, myLambda SHA256 hash

This is a rudimentary integrity check. The integrity is not monitored
throughout the life cycle of the Lambda. If someone were to replace the
Lambda, it can be done without being noticed. Lambda code signing and
monitoring are additional measures to guarantee integrity over the life
cycle of myLambda.

Performance and Acceptance Pipelines

The performance of myapp-pipeline varies, depending on the time of

the day. The overall execution time approximately lies between 7 and 15
minutes. Caching is enabled, and code analysis is executed in parallel. By
looking at the individual execution times of each stage, there isn’t much
to improve on without doing in-depth research or switching to self-hosted
agents. The performance of the myapp-production-deployment pipeline is

394

CHAPTER9 USE CASE

a lot faster. The wait time before a dual control is performed is many times
greater than the actual execution time of the stages. With these numbers
and the fact that the outcome of all stages looks good, the AWSome team
approves the pipeline, which can be implemented in the MyApp project.

Implementation

Implementation means that the pipeline developed and tested in the
MyApp-test project is pushed to the MyApp project. The first increment
does not cover all requirements, and some mitigating actions are applied.
The team puts work items on the backlog that need to be implemented in
the next couple of iterations. Here is a selection from their backlog:

o Workitem I: The requirement “Resources associated
with a release cannot be deleted” is not implemented.
This is put on the backlog. Retaining pipelines for a
long time can be automated, using the Leases API
of Azure DevOps, which sets the retention time of a
pipeline to “forever” after a deployment to production.

Mitigating action: As a contingency measure, the
retention times are increased (see Figure 9-27), and
releases deployed to production are retained manually
(see Figure 9-28).

395

CHAPTER9 USE CASE

Figure 9-27. Retention times

Figure 9-28. Retain the pipeline run manually

o Workitem 2: During the build, libraries are directly
retrieved from the central Maven repository (https://
repo.maven.apache.org/maven2/). As the first line
of defense, a proxy must be set up, so the libraries
are retrieved using this proxy. In addition, a Nexus
repository will be installed to store the libraries locally
within the organizations’ boundaries.

396

https://repo.maven.apache.org/maven2/
https://repo.maven.apache.org/maven2/

CHAPTER9 USE CASE

o Workitem 3: The Whispers task does not break the
build, irrespective of the result. Add a check to break
the build if a vulnerability is detected.

Mitigating action: Validate the result manually.

o Workitem 4: The AWSLambdaBasicExecutionRole used
to execute myLambda is not restrictive enough. Create
a new role for this Lambda, and apply the principle of
least privilege access.

o Workitem 5: The deployment strategy should change
from the re-create to canary deployment strategy using
AWS CodeDeploy.

Configure the Azure DevOps Prod Environment
and Dual Control

If nothing is specified, Azure DevOps automatically creates an Azure
DevOps environment when it encounters an environment setting in the
pipeline. In the Azure DevOps test environment (MyApps-test), both
the test and prod environments are automatically created when the
pipeline runs. However, as part of the pipeline implementation, the prod
environment needs to be configured in the MyApp project to allow dual
control.

As a result of the requirement “Refine access by setting permissions
for a user or group,” the AWSome team is created in the permissions
configuration of project MyApps, as shown in Figure 9-29. All team
members are added. In addition, a new group is created, called Product
Owner. Figure 9-29 shows the Product Owner group to which Emma and
Vinod are assigned. This group is used in the dual control configuration, so
only Emma and Vinod are allowed to approve a deployment to production.

397

CHAPTER9 USE CASE

Figure 9-29. Product Owner group and AWSome team

The test and prod environments as depicted in Figure 9-30 are
manually created, and an Approval is added to the prod environment, as
shown in Figure 9-31. This approval implements the Perform dual control
stage. Also note that members of the Product Owner group are not allowed
to both start and approve a pipeline. This contributes to a more secure
pipeline.

398

CHAPTER9 USE CASE

Environments

Ervironment Status Last activity

® #20221116.1 on myapp-production-deployment Yesterday

% #20221115.2 on myapp-pipeline Yesterday

Figure 9-30. Environments prod and test

Figure 9-31. Configuring approvals for the prod environment

Deploy the Application to Production

The goal of the pipelines is of course to deploy the application to
production. The deployment to production is performed using the myapp-
production-deployment pipeline. This pipeline is constructed in such a way
that it deploys the artifacts of a certain release, based on the release tag
selected in the start dialog. This is shown in Figure 9-32. In this example,
release 1.0.3 is selected and deployed.

399

CHAPTER9 USE CASE

Figure 9-32. Starting the production deployment pipeline

As soon as the pipeline reaches the dual control step, it shows a dialog
similar to Figure 9-33. Members of the Product Owner group must approve
(or reject) it before the deployment to production is performed.

400

CHAPTER9 USE CASE

Figure 9-33. Dual control

The stages of the myapp-production-deployment pipeline are depicted
in Figure 9-34. Also, take note of the fact that the pipeline run is tagged
with release version 1.0.3.

Figure 9-34. Stages production deployment pipeline

The result is the deployment of the artifact stack, which includes the
myLambda resource, in the AWS production account (see Figure 9-35).
Notice the presence of the release version tag in this stack. This completes
the requirement “All changes are traceable/Tag everything.”

401

CHAPTER9 USE CASE

Figure 9-35. AWS CloudFormation stack MyAppStack (including
myLambda)

To prove the working of the myLambda healthcheck, an excerpt of the

CloudWatch log is included, which shows the log lines produced by the
myLambda healthcheck. See Figure 9-36.

402

CHAPTER9 USE CASE

> Timestamp Message

Mo older events at this moment. Retry
i 2822-11-18T14:26:17.989+21:80 START RequastId: B4fab3c@-2d36.4508-b5be-66375f6da212 Version: SLATEST
START RequestIid: @4f4b3ce-3d36-45be-bsbé-66arsfedaziz version: SLATEST

v 2822-11-18T14:26:18.21e+21:0@ "myLambda is hzalthy"

“myLanbda is healthy"

i 2822-11-18714:26:18.012+21:80 END RegquestId: @sfsib3ce-3d36-4502-b5be-66a7576d212
END Requastid: esfibice-3d36-55be-bsbe-e6a75fedaz212

4 2822-11-18T14:26:18.812+21:280 REPORT Requestld: @4fablc@-3026-4500-b5D6-65a75f6da212 Duration: 12.63 ms Billed Dury

REPORT Requastld: @4F4b3ce-3035-4500-b5be-66a75%eda212 COuration: 12.63 ms gilled ouration: 13 ms Memory Size: 2948 MBS

No newer events at this moment. Auto retry paused. Resume

Figure 9-36. AWS myLambda log

Quality Gate

To prevent an incorrect release version from being deployed to production,
an additional quality gate is added to the myapp-production-deployment
pipeline. This quality gate prevents that release versions, for which the
stages Analyze code, Perform test, and Validate infrastructure compliance
are not executed, can be deployed to production.

The pipeline myapp-pipeline creates a “stage completed” file after
every successful run of a particular stage. Only release versions for
which the files ANALYZE -CODE-COMPLETED, PERFORM-TEST-COMPLETED,
and VALIDATE-INFRASTRUCTURE-COMPLIANCE-COMPLETED are created
and considered valid releases. The existence of these files is checked
in the Validate entry/exit criteria stage in pipeline myapp-production-
deployment.

Figure 9-37 shows the artifacts of myapp-pipeline. The three “stage
completed” files are listed in the myapp-status folder.

403

CHAPTER9 USE CASE

Figure 9-37. All artifacts of myapp-pipeline

If one of these files is not present, the myapp-production-deployment
pipeline fails, as shown in Listing 9-7.

Listing 9-7. Log of a Failed Deployment (Noncompleted Stage in
myapp-pipeline)
Starting: Validate whether QA stages are completed

Task : Command line

Description : Run a command line script using Bash on Linux
and macOS and cmd.exe on Windows

Version 1 2.212.0

Author : Microsoft Corporation

Help : https://docs.microsoft.com/azure/devops/

pipelines/tasks/utility/command-1line

CHAPTER9 USE CASE

Generating script.

=—========= Starting Command Output —===================

/usr/bin/bash --noprofile --norc /home/vsts/work/_ temp/
bb88fef0-b881-44a8-b3da-06cc6a165198.sh

Stage [Validate infrastructure compliance] was not executed
##[error]Bash exited with code '1'.

Finishing: Validate whether QA stages are completed

Summary

You learned about the following topics in this chapter:

You learned, based on requirements, how to derive a
design and how this design translates to a technical
pipeline implementation, based on the approach
described in the previous chapters.

We demonstrated how the structure of the pipeline
repository is set up.

The provided Azure DevOps pipeline code and the
detailed description of the Azure DevOps project
configuration illustrated how to develop pipelines that
meet the requirements.

The execution of the pipeline stages, the code analysis,
the infrastructure compliance results, the test results,
and the output of the running app showed how the
pipelines work.

Attention is given to some specific (security)
requirements, such as the integrity of artifacts and dual
control.

405

CHAPTER9 USE CASE

406

Implementation of the pipeline shows that it does
not have to be a problem if not all requirements are
implemented in the first increment, as long as this is
recognized and recorded.

Additional quality gates can be added to a pipeline

to prevent deployments of release candidates that

did not pass all QA tests. A simple example is given,
which makes use of “stage completed” files to earmark
executed QA stages.

References

1]

[2]

[3]

[4]

[5]

[6]

[7]

Cambridge Bitcoin Electricity Consumption Index
https://ccaf.io/cbeci/index

Business Process Model and Notation
https://www.omg.org/spec/BPMN/2.0

Cloudbees CD
https://docs.cloudbees.com/docs/cloudbees-cd/10.0/

Succeeding with Agile
Mike Cohn

Pearson Education, 2009
EAN 9780321579362

Continuous Integration: Improving Software Quality and Reducing Risk
Paul M. Duvall, Steve Matyas, and Andrew Glover.

Addison-Wesley, 2007

EAN 9780321336385

Continuous Delivery: Reliable Software Release through Build, Test and
Deployment Automation

Jez Humble and David Farley

Addison-Wesley, 2010

EAN 9780321601919

https://continuousdelivery.com/

The Open Group IT4IT™ Reference Architecture, Version 2.1
https://pubs.opengroup.org/it4it/refarch21/

© Henry van Merode 2023
H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),
https://doi.org/10.1007/978-1-4842-9228-0

407

https://doi.org/10.1007/978-1-4842-9228-0
https://ccaf.io/cbeci/index
https://www.omg.org/spec/BPMN/2.0
https://docs.cloudbees.com/docs/cloudbees-cd/10.0/
https://continuousdelivery.com/
https://pubs.opengroup.org/it4it/refarch21/

REFERENCES

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

408

Enterprise CI/CD: Best Practices
Kostis Kapelonis (Codefresh)
https://codefresh.io/ebooks/enterprise-ci-cd-best-practices/

Energy Efficiency Across Programming Languages

Rui Pereira e.o.

Universidade do Minho, Portugal
https://www.researchgate.net/publication/320436353
Energy efficiency across programming languages how_do_
energy time_and_memory relate

Enforce Signed Software Execution Policies
https://media.defense.gov/2019/Sep/09/2002180334/-1/-1/0/
Enforce%20Signed%20Software%20Execution%20Policies%20-%20
Copy.pdf

National Cyber Security Center

https://www.ncsc.gov.uk/

National Information Assurance Partnership
https://www.niap-ccevs.org/

NIST Cybersecurity Framework
https://www.nist.gov/cyberframework

Rapid Release at Massive Scale: CI/CD at Facebook
https://engineering.fb.com/2017/08/31/web/rapid-release-
at-massive-scale/

Continuous Deployment of Mobile Software at Facebook (Showcase)
https://research.facebook.com/publications/continuous-
deployment-of-mobile-software-at-facebook-showcase/

Workflow Patterns: The Definite Guide

Nick Russel, Wil M.P. van der Aalst, Arthur H.M. ter Hofstede
The MIT Press, 2016

ISBN 978-0-262-02982-7

https://codefresh.io/ebooks/enterprise-ci-cd-best-practices/
https://www.researchgate.net/publication/320436353_Energy_efficiency_across_programming_languages_how_do_energy_time_and_memory_relate
https://www.researchgate.net/publication/320436353_Energy_efficiency_across_programming_languages_how_do_energy_time_and_memory_relate
https://www.researchgate.net/publication/320436353_Energy_efficiency_across_programming_languages_how_do_energy_time_and_memory_relate
https://media.defense.gov/2019/Sep/09/2002180334/-1/-1/0/Enforce Signed Software Execution Policies - Copy.pdf
https://media.defense.gov/2019/Sep/09/2002180334/-1/-1/0/Enforce Signed Software Execution Policies - Copy.pdf
https://media.defense.gov/2019/Sep/09/2002180334/-1/-1/0/Enforce Signed Software Execution Policies - Copy.pdf
https://www.ncsc.gov.uk/
https://www.niap-ccevs.org/
https://www.nist.gov/cyberframework
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/
https://research.facebook.com/publications/continuous-deployment-of-mobile-software-at-facebook-showcase/
https://research.facebook.com/publications/continuous-deployment-of-mobile-software-at-facebook-showcase/

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES

Gerrit Code Review
https://www.gerritcodereview.com/

Gitflow Workflow
https://www.atlassian.com/git/tutorials/comparing-
workflows/gitflow-workflow

Semantic Versioning
https://semver.org/

Microsoft Teams: Webhooks and Connectors
https://docs.microsoft.com/en-us/microsoftteams/platform/
webhooks-and-connectors/what-are-webhooks-and-connectors

Design Patterns: Elements of Reusable Object-Oriented Software

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (the Gang of Four)
Addison-Wesley Professional, 1994

ISBN 978-0201633610

In-toto

https://in-toto.io/

Argos Notary
https://www.argosnotary.com/

GitLab Docs
https://docs.gitlab.com/

Feature Management Systems
https://www.getunleash.io/
https://launchdarkly.com/

ISO 25010
https://1s025000.com/index.php/en/iso-25000-standards/
is0-25010

NIST Framework for Improving Critical Infrastructure Cybersecurity
https://www.nist.gov/publications/framework-improving-
critical-infrastructure-cybersecurity-version-11

409

https://www.gerritcodereview.com/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://semver.org/
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/what-are-webhooks-and-connectors
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/what-are-webhooks-and-connectors
https://in-toto.io/
https://www.argosnotary.com/
https://docs.gitlab.com/
https://www.getunleash.io/
https://launchdarkly.com/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.nist.gov/publications/framework-improving-critical-infrastructure-cybersecurity-version-11
https://www.nist.gov/publications/framework-improving-critical-infrastructure-cybersecurity-version-11

REFERENCES

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

410

Patterns for Managing Source Code Branches
https://martinfowler.com/articles/branching-patterns.html

Continuous Delivery
YouTube subscription Dave Farley
https://www.youtube.com/c/ContinuousDelivery

The Principles of Sustainable Green Software Engineering
Asim Hussain, Green Cloud Advocacy Lead at Microsoft
https://principles.green/

Azure Sustainability
https://azure.microsoft.com/en-us/explore/global-
infrastructure/sustainability/#overview

AWS Energy Transition
https://aws.amazon.com/energy/sustainability/

Open Policy Agent
https://www.openpolicyagent.org/
Microsoft Azure Essentials Azure Automation
Michael McKeown

Microsoft Press, 2015
ISBN: 978-0-7456-9815-4

Pyrsia

https://pyrsia.io/
Continuous Delivery Foundation
https://cd.foundation/

National Institute for the Software Industry
https://nisi.nl/

Secret Management Tools
https://github.com/mozilla/sops
https://github.com/StackExchange/blackbox

https://martinfowler.com/articles/branching-patterns.html
https://www.youtube.com/c/ContinuousDelivery
https://principles.green/
https://azure.microsoft.com/en-us/explore/global-infrastructure/sustainability/#overview
https://azure.microsoft.com/en-us/explore/global-infrastructure/sustainability/#overview
https://aws.amazon.com/energy/sustainability/
https://www.openpolicyagent.org/
https://pyrsia.io/
https://cd.foundation/
https://nisi.nl/
https://github.com/mozilla/sops
https://github.com/StackExchange/blackbox

Index

A

A/B testing, 78, 180-183, 253

Acceptance tests, 140, 288, 307, 362

Actors, 102,103

Alerts, 72, 73, 352-356

Analyze code, 22, 92-93, 195-200

API tests, 141, 151, 155

Application life-cycle management
(ALM), 36, 38, 39, 44, 51, 62,
90, 113, 130, 153, 209, 244,
250, 317

auto-cancel, 151, 230-231
tools, 16, 39

application*shaded.jar, 372

Artifacts, 51, 94, 101, 125, 326

Artificial intelligence (AI), 15,
31, 74,90

Atlassian’s Bamboo, 210

Automated process, 91, 187, 200,
318, 347

Automated security tests (IAST/
DAST), 153, 157

Automated tests, 8, 30, 37, 66, 144,
155, 185, 314

AWS Key Management
Services, 251

© Henry van Merode 2023

AWSLambdaBasicExecutionRole,
390, 397
AWS Secrets Manager, 251
Azure DevOps, 21, 234, 360, 365
branching strategy, 367
context diagram, 366
environment, 290, 365
exit criteria stage, 368
myapp-pipeline, 368
release strategy, 367
release version generation,
369, 370
Azure Key Vault, 251
Azure resource manager (ARM), 5

B

Binary repository, 22, 24, 52, 60, 94,
135, 325

Blue/green deployment, 170, 173,
175,181

BPMN 2.0, 80

Branching strategy, 3, 6, 30, 33, 105,
158, 271, 350, 361, 367

Business continuity, 63

Business organization, 30, 32, 40,
68, 75, 165, 305

411

H. van Merode, Continuous Integration (CI) and Continuous Delivery (CD),

https://doi.org/10.1007/978-1-4842-9228-0

https://doi.org/10.1007/978-1-4842-9228-0

INDEX

Business process model and
notation (BPMN), 108, 112

in action, 83
diagrams, 79, 86
elements, 80
event, 84
models, 178, 183, 350, 375
notation, 79
parallel gateway element, 84
pipeline flow, 86
workflow model, 136

C

Compliance and auditability, 31,
36,47-57, 363

Cache, 132, 225-228, 244, 245

Canary deployment, 45, 175-181,
216, 229

Carbon dioxide footprint, 74,
184, 279-281

Certificate management, 73

Certificate signing request
(CSR), 17

CircleClI, 219, 221, 225, 233,
236, 315

Cloud Development Kit (CDK), 5,
361, 362,372,373

CloudFormation, 5, 64, 93, 361, 402

Cloud service providers (CSPs), 26,
35, 37, 68, 280, 346

Code analysis, 58, 59, 64, 97, 185,
198, 275, 314, 394

CodeDeploy, 62, 68, 179, 229

412

Commercial off-the-self (COTS)
packages, 35
Commercial off-the-shelf
(COTS), 200
clients, 200
integrity and vulnerabilities, 202
pipeline, 204
stages, 201
test/validate, application, 203
Complex event processing
(CEP), 139
Compliance and auditability
application development, 48
auditability, 48
requirements analysis, 47
Compliance monitoring, 335, 347
Conditional variables, 224
Connectors/service
connections, 222
Constant variables, 60
Constructs, 216
approvals, 236
auto-cancel construct, 230, 231
caching, 225-227
conditions, 224, 225
connections, 221, 222
deployment strategy, 229, 230
execution environment,
220, 221
fail fast, 232
gate, 235
matrix, 228, 229
priority, 232, 233
success/failure, 231, 232

templates and libraries, 234, 235
test shards, 233-234
triggers, 217
pipeline completed
construct, 219
schedules, 218
SCM trigger, 217
webhook, 217, 218
variables, 223, 224
workflow, 236
Context diagram, 103-105, 205,
365, 366
Continuous deployment, 23, 101,
164, 194
Continuous integration/continuous
delivery (CI/CD), 2, 313
ALM platforms, 16, 23
articles, 3
benefit, 12
centralized, 138
cloud, 5
concepts, 7, 8, 16
concise explanation, 13
design, 8
design patterns, 3
development, 260
diagrams, 2, 3
event-based, 189, 190, 193
foundations, 12, 146
generic, 87-89, 91, 101, 102, 108,
113, 143, 149, 212
implementing, 18
infrastructure, 2, 44
legacy, 7

INDEX

migration process, 75

MQ queues, 5

naming conventions, 22

network segment, 104

philosophy, 8

and pipeline development, 75

pipelines, 2, 4, 6-8, 20, 24, 133

positioning, 13

practices, 13

promotes, 24

realization, 19

SaasS, 261

software development, 15

steps, 6

tag, 25

team effort, 19

test environment, 4

tooling, 237

validation code, 17

version, 26

vulnerabilities, 4
CPU capacity, 316, 340
Credentials/certificates, 309, 313
Cucumber directory, 372
Cucumber test, 272, 372, 387, 388
Curl command, 219
Cybersecurity, 42, 47, 316
Cycle time, 71, 343-345

D

Dangling workspaces, 45
Data anonymization, 57
Database administrator (DBA), 256

413

INDEX

Database credentials, 45, 249,
251, 255-257
Decorator/hook, 235
Deployments, 12, 96, 165, 171
canary, 175
re-create, 165
rolling update, 175
deploy.yml, 373
derive-release-version.yml, 373
Design phase, 71, 103, 375
DevOps team, 13, 30, 75, 125, 135,
186, 233, 250, 270
Docker container, 45, 59, 96, 132,
220, 221, 261
Domain-specific language (DSL)
language, 210
download-artifacts.yml, 373
Download package, 201-202
Drift detection, 333, 347
Drift status, 346
Dual control, 23, 43, 100-101, 164,
275, 326
Dynamic Application Security
Testing (DAST), 47, 141,
152, 153, 157
Dynamic scanning, 64, 98

E

Environment repository,
249-251
Ephemeral test environments, 35,
37,95, 96, 153, 362
Events, 83, 352

414

Extended pipeline development
method, 267

Extend templates, 234

External libraries, 42, 54, 132, 225,
240, 284, 365

F

Feature-based branching
models, 110

Feature branch workflow
model, 112

Feature flags, 257-260

Feature management,
164-165, 258-260

Federal Information Processing
Standard (FIPS), 42

Full builds vs. incremental builds,
126, 127

Functional and nonfunctional
tests, 151-153

G

Gateways, 78, 84

Gitflow, 7, 33, 117-121, 123, 124
GitHub actions, 38, 228-229
Governance, 74-75

H

Handle error task, 85
Hardware security module
(HSM), 42, 251

HashiCorp Vault, 251
Healthcheck app, 360, 361, 372
Healthcheck Lambda, 361
Hotfix branches, 119

Implementation, 395
application to
production, 399-402
AWSLambdaBasicExecution
Role, 397
Azure DevOps prod
environment/dual control,
397, 398
deployment strategy, 397
libraries, 396
mitigating action, 395
myapp-production-
deployment, 399
quality gate, 403, 404
requirement, 395
test and prod environments,
398, 399
Incidents, 14, 15, 42, 194, 352-356
Include templates, 235
Infrastructure as a service (IaaS),
73,315, 332
Infrastructure as code (IaC), 5, 95,
237,261
Infrastructure resources, 37, 98,
141, 373
infrastructure*shaded.jar, 372
install-tools.yml, 373

INDEX

Integrated development
environment (IDE),
265, 288

Integration platform, 113, 130, 153,
209, 244, 250, 317

Integration server, 12, 35, 39, 45, 70,
90, 110, 264, 286

Interactive application security
testing (IAST), 141, 152,
153, 157

IT value chain, 13-15

J

Jenkins, 16, 59, 104, 209-212,

251, 275
Jenkins Blue Ocean dashboard, 354
Jenkinsfile, 212, 216, 275
Jenkins freestyle project, 209, 210
Jobs, 220, 221, 223, 229, 235
JUnit tests, 289, 290, 294

K

Key performance indicators (KPIs),
68-73, 335, 336, 343, 344

L

Lead time, 71, 343-345
Life-cycle management, 16, 43
Logical design vs. realization
BPMN models, 87
CI/CD setups, 87

415

INDEX

Long execution time vs. short
execution time, 146

Long-lasting tests, 158

Long-running automated test, 157

Manageability, 59
binary repository, 60
deployment scripts, 60
infrastructure code, 61
libraries, 60
pipeline development, 59
run anywhere, 59
versioning schema, 61
Manual tests, 145, 150, 153
Matrix, 43, 228, 229
Matrix Build strategy, 133
Mend Supply Chain Defender, 244
Metrics, 68
KPIs, 68
PKIs, 68
Microservice, 35, 36,
185-192, 237-239
Monitoring, 72
pipelines, 73
tools, 72
Monitoring pipelines
business monitoring, 343-345
(see also Key performance
indicators (KPIs)
information sharing, 349
events, alerts, incidents and
notifications, 352-355

416

notify actors stage, 350, 351
team'’s branching
strategy, 350
integration platform, 335
platform monitoring, 335,
342, 343
security monitoring, 346-348
systems monitoring, 335-342
Monitors, 73, 335
Multiteam build strategy, 135, 139
environment, 134
multiple DevOps teams, 135
Multithreaded builds, 128, 129, 304
Myapp, 360, 368, 369, 375, 376, 384,
385, 391, 394, 401, 403, 404
MyCorp.com, 359, 360, 370
mylambda.feature file, 372, 387
myLambda healthcheck, 402
myServerPool, 221

N

National Institute for the Software
Industry (NISI), 18, 19, 42
Network-attached storage
(NAS), 45
NexuslIQ, 222, 223, 305
Nexus repository, 104, 396
Notifications, 40, 272, 312, 352-356

O

Offloaded build, 59, 130, 131
Operational pipelines, 332

AWS stacks, 334
drift detection, 333

expiration date, certificates, 333

manual operational tasks, 332
parameter, configuration
service, 334
renewed certificate, 333
repeating operational
function, 333
tokens/database
credentials, 334
Operations tasks, 62
business continuity, 63
integration infrastructure, 63
pipelines, 63
scripts, 63
Orchestration, 60, 62, 79, 188, 320
Orchestrator, 19, 188

Organization policies, 93, 263, 276,

287,312

P

Packaging, 23, 94

Parallel build, 128-131

Parallel execution vs. sequential
execution, 145

Parallelize tests, 58

Performance tests, 33, 96, 97, 152,
153, 300-302, 304

Perform manual test, 30, 34, 149,
150, 155

Perform reset, 85, 86

Perform tests, 97, 185, 196, 198

INDEX

Personally identifiable information
(PII), 57
Pipeline code, 4, 51, 60, 64, 67, 93,
192, 221, 235, 249, 267
Pipeline Compliance Dashboard,
347, 348
Pipeline design, 186
BPMN, 80
BPMN 2.0, 79
business process
modeling, 79
construct, 78
dangling, 148
manual test, 148
patterns, 79
realization cycle, 103
Pipeline development, 59
environment repository, 249
feature flags, 257-260
Git repositories, 371
MyApp, 371, 372, 374
mycorp-com, 370
pipeline creation, 375
myapp-pipeline, 375
myapp-production-
deployment, 375
technical pipelines, 375
secrets management
database
credentials, 255-257
retrieval, secret, 254
safest solution, 252
secret, 253
signing data, 253

417

INDEX

Pipeline development (cont.)
service connections, 384

AWS and SonarCloud, 381
AWS, test and prod, 383
marketplace, 382
overview, 383
SonarCloud, 383

third-party libraries and

containers, 240-244

value streams, 260

418

advanced pipeline
development, 267, 268
application
development, 264
base pipeline, 262, 268, 269
CI/CD SaaS solution, 261
compliance scanning, 263
extended pipeline
development, 266
generic templates
libraries, 263
pipeline code analysis, 263
pipeline generation, 270-273
pipeline of
pipelines, 273-279
platform infrastructure
development, 261
platform infrastructure
hosting, 262
simplified pipeline
development, 265, 266
specific templates/
libraries, 263

variable groups, 376
configuration, 377
generic, 377, 380
overview, 376
prod, 379, 381
sever, 378, 380
test, 378, 381
versioning and tagging, 246-248
Pipeline generator, 270-274
Pipeline implementation, 310, 311
application
implementation, 319
artifact promotion, 326-328
release note, 320-325
runbook, 319, 320
integration platform
deployment tools, 315
IaaS model, 315
ISO 25010, 316
Jenkins, 315
logging, monitoring and
alerting, 316
SaaS model, 315
self-hosting model, 316
SonarQube, 315
organizational impact, 311-314
pipeline code, 311
target environment
preparations, 318
automated process, 318
playbook, 319
test and production
environment, 318

Pipelines

caching, 132, 225-227

cross-platform, 133

dangling, 148

declarative, 211, 212

designing, 20

implementations, 116

Java-based, 8

monitoring (see Monitoring
pipelines)

operational (see Operational
pipelines)

pipeline of, 268, 269, 271, 273,
274,279

regular release pipeline,
163, 164

scripted, 210-211, 224, 231

setup, 187

user interface-based, 209

use scripted/declarative, 209

YAML-based, 211, 216

Pipeline specification

complex setups, 216

constructs (see Constructs)

declarative pipelines, 211, 212

multibranch, multistage
pipelines, 208, 209

plugins and marketplace
solutions, 237

repositories, 237-240

scripted pipeline, 210

user interface-based
pipelines, 209

INDEX

Pipeline testing, 290, 384
analyze code stage, 385
infrastructure compliance

stage, 389
integrity of artifacts, 391-394
performance and acceptance
pipelines, 394
performance test, 300-305
perform test stage, 387
testability, 286-288
testing applications, 286
test specific
characteristics, 286-288
unit test framework (see Unit
testing)

pipeline-that-triggers-me, 219

PipelineUnit.java, 294

pipeline.yml files, 291, 294,

297,373

Platform monitoring, 335, 342-343

Playbooks, 319

**/.pom pattern, 227

pom.xml file, 227, 290

Pretty Good Privacy (PGP), 244

prod-deployment.yml, 373

provision-infra.yml, 373

Provision test environment, 95-96,

101, 122, 203, 277

Public key infrastructure

(PKI), 18, 68
Publish package (internal),
201, 202
Pyrsia, 244

419

INDEX

Q

Quality assurance (QA), 64
ALM platforms, 65
application code, 64
entry criteria, 66
exit criteria, 67
infrastructure code, 64
pipelines, 64, 65
Quality gates, 65, 276, 287, 313, 314,
325, 326, 403-405

R

Recovery point objective (RPO), 46
Re-create deployment, 33, 101,
165-170, 173, 362
Register mitigating actions, 312
Regular deployments, 99, 194
Release build, 7, 24, 106, 349, 355
Release notes, 41, 202, 320-325
Release strategy, 3, 33, 34, 158, 159,
164, 312, 362, 367-369

Requirements analysis, 20, 29

areas, 31

CI/CD practices, 29

complex pipelines, 33

costs, 31

feature branches short-lived, 33

inflexibility and costs, 32

manual testing, 34

maturity models, 31

microservice, 36

principles, 29

420

suggestions, 32
way of working, 32
Requirements of myapp, 361
manageability, 364
security, 363
sustainability, 361
technology, 362
way of working, 361
Resource, 24, 44, 48-49, 60, 101,
141, 195, 245, 334, 341, 395
Resource constraints, 31, 58-59,
184, 193-200
Road map-based release, 159-163
Rolling update
deployments, 175-180
Runbook, 188, 319, 320
Runtime test-1, 311

S

Scanning complement, 64
Schedules, 218
Scripting language, 210
Secret management tools, 250
Security, 41
ALM platform, 41
DAST, 47
deployment, 45
monitoring, 346
requirement, 46
RTO, 46
Security pentest, 155, 156
Self-hosting, 316, 332

Semantic versioning, 62, 246, 247,
364, 369
ServiceConnectionNexusIQ service
connection, 222
Shards, 233
Short feedback loops, 13, 40
Software-as-a-service (SaaS), 14,
44, 68, 153, 261, 280,
315, 331
Software delivery strategy, 102
Software development, 15-18, 20,
21, 25,59
Software supply chain, 2, 12, 14-16,
35,42, 68, 103, 258, 309
SonarCloud, 92, 364, 365, 381, 383,
386, 387
SonarQube, 92, 104, 196, 275,
305, 315
Source code analysis (SCA), 7, 59,
64, 184, 185, 195
Source control management
system (SCM), 12, 25, 26,
43, 60, 217, 218, 246
Stage-completed.yml, 373
State, 42, 68, 106, 118, 245, 344,
352,391
Static code scanning, 64
Sustainable computing, 74, 279
Sustainable pipeline development
analyze code stage, 281, 282
auto-cancel option, 281
concept of fail fast, 281
CSPs, 280
rule-based trigger, 283

INDEX

SaaS ALM platform,
sustainability, 280
servers, 280
sustainable computing, 279
test environments, 282
validation, 281
Systems monitoring, 335-342

-

Tagging, 51, 245-249, 272, 287, 300

Target environments, 12, 34, 53,
59-61, 104, 132, 133, 216,
311, 381

Team'’s branching
strategy, 33, 350

Test environments, 37, 224, 259,
266, 277, 278, 282

Testing pyramid, 140, 143, 152

Test shards, 233-234

Test splitting, 233, 234

Test strategy, 3, 6, 33, 46, 139-146,
183, 285, 362

Test_task 1.2.1, 233, 234

Thinking processes, 3

Third-party libraries, 4, 43, 44, 54,
202, 240-245

Timeboxed release, 161, 162,
362, 367

Toggle feature, 258

Traceability, 24, 50, 107

Trunk-based workflow model,
105, 106

try/catch/finally construct, 231

421

INDEX

U

Unit testing
acceptance tests, 307
analyze code stage, 296
application code, 291
Azure DevOps pipeline, 288
compliance and security tests,
305, 306
features, framework, 289, 290
Java artifact, 293
JUnit tests, 294, 297
JUnit test2, 296
myFeature, 296
test approach, 299
YAML file, 291
Unit tests, 33, 91, 112, 140, 151, 191,
264-267, 274, 288-300
update-minor.yml, 374

\'

Validate entry criteria, 89-91,
108-110, 115, 121, 201, 274
Validate exit criteria stage, 99, 100,
190, 282, 325, 327, 328
Validate infrastructure compliance,
97-98, 115, 148, 278,
389, 403
Validating exit criteria, 98-100

422

Variables, 60, 90, 223, 224, 254, 274,

287,373,376
Vault, 42, 251-257, 317, 334
Versioning, 26, 61, 62, 245-249,
334, 364
Vertical scaling, 125
Vinod, 360, 363, 397

W, X
Way of working
business organization, 32
CI/CD process, 33
definition, 32
production deployment
strategy, 33
release artifacts, 33
team’s branching strategy, 33
Web application, 46
Webhook, 89, 109, 150, 217-219
WhiteSource, 244

Y

YAML-based pipelines,
211, 216

V4

zip or .tar file, 276

	Table of Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: The Pitfalls of CI/CD
	Challenges
	Oversimplified Diagrams and Misalignment
	Lack of Design Patterns
	Vulnerabilities
	Pipeline Testing
	Application Code vs. Infrastructure Code
	Organizing and Maintaining Pipelines
	Technical Constraints
	Legacy

	Summary

	Chapter 2: CI/CD Concepts
	Principles
	Positioning of CI/CD
	Application Lifecycle Management
	CI/CD Journey
	Naming Conventions

	Summary

	Chapter 3: Requirements Analysis
	Overview
	Way of Working
	Technology
	Information
	Security (General)
	Compliance and Auditability
	Resource Constraints
	Manageability
	Operations
	Quality Assurance
	Metrics
	Monitoring
	Sustainability
	Governance
	Summary

	Chapter 4: Pipeline Design
	Design
	CI/CD and Pipeline Design Approach
	BPMN 2.0
	BPMN Elements Overview
	BPMN in Action
	Level of Detail
	Logical Design vs. Realization

	The Generic CI/CD Pipeline
	Validate Entry Criteria
	Execute Build
	Perform Unit Tests
	Analyze Code
	Package Artifact
	Publish Artifact
	Provision Test Environment
	Deploy Artifact to Test
	Perform Test
	Validate Infrastructure Compliance
	Validate Exit Criteria
	Perform Dual Control
	Provision Production Environment
	Deploy Artifact to Production
	Notify Actors

	Design Strategies
	Context Diagram
	Branching Strategy
	Trunk-Based Workflow
	Feature Branch Workflow
	Gitflow

	Build Strategy
	Vertical Scaling
	Full Builds vs. Incremental Builds
	Parallel Builds
	Pipeline Caching
	Build Targets
	Cross-Platform Builds
	Multiteam Build Strategy

	Test Strategy
	Automated vs. Manual Tests
	Functional vs. Nonfunctional Tests
	Parallel Execution vs. Sequential Execution
	Manual Tests Performed by Specialists
	Long Execution Time vs. Short Execution Time

	Release Strategy
	Road Map–Based Release
	Timeboxed Release
	Regular Release
	Continuous Deployment
	Feature Management–Based Release

	Production Deployment Strategy
	Re-create Deployment
	Blue/Green Deployment
	Rolling Update and Canary Deployment
	A/B Test Strategy

	Other Design Considerations
	Delegation
	Application Architecture
	Orchestration
	Event-Based CI/CD

	Resource Constraints
	Commercial Off the Shelf

	Summary

	Chapter 5: Pipeline Development
	Pipeline Specification
	Multibranch, Multistage Pipeline
	User Interface–Based Pipelines
	Scripted Pipelines
	Declarative Pipelines
	Constructs
	Triggers
	Execution Environment
	Connections
	Variables
	Conditions
	Caching
	Matrix
	Deployment Strategy
	Auto-cancel
	On Success/Failure
	Fail Fast
	Priority
	Test Shards
	Templates and Libraries
	Gates and Approvals
	Workflow

	Plugins and Marketplace Solutions
	Repositories: Everything as Code

	Third-Party Libraries and Containers
	Versioning and Tagging
	Environment Repository
	Secrets Management
	Database Credentials

	Feature Management
	Development in the Value Streams
	Simplified Pipeline Development
	Extended Pipeline Development
	Advanced Pipeline Development
	Develop a Base Pipeline
	Pipeline Generation
	Pipeline of Pipelines (DevOps Assembly Line)

	Sustainable Pipeline Development
	Summary

	Chapter 6: Testing Pipelines
	Testing Pipelines
	Testability of Pipelines
	Unit Tests
	Performance Tests
	Pipeline Compliance and Security Tests
	Acceptance Tests
	Summary

	Chapter 7: Pipeline Implementation
	Pipeline Implementation
	Organizational Impact
	Team Discipline

	Integration Platform
	Target Environment Preparations
	Playbook

	Application Implementation
	Runbook
	Release Note
	Artifact Promotion

	Summary

	Chapter 8: Operate and Monitor
	Manage the Integration Platform
	Operational Pipelines
	Monitor
	Systems Monitoring
	Platform Monitoring
	Business Monitoring
	Security Monitoring

	Share Information
	Events, Alerts, Incidents, and Notifications

	Summary

	Chapter 9: Use Case
	Requirements Analysis
	Pipeline Design
	Branching and Release Strategy
	Release Version Generation

	Pipeline Development
	Code Repository
	Pipeline Creation
	Configure Variable Groups
	Configure Service Connections

	Test
	Integrity of Artifacts
	Performance and Acceptance Pipelines

	Implementation
	Configure the Azure DevOps Prod Environment and Dual Control
	Deploy the Application to Production
	Quality Gate

	Summary

	References
	Index

