

Praise for Learning Microsoft Power Automate

Paul leads readers on a methodical and insightful journey into
constructing automated business processes with Power Automate. This
comprehensive book covers everything required to kickstart your journey
and empowers you to create a wide range of solutions. By the end, you’ll
have the skills to build, troubleshoot, and seamlessly integrate with other
Power Platform tools.

—Jason Rivera, Author and Microsoft 365 Collaboration
Architect

Power Automate has a low barrier to entry in the Power Platform and
Microsoft 365 set of tools. Users with little to no experience can create
their first approval with a few clicks in SharePoint and start adding value
to their work.

Power Automate also has a depth of functionality that can be daunting
for new users having to implement business logic into their flows using
actions, expressions and integrations into other apps and services that
can seem like more of a traditional IT skill set than that of a maker or
citizen developer.

Paul’s book Learning Microsoft Power Automate does an incredible job
at bringing users along on a Power Automate journey: from new maker
to seasoned Power Automate developer. This book should be a key
resource for anyone wanting to learn and implement Power Automate
into their working lives.

—Norm Young, Microsoft MVP and Senior Strategic
Consultant at AvePoint

Learning Microsoft Power
Automate

Improving Productivity for Business Processes and
Workflows

Paul Papanek Stork

Learning Microsoft Power Automate
by Paul Papanek Stork

Copyright © 2024 Paul Papanek Stork. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(https://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Andy Kwan

Development Editor: Jill Leonard

Production Editor: Jonathon Owen

Copyeditor: Nicole Taché

Proofreader: Piper Editorial Consulting, LLC

Indexer: Judith McConville

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

October 2023: First Edition

https://oreilly.com/

Revision History for the First Edition

2023-09-26: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098136369 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Learning Microsoft Power Automate, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-13636-9

[LSI]

https://oreilly.com/catalog/errata.csp?isbn=9781098136369

Preface

This book will show you how to use Microsoft Power Automate to
automate repetitive, manual, and time-consuming tasks. You’re about to
take your first steps on a journey that will change the way you handle
information every day. But, like all journeys, we need to start at the
beginning. That means we need to understand what Power Automate is and
how it fits into the broader Microsoft ecosystem. If you already know the
basics, please feel free to skip ahead to the next section.

Power Automate, which was originally called Flow, is a cloud-based
application that can be used to create workflows. These cloud-based
workflows (flows) can use connectors to access information stored in a
variety of systems. If a connector does not exist but an API does, then you
can create your own custom connector. If an API doesn’t exist, then you can
use a desktop flow to interact with the data. The result is a workflow engine
that works with almost any information source, whether that system is
designed by Microsoft or a third party.

Here are just a few examples of the kinds of everyday tasks that Power
Automate can transform:

Automating the collection and processing of information

Managing the approval of documents and data

Sending automatic reminders for past-due tasks

Archiving emails and attachments in an indexable system

Automating interactive computer tasks that are normally done
manually

Visualizing a staged process consisting of multiple steps

Power Automate is one of five applications included in the Microsoft Power
Platform. The other four applications are:

Power Apps

Quickly build custom applications that are accessible on
personal computers, tablets, or mobile phones.

Power BI

Create reports and graphs that supply data-driven insights
for making informed business decisions.

Power Virtual Agents

Easily build chatbots to engage your customers and
employees, using a conversational pattern.

Power Pages

Easily build a website to showcase your business data to
internal or external users.

These applications are integrated, and, working together, they can do more
than any one application alone.

Who Should Read This Book
There are two primary audiences who will find this book useful. The first is
a group Microsoft calls “citizen developers.” Citizen developers are defined
by the following characteristics:

They work in a position that is not part of the Information Technology
(IT) organization in their company.

They are not trained as professional developers.

They use information in their daily work.

They create software tools, for consumption by themselves or others,
to make their work easier.

Citizen developers were clearly the audience that Microsoft focused on
when designing and building Power Automate. But they aren’t the only
ones who can benefit from using it. Professional developers and other
technical users like IT administrators will also benefit from Power
Automate. By using it, they can quickly develop prototypes or personal
productivity aids that will free up additional time to concentrate on their
main duties.

In essence, Power Automate puts automation tools in the hands of every
employee. It can transform the way your company deals with information
and makes it possible for people to create their own problem solutions
within an easy-to-use, low-code/no-code platform. Reading this book will
help you learn how you can use Power Automate flows to automate the use
of information in your own workload.

Why I Wrote This Book
Power Automate is a constantly changing product. At least every six
months, Microsoft releases a new set of features and enhancements. It’s
impossible for any book to keep up with that level of constant change. As a
result, this book will concentrate on teaching you how Power Automate
works and what role its various components play. I’ll also include lots of
references to additional documentation and online resources that you can
use in the future to enhance your knowledge. Once you’ve learned how
Power Automate works, you’ll be better prepared to take any new
connector, action, trigger, or feature and use it to enhance your flows.

Reading a technical guide is often like reading a cookbook. It’s filled with
good recipes to help you handle specific scenarios. By following the recipe,
you can produce an outstanding meal, or in this case automate a specific
manual task. But what if your scenario doesn’t match the recipe exactly? In

that case, you need to have learned “cooking” skills that you can use to
adapt the recipe or to create your own recipe.

In this book, I will focus on teaching you how to “cook” with Power
Automate. I’ll focus more on the basic ingredients in a flow and how they
interact with each other. I’ll explain connectors and the triggers and actions
they contain. You’ll learn how to understand what fields need to be filled in
for each action and how to determine what kind of data is needed. Yes, there
will be examples and demos. But the point of those examples will be to
demonstrate the skills you need to work with Power Automate in general,
and not to just to follow a step-by-step recipe. I’ll also discuss where to go
to get documentation on the various ingredients that go into a flow. Along
the way you’ll learn more than just a couple of specific recipes. You’ll
begin to learn the skills you need to use Power Automate for yourself to
create some amazing workflows.

Navigating This Book
Now that you understand the approach of this book, let’s look at a summary
of what is in each of the chapters. Knowing what is coming will help you
build your knowledge and skills using Power Automate as we go through
each chapter.

Chapter 1: What Is Microsoft Power Automate?
In the first chapter, I’ll introduce the Power Automate application. We’ll
look at what it is, who should use it, and what they will use it for. I’ll
describe some typical business scenarios where we can use Power
Automate to replace inefficient manual processes—improving both the
quality and quantity of information available to an organization. By the end
of the chapter, you will be ready to learn how to employ Power Automate to
streamline manual processes in your own environment.

Chapter 2: Getting Started: What You Need to Know
In this chapter, we’ll focus on the background information you’ll need to
know before you create your first flow. We’ll start by reviewing the
licensing required for building different kinds of flows. I’ll demonstrate
how to sign up and access the Power Automate website the first time and
some special programs that will let you learn Power Automate without
having to buy a license. I’ll help you understand the basic building blocks
that make up a flow and the different types of flows that are available. By
the end of the chapter, you’ll have everything you need to get started
developing your first flows.

Chapter 3: Building Your First Flow
Now that you have access to a learning environment, we’ll look at how to
build your first Power Automate cloud flows. We’ll examine how to create a
flow using one of the many prebuilt templates. I’ll also discuss the potential
issues of using templated flows in a production environment. I’ll then walk
through how to build your first simple flow without using a prebuilt
template. This will be the way you will create most of your flows going
forward. Finally, I’ll demonstrate how to use Microsoft Visio as a planning
tool to map out a flow before building it. Once the high-level Visio template
is designed, I’ll show you how to export it from Visio and import it into
Power Automate to create a flow.

Chapter 4: Working with Triggers and Actions
Once you have learned how to plan and create a basic flow, we’ll move on
to discuss the basic building blocks of flows in more detail. There are more
than 600 different connectors available in Power Automate, and each
connector supports multiple triggers and/or actions. Because there are so
many connectors, it’s impossible to cover all the potential combinations and
settings available. Instead, we will focus on understanding how triggers and
actions work. We’ll look at how to use the Dynamic content dialog to select
values from previous actions in a flow. I’ll also show you how to modify
those values using a variety of functions. Since these values are recorded in
JavaScript Object Notation (JSON), I’ll demonstrate how to manually enter
values into the functions if the Dynamic content dialog doesn’t show the
value you need. Finally, we’ll look at how to configure action and trigger
settings. We’ll also examine other options available on the context menu.

Chapter 5: Implementing Logic
Simple flows often start at point A and flow to an end at point B, following
a straight line. But what if your flow needs to do something different
depending on a value that changes while the flow is running? For that, we
need the ability to branch or loop, based on those values. In this chapter, I’ll
cover the different ways to implement logical processing in a flow using
conditional actions, loops, and parallel branches.

Chapter 6: Integrating with Other Power Platform
Applications
Power Automate is one of four applications in the Power Platform. The
level of integration between the different applications in the Power Platform
can make Power Automate an even stronger application. In this chapter,
we’ll review how to do the following:

Trigger a flow from a Power App and return a value or array to the
application

Invoke a flow from a Power Virtual Agent bot and retrieve information
for display

Use Power Automate to process data used in a Power BI report or
dashboard

Start a flow from a Power Page using a button to retrieve information
using Power Automate

Chapter 7: Troubleshooting Tips
It would be nice if every flow worked perfectly the first time, every time.
But, of course, that’s not what happens in real life. In this chapter, I’ll
present some tips to help you figure out what is going wrong with a flow so
you can get it running. I’ll also discuss how to design and structure a flow
to automatically recover from errors without user intervention.

Chapter 8: Desktop Flows
Power Automate has more than 600 existing connectors. But what do you
do if a connector doesn’t exist for a legacy desktop application or web
page? Power Automate Desktop is a robotic process automation (RPA)
application that can be used to overcome this limitation. Using Power
Automate Desktop, we’ll review how to record or build a desktop flow that
can interact with a user interface (UI) on a computer to simulate actions
normally done by a person. These desktop flows can then be scheduled
using a cloud flow and even run unattended, meaning without human
intervention, to accomplish a task.

Chapter 9: Business Process Flows
Automating a business process is often bigger than just one flow.
Frequently, it involves multiple people doing a variety of tasks. Sometimes
there are even manual steps involved that can’t be easily automated with
Power Automate flows. That’s where a business process flow can help.
These flows define a set of steps for people to follow to achieve a specific
outcome. Many of the steps will involve regular cloud flows, but some can
also be manual tasks that are not otherwise automated. In this chapter, I’ll
examine how business process flows can be created to pull together a
disparate group of cloud flows, desktop flows, and other tasks to achieve an
overall goal.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

https://oreilly.com/
https://oreilly.com/

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/learning-
mspa.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/learning-mspa
https://oreil.ly/learning-mspa
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Acknowledgments
I would like to start out by thanking my wife, Sharon Papanek Stork, for
letting me have the time to write this book. She has supported me
throughout this journey, taking care of our grandchildren and giving me
time to work on this book. She is the love of my life, and I look forward to
spending more time with her now that the book is complete.

I would also like to thank all the people who ask questions about Power
Automate on the Microsoft Power Platform forum. Your questions have
driven me to look deeper into and learn more about Power Automate than I
ever would have on my own. I hope this book will add to your knowledge
and help you follow in the learning path I’ve been on.

Finally, I would like to thank all the fantastic crew members from O’Reilly
for their support and trust. Jill Leonard, you have been a joy to work with as
an editor. Your comments were always an improvement to the book and I’m
proud of what we produced together.

I also want to thank the technical reviewers who checked my work for
accuracy: Benedikt Bergmann, Damien Bird, Nicholas Bratttoli, Sheryl
Netley, Jason Rivera, Scott Shearer, and Norm Young. As a developer, I
learned a long time ago that having a separate set of eyes review my work is
crucial to “getting it right.” Your cross-checking has helped make this a
much better book.

Chapter 1. What Is Microsoft
Power Automate?

Working for an organization is…well, it’s work. Even if you have a job
doing what you love, there are still a lot of repetitive, manual, and time-
consuming tasks. You may have to process reports or invoices that are sent
to you by email and enter them into an accounting system. Or you may have
to fill out travel expense reports and send them to someone for approval. Or
you may have to take old files and information and move them to archive
locations to make room for more up-to-date information. Every job includes
processing information and distributing it to the right people and places.
Frequently, these mundane tasks can keep you from doing the parts of your
job that you love or growing your abilities by learning new things.

Welcome to this introduction on how to use Microsoft Power Automate to
automate tasks in your daily work life. You’re about to take your first steps
on a journey that will change the way you handle information every day.
But, like all journeys, we need to start at the beginning. That means we
need to understand what Power Automate is and how it fits into the broader
Microsoft ecosystem.

Power Automate is a cloud-based application that can be used to create
workflows. These cloud-based workflows (flows) use connectors to access
information stored in a variety of systems. Using these connectors, you can
take manual tasks and convert them to automated workflows. Here are just
a few examples of the ways in which Power Automate can transform
everyday tasks:

Automate the collection and processing of information

Manage the approval process for documents/information

Send automatic reminders for past-due tasks

Archive emails and attachments in an indexable system

Automate interactive computer tasks that are normally done manually

Visualize a staged process consisting of multiple steps

These are just a few of the many varied tasks that you can transform using
Power Automate. The only real limit is your creativity and whether a
connector is available for the data you are working with.

NOTE
When Power Automate was originally released in October 2016, it was called Microsoft
Flow. It was renamed Power Automate in November 2019 to better align with the other
Microsoft Power Platform products. But the workflows created by Power Automate are
still called “flows.”

Power Automate is a powerful application, but it can do even more when
used with other Power Platform applications. It is one of five applications
included in the Power Platform. The other four applications are as follows:

Power Apps

Enables the user to quickly build custom applications that
are accessible on personal computers, tablets, or mobile
phones.

Power BI

Allows the user to create reports and graphs that supply
data-driven insights for making informed business
decisions.

Power Virtual Agents

Helps users to easily build chatbots to engage customers and
employees using a conversational pattern.

Power Pages

Provides users with guidance on how to easily build a
website to showcase business data to internal or external
users.

These applications are all integrated. For example, you can use Power
Automate to periodically send reports generated by Power BI. Or you can
use Power Apps to create a mobile-ready application to collect information
that is then processed and stored using a flow. We’ll look at these possible
integrations in more detail in Chapter 6. You can read more about the rest of
the applications in the Power Platform on Microsoft’s website.

Power Automate is an advanced integration tool that can connect to a
growing list of more than 600 out-of-the-box data sources, such as Google
Sheets, Dynamics 365, SharePoint, Salesforce, and OneDrive. More data
sources are being added every quarter. When this book was written, there
were 645 connectors available in Power Automate from Microsoft and
third-party vendors. If a connector doesn’t exist, but there is an API for a
system, then developers can create their own custom connector.

NOTE
Custom connectors are an advanced topic and won’t be covered in this introduction to
Power Automate. You can read more about custom connectors in Microsoft’s
documentation.

There is even a way to access information stored in legacy systems for
which there is no connector or API available. Power Automate desktop
flows can be used to interact with this legacy information using a regular
computer user interface. We’ll cover Power Automate desktop flows in
Chapter 8. All these options provide you with a workflow engine that works
with almost any information stored in a computer system, whether that
system is designed by Microsoft or a third party.

https://oreil.ly/sKXXr
https://oreil.ly/VENCj
https://oreil.ly/VENCj

Now that we’ve conducted a high-level overview of what Power Automate
is, let’s move on to the question of why you should use Power Automate to
automate your manual processes. You probably have some sense of its
capabilities and how it can improve workflows and make task management
easier, or else you wouldn’t be reading this book. However, it’s important to
be sure you are using it because it will solve your problems and not just
because it’s an industry buzzword.

Why Use Power Automate?
It’s no secret that before the nternet, business profits were determined by
commodities sold. This profitability has now shifted and is driven largely
by digital assets and information profiles, leaving organizations dependent
on the efficient processing of information. This is true for service
organizations, like financial advisors, that focus on the production of
information. But it’s also true for traditional manufacturing companies that
depend on computer systems to efficiently manage the procurement of raw
materials, oversee the manufacturing process, and direct the delivery of
finished goods. In today’s world, every organization, regardless of its
business model, depends on being able to process information quickly and
accurately. But that very dependence leads to challenges.

Creating computer programs to efficiently process information has
traditionally required professional developers. But there are never enough
professional developers to do all the work that needs to be done. The good
news is that, with the introduction of low-code/no-code development
environments like Power Automate, much of that work can now be done by
“citizen developers.”

What is low-code/no-code? Well, it’s essentially exactly what it sounds like.
Low-code/no-code are terms used to describe the development of software
applications, generally for business solutions, without the need for a
traditional programming background or knowledge of a programming
language. For example, when building a flow in Power Automate, the
“maker” creates the flow by choosing triggers and actions from a list. Then,

they fill in blanks in the trigger or action to configure what it does. When
these actions are executed in order, a process can be completed by the flow.

Conversely, traditional coding is an approach to software development
where a professional programmer or a team of programmers who are
trained to use a programming language like JavaScript or C# are employed
to build software and applications. The ability for non-developers to use
low-code/no-code tools frees up professional developers to focus on
applications that require the use of more complex coding environments, like
C# or JavaScript.

Who Are Citizen Developers?
Who are citizen developers? According to Gartner’s Information
Technology glossary, a citizen developer is:

an employee who creates application capabilities for consumption by
themselves or others, using tools that are not actively forbidden by IT or
business units. A citizen developer is a persona, not a title or targeted
role. They report to a business unit or function other than IT.

That means a citizen developer is someone who has business knowledge
that a professional developer in the IT department doesn’t have. Although
they aren’t trained to do the same kind of development as a professional,
citizen developers can accomplish a lot with a simpler low-code/no-code
environment like Power Automate. For example, a sales representative
might use Power Automate to consolidate monthly sales reports (received
as Excel attachments to an email) into a more comprehensive report to be
emailed to senior management. The sales representative understands the
sales reports, since they work with them often. A developer would need an
explanation of what the figures mean to be able to summarize them for a
report.

The cost benefits of using citizen developers are substantial. Chiefly,
businesses won’t need to hire quite so many professional developers who
have the expertise in building extensive enterprise applications.

https://oreil.ly/ePBf4
https://oreil.ly/ePBf4

Professional developers with that level of experience are a limited,
expensive resource. Using citizen developers for personal productivity or
departmental applications can stretch the use of the limited number of
professional developers to cover the essential enterprise development
efforts that require that level of expertise.

But there are also significant benefits for the citizen developer, too. Using a
tool like Power Automate, citizen developers can automate repetitive tasks
that used to take them hours of manual effort. Automating these repetitious
tasks improves reliability and lets the citizen developer concentrate their
time on more interesting, productive endeavors. By doing these tasks
themselves, instead of waiting for a professional developer, they also
improve the turnaround on delivery of the application. Their involvement
also guarantees that the design of the workflow is exactly what the citizen
developer wanted.

The use of low-code/no-code development can also improve collaboration
between internal departments by removing the professional developers as
intermediaries. Citizen developers who speak the same business language
can work together to implement new solutions to shared business problems.
The result is an organization that runs more efficiently and can access
necessary information more quickly. In almost every case, leveraging
citizen developers is a net positive for both the organization and the citizen
developer.

Migrating from SharePoint Designer to
Power Automate
Power Automate is not Microsoft’s first low-code/no-code workflow
engine. SharePoint Designer (SPD) is a discontinued web design
application that was used to build and customize SharePoint sites. One of
the additional capabilities added into SPD was a low-code/no-code
workflow designer that could automate the processing of information in
SharePoint sites, lists, and libraries. Power Automate is the official
replacement for SPD workflows, but it isn’t a perfect match. In some ways,

Power Automate is more powerful since it is not limited to processing
SharePoint data alone. But SPD’s tight integration with SharePoint made it
easy to use. SPD could also do some things that Power Automate can’t. So,
why should citizen developers use Power Automate flows with SharePoint
instead of the more established SPD workflows?

Why Not Use SPD Workflows?
Since its introduction, there have been two different versions of the SPD
low-code/no-code workflow engines. The original version is now called
SPD 2010 and ran within the software context of SharePoint. This made it
susceptible to slowdowns if your SharePoint site experienced load-related
issues. The newer version, called SPD 2013, ran as a separate, parallel
process. It didn’t have the performance issues inherent in SPD 2010
workflows. Since SPD 2013 workflows didn’t contain all the actions
available in SPD 2010 workflows, the ability to invoke a 2010 workflow
from a 2013 workflow was added. SPD has been the established workflow
engine for SharePoint for years. But on August 1, 2020, Microsoft
announced that all SPD workflows were being deprecated. This deprecation
called into question the viability of SPD workflows as a workflow solution.
You can read about the deprecation schedule in Microsoft’s documentation.

WARNING
There are currently no utilities that can migrate existing SPD workflows to Power
Automate. So, migration of workflows is a manual process. This makes it imperative
that organizations make the switch to Power Automate as soon as possible, instead of
waiting and creating additional SPD workflows that will need to be re-written in 2026
when SPD support ends.

Power Automate Limitations and Workarounds
There are some things that SPD workflows can do that Power Automate
can’t, and the reverse is also true. Power Automate is a broader product that
can access more than just SharePoint as a data source. It can also do more

https://oreil.ly/gFi21

things with the data it accesses. Overall, Power Automate is an
improvement on SPD workflows. But there are some limitations that you
need to be aware of and some workarounds that may help if you are
converting from SPD workflows to Power Automate. Table 1-1 summarizes
the limitations and provides some potential workarounds.

Table 1-1. Power Automate limitations and workarounds

Power
Automate
Limitation Explanation Workaround

30-day timeout Flow instances will tim
eout and stop after 30 days.
SPD workflows can run
indefinitely.

Build flows with
recurrence triggers that
store their current state
in a data source and
wake up periodically to
do processing.

HTTP
connector

Calls to web services, like
REST, require a premium
license if they aren’t to
SharePoint. SPD
workflows can make HTTP
calls without additional
licensing.

This licensing change
reflects the broader
scope of Power
Automate. One way to
minimize the cost is to
use a Service Account
with a premium license
for flows that need to
make general HTTP
calls.

Reusable flows With SPD you can create
flows that can later be
added to a variety of
SharePoint lists. But Power
Automate connections are
bound to a specific data
source when they are
created. So, you can’t have
a single flow that works
with multiple dynamic
connections.

There is no easy way to
duplicate reusable
flows. But Power
Automate does have a
Save As function, which
can be used to save a
template that can be
duplicated in other lists
and modified.

Power
Automate
Limitation Explanation Workaround

Workflow
history

SPD stores the workflow
history for 60 days in a
hidden list in the
SharePoint site where the
workflow runs. Power
Automate stores workflow
history for 28 days in a
Dataverse table.

You can create a flow
that periodically
transfers workflow
history from Dataverse
to a storage location of
your choice.

Impersonation
(security)

SPD 2010 workflows
include an impersonation
step that lets you run a
series of actions with
elevated permissions.
Power Automate doesn’t
support impersonation in
cloud flows.

Flows can be created
using a Service Account
that has the permissions
necessary to run the
actions needing elevated
permissions.

How This Book Will Teach Power Automate
Now that you’ve been introduced to what Power Automate is and who
should learn how to use it, let’s turn our attention to what you will learn
from this book. Power Automate is a constantly changing product because
Microsoft frequently, at least every six months, releases a new set of
features and enhancements. It’s impossible for any book to keep up with
that level of constant change. So, this book will concentrate on teaching you
how Power Automate works and what part its various components play.
Once you’ve learned that, you’ll be better prepared to take any new
connector, action, trigger, or feature and use it to enhance your flows.

Learning to work with Power Automate is a lot like learning to cook. When
I’m not sitting in front of my computer, I love to cook. Like most cooking
hobbyists, I have acquired a lot of cookbooks over the years. The problem
with learning to cook using cookbooks is that they focus primarily on
recipes rather than cooking techniques. They may demonstrate the skills
required for a specific recipe, but they don’t show you how to cook in
general. So, you learn how to make a few specific dishes, but it can be
difficult to adapt what you learn to make other things.

Many technical guides and videos on Power Automate are designed to
function like cookbooks. They walk you through examples of flows that
solve a specific scenario, like creating an approval request when a new file
is uploaded to SharePoint or sending a monthly report by email to a select
group of managers. They are usually quick and make you feel like you’ve
accomplished something when you follow along and produce the same
results that they do. But what if you really need to do something that isn’t
quite the same scenario? Maybe you need to send an approval when a new
contact is added to Dataverse. Or maybe you need to send a different report
to each manager in the group. Now you’re back to scouring the internet for
a post or video that shows you how to do that specific scenario. If you can’t
find exactly what you need, then you have a problem—because you learned
how to follow a recipe, not how to cook.

In this book, we will focus on learning how to “cook” with Power
Automate. We’ll focus more on the basic ingredients in a flow and how they
interact with each other. I’ll explain connectors and the triggers and actions
they contain. You’ll learn how to understand which fields need to be filled
in for each action and how to determine what kind of data is needed. Yes,
there will be samples and demos. But the point of those samples will be to
demonstrate the skills you need to work with Power Automate in general,
and not to just follow a step-by-step recipe. We’ll also discuss where to
access documentation on the various ingredients that go into a flow. You
can find almost anything you need within Microsoft’s Power Automate
documentation. As we go through the book, I’ll explain how to sift through
the wealth of available information to find what you need. Along the way,
you’ll not only learn how to complete a couple specific recipes, but you’ll
also begin to learn how to use Power Automate for yourself to create some
amazing workflows.

Summary
In this chapter, I’ve talked about why Power Automate can change the way
you process information every day. I’ve enumerated the different groups of
people who will find it useful and discussed why it’s a necessary
replacement for existing SPD workflows. I’ve also promised that this book
will do more than teach you a few simple recipes for doing common tasks.
My goal with this book is to give you the tools and skills you need to grow
your knowledge of Power Automate so you can use it to truly transform
your daily workload.

https://oreil.ly/iSUCi
https://oreil.ly/iSUCi

Chapter 2. Getting Started:
What You Need to Know

Now that we’ve explored what Power Automate is and why you might want
to use it, you are ready to start working with Power Automate. But before
you create your first flow, there are some other things you should know.

In the last chapter, I mentioned that there were more than 600 different
connectors available in Power Automate to connect to various data sources.
Because each of these connectors has different requirements, there are
different levels of licensing available in Power Automate. The first thing
you will need to figure out is which level of licensing is right for the
scenarios that you will be automating.

You’ll also need to gain access to the Power Automate website
(https://make.powerautomate.com) to build your first flow. Several different
types of accounts can be used to log in to Power Automate. Some account
types include what is called a “seeded license,” which means they include
some level of access to Power Automate for free. There are also free
accounts that can be used while learning Power Automate. Each account
type has different advantages, disadvantages, and limitations. I’ll help you
figure out which account is right for your situation.

The last thing you’ll need to understand before you start building your first
flow is what kinds of components make up a flow and what types of flows
you can create. Flows are constructed using triggers and actions. I’ll explain
where to access them and what they do later in the chapter. I’ll also cover
the various types of flows available. Cloud flows can be instant, automated,
or recurrent depending on how they are triggered. There are also desktop
and business process flows that are completely different from regular cloud
flows. The type of flow you create can affect the security context of the
connections it uses. That security context can also affect whether users of

https://make.powerautomate.com/

the flow need to be licensed or just the original developer (maker) of the
flow.

After completing this chapter, you’ll have all the background information
you need to get started and create your first flow. I’ll show you how to do
that in the next chapter, but first let’s cover the foundational topics that you
need to understand.

Key Licensing Terms
Before I begin discussing the licensing requirements for using Power
Automate, I want to provide you with a list of the related key terms so that
you understand what is covered by the different license types (see Table 2-
1). I’ll provide more detail on licensing later in this chapter, and in other
chapters throughout the book.

Table 2-1. Key terms related to Power Automate licensing

Licensing term Description

Microsoft 365 Previously called Office 365, this is a cloud-based
subscription service that extends the Microsoft
Office product line. It includes services like
SharePoint, OneDrive, and Microsoft Teams.

Dynamics 365 A cloud-based product line of enterprise resource
planning (ERP) and customer relationship
management (CRM) business applications.

Power Apps A graphical application for writing low-code/no-
code custom business applications.

Power Virtual
Agents

A low-code/no-code application for creating AI-
powered chatbots that can be embedded in web sites
or Microsoft Teams.

Flow types Power Automate can support a number of different
flow types. Each type will be explained more fully
later in this chapter.

Desktop flows Also known as Robotic Process Automation (RPA),
these flows allow users to interact with Windows or
web application user interfaces (UIs) on their
desktop.

Business process
flows

These flows provide a set of steps for people to
follow to complete a complex business process, like
onboarding an employee.

Standard and
premium
connectors

Connectors, which are used to connect to and
process content stored in data sources, are

Licensing term Description
categorized to require one of two licensing levels:
standard or premium.

On-premises data
gateway

A software service running on a local computer that
provides cloud flows with access to data stored in
on-premises computers.

Dataverse
database

Microsoft Dataverse, originally named the Common
Data Service (CDS), is a cloud-based data store
originally designed for Microsoft Dynamics
business applications, like CRM.

Power Platform
environment

Power applications, Power Automate flows, and
Dataverse tables are stored in dedicated areas called
environments.

Storage capacity Each Microsoft 365 or Dynamics 365 tenant
includes a default environment. Additional
environments can be created based on available
storage capacity. Additional storage capacity is
provided for each license purchased.

Licensing Options
Preparing to begin using Power Automate is fairly intuitive, but the many
potential licenses available can be intimidating. Common questions include
the following:

Which license do I need to cover what I want to do?

Can I start off with the least costly license until I learn how to use the
product?

Should I buy the most expensive license to make sure I have access to
all the features?

Is there a way to get started learning Power Automate for free?

Is the Power Automate license included in Microsoft 365 licensing?

In this section, I’ll review the different options for licensing Power
Automate. There is quite a variety—from a free license to those included
with other licenses like Power Apps or Microsoft 365, all the way to
standalone Power Automate licenses. I’ll explain what each type of license
covers and what it doesn’t. We’ll examine different usage scenarios and
which license is needed for each scenario. By the time we are done, you
will have a good understanding of exactly what you need to get started,
when you might need to upgrade, and generally what it will cost to use
Power Automate.

Power Automate Free
Anyone can sign up and use Power Automate without buying a license. This
is known as the Power Automate free license. All you need is an email
address that can be used to create a Microsoft account. The problem with
relying on this free license is that it severely limits what connections you
can use in your flows. The free license does give you access to any standard
connector, but most of the data sources you could connect to require their
own licensing. The data source licenses are not covered by the free Power
Automate license. For example, there are connectors that let you access
SharePoint lists and libraries, but you’ll need a Microsoft 365 license for
the site, list, or library to access SharePoint. So, although the Power
Automate free license is tempting, its practical uses are very limited. You’ll
likely find, however, that many of the data sources you wish to use, like
SharePoint, include some Power Automate licensing in their licenses.

Microsoft 365 Licensing
One of the most common licenses used when working with Power
Automate is the seeded license included with Microsoft 365 (previously
called Office 365 and commonly abbreviated to M365) licenses. There are
millions of Microsoft 365 users, and all of them have access to both Power
Apps and Power Automate.

These seeded licenses are included so that Microsoft 365 users can easily
create workflows and customize Office 365 applications. They cover the
use of any standard connectors in Power Apps and Power Automate, with
connections to things like SharePoint, OneDrive, Excel Online, and
Microsoft Planner. These capabilities are summarized in Table 2-2 and will
be covered in more detail later in this chapter.

Table 2-2. Microsoft 365 (seeded) licensing

Feature Covered

Create and run cloud flows Yes

Create and execute business process flows No

Create and run desktop flows No

Use standard connections Yes

Use premium and custom connections No

Access on-premises data using a gateway No

However, there are limitations on these seeded licenses. For example, these
licenses do not cover the use of on-premises gateways. So, if you or your
organization uses non-cloud resources like SharePoint servers or network
file servers, this may not be the best license for your needs. You also can’t
create your own custom connectors based on API calls or access data

sources that require premium connectors like SQL databases or Dataverse.
For those, you’ll need a different license. There are a number of potential
licenses that can cover these scenarios.

Dynamics 365 Licensing
Like Microsoft 365, some Dynamics 365 licenses include a seeded license
for Power Apps and Power Automate. The following include a seeded
license:

Dynamics 365 Enterprise

Dynamics 365 Professional

Dynamics 365 Team Member

These licenses are intended to be used to customize and extend Dynamics
365 applications like Customer Relationship Management (CRM). The
difference is that since Dynamics apps use Dataverse as a database, these
seeded licenses include access to the premium Dataverse connector. The
capabilities included in the Dynamics seeded license are summarized in
Table 2-3.

Table 2-3. Dynamics 365 (seeded) licensing

Feature Covered

Create and run cloud flows Yes

Create and execute business process flows Yes

Create and run desktop flows No

Use standard connections Yes

Use premium and custom connections No

Use Dataverse database Yes

Access on-premises data using a gateway No

There are limitations on your use of the Dataverse connector, though. It
must be used to customize or extend your Dynamics 365 application, but it
cannot be used to avoid licensing costs by replacing existing Dynamics
functionality. For example, you can’t use the Dataverse connector to build
your own CRM system based on a less expensive Dynamics license like a
Team Member license.

The Dynamics seeded license also includes the ability to create business
process flows in addition to cloud flows. Business process flows are
normally a Premium feature. I’ll take a deeper look at business process
flows in Chapter 9. Like the Microsoft 365 seeded license, the Dynamics
seeded license does not cover desktop flows or the use of on-premises
gateways.

Power Apps Licensing
One of the most common ways to use premium connectors with Power
Automate is to purchase a Power Apps license. Both the Power Apps per-

user and per-app licenses include Power Automate use rights. This covers
Power Automate when it is used in connection within the context of a
related Power App. You can find more detail about the Power Automate use
rights included with Power Apps licensing by downloading the Microsoft
Power Apps and Power Automate Licensing Guide. Unless you are building
a solution that only uses Power Automate, this will probably be the only
licensing you need.

WHAT IS A RELATED POWER APP?
There is no firm definition of what a “related Power App” is when
dealing with Power Automate. The idea is that you can use Power
Automate to support and enhance what a specific Power App is
designed to do. The clearest example of this is when an application
manually triggers a cloud flow to process some data and return a result.
But a flow can be in the context of a related Power App without
actually being triggered by the application. Flows that are triggered
using an automated trigger or a recurrence trigger are also covered if
they use the same data source as the related Power App.

For example, if you had an application that let employees upload an
annual self-review, you might have a related flow that triggers when a
new file is created or modified, to submit it to the user’s manager for
approval. The flow isn’t manually triggered by the application, but it is
clearly used to enhance the business process that the application is
automating. So, it would be considered a related Power App. But if I
created a flow to take information submitted using a Microsoft form
and save it to an SQL database, this would be considered a standalone
flow because there is no Power App involved in any part of the process.

Power Apps per-user versus per-app licensing
Power Apps provides two licenses, both of which include the same use
rights for Power Automate. A per-user Power Apps license covers an
unlimited number of applications for a single user. A per-app Power Apps

https://oreil.ly/5tIuj
https://oreil.ly/5tIuj

license lets a user run a single application that has been shared with them.
Per-user licenses are assigned directly to the user, while per-app licenses are
allocated to a pool of licenses in a given environment. Users will
automatically get a license from the pool when they run an application for
which they don’t have adequate licensing.

There are three specific points that should be noted when dealing with
Power Automate licensing based on Power Apps use rights:

Since per-app licensing is tied to a specific application, it will normally
only cover flows that are triggered directly by the application.

Premium licensing isn’t required to create an application, only to run
it. But users will often be prompted to start a trial license when making
an application or a flow if they don’t have a Power Apps per-user
license. Microsoft is working to correct this anomaly.

Many users who have a Power Apps license find purchase of an
additional Power Automate license to be unnecessary.

Power Automate Standalone Plans
For many Power Automate users, Microsoft 365, Dynamics 365, or Power
Apps licensing will be enough to meet all their needs. But if the scenarios
I’ve already covered don’t apply to you, then you can also purchase Power
Automate standalone licensing. There are three different Power Automate
standalone plans: per-user without RPA, per-user with RPA, and per-flow.
RPA stands for robotic process automation, for which Power Automate uses
desktop flows. What each license covers is summarized in Table 2-4.

Table 2-4. Power Automate standalone licenses

Per-user
without RPA

Per-user with
RPA Per-flow

Premium
connectors

✓ ✓ ✓

Cloud flows ✓ ✓ ✓

Business process
flows

✓ ✓ ✓

Run desktop
flows (Attended)

— ✓ —

Run desktop
flows
(Unattended)

— Add-on Add-on

The per-user license without RPA gives you the ability to create as many
cloud and business process flows as you like, using either standard or
premium connectors. This is similar to the Power Apps per-user license
except there is no requirement for a related Power App context. The one
limitation for this license is that you can’t trigger desktop flows from a
cloud flow.

The per-user license with RPA has all the capabilities of the regular per-user
license but adds the ability to trigger desktop flows from a cloud flow. The
desktop flows can be either attended flows (run on the user’s computer) or
unattended flows (run on a remote computer or virtual machine).
Unattended flows require an additional add-on license for each computer
(known as a bot) where you run them. I’ll provide more detail about
desktop flows in Chapter 8.

https://oreil.ly/YkSOG
https://oreil.ly/YkSOG

The last standalone Power Automate license is a per-flow license. Whereas
the per-user licenses let a single user run multiple flows, the per-flow
license covers many different users running one flow. The base license
covers up to five flows. Additional licenses can be added on for each
additional flow over five.

Pay-as-You-Go Licensing
All the paid licensing I’ve discussed so far requires an annual commitment,
at minimum. Users are charged either a monthly rate for 12 months or a
discounted yearly rate paid in advance. But in 2022, Microsoft released a
new pay-as-you-go license plan for both Power Apps and Power Automate.
With pay-as-you-go licensing, users are charged a slightly higher licensing
fee, but only for the months when they actually use an application or a flow
that requires a premium license.

Pay-as-you-go is configured at the environment level in the Power
Platform. To enable pay-as-you-go, you link a Power Platform environment
to an Azure subscription using a billing policy. The billing policy creates a
meter to track the usage of applications and flows in the environment. It
also provides 1GB of Dataverse storage.

TIP
Pay-as-you-go storage allocations are separate and do not count against existing Power
Platform storage capacity.

If a user uses an application or a flow that requires a premium license in a
particular month, then a charge is added to their Azure subscription.
Charges are not added if the user has a license that would cover the usage.
An explanation of the various charges recorded by the meter is presented in
Table 2-5. Please refer to the pay-as-you-go documentation for the most up-
to-date pricing.

https://oreil.ly/hwYYV

Table 2-5. Pay-as-you-go charges

Meter type What is counted? Retail cost

Power Apps Active users for each Power App
who open an application at least
once in that month. Users with
existing Power Apps premium
licenses are not counted.

$10 per active
user/app/month

Power
Automate

Cloud and desktop flow runs
using premium connectors. Flow
runs covered by existing licenses
are not counted.

$0.60 per cloud
flow run
$0.60 per desktop
flow run (attended
mode)
$3.00 per desktop
flow run
(unattended mode)

Dataverse
storage

Usage of Dataverse database,
file, or log storage above 1GB.

$48 per GB/month
for database
storage
$2.40 per
GB/month for file
storage
$12 per GB/month
for log storage

Common use cases for the pay-as-you-go licensing plan include the
following:

Applications or flows that are used only occasionally but by a large
number of users

The need to evaluate costs when just starting to use the Power
Platform without incurring an annual commitment

The need to allocate costs across business units within an organization
using an existing Azure subscription

Special Case Licenses
I’ve now covered all the licenses that you might normally use to add a
Power Automate flow into a production environment. There are, however, a
few special situations that we should discuss. These special case licenses
are as follows:

Power Virtual Agents license

Power Automate trial license

Power Apps Developer Plan

Windows licensing

Power Virtual Agents License
A Power Virtual Agents (PVA) license grants limited-use rights to Power
Automate, similar to the use rights included in the Power Apps per-user
license. It lets you create flows that are triggered by actions in a PVA bot.
But the use rights are more limited in PVA than they are in Power Apps. For
example, PVA doesn’t include the concept of a related Power App. To be
covered by the PVA license, the flow must be triggered from an action in
the bot. Power Automate can only be used to extend the functionality of the
PVA bot itself to retrieve or process information. The PVA license does not
cover any other types of flows.

Power Automate Trial License
Trial licenses are available for both the per-user without RPA and per-user
with RPA Power Automate licenses. There are no trials available for the

per-flow license. Trial licenses are also available for the Power Apps per-
user license. They provide all the same functionality as the paid licenses,
with one exception. The one thing you can’t do with the trial licenses is
create additional environments. But any of these trial licenses will give you
access to premium connectors.

There are two ways users can obtain a trial of Power Automate. Microsoft
365 global admins can request a trial license using Purchase Services on the
Billing page of the Microsoft 365 admin center (see Figure 2-1). After
requesting a trial license, the admin can assign it to a specific user.

Figure 2-1. Requesting a Power Automate trial as an admin

Users can also sign up for a trial directly through the Power Automate
website using the “Start free” button. But to get a full Power Automate trial,
you must have a work or school account. If you sign up with a generic
email or a Microsoft account, you will get access to the Power Automate
free license discussed earlier, not a Power Automate per-user trial license.

These per-user trial licenses expire after 30 days, but you can extend the
trial twice, so the upper limit is 90 days. Once your trial expires, you are
given the option to purchase a plan. If you’re already using one of the other
licenses that don’t include premium connectors, this is a good way to test
the premium functionalities of Power Automate.

https://oreil.ly/1PWfj
https://oreil.ly/1PWfj

But 90 days may be too short a time frame if you are trying to learn Power
Automate from scratch. Microsoft also offers a license for development
called the Power Apps Developer Plan. This development-only plan may be
a better alternative when learning Power Automate.

Power Apps Developer Plan
The Power Apps Developer Plan provides access to all the premium
features in both Power Apps and Power Automate. Like a Power Automate
trial, it is free, but it never expires. It does have the following limitations
(but these won’t interfere with using it to learn Power Automate):

Currently limited to a single developer environment

Dataverse database capacity limited to 2GB

A limit of 750 flow runs per month

RPA for desktop flows not included (needed to trigger desktop flows
from cloud flows)

Does not provide any AI Builder credits (advanced add-on feature)

The Power Apps Developer Plan provides the user with a single developer
environment. The most important limitation is that this environment can’t
be used to run production applications or flows; it can only be used for
learning and development. Any applications or flows that are developed
here will need to be moved to another environment if you want to run them
in production. Since the Developer Plan only covers one developer
environment, that means any flows that use premium features will require
an additional license before they can be run in production. Microsoft is
working to change the limit on a single developer environment to allow the
full use of Application Lifecycle Management (ALM). But that won’t alter
the requirement that the plan’s use be limited to learning and development
only.

Signing up for a Power Apps Developer Plan requires a work or school
email address. A work or school account is created by an organization that

https://oreil.ly/zzClR

has an Azure Active Directory for authentication and authorization. The
most common scenarios for this are organizations using Microsoft 365 or
Dynamics. You can also sign up for a Developer Plan using the “Try free”
link on the website, which we’ll cover later in the chapter.

If you are using this book to learn Power Automate and already have a
Microsoft 365 or Dynamics license, this is the best way to get a license that
gives you access to almost all the premium features in Power Automate
without an additional charge.

Windows Licensing
The licenses for Windows 10/11 operating systems include a license for
Power Automate Desktop (PAD). PAD is related to Power Automate, but it
is not the same thing. PAD is the RPA feature that is included with some of
the Power Automate standalone licenses. RPA flows are known as desktop
flows in Power Automate. Windows 10/11 includes a license for manually
running attended desktop flows. The inclusion of desktop flow licensing in
Windows 10/11 is designed to allow users to automate repetitious tasks on
their own desktop. Unattended desktop flows or desktop flows triggered
from a cloud flow are not included in this licensing. I’ll provide more
details on Power Automate desktop flows in Chapter 8.

Anatomy of a Flow
Now that you understand a bit about the licensing you will need to make
use of Power Automate, there are a few other pieces of background
information that you will need to understand before creating your first flow.
Power Automate cloud flows are assembled out of relatively simple
building blocks called triggers and actions. These triggers and actions are
encapsulations of the APIs available for a particular data source. They all
follow the same basic pattern. Both triggers and actions contain required
and optional fields that are used for configuration. Figure 2-2 shows the
configuration fields for a Dataverse trigger and a SharePoint action.

Figure 2-2. Sample trigger and action

Once you understand the pattern of configuration fields, you’ll be able to
use any trigger or action necessary to complete the logic of your flow.
You’ll learn more about how to use triggers and actions in Chapter 3. For
now, you should concentrate on understanding what they are, where they
come from, and how they fit together to create a flow. Desktop flows and
business process flows are made up of different components. I’ll discuss
what desktop flows look like in Chapter 8 and business process flows in
Chapter 9. For now, I’ll focus on triggers and actions as they relate to cloud
flows.

Triggers
A trigger is an event that initiates a cloud flow run. For example, you might
want to start an approval process whenever a new file is added to a
SharePoint document library. Or you might want to process an invoice that
is received as an attachment when a new email arrives. Triggers aren’t
always automated events. A trigger event can also be a manual event, like a
user pressing a button in a Power App, or a recurring event that happens at a
specific date and time. The events that can be used as triggers are varied,
but a specific trigger is always the first step in a cloud flow.

Triggers can either be webhook triggers or polling triggers. Webhooks will
fire as soon as the event takes place, but polling triggers may take a few
minutes before the change is detected and the trigger is fired. Unless it’s a
very special circumstance, a flow can only have one trigger.

TIP
When testing a flow, it’s usually a good idea to wait at least 5–10 minutes for a trigger to
fire before assuming there is a problem. You may be working with a polling trigger that
fires on a schedule.

Actions
Since there is only one trigger in a flow, most of what makes up a flow are
actions. Actions are the steps that perform the work of the flow. Each action
receives input from the action before it, does its processing, and outputs
information to the actions that follow it. Some actions create, update,
retrieve, or delete information in a data source. There are also actions that
control the logical path the flow takes. For example, a conditional action
may compare a value to a constant and decide which of two branches to
follow. Other actions can be used to process multiple items in a loop or
establish variables to hold temporary values. I’ll provide some specific
examples of simple flows later in this chapter. For now, I’ll stick to a more
abstract discussion of how triggers and actions fit together to build a cloud
flow.

WARNING
One of the most common problems faced by flow developers is not having a clear idea
of how to translate the logic of a business process into a series of flow actions.

Figure 2-3 shows how a flow might start with a trigger, perform an action,
evaluate the result of that action in a condition, and then perform different
actions based on the output of the condition. Other than the trigger,
everything in the diagram is an action.

Figure 2-3. Generic flow

Connectors
We’ve already talked about the fact that there are more than 600 connectors
that provide access to different data sources. Each connector provides

access to triggers and actions that are specific to the data source that it
connects to. For example, the Office 365 Outlook connector has a trigger
for “When a new email arrives,” and the OneDrive for Business connector
has an action for “Delete file.” Triggers and actions are classified as either
standard or premium based on their connector. To use premium connectors,
you will need a license that includes premium connectors. For some
connectors, you may also need an account with the company that makes the
connector. These accounts may be either paid or free.

To find a specific trigger or action, you must first know which connector it
might be in. Standard connectors are available to all users, but premium
connectors are only available to users with a premium license like a Power
Apps or Power Automate per-user license.

Types of Flows
There are a variety of different types of flows. When you create a flow, the
first thing you are asked is what type of flow you want to create. You’ll
need to understand the differences between the various types of flows to be
able to pick the right one. The primary focus of this book is cloud flows,
which are the most common. There are three types of cloud flows based on
the type of trigger is used to trigger them:

Automated cloud flows

Instant cloud flows

Scheduled cloud flows

There are two additional, special flow types that will be covered later in the
book:

Desktop flows

Business process flows

Any of the five types of flows can be created in the Power Automate design
studio. Let’s look at explanations and examples of each.

Automated Cloud Flows
Automated cloud flows are triggered by an event in a data source, such as
the arrival of an email or modification of a record in a Dataverse table. The
advantage of an automated flow is that it happens without human
intervention (see Figure 2-4). Automated flows are probably the most
common form of flow.

Figure 2-4. Sample automated flow

The steps in the flow shown in Figure 2-4 are as follows:

1. The flow is triggered when a file is uploaded to SharePoint.

2. The manager of the person who uploaded the file is notified.

3. An approval is sent to the manager.

4. Whether the file is approved or rejected, an email is sent to the original
requestor.

https://oreil.ly/0gMOl
https://oreil.ly/0gMOl

Instant Cloud Flows
Instant cloud flows are triggered by a user action, such as a user clicking a
button in a Power App or a button in the mobile flow application to run a
cloud flow. Figure 2-5 shows a simple instant cloud flow.

Figure 2-5. Sample instant cloud flow

The steps in the flow shown in Figure 2-5 are as follows:

1. The flow is triggered manually after the user selects a file in a
SharePoint document library.

2. The user enters an email address in the side panel in the library.

3. An email is sent to that address.

Scheduled Cloud Flows
Scheduled cloud flows are triggered by a recurrence trigger. Recurrence
triggers run a flow starting at a particular date and time and then repeat the
run based on a timed interval. All cloud flow instances will time out after
running for 30 days, so scheduled cloud flows are often used as a way of
running a flow over a long period of time by starting and stopping it on a
schedule. For example, a flow that retrieves all the documents that haven’t
been modified in the last six months and moves them to an archive might be
scheduled to run on the first day of each month. Figure 2-6 shows a simple
scheduled cloud flow.

Figure 2-6. Sample scheduled cloud flow

The steps in the flow shown in Figure 2-6 are as follows:

1. The flow is triggered on the first day of each month at 5:00 a.m.

2. The flow retrieves a list of files that have modification dates of more
than 30 days ago.

3. Each file in the list is moved to an archive location.

Desktop Flows
Desktop flows are Power Automate’s entry into the world of robotic process
automation (RPA). They can be used to automate all repetitive desktop
tasks. They are best used in situations where a connector with appropriate
triggers and actions does not exist, such as cases where you need to enter
data into a website or a legacy desktop application that has no defined API.
Figure 2-7 shows an example of a desktop flow.

Figure 2-7. Sample desktop flow

The steps in the desktop flow shown in Figure 2-7 are as follows:

1. Run a legacy application called Expenses.exe.

2. Set a variable with the name of the expense (this could pull from
another source like Excel).

3. Enter the expense name in the appropriate text box.

4. Select the expense type from a drop-down menu.

5. Enter the amount of the expense in the appropriate text box.

6. Submit the expense.

Business Process Flows
Business process flows provide an overview of a set of tasks, organized into
stages, that need to be completed by one or more people. Some of the tasks
may be manual, while others may include running cloud or desktop flows.
The goal is to outline a repeatable set of tasks that can be followed to
guarantee a high-quality result each time. Business process flows are
created in Power Automate, but they are hosted in a Power Apps Model
Driven application or Dynamics 365, which provides the user interface.
Each stage is a checklist of tasks to be completed before moving to the next
stage. When all stages have been completed, the process is complete. An
example of a business process that could be automated this way is an
employee onboarding procedure that combines tasks completed by a
manager, the information technology team, and human resources. Figure 2-
8 shows a sample business process flow.

Figure 2-8. Sample business process flow

What follows is a brief description of the overall stages and tasks in the
business process flow shown in Figure 2-8. This is a simplified example,
but it does demonstrate how different people and groups cooperate to
complete an overall process by doing their individual tasks in order:

A manager reviews and signs required paperwork with the new
employee, including the following:

An offer letter

Tax withholding paperwork

Company policies and procedures manual

The IT team readies the resources that the new employee will need,
including the following:

A user account

A configured laptop

An HR representative reviews and signs additional paperwork,
including the following:

Health insurance withholding

Company parking procedures

Accessing Power Automate
Now that you’ve learned about the licensing options and flow types, it’s
time to look at how to log in to Power Automate. If you already have one of
the licenses discussed in the previous section, you can skip this section and
go right to Exercise 2-3. If you don’t have a license that has access to
premium features but do have access to Microsoft 365 or Dynamics 365,
then follow the steps in Example 2-2. If you don’t have a work or school
account, then you will need to sign up for a Microsoft 365 trial before
getting a Power Automate trial. You can follow the instructions to sign up
for a Microsoft 365 trial that includes SharePoint. The most cost-effective
license, if you need to go beyond 30 days, is Microsoft 365 Business Basic.

https://oreil.ly/cFFc6

WARNING
Microsoft 365 trials are limited to 30 days and cannot be renewed. This will limit your
Power Automate trial to 30 days also.

Power Automate Trial
There are several ways that you can obtain a Power Automate trial license.
Using the “Try free” link on the Power Automate website, you can sign up
for a Power Automate free license (described earlier in “Licensing
Options”). If you then create a flow that uses a premium connector and
share it with another user, you will be prompted to start a 90-day trial. To
start a trial, which includes premium connectors, you must be using a work
or school account. Microsoft accounts and other email-based free licenses
can’t access premium features. Another way to start a trial is to use Power
Automate Desktop (PAD), with a work or school account. Clicking on the
“Go Premium” link inside the Desktop client will start a trial that includes
attended RPA. Finally, you can ask your Microsoft 365 global
administrators to sign up for a Power Automate trial through the admin
center.

Exercise 2-1. Signing up for a Power Automate trial

To sign up for a Power Automate trial with a work or school account, do the
following:

1. Open a web browser and navigate to the Power Automate website.
Select “Try free” in the upper-right corner of the screen (see Figure 2-
9). This will take you to a page where you can sign up for Power
Automate.

https://oreil.ly/TIUDJ

Figure 2-9. Signing up for a Power Automate Free trial

2. Enter your work or school email address and click the “Start free”
button (see Figure 2-10). This will take you to a page with a three-step
wizard for creating your free Power Automate account.

TIP
You can sign up for Power Automate Free using any email address, but only work
or school accounts can enable the premium features of Power Automate in a trial.

Figure 2-10. Starting a Power Automate Free trial

3. Click “Sign in” and sign in with your work or school account and
password (see Figure 2-11). This will take you to a screen showing
your work or school account and your default region.

Figure 2-11. Signing in using your work or school account

4. Click “Get started” to start your free account (see Figure 2-12). This
will take you to a confirmation screen.

Figure 2-12. Setting up your Power Automate Free account and getting started

5. Click “Get started” to confirm that you want a Power Automate Free
account (see Figure 2-13). This will take you to the Power Automate
website.

Figure 2-13. Confirming your account

6. Click “Get started” one last time to accept the region you entered in
the wizard (see Figure 2-14). You will now see the home page of the
Power Automate website. On the Home page, select the Templates tab
in the lefthand toolbar.

Figure 2-14. Setting environment region

7. Type “Copy documents” in the search box and click the “Copy files
from one OneDrive for Business account or folder to another”
template card to create a new flow (see Figure 2-15).

Figure 2-15. Creating a template flow

8. Sign in to authorize the OneDrive Connections (if necessary) and click
Continue (see Figure 2-16).

Figure 2-16. Authorizing connections

9. Type a slash (/) in the Folder and Folder Path fields of the trigger and
the action. Click Save in the upper-left corner to save the completed
flow. Click the arrow next to the flow name in the upper-left corner
(see Figure 2-17). This will return you to the flow’s description.

Figure 2-17. Saving a flow

10. Click Edit in the Owners box on the right side of the screen (see
Figure 2-18). This is where you would go to share the flow with other
users.

Figure 2-18. Sharing a flow

11. Sharing a flow with another user when using the Power Automate Free
license will prompt you to start a trial. Click “Start trial” (see Figure 2-
19).

Figure 2-19. Starting Power Automate trial

12. Click the Gear menu and show “My plans.”

Power Apps Developer Plan
Free Power Automate trial licenses provide an easy way to learn Power
Automate without incurring additional cost. But the time limits often make
it difficult to learn enough before the trial runs out. Activating a Power
Apps Developer Plan provides a different free option for learning Power
Automate that is not timeboxed. As I mentioned earlier in this chapter, the
Power Apps Developer Plan has some limitations. But most of these
limitations will not affect you as you begin to learn Power Automate. This
is the license plan I would recommend for anyone who wants to learn
Power Automate.

TIP
To sign up for a Power Apps Developer Plan, you will need a work or school account
that logs in to either Microsoft 365 or Dynamics 365. A free Microsoft account will not
be enough.

There are two ways to obtain a Power Apps Developer Plan. If your
organization already uses the Power Platform, you can get a Developer Plan

by having your administrators create a new Developer environment for you.
You can also sign up directly on the Power Apps Developer Plan website.

Exercise 2-2. Signing up for a Power Apps Developer Plan

To sign up for a Power Apps Developer Plan with a work or school account,
follow these steps:

1. Open a web browser and navigate to the Power Apps Developer Plan.
You will see the website shown in Figure 2-20.

Figure 2-20. Power Apps Developer Plan sign-up page

2. Select “Try free” in the upper-right corner of the website. That will
take you to the wizard shown in Figure 2-21.

https://oreil.ly/FSbx5

Figure 2-21. Developer Plan sign-up step 1

3. Enter your work or school email address and click Next. You will be
asked to confirm your account information.

NOTE
A credit card is not required to sign up for a Power Apps Developer Plan.

Figure 2-22. Developer Plan sign-up step 2

4. Fill in your account information and select whether Microsoft can
share your email information with partners or not. Then click “Get
started.”

Figure 2-23. Developer Plan confirmation

5. You’ve now successfully signed up for a Power Apps Developer Plan.
Clicking “Get started” will navigate you to the Power Apps Designer.
To log in and create Power Automate flows, follow the steps in
Exercise 2-3.

Exercise 2-3. Logging in to Power Automate

Power Automate uses a web-based design studio. To log in, you’ll need
your work or school email address and password. Follow these steps to log
in to the Power Automate Design Studio website:

1. If you aren’t already there, navigate to
https://make.powerautomate.com. Then sign in with your work or
school account (see Figure 2-24).

https://make.powerautomate.com/

Figure 2-24. Work or school account login

2. Type in the password for your work or school account (see Figure 2-
25).

Figure 2-25. Password prompt

3. Click Yes to minimize the number of times you will be asked to
provide your user information again (see Figure 2-26).

Figure 2-26. “"Stay signed in” prompt

4. If you signed up for the Power Apps Developer Plan, use the
Environments drop-down in the upper-right corner to select your
developer environment. This is the only environment where your
Developer Plan license will let you access premium features. Your
developer’s environment will be named using your user’s name
followed by the word environment. In Figure 2-27, you can see me
selecting my developer environment.

Figure 2-27. Selecting the developer environment

Summary
In this chapter, you learned the necessary background information to start
using Power Automate. We reviewed the following:

The different licenses required to run flows

How to sign up for a Power Automate Free or Power Apps Developer
Plan

How to log in to the Power Automate Designer website

The building blocks used to create flows

The different types of flows and simple examples of each

We’ve now covered all the necessary background material to create your
first flow. I’ve listed the various licenses available and what each one
covers. You can choose any plan that fits your business needs, but if you’re
not sure which one to start with and are looking to learn Power Automate,
the Power Apps Developer Plan license is a good starting point and will
provide sufficient access for you to get the most out of this book. In this
chapter, I explained how to sign up for the Developer Plan and explained

how it will give you free access to all the Power Automate features you
need while you are learning to use the product.

Now that we’ve covered the background material, it’s time to create your
first Power Automate flow. In the next chapter, I’ll show you three different
ways to create a flow. Hands-on exercises are included so you can learn by
doing.

Chapter 3. Building Your First
Flow

Now that you have all that foundational knowledge, it’s time to start
building your first flows. I’ll start off by showing you how to build a
completely functional flow using a prebuilt template. Then, I’ll cover how
to construct a flow from scratch when there is no template that matches
what you want to do. Finally, I’ll review how to design a workflow using
Microsoft Visio and then import that into Power Automate. By the end of
this chapter, you’ll know how to assemble triggers and actions to create
Power Automate flows. Then, in Chapter 4, we’ll fill in the details of the
triggers and actions with dynamic content to create fully functional flows.

How to Use Templates
The easiest way to build a fully functional flow is to use a prebuilt template.
Power Automate includes a large list of templates to fit a variety of
scenarios. You can search for a template or browse them by categories to
find a template that matches what you need to accomplish. Figure 3-1
shows the Templates tab in the Power Automate website with the “All
templates” category selected. The Templates tab can be used to browse or
search for a template to match your scenario. You can also use a Search box
at the top of the page or a drop-down on the right to select how the
templates are sorted.

Figure 3-1. Power Automate templates tab

When you start with a template, the trigger, actions, and the logical flow are
already done for you. You can just pick the flow and provide a few details if
necessary, and the flow is ready to run. For example, you might want a flow
that will check the weather forecast. If you search the templates for the term
weather you will find a flow with the following specifications:

The flow is triggered manually.

It uses the MSN Weather service.

It returns the weather forecast for your current location.

Output reports the temperature based on your personal regional
settings.

Output is sent via a push notification.

Your search will show you a template called “Get today’s weather forecast
for my current location,” as shown in Figure 3-2. You don’t need to provide
any information to complete the flow. It uses your regional settings and the
location of your device as input to return the weather forecast.

Figure 3-2. Getting today’s weather template

Using Flow Templates
The hardest part of using a template to build a flow is finding a template
that fits the exact scenario you want to accomplish. Templates are organized
into categories like Top picks, Remote work, Approval, Button, Data
collection, and more. You can browse or search a particular category to find
what you want. You can also sort each category by the template’s
popularity, name, or publish date (see Figure 3-3). Each template in the list
is displayed as a card that shows the following:

The trigger and connections used in the flow

A descriptive title

Who created the template

The type of flow that the template will create

How many flows have been created using this template

Figure 3-3. Template description card

Let’s take a closer look at each of these elements. The “Get today’s weather
forecast for my current location” template uses a manual trigger and two
connectors. We know this because the blue icon with a finger pushing the
button is the manual trigger and the other two icons are the connectors for
MSN Weather and Notifications. After you work with Power Automate for
a while, you will get to know many of the icons used to represent
connectors and triggers. You can also see that Microsoft created the
template, that it creates an instant cloud flow, and that it is very popular
with over 35,000 flows created using the template.

In addition to the information displayed on each card, there is also a brief
description of what the template does. This description is only visible when
you access a specific card, but the text is included in the search engine that
populates your results. For example, if you search for “weather pushed to
mobile devices,” you’ll see three template cards including the one in
Figure 3-3. This card is included because the description reads “With a
single button tap get today’s weather forecast pushed to your mobile

devices.” The search is selecting templates based on all the information
displayed on the card as well as the description.

Now that you understand the information that is presented on the template
description cards, finding the right template is just a matter of matching
what you are trying to do with that information. This can be done by either
browsing through the template card list or by searching to narrow down the
list of cards to review.

Once you have identified the template you want to use, creating a flow from
it is relatively easy. Let’s try a simple example. Here’s the scenario: in your
organization, employees upload monthly status reports to a specific
SharePoint document library. When a status report is uploaded, the
employee’s manager should be informed and have a chance to review the
report and either approve or reject it. If you search on “approve a file” in
the Approvals category, you will see the seven template cards that relate to
different approval scenarios (see Figure 3-4).

Figure 3-4. Approval templates

After reviewing the flow specs, we see that none of the templates are
exactly what we want, but the closest match is the first template in the list:
“Request manager approval for a selected file.”

Exercise 3-1. Creating a flow from a template

Let’s walk through how to create a flow using an existing template and
review how it works. Then, in the next section, we’ll look at how to modify
the flow to fit our scenario more closely. To get started, complete the
following steps:

1. Log in to https://make.powerautomate.com, and select the Templates
tab in the navigation bar on the left.

2. Select the Approval tab along the top and type “approve a file” in the
search bar.

3. Click on the template named “Request manager approval for a selected
file.”

4. Wait for the list of connections to show on the bottom of the page. You
should see green check marks next to each connection, as shown in
Figure 3-5.

https://make.powerautomate.com/

Figure 3-5. Template description card

5. Once all connections have been authenticated, click Continue.

6. The flow designer appears (see Figure 3-6). The template has added
and configured a trigger and all the actions necessary. All you need to
do is select the Site Address and Library Name for the SharePoint site
where the files will be uploaded. We’ll discuss what to do if you don’t
see the site and library in the drop-downs in Chapter 4.

Figure 3-6. Template in flow editor

7. Click Save in the upper-right corner to save your completed flow.

Exercise 3-2. Modifying a templated flow

The flow you completed in the previous example is close to the scenario I
described, but it’s not an exact match. Templates don’t always provide a
perfect match for the scenario you have in mind. You may have to modify
them to change a trigger, add actions, or remove some actions. That is the
case with the scenario I presented in the previous section. There is one
major thing about the template that doesn’t match our scenario. In our
scenario, the flow is to be triggered automatically when a file is uploaded.
But in the template we’ve used, the flow is triggered manually after a file is
selected. To match the scenario exactly, you will need to change the trigger
from a manual trigger to an automatic trigger.

WARNING
Making changes to the triggers and actions in a flow may require that other actions, or
the logic of the flow itself, be changed.

Complete the following steps to modify your existing templated flow to
match the scenario we discussed:

1. Remove the existing “For a selected file” trigger by clicking the
ellipsis (…) menu in the upper-right corner of the trigger and selecting
Delete (see Figure 3-7). Click OK on the confirmation dialog.

Figure 3-7. Deleting existing trigger

2. Type “file created” in the Search box of the trigger dialog and select
the “When a file is created (properties only)” trigger, as shown in
Figure 3-8. Select the Site Address and document Library Name from
the drop-downs, just as you did in the original template.

Figure 3-8. Adding a new trigger

We’ve now changed the flow so it triggers automatically, whenever a file is
uploaded to the document library. But we aren’t done yet. That one change
will have a cascading effect through the rest of the flow. Changing the
trigger will remove some data elements that were used to configure later
actions in the template. It will also change the security context that the flow
will run under. These factors require us to make the following additional
changes to the flow:

Add the ID of the file used to trigger the flow to the “Get file
properties” action, since the ID in the original trigger no longer exists.

Remove the “Get my profile” action, since the flow no longer runs in
the security context of a person who started it.

Change the User Principal Name (UPN) field in the “Get manager”
action to “Modified by email,” since you want to send the file to the
manager of the person who uploaded the file.

Change the To field in both Email actions to “Modified by email” so
the emailed results go to the person who uploaded the file.

Let’s step through each of these changes. For now, just make the changes as
described. I’ll explain more in Chapter 4 about exactly how to make these
changes.

1. Place your cursor in the blank Id field of the “Get file properties”
action. Type first(triggerBody()?['value'])?['ID'] into the
Expression tab of the Dynamic content dialog and click OK, as shown
in Figure 3-9.

Figure 3-9. Adding file Id from trigger

NOTE
You can use the Expression tab of the Dynamic content dialog to enter functions
and JSON representations of dynamic content values. We’ll discuss JSON more
fully in Chapter 4.

2. Expand the “Condition File not found” action to display the rest of the
flow. Remove the existing “Get my profile” action by clicking on the
ellipsis (…) menu in the upper-right corner of the action and selecting
Delete. Click OK on the confirmation (see Figure 3-10).

Figure 3-10. Deleting “Get my profile” action

3. Place your cursor in the blank User (UPN) field of the “Get manager”
action. Select the “Modified by Email” entry from the Dynamic
content dialog in the “Get file properties” section (see Figure 3-11).

Figure 3-11. Informing requestor of approval if modified by email

TIP
In most organizations, a user’s email address is the same as their UPN. If this is
not true in your organization, you need to add steps to search for the user using
their email or DisplayName to retrieve their UPN.

4. Expand the Condition below the “Start an approval” action on the right
side of the screen. Expand each of the Email actions under the “If yes”
and “If no” outcomes of the condition. Place your cursor in the To field
of each email and insert “Modified By Email” from the Dynamic
content dialog. You can either scroll down to find the “Get file
properties” section or type “Email” in the Search Dynamic content box
(see Figure 3-12).

Figure 3-12. Adding email address

5. Change the name of the flow in the upper-right corner to “Request
manager approval modified.” Click Save to save your modified
template.

You can see how making one change to a templated flow can cascade into
multiple additional changes that need to be made. So, if you don’t find
exactly the template to fit your scenario, is it worth it to use templates?
Even if you can’t find exactly what you need in a template, templates can

provide valuable examples of how to perform certain sets of actions.
Although you had to make changes to this templated flow to get it to fit our
scenario, there were major sections dealing with the approval and how to
respond to the approval that didn’t need to be changed. Understanding the
patterns of actions used by templates can be useful when you start building
your own flows, even if you don’t start with a template.

Using Templates as a Learning Experience
In the previous section, you had to enter some custom JSON code into one
of the actions to be able to access one of the values from the trigger you
added. That was because the new trigger provided the ID of the file or files
created as an array. The custom code you entered retrieved the first record
of the array using the first() function. Then it accessed the ID property of
that record.

But if you work with that same trigger today, you’ll find that it triggers for
each individual file and doesn’t use an array anymore. This is a good
example of one of the problems with using prebuilt templates. Prebuilt
templates use triggers and actions at a particular point in time. These
triggers and actions may change as Microsoft rolls out updates to Power
Automate or the connectors. Another good example of this is the use of the
“Start an approval” action in the flow. This action is no longer available
anywhere other than in templates because it has been superseded by a new
action called “Start and wait for an approval.” The new approval action has
slightly different outputs than the original.

WARNING
Prebuilt templates are a snapshot of the triggers and actions that existed when they were
made. So, over time, triggers and actions in older templates may not work the way you
expect them to. This can cause a lot of confusion if you are working with a templated
flow but referencing current online documentation because they may not match.

These changes may also break existing flows built from the templates. If
they do break, you need to understand what the template does to be able to
modify it and get it working again. Many people use templates like prebuilt
opaque code. They simply create a flow from a template, fill in a few
values, and expect it to work. When and if it breaks, they have no idea how
it works and can’t fix it.

This does not mean that you shouldn’t use templates. They can be very
useful tools and save you a great deal of work. But they are not a substitute
for understanding how Power Automate works. In fact, they are just the
opposite. They are examples of what Microsoft’s developers and other
knowledgeable makers have built. They can supply you with patterns that
you can use when building your own flows from scratch. So, yes, you
should continue to use templates when building flows, but take the time to
understand what the trigger and each action is doing. That will help with
your overall learning and also make it easier to fix them when they break.
Almost all templates will inevitably break at some point.

Creating a New Cloud Flow
There are several reasons why you might build a flow from scratch. There
may be no template that matches your scenario or the template may use
older, deprecated actions that should be replaced. For example, the template
you modified in the last section used a deprecated form of the trigger and
approval action. Your flow will be much more stable and reliable if you
aren’t using old, deprecated triggers and actions. In this section, you’ll build
a cloud flow from scratch using the same scenario we discussed in the last
section.

Starting with a Blank Flow
The first step when building a flow is to choose what type of flow it will be.
I covered the different types of flows available in Chapter 2. In our case, the
flow will run in the cloud so it will be a cloud flow. The specific type of
cloud flow is determined by the trigger used. For our scenario, we want to

use an automated trigger so the flow runs each time a file is uploaded.
Depending on our exact scenario, there are other options available. You
could use a recurrence trigger that runs once a day and gets all the status
reports submitted in the last 24 hours, but that would make it more difficult
for a manager to approve one file and reject another. You could also use the
“For a selected file” manual trigger in the template, but that would require
an extra step for employees. They would have to upload the file and then
select it and start the flow manually. Each type of trigger has different
advantages and disadvantages. For our scenario, the automated trigger fits
best.

Exercise 3-3. Create a new cloud flow

To create a new automated cloud flow from scratch, do the following:

1. Navigate to https://make.powerautomate.com and click on the My
flows tab. Select “Automated cloud flow” from the “+ New flow”
drop-down (see Figure 3-13). This will open a dialog box where you
can input a title and choose a trigger.

https://make.powerautomate.com/

Figure 3-13. Creating new automated cloud flow

2. In the “Build an automated cloud flow” dialog box, type “Request
Manager approval for a status report” in the Flow name field. Type
“file created” in the “Search all triggers” field. Select the “When a file
is created (properties only)” trigger for SharePoint. Click Create to
create the new automated flow. The flow design screen will appear
(see Figure 3-14).

Figure 3-14. Setting title and picking trigger

3. Select the Site Address and Library Name for the SharePoint site
where the files will be uploaded, just like you did when adding the
trigger to modify the templated flow (see Figure 3-15).

Figure 3-15. Selecting Site Address and Library Name

You’ve now created your base flow and configured your trigger. But you
can’t save it yet. To save a flow, it must contain a trigger and at least one
action. Since you haven’t added any actions yet, you can’t save your work.

Now you can begin adding actions to your flow to accomplish the
automation in our scenario. It’s a good idea at this point to think through
our scenario and create a list of what needs to happen and in what order the
steps need to occur. This will provide the basic plan of what you need to
add to the flow. You may need to add more actions than you think of at this
point, but that’s OK. This will give you a good overall plan of how the
workflow must proceed. For our scenario, the basic steps are as follows:

1. Identify the manager of the person uploading the status report.

2. Send an Approval request to that manager.

3. If the report is approved, let the original requestor know. If not, ask
them to revise the report and resubmit it.

Now you can start translating those basic steps into specific Power
Automate actions:

1. Click “+New step” below the trigger you’ve already added. Type
“manager” into the Search connectors and actions field in the “Choose
an operation” dialog box. Select “Get manager (V2)” from the filtered
list of actions (see Figure 3-16).

Figure 3-16. Adding “Get manager” action

2. Place your cursor in the blank User (UPN) field of the “Get manager”
action. Select the “Modified By Email” entry from the Dynamic
content dialog in the “When a file is created (properties only)” section
(see Figure 3-17).

Figure 3-17. Inserting “Modified By Email”

3. Click “+New step” below the “Get manager” action you just added.
Type “approval” into the Search connectors and actions field in the
“Choose an operation” dialog box. Select “Start and wait for an
approval” from the filtered list of actions (see Figure 3-18).

Figure 3-18. Adding “Start and wait for an approval”

NOTE
“Start and wait for an approval” is a synchronous action that will send an
approval and wait for all responses before proceeding. “Create an approval” and
“Wait for an approval” are two halves of an asynchronous approval. The first
creates the approval, but the flow doesn’t pause to wait for responses until the
“Wait for an approval” action is processed.

4. Since you have only one manager per user, select “Approve/Reject –
First to respond” from the “Approval type” drop-down. This will
configure the approval so it will be completed when one person
approves or rejects the document (see Figure 3-19).

Figure 3-19. Selecting approval type

NOTE
Fields marked with a red asterisk next to their names are required and must be
filled in. Other fields are optional but may provide useful information.

5. Now you can fill in the rest of the information needed to create the
approval and send it to the manager. You need to configure the fields in
the action with the following information:

Type suitable text into the Title field, something like “Status
Report Approval.”

Insert Mail from the “Get Manager (v2)” section of the Dynamic
content dialog into the “Assigned to” field.

Type a brief request in the Details field, something like “Please
approve this status report.” You’ll learn how to format the Details
field using markdown language and add additional dynamic
content in future chapters (see Figure 3-20).

Figure 3-20. Completed Approval action

When the flow reaches the “Start and wait for an approval” action, it
will pause until either the flow times out or the manager assigned to
the approval responds. You’ll want the flow to do different things
depending on the decision made by the approver. To do that, you’ll use
a Condition action.

6. Click “+New step” below the “Start and wait for an approval” action
you just added. Select Condition from the list of actions (see Figure 3-
21).

Figure 3-21. Inserting Condition action

Condition actions evaluate one or more logical statements. If the
evaluation is true, then the “If yes” branch of the flow is executed. If
the evaluation is false, then the “If no” branch is executed. In your
flow, you want to check whether the status report was approved or not.
You can do that by using the Outcome entry in the dynamic content
returned by the Approval action (see Figure 3-22).

7. Place your cursor in the Choose a value field of the Condition action.
Select the Outcome entry from the Dynamic content dialog in the
“Start and wait for an approval” section. Select “does not contain”
from the center operation drop-down, and type “Reject” in the
righthand Choose a value field.

Figure 3-22. Configuring Condition action

TIP
The Outcome entry normally contains a comma-delimited list of the responses
submitted by all the approvers. So, if there were three approvers who all
approved, then the Outcome would contain “Approve, Approve, Approve.”
However, if any of the approvers reject the document, then the Approval will stop
accumulating responses. So, if the fourth of five approvers rejects the document,
then the Outcome will contain “Approve, Approve, Approve, Reject.” As a result,
it’s usually best to do a condition where “Outcome does not contain Reject.”

The “Condition” action provides two branches for continuing the flow:
one if the condition is true and one if it is false. For our scenario, you
want to send an email in either case, but each email will have a
different subject and body. To do that, you’ll add an Email action to
each branch of the condition and configure the action appropriately.

8. Click “Add an action” inside the “If yes” branch of the condition. Type
“Email” into the Search connectors and actions field in the “Choose an
operation” dialog box. Select “Send an email (v2)” from the filtered
list of actions (see Figure 3-23).

Figure 3-23. “Send an email” action

9. Now you can fill in the rest of the information needed to email the
result of the approval back to the person who originally uploaded the
document. You need to configure the fields in the action with the
following information:

Click “Add dynamic content” just below the To field. Select the
“Modified by Email” entry from the Dynamic content dialog in
the “When a file is created” section.

Type suitable text into the Subject field, something like “Status
Report Approved.”

Type suitable text into the Body field, something like “Your
manager approved your status report.” You’ll learn how to use the
formatting controls or HTML to format the body of the email in
future chapters (see Figure 3-24).

Figure 3-24. Completing email fields

10. Repeat steps 8–9 in the “If no” side of the box with an appropriate
Subject and Body.

11. Click Save to save your flow.

Creating a Flow from a Description
One of the newer ways to create a flow is by describing what you want—in
everyday language—to an AI engine. Power Automate then uses AI to
interpret your description and provides you with a customized flow that you
can use to build out your workflow. Since this is a new feature and still in
preview, there are some limitations. First, it currently only supports the
English language. Second, it will work best with flows that depend on
Microsoft products and connectors. For example, approving a file that has
been uploaded to SharePoint will be more easily recognized than approving

a file uploaded to Google Drive. Additional language support and better
support for non-Microsoft connectors will be added as the feature matures.

Exercise 3-4. Create a flow using AI

In this example, you’ll describe our scenario and review the flow that
Microsoft’s AI builds for you:

1. Navigate to https://make.powerautomate.com and click the My flows
tab. Select “Describe it to design it (preview)” from the “+ New flow”
drop-down. This will open a three-step wizard where you can describe
your flow (see Figure 3-25).

Figure 3-25. Describing flow to design it

2. On the first page of the wizard, type the following short description of
what you want the flow to do into the text box under “Describe your
flow in everyday words:”

https://make.powerautomate.com/

When a status report document is uploaded, the employee’s manager
should be informed, have a chance to review the report, and either
approve or reject it.

The wizard will also provide some alternate suggestions based on what
you type. Click the arrow next to your entry to proceed (see Figure 3-
26).

Figure 3-26. Describing your flow

3. After you submit your description, the wizard will show you a
suggested flow. You can accept this flow or click “Show a different
suggestion” at the bottom of the page to see a different suggested flow.
Click Next to accept this suggestion and move to the next page (see
Figure 3-27).

Figure 3-27. Accepting suggested flow

4. On the second page of the wizard, you will review the connections
needed in the suggested flow. If any connections are not already
authenticated, then provide appropriate authentication information.
Click Next to move to the final page (see Figure 3-28).

Figure 3-28. Reviewing connections

5. On the last page of the wizard, you have the option to fill in fields used
in the flow’s actions. Dynamic content won’t be available at this point

so you can only use static entries. It’s usually best to wait until the
flow is created before you fill in this information. Click “Create flow”
to create the flow (see Figure 3-29).

Figure 3-29. Creating the flow

6. The suggested flow is now created in the Power Automate design
studio (see Figure 3-30). You can now finish filling in the fields used
in your actions with either static entries or dynamic content, just like
any other flow. If you want to save this flow, fill in all the required
entries and click Save.

Figure 3-30. Suggested flow in designer

You can see from this example that there is still a lot of work to be done
after the AI builds the suggested flow. So, this method won’t make building
flows a lot faster. But if you can describe what you want to build yet don’t
know how to start, this can be an excellent tool to get a flow started.

Design a Flow with Visio
In the previous section, I recommended that you make an ordered list of
what the flow is supposed to do before you start adding an action to a flow.
Planning like this is always a good idea. Having a solid understanding of
what you are trying to do, and the order in which you need to do it, will
save you from having to do a lot of restructuring later. Restructuring a flow
can be a very time-consuming process.

Planning what a flow will do can be as simple as making a list of steps, as
you did when building a flow in the previous section. Microsoft also
provides a formal tool that can make this easier. You can use Visio to create
a visual flowchart of what a flow is supposed to accomplish. You could do
the same thing in the Power Automate flow designer, but that will require
filling out a lot of additional details in the actions. Using Visio, you can
design how the actions flow without filling in the specific details of the

actions. After creating the action flowchart in Visio, you can export it as a
template. You can then import that template into Power Automate to create
a basic flow. You can then edit the flow to add the specific details required
in each action. Visualizing a flow using Visio can be particularly useful if
you are creating a flow for a client or collaborating with a group of people.

Prerequisites
Creating Power Automate templates with Visio requires a specific version
of the Visio desktop application. The Visio desktop application must be the
Office 365 version with a Plan 2 license (see Figure 3-31). Visio 2021 or
previous standalone versions won’t work. The less expensive Office 365
Visio Plan 1 license does not include Power Automate integration. If you
don’t have a Visio Plan 2 license, you can get a 30-day trial from the Visio
plans and pricing website to try it out. Click “Try free” and follow the
prompts. An existing Office 365 work or school account is required.

Figure 3-31. Sign-up page for Visio trial

In addition to having a Visio Plan 2 license, it’s also important that you
have some experience working with Visio as an application.

https://oreil.ly/M_JaO
https://oreil.ly/M_JaO

Design a Workflow in Visio
You can start designing a Power Automate flow using Visio either on the
Power Automate website or directly in the Visio desktop application. Work
through the following exercise to build a small Visio flowchart and import it
into Power Apps.

Exercise 3-5. Create a BPMN flowchart in Visio

In this example, you’ll create a Business Process Modeling Notation
(BPMN) in Visio. You will then map triggers and actions onto the Visio
shapes and export the flow to Power Automate. From there, you’ll be able
to fill in the final details.

NOTE
BPMN is an industry standard method used by business analysts to visualize a business
process.

1. Open your Visio desktop application. In the lower-left corner, click
Account. Look at the Product Information to make sure that you have
Microsoft Visio Plan 2. You should see something similar to the
screenshot shown in Figure 3-32.

Figure 3-32. Opening Visio and checking plan

2. On the left sidebar, click New. Type “BPMN” in the “Search for online
templates” text box. Click “BPMN Diagram” in the list of templates
that is displayed (see Figure 3-33).

Figure 3-33. New Visio diagram from BPMN template

3. Click Create in the pop-up dialog that appears (see Figure 3-34).

Figure 3-34. BPMN Diagram dialog

This will open the BPMN Basic Shapes stencil and create a blank
Visio drawing. You are now ready to begin creating your BPMN flow.

4. Select the Start Event shape from the BPMN Basic Shapes stencil on
the left side of the screen and drag it out onto the blank drawing. Your
screen should now look like the screenshot in Figure 3-35.

Figure 3-35. Starting Event shape in Visio

5. Hover your mouse over the Start Event you just added. You will see
four blue arrows radiating from the Start Event shape. Move your
mouse over the blue arrow to the right of the Start Event and select the
rectangle at the bottom of the dialog (see Figure 3-36). This will insert
a Task connected to the Start Event.

Figure 3-36. Adding a Task

6. Hover over the Task you inserted and repeat the procedure to add a
second task inline after the first. Your drawing should now look like
the screenshot in Figure 3-37.

Figure 3-37. Adding a second Task

7. Repeat the process to add a Gateway (diamond shape) from the dialog
and two more Tasks, one above and one below the diamond. Your
drawing should now look like the screenshot in Figure 3-38.

Figure 3-38. Building a Visio approval flow drawing

8. Double-click on the Start Event. Type “File is created” to label the first
task in the flow. Double-click on the rest of the shapes and add labels
to them also. Your drawing should now look like the screenshot in
Figure 3-39.

Figure 3-39. Visio approval flow drawing with labels

The drawing in its current form would be a valuable aid if you are
collaborating with a group or trying to document a flow. But the flowchart
is still lacking Power Automate–specific information. The next step in
designing a flow using Visio is to map specific triggers and actions onto the
shapes you’ve created. Once that mapping is completed, we’ll be able to
export the drawing to create the basics of a flow in Power Automate.

Exercise 3-6. Preparing the Visio template for export

1. Select the Process tab and click Export (see Figure 3-40). This will
open a panel where you can associate each shape with a specific
trigger or action in Power Automate.

Figure 3-40. Mapping flow triggers and actions

2. Select the Start Event in the drawing. Click on the Trigger and Actions
tab in the Export panel to the right. Select “SharePoint - When a file is
created (properties only)” from the list of triggers in the panel (see
Figure 3-41).

Figure 3-41. Choosing a trigger

3. Select the Get Manager shape in the drawing. Type “Office” in the
Search box in the Export panel, and select the Office 365 Users
connector from the Filter by Connectors list. Scroll down and select
the “Office 365 Users – Get manager (V2)” action from the Actions
list (see Figure 3-42).

Figure 3-42. Choosing an action

4. Click the arrow in the Search box to clear the previous search. Select
the Send Approval shape in the drawing. Type “Approval” in the
Search box in the Export panel and select “Approvals – Start and wait
for an approval” action from the Actions list (see Figure 3-43).

Figure 3-43. Mapping an Approval action

5. Select the Approved and Rejected tasks and map each of them to an
“Office 365 Outlook – Send an email (v2)” action. Click Refresh when
you are done (see Figure 3-44).

Figure 3-44. Mapping results of a condition

6. Select the icons with the checkmark and the “X” and position them
above and below the “Is it Approved” gateway. Click the “If yes” radio
button in the Map conditions box (see Figure 3-45).

Figure 3-45. Choosing Yes and No branches

The Export panel now shows that there are no issues to resolve. The Export
button is now activated so we can Export the flow and fill in the details in
Power Automate.

Exercise 3-7. Export your workflow to Power Automate

1. Select the Export button in the Export panel to export your workflow
diagram to Power Automate. This will open a dialog box where you
can name your flow. Wait for the connectors to be authenticated and
click “Create flow” (see Figure 3-46).

Figure 3-46. Exporting a workflow to Power Automate

2. Once the flow is exported to Power Automate, you will see a success
report dialog similar to the one in Figure 3-47. Click Done to close the
dialog.

Figure 3-47. Flow added dialog

3. In the Power Automate website, click on the My flows tab. Sign in if
you aren’t already authenticated to the website. You will see a flow
called “Drawing 1,” or whatever name you gave it when you exported
the drawing. Click on the pencil icon to Edit the imported flow. Your
screen should now look something like Figure 3-48.

Figure 3-48. Imported flow

4. You can now fill in the details of the flow the way you did in Exercise
3-3.

Summary
In this chapter, you learned four different ways to create a new cloud flow.
First, you can use a prebuilt template to create a flow and then modify it to
fit the exact scenario that you need. You can also build a flow manually,
from scratch, starting with a specific trigger and adding actions to
accomplish your goal. You can also have an AI engine design the flow for
you based on a typed description. Finally, you can design a workflow in
Visio, then map the Visio shapes to a specific Power Automate trigger and
actions. Once the mapping is complete, you can import the Visio flowchart
into Power Automate and finish the configuration of the trigger and actions
there.

I’ve shown you how to build flows, but I haven’t spent much time
explaining the details. That’s about to change. In the next chapter, we’ll dig
into the details you need to know to work with triggers and actions. Of
course, we won’t have enough space to cover every trigger and action
available in all 600+ connectors. But you will gain insight into using
dynamic content to configure the fields in different actions. You’ll learn

about the difficulties that often arise when working with dynamic content
and how to use JSON to work around those limitations. You’ll learn how to
use functions to process and transform dynamic content to produce the
values you need. Finally, you’ll understand the different settings available
on the context menu that you can use to modify the way that the trigger or
actions work in a flow.

Chapter 4. Working with
Triggers and Actions

In Chapter 3, you learned how to create new flows four different ways.
Because you first need to understand how to create a flow before diving
into the details, I didn’t spend a lot of time explaining how the triggers and
actions were being used or discussing how to fill them in. In this chapter, I
will focus on helping you understand how to work with triggers and actions
to create flows. I’ll explain how to find a trigger or action that will do what
you want and how to use dynamic content to configure them at runtime.
You’ll also learn how to use functions to transform the dynamic content into
the specific values that you need and how to reference the dynamic content
directly using JavaScript Object Notation (JSON). Finally, I’ll review how
to modify the settings of some of the triggers and actions to change the way
they operate in specific circumstances. By the end of this chapter, you’ll be
able to create flows that you can begin to use to automate business
processes in your organization.

Triggers, Actions, and Connectors
Triggers and actions are the primary building blocks in Power Automate.
Each trigger or action represents an API that can be used to interact with a
specific data source. Triggers and actions are both defined and contained in
connectors.

Finding the Right Connector
At the time of writing, there are more than 645 connectors, with more being
added every quarter. Many of the connectors are created by Microsoft.
Others are created by third-party software vendors. For example, Oracle has
created a connector that can be used to access an Oracle database. Some

connectors are also created by independent developers and then verified by
Microsoft. If you can’t find a connector for the data source you want to use,
you can create your own custom connector.

NOTE
Creating custom connectors is an advanced topic and beyond the scope of this book.
You can read more about custom connectors for Power Automate in the documentation.

With hundreds of connectors to choose from, one of the problems you will
face is finding the connector that you want to use so you can access its
triggers and actions. To make this easier, Power Automate provides a
categorized search dialog that you can use to find a specific connector.
Once you find a connector you are interested in, you can drill down to the
documentation to get specific details about what that connector contains.

Exercise 4-1. Exploring connectors

In this example, we will browse through the list of available connectors to
find the Dataverse database connector and look at the documentation
provided.

1. Log in to https://make.powerautomate.com and select the Connectors
tab in the navigation bar on the left. This will bring up a list of all the
connectors available for Power Automate. You can use the drop-down
on the right to limit the list to only include standard or premium
connectors. Figure 4-1 shows the connector list filtered to show only
standard connectors.

https://oreil.ly/q9-IS
https://make.powerautomate.com/

Figure 4-1. Filtering the connector list

2. Change the drop-down back to All Connectors and type “Dataverse” in
the Search connector text box at the top of the page. You should now
see two Dataverse connectors, one current and one legacy. Hovering
your mouse over a connector will display a tooltip that shows the full
name of the connector. As shown in Figure 4-2, both connectors
display a green PREMIUM label that identifies that these are premium
connectors that require additional licensing, as discussed in Chapter 2.

Figure 4-2. Searching for a connector

3. Select the green Microsoft Dataverse connector. This will bring up a
page of information about the current Microsoft Dataverse connector,
as shown in Figure 4-3. The page contains the following:

A brief description of the connector

A link to additional documentation

A list of the triggers contained in the connector

A list of templates used by the connector

Figure 4-3. Dataverse description page

4. Select the “See documentation” link. This will take you to the
connector documentation in Microsoft’s connector reference list, as
shown in Figure 4-4. The documentation will provide detailed
information about the connector, including a list of all the triggers and
actions contained in the connector.

Figure 4-4. Dataverse documentation page

5. Click on the Actions link in the upper-right corner of the page. This
will take you to a list of the Actions contained in the Dataverse
connector, as shown in Figure 4-5. This list describes each action
available in the Dataverse connector.

Figure 4-5. Dataverse actions list

6. Select the “List rows” action from the list. This will display
information about that specific action, including a list of input
parameters and values returned by the action (see Figure 4-6). The data
type of the parameter and whether it’s required or not is critical when
trying to fill out the fields in a trigger or action.

Figure 4-6. “List rows” action documentation

7. Spend some time looking at other connectors and their documentation.
Then, I’ll show you how to use them in a specific flow.

Choosing a Trigger
Triggers represent the events that you will use to start your flow. They also
provide the first set of data that your flow can use to complete your
business process. Triggers can be automated, manual (instant), or scheduled
(recurrence). The trigger you choose to start your flow will have a number
of effects on your flow:

It will determine what user security context the flow runs under.

It will provide input parameters for your flow.

It will determine when your flow will run.

In almost every case, a flow will have only one trigger and it’s the first item
in the flow. The designer will let you add more than one trigger, but this
will normally prevent your flow from running. Because triggers determine
the security context for the flow and provide input parameters, having two
different triggers in the same flow will cause a problem. For example, an
automated trigger, like when an item is created, will run using your security
account and have information about the item that was created. But a manual
trigger will run in the context of the person who starts it and will only
contain parameters that they provide. Recurrence triggers provide yet a
third case because they run in your security context but provide little in the
way of input parameters. Choosing the right trigger is always an important
design decision.

This doesn’t mean that the first trigger you choose locks you in. You can
select a trigger when you create a flow or add it in the designer later. You
can also change a trigger after you’ve started designing a flow by deleting
the existing trigger and adding a new one.

WARNING
Deleting a trigger and replacing it will remove any references to dynamic content
provided by the old trigger. As a result, removing and replacing a trigger can be a labor-
intensive operation after a flow has been developed.

Let’s try a simple scenario for the next few examples: You receive an email
once a month from your accountant with an Excel spreadsheet containing
an itemized list of your business expenses for the last month. You would
like to save that spreadsheet with a descriptive filename to a folder in your
OneDrive for Business site.

Exercise 4-2. Choosing a Trigger

1. Log in to https://make.powerautomate.com, and select the “My flows”
tab in the navigation bar on the left. Select “Automated cloud flow”
from the drop-down.

Figure 4-7. Creating an automated flow

2. In the “Build an automated cloud flow” dialog box, type “Upload
Monthly Expense report” as your flow name and search for Outlook in
the search box. Select “When a new email arrives (V3)” from the
Office 365 Outlook connector (see Figure 4-7). Click Create to create
your flow using that name and trigger. Clicking Skip will let you name
your flow and pick a trigger in the designer.

https://make.powerautomate.com/

Figure 4-8. Naming flow and choosing trigger

The trigger you chose is preconfigured to watch all the incoming email
in your Office 365 email inbox. Since you only get one spreadsheet a
month, you will be wasting a lot of flow runs looking for the expense
spreadsheet. So, you’ll want to find a way to limit how often the flow
will run. One way to do that is by adding filters to the trigger that will
keep it from starting too often.

3. Select “Show advanced options” to display fields that you can use for
filtering. To test your results, you’ll use your own email address in
place of the accountant’s email in this example. Type your Office 365
email address in the From field. Select it from the people picker dialog
that displays below the field (see Figure 4-9). Change the Only with
Attachments drop-down at the bottom to Yes. Now the trigger will
only fire if the email is from you and contains an attachment.

Figure 4-9. Setting trigger filters

But what if you get multiple emails each month from your accountant
and all have files attached? You would still end up with more flow runs
than you want. There is an alternate trigger that will only start when
you flag an email in your mailbox. Using that trigger, you can choose
which emails to run the flow on. To change the trigger, do the
following:

4. Open the ellipsis (…) menu in the upper-right corner of the trigger and
Select Delete. Click OK in the dialog to confirm the deletion (see
Figure 4-10).

Figure 4-10. Deleting existing trigger

5. Type “Outlook” in the Search connectors and triggers search box.
Select “When an email is flagged (V4) (preview)” trigger from the list
(see Figure 4-11).

Figure 4-11. Adding an “When an email is flagged” trigger

6. Set the From and Only with Attachments fields in Advanced options
the same way you did in step 3. Now the flow will only trigger when
you flag an email in your mailbox that arrived from your accountant
and that contains an attachment (see Figure 4-12).

Figure 4-12. Completed trigger

You won’t be able to save the flow yet because it only contains a trigger.
For a flow to accomplish anything, it must have a trigger and at least one
action. We’ll look at adding actions next.

Adding Actions
Actions are the building blocks that you use to enhance and manipulate
information in your flow to accomplish your business purpose. They
implement the logic of your business process. Adding actions uses the same
dialog that we used to add a new trigger to the designer after we deleted the
previous trigger. In this next example, we’ll add actions to complete the
flow for our scenario.

Exercise 4-3. Adding additional actions

1. Click “+ New step” just below the trigger that we added in the
previous example. This will open the “Choose an operation” dialog

(see Figure 4-13).

Figure 4-13. Adding an action step

2. Type “get attachment” in the search box, and select the “Get
Attachment (V2)” action from the Office 365 Outlook connector (see
Figure 4-14).

Figure 4-14. Adding “Get Attachment” step

3. Click “+ New step” just below the Get Attachment action that you just
added. Type “create file” in the Search box, and select the “Create file”
action from the OneDrive for Business connector. Your flow should
now look like Figure 4-15.

Figure 4-15. Adding “Create file” step

Your basic flow is now complete, but you still can’t save it because the
details of the actions have not been filled in. The actions need information
to accomplish their tasks, so you need to provide the details just like you
did for the trigger fields earlier in this chapter. Triggers are usually
configured using static values because they are the first thing in the flow.
But later actions can be filled in using static values, variables, or content
derived from the trigger or previous actions in the flow. When we use
anything other than static values, we are using what Power Automate calls
dynamic content.

Adding Dynamic Content
Dynamic content can hold several distinct types of data, such as the
following:

An individual value with a specific data type

An object that has properties containing either simple or complex
values

An array of values, objects, or other arrays

No matter what it holds, dynamic content represents the input and output
values from the trigger or other previous steps. As a flow progresses, the
amount of dynamic content grows. That means that you can use output from
previous actions to configure additional actions. For example, you might
retrieve information about a person’s manager using the “Get manager”
action in the Office 365 Users connector. Once you have the manager, you
can send an email to them using the email address that was retrieved as a
property of the manager object value.

Selecting Dynamic Content to Add
To configure a trigger or action with dynamic content, just place your
cursor in the field where you want to use the dynamic content. That will
automatically open the “Add dynamic content” dialog. The dialog, as
shown in Figure 4-16, has two tabs: Dynamic content and Expression. We’ll
examine the Expression tab in the next section.

Figure 4-16. Dynamic content dialog

On some computers, the dynamic content dialog box won’t be displayed
when you want to fill in a field in an action. This is caused by the screen
resolution and available whitespace next to the actions in the designer. If
enough whitespace does not exist, the dynamic content will be shown in an
abbreviated list below the field, as shown in Figure 4-17. If the content you
want is not displayed in the short list, you can click the “See more” link.
Changing the size of the window or resolution of the monitor to increase the
whitespace available will return the normal dynamic content dialog.

Figure 4-17. No dynamic content dialog

The Dynamic content tab shows a list of the dynamic content grouped by
the trigger or action that it came from.

Exercise 4-4. Configuring actions with dynamic content

In this example, we’ll complete the flow we started earlier by adding
dynamic content entries to the fields in the actions.

1. Click on the “Get Attachment (V2)” action to expand it and view the
fields. Select the Message Id field to enter the Message Id of the email
to get the attachment from. This will open the Add dynamic content
dialog. Type “id” in the Search dynamic content box. This will filter
the list of dynamic content available to make it easier to find the
Message Id value. Click on Message Id under the “When an email is
flagged (V4)” grouping (see Figure 4-18). This will insert the Message
Id of the email flagged in the trigger.

Figure 4-18. Inserting Message Id dynamic content

NOTE
Fields with a red asterisk (*) in front of their names are required fields. Dynamic
or static values must be supplied for those entries. Fields without the asterisk are
optional and can be left blank in most circumstances.

2. Select the Attachment Id field in the “Get Attachment (V2)” action.
Filter the dynamic content on Id again and select Attachments >

Attachment Id to insert it. An “Apply to Each” loop will be added
around the “Get Attachment (V2)” action since there may be more than
one attachment that needs to be processed (see Figure 4-19).

Figure 4-19. Adding Attachment Id

NOTE
When you access a value that is contained in an array, Power Automate will
automatically enclose the action where you used the dynamic content in an
“Apply to Each” loop. The loop will reference the array, and the dynamic content
will reference the value inside the array.

3. Select the “Create file” action and drag it inside the “Apply to each”
loop to make sure that we create one file for each attachment (see
Figure 4-20). Select the “Create file” action to expand it.

Figure 4-20. Dragging “Create file” inside loop

4. Click on the folder icon inside the Folder Path field. Use the
navigation arrows in the dialog to drill down to the folder where you
want to store the file (see Figure 4-21).

Figure 4-21. Selecting a folder

5. Select the “File Name” field in the “Create file” action. Filter the
dynamic content on Name, and select Name under the “Get
Attachment (v2)” action group to insert it. Select the “File Content”
field and insert the Content Bytes under the “Get Attachment (v2)”
action group (see Figure 4-22).

Figure 4-22. Selecting File Name and File Content

WARNING
Inserting dynamic content from the wrong action can lead to unexpected results.
For example, in the previous step, if you had picked Attachment Content from the
trigger, you would end up with an empty file because the loop is based on a
different array, so the Attachment Content is null at that point in the flow.

Now that you’ve filled in all the required fields in the trigger and
actions, you can save and test your flow.

6. To save the flow to the cloud, select the Save link in the upper-right
corner of the designer (see Figure 4-23).

Figure 4-23. Saving your flow

7. To test whether your flow runs successfully or not, select the Test link
in the upper-right corner of the designer. Select the Manually radio
button that appears. Click the Test button. This will put your flow in
Test mode (see Figure 4-24).

Figure 4-24. Testing a flow

8. Send an email to yourself that contains an attachment. After the email
arrives, flag it to start the flow. After the flow runs, you will see

whether it was successful or not. Each action will show a green circle
with a checkmark if the flow succeeded. You can also check the folder
in OneDrive for Business to see if the file(s) were saved successfully
(see Figure 4-25).

Figure 4-25. Checking a flow run

Where Is My Dynamic Content?
Since dynamic content is produced by almost every action in a flow, the list
can get quite long. In the previous example, we used the Search box to filter
the list so that we could find the content we wanted to add. If you can find
the entry you want, adding dynamic content to a field in an action is a
straightforward process. But there are some circumstances where it
becomes much more difficult because the dynamic content you want
doesn’t show up in the dialog. There are a few reasons why the dynamic
content might not show in the dialog when you try to add it.

First, the dynamic content may not be available at this point in the flow.
Dynamic content is generated by outputs of actions and the trigger. If a
certain action hasn’t run yet in a flow, then it makes sense that the dynamic
content for that action can’t be added until after the action runs. Dynamic
content may also be in a different scope than the current action. For
example, you can’t add dynamic content from inside a loop to an action
outside the loop. Each iteration of the loop will have a specific value that is
only in scope while you are inside the loop.

But the most troublesome reason why dynamic content doesn’t show in the
dialog is because of aggressive filtering by the dynamic content dialog. The
content may not be the right data type for the field you are populating. For
example, let’s say you are in a field designed for a date, and the value you

want to add is a string. You’ll see another example of this filtering when we
start working with functions in the next section.

If you don’t see some dynamic content in the dialog, that doesn’t
necessarily mean it’s not available. One way to fix this problem is to add
the dynamic content you want to a Compose and then use the output of the
Compose in the action where it’s not showing. I’ll show you some other
ways to access the dynamic content you need without using a Compose—
by using functions and JSON notation. Let’s look first at JSON notation and
then see how we can use that in functions to manipulate the dynamic
content in our flow.

Using JSON
JavaScript Object Notation (JSON) is a language-independent data
interchange format. Like Extensible Markup Language (XML), it provides
a way to transport data between applications formatted as a string. Power
Automate can work with both XML and JSON, but JSON is the format used
internally to pass inputs and outputs from one action to another. When you
look at the run history of a flow to troubleshoot it, you will see that many of
the flow actions have inputs and outputs that contain JSON. You can also
use JSON to access dynamic content that doesn’t appear due to over-
filtering in the dynamic content dialog. Understanding JSON is a critical
skill to write and troubleshoot flows.

Understanding JSON Syntax
JSON syntax uses special characters to encapsulate specific types of data.
Arrays are surrounded by square brackets, objects are marked with curly
braces, and properties within objects are displayed as key-value pairs.
Individual arrays, objects, and properties are separated by commas.
Together these elements create a data hierarchy that can be understood by
almost any modern application. Figure 4-26 displays a simple JSON array
of people. Each person has a name, an age, and a birthdate.

Figure 4-26. Sample JSON array

Flows reference data items in JSON using a particular syntax. If the array in
Figure 4-26 was passed in as the output of a particular trigger, then you
could reference Mary Stevens’s age as the following:

outputs('People_Array')[1]?['Age']

Each part of this line specifies something in the array:

outputs(‘People_Array’) references the JSON output of a
Compose action called “People Array.”

[1] references the second item in the array. Arrays use a zero-based
index in JSON.

?[‘Age’] references the Age property of the object. The ? specifies
that the property may be null, which means it may be missing from the
values.

Using this kind of syntax means that you can reference almost any value
used by the flow directly. But getting the reference right can be challenging
for an inexperienced developer. There are a few various places that you can
look in a flow to find the JSON reference you want.

Looking Up JSON Syntax
The first place you can look to find the syntax used in JSON is to hover
your mouse over any entry in a field. When you do, a tooltip will be
displayed that shows what the JSON syntax is for that value. Figure 4-27
shows the JSON reference for a ResponseId field that is output by a “When
a new response is submitted” trigger in the Microsoft forms connector.

Figure 4-27. JSON syntax tooltip

The one problem with using the tooltip approach is that you can’t copy the
value. If you want to use that value in another field, you’ll need to type it in
yourself. But there is another way that you can access the JSON syntax of a
field to copy and paste it somewhere later in your flow. If you select the
ellipsis menu on an action, you will see an entry called Peek code. Not all
actions have a Peek code option, but those that do will show you a read-
only JSON representation of the entire action. You can highlight JSON

input values in this view to copy and paste them elsewhere in your flow.
Figure 4-28 shows the Peek code view for the action shown in Figure 4-27.
You can see the highlighted response_id parameter. You can use Ctrl + C
to copy that syntax for use elsewhere.

Figure 4-28. Peek code view

TIP
When using the Peek code view, make sure you remove the @ sign from the front of the
JSON you copy. JSON values referenced inside a flow start with an @ sign, but it
should not be included when you reference them in the designer.

Parsing JSON
JSON stores values, arrays, and objects in string format. But just having the
string doesn’t always mean that you can reference the values inside using
JSON. For example, if the JSON values are returned by something like a

Representational State Transfer (REST) call to a web service, then the flow
will only see them as a string value, not as JSON. To access the values
stored in the JSON string, we need to parse the string to apply a schema. To
do this, we use an action in Power Automate called Parse JSON.

Exercise 4-5. Using the Parse JSON action

In this example, we’ll create a flow to parse and use one of the sample
values from the array in Figure 4-26.

1. Log in to https://make.powerautomate.com, and create a new instant
cloud flow that uses the “Manually trigger a flow” trigger (see
Figure 4-29). Name the flow “Parse JSON sample.”

Figure 4-29. Creating Parse JSON sample flow

2. Click “+ New step” to add an “Initialize variable” action. Name the
variable varJSON, and select String from the drop-down as the variable
type. Type the JSON string from Figure 4-26 into the Value field of the
“Initialize variable” action (see Figure 4-30).

https://make.powerautomate.com/

Figure 4-30. Initializing a string variable

3. Click “+ New step” to add a Compose action. Click inside the Inputs
field to display the Dynamic content dialog. Select the Expression tab
and type vari⁠ables​('varJSON')[1]?['Age'] into the function (fx)
text box (see Figure 4-31). Click OK to insert the value.

Figure 4-31. Viewing JSON property in Compose

4. Save and test your flow. The flow will fail because the variable is
viewed as a string rather than JSON at this point (see Figure 4-32). We

need to parse the string as JSON before we can access the fields inside.

Figure 4-32. Flow test fails

5. Use the ellipsis menu to delete the Compose action. Click “+ New
step” to add a Parse JSON action. Click your mouse inside the Content
field to display the Dynamic content dialog. Select varJSON under the
Variables section to add it to the Content field. Copy the JSON in the
Value field of the “Initialize variable” action using Ctrl + A to
highlight it and Ctrl + C to copy it. Click the “Generate from sample”
button in the Parse JSON action and paste the JSON into the dialog
(see Figure 4-33). Click the Done button to close the dialog.

Figure 4-33. Filling in Parse JSON action

6. Click “+ New step” to add a Compose action. Click inside the Inputs
field to display the Dynamic content dialog. Select the Expression tab
and type body('Parse_JSON')[1]?['Age'] into the fx text box (see
Figure 4-34). Click OK to insert the value.

Figure 4-34. Inserting JSON expression

7. Save and test your flow. You should have no errors and see the value
35 in the outputs of the Compose (see Figure 4-35).

Figure 4-35. Parsing JSON test output

Now that you know how Power Automate passes information from one
action to the next and you can access it directly using JSON, it’s time to
look at how you can use functions to manipulate that content.

Working with Expressions
Getting started when you are building a flow in Power Automate is easy.
Just select a trigger and add actions. Then configure the actions with
dynamic content produced by the trigger or previous actions. But what if
the dynamic content isn’t exactly what you need? For example, the trigger
returns a date and time when the record was last modified, but you need to
know whether that date and time is more than 60 days ago. So, you need to
calculate today’s date minus 60 days. Power Automate has a full set of
functions that you can use to complete complex calculations and operations
to transform dynamic content into the data you need.

In Power Automate, these functions are called expressions. Power Automate
uses the same functions that are available in Azure Logic Apps. You can
find a list of available functions in the documentation. This website
provides an excellent source of information about each function’s
parameters and outputs. Individual links to documentation for each function
can be found organized by category or as an alphabetical list of all the
functions. This makes it easy to browse the lists to find details about any
specific function.

These functions can be used inside a Power Automate action field to do
things like convert a date to Universal Time Code, calculate mathematical
formulas, combine strings to create a specific result, and much more. For
example, since the equals operator in a Condition action is case sensitive,
you might want to convert the dynamic content on both sides to lowercase
to get a case-insensitive match. You can do that using the function
toLower(<<dynamic content>>) as shown in Figure 4-36.

https://oreil.ly/TXjBY

Figure 4-36. Using toLower() in a Condition

Many of these inline functions are also available as Power Automate
actions. For example, convertTimeZone() will provide the same output as
the Convert Time Zone action in the built-in Date Time connector. Using an
inline function in place of an action can decrease the number of steps
required in your flow. However, nesting multiple functions together can
make your flow more difficult to troubleshoot by increasing the complexity
of the fields in an action. I recommend that beginners start out using more
actions and then replace them with inline functions as they become more
proficient.

Understanding Function Syntax
Figure 4-37 shows the documentation for the toLower() function shown
earlier. From the documentation, we can see that toLower() requires a
single parameter of type string and returns that string in all lowercase
letters. The documentation also provides an overall description of what the
function does, as well as an example.

Figure 4-37. toLower() function documentation

Adding Dynamic Content to an Expression
Functions should be added to fields in Power Automate actions using the
Expressions tab in the Dynamic content dialog. But typing an expression
alone directly into the field won’t work. The function will be considered a
text entry, and the expression won’t be evaluated. IntelliSense is a tool that
can assist you when entering expressions through the Expressions tab.
When you begin typing an expression in the Expressions tab, a list of
potential expressions will be shown. You can complete your entry by
choosing from the list, as shown in Figure 4-38.

Figure 4-38. Expressions list

After entering the name of an expression, IntelliSense will also display a
pop-up with an explanation of the function’s syntax, as shown in Figure 4-
39.

Figure 4-39. Function syntax in Expressions tab

Expression parameters can be entered either as static entries or JSON
references to other dynamic content. String parameters are entered
surrounded by single quotes. Trying to use double quotes when entering
parameters is a common error when getting started with Power Automate
flows. This will result in an error when you try to save the function,
notifying you that the expression is invalid.

Dynamic content can be entered as a parameter by switching to the
Dynamic content tab in the dialog and picking the value you want to add.
However, because of aggressive filtering, the dynamic content you want

won’t be displayed in the list when you want to use it in an expression. If
you know the JSON syntax for the value, you can enter it directly in the
Expression tab. You did this in Example 3-2 in the previous chapter, to
access the ID of the first record in a filtered array of records. Entering
JSON directly won’t change the data type requirements for the parameters,
but it will help you overcome the aggressive filtering done by the Dynamic
content tab.

Exercise 4-6. Using the Dynamic content Expression tab

In this example, we will send an email when a new row is added to the
Dataverse Contacts table. We’ll need to use a few different functions to
retrieve and format the information for the email.

1. Log in to https://make.powerautomate.com, and create a new
automated cloud flow that uses the “When a row is added, modified, or
deleted” trigger from the Dataverse connector (see Figure 4-40). Name
the flow “Writing Expressions.”

Figure 4-40. Creating Writing Expressions flow

2. Select the Change type to be Added so the flow only triggers when
new rows are added. Select the Contacts table from the Table name
drop-down, and select Organization to be the Scope, so any record
added to the Contacts table will trigger the flow (see Figure 4-41).

https://make.powerautomate.com/

Figure 4-41. Configuring “Row Added” trigger

We want to include the name of the Company that the new contact is
associated with and the time when the row was added. Dataverse
returns a globally unique identifier (GUID) for the Company, so we’ll
need to look up the Company in the Accounts table. Since company is
optional, we’ll need to use a Coalesce() expression to check if the
GUID is null before doing the lookup.

3. Click “+ New step” to add a “List rows” action from the Dataverse
connector. Select the Accounts table in the Table name field. Click on
the “Show advanced options” link to expand the advanced options.
Type “accountid eq” in the “Filter rows” field. Select the Expression
tab of the Dynamic content dialog. Type coa⁠lesce(in the fx text box.
Place your cursor inside the parentheses and switch to the “Dynamic
content” tab. Select the Company Name Value dynamic content. Add
the following after the dynamic content you just added: ,guid(). This
will supply a random GUID if the Company Name field is null. The
text box should now contain this :

coalesce(triggerOutputs()?['body/_parentcustomerid_value'],guid())

Click Update to insert the expression into the “Filter rows” field (see
Figure 4-42).

Figure 4-42. Coalesce() expression

4. Click “+ New step” to add a “Send an email (v2)” action. Type your
email address in the To field. Type “A new Contact was added” in the
Subject field. Type “A new Contact was added at” followed by a space
in the Body field. The Dynamic content dialog will be displayed.
Select the Expression tab in the dialog (see Figure 4-43).

Figure 4-43. The Expression tab

5. Begin typing “format” in the fx text box. Select the formatDateTime
function from the list and add parentheses after it if necessary (see
Figure 4-44).

Figure 4-44. Selecting an expression

6. Place your cursor inside the parentheses and switch back to the
Dynamic content tab. Select Description from the dynamic content in
the trigger group. In the resulting expression, change
body/description to body/createdon. Add a comma and 't' just
before the closing parentheses. The text box should now contain this:

formatDateTime(triggerOutputs()?['body/createdon'],'t')

Click OK to insert the expression into the email body (see Figure 4-
45).

Figure 4-45. Formatting the Createdon time

NOTE
Createdon cannot be selected directly as dynamic content when using a function
because the Dynamic content dialog aggressively filters the available values and
thinks that it’s the wrong data type for the function. However, by using JSON
notation, we can access the value directly.

7. Type for after the FormatDateTime() function in the Body of the
email. Type first() into the fx text box in the Expressions tab. Select
the “Dynamic content” tab and insert the value Dynamic content from
the List rows section. This will get the first row of the output from the
“List rows” action we added previously. What we really want is the
Name field from that first row. But that isn’t available. Move to the
end of the first() function and type ?['Name'] after the close of the
function. The text box should now contain the folloing:

first(outputs('List_rows')?['body/value'])?['Name']

Click Update to insert the expression into the email body (see
Figure 4-46).

Figure 4-46. Using first() to get Company Name

8. Click Test in the upper-right corner and select the Manually radio
button. Click the Test button at the bottom of the panel. Select Tables
from the Data drop-down on the left side of the screen. Open the
Account table and select Edit from the Edit drop-down menu. Select
“+ New row” to add a new row to the table. Type “Acme

Manufacturing” as the Account Name (see Figure 4-47). Click the
Back link on the menu.

Figure 4-47. Adding a Company in Dataverse

9. Select Tables from the Data drop-down on the left side of the screen.
Open the Contact table and select Edit from the Edit drop-down menu.
Click “+New row” from the “+New row” drop-down to add a new
Contact to the table (see Figure 4-48). Type the following values into
the form:

First Name: John

Last Name: Doe

Account Name: Acme Manufacturing

Click Save & Close. Click Done.

Figure 4-48. Adding a New Contact

10. Adding a New Contact record should trigger the flow within a few
minutes. Return to Power Automate and review the flow for errors (see
Figure 4-49).

Figure 4-49. Reviewing flow history

Format Data by Examples
One of the most common uses for expressions in Power Automate is to
apply a custom format to dynamic content. For example, you may want to
take a date-time value that is written in ISO 8601 format and add it to an
email in a format that is more familiar to your user. Power Automate makes
this easy by supplying a “Format data by examples” entry in the
Expressions tab. When you select that entry, a wizard will walk you through
the process, asking for several things. First, it will ask you to pick the
dynamic content field you want to format. Next, it will ask for one or more
sample values and the output you would like for each. Once you have
supplied those, it will provide you with a suggested expression to achieve
that result. You can then test the expression and insert it into the field in the
designer. You will be warned that you can’t get back to the “Format data by
examples” wizard once you’ve inserted the value.

“Format data by examples” will only work on a single value at a time. You
can’t use it to format arrays or multiple selections. But it does provide an
easy way to obtain a specific output without needing to be completely
familiar with all the functions available.

Exercise 4-7. Formatting a date

In this example, you’ll modify the email sent by the flow you created in
Exercise 4-6 to include the date and time that the row was created. You’ll
format the date and time the way you would like to see it presented.

1. Log in to https://make.powerautomate.com, and click on the flow titled
“Writing Expressions” in your My flows list. Click on the Edit link at
the top of the flow detail pane (see Figure 4-50).

https://make.powerautomate.com/

Figure 4-50. Editting existing flow

2. Expand the “Send an email (V2)” action and delete the
formatDateTime expression by clicking on the “x” (see Figure 4-51).

Figure 4-51. Removing existing FormatDateTime expression

3. With the input cursor where the formatDateTime expression used to
be, click on the Expression tab and select “Format data by examples”
from the list of expressions (see Figure 4-52).

Figure 4-52. Starting “Format data by examples” wizard

4. Type “Created” into the Search box, and select Created On from the
“When a row is added, modified or deleted” trigger (see Figure 4-53).

Figure 4-53. Selecting dynamic content

5. Type a typical ISO 8601–formatted date-time value like “2022-12-28T​
10:00:00.000Z,” into the Example value field. Type the date-time
format you would like to see in the Desired output field (see Figure 4-
54). Click “Get expression.”

Figure 4-54. Getting expression

6. Click Apply to insert the expression generated by the wizard into the
email. A warning will appear stating that you will not be able to go
back to the wizard after inserting the expression. This means any edits
to the expression will need to be made manually. Click “Got it” to
close the dialog (see Figure 4-55).

Figure 4-55. Inserting expression

7. Save and test the modified flow by adding a New Contact record. This
should trigger the flow within a few minutes. Return to Power
Automate and review the flow for errors (see Figure 4-56).

Figure 4-56. Reviewing flow history

If you know what you want your data value to look like but aren’t sure how
to build a function to format the content, try using “Format data by
examples.” It should at least give you some ideas on how to do it even if
your first attempt isn’t perfect.

Using the Action Ellipsis (…) Menu
When building flows, you will usually configure your actions by using
dynamic content and functions. But there are times when just manipulating
the values supplied to fields in an action is not enough. In those cases, you
will use the ellipsis (…) menu of the action or trigger to do additional
configuration. Figure 4-57 shows a typical ellipsis menu.

Figure 4-57. Ellipsis (…) menu for an action

The options available depend on the action or trigger itself. However, there
are several entries that are common to most actions and triggers. Following
are the common entries found on most ellipsis menus:

Copy to my clipboard

New Comment

Rename

Add a note

Static result (Preview)

Settings

Run after

Peek code

Delete

My connections

I’ll go over each of these menu entries at some point in the book. Some of
them, like “Static result (Preview)” and “Run after” will be covered in
Chapter 7 when I cover troubleshooting. I’ll also dedicate a section to the
Settings menu entry later in this chapter since it contains a variety of
additional choices. You have already been introduced to some options, like
Peek code and Delete, earlier in the book. You saw how to use Peek code to
look up and copy the JSON syntax for a value, and you’ve used Delete in a
couple examples. Let’s review the rest of the entries now.

Copying Actions
The Copy entry on the ellipsis (…) menu can be used to copy a formatted
action to your computer’s clipboard. Then, when you add an action you can
use the My clipboard tab, as shown in Figure 4-58, to paste a copy of the
action into the designer. The My clipboard tab will show all the actions
you’ve copied since you logged in to the designer.

Figure 4-58. Pasting actions from My clipboard

NOTE
Copying triggers isn’t currently supported, so the Copy entry is grayed out on the
Trigger menu.

You can even copy actions between two different flows by copying the
actions you want, closing that flow, and opening the other one in the same
Power Automate tab. You must use the same tab because the clipboard is
specified in your current web session. If you open a different browser and
log in again, you’ll get a different clipboard. When I showed you how to
use Peek code earlier in this chapter, you saw that the action and its
configuration is stored in JSON code. What you are copying when you use
the “Copy to my clipboard” entry is that JSON configuration. Pasting that
JSON in as a new action creates a copy of the action in a new location.
Because it is using JSON references, the copy/paste may not work correctly
if some of the references are not in scope when pasting the action in a new
location. For example, if you copy an action inside an “Apply to each” loop
and then try to paste it outside the loop, it won’t have access to values
generated inside the loop. The paste will work, but an error will occur when
you try to save the flow.

Renaming Actions and Triggers
Actions must have unique names within the flow and are limited to no more
than 80 characters in length. When you add additional actions in a flow, a
number is automatically added to the default name. For example, the second
Compose you add to a flow will be named “Compose 2,” and the third
would be “Compose 3.” This will satisfy the requirement that all action
names must be unique. But it will make the logic of your flow hard to
follow.

Using the Rename entry on the ellipsis menu, you can supply your own
specific name to the action. If you only have one “List rows” action in a
flow, it’s probably clear what it does. But if you have multiple Initialize

Variable or Compose actions, it may be harder to remember what each of
them is used for. Providing a meaningful name for each action can be time-
consuming, but it should be done for actions that occur more than once in a
flow.

TIP
Renaming an action after you have used dynamic content produced by that action in
other actions may break those dynamic content JSON references. So, it’s a good idea to
rename actions as you add them to the designer.

Renaming actions to give them more meaning will help you keep track of
what your flow is doing. But adding marginal comments and notes to
document your flow is also important. There are two entries on the ellipsis
menu that can be used for this kind of documentation.

Adding Comments
The Comments link is best used when collaborating with other users to
develop a flow. Using Comments, you can add marginal comments to the
right side of the flow designer for a specific action. You can even @mention
another user in the context of a comment. Doing that will add their name to
the comment and send the comment to them by email. Users can also reply
to a comment to create a comment thread. Each action in a flow can have
multiple comment threads. The number of comment threads in an action or
trigger are displayed in an indicator within the action card.

The Comments panel can be toggled open or closed using the Comments
link at the top of the designer screen. Figure 4-59 shows a typical comment
thread in a flow. Comment threads can be deleted or simply marked as
resolved and left in the finished flow.

Figure 4-59. Comment thread in a flow

Adding Notes
Notes can also be added inline to each action and trigger in a flow. As
shown in Figure 4-60, notes appear below the action header and above any
fields that need to be filled in. One common use of the note field is to store
the JSON source for functions used in the action so that they are easily
visible without hovering over them to get a tooltip or loading them into the
Expressions tab.

Figure 4-60. Note in an action

Adding a New Connection
Connections are created automatically when you add an action to a flow.
But there are times when you want to create a new connection or switch
which connection an action is using. The ellipsis menu will display a list of
existing connections that you can use with a specific action, and there is an
“+Add new connection” link that can be used to create new connections. If
your flow is stored in a solution, then you will also see connection
references listed.

NOTE
Connections are displayed using the name of the account used in the connection. This
name cannot be changed. This can make it difficult to differentiate between various
connections in the ellipsis menu. Connection references can be given more descriptive
names.

Changing Action Settings
Each of the ellipsis menu settings I’ve discussed so far focuses on one
thing. But there is also a Settings menu entry that provides access to a
variety of settings. These settings can vary from action to action, but in this
section I’ll cover the common settings available on most actions. Figure 4-
61 shows a typical Settings panel for an action.

Figure 4-61. Settings panel

Following are explanations for most of the common settings you will find
on the Settings panel.

Pagination
Actions that retrieve an array of records will default to retrieving the first
100 records. If you want to retrieve more than that, you will need to enable
the Pagination feature on the Settings menu. Once Pagination is enabled
using the toggle, you can set a threshold for the maximum number of items
that will be retrieved. The action will then continue to retrieve records in
batches until it reaches the maximum threshold value.

You need to be careful when enabling Pagination because it can have a
significant impact on the performance of your flow. You also need to be
aware that there are limits on how large an array you can process using
loops, depending on your license level. These limits range from a low of
5,000 items to a high of 100,000.

Secure Inputs and Secure Outputs
Input and output parameters for your flow are always passed using HTTPS
encryption. But they will show in the flow run history. So, if your flow
actions use confidential data, you should enable the Secure Inputs and
Outputs features in the action’s Settings. This will hide the inputs and
outputs in the flow run history.

Asynchronous Pattern
The normal return status code for most APIs is 200. But some connector
actions will return a 202 status code, which means they have accepted the
task but haven’t completed it. The Asynchronous Pattern feature is enabled
on actions by default. This tells the action to continue to poll the server until
the action times out or receives a valid HTTP status termination code. It

should not be disabled unless you know that the API doesn’t use a 202
status code.

Automatic Decompression
JSON responses are normally returned in a compressed state to minimize
their size. Automatic Decompression is also enabled by default. This setting
will decompress a GZIP response sent by a connector API. It shouldn’t be
disabled unless you know the connector sends a raw JSON response.

Timeout
Running flows will time out after 30 days, but occasionally it’s helpful to
time out an individual action. As we discussed, most actions will run in an
Asynchronous mode—they continue to check the server until it completes
the request. Using the Timeout setting, you can set a timeout for a specific
action. The duration is set using an ISO 8601 duration. For example, setting
the timeout of a “Start and wait for an Approval” action to P29DT12H will
automatically time out an approval before the whole flow times out at 30
days. You can then relaunch the flow to create a new approval that will be
good for another 30 days.

NOTE
ISO 8601 is an international standard that defines how to state a date and time or a
duration as text. The duration format is as follows, where (n) is replaced by a number:

P(n)Y(n)M(n)DT(n)H(n)M(n)S

P is the duration designator and is always placed at the beginning of the duration.

Y is the year designator and is not used in Power Automate.

M is the month designator and is not used in Power Automate.

D is the day designator that follows the value for the number of days.

T is the time designator that precedes the time components.

H is the hour designator that follows the value for the number of hours.

M is the minute designator that follows the value for the number of minutes.

S is the second designator that follows the value for the number of seconds.

Retry Policy
Actions don’t always succeed the first time the API is called. The server
may be down, or the service may be too busy to take more requests. To
adjust for that, there are four different Retry Policy types:

Default

An exponential interval policy set to retry four times.

None

Do not retry an API call that fails.

Fixed Interval

Count establishes the number of times to retry the call, and
Interval sets the amount of time to wait between tries.

Exponential Interval

Count establishes the number of times to retry the call, and
Interval sets the maximum amount of time to wait for the
first retry; successive retries will occur on a decreasing
interval.

Tracked Properties
Tracked Properties can be used to store a particular key-value pair with a
particular action. The value does not show in either the Input or Output of
the action but can be retrieved in a later action using the actions()
function. For example, if you create a Tracked Property called “My Tracked
Property” in the Dataverse List Rows in Table action, you could retrieve the
value of that property later in the flow with actions(List Rows in
Table)?['TrackedProperties']?['My Tracked Prop⁠erty']. Tracked
Properties let you store data that can then be retrieved in other steps of your
flow. This may be more efficient than depending on dynamic content that
must be processed each time it is used.

Trigger Settings
There are also a few settings that are specific to triggers. In addition to the
settings already covered, these settings include the following:

Split On

Custom Tracking ID

Concurrency Control

Trigger Conditions

Figure 4-62 shows a typical Settings dialog for a trigger.

Figure 4-62. Trigger Settings dialog

Split On
Triggering events can often happen simultaneously. For example, when
multiple users fill in a Microsoft form, they may submit forms at the same
time. So, most triggers are designed to allow inclusion of one or more items
in the data passed as part of the trigger. There is a trigger option called Split
On that can be used to break this collection of data apart and start one flow
instance for each item. Split On is enabled by default. Once enabled, select
for each new instance which item level in the array is used. Turning off the
Split On option lets you work with all the items triggered at the same time
in one flow.

The Split On tracking ID lets you specify a value of the original item that
will be used as a unique index to differentiate between the flow runs. This is
related to the Custom Tracking ID, which we’ll cover next.

Custom Tracking ID
The Custom Tracking ID is a feature that was created for Azure Logic
Apps. It’s still present in Power Automate because it is built on the
foundation of Azure Logic Apps. Although you can set a Custom Tracking
ID in the trigger settings, there is no way to view this value in Power
Automate.

Controlling Concurrency
In most cases where Split On is enabled, Power Automate will generate as
many instances of a flow as necessary to process the items in the incoming
array of data. Each instance of the flow will be added to a queue and run
one after another as each previous instance finishes. This guarantees that the
flow instances run completely independent from each other. This is the
default condition when the Concurrency control is disabled.

But running the flows one at a time can slow things down. So, an optional
setting lets you tell Power Automate to run up to 100 flow instances in
parallel threads. To do this, you enable the Concurrency Control toggle to

On and set the Degree of Parallelism slider to the number of parallel threads
you want to enable. The minimum is 1, which is the same as disabling
Concurrency. The maximum is 100. If you have more than 100 items to
process, then it will process the first 100 in parallel and start a new thread
as each thread finishes. Enabling concurrency can significantly improve
performance of flows if they have no interdependencies.

Implementing Trigger Conditions
Trigger Conditions let you specify conditions that must be met before your
flow will trigger. For example, you may have an approval flow that
shouldn’t run until all data entry is completed and the item is submitted for
approval. If you are using a “When an item is modified” trigger, it will start
on any modification. By adding a Trigger Condition, you can specify that
the flow will only start when the item has been modified and a specific
column value has been set to “Submit for Approval.” Trigger Conditions let
you fine-tune when your flow will run instead of testing for specific values
after the flow is triggered. Trigger Conditions are often used to prevent
infinite loops that occur when using a “When an item is modified” trigger
and then making a modification inside the flow—this will normally trigger
the flow again.

Exercise 4-8. Preventing infinite loops with Trigger Conditions

In this example, we’ll create a flow that triggers when a SharePoint item is
created or modified. To keep the flow from triggering in an infinite loop,
we’ll add a Trigger Condition to keep the flow from triggering again when
an update is made by the flow.

1. Log in to your SharePoint online tenant and create a custom list called
“Trigger Condition Demo.” Add a “Multiple lines of text” column to
the list called Updates. Under “More options,” enable “Append
changes to existing text” (see Figure 4-63). Add a Choice column
called “Status.” Set the three choices to Pending, Started, and
Completed. Click the Save button.

Figure 4-63. SharePoint updating column settings

2. Log in to https://make.powerautomate.com, and create a new
automated cloud flow that uses the “When an item is created or
modified” trigger (see Figure 4-64). Name the flow “Prevent Infinite
Loop.”

https://make.powerautomate.com/

Figure 4-64. Creating “Prevent Infinite Loop” flow

3. Select the Site Address for the SharePoint site where you created the
list in step 1. Select Trigger Condition Demo from the List Name drop-
down (see Figure 4-65).

Figure 4-65. Configuring trigger

4. Click “+ New step” to add a Delay action from the built-in Schedule
connector. Configure the Delay to wait for one minute. The delay is
added to simulate work that the flow may be doing (see Figure 4-66).

Figure 4-66. Configuring delay

NOTE
If an update comes immediately after the flow triggers, it may not cause the flow
to re-trigger. But in many scenarios, for example, approvals, the updates don’t
come until later. This will typically cause the flow to re-trigger.

5. Click “+ New step” to add an “Update item” action from the
SharePoint connector. Configure the action to use the same Site
Address and List Name as the trigger. Insert the ID and Title dynamic
content from the trigger into the ID and Title fields. Type
Concat('Updated ' '', formatDateTime(UtcNow(),'hh:mm'))

into the Expression tab and insert it into the Updates field (see
Figure 4-67). Select Completed in the Status Value field.

Figure 4-67. Adding “Update item” action

6. Save the flow and test it manually after starting the Test “Add a new
item” to the Trigger Condition Demo list.

NOTE
Testing an automated flow still requires that you complete the action that will
trigger the flow. If the flow is not in Test mode, it can take up to five minutes
before the flow triggers.

7. Wait five minutes and then “Turn off” the flow from the flow
description screen to keep it from starting additional runs (see
Figure 4-68).

Figure 4-68. Turning off flow

If you look at the 28-day run history, you will see that the flow has run
multiple times even though we only triggered it once. To fix this, we
will add a Trigger Condition that will keep the flow from re-triggering
when the flow makes the update.

8. Click “+ New step” and add a Filter Array action. Skip the From field
for now. Add the Status Value dynamic content from the trigger to the
left “Choose a value” field. Type “Completed” in the right side of the
condition, and set the operation in the middle to “is not equal to.”
Click “Edit in advanced mode” in the action. You should see the
expression as shown in Figure 4-69. Copy the formula that is revealed.
This is the expression that will need to be true for the trigger to fire.
Select the whole line and copy it to the clipboard using Ctrl + C. Once
you have copied it, delete the “Filter array” action.

Figure 4-69. Trigger Condition expression using “Filter array”

9. Open Settings on the ellipsis menu. Click the plus sign (+) under
Trigger Conditions and paste the expression you copied into the field
using Ctrl + V (see Figure 4-70). Repeat the testing you did in steps 5
and 6. This time, there should be only one flow run.

Figure 4-70. Adding Trigger Condition

Summary
In this chapter, you learned how to fill out the action fields in your flow
using either static or dynamic content. You also learned how to manipulate
those dynamic content values using function expressions. Finally, you
looked through all the common advanced settings on the ellipsis menu that
you can use to adjust the way that triggers and actions behave. I don’t have
enough space in this book to show you how to use all the functions. But I
did show you where to find detailed information on all the available
functions. You’ll learn more about individual functions as you find use for
them in your flows. You will continue to use a lot of the common functions
as you progress through the book, but you’ll need to rely on Microsoft’s
documentation to learn how to use some specific functions in the future.

So far, most of the flows we’ve built or examined are constructed in a single
straight line of actions. But in the real world, things are seldom that simple.
In the next chapter, we’ll look at how to choose different courses of action
depending on the dynamic content values produced by the flow. I’ll also
show you how to split your flow so it can run multiple concurrent branches
simultaneously. Finally, I’ll show you how to loop through an array of
values to do the same actions on each value. Once you are done, you’ll have
all the basic tools you need to begin transforming business processes into
Power Automate flows.

Chapter 5. Implementing Logic

In Chapter 4, you learned how to add and configure triggers and actions in a
flow. You now know how to create a flow from scratch with a trigger and
add actions to it that do things in a sequence. But not all business processes
can be accomplished using that kind of sequential logic. What if a flow
needs to do something different depending on the data it discovers? What if
you need to do more than one thing at a time? Or what if you need to
process multiple rows of data? In this chapter, you’ll learn how to build a
flow that adapts to the data it is processing by implementing a logical flow.
I’ll explain how Condition and Switch actions can be used to travel down
different paths by evaluating the values of data in the flow. I’ll show you
how to use looping actions to do the same set of steps on multiple rows of
data in an array. Finally, I’ll cover how to split your flow into multiple
parallel branches so it can do several different things simultaneously. By the
end of the chapter, you’ll have all the tools you need to begin building
complex flows that automate real-world business processes in your
organization.

The Control Connector
Six actions may be used to change the logical path followed by a Power
Automate flow. These actions are all found in the built-in Control
connector:

Condition

Apply to each

Do until

Scope

Switch

Terminate

I’ll detail how to use the Scope and Terminate actions in Chapter 7 when I
discuss troubleshooting. But here is a quick overview of those two actions:

The Scope action

This is a container that can host a sequential string of
actions. One of its major benefits is that it can be expanded
or contracted to show or hide the list of actions it contains.
This can be used to make the overall logical flow easier to
read at a high level by dividing your flow into manageable
chunks. Scopes can also be used to aggregate error
messages, which is why we’ll discuss them when I cover
troubleshooting.

The Terminate action

This can be used to end a flow immediately, at any point.
This can be useful if you need to stop a flow before it would
normally complete its work due to an error condition.
Because it is used primarily to control the logic of a flow
when an error arises, I’ll wait to discuss this action when I
cover troubleshooting.

Controlling Actions with Conditions
The most common logic action used in Power Automate flows is the
Condition action. A Condition action is essentially an If/Then statement. In
its simplest form, a Condition action has a lefthand field, a righthand field,
and an operator in between. The fields can be filled in with either dynamic
content, an expression, or a static value.

TIP
There is also an If() function that can be used inside a field if you just want to return a
value based on whether a formula evaluates to true or false. This can simplify your flow
by eliminating unnecessary condition actions.

The operator in between the fields is then used to determine whether the
condition is true or false. The list of available operators changes depending
on the data type of the values being compared. For example, if you are
comparing two numbers, the available operators will be: is equal to, is not
equal to, is greater than, is greater than or equal to, is less than, or is less
than or equal to. But, if comparing two strings it will be: contains, does not
contain, is equal to, is not equal to, is greater than, is greater than or equal
to, is less than, is less than or equal to, starts with, does not start with, ends
with, or does not end with. One common problem with Condition actions is
trying to compare two values that are not the same type.

If the value of the condition evaluates as true, then one set of actions is
executed. If it’s false, then another parallel set of actions is executed.

TIP
Be careful of case sensitivity when comparing values. Conditions are case sensitive and
will return false if an unexpected case is used. Use expressions to generate null, false,
and true values for the right-side field of a condition.

Complex conditions are possible by grouping logical conditions together
and specifying that they all must be true (And operator) or that only one
needs to be true (Or operator). Grouping conditions is a very powerful
feature but often leads to unanticipated results. Complex logical conditions
are often difficult to articulate and may require a lot of work.

Exercise 5-1. Setting approval status

In this example, you will use a condition to evaluate whether a document
was approved or rejected by a group of people. If it was approved, you will
record the approval status in the metadata of the document. If it was
rejected, you will record the status and send an email back to the original
author informing them of the rejection.

1. Create an automated cloud flow titled “Approve file submission” using
the “When a file is created (properties only)” trigger. Choose a
SharePoint site from the Site Address drop-down and Documents from
the Library Name drop-down (see Figure 5-1).

Figure 5-1. Creating approval flow

2. Add a “Get manager (V2)” action to the flow and insert the Modified
By Email dynamic content into the User (UPN) field (see Figure 5-2).

TIP
The “Get manager (V2)” action will retrieve the email of the user who uploads
the file from Azure Active Directory (AAD) if your organization has specified the
reporting structure of users in AAD. When a file is uploaded, the “Created By”
and “Modified By” user is the same.

Figure 5-2. Get manager

3. Add a “Start and wait for an approval” action. Select “Approve/Reject
– Everyone must approve” as the Approval type. Type “Sample
Approval with Condition” as the Title. Insert the Mail dynamic content
output by the “Get manager” action into the Assigned to field. Type
your email address after the semicolon following the Mail dynamic
content in the Assigned to field (see Figure 5-3).

Figure 5-3. “Start and wait for an approval” action

4. Add a Condition action and set the lefthand value equal to Outcome.
Set the righthand value to Reject, and set the operator in the middle to

“does not contain.” The Outcome dynamic content will accumulate the
responses of each approver as a comma, delimited string until either all
the approvers respond or one of the approvers rejects the item (see
Figure 5-4). We then test to see if the item was approved by checking
to see if Outcome contains the response Reject. If it does, the item was
not approved. If it doesn’t, then the item was approved.

TIP
Most of the dynamic content returned by an approval is contained in collections,
but Outcome provides a single string value that summarizes whether the item was
approved or rejected. This lets you check the response to an approval without
using a loop.

Figure 5-4. Checking approval Outcome

5. Add an “Update file properties” action to the Yes side of the condition.
Select in the Site Address and Library Name you used for the trigger.
Set the remaining properties as follows:

Id: ID dynamic content from the trigger

Title: File name with extension dynamic content from the trigger
followed by “ - Approved”

Add an “Update file properties” action to the No side of the condition.
Select in the Site Address and Library Name you used for the trigger.
Set the remaining properties as follows:

Id: ID dynamic content from the trigger

Title: File name with extension dynamic content from the trigger
followed by “ - Rejected”

Add a “Send an email (V2)” action to the No side of the condition. Set
the remaining properties as follows:

To: Modified By Email dynamic content from the trigger

Subject: Type “File Rejected”

Body: Type “Your file was Rejected.” Insert File name with
extension dynamic content between “file” and “was” (see
Figure 5-5).

Figure 5-5. Responding to approval

6. You can now Save and Test your flow by uploading a document. To
easily test the flow, change the email addresses used in step 3 to your
own email address. Otherwise, your manager will get the request to
approve your test document.

Using Switches
Conditions can only be used to send a flow down one of two branches, but a
Switch can be used to send a flow down one of 26 branches. When you add
a Switch to a flow, you get one box labeled Switch, a second box labeled
Case, and a third box labeled Default (see Figure 5-6).

Figure 5-6. Switch action

The On field in the Switch is filled in with dynamic content or an
expression that resolves to a single value. The Equals field in the Case box
is then set to a static value. The branch in that Case will be followed if the
value in the Switch is equal to the value in the Case. Up to 24 additional
Case boxes can be added using the plus (+) sign between the last Case and
the Default case. The Default branch is used if the value in the Switch
doesn’t match any of the Case values. You can nest additional switches in
the Default branch to extend the Switch to another 25 Cases and a Default
case.

WARNING
Power Automate actions can only be nested eight levels deep. This limits how many
If/Then conditions you can chain together to evaluate complex logic. The best way to
handle this is by summarizing the result from your nested conditions as a string. Then,
you can start your logic again at level one using a Switch action to add additional levels.

Unlike Conditions, Switches can only evaluate specific values, not ranges.
So, if you need to handle a range of values, you need to use one Case in the
Switch for each potential value in the range. Switch-Case values are also

case sensitive and can’t be null, so functions like Coalesce() and Upper()
are often used in the Switch to get a predictable value to compare to the
Case. The last thing to understand about Switches is that, unlike the
Condition action, there is no Switch() function that can be used in place of
the action.

Exercise 5-2. Reacting to the day of the week

In this example, you will use a Switch to evaluate a specific date and
postpone action until Monday morning if the date falls on a weekend day.
This flow would normally be part of a larger flow, but we will keep it short
and focus on the workings of the Switch. I’m sure you’ll see how this
pattern could be used in a bigger flow to pause a flow for a couple days to
finish its work during the work week.

1. Create an instant cloud flow titled “Wait for Monday” using the
“Manually trigger a flow” trigger. Expand the trigger and add an Input
of type Date called InputDate (see Figure 5-7).

Figure 5-7. Manual trigger with input

2. Add an “Initialize variable” action to the flow. Type varDate in the
Name field and Select String from the Type field (see Figure 5-8).

Figure 5-8. Initializing a variable

3. Add a Switch action to the flow. Insert the following expression into
the On field of the Switch (see Figure 5-9). This will return a three-
letter abbreviation for the day of the week, with the date formatted as
follows:

formatDateTime(coalesce(triggerBody()['date'],utcNow()),'ddd')

TIP
Coalesce() is often used in Switches to substitute a non-null value in case the
value being evaluated is null.

Figure 5-9. Adding a Switch

4. Type “Sun” into the Equals field of the Case. Add an additional Case
for Sat (see Figure 5-10). You can use the Default case for the other
days: Mon, Tue, Wed, Thu, and Fri.

Figure 5-10. Adding Switch Cases

5. Add a “Set variable” action to each Case and the Default case. Use the
actions to set the value of the varDate variable you initialized at the
top of the flow (see Figure 5-11). Use the following formulas:

Sun case: addDays(triggerBody()['date'],1)

Sat case: addDays(triggerBody()['date'],2)

Default case: InputDate dynamic content

Figure 5-11. Building Case branches

6. Click “+New Step” at the bottom of the flow to add a “Delay until”
action after the Switch. Delay actions require a UTC date-time (see
Figure 5-12). Use the following formula to convert the varDate
variable into UTC and insert it into the Timestamp field:

convertToUtc(variables('varDate'),'Central Standard Time')

This will postpone any actions added after this from happening until
the date stored in the varDate variable is reached. You can replace
Central Standard Time with the time zone name found in this list of
Time Zone IDs for your time zone.

https://oreil.ly/Bv3br

Figure 5-12. “Delay until” action

7. You can now Save and Test your flow. Use the calendar icon in the
input box to pick a previous date. The flow should run to completion.
If the date you picked was a Saturday or Sunday, the Delay until
should be set for the following Monday. Otherwise, it should be set for
the date entered (see Figure 5-13).

Figure 5-13. Successful delay

Calling Child Flows
So far in this chapter, I’ve shown you two ways to run different sections of
code inline based on a logical condition or a specific value. But what if you

want to run the same set of actions multiple times within a flow without
duplicating the actions? To do that, you can add the actions to a separate
flow and then call that Child flow from different places in your main flow.

Child flows can be almost anything, but they do have certain requirements.
First, they must be built inside a solution. Normally, the flow invoking the
Child flow is also built in the same solution. Second, the Child flow must
use either a manual, Power Apps, or “When an HTTP request is received”
trigger.

TIP
The “When an HTTP request is received” trigger requires a premium license. The
manual and Power Apps triggers are both included in the standard license.

Another feature of a Child flow is that it can use Input and Output
parameters. Input parameters must be one of the following simple data
types:

Text

a string

Yes/No

a Boolean

File

a string containing a filename and a JSON representation of
the file contentBytes

Email

a string containing an email address

Number

an integer or a floating point number

Date

a string containing an ISO 8601 date-time

The Type specifications for parameters is mostly for documentation
purposes. None of the string-based parameters are strongly typed. For
example, you can pass any string as a Date or Email value, but you’ll
receive an error when you try to use the value as a Date or Email if it’s not
valid.

TIP
To transfer an array of values to a Child flow, use the Text parameter and pass the array
as a JSON string. Then, parse the JSON array in the Child flow to gain access to the full
array.

There are two ways to return output to a Parent flow from a child. You can
use the “Respond to a Power App or flow” action, which returns one or
more of the same data types as the manual trigger. Or you can use the
Response action from the Request connector. The Response action can
return a complex body consisting of JSON. You also specify the JSON
schema that will be applied to the JSON when it is received. Using the
Response action, you can return a full array of complex data objects, but the
Response action does require a premium license.

Exercise 5-3. Calling a Child flow

In this example, you will create a Child flow that calculates the result of a
simple math problem. You’ll pass in two number parameters and divide the
first number by the second. Then, you’ll return the result to the Parent flow.

1. Log in to https://make.powerautomate.com, and select the Solutions
tab in the navigation bar on the left. This will bring up a list of all the

https://make.powerautomate.com/

solution packages available in Power Automate. Click on the “+ New
solution” link in the menu bar. This will open a panel on the right side
of the screen, as shown in Figure 5-14. Type “Call a Child Flow” as
the Display name of the Solution and select the CDS Default Publisher
from the Publisher drop-down. Click the Create button to create your
new solution (see Figure 5-14).

Figure 5-14. Creating a solution

2. Create a new instant flow using the +New > Automation > Cloud flow
menus. Type “Divide Numbers” as the Flow name and select a Manual
trigger (see Figure 5-15).

Figure 5-15. Creating a Child flow

3. Expand the trigger and add two number inputs named Divisor and
Dividend (see Figure 5-16).

Figure 5-16. Adding trigger inputs

4. Add a Compose action. Set its Inputs field to the following expression:

div(triggerBody()['number_1'],triggerBody()['number'])

triggerBody()['number_1'] is the Dividend input field, and
triggerBody()['number'] is the Divisor input field (see Figure 5-
17).

Figure 5-17. Calculating result

5. Add a “Respond to a PowerApp or flow” action. Add a Number output
called Result and set it to the Outputs of the Compose action (see
Figure 5-18). Save and Exit the flow designer to go back to the
Solution screen.

Figure 5-18. Responding to calling flow

6. Create a new instant flow using the +New > Automation > Cloud flow
menus. Type “Invoke Child Flow” as the Flow name and select a
Manual trigger (see Figure 5-19).

Figure 5-19. Creating Parent flow

7. Add a “Run a Child Flow” action to the flow. Select the Divide
Numbers flow you just saved as the flow to run. Type “100” into the
Divisor field and “10” into the Dividend field (see Figure 5-20).

Figure 5-20. Running a Child flow

8. Save and Test the flow manually. You should see a result of 10 in the
Outputs in the Parent flow (see Figure 5-21).

Figure 5-21. Child flow Output result

In the real world, Child flows are normally much more complex, but this
example is a good demonstration of how to call a Child flow. To do this, we
created a solution package, a Parent flow, and a Child flow. I’ll explain
more details about solution packages in Chapter 6.

Processing Arrays with “Apply to each” Loops
Running the same set of actions repeatedly doesn’t always require using a
Child flow. If you have an array of values that you want to process, you can
use one of two types of looping actions. The most commonly used looping
action in Power Automate is the “Apply to each” action. You can manually
add an “Apply to each” action to a flow, but it is usually added by Power
Automate when you try to use a value from an array in an action. For
example, if you try to use the Modified by Email dynamic content from a
list of SharePoint items to address an email, Power Automate will
automatically add an “Apply to each” action around the “Send an email”
action where you use the value. The “Apply to each” loop will then send
one email for each entry in the list of items. Once the loop is created, you
can add any number of additional actions inside the “Apply to each.” But
it’s a good idea to keep the loop as short as possible to minimize the
performance drain on your flow.

Depending on your license, there are limits to the maximum number of
loops that you can execute. Standard and free licensed users in the low
performance profile will be limited to 5,000 items. You can review the
performance profiles and specific limits in Microsoft’s online
documentation.

You can enable Concurrency in the Settings menu of the “Apply to each”
action. By default, each loop completes before the next loop executes. But
you can enable Concurrency to have up to 50 loops running in parallel.
Running loops in parallel will not preserve the order of the list in the results
but can drastically improve the performance of the loop.

Another factor that will affect performance is the use of variables inside the
loop. Whenever you set the value of a variable, all the other concurrent

https://oreil.ly/xAH0Z
https://oreil.ly/xAH0Z

loops must stop processing to guarantee access to the variable. This can
slow down concurrent processing. To get the best performance out of a
loop, you should avoid variables and enable concurrency.

Exercise 5-4. Archiving email attachments to a SharePoint list

In this example, you will retrieve a set of attachments from an incoming
email and save them as attachments to a SharePoint list item.

1. Log in to your SharePoint online tenant and create a custom list called
“Email Attachment Archive Demo.” Add a Date and time column to
the list called “Received Date.” Enable “Include Time” on the column.
Click the Save button (see Figure 5-22).

Figure 5-22. Creating archive list

2. Create an automated cloud flow and name it “Archive Email
Attachment” using the “When a new email arrives (V3)” trigger from

the Office 365 Outlook connector. Expand the trigger and click on
“Show advanced options.” Set Include Attachments to Yes, set Subject
Filter to Test Archive, and Set Only with Attachments to Yes (see
Figure 5-23).

Figure 5-23. Email received trigger

3. Add a “Create item” action from the SharePoint connector. Set the Site
Address and List Name to a list that allows attachments. Set the Title
to the Subject dynamic content from the email trigger (see Figure 5-
24).

Figure 5-24. Creating a SharePoint item

4. Add an “Add attachment” action from the SharePoint connector. Set
the Site Address and List Name to the list you used in step 2. Set the
ID field to the ID dynamic content from the SharePoint “Create item”
action. Set the File Name to the Attachment Name and the File Content
to Attachment Content from the trigger (see Figure 5-24). An “Apply
to each” loop will be added around the “Add attachment” action to
process the Attachments array.

TIP
Information about the attachments in the email is provided as an array of objects
with the Attachment Name and Content being two of the object properties. When
we use the Attachment Name, Power Automate automatically adds an “Apply to
each” loop around the “Add attachment” action. The loop will be used to process
properties from each attachment.

Figure 5-25. Adding attachment

5. Save the flow and use the arrow in the upper-right corner to navigate
back to the flow detail page. Click the “Turn on” link to enable the
flow (see Figure 5-26). (It was disabled because it was a copy of a
previous flow.) Edit the flow again and Test the flow manually by
sending an email with attachments to yourself with the Subject line
“Test Archive.” Wait until you receive the email. Then check the flow
and the list to see if the attachments were added to a new item.

Figure 5-26. Turning on flow to run

This is just a basic example of how you can use an “Apply to each” loop in
Power Automate. The specifics of your flow will depend on your
requirements.

Using “Do until” Loops
“Apply to each” loops are easy to use, but they do have some limitations.
One of the limitations is that the loop must process all the items in the list
before it completes. There is no way to break out of the loop early if you
find that you don’t need to process the remaining items in a list. A “Do
until” loop lets you repeat a set of actions until a certain condition is met.
The loop continues to run until the specified condition is met. When the
condition is met, the loop will exit and the flow will continue. So, if the
condition is met before you process all the items in a list, the loop will
complete without processing the additional items. For example, if you are
creating a sum of all the records in a sorted list for one client, you don’t
need to keep processing after the client changes.

“Do until” loops also have a maximum iteration count just like “Apply to
each” loops. But where “Apply to each” loops can iterate as many as
100,000 times depending on licensing, a “Do until” loop is always limited
to no more than 5,000 iterations. Also, the actions within the “Do until”
loop are always executed at least once even if the condition is true when the
loop starts because the condition is checked at the end of the loop each time
it is executed. If the condition evaluates to false, the set of actions is
repeated and checked again at the end of the next loop.

A “Do until” loop can also be useful when you don’t have a set of records to
process. For example, let’s say you need to keep checking a database until a
record has been updated, or you need to keep checking a folder until a
specific file is found. Once the condition is met, you can proceed with the
rest of your flow.

Because “Do until” loops run until a specific condition is met, they do risk
running as an infinite loop that will never complete. To prevent this, “Do
until” loops contain two properties that limit how long they can run:

Each loop has a default timeout set for one hour using an ISO 8601
duration.

There is also a Count property that determines how many loops can be
completed. If the timeout occurs or the loop count is reached before
the loop condition is met, it will exit anyway.

Adding Parallel Branches
Up until now, we’ve looked at flows that proceed sequentially from one
action to the next. In this chapter, we’ve reviewed several ways to redirect a
flow down a different branch of actions or repeat a set of actions, but the
flow still does one action at a time. Parallel branches in Power Automate
allow users to run multiple actions at the same time, instead of one after the
other in a sequential manner. This lets users streamline complex workflows
and perform multiple tasks simultaneously, resulting in faster processing
times and improved efficiency.

Parallel branches in Power Automate can be used to perform different
actions simultaneously, such as sending emails, updating records in a
database, or creating files in different systems. This provides users with
greater control over the workflow, enabling them to tailor the automation
process to their specific needs and requirements.

Care needs to be taken that the actions completed by each parallel branch
are independent of each other. Otherwise, actions taken by one branch
might interfere with actions executed by a parallel branch. For example, if
two parallel branches try to update the same data item concurrently, one of
the updates may get overwritten.

Parallel branches can be nested within one another, allowing for even more
complex scenarios to be handled. You can also combine them with
conditions and loops to control the flow of your actions. A combination of
conditions, switches, loops, and parallel branches is essential for most
complex business processes.

Exercise 5-5. Creating an approval reminder

In this example, we will use a “Do until” loop in a parallel branch to send
out periodic reminders to approvers that an approval is still pending.

1. Make a copy of the flow you built in Exercise 5-1 using Save As in the
ellipsis menu in the “My flows” list. Title the copy “Approve file with
Reminder” (see Figure 5-27).

Figure 5-27. Copying existing flow

2. Edit the copy of the flow. Insert an “Initialize variable” action just
above the “Start and wait for an Approval” action. Set the Name of the
variable to varLoopCount, the Type to Integer, and the Value to 1.
Delete the existing “Start and wait for an approval” action and replace
it with two actions: “Create an approval” followed by “Wait for an
approval” (see Figure 5-28). Set the “Create an approval” action as
follows:

a. Select “Approve/Reject – First to respond” as the Approval type.

b. Type “Sample Approval with Reminder” as the Title.

c. Type your email address in the Assigned to field.

d. Fill in any other details you would like.

Insert the Approval ID dynamic content from the “Create an approval”
action into the Approval ID field in the “Wait for an Approval” action.

Figure 5-28. “Create an approval” and “Wait for an approval” actions

3. Using the plus (+) sign between the “Create an approval” and “Wait
for an approval” actions, add a parallel branch to the flow (see
Figure 5-29).

Figure 5-29. Adding a parallel branch

4. Add a “Do until” loop to the parallel branch. Set the left side of the
condition to the varLoopCount variable, set the right side to 7, and set
the operation to “is greater than or equal to.”

Figure 5-30. “Do until” loop in a parallel branch

Inside the loop, we’ll set a short delay. Each time the delay cycles, we
will increment the loop counter. If the loop counter reaches a certain
level before the approval completes, a reminder email will be set and
the loop counter will be reset to 1. If the approval completes, the loop
counter will be set to a high number so that the loop will exit at the end
of the next delay. For testing, we’ll use a loop count of 6 and a delay of
10 seconds, for a total of 60 seconds. In a production environment,
you’ll use a longer delay, maybe an hour, and a higher count, like 24.
With those values, a reminder would be sent once a day, but the flow
would only wait a maximum of one hour after the approval is received
before completing.

5. Inside the loop, add an “Increment variable” action. Select the
varLoopCount variable and set the Value to 1 (see Figure 5-31).

Figure 5-31. Increment loop counter

6. Add a Delay action. Set the Count to 10, and select Second as the Unit
(see Figure 5-32).

Figure 5-32. Delay action

7. Add a Condition below the Delay (see Figure 5-33). Set the left side of
the condition to the varLoopCount variable, set the right side to 7, and
set the operation to “is equal to.”

Figure 5-33. Adding a Condition

8. Add a“Send an Email (V2)” action to the If yes side of the Condition.
Type your email address in the To field for testing. Type “Approval
Reminder” in the Subject field, and Type “Please Review and respond
to this approval” followed by the Respond link dynamic content from
the “Create an approval” action (see Figure 5-34).

Figure 5-34. Sending reminder email

9. Add a “Set variable” action below the “Send an email” action. Select
the varLoopCount variable in the Name drop-down and Set the Value
to 1 (see Figure 5-35). This will restart the loop count back to its
original value so another reminder will be sent when the loop count
reaches 7.

Figure 5-35. Resetting the loop counter

10. Expand the condition in the other branch. Add Outcome back to the
left side of the condition. (It was deleted when the original “Start and
wait for approval” action was removed.) Add a “Set variable” action
above the condition and below the “Wait for an approval” action.
Select the varLoopCount variable in the Name drop-down and Set the
Value to 10 (see Figure 5-36). This will stop the loop from sending any
more reminders.

Figure 5-36. Setting loop counter to end reminder loop

11. Save the flow and use the arrow in the upper-right corner to navigate
back to the flow detail page. Click the “Turn on” link to enable the
flow. (It was disabled because it was a copy of a previous flow.) Edit
the flow again and Test the flow manually by uploading a file. Wait a
minute or two and check your email. You should have received both an
approval email and a reminder. Respond to the approval and wait
another minute for the flow to finish.

Summary
In this chapter, you learned how to create more complex flow logic using
actions in the Controls connector. You saw how Conditions and Switches
can be used to execute different sets of values depending on the result of an
equation. You also learned to process arrays of data or wait for a specific
condition to be met using different looping mechanisms. Finally, you
discovered how a flow can execute multiple actions at the same time using
parallel branches.

We’ve now covered all the basic skills you need to create and run Power
Automate flows. In the next chapter, we’ll look at how you can integrate
Power Automate with the other applications in the Power Platform to create
even more complex business applications.

Chapter 6. Integrating with
Other Power Platform
Applications

Power Automate flows are a very powerful tool for automating manual
business processes. But they do have some limitations. Cloud flows are
triggered by an event, like a user pressing a button in the mobile app or
modifying a record in a data source. But Power Automate alone doesn’t
provide much in the way of a user interface (UI) to interact with a flow at
runtime. Some flow triggers can present a simple data entry panel to enter
parameters at runtime, but there is no provision for formatting or styling
such a panel—it is simply a list of the fields you specify in the flow trigger
in the order that you add them. Similarly, while a flow is running, your
options for interacting with a user are limited. The most common
mechanism for interaction is email, which has limited capability for
returning information to the flow.

Power Automate’s limitations can be alleviated in many cases by
integrating a Power Automate flow with one of the other Power Platform
applications. In this chapter, I’ll review what you need to know to integrate
cloud flows with each of the other Power Platform applications.

As we discussed earlier in the book, Power Automate is one of five
applications in the Microsoft Power Platform. The other Power Platform
applications are as follows:

Power BI

A tool to manipulate and visualize data to help make
business decisions

Power Apps

A low-code/no-code application for creating custom apps
that leverage backend data sources

Power Pages

A low-code/no-code application for building business
websites

Power Virtual Agents

A low-code/no-code tool for building chatbots that engage
employees or customers conversationally

One of the most common reasons for integrating a flow with another Power
Platform application is to provide a UI to easily collect input parameters
before running a flow. For example, you could use a Power App as a
frontend to provide a user with an easy way to input information before
invoking a flow. Using the Power App lets you configure the screen for
easier input and allows you to use specialized controls like date pickers and
toggle switches. This can make input easier and more efficient. After the
input is complete, you can pass the information to a flow for processing.

Using Solutions
If you want to integrate Power Automate flows with any of the other
Platform applications, the first thing you need to learn about is Solutions.
Solutions are used to package applications, flows, Power Pages sites, Power
BI reports, and bots. Integrating flows with other applications creates
dependencies between the different components. Because this adds to the
complexity of the applications involved, it’s a best practice to separate
development, testing, and production deployments. If you try to move a
flow that is integrated with other applications, it will break the
dependencies that the integration has created. The result is more work and
refactoring after you move it to the new environment. Building out the

applications, flows, and bots in Solutions lets you preserve those
dependencies as you move the components.

Creating a New Solution
Creating a Solution is fairly straightforward. You only need to provide a
Display name, a Publisher, and a starting Version number for the Solution.
You also have the option to add a description and a configuration page.
Most of the information you need is intuitive, but three items require a bit
more explanation. Figure 6-1 shows the panel that is displayed to create a
new Solution.

Figure 6-1. Creating a new Solution

The Publisher is the owner of the components in the Solution and identifies
who developed them. But this ownership doesn’t convey any security role.
To let other users edit components, they need to be shared. For example, to
let another user edit a flow, you need to share the flow with them and make
them a co-owner. You can learn more about creating a Solution Publisher in
the Power Platform documentation.

The Version number defaults to 1.0.0.0. This four-digit versioning is typical
for Microsoft and reflects the following:

The first digit designates the major release number.

The second digit designates a minor release (for example, new features
added to a major release).

The third number designates a revision, which is usually a fix for a
previously implemented feature.

The final number is the build number. This is incremented
automatically each time the Solution is exported.

Configuration pages are most frequently used to display some light
documentation or to require acceptance of a user agreement when a
Solution is being imported.

Once you’ve created a new Solution, you can begin adding components to
it.

Connection References
When you use a Connector action or trigger in Power Automate, you create
a Connection. That Connection persists by creating an OAuth (Open
Authorization) token to secure the Connection. The Connection stores the
token but does not keep a copy of your credentials. In non-Solution-aware
flows—or flows that aren’t created inside a Solution—these Connections
provide a static connection to the backend data source. A Connection has a

https://oreil.ly/6_lGc
https://oreil.ly/6_lGc

read-only name that is the account that created it. This can make managing
multiple Connections in different environments difficult.

A Connection Reference virtualizes Connections that you use in your flows.
When you import the Solution to a new environment, you can change the
underlying Connection without changing the Connection Reference in the
flow itself. Using Connection References prevents the need to refactor the
flow itself after import. Also, since Connection References have an editable
Display name, tracking Connections across multiple environments is fairly
easy. Multiple Connection References can point to the same Connection,
and a flow can use different Connection References that point to the same
Connection.

When you add an action to a Solution-aware flow, it will automatically
create a Connection Reference that points to the Connection created. Or you
can create Connection References manually inside the Solution and then
use them when you add the action or trigger to the flow. Figure 6-2 shows
the panel that is displayed when you create a Connection Reference
manually. After selecting a Connector, you will be prompted to pick an
existing Connection or create a new Connection.

Figure 6-2. Creating a Connection Reference

Environment Variables
Another important components that you can create in a Solution are
environment variables. They let you set specific configuration data when
you import a Solution into a new environment. The environment variable is
referenced as dynamic content when you build your flow, so changing the
value of the variable when you import the flow to a new environment does
not require you to make changes to the existing flow.

When you create an environment variable, you can choose one of six
different data types:

Decimal number

An integer or whole number

Text

A simple string

JSON

A string of JSON-formatted information

Yes/No

A True or False value

Data Source

A data source

Secret

An encrypted value stored in an Azure Key Vault

NOTE
Data Source environment variables are currently limited to Dataverse, SharePoint, and
SAP ERP connectors. More connectors will be added in the future.

Environment variables can store both a default and a current value for each
environment where a Solution is installed. If neither value exists when a
Solution is imported, then you will be prompted to enter a value that will
become the current value for that environment. Figure 6-3 shows the panel
used to create a new environment variable.

WARNING
Since environment variables are read-only in managed Solutions, it is critical that you
remove the values before exporting. This is easily overlooked.

Figure 6-3. Creating an environment variable

Exercise 6-1. Creating a Solution

In this example, you will create a Solution and a simple flow that you can
use later in this chapter.

1. Log in to https://make.powerautomate.com. Using the environment
picker in the top-right menu, select one of your developer
environments. Select the Solutions tab in the left sidebar. Click on the
“+ New Solution” drop-down. Fill in the New Solution panel with the
following information and click Create (see Figure 6-4):

Display name: Test Solution

Name: TestSolution

Publisher: CDS Default Publisher

Accept all other defaults

Figure 6-4. Creating a New Solution

https://make.powerautomate.com/

2. In the Solution explorer, click the +New button to add an instant cloud
flow to the Solution (see Figure 6-5). Name the Flow “Solution Demo
Flow” and select the “Power Apps (V2)” trigger. Click Create.

Figure 6-5. Adding a cloud flow

Add a Compose action to the flow (see Figure 6-6). Use the
Expressions tab to set the Input of the Compose to
formatDateTime(utcNow()).

Save the flow. Use the arrow in the upper-left corner (next to the flow
name) to return to the Solution explorer.

Figure 6-6. Updating and Saving the flow

You have now created a Solution and added one cloud flow to it.

Managed Versus Unmanaged Solutions
When you first create a Solution, it is unmanaged. When you export it, you
have the option to create either a managed or unmanaged Solution.
Unmanaged Solutions are fully editable, so they are normally used in
development environments. Components in managed Solutions cannot be
directly edited, so they are normally used when you import the Solution into
a test or production environment. However, even in a production
environment you can create an unmanaged Solution layer above the
managed Solution and import components there to edit them. The edited
components will be used in place of the ones in the managed Solution.
However, adding an unmanaged layer to a managed Solution is not
considered a best practice.

Exercise 6-2. Exporting and importing a Solution

In this example, you’ll learn how to export the Solution containing your
flow from the development environment where it was created. You’ll also
see how to publish your customizations so any changes you made to the
flow will be included in the exported Solution. After completing the export,
you’ll learn how to import the managed Solution into a new environment
where you can then run your flow.

1. Open the Solution you created in Example 6-1. Select the Overview
tab. Click Export in the top menu to open the “Before you export”
panel. Select the Publish button to commit all the changes you saved in
your flow before you create your Solution export (see Figure 6-7).
Once the Publish is complete, click Next.

Figure 6-7. Publishing changes

2. On the “Export this solution” panel, accept the Version number of
1.0.0.1 and select the Unmanaged radio button. Click the Export
button (see Figure 6-8).

Figure 6-8. Exporting an unmanaged Solution

3. Wait a few minutes for the export ZIP file to be created. When the
message bar turns green, click the Download button to download the
Solution file (see Figure 6-9). The Solution file will now be in your
Downloads folder.

Figure 6-9. Downloading Solution file

4. Use the Environment drop-down to change to a different environment.
Click the Import solution link on the top menu to open the “Import a
solution” panel. Click the Browse button, navigate to your Downloads
folder, and select the TestSolution_1_0_0_1.zip file that you
downloaded. Click Open to load the selected Solution file. Click the
Next button (see Figure 6-10).

Figure 6-10. Choosing Solution file to import

5. Click the Import button to import the Solution into this environment
(see Figure 6-11).

Figure 6-11. Importing the Solution

Wait a few minutes for the message bar at the top of the screen to turn
green. Open the imported Solution to verify that your flow was imported
(Figure 6-12).

Figure 6-12. Imported Solution

MINIMIZING DATA COMMUNICATIONS
Integrating a flow with other applications usually requires sending
parameters from the other application to the flow and sending return
values from the flow back to the invoking application. Depending on
how much data is sent and how much bandwidth is available, this can
be a time-consuming process. This is particularly true when working
with mobile application clients. To guarantee the best performance, you
should always minimize the amount of data transferred to the minimum
required. Power Automate has three specific actions that are normally
used to minimize the data being returned to an application like Power
Apps:

Filter Array

This action applies a specific condition to each row in an
array and returns only the rows where the condition
evaluates to True.

Data Select

This action can be used to remap specific columns from
an array into a new array. Calculations can also be
applied to process column values during the remapping.

Parse JSON

This action doesn’t change the number of rows or
columns returned but can be used to reinterpret an array
that was processed by Filter Array or Data Select to make
the column values available as dynamic content.

Power Apps
Power Automate flows are very good at processing large amounts of
information, but their ability to interact directly with users is very limited.
Power Apps on the other hand is all about creating an application with a UI.
But since Power Apps is a declarative language, it can be difficult to use it
to process large sets of data. In Power Apps, the closest thing to a loop is
the ForAll() function. But ForAll() isn’t really a loop since it
simultaneously applies the formula to each item in the collection or table.
This can make it difficult to work with large amounts of data. Power Apps
also depends on delegable functions to deal with data sources over 2,000
items—this can cause issues. The solution to all these problems is to use
Power Apps to create the UI in an application, but then call a flow to
process the data. This integration lets both applications use their strongest
features together.

Invoking a Flow from a Power App
To invoke a flow from a Power App, you need to do three things. First, you
need to have a flow that uses one of the two Power Apps triggers. Second,
you need to add the flow to the Power App using the Power Automate tab in
the lefthand bar. Finally, once you’ve loaded the flow, you need to add a run
function to a behavior property of a control, like OnSelect or OnVisible.
All behavior properties in Power Apps start with “On.”

TIP
It is a best practice to use the newer Power Apps (V2) trigger whenever possible. The
major difference is that you can define your input parameters in the trigger instead of
defining them elsewhere in the flow by using the “Ask in Power Apps” dynamic content
entry. Defining them in the trigger itself is better for documenting your flow and is also
more stable. Power Apps and Templates still default to the older original trigger, but you
should change this whenever possible.

Passing Input Parameters
The function you use to invoke the flow is the name of the flow, without
spaces, followed by .run(). Inside the run function, you will be prompted
to supply the input parameters. These parameters will be what you added to
the flow, either in the V2 trigger or by adding the “Ask in Power Apps”
dynamic content entry to fields in the flow for the original trigger.

Returning Values
There are two different actions you can add to the end of your flow to return
values to your Power App. The first is the Respond to Power Apps action,
which can be used to return a single object with one or more properties.
Each property returned must be one of the following data types:

Text

A simple string

Yes/No

A True or False value

File

A string containing a Base64-encoded file

Email

A string containing an email address

Number

An integer or floating point number

Date

A string containing an ISO 8601–encoded date-time value

Properties cannot contain complex objects. Nor can you return an array of
objects. The single object can then be loaded into a variable by adding the
run command that invokes the flow to a Set() function.

The second action you can use to return values to the calling application is
the HTTP Response Action. The body of this action can return a JSON-
encoded array and schema. When the run command returns the array of
values, you can capture it in a collection using either a ClearCollect() or
Collect() function.

TIP
The Respond to a Power App or a Flow action is standard, but the HTTP Response
action is premium. Microsoft recently released a ParseJson() function for Power Apps
that will let you return an array as a JSON string using the “Respond to a Power App or
a Flow” action and convert it to a data table inside Power Apps. However, the values are
more difficult to work with since they are untyped and must be converted to be used in
Power Apps. The HTTP Response action is a better solution unless licensing concerns
are an issue.

Exercise 6-3. Invoking a flow from a Power App

In this example, we will create a simple Power App where you can type in
two numbers, press a button, and have a flow calculate the sum of the two
numbers.

1. Navigate to the development environment where you created the
Solution in Example 6-1. Open the Solution (see Figure 6-13).

Figure 6-13. Opening existing Solution

2. Select Edit from the ellipsis context menu, next to the Solution Demo
Flow you created in Example 6-1 (see Figure 6-14).

Figure 6-14. Opening Solution Demo Flow

3. Expand the trigger and select “+ Add an input” of type Number. Name
the input “Number1.” Add a second Number input called “Number2.”
These inputs will be used to pass two numbers to the flow to be added
together (see Figure 6-15).

Figure 6-15. Adding trigger inputs

4. Delete the formula from the Compose action below the trigger (see
Figure 6-16). Use the Expressions tab of the Dynamic content dialog
to add the following function:

Add(triggerBody()['number'],triggerBody()['number_1'])

Figure 6-16. Adding input numbers together

5. Click the “+New step” button. Type “Power Apps” in the Search bar
and select the Power Apps connector. Click on the “Respond to a
PowerApp or flow” action to insert it into the flow (see Figure 6-17).

Figure 6-17. Inserting “Respond to Power App of flow” action

6. Click “+ Add an output” and choose the Text data type. Name the
output “Result.” Use the Dynamic content dialog to insert the outputs
of the Compose into the “Enter a value to respond” field. Save the
flow and return to the Solution (see Figure 6-18).

Figure 6-18. Configuring return value

7. Select the “+New” button and add a Tablet Canvas Power App to the
Solution. Name the Solution “Demo App” (see Figure 6-19).

Figure 6-19. Adding Canvas app to Solution

8. Click Skip to close the Welcome to Power Apps Studio dialog. Insert
and arrange the following controls on Screen1 as shown in Figure 6-

20:

Two Text input controls

A Text label control

A Button

Figure 6-20. Adding controls to Canvas app

9. Select the Button on the design canvas, and click the Power Automate
icon in the lefthand menu bar. Click the “+Add flow” link. Select the
Solution Demo flow from the dialog (see Figure 6-21).

Figure 6-21. Adding a flow to the app

10. Set the OnSelect property of the Button to the following to trigger the
flow with two input parameters (see Figure 6-22):

Set(return,SolutionDemoFlow.Run(Value(TextInput1.Text),

Value(TextInput2.Text)))

The return variable will capture the value returned by the flow. Set the
Text property of the label control to the following to display the result
calculated by the flow:

return.result

Run the application. Fill in both Text input controls with numbers.
Click on the Button. The result should be displayed in the Text label.

Figure 6-22. Adding flow run function

11. Save the application and use the back arrow in the upper left to return
to the Solution. Click the Leave button in the dialog if prompted.

Power Virtual Agents
The Power Virtual Agents (PVA) application can be used to create
conversational chatbots that users can interact with. PVA bots have tools for
responding to a conversation, but they can’t do calculations or directly
retrieve data from a data source. For those kinds of actions, the bot calls a
Power Automate flow. The process is similar to the one used in Power
Apps. The flow is called, and any input parameters are supplied. Then,
when the flow completes it sends output parameters back to the calling bot.
The bot can then display those outputs to the user or use them to decide
what to do next in the bot.

To use flows in a PVA bot, they must meet these requirements:

The flow must start with the “When Power Virtual Agents calls a flow”
trigger.

The flow must be in a Solution stored in the same Dataverse
environment as your bot.

Flow values must be returned synchronously to the bot.

NOTE
PVA stores bots and flows in the current environment’s Default Solution automatically.
The PVA designer does not provide the ability to manage custom Solutions directly like
the Power Apps or Power Automate designers do.

Although it’s not a requirement, flows normally end with the Return
value(s) to Power Virtual Agents action to return output values back to the
calling bot. If this action is not provided, the flow will still return control to
the bot, but no output will be recorded.

Invoking a Flow from a Chatbot
A “Call an action” node can be added to the Chatbot design canvas for a
Topic. That Node will prompt you to choose a flow or create a new one.
The dialog will list all the flows that start with the “When Power Virtual
Agents calls a flow” trigger in the current environment. As shown in
Figure 6-23, the dialog will also let you launch Power Automate to create a
new flow.

Figure 6-23. Adding a Call an action node

It will automatically generate a flow with the appropriate trigger and
closing action. You can then build your flow by adding inputs, outputs, and
actions between the two endpoints. Input and output parameters are added
to the trigger and the final action in the same way that you added them to
the flow for Power Apps.

Returning a Formatted Table of Results
The major difference between calling a flow in Power Apps and PVA is that
bots cannot use the HTTP Response action to return an array of data. Only a
single object with simple properties can be returned. To return a dataset to a
bot, you need to format it as a table using the same Markdown formatting
you use when creating an approval flow email in Power Automate. The
details of the Markdown language, including examples, can be found in the
Power Automate documentation.

Exercise 6-4. Invoking a flow from a bot

In this example, you will create a simple chatbot that can check inventory
for a part by name. It will then return what parts are in stock and how many
there are.

1. Create a table in an Excel worksheet that contains the sample data
shown in Figure 6-24. Store it on your OneDrive. This will be the data

https://oreil.ly/NH5hC
https://oreil.ly/NH5hC

source for the flow to check.

Figure 6-24. Creating Excel table

2. Return to your Solution in your developer environment and use the
+New link to add a new Chatbot (see Figure 6-25). This will launch
the Power Virtual Agents design site.

Figure 6-25. Adding a new Chatbot to the Solution

3. Type “Solution Demo Chatbot” as the name of your bot, and select
English as the language the bot will use (see Figure 6-26). Wait for the
chatbot to be created. This will take a few minutes.

Figure 6-26. Creating a chatbot

4. Once the bot has been created, select the Topics tab in the lefthand
toolbar (see Figure 6-27).

Figure 6-27. Navigating to the Topics list

5. Add a new blank Topic to the bot (see Figure 6-28). Topics are the
keywords that trigger actions within the bot conversation.

Figure 6-28. Adding a new blank Topic

6. Name the new Topic “Test Bot.” Then add “test bot” (be sure it’s all
lowercase) in the Add phrases field, and press the plus (+) sign to add
that trigger phrase (see Figure 6-29). Select the X in the upper right to
close the panel and show the Topic’s conversation path.

Figure 6-29. Adding trigger phrases

Select the plus (+) sign to add a node between the Trigger Phrases and
the message node in the bot conversation path (see Figure 6-30). In the
Add a Node dialog, select Ask a question. Type “What Product are you
interested in?” as the question message, and select User’s entire
response under Identify.

Figure 6-30. Adding a question

7. Select the plus (+) sign to add a node below the question node. In the
“Add a node dialog,” select “Call an action,” and then choose to
Create a flow (see Figure 6-31). This will launch the Power Automate
website and create a simple flow with the PVA trigger and return
value(s) actions. The existing flows in your Solution don’t show
because they aren’t using the PVA trigger.

Figure 6-31. Creating a flow

8. Rename the flow to “In Stock Query.” Then expand the trigger and use
the “+Add an input” to add a Text input parameter. Change the name
of the parameter to “Product” (see Figure 6-32).

Figure 6-32. Adding input parameter to trigger

9. Add an “Initialize variable” action between the trigger and the return
value(s) actions. Type varReturnTable as the name of the variable.
Select String as the Type of variable, and add the following as the
initial value (make sure you add a carriage return after the second line
so it looks like the screenshot in Figure 6-33):

| Product | In Stock |

 |-----------|-----------:|

Figure 6-33. Initializing a variable

10. Add a “List rows present in a table” action after the “Initialize
variable” action. If necessary, sign in to create a new Connection
Reference for Excel Online. Fill in the “List rows” action as follows
(see Figure 6-34):

Location

OneDrive for Business.

Document Library

OneDrive - <<Your Tenant Name>>.

File

Choose the Excel file you created at the start of this
example.

Table

Table1.

Figure 6-34. Adding List rows present in a table

11. Add a “Filter array” action after the List rows present in a table. Add
the value dynamic content from the “List rows” action to the From
field. Add the input parameter called Product to the left side of the
filter and the Product field from the “List rows” to the right side (see
Figure 6-35). Set the comparison to “contains.” This will check to see
if the Product in the table row is in the string supplied as input from
the bot. The output will be an array of rows that match the product
being requested by the bot.

Figure 6-35. Filtering the rows

12. Add an “Apply to each” loop under the “Filter array” action. Insert the
Body output dynamic content returned by the Filter array. Add an
“Append to string variable” action inside the loop. The individual
fields from the Filter array are not available directly as dynamic
content, but we can access them by typing the JSON in the
Expressions tab. Add the following JSON using the Expressions tab
for each field:

items('Apply_to_each')?['Size']

items('Apply_to_each')?['Product']

items('Apply_to_each')?['On Hand']

Add a pipe (|) symbol on each end of the string and between Product
and On Hand. Make sure to add an additional carriage return after the
last pipe so your “Append to string variable” action looks like the
screenshot in Figure 6-36.

Figure 6-36. Appending array items to return string

13. Expand the “Return values()” action, and add a text Output parameter.
Change the name to “Output” and insert the varReturnTable variable
as the value to be returned. Save the flow and return to your PVA
design canvas.

Figure 6-37. Returning formatted table as string

14. Click on the “Call an action” entry in the “Add a node” dialog. Select
the In Stock Query flow you just saved. In the node that is added,
select Var from the variable drop-down as the value for the Product
(text) input parameter (see Figure 6-38).

Figure 6-38. Selecting flow to call

15. Add the Output variable from the variable drop-down to the Message
field. Save the edited Topic using the disc icon in the upper left. Select
the Test bot icon next to the Save disc icon. This will open a chat
window on the left where you can test your bot (see Figure 6-39).

Figure 6-39. Adding flow Output variable to Message

16. Type “Test Bot” into the “Type your message” field. When the bot asks
which product you are interested in, type either “Sprocket” or
“Widget” into the message field. Wait for the bot to return the
formatted response. Your screen should look like Figure 6-40.

Figure 6-40. Testing the bot

Since bots can’t process information directly, using Power Automate to
retrieve and format data is a very common integration.

Power BI
To complete complex processing, Power Apps and PVA integrate with
Power Automate by invoking flows using a manual trigger. For Power BI,
however, there are many typical scenarios where Power Automate flows are
used. These scenarios can be grouped together based on the triggers used in
the flow. Here are the most common scenarios:

Recurrence Triggers

Can be used to schedule automatic distribution of Power BI
reports or a periodic refresh of a dataset.

Automated triggers

Can be used to respond to data-driven alerts or other events
generated by Power BI.

Manual triggers

Can be used to trigger flows that process Power BI data
presented in a Power BI report. The Power BI connector
contains eight Power BI–specific triggers, as shown in
Figure 6-41.

Figure 6-41. Power BI triggers

The “Power BI button clicked” trigger is the one manual trigger. The other
seven are automated triggers. Scheduling flows to refresh Power BI data is

done with the regular recurrence triggers available in Power Automate.

Another difference regarding integration between Power BI and the other
Power Platform applications is that you do not return values directly from
the flow back to the calling Power BI report or dashboard. There are actions
that you can use to add rows to an existing Power BI dataset or to refresh a
report. But there is no Respond action like there is for Power Apps and
Power Virtual Agents. The lack of a Respond action means that building
flows to integrate with Power BI is essentially the same process as building
other scheduled, automated, or instant flows.

Power Pages
Power Pages is the newest addition to the list of Power Platform
applications that can be integrated with Power Automate flows. It can be
used to create interactive, data-driven web pages that can be shared both
inside an organization and with the general public. The application’s low-
code/no-code approach makes it easy to do this without requiring extensive
knowledge of HTML. Like Power Apps and Power Virtual Agents, Power
Pages focuses on the presentation of content but has very limited ability to
retrieve and process data for display. Calling a Power Automate flow from a
Power Page lets users retrieve information and display it on a web page.

Invoking a Flow from a Power Page
At the time of writing, support for triggering a flow from a button on a
Power Page is available as a Preview feature. Features labeled as Preview
should not be used in production implementation, since they may change or
be withdrawn before they reach general availability. This is particularly true
for the integration between a Power Page and Power Automate flow since it
requires the use of JavaScript. So, it isn’t a complete low-code/no-code
implementation at present. This should change as the feature matures. If
you would like to learn more about how to invoke a flow from a button on a
Power Page, you can find a full walkthrough in the Power Automate
documentation.

https://oreil.ly/e3hs1
https://oreil.ly/e3hs1

Summary
In this chapter, you learned how to create Solutions to group flows together
with other applications, flows, and bots in order to move them to another
environment. You also learned how to make environment variables and
Connection References to make those moves easier. Once you learned how
to move related components between environments, you began practicing
how to integrate Power Automate flows with other applications in the
Power Platform to make them more powerful. Using these integrations, you
can overcome the limitations of any of the platforms and develop robust
automations that can transform your work.

But, as the flows become more complex, there are more chances to run into
bugs and errors. In the next chapter, you will learn how to monitor and
troubleshoot existing flows. You’ll also see how you can build flows that
adapt to errors without failing.

Chapter 7. Troubleshooting
Tips

Whether they are standalone or integrated with other Power Platform
applications, Power Automate flows are a very powerful tool for building
low-code/no-code solutions to business problems. In Chapter 6, you learned
how to integrate flows with other applications to make them more effective.
However, these solutions are only helpful if they run without errors. As you
work with Power Automate, you will occasionally encounter errors that can
be caused by a multitude of issues. They may result from bad syntax in
writing expressions, inconsistent data quality, or faulty logic when
designing the flow. In this chapter, you’ll learn the different ways you can
find and remove errors from your flows. I’ll also show you how to design
your flows to automatically adapt to errors that may happen during a run.

Reviewing Run History
Every time a flow runs, it records a history log. These logs are kept for 28
days. Figure 7-1 shows a typical log history on the detail screen of a flow.
Each log entry shows when the flow ran, how long it ran, and whether it
was successful or not. You can also use the Edit columns link at the top of
the list to add columns to the view for any input parameters that were given
to the flow.

Figure 7-1. Flow run history logs

Filtering the All Runs View
The 28-day run history shows all the instances when the flow ran either
successfully or unsuccessfully. But there are two special cases that are not
included in the main view. The first is when the flow was using a polling-
based trigger but wasn’t triggered because there was no new data when the
trigger was polled. The second case is when the flow wasn’t triggered
because the trigger itself threw an error. These two runs can be accessed by
selecting the All Runs view in the upper-right corner of the 28-day history
list. In the All Runs view, you can filter on any type of run, including runs
where the trigger didn’t fire, checks (no new data), and failed checks.

Selecting a flow from any of these lists will show you the status of each
action in the flow for that run. Figure 7-2 shows an example of a history log
with some failed actions.

Figure 7-2. Sample flow run with error

Within the history log, you’ll see the following symbols:

Green circles with a checkmark indicate that the action completed
successfully.

Red circles with an exclamation point indicate that the action failed.

Gray circles with an X indicate actions that were not executed.

TIP
Failed container actions like scopes, conditions, or loops will be marked as failed if any
action inside them fails. You will usually need to drill down to find the innermost failed
action to get a meaningful error message. For loops, there are links to jump directly to
the next or previous error.

Expanding an action that failed will show you the error message that was
thrown by that particular action. Looking at the history will help you figure
out where your flow failed and what caused it to fail. This is usually the
first step when troubleshooting a flow.

Read the Error Message
Once you identify where your flow is failing, it’s critical that you read the
entire error message. People often read the first line where it says
something like “Unable to process template language expressions in action”
and assume that’s the error message. But that doesn’t tell you much. If you
read the full error message in Figure 7-2, you will get to the spot where it
says “‘Address’ doesn’t exist, available properties are ‘City, State.’” This
gives you the details you need. In this case, the Address field in the data is
null so it cannot be used when trying to get the address from Bing. You now
know that the error is caused by missing data, and you can start looking for
why that field isn’t available. Error messages can be long and cryptic, but
they usually point you in the right direction if you read the whole message.

Common Errors
There are many common errors that you will see when troubleshooting a
flow. Understanding the kinds of errors you will encounter can help when
trying to fix them.

Authentication Failures
One of the common errors that you can identify right from the error
message is an Authentication failure. Authentication failures happen when
the credentials used to connect to a data source are invalid. This may
happen because a user password changed or permissions to a data source
were altered. You can normally fix an authentication error by updating the
connection being used in that particular action.

You can see a list of all the connections used by your flows in the
Connections tab on https://make.powerautomate.com. Figure 7-3 shows a
sample list of connections where some of the connections have failed.
Clicking on the Fix connection link will take you to a Login dialog to fix
the credentials being used by that connection.

Figure 7-3. Fixing a connection

You can also use the ellipsis menu in the upper-right corner of an action to
select a different connection or to log in to fix an invalid connection.

https://make.powerautomate.com/

Action Configuration Errors
Another common error happens when one of the parameters in an action is
misconfigured. This could happen because you loaded the wrong dynamic
content in the field or because the content is null. The solution is to edit the
flow to fix the configuration issue and then use the Resubmit button to run
the flow again with the updated configuration.

TIP
The Coalesce() function can be used to replace null values at runtime with a default
value. Coalesce() will interpret each parameter it is passed from left to right. It will
then return the first parameter it runs into that is non-null. For example, Coa⁠lesce​
(items('Apply_to_each')?['fieldname'],'default Value') could be used when
processing an array to substitute default value whenever the current item field is null.

Data Errors
Data quality issues are one of the major causes of action configuration
errors. But data quality may be a problem even if the flow runs without
errors. Expanding an action in a flow history will show you the inputs and
outputs used by each action during a flow run. These inputs and outputs are
often critical to finding and fixing problems in your flows. The history log
will show you the values of inputs and outputs for most actions in a flow
run (see Figure 7-4).

Figure 7-4. Action inputs and outputs

As you can see in Figure 7-4, sometimes the inputs or outputs are too large
to display easily in the log. Selecting the Click to download link will
download a JSON representation of the data and open it in your web
browser. The download will be displayed with no formatting by default. It’s
a good idea to add a JSON formatter extension to your browser so the data
will be displayed as formatted JSON. This will make it much easier to read.
These extensions are available for any of the major browsers.

NOTE
Microsoft’s Edge browser has a built-in JSON viewer, but it isn’t enabled by default. To
enable the JSON viewer, do the following:

1. Navigate to edge://flags in your Edge browser.

2. Type “JSON” into the Search flags search box.

3. Select Enabled in the JSON Viewer drop-down menu.

4. Click the Restart button to reload your browser.

Logic Errors
The hardest type of errors to troubleshoot are problems with the logic of
your flow. For example, let’s say you want to send items in a list to users in
an email. When you run your flow, it sends the email. But instead of getting
one email with all the items, you get one email for each item. This is what
happens when you put the “Send email” action inside the loop where you
process the rows from the data source. To send one email, you need to put
the “Send email” action after the loop finishes. But doing that means you no
longer have access to the data inside the loop. So, it’s not a simple fix. To
solve this problem, you need to gather the information inside the loop and
then save it to a variable or an HTML table so you can use it after exiting
the loop. This is why it is critical to plan your flow before you start building
it. Having a good idea of what the steps are and what order they should
follow is critical to designing a successful flow. The flow may run, but if it
doesn’t do what you want it to, then it will need repair.

Monitoring and Tracking Cloud Flows
Reviewing the history log of a flow for errors requires being proactive.
First, you need to know that the flow isn’t working correctly. Finding non-
working flows when you are still in the development process is easy. But
how do you know that a production flow isn’t working so you can begin

troubleshooting what is wrong with it? That’s easy if your flow does
something like send you an email or make changes to a data source for you.
But what if you are building the flow for a wider audience? You may not
notice when a flow is failing because you don’t see the outcome of the flow
directly.

Aside from direct experience, there are two primary ways that you will
know that your flows aren’t working correctly. The first is that Microsoft
will send you a weekly email notification listing any of your flows that fail.
The second is by viewing a list of recent flow failures in the Monitor tab
under Cloud flow activity on https://make.powerautomate.com.

Email Notifications
Flow failure emails are sent to the owner of the flow automatically. To
make sure that your inbox isn’t overwhelmed with failure messages, the
emails are only sent once a week. All the flows that failed in the last week
will be summarized in a single email. Figure 7-5 shows a typical failure
notification. The email contains a link to the flow that failed and a count of
how many times it failed in the last seven days.

https://make.powerautomate.com/

Figure 7-5. Failure notification email

The failure notification emails are sent automatically. You don’t need to do
anything to receive them. You can opt out of the emails or re-subscribe to
start receiving them again using an online form.

Monitoring Cloud Flow Activity
You can also check on cloud flow activity on
https://make.powerautomate.com or in the mobile Power Automate client
application. On the website, select Cloud flow activity under Monitor in the
lefthand toolbar to see a list of recent flow runs. Figure 7-6 shows a typical
Cloud flow activity page. Using this screen, you can search for a specific

https://aka.ms/flow-mail
https://make.powerautomate.com/

flow, see flows that sent notifications, and see flows that failed. Clicking on
a flow in the list will take you to the history log for that specific run.

Figure 7-6. Monitoring cloud flow activity

You can also monitor cloud flow activity using the Power Automate mobile
client application. Figure 7-7 shows the Activity tab in the mobile client.
However, the mobile client only shows flows that are not Solution-aware.
Solution-aware flows are flows that are created in a Power Automate
Solution. A single Solution can hold multiple flows.

Figure 7-7. Activity on mobile client

View Analytics for Cloud Flows
There are also analytical reports available in the Power Platform Admin
center. These Power BI reports will aggregate information from the 28-day
history logs for an environment. They will display how many flows were
run, what types of flows were run, new flows created, flows with errors,
flows shared, and Connectors used. Figure 7-8 shows a typical analytics
error report.

Figure 7-8. Analytics error report

The specific reports available to be viewed depend on the role of the
administrator. This list summarizes what each type of administrator can see:

Environment administrator

Can view reports for the environments that the
administrator has access to

Power Platform administrator

Can view reports for all environments

Dynamics 365 administrator

Can view reports for all environments

Microsoft 365 Global administrator

Can view reports for all environments

You can read more about the specific reports available in the Power
Platform documentation.

Improving Performance with Process Mining
Another tool for assessing flow performance is Process Mining, which is
available on the flow details page. The Process Mining tool can search the
flow runs you’ve made in the last 28 days and provide analysis that you can
use to improve your flow. For example, Process Mining can tell you which
actions in your flow are taking the most time and provide recommendations
on how to improve your flow’s performance. Figure 7-9 shows a typical
Process Mining screen. The darker-colored rectangles in the flowchart
denote actions (activities) that took longer to run. By default, Process
Mining shows an aggregate of the variants (different versions of the flow),
cases (different runs of the same version), and activities (unique actions in
the flow). There are several ways to filter the data to figure out the
bottlenecks and inefficient actions in your flow.

https://oreil.ly/bg_Up
https://oreil.ly/bg_Up
https://oreil.ly/bg_Up

Figure 7-9. Process Mining screen

You can read more about how to use Process Mining in the Power Automate
documentation.

Fixing Flow Errors
Now that you have learned how to find flows that aren’t working correctly,
it’s time to look at how to fix those errors. I’ll show you some tips on how
to isolate and identify errors so you can fix them. I’ll also show you some
techniques that you can use in your flows to automatically handle errors
that occur while your flow is running.

Using the Flow Checker
The Power Automate Flow checker runs continuously while you are editing
your flow and will help you identify and fix problems before you try to run
your flow. The Flow checker identifies both errors (like using the wrong
data type in a field) and warnings (like potential performance issues).
Figure 7-10 shows the menu link on the toolbar that will open the Flow
checker. The red dot icon populates over the Flow checker menu link and is
an indicator that there are warnings or errors in the current flow.

https://oreil.ly/kkT3E
https://oreil.ly/kkT3E

Figure 7-10. Flow checker menu link

Selecting the Flow checker menu link will open a panel on the right side of
the designer, like the one in Figure 7-11. The panel has entries for each
error or warning that identify the specific action that is causing the issue. It
also contains a brief description of the issue. If you fix the issue in the flow,
the error or warning will disappear after a short period of time.

Figure 7-11. Flow checker panel

The Flow checker panel will also appear automatically if you try to save the
flow while an error exists. You must fix all the errors before you can save
the flow. You can save flows without fixing any warnings that are shown.

Using Compose Actions to Check Values
You’ve seen how you can review the history of a recent cloud flow run and
how you can expand most successful actions to see what they used for input
values, as well as the values that were output from them. But not all actions
will give you that capability. Some actions, like a condition, will only show
you whether the condition was successful or failed. So, it can be difficult to
determine whether a condition is failing because you have the wrong
condition or because the data is different than you expect. There will also be
times when you want to look at the values used in actions that have failed.
Failed actions will give you an error message, but they won’t show you the
actual inputs for that action. In these cases, you can add a Compose action
just prior to the action that has the values you can’t see. Then add to the
Compose the same values you want to look at. When you run the flow the
next time, you will be able to see the values even if the flow fails. Compose
actions use untyped data, so you can add any type of value to the Compose
and you will see the values.

Streamlining Testing
You will often have to run a flow multiple times to find and fix a specific
error. This can become a time-consuming experience if the flow needs to
retrieve large amounts of data or requires user interaction. During testing,
you can use the Static Results option under the Settings of many actions to
shorten the time it takes to complete each run by hardcoding the output
from particular actions. For example, if you are testing an approval flow,
you can hardcode the responses of the approvers so the flow won’t send out
emails but will act as though the approval responses were already received.
Static Results can also be used to simulate an error when retrieving data
from a data source.

To set the Static Results for an action, you should run the flow once and
copy the Body output from the action you want to set. Then, access Static
Results from the ellipsis menu of the action. Static Results will be disabled
by default. Once enabled, you can click the icon to the right of the Static
Result label (boxed in Figure 7-12), to switch the view to JSON mode.
Once in JSON mode, you can insert the Body you copied from the sample
run just after the Header {} line. Be sure to add a comma after the Header
since you are adding another property. Figure 7-12 shows an Approval
action that has been configured with a Static Result.

Figure 7-12. Static Result (Preview)

Adjusting Run After Settings
Most programming languages have a structure called a try-catch block
for organizing code. This structure can be used to handle predictable errors
that occur during program execution, so the application doesn’t fail. The
try block contains the code that might fail with an error, and the catch
block contains the code that handles or logs the error before continuing

execution. It lets a programmer anticipate potential issues and provides a
way for the application to continue running or exit in an orderly fashion.

Although Power Automate is a no-code/low-code system, it has a similar
capability. Almost all flow actions have a Configure Run After entry in their
ellipsis menu. This lets you configure what the current action will do if
something happens in the action above it in the flow. You can configure an
action to run when one of four possible events occur in the preceding
action. You can choose to run the action after multiple different events:

Action is successful

The preceding action ran successfully.

Action has failed

The preceding action encountered an error (timeouts are not
errors in this case).

Action is skipped

The action was skipped because a condition was not met, a
previous action failed, or it was in an alternate branch that
the flow did not follow.

Action has timed out

The preceding action timed out.

TIP
Individual actions that access backend data sources will time out after two minutes. The
entire flow will time out after it has been running for 30 days. There are also some
actions like approvals where the specific timeout can be set in the settings of the action.
The timeout can never be longer than 30 days.

Using the Terminate Action
When using the Run After settings to react to an error, sometimes you want
to end the flow successfully even though an error has occurred. The
Terminate action can be used to end the flow immediately with any one of
three conditions: succeeded, failed, or canceled. If the flow is terminated as
canceled, you can supply a custom error message and code. The Terminate
action is also useful when you are testing so you can end a flow early to
check a particular section of the flow for issues.

Using Scope Actions with Run After
The “run after” setting always applies to the previous action in a flow. But
what if there are three or four previous actions that might throw an error?
How do you respond to those? The answer is to enclose all of those actions
in a single Scope action. A Scope is a container action that can hold one or
more actions in a flow. One of the benefits of a Scope is that you can
expand and contract the Scope to make a large flow more readable at a high
level. But it can also be used when you are setting the “run after” of an
action that follows a Scope. If any action inside the Scope fails or is timed
out, then the whole Scope times out. So by using a Scope, you can have an
action run based on what happens with one or more actions in a Scope.

WARNING
A few actions, like Initialize variables, cannot be enclosed in a Scope because they must
be added directly to the main line of actions in a flow.

Exercise 7-1. Simulating a try-catch block

In this example, you will create a small flow that simulates appending
information to a Text log. You will use Scope actions and Configure Run
After settings to recover from a “file not found” error if the Text log doesn’t
already exist.

1. Create an instant cloud flow entitled “Write Log File” using the
“Manually trigger a flow” trigger (see Figure 7-13).

Figure 7-13. Creating an instant cloud flow

2. Add an “Initialize variable” action. Name the variable varFileName
and select type String. Set the value field to ErrorLog.txt. This variable
will hold the file name for your Log file (see Figure 7-14).

Figure 7-14. Initializing a variable

3. Add a Scope action and rename it “Try Block”. This Scope will hold
all the actions that might fail (see Figure 7-15).

Figure 7-15. Adding a Scope

4. Add a OneDrive for Business “Get file metadata using path action to
the Try Block Scope. Use the Dynamic content dialog to add the
varFilename variable to the file path field (see Figure 7-16). Since

you aren’t specifying anything other than the filename, it will look in
the root folder of your OneDrive.

Figure 7-16. Getting file metadata using path

5. Add a Scope action and rename it “Catch Error.” Use the ellipsis menu
to select Configure Run After. Check the “has failed” checkbox, and
uncheck the “is successful” checkbox. Click Done (see Figure 7-17).
This Scope will now run if anything in the Try Block Scope fails.

Figure 7-17. Adding Scope to run after an error

6. Add a OneDrive for Business “Create file” action to the Catch Error
Scope. Use the Dynamic content dialog to add the following values to
the action (see Figure 7-18):

Folder Path: The path output from the “Get file metadata using
path” action

File Name: The varFilename variable

File Content: Add the following using the Expressions tab:

Concat(formatdatetime(utcNow(),'MM-dd-yyyy HH:mm')

,' - ',

first(result('Try_Block'))?['outputs']?['body']?['message'])

This will create a text file with one line containing the current date-
time and the first error message in the Try Block Scope actions.

Figure 7-18. Creating a new log file

7. Click the plus (+) sign above the Catch Error Scope to add a parallel
branch to the flow. Add a Scope action and rename it “Main Branch”
(see Figure 7-19). This is the Scope that will now execute if the Try
Block runs successfully.

Figure 7-19. Adding Main Branch Scope

8. Add a OneDrive for Business “Get file content” action to the Main
Branch Scope. Use the Dynamic content dialog to add the Id (unique
identifier) output from the “Get file metadata using path” action to the
File field. This will retrieve the existing file content so we can append
a new line to the end (see Figure 7-20).

Figure 7-20. Getting existing log file content

9. Add a OneDrive for Business “Update file” action to the Main Branch
Scope. Use the Dynamic content dialog to add the following values to
the action:

File: The Id (unique identifier) output from the “Get file metadata
using path” action

File Content: Add the following code using the Expressions tab:

Concat(outputs('Get_file_content')?['body'],

decodeUriComponent('%0A'),

formatdatetime(utcNow(),'MM-dd-yyyy HH:mm'),' - No Errors')

This will add a new line to the end of the existing log file content
containing the current date-time and the text “No Errors” (see
Figure 7-21).

Figure 7-21. Updating log file

10. Add a Scope action and rename it “Cleanup.” Use the ellipsis menu to
select Configure Run After. Check the “is skipped” checkbox and the
“is successful” checkbox. Click Done. “Is skipped” needs to be
checked for both Scopes in the parallel branches because one of the
branches will always be skipped (see Figure 7-22).

Figure 7-22. Adding Cleanup Scope

11. Add a “Send me an email notification” action. Set the Subject field to
Added Log Entry and the Body to “An entry was added to the Log
file” (see Figure 7-23). This will send you an email saying that a log
file entry was added.

Figure 7-23. Sending an email notification

12. Save and run the flow twice. The first run should throw an error
because the log file doesn’t exist, so the flow will finish successfully
by using the Catch branch. The second run should run without error
and follow the Main Branch of the flow.

Resubmitting Flows
You’ve now learned how to find and fix flows that aren’t running
successfully. If your flow is using a manual trigger, it’s easy to rerun the
flow after you fix it. But what about flows that use automatic or recurrence
triggers? How can you re-trigger them after the time has passed or the
trigger event is concluded? Figure 7-24 shows the Resubmit link on the
toolbar of a flow run opened from the history log.

Figure 7-24. Resubmitting a flow

Once you’ve fixed the errors that are causing the flow to fail, you can return
to the failed run in the history and select the Resubmit link on the toolbar.
This will re-run the flow with the same data that was used when it was
originally triggered. This doesn’t guarantee that the resubmitted flow will
run successfully. If the input parameters supplied by the trigger were
incorrect, then the flow will still fail. But if the flow failed because actions
were misconfigured or connections failed, then resubmitting the flow may
help it run successfully.

Canceling Running Flows
Another problem that can arise when trying to fix errors in flows is that the
error doesn’t cause the flow to stop. In this case, you can’t fix and resubmit
the flow until after it finishes running. If the problem is an infinite loop, the
flow won’t finish until it times out after 30 days. Even if it’s not in an
infinite loop, it may take hours before the flow finishes. In these cases, you
can select the running flow from the history log and cancel it using the
Cancel link on the toolbar. Figure 7-25 shows the Cancel link on the toolbar
as it appears in a running flow.

Figure 7-25. Canceling a running flow

Summary
In this chapter, you learned how to find, repair, and resubmit flows that
don’t work correctly the first time you run them. You also reviewed several
ways to access different kinds of reports that detail how cloud flows are
running.

So far in the book, I’ve focused on different types of cloud flows. In the
next chapter, I’ll introduce you to a completely different kind of flow—a

desktop flow. Whereas cloud flows use connectors to access and manipulate
information stored in data sources, desktop flows use your computer’s UI to
interact with websites and programs. Working directly with the UI
eliminates the need for established APIs. This can make it easier to
automate tasks that are done manually on your computer or interact with
legacy programs that can’t be accessed directly by cloud flows.

Chapter 8. Desktop Flows

Power Automate cloud flows are powerful, but they don’t work in certain
situations. For example, data may be stored in a source that doesn’t have a
connector or an API that can be used in a cloud flow to access the data. Or
you may be trying to automate a manual process that someone does using a
computer, terminal, or web page. The solution for these instances is Power
Automate Desktop (PAD), which lets you create automated desktop flows
that access information through the UI or a web browser on a computer
desktop.

Using PAD, you can record actions performed on a computer desktop or a
web browser. After creating the recording, you can edit the desktop flow.
You can also create a desktop flow by dragging and dropping actions onto a
workspace. These desktop flows can then re-run the actions on demand as
needed. PAD provides a simple way to automate daily, repetitive tasks that
you complete on your computer. This process of recording steps and
replaying them is called Robotic Process Automation (RPA), which we
discussed earlier in the book. But what is RPA, and how does it differ from
the regular cloud flows that are built in Power Automate?

What Is Robotic Process Automation (RPA)?
RPA refers to the use of software robots known as “bots” to automate
routine, repetitive tasks that are normally performed by human workers.
RPA technology is designed to mimic human interactions with digital
systems, allowing organizations to automate manual, time-consuming, and
repetitive tasks. This frees up human workers to focus on more valuable and
creative work. The goal of RPA is to increase efficiency, reduce costs, and
improve accuracy by automating manual tasks. PAD is Microsoft’s entry
into the world of RPA.

Power Automate and PAD are both designed to be used to automate
business processes. So, how is PAD different from regular Power
Automate? The first difference is that Power Automate is a cloud-based
platform, while PAD is a Windows desktop application that lets users
automate tasks on their local computers. Both provide a visual, low-code
environment for automating business processes. However, Power Automate
is designed to work through APIs and connectors to access data sources,
and PAD automates interactions through the local computer’s UI. In
summary, Power Automate is a cloud-based automation platform designed
for automating workflows and business processes across different services,
while PAD is a Windows desktop application designed for automating tasks
and workflows on the local computer.

Prerequisites for Power Automate Desktop
The first step when installing the PAD designer is to make sure that your
computer meets all the prerequisites. If you are using Windows 11 as your
desktop operating system, you won’t need to worry about this section since
PAD comes preinstalled on Windows 11. But if you are running any other
operating system, review the following list to make sure that you have all
the prerequisites:

A Microsoft or work or school account: PAD stores your desktop flows
in either OneDrive consumer (Microsoft account) or the Dataverse
database in one of your Power Automate environments (work or
school account).

A computer that runs one of the following 64-bit operating systems:

Windows 10/11 (Home, Pro, or Enterprise)

Windows Server 2016/2019/2022

A computer with .NET Framework version 4.7.2 or later installed

Microsoft Edge Chromium (version 80 or later), Google Chrome, or
Firefox browser

Environment with a Dataverse database (Office 365 accounts only)

A keyboard attached to the computer

An active internet connection

Depending on the account you use to sign in to PAD, there may be some
limitations that apply to your use of the product. For example, if you use
Windows 10/11 Home, you won’t be able to record Selenium IDE desktop
flows or use a cloud flow to execute a desktop flow.

Installing Power Automate Desktop
There are two different ways to install the PAD client: from a downloaded
.MSI installer file or directly from the Microsoft store. If you have
Windows 11, you won’t need to install it because it comes preinstalled on
this OS. The .MSI installer provides more control over the installation.
Installing the PAD client from the Microsoft store will do a silent install and
will not install optional components like the browser extensions or the
machine runtime app. If you create a desktop flow that uses these features,
you will be prompted to add them at that time.

Exercise 8-1. Installing PAD

In this example, you’ll download the MSI installer to install PAD on your
computer. If you have Windows 11, you can skip this exercise because the
PAD client is already installed.

1. Log in to https://make.powerautomate.com, and select the “My flows”
tab in the navigation bar on the left. On the “My flows” page, select
the “Desktop flows” tab and click on the Install drop-down in the
upper-right corner of the screen, as shown in Figure 8-1. This will give
you the option of installing PAD or an on-premises data gateway.
Select Power Automate for Desktop from the drop-down.

https://make.powerautomate.com/

Figure 8-1. Installing PAD

2. Wait for Setup.Microsoft.PowerAutomate.exe to finish downloading.
When it finishes, open the file. You will see a dialog window similar to
the one in Figure 8-2. Click the Next button.

Figure 8-2. PAD install wizard

3. On the Installation details dialog, you can select different options
related to the PAD client. Most of the selections will already be
checked.

The installer allows you to install four different applications on your
device:

The desktop designer that you use to create, edit, and run your
desktop flows

The machine-runtime application that can be used to launch
desktop flows from a cloud flow

Microsoft Edge web drivers that support the web browser
extensions used to record and play back interactions with
websites in your web browser

UI automation support for interacting with Java applications

Check the final checkbox to accept the terms of use. Your screen
should now look like Figure 8-3. Click the Install button.

Figure 8-3. Installation detail options

4. Accept the User Account Control dialog, if it comes up, to allow the
installer to make changes on your computer. Wait for the Installing
package progress bar to complete, as seen in Figure 8-4.

Figure 8-4. Installation progress

5. On the final screen of the wizard, you will have the option to install
browser extensions for whatever browsers you have installed on your

desktop. Click the Close button, as shown in Figure 8-5, to exit the
setup program.

Figure 8-5. Installation successful screen

Machine Settings
Installing the machine runtime application is one of the optional elements
available during installation of PAD. This application is required if you
want to trigger your desktop flows from regular cloud flows.

Originally, PAD used the same on-premises data gateway as the rest of the
Power Platform. But Microsoft deprecated the use of gateways by PAD in
late 2022. Now, PAD registers devices directly with Power Automate in the
cloud. When you install PAD on a computer, it is automatically registered in
the default environment in Power Automate. If you don’t want to call
desktop flows from the default environment, you can use the machine
runtime application to update the environment manually.

WARNING
You cannot connect a Windows 10/11 Home computer to the cloud to invoke desktop
flows from a cloud flow.

You also have an option to create a machine group using the machine
runtime application. Machine groups can be used to distribute your
automation workload across multiple computers and optimize productivity.
When you trigger a flow on a machine group, it is added to a queue. The
first available computer in the group will then run the flow. You can read
more details about how to manage machines and machine groups for PAD
in the Power Automate documentation.

Licensing Requirements
PAD is free to use in attended mode on a Windows 10/11 desktop. But
triggering a desktop flow from a Power Automate cloud flow requires a
Power Automate per-user plan with attended RPA. A regular Power
Automate or Power Apps per-user plan will not be enough. The Power
Automate per-flow plan also doesn’t include rights for running attended
desktop flows. Figure 8-6 shows the retail licensing costs for Power
Automate. Only the center license (per-user plan with attended RPA) will
let you run attended desktop flows.

https://oreil.ly/S1hNu

Figure 8-6. Power Automate plan pricing

There are two licensing options for running unattended flows. To run
unattended flows on VMs or desktops that you provide to Power Automate,
you must have an unattended RPA add-on in addition to a Power Automate
license. An alternative to this is to run unattended flows on machines
provided by Microsoft. These “hosted” machines require a slightly more
expensive add-on, but they help you avoid the cost of maintaining your own
resources. Although the Power Automate per-flow license does not include
attended RPA, it can be used as the base license for the unattended add-ons.
But the add-ons cannot be combined with the standard Power Automate
per-user license that does not include RPA.

You must purchase one add-on for each “bot” that you intend to run. In this
case, a bot would be each machine or VM where you are running
unattended flows or each flow if you are running multiple concurrent flows
on a single machine. Desktop flows that are queued to run sequentially are
considered one bot. Figure 8-7 shows the retail pricing for these add-ons.

Figure 8-7. Unattended and hosted RPA pricing

TIP
AI builder credits are an added benefit when purchasing either of the unattended RPA
add-ons. You can use these AI builder credits to build AI models for use in your cloud
flows.

There are also two consumption-based licenses available for desktop flows.
If you have an Azure subscription, you can set up a Pay-as-you-go plan to
pay monthly for each desktop flow run that is not covered by a per-user or
per-flow license. There is a different cost depending on whether the flow
runs are attended or unattended. Figure 8-8 shows the retail pricing per-flow
run for the attended and unattended plans. You can read more about Pay-as-
you-go plans in the Power Platform documentation.

https://oreil.ly/3EJ27
https://oreil.ly/3EJ27

Figure 8-8. Pay-as-you-go licensing

Creating a Desktop Flow
Like cloud flows, desktop flows are a string of actions that are completed in
a sequence. But the actions used to create a desktop flow are very different
from the actions used to create cloud flows. Cloud flow actions are
provided by the different connectors produced by Microsoft and other third-
party companies. But all the actions available in a desktop flow are built
directly into the desktop flow designer. Actions are added by dragging them
from the action pane onto the main design surface. Once on the design
surface, you will be able to fill in the fields provided in the action using
static content or variables produced as output from previous actions in the
flow.

Although desktop flows are made up of a sequential string of actions, that is
where the similarity with cloud flows ends. There are several differences in
the experience of creating desktop flows:

The desktop flow designer is a client application, not a website.

You can record your interactions with applications or web pages to
create a desktop flow.

Desktop flows don’t use triggers.

There are no functions available to create complex expressions.

Error handing is built into each desktop action.

The actions you use and how they are added to the design surface is also a
different experience. In cloud flows, you click a link to open a dialog box to
select an action to add, but in desktop flows you drag actions from a sidebar
onto the design surface. Exercise 8-2, later in this chapter, walks you
through how it works in PAD. Before we get there, though, let’s look at the
design surface in the PAD client.

Exploring the Desktop Flow Design Surface
The desktop flow designer is divided into several sections. Figure 8-9
shows the designer with the different sections highlighted and
alphabetically labeled. The following list describes what each section of the
screen is used for:

1. Toolbar: Basic menu operations like Save, Run, or Record the flow

2. Subflows drop-down: Create and manage subflows

3. Actions pane: Categorized list of Actions

4. Workspace: Edit pane for desktop flows and subflows

5. Variables: Input, Output, and Flow variables

Figure 8-9. PAD designer

Most of your work will be done in the middle workspace pane. This central
pane is a tabbed design surface that displays the main desktop flow and any
subflows that were created for editing. When you execute a desktop flow,
the pane will expand to take up most of the space in the application. When
the flow switches focus to another window or starts a separate application,
the entire designer will minimize. If there are any errors while the
application is running, they will be highlighted in the workspace and
displayed in a window at the bottom of the screen after the run is finished.
Figure 8-10 shows a desktop flow that has stopped after an error occurred.

Figure 8-10. Flow designer with runtime error

Learning from Desktop Flow Examples
PAD provides several examples that will introduce you to what RPA can do.
You can find all the available examples under the Examples tab in the
designer. Examples can be very useful when trying to learn how to do
something in a desktop flow. But like cloud flow templates, these examples
are best used as learning tools, not as production-ready desktop flows.

Exercise 8-2. Creating an example desktop flow

In this example, you will create a new desktop flow using the example
“Open a web page.” This is one of the simplest examples, but it will show
you how to interact with a different application on your desktop. The
process that I describe here is the same for any of the examples in the
designer.

1. Log in to https://make.powerautomate.com, and select the “My flows”
tab in the navigation bar on the left. Select “Desktop flow” from the “+

https://make.powerautomate.com/

New flow” drop-down. In the dialog that appears, click the “Launch
app” button (see Figure 8-11). When prompted, click the Open button
to launch the PAD client.

Figure 8-11. Launching the PAD client

2. Select the Examples tab and choose the Web Automation category (see
Figure 8-12).

Figure 8-12. Navigating to PAD Examples

3. Hover over the second example, open a web page, and click on the
pencil icon to edit the example flow (see Figure 8-13). Wait for the
desktop flow designer window to open.

Figure 8-13. Loading the “Open a web page” Example

4. Click on the “Got it” button to close the dialog box (see Figure 8-14).

Figure 8-14. Successfully loaded example flow

5. Select Run on the toolbar to run the Example flow (see Figure 8-15).

Figure 8-15. Running the Example flow

6. The flow will pause on the first action and display a dialog box asking
for user input. Type “dontpapanic.com/blog” into the dialog box and
click OK (see Figure 8-16).

Figure 8-16. Running Example flow

7. A web page will be displayed (see Figure 8-17).

Figure 8-17. Web page displayed by flow

8. Select the Power Automate icon from the task bar at the bottom of the
screen to return to the completed flow. Select Save As on the File
menu to save a copy of the desktop flow under a new name. After
Saving the flow, you can Exit the designer (see Figure 8-18).

Figure 8-18. Saving a copy of the Example flow

Recording User Interactions
Examples are good learning tools, but they rarely do exactly what you want
a desktop flow to do. Desktop flows are usually designed to duplicate a
manual process that you do on your computer. To turn those manual steps
into a desktop flow, you can use the built-in recorder. Using the recorder,
you can create the basics of your flow and then edit the flow produced to
fine-tune the details. Some actions, like conditionals or loops, can’t be
recorded so they will need to be added later. The recorded flow may also
contain extra actions that aren’t necessary and that should be removed.
Editing a recorded flow is almost always a requirement, but recording a set
of steps will still save time as you are creating new flows.

NOTE
PAD originally used two different recorders: a Windows recorder for desktop apps and a
Selenium IDE recorder for interacting with web browsers. Both recorders have now
been deprecated and replaced by the current recorder that can record both desktop and
web browser interactions.

When recording your interaction with a desktop application or a web page,
PAD identifies UI elements that you interact with. For most applications
and web pages, PAD looks inside web pages and applications to pick up the
identities of the UI elements used by the application or web page. For

example, a text input field in a web form may have been assigned a unique
ID by the web designer. If there is no unique ID, then PAD will use the
control tree location of the element. In some cases, the recorder may not be
able to identify specific UI elements. The application may not expose their
accessibility API, or it may have other technical limitations that block the
recording process. When this happens, there is a setting that lets you use
image-based recording. Image-based recording uses image recognition and
optical character recognition (OCR) to identify specific UI elements on the
screen and extract text from them. Image-based recording must be enabled
using the context menu drop-down before starting the recording, as shown
in Figure 8-19.

Figure 8-19. Enabling image-based recording

Exercise 8-3. Recording navigating a website

In this example, you will use PAD to record your actions on the screen
while interacting with a website. You will start by opening a web browser
and navigating to my blog. On the blog, you will navigate to a page where
you can send an email to me. After filling in the required fields and sending
the email, you will close the browser and stop recording. I don’t use these
emails for anything other than responding to you if you ask a question.

https://oreil.ly/MSkRr

1. Open the Start menu on your computer. Type “Power Automate” into
the Search bar and select the Power Automate App icon to start PAD
(see Figure 8-20). As a desktop application, PAD can be launched from
the Power Automate website, as we did in Exercise 8-2, or from the
Start menu.

Figure 8-20. Launching PAD

2. Create a new desktop flow named “Recorder Demo” (see Figure 8-21).

Figure 8-21. Creating a new desktop flow

3. Select the Recorder button from the toolbar above the design surface
(see Figure 8-22).

Figure 8-22. Opening desktop recorder

4. In the Recorder dialog window, select “Launch new web browser”
from the context menu (see Figure 8-23). Choose Microsoft Edge (or
another browser where you’ve installed the Power Automate
extension). A browser window will open.

Figure 8-23. Launching web browser for recording

5. In the Recorder dialog window, click the Record link on the toolbar to
start recording (see Figure 8-24).

Figure 8-24. Starting the recording

6. In the browser window, hover your mouse over the address bar until
you see the red outline. The red outline means that the recorder has
identified this as a UI element. Right-click the Address bar and select
“Populate text field” from the context menu. A dialog box will appear.
Type “https://www.dontpapanic.com/blog” into the dialog box and
click “Add text” (see Figure 8-25).

https://www.dontpapanic.com/blog

Figure 8-25. UI element context menu

7. After the web page loads, hover over the Contact Me link in the left
sidebar until it is outlined in red (see Figure 8-26). Click on the
Contact Me link, which is an HTML anchor tag on the web page. A
web form will be loaded.

Figure 8-26. Anchor tag UI element

8. Click on the Your Name field in the Contact Me form. After it is
highlighted in red, type in your name. Use the same process to fill in
the Your Email, Confirm Your Email, Correct Response, and Your
Message fields with appropriate information (see Figure 8-27).

Figure 8-27. Filling in Contact Me form

9. Hover over the consent checkbox until it is highlighted in red and then
click the checkbox (see Figure 8-28).

Figure 8-28. Checking consent checkbox

10. Hover over the Send Email button until it is highlighted in red. Click
the Send Email button (see Figure 8-29).

Figure 8-29. Clicking Send Email button

11. Wait for the Success message to appear (see Figure 8-30).

Figure 8-30. Message sent page

12. Close the browser window. It’s a best practice to start and close an
application as part of a desktop flow. This helps the flow correctly
identify which application you are interacting with (see Figure 8-31).

Figure 8-31. Closing your browser

13. Go back to the recorder dialog; you may have to open it from your
taskbar if it’s been minimized. Click on the Done button to stop
recording and return to the desktop flow designer (see Figure 8-32).

Figure 8-32. Stopping recording

14. In the designer, click on the Run link in the toolbar to try running the
script. Recorded scripts will often require editing to remove extra steps
or fix errors (see Figure 8-33).

Figure 8-33. Finished recording and running the script

If you want to use PAD to automate something that you now do manually
on a computer, recording the steps can be a great way to start. But
recordings often have extra steps that are unnecessary or are missing steps
that might keep them from failing if something isn’t exactly where it should
be. For example, a browser window may have been recorded when it wasn’t
full screen, but playback has the browser maximized. This usually means
that recorded desktop flows will need additional editing after you record
them.

Adding and Editing Actions
An alternative to using the recorder to create a new desktop flow is to create
it directly in the designer. To create a flow from nothing, you need to find
the action you want in the Actions pane on the left of the design surface.
Then you can either double-click the action to add it to the end of the
current desktop flow or drag it into the designer and drop it where you want
it to be inserted. After inserting the action on the design surface, a modal
dialog will open, displaying fields for any parameters that need to be
configured. Input parameter fields may be text fields, drop-down menus, or

checkboxes. Some of the parameter fields may be filled in with default
content. You can also directly edit the values or use variables already in the
flow to set the values.

Figure 8-34 shows an action to launch a new instance of the Microsoft Edge
browser. The Launch mode and Window state fields are set to defaults that
you can change. The Initial URL is blank and must be filled in with the
URL of the website you want the browser to display. The small {x} at the
end of the Initial URL field can be used to insert a variable value from the
flow.

Figure 8-34. Launching Microsoft Edge action

Working with Variables
Variables are created as output from most actions in PAD. You can also
create variables manually using the “Set variable” action. Variable names
are enclosed by percentage signs (%), a symbol that is considered a special
character in PAD. Any string enclosed inside percentage signs will be

evaluated as a variable name. If you want to use an actual percentage sign
as a value, then it should be preceded by another percentage sign like this:
%%. Figure 8-35 shows a typical “Set variable” action.

Figure 8-35. “Set variable” action

Percentage sign notation can also be used inside the “Set variable” action to
do calculations and store the resulting value as a different data type. For
example, adding “%3*15%” to the Value field of a “Set variable” action
will result in a numeric value type variable with a value of 45. Using
“%15>12%” will result in a Boolean value type variable with a value of
True. Using percentage sign notation, you can create complex expressions
containing hardcoded values, variable names, arithmetic and logical
operations, comparisons and parentheses.

You can also create variables that are a list of values using the “Create new
list” action. In Power Automate, this would be an array. Once a list variable
has been created, you can populate the list using the “Add item to list”
action. List variables can be processed using looping actions, like “For
each,” or you can use percentage notation to access a list value directly by

using an index enclosed in square brackets. For example, if you had a list
variable named “Sample List,” you could access the second record of the
list using “%SampleList[1]%.”

The percentage sign notation provides a lot of flexibility when working
with variables in PAD. But unlike cloud flows, there are no expressions
available for use in PAD that accept variables as parameters. The closest
thing to functions in Power Automate are the properties available with
different variable values based on data type. Figure 8-36 shows the dialog
for adding a variable to an action. The SampleList variable has a Count
property that contains the number of items in the list, and the
SampleString variable has several properties available. The specific
properties available will depend on the data type of the variable. There are
also actions available that will do the same things as these properties. But
those produce new variables rather than providing just the values, like
functions, in Power Automate.

Figure 8-36. Variable dialog

One last feature of variables in PAD should be mentioned. As shown in
Figure 8-37, a specific variable can be marked as sensitive. Marking a
variable as sensitive will hide the value of the variable at runtime in the
designer or a log of the flow run. In Figure 8-37, you can see that the value
of SensitiveVar has been hidden. For example, if the desktop flow uses a
password stored as a variable to log in to a site, this would prevent that
value from being visible to anyone else.

Figure 8-37. Marking a variable as sensitive

Handling Errors
There are two types of errors associated with desktop flows: design-time
errors and runtime errors.

Design-time errors occur when you are configuring the actions you add to
the design surface. For example, you may forget to provide a value for a
required parameter. Design-time errors will be displayed as you are creating
the flow and must be fixed before you can run the flow.

Runtime errors, also known as exceptions, are generated when you run your
desktop flow and it fails. For example, let’s say you misspell a file path in
one of the actions, so the file is not found. When a runtime exception is
thrown, the execution of the flow will be interrupted, and the flow will not
progress. In regular Power Automate, you handle these kinds of exceptions
by setting the Run After property of the next action in the flow. In Power
Automate desktop, each action has On Error settings that can be used to
specify what happens if an exception is encountered.

You can configure what an action does when it encounters an error by
clicking the On Error button at the bottom of the action to open a modal
dialog. The dialog will have two or three sections that you can use to
configure what the flow will do in case an error is encountered. Figure 8-38
shows a typical On Error dialog.

Figure 8-38. On Error dialog

The first section in the dialog can be used to retry the action if it fails. You
can set both the number of times to retry the action and the delay between
retries. The second section can be used to add rules on what happens if any
error is generated by the action. The third section, under Advanced, can be
used to configure rules for specific types of errors that the action might
throw. The rules added for all errors or specific errors can be used to do
things like store a value in a variable or run a subflow. They can also be
used to specify how the flow will continue if you ignore the error.

There is also an “On block error” action that you can add to the flow. The
“On block error” action can be used to group multiple actions together and
apply the same On Error settings to all of the actions. The “On block error”
settings do not include an Advanced section since the settings apply to all of
the errors in a group.

Exercise 8-4. Unzipping an archive to a specific location

If you are able to create a cloud flow to automate a process, this is usually
the better approach. Cloud flows don’t require that your computer be on or
that you be logged in to do their work. But there are cases where actions
don’t exist in cloud flows to easily implement a manual process. One
example of this is adding a directory structure and files to a ZIP archive.
Cloud flows have a built-in action for extracting an archive, but you need to
buy a third-party connector to create an archive. However, PAD does have
an action that can zip files into an archive. In this example, you will use
PAD to zip a directory structure of files and add it to a ZIP archive.

1. Using Windows Explorer, create a directory in the root of Drive C:
called Temp. Add a subdirectory to it called Level 1. Copy some files
to Temp and Level 1 (see Figure 8-39).

Figure 8-39. Creating sample directories and files

2. Using PAD, create a new desktop flow and name it “Zip Files” (see
Figure 8-40).

Figure 8-40. Creating a new desktop flow

3. In the Actions pane, expand the Message boxes category and double-
click on Display input dialog. Set the fields to the following values
(see Figure 8-41):

Input dialog title

File Path to Zip

Input dialog message

Please enter the folder path of the files to Zip

Default value

C:\temp

This action will prompt the user for a directory path to ZIP when the
flow is started.

Figure 8-41. Adding input dialog action

4. In the Search Actions text box, type “Zip.” Drag and drop the ZIP files
action into the designer below the “Display input dialog” action. Set
the fields to the following values (see Figure 8-42):

Archive Path

C:\Archive\backup.zip (or another filename in some
other existing folder on your computer)

File(s) to ZIP

%UserInput% (This is the output variable from the
previous action.)

Figure 8-42. “Zip files” action

5. In the “Zip files” action, click the On Error button at the bottom. Select
the Advanced link to open the Advanced error handling. Click on
“Failed to zip files” to define when the flow can’t zip the files (see
Figure 8-43). The default is Throw error. Instead, select Continue flow
run, and leave the Exception handling mode set to Go to next action.
Click Save to close the Dialog.

Figure 8-43. Configuring on error

6. In the designer, click on the Run link in the toolbar to try running the
script. Check the ZIP file that was created to see if all files and
subdirectories were included. Delete the destination folder and run the
flow again. Since you configured error handling, the flow still runs
without error.

Calling a Desktop Flow from a Cloud Flow
Up to this point in this chapter, all the desktop flows you have worked with
have been attended flows that are executed manually on your computer
from PAD. But what if you want to run a desktop flow on a particular
schedule or on a different computer where you aren’t logged in? To do that,
you’ll need to call the desktop flow from a cloud flow. This is where the
concept of attended versus unattended flows comes in.

Attended Versus Unattended RPA
Desktop flows can be run either in an attended or unattended mode. Flows
run in attended mode by default. This mode reuses the Windows user
session of the currently logged-in user who is running the flow. This makes
attended mode the preferred choice when you are running a desktop flow
that requires human supervision or pauses for the user to make choices.

The one potential issue with running in attended mode is that it uses your
current session and desktop. This makes it hard for you to do anything else
while the desktop flow is running. Sometimes you want to run one or more
desktop flows on VMs or on dedicated computers on your network. To do
that, you can use a cloud flow to run the flows in unattended mode.
Unattended mode is best for applications that do not need human
supervision.

When running unattended, Power Automate automatically creates and signs
into a remote desktop (RDP) session on the target computer. Once the
unattended flow finishes, Power Automate automatically signs out from the
device and reports the success or failure of the flow.

Unattended flows have some specific limitations:

Windows 10/11 computers can’t run unattended flows if there is a
current user session.

Windows Server computers can run unattended flows if there is a
current user session, but different credentials must be used.

Flows cannot be launched with elevated privileges.

User interaction with the flow is prohibited because the desktop screen
is locked while running in an RDP session.

Passing Parameters to and from a Desktop Flow
When you call a desktop flow from a cloud flow, it’s common to want to
provide some data for the flow to process and get some results back. To do
that, you need to create Input and Output variables in the desktop flow. You

create Input or Output parameters by clicking the plus (+) icon on the
Input/output variables panel and selecting either Input or Output from the
drop-down, as shown in Figure 8-44.

Figure 8-44. Creating Input and Output variables

A dialog will then be opened where you can name your variable, select
what type of data it holds, and specify a default value. Input and Output
values can have the following data types:

Text

A simple string value

Number

An integer or floating point number

Boolean

True or False

Custom Object

A JSON object with one or more properties

List

A JSON array of simple values or objects with no key names

Data table

A JSON array of objects, otherwise known as a data table

Input variables will show up as fields in the Power Automate “Run a flow
built with Power Automate for desktop” action. Output variables will
appear as dynamic content associated with the action after the desktop flow
runs.

Exercise 8-5. Calling an attended desktop flow

One of the most common scenarios when calling a desktop flow from a
cloud flow is to do it at a scheduled date and time. In this example, you will
set up a recurrence flow to call the desktop flow you created in Exercise 8-
4. For testing purposes, you’ll set it to run every five minutes. But if you
change the settings of the recurrence trigger, this flow could run the desktop
flow once a week or once a day.

1. Open the desktop flow you created in Exercise 8-4. We need to adapt it
to accept a path from the cloud flow that invokes it. To do that, create a
new Input variable and fill in the fields with the following values:

Variable name

UserInput

Data type

Text

Default value

C:\temp

External name

Folder Path

Click Save (see Figure 8-45). A dialog will be displayed saying that the
variable name is already in use. Click Continue to merge this new
variable with the existing variable from the Display Input dialog
action.

Figure 8-45. Creating Input variable

2. Now that you’ve created the Input variable for FilePath, you no
longer need the original “Input dialog” action. Delete the “Display
input dialog” action using the ellipses context menu that is displayed
when you hover over the action (see Figure 8-46).

Figure 8-46. Deleting Input dialog action

3. Use the File menu to Save the desktop flow and Exit the designer (see
Figure 8-47).

Figure 8-47. Saving and exiting from designer

4. Click the Windows Start button and type “CMD” in the Search bar.
This will open a command prompt window. In the window, type
“whoami.” Press Enter. Copy the computername\username or
domain\username that is returned. You will use this to create a machine
connection to your desktop from a cloud flow (see Figure 8-48).

Figure 8-48. Determining logged-in user

5. Create a scheduled cloud flow. Name it “Run Desktop Flow.” The
Starting field will default to the current time and date. Set the Repeat

every field to 5 minutes. This will start the flow every 5 minutes. Click
the Create button (see Figure 8-49).

Figure 8-49. Creating scheduled cloud flow

6. Click on New Step to add an action to the flow. Type “desktop” into
the Search bar and select “Run a flow built with Power Automate for
desktop.” You will see that this action is a premium action and requires
higher-level licensing (see Figure 8-50).

Figure 8-50. Running a desktop flow action

7. Create a new connection directly to your desktop machine (see
Figure 8-51). Fill in the fields as follows:

Connect

Directly to machine.

Machine

Choose your desktop from the drop-down.

Domain and username

Type the values returned by the “whoami” command in
step 4.

Password

Your login password.

Figure 8-51. Desktop flow machine connection

8. Once the machine connection is created, you can fill in the other fields
in the “Run a flow built with Power Automate Desktop” action. Select
Zip Files from the list of desktop flows available on your computer.
Select Attended as the Run Mode. Unattended mode has additional
licensing and computer requirements that would be hard to guarantee
for this exercise.

Once you have selected the Desktop flow to run, the action will refresh
to show you any Input parameters you added to the application. Type
“c:\temp” into the Folder Path field (see Figure 8-52).

Figure 8-52. Running desktop flow action

9. Save your cloud flow. Wait five minutes. In the left sidebar, select
“Desktop flow runs” under the Monitor tab. Your desktop flow run
should be marked Succeeded. You can click on the run to drill down
and see more details (see Figure 8-53).

Figure 8-53. Monitoring desktop flow runs

Summary
In this chapter, you learned how to create desktop flows that interact
directly with the UI of your computer. These flows can be used to automate
manual processes without the need for APIs or prebuilt connectors. That
makes them perfect for automating legacy applications or systems that only
have a web interface. As you’ve seen, desktop flows can also be used when
a could action does not exist for what you want to do. This book is
primarily about Power Automate cloud flows, but desktop flows are a
related concept that is often confused with Power Automate cloud flows.
It’s important to know how to use both.

In the next chapter, I’ll cover another type of flow that is different from
both a cloud flow and a desktop flow. Business process flows provide a
checklist of tasks in a business process—which may include manual tasks,
desktop flows, and even cloud flows⁠—​with the goal of guiding people
through a complex process.

Chapter 9. Business Process
Flows

Cloud flows are used to automate business processes where there is a
connector or API. Desktop flows can automate manual tasks done on a
computer. But what if you have a business process that involves multiple
people or groups of people completing different sets of tasks? This is when
you use a business process flow (BPF). BPFs provide a visual checklist of
the tasks that need to be completed to achieve a result. They can be used to
track the progress of data collection and completion of individual or group
tasks. This type of tracking helps coordinate the work of multiple people
and groups and will increase the consistency and completeness of data
entered as part of the process.

What Is a Business Process Flow?
BPFs coordinate groups of people who are completing a set of related tasks.
For example, when onboarding a new employee, there are a number of
tasks that need to be accomplished by different people in a particular order.
The following list summarizes a typical set of onboarding tasks:

Security needs to create a user account and assign appropriate levels of
access.

HR needs to enroll the new employee in the company health insurance
and benefits program.

A manager needs to request a work phone and computer for the new
employee.

A welcome message needs to be sent to the new employee with this
information.

In this BPF, someone in the corporate security department would create a
user account for the new employee and assign their starting access.
Someone in HR would then add the employee to the company health
insurance and benefits program. The new employee’s manager would
submit a request for a work phone and a computer. Finally, a welcome
email would be automatically sent to the new employee with all this
information. Each stage along the way is the responsibility of a different
group or person, and some of the stages depend on the previous stage being
completed before they can begin. Coordinating these kinds of activities is
what a BPF does.

A BPF is made up of Stages, where each Stage contains one or more Steps.
There are four kinds of Steps that can be added to a Stage. The following
list summarizes each type of Step available:

Data Step

Sets the value of a field in the Dataverse table associated
with the BPF

Action Step

Adds a button to the Stage that executes a Dynamics action
or Workflow

Flow Step

Adds a button to the Stage that will run an instant Power
Automate cloud flow (this Step type is still in preview and
may change before it gets to general availability)

Workflow

Automatically runs a Dynamics workflow when exiting the
current Stage

NOTE
Dynamics actions and Workflows shouldn’t be confused with Power Automate flows.
Dynamics actions implement business processes like making a phone call, sending an
email, or triggering a workflow. Dynamics Workflows provided a functionality similar
to Power Automate that is specific to Dynamics. They are legacy implementations that
can still be used in a BPF. This book focuses on the newer implementation of Power
Automate flows.

Each BPF is attached to a Dataverse table. The Stages of the flow are then
displayed at the top of a form in a model-driven application that is created
using that Dataverse table. Figure 9-1 shows what a BPF looks like in the
context of a model-driven application created for a Dataverse table. You can
see the name of the BPF and the various Stages of the flow displayed across
the top of the form. The current Stage is expanded to show the Steps for that
stage. At the bottom of the Stage, there is a Next Stage button that will
move the flow to the next Stage.

Figure 9-1. Typical BPF

Creating a Business Process Flow
BPFs must be built as part of a Solution. The BPF, the Dataverse table it’s
attached to, and any cloud flows called by the BPF should all be part of the
same Solution.

NOTE
When Power Automate was first released, you could create a BPF from the “+ New
flow” link in the My flows tab. As of August 2022, you can no longer create or manage
BPFs directly from Power Automate. Now, they must be built inside a Solution.

Once you have a Solution with a Dataverse table, you can create a BPF
using the + New drop-down in the Solution Objects menu. The path in the
drop-down is + New > Automation > Process > Business process flow.
Figure 9-2 shows the panel that opens for creating a new BPF. You must
supply a Display name, which will be used with a prefix to generate a Name
for the flow. You will also have to pick a Dataverse Table to attach the BPF
to. The BPF will appear on Forms in the table when a record is created.

Figure 9-2. Create a new BPF

Prerequisites
There are two prerequisites that must be in place to create a BPF. First, you
must have one of the following licenses:

Power Apps per-user

Power Automate per-user

Dynamics 365 license

A Microsoft 365 license does not have sufficient permissions to create
BPFs. Second, you must have a Dataverse table to attach the BPF to. BPFs
are triggered when a new record is created in the Dataverse table associated
with the BPF. BPFs can capture data to multiple fields in several tables, but
there is always one primary table that controls the start of the BPF.

Limitations
There are a number of limitations that you should be aware of when
working with BPFs:

A Dataverse table can only support a maximum of 10 activated BPFs.

A BPF can reference a maximum of 5 Dataverse tables.

A BPF can contain a maximum of 30 Stages.

Each Stage can have a maximum of 30 Steps.

Branch conditions must be based on Steps in the previous Stage.

Multiple conditions can be added to a Branching Rule, but they must
all be connected using either “And” or “Or.” There is no way to group
conditions.

Branches can only be stacked up to 10 levels deep.

Adding Stages and Steps
After you create a new BPF in a Solution, it will open in a drag and drop
designer interface in the Power Apps website, as shown in Figure 9-3. The
panel on the right of the screen has two tabs: Components and Properties.
The Components tab contains two categories of objects: Flow and
Composition. Objects under the Flow category can be added to the main
flow. Objects in the Composition category can be added to an individual
Stage in the flow. The Properties tab is used to change the properties of a
Stage or other object selected on the design surface.

Figure 9-3. BPF in Power Apps designer interface

When you drag a Stage or Condition from the Components tab onto the
main design surface, squares with plus signs appear, as shown in Figure 9-
4, to show where you can drop them.

Figure 9-4. Adding a Stage

If you expand the Details drop-down of a Stage, you can drag an object
from the Composition section of the Components tab onto a similar area in
the Stage. Figure 9-5 shows a Flow Step being added to an existing Stage.
Data Steps, Action Steps, and Flow Steps can be added before or after any
Step in the Stage. Workflows can only be added at the end of the Stage.

Figure 9-5. Adding a Flow Step

If you click on any Stage or Step in the design surface, you can modify the
properties of that particular object. Property changes are not automatically
saved, so you must click on the Apply button to commit the change. This
step is frequently forgotten, which leads to a lot of added work.

Figure 9-6. Setting Stage and Step properties

Once the Stage, Condition, and Step tiles have been added to the designer,
you can rearrange them using drag and drop.

Managing Security Roles
Not everyone in your organization will need access to a new BPF. By
default, only users with the System Administrator or System Customizer
role will have access to the BPF. You can create a Security Role in the
Solution to give additional users access to the whole BPF.

Validating and Activating a BPF
The final steps before using a new BPF are to Validate and Activate the
flow. Validating the BPF checks it for syntax errors or missing information.
Once the flow has been Saved and Validated, you can Activate the flow.
Activating the flow makes it available in the views of model-driven
applications built on the Dataverse table that initiated the flow. Figure 9-7
shows where the Validate and Activate menu entries are in the BPF editor.

Figure 9-7. Validating and activating a BPF

Example Introduction: Creating a BPF
In the following example, you will create a simple BPF for an employee-
onboarding process. The process will have four different stages:

Collecting personal information from the new hire

Assigning a position and internal email address to the new employee

Setting the Department field in the employee’s record, if they aren’t a
manger

Sending a welcome email to the new employee’s personal email
address

One of the Stages will be skipped if the employee is a manager, and a
Power Automate cloud flow will be used to send the welcome email.

Exercise 9-1. Creating a Dataverse table

The BPF will be used to gather and process information for a new employee
that has been just hired. The first thing you will need is a Dataverse table to
store the information that is gathered by the BPF.

1. Create a new Solution named “BPF Onboarding.” Select the CDS
Default Publisher as the Publisher and click Create (see Figure 9-8).

Figure 9-8. Creating a new Solution

2. Use the New+ link in the Solution menu to create a new Dataverse
table named “New Hire” (see Figure 9-9). This table will hold the

information collected by the flow. Click Save.

Figure 9-9. Creating a Dataverse table

3. Select the Columns link in the Schema section of the new table. Use
the ellipsis menu to Edit the Name column and change the Display

name to Last Name (see Figure 9-10). Click Save.

Figure 9-10. Renaming column

4. Use the “+ New column” link on the menu to add the following
columns with the specified data types and formats (see Figure 9-11):

First Name

Data type: Single line of text

Format: Text

Contact Email

Data type: Single line of text

Format: Email

Internal Email

Data type: Single line of text

Format: Email

Figure 9-11. Creating text columns

5. Use the “+ New column” link on the menu to add a choice column
named Position. Select the Yes radio button to “Sync with global
choice.” Select the “+ New choice” button to create a new global list
of choices (see Figure 9-12). Syncing with a global choice value will

let us use the same set of choices in another table without having to re-
enter them. This makes long-term maintenance easier.

Figure 9-12. Creating a synced choice column

6. Type “Position Choices” into the Display name field of the Choice list.
Add the following choices to the list by filling in the Label field.

Analyst

Consultant

Manager

Click the “+ New choice” link to get another Label and Value. Accept
the default Values suggested. The default values use a prefix from the
publisher. You can change the Values, but they must be unique in the
environment. Click Save (see Figure 9-13).

Figure 9-13. Creating global position choices

7. After creating the Position choices, select Position Choices from the
“Sync this choice with” drop-down in the Position column you created
earlier. Click Save (see Figure 9-14).

Figure 9-14. Setting global choices to sync with

8. Use the “+ New column” link on the menu to add a choice column
named “Department.” Select the No radio button for “Sync with global
choice.” Add Local Choices for Sales, Support, and Administration as

local choice values. Creating the values locally is easier, but it means
they can’t be reused in another table. Click Save (see Figure 9-15).

Figure 9-15. Creating local choices

9. Use the breadcrumb to return to the New Hire table page. Select
Forms. Edit the Main Form. If prompted to preview the form, open the
form in a new tab. Drag and drop each of the columns you created to
the form (see Figure 9-16). Save and publish the form.

Figure 9-16. Adding fields to table Main Form

Exercise 9-2. Building a cloud flow to trigger from the BPF

One of the Steps in our BPF will be to send a welcome email to the new
employee after all the onboarding tasks are completed. To do this, we’ll use
a regular cloud flow. In this example, you’ll create a cloud flow that can be
called when you create the BPF in the next example.

1. Using the + New link in the Solution menu, create a new instant cloud
flow. Name the cloud flow “Send Welcome Email.” Select the “When
a flow step is run…” trigger. Click Create (see Figure 9-17).

Figure 9-17. Creating an instant cloud flow

2. Add a Dataverse “Get a row by ID” action to the flow. Select New
Hires as the Table name, and insert “BPF Flow Stage Table Row ID”
in the Row ID field (see Figure 9-18). The trigger doesn’t contain any
of the data that the BPF Stage is processing, but it does contain the
Table Name and Row ID of the record being processed. Retrieving this
record will give you access to the data being processed.

Figure 9-18. Adding text input to trigger

3. Add a “Send an Email (V2)” action to the flow. Click the “Add
dynamic content” link under the To field, and add the Contact Email
you retrieved in the previous action to the field. Add “Welcome” to the
Subject field and type some text in the Body (see Figure 9-19). Save
and close the flow.

Figure 9-19. Sending an email

Exercise 9-3. Building a BPF

Now that you have created the cloud flow and table that you’ll need, you
can start creating the BPF itself.

1. Return to the Solution Objects page and use the + New link on the
menu to create a new BPF called Onboarding. Select the New Hire
table that you created in the previous example as the Table that uses
the BPF. Click Create (see Figure 9-20). The new BPF will open in a
designer in the Power Apps website.

Figure 9-20. Creating a BPF

2. Select the first new Stage in the designer. This will open the Properties
panel on the right side of the screen. Change the Display Name to
“Collect Personal Information.” Category can remain blank, since that

is only used to tie into Dynamics 365 activities, and Entity is already
set to the New Hire table (see Figure 9-21). Click Apply.

Figure 9-21. Renaming first Stage

3. Click on the Details drop-down in the Collect Personal Information
Stage to expand the Stage. Select Data Step #1 and change the Step
Name in the Properties panel to “Enter Last Name.” Select the Last
Name field in the Data Field drop-down. Select the Required
checkbox. Checking the Required box will force users to enter a last
name before moving on to the next Stage in the BPF (see Figure 9-22).
Click Apply.

Figure 9-22. Renaming Data Step

4. Switch back to the Components tab and drag and drop a Data Step to
the area below Data Step #1 (see Figure 9-23). Change the Step Name
to “First Name” and select the First Name data field. Click Apply.
Repeat this action to create a Data Step for the Contact Email data
field. Click Apply.

Figure 9-23. Adding a Data Step

5. Switch back to the Components tab and drag and drop a new Stage
next to the existing Stage (see Figure 9-24). Rename the Stage as
“Assign Position” and create Data Steps for Position and Internal
Email. Remember to Click Apply each time you make a change.

Figure 9-24. Adding a second Stage

6. Drag and drop a Condition next to the Assign Position Stage. Set the
Display Name of the Condition to Is Manager, and configure the Rules
as when Field Position Equals Value Manager. Click Apply (see
Figure 9-25).

Figure 9-25. Adding a Condition

7. Drag and drop a new Stage into the Yes branch, denoted by the green
checkmark, of the Condition. Name it “Set Department.” Configure
the Data Step with the Step Name Department and pick the
Department Field (see Figure 9-26). Remember to Click Apply each
time you make a change.

Figure 9-26. Adding Stage to Yes Condition

8. Drag and drop a new Stage to the right of the Set Department Stage.
Name it “Send Welcome Email.” After selecting the Condition you
added earlier, select Connect from the Connector drop-down in the
toolbar, then click on the Send Welcome Email Stage you just added
(see Figure 9-27). This will create an alternate path from the No output
of the Condition, denoted by the red X, to the next Stage. This will
ensure that the flow continues whether the condition is True or False.
Remember to click Apply each time you make a change.

Figure 9-27. Adding a final Stage

9. Drag and drop a Flow Step above Data Step #1 in the Send Welcome
Email Stage. Set the Display Name to “Trigger Welcome Email flow”
and click Apply (see Figure 9-28).

Figure 9-28. Adding a Flow Step

10. Select the Data Step #2. Click Delete on the toolbar (see Figure 9-29).

Figure 9-29. Deleting Data Step

11. Save and Activate the BPF (see Figure 9-30). This will make it
available for use in a model-driven application built around the New
Hires table.

Figure 9-30. Activating and Saving the BPF

Exercise 9-4. Testing the BPF with a model-driven application

BPFs provide a visual checklist in the context of a model-driven
application, based on the table you chose when you created the BPF. In this
example, you will create a simple model-driven application so you can test
your new BPF.

1. Use the +New link in the toolbar to create a new model-driven app.
Name the app “Test BPF.” Click Create (see Figure 9-31). Your new
model-driven application will open in a designer.

Figure 9-31. New model-driven application

2. Click the +New button. Add a new Dataverse table page (see Figure 9-
32). Click Next.

Figure 9-32. Adding a Dataverse table

3. Type “new” in the Search box and check the New Hire table to add it
to the model-driven application. Click Add (see Figure 9-33). This will
add the Main Form from the table as the default page of the model-
driven application.

Figure 9-33. Selecting New Hire table

4. Use the toolbar to Save, Publish, and Play the application (see
Figure 9-34). Wait until each action finishes before proceeding.

Figure 9-34. Saving, publishing, and playing the application

5. Use the +New link on the menu to add a new Record to the New Hires
table. The Test BPF should appear at the top of the form (see Figure 9-
35). Click on Last Name in the form and fill in your Last name.

Figure 9-35. Adding a new record

6. Click on Collect Personal Information to expand the first Stage. Fill in
your first name and a personal email address. Click Save (see Figure 9-
36). You will not see the button to proceed to the next Stage until you
save the changes you make. Click the Next Stage button to move to the
next Stage.

Figure 9-36. Filling in data in Test BPF

7. Select a Position from the drop-down and add a fake email as the
internal email of the new test employee. Click Next Stage (see
Figure 9-37). Remember, if you pick Manager for the Position, you
will be routed to a third Stage to select a Department before going to
the final Stage.

Figure 9-37. Completing Assign Position Stage in Test BPF

8. Click the Run Flow button to run the cloud flow you created in
Exercise 9-2 (see Figure 9-38).

Figure 9-38. Running cloud flow in Test BPF

9. The first time you run the cloud flow, you will be prompted to sign in
and approve the permissions used by the Outlook connector to send the
email (see Figure 9-39). This prompt will only happen the first time
you run the flow.

Figure 9-39. Approving permissions on first cloud flow run

10. After the OAuth permissions for the connection have been approved,
you will see a dialog where you can run the flow. If you had added any
input parameters to the trigger in the flow, you would be prompted to
provide them here. Click “Run flow” (see Figure 9-40).

Figure 9-40. Running the flow

11. Once the flow run completes, you will see a confirmation that the flow
ran successfully. You can review the log of the flow’s run by clicking
on the Flow Runs Page link. Click Done to close the dialog and return
to the last Stage (see Figure 9-41).

Figure 9-41. Flow run completed

12. Your BPF is now complete. Click the Finished button to mark it as
done. Then, click the Save & Close button on the top menu to go back
to the records list in the New Hires table (see Figure 9-42).

Figure 9-42. Finalizing flow run

Summary
In this chapter, you learned how to create BPFs that let you collaborate with
other people on complex processes that involve more than one task. BPFs
can be used to collect information, run Dynamics 365 actions and
workflows, and trigger a cloud flow. These BPFs are tied to a Dataverse
table and triggered when a record is created in that table. They are then
displayed in the context of a model-driven application. These flows are
primarily used by Dynamics business users, but they can be used by anyone
who has a license that covers premium connectors since this requires a
Dataverse connection.

While the main topic of this book is Power Automate cloud flows, coverage
would not be complete if we didn’t also examine desktop flows and
business process flows since they fall under the Power Automate product
line. Even if you don’t use business process flows directly, a flow that has
individual embedded flows to do specific tasks is a useful design concept. If
you have to build complex processes in the future, this type of design may
be useful.

That brings us to the end of this book. In the Conclusion that follows, I’ll
provide you with some additional resources that you can use to continue
learning more about Power Automate.

Conclusion
Congratulations! Unless you’re the kind of person who likes to read the last
chapter of a mystery before reading the full book, you’ve just finished
learning about what Power Automate is and how it can help improve
efficiency and accuracy in your work. As you’ve seen, Power Automate can
create flows that turn mundane, boring, and repetitive tasks into automated
tasks that run on their own. This will free you up to concentrate on tasks
that are more interesting and that generate more value for you and your
organization.

This book has taken you on a journey that I’m convinced will change how
you manage information from now on. But the journey doesn’t end here.
Now it’s time to start looking at the information you manually process each
day and start using Power Automate flows to make those tasks easier. I’m
sure you’ll encounter a few bumps along the way, as we all do, but I’m
convinced that you’ve learned enough in this book to begin that next stage
of your journey.

There is another reason why this isn’t the end of the road for your learning
experience: Power Automate is always evolving with new features, triggers,
and actions. Microsoft is constantly changing and expanding the
capabilities of the platform. These changes are both exciting and
challenging. They’re exciting because they let you expand the way you use
Power Automate. But they’re also challenging because, as time passes,
things that used to work will stop working due to the changes. This means
you’ll sometimes have to fix a flow that worked fine last month. The best
way to be aware of these changes, so you can take advantage of new
features and be prepared to fix things that break, is to frequently review the
Power Automate roadmap. The roadmap will provide you with details about
new features and changes that are being tested. It will also tell you when
they will be available in Public Preview and when they are scheduled for
General Availability release. If you know what new features are coming,
you will be better prepared to take advantage of them or fix something that
breaks because of them.

https://oreil.ly/iYJ38

No single book, website, or video collection will provide you with
everything you need to know about Power Automate. The key is really to
start using the product to automate things. As you find more and more uses
for Power Automate flows, you’ll also encounter problems where you’ll
need to learn something new to accomplish your goal. These problems will
provide you with your best opportunity to really improve your knowledge
and understanding of Power Automate. You were introduced to one
resource for this kind of learning early in the book: templates. The
templates provided with the product are rarely a perfect solution, but they
do provide good examples of different ways to approach automating
specific tasks. Take the time to examine them and learn how they work.
That will move you forward as you learn more about how to automate
things with Power Automate flows. But don’t stop there. In the next section,
I’ll provide some suggestions on where you can find other resources to
continue your learning journey.

Where Can I Learn More?
Since there is always more to learn, I want to share some resources that you
can use to continue your journey toward mastery of Power Automate. There
is a wealth of good resources out there waiting for you to find them, and
this section details a few that I have found useful as I’ve improved my
knowledge of Power Automate.

Power Automate Documentation
The first resource I suggest is the Power Automate documentation. Some
questions that can be answered by reading the documentation include what
syntax or data type to use. Additionally, Microsoft provides extensive, up-
to-date documentation on all the connectors they create, which includes
descriptions of the triggers and actions in the connector. The descriptions of
each trigger/action also include the syntax for calling them and the data
types of both the input and output fields. As I mentioned in Chapter 7, one
of the most common errors in Power Automate is something like “expected

https://oreil.ly/giEGY

array but got string.” This normally happens because you aren’t clear on the
data type of the dynamic content that you are inputting or because you don’t
know what it should be. So, to avoid these types of errors, it’s always a
good idea to check the documentation to see which data types are expected
for input and output.

The documentation also contains links to articles about topics like using
Solutions to distribute flows, using flows in Microsoft Teams, and general
best practices. Ultimately, the documentation is your encyclopedia of
information about all things Power Automate. It may be dry reading, but it
is well worth the time.

Microsoft Learning Website
Another great resource for taking your knowledge of Power Automate to
the next level is the Microsoft Learning website. This website provides
Learning Paths that will walk you through a specific concept in Power
Automate. Each Learning Path is broken down into modules that deal with
a specific topic, like getting started with Power Automate or planning and
managing your Power Platform environment. Each module contains short
lessons, or units. The prerequisites and objectives for each module are also
clearly stated. The information contained in these lessons is similar to the
information in the official documentation, but it is presented in a more
directed manner. Instead of reading a long article, each lesson is a series of
pages and illustrations that explain the topic. If you know what you are
looking for, the documentation may be a more efficient resource, but if you
just want to learn about a specific aspect of working with Power Automate,
the Learning Paths, modules, and lessons are a great way to get started.

Additional Resources
Although I tried to make this book a thorough review of how to use Power
Automate, I’ll be the first to admit that it doesn’t cover everything. When I
was originally contacted by O’Reilly to write this book, it was supposed to
be about 75 pages shorter. As time went on, the book continued to increase

https://oreil.ly/xLj4_

in size. My publisher was gracious enough to let me expand the page count
quite a bit before we finished, but I still found myself having to discard
some topics as I wrote to stay within a reasonable page count. That’s a
fairly long explanation for why you may want to also consult other books
on Power Automate to supplement your knowledge. Different authors bring
a different perspective to the topic, and each book will have something new
to offer you.

One of the books I would like to highlight is Building Solutions with the
Microsoft Power Platform by Jason Rivera (O’Reilly). Jason was one of the
technical reviewers on this book and is very knowledgeable about Power
Automate and the Power Platform in general. If you are interested in
learning more about the possibilities for integration that I mentioned in
Chapter 6, then take a look at Jason’s book. It provides an overview of all
the applications in the Power Platform and will give you great insight into
what’s possible in Power Apps, Power Pages, and Power BI in addition to
Power Automate.

Video tutorials are also a great resource. There are a number of very
talented people who have created a variety of videos about specific topics in
Power Automate. I would recommend checking out content from the
following people:

Reza Dorrani is a Microsoft Principal Program Manager and former
MVP. I met Reza on the Power Platform forums. He is a very
knowledgeable individual, and he creates excellent videos that are easy
to follow.

Damion A. Bird (DamoBird365) is a fellow Super User on the Power
Platform forums. Like Reza, he makes great videos on Power
Automate. I’ve watched him solve some really difficult problems for
people on the forums, and he is a great resource to learn from.

Anders Jensen is a fellow MVP who specializes in robotic process
automation (RPA). His videos are excellent if you want to learn more
about Power Automate Desktop.

https://oreil.ly/buildSolutionsMPP
https://oreil.ly/buildSolutionsMPP
https://rezadorrani.com/
https://oreil.ly/448Im
https://oreil.ly/4jT4K

Additional Help
No matter how good you get at using Power Automate, there will be times
when you design a flow that just won’t run. So, it’s important to know
where you can turn when you need more help. You will of course get to
know other people who are learning Power Automate. Even if you are a
more advanced user, sometimes you just need a different set of eyes to look
at your design to find the problem. Even a novice may spot something that
an experienced citizen developer doesn’t see, due to their preconceptions on
how a design should work.

If you still need help, I suggest you post a question on the Microsoft Power
Automate community forum. Microsoft sponsors a public forum where you
can post questions or problems and get help solving them for free. I spend a
lot of time on the forum answering questions, and a lot of the knowledge
I’ve imparted in this book comes from learnings that I gained through
helping out there. Try posting a question, and if you want, you can tag me
(@Pstork1) to draw my attention to it. But you may find that you get an
answer before I get a chance to read and respond.

Finally
That brings us to the end of this book. I hope you’ve enjoyed your journey
learning how to build Power Automate flows. In a time when so much
depends on timely and accurate processing of information, the value of
automation tools like Power Automate cannot be overstated. As
organizations and individuals, we live in an increasingly fast-paced and
interconnected world. The ability to automate repetitive and time-
consuming tasks is critical to maintain a competitive edge. Power Automate
offers an opportunity for even non-programmers to build sophisticated and
powerful workflows that free us from mundane tasks and allow us to focus
on what truly matters: innovation, creativity, and problem-solving.

I won’t say “farewell” because I’m sure our paths will cross again. But I
will say “goodbye for now,” and, above all, have fun working with Power

https://oreil.ly/_SKpn
https://oreil.ly/_SKpn

Automate.

Index

Symbols

% (percentage sign), Working with Variables

200 status code, Asynchronous Pattern

202 status code, Asynchronous Pattern

A

Action ellipsis (...) menu, Using the Action Ellipsis (…) Menu-Adding a
New Connection

actions (see also triggers and actions)

adding additional, Adding Actions-Adding Actions

adding and editing in PAD, Adding and Editing Actions

changing settings, Changing Action Settings-Tracked Properties

configuration errors, Action Configuration Errors

controlling with conditions, Controlling Actions with Conditions-
Controlling Actions with Conditions

copying, Copying Actions

versus functions, Working with Expressions

nesting complex logic, Using Switches

possible events triggering, Adjusting Run After Settings

renaming, Renaming Actions and Triggers

actions() function, Tracked Properties

“Add attachment” action, Processing Arrays with “Apply to each” Loops

“Add item to list” action, Working with Variables

All Runs view, filtering, Filtering the All Runs View

analytics, for cloud flows, View Analytics for Cloud Flows

And operator, Controlling Actions with Conditions

“Append to string variable”, Returning a Formatted Table of Results

“Apply to each” loops, Selecting Dynamic Content to Add, Processing
Arrays with “Apply to each” Loops-Processing Arrays with “Apply to
each” Loops, Returning a Formatted Table of Results

approval reminder, creating, Adding Parallel Branches-Adding Parallel
Branches

approval status, setting, Controlling Actions with Conditions-Controlling
Actions with Conditions

arrays

“Apply to each” loops, Processing Arrays with “Apply to each” Loops-
Processing Arrays with “Apply to each” Loops, Returning a Formatted
Table of Results

“Do until” loops, Using “Do until” Loops

artificial intelligence (AI), Creating a Flow from a Description-Creating a
Flow from a Description

Asynchronous Pattern feature, Asynchronous Pattern

authentication failures, Authentication Failures

automated triggers, Power BI

Automatic Decompression feature, Automatic Decompression

Azure Logic Apps, Working with Expressions

B

BPF (see Business Process Flows)

BPMN (Business Process Modeling Notation), Design a Workflow in Visio-
Design a Workflow in Visio

branches

adding parallel, Adding Parallel Branches-Adding Parallel Branches

Condition versus Switch actions and, Using Switches

business process flows (BPFs) (see also flows)

adding stages and steps, Adding Stages and Steps-Adding Stages and
Steps

basics of, Business Process Flows, Business Process Flows

creating, Creating a Business Process Flow

description of, Key Licensing Terms

example flow, Example Introduction: Creating a BPF-Example
Introduction: Creating a BPF

limitations of, Limitations

managing security roles, Managing Security Roles

prerequisites for, Prerequisites

steps available, What Is a Business Process Flow?

validating and activating, Validating and Activating a BPF

Business Process Modeling Notation (BPMN), Design a Workflow in Visio-
Design a Workflow in Visio

C

CDS (Common Data Service) (see Microsoft Dataverse)

chatbots

building with PVA, Power Virtual Agents-Returning a Formatted Table
of Results

invoking flows from, Invoking a Flow from a Chatbot-Returning a
Formatted Table of Results

Child flows, calling, Calling Child Flows-Calling Child Flows

citizen developers, Who Should Read This Book, Who Are Citizen
Developers?

ClearCollect() function, Returning Values

cloud flows (see also flows)

automated, Automated Cloud Flows

basics of, Creating a New Cloud Flow

calling desktop flows from, Calling a Desktop Flow from a Cloud
Flow-Passing Parameters to and from a Desktop Flow

creating from blank flows, Starting with a Blank Flow-Starting with a
Blank Flow

creating from descriptions, Creating a Flow from a Description-
Creating a Flow from a Description

instant, Instant Cloud Flows

monitoring and tracking, Monitoring and Tracking Cloud Flows-
Improving Performance with Process Mining

scheduled, Scheduled Cloud Flows

Coalesce() function, Adding Dynamic Content to an Expression, Using
Switches

coding, traditional versus no-code, Why Use Power Automate?

Collect() function, Returning Values

comments, adding to actions, Adding Comments

common errors, Common Errors-Logic Errors

Compose actions

adding, Parsing JSON, Parsing JSON, Calling Child Flows,
Environment Variables

altering, Returning Values

checking values with, Using Compose Actions to Check Values

deleting, Parsing JSON

dynamic content and, Where Is My Dynamic Content?, Returning
Values

“People Array”, Understanding JSON Syntax

renaming, Renaming Actions and Triggers

viewing JSON property in, Parsing JSON

Concurrency Control feature, Controlling Concurrency, Processing Arrays
with “Apply to each” Loops

Condition action, Controlling Actions with Conditions-Controlling Actions
with Conditions

“Condition File not found” action, Using Flow Templates

confidential data, in flows, Secure Inputs and Secure Outputs

Connection References, Connection References

Connector actions, Connection References

connectors

adding new connections, Adding a New Connection

basics of, Connectors

custom, What Is Microsoft Power Automate?

description of, Key Licensing Terms

finding correct, Finding the Right Connector-Finding the Right
Connector

licensing requirements, Getting Started: What You Need to Know

number available, What Is Microsoft Power Automate?

Control connector

actions included in, The Control Connector

calling Child flows, Calling Child Flows-Calling Child Flows

controlling actions with conditions, Controlling Actions with
Conditions-Controlling Actions with Conditions

processing arrays with "Apply to each" loops, Processing Arrays with
“Apply to each” Loops-Processing Arrays with “Apply to each” Loops

using Switch actions, Using Switches-Using Switches

using “Do until” loops, Using “Do until” Loops

“Create an approval” action, Adding Parallel Branches

“Create file” action, Adding Actions, Selecting Dynamic Content to Add,
Using Scope Actions with Run After

“Create item” action, Processing Arrays with “Apply to each” Loops

“Create new list” action, Working with Variables

Custom Tracking ID feature, Custom Tracking ID

D

data communications, minimizing, Managed Versus Unmanaged Solutions

data errors, Data Errors

data gateways, Key Licensing Terms

Data Select action, Managed Versus Unmanaged Solutions

Data Source environment variables, Environment Variables

days, reacting to specific, Using Switches

Degree of Parallelism feature, Controlling Concurrency

“Delay until” action, Using Switches

descriptions, AI-generated, Creating a Flow from a Description-Creating a
Flow from a Description

design-time errors, Handling Errors

desktop flows (see also flows)

adding and editing actions, Adding and Editing Actions

basics of, Desktop Flows

calling from cloud flows, Calling a Desktop Flow from a Cloud Flow-
Passing Parameters to and from a Desktop Flow

creating, Creating a Desktop Flow

description of, Key Licensing Terms

error handling in, Handling Errors-Handling Errors

example flows, Learning from Desktop Flow Examples-Learning from
Desktop Flow Examples

exploring design surface, Exploring the Desktop Flow Design Surface

passing parameters to and from, Passing Parameters to and from a
Desktop Flow

recording user interactions, Recording User Interactions-Recording
User Interactions

robotic process automation and, What Is Robotic Process Automation
(RPA)?-Licensing Requirements

working with variables, Working with Variables

“Display input dialog” action, Handling Errors, Passing Parameters to and
from a Desktop Flow

“Do until” loops, Using “Do until” Loops

dynamic content

adding, Adding Dynamic Content

adding to expressions, Adding Dynamic Content to an Expression-
Adding Dynamic Content to an Expression

configuring actions with, Selecting Dynamic Content to Add

locating after adding to flow, Where Is My Dynamic Content?

potential data types, Adding Dynamic Content

selecting content to add, Selecting Dynamic Content to Add-Selecting
Dynamic Content to Add

versus Tracked Properties feature, Tracked Properties

transforming, Working with Expressions

troubleshooting, Selecting Dynamic Content to Add, Where Is My
Dynamic Content?

Dynamics 365

BPFs and, Prerequisites, Example Introduction: Creating a BPF,
Summary

description of, Key Licensing Terms

licensing requirements, Dynamics 365 Licensing

Dynamics action, What Is a Business Process Flow?

E

ellipsis (…) menu, Using the Action Ellipsis (…) Menu-Adding a New
Connection

email attachments, archiving, Processing Arrays with “Apply to each”
Loops-Processing Arrays with “Apply to each” Loops

email notifications, Email Notifications

environment variables, Environment Variables-Environment Variables

environments

creating additional, Key Licensing Terms

description of, Key Licensing Terms

error handling (see also troubleshooting)

adjusting Run After settings, Adjusting Run After Settings

cancelling running flows, Canceling Running Flows

checking values with Compose actions, Using Compose Actions to
Check Values

common errors, Common Errors-Logic Errors

in desktop flows, Handling Errors-Handling Errors

using Flow checker, Using the Flow Checker

potential causes of errors, Troubleshooting Tips

resubmitting flows, Resubmitting Flows

reviewing run history, Reviewing Run History-Read the Error Message

streamlining testing, Streamlining Testing

using Terminate action, Using the Terminate Action

using Scope actions with Run After, Using Scope Actions with Run
After

exceptions, Handling Errors

expressions

adding dynamic content to, Adding Dynamic Content to an
Expression-Adding Dynamic Content to an Expression

understanding function syntax, Understanding Function Syntax

working with, Working with Expressions

“Format data by examples”, Format Data by Examples-Format Data
by Examples

F

failure notifications, Email Notifications

“Filter array” action, Managed Versus Unmanaged Solutions, Returning a
Formatted Table of Results

first() function, Using Templates as a Learning Experience

Flow (see Microsoft Power Automate)

Flow checker, using for error handling, Using the Flow Checker

flows (see also business process flows; cloud flows; error handling;
templates)

anatomy of, Anatomy of a Flow-Connectors

attended versus unattended, Attended Versus Unattended RPA

cancelling running, Canceling Running Flows

confidential data in, Secure Inputs and Secure Outputs

designing with Visio, Design a Flow with Visio-Design a Workflow in
Visio

integrating with Power Platform applications, Integrating with Other
Power Platform Applications, Managed Versus Unmanaged Solutions,
Summary

invoking from bots, Returning a Formatted Table of Results-Returning
a Formatted Table of Results

invoking from Power Apps, Invoking a Flow from a Power App

invoking from Power Pages, Invoking a Flow from a Power Page

resubmitting, Resubmitting Flows

reviewing run history, Reviewing Run History-Read the Error Message

types of, Types of Flows-Business Process Flows

ForAll() function, Power Apps

“Format data by examples” action, Format Data by Examples-Format Data
by Examples

formatDateTime() function, Adding Dynamic Content to an Expression

free license, Power Automate Free

functions, list of, Working with Expressions (see also expressions)

G

“Get a row by ID” action, Example Introduction: Creating a BPF

“Get Attachment (V2)” action, Adding Actions, Selecting Dynamic Content
to Add

“Get file content” action, Using Scope Actions with Run After

"Get file metadata using path” action, Using Scope Actions with Run After-
Using Scope Actions with Run After

“Get file properties” action, Using Flow Templates

“Get manager (V2)” action, Controlling Actions with Conditions

“Get manager” action, Using Flow Templates, Adding Dynamic Content

“Get my profile” action, Using Flow Templates

getting started, Getting Started: What You Need to Know

H

history logs, reviewing, Reviewing Run History-Read the Error Message

I

If() function, Controlling Actions with Conditions

If/Then statements, Controlling Actions with Conditions, Using Switches

“Increment variable” action, Adding Parallel Branches

“Initialize variable” action, Using Switches, Returning a Formatted Table of
Results, Using Scope Actions with Run After

“Input dialog” action, Passing Parameters to and from a Desktop Flow

Input parameters, Calling Child Flows, Passing Input Parameters

inputs, secure, Secure Inputs and Secure Outputs

integration

with Power Apps, Power Apps-Returning Values

with Power BI, Power BI

with Power Pages, Power Pages

with Power Virtual Agents, Power Virtual Agents-Returning a
Formatted Table of Results

using Solutions, Using Solutions-Managed Versus Unmanaged
Solutions

IntelliSense, Adding Dynamic Content to an Expression

interactions, recording, Recording User Interactions-Recording User
Interactions

ISO 8601 standard, Timeout

J

JSON

looking up and reusing syntax, Looking Up JSON Syntax

parsing, Parsing JSON-Parsing JSON

role of in Power Automate, Using JSON

storing source code in notes, Adding Notes

syntax of, Understanding JSON Syntax

viewer in Microsoft Edge, Data Errors

L

legacy systems, What Is Microsoft Power Automate?

licensing requirements

attended versus unattended flows, Licensing Requirements

definition of key terms, Key Licensing Terms

Dynamics 365 license, Dynamics 365 Licensing

getting started, Getting Started: What You Need to Know

Microsoft 365 license, Microsoft 365 Licensing

options for, Licensing Options

pay-as-you-go license, Pay-as-You-Go Licensing

per-user versus per-app, Power Apps per-user versus per-app licensing

Power Apps Developer Plan, Power Apps Developer Plan, Power Apps
Developer Plan-Power Apps Developer Plan

Power Apps license, Power Apps Licensing

Power Automate Desktop, Licensing Requirements

Power Automate free license, Power Automate Free

Power Automate trial license, Power Automate Trial License, Power
Automate Trial-Power Automate Trial

Power Virtual Agents license, Power Virtual Agents License

standalone plans, Power Automate Standalone Plans

Windows license, Windows Licensing

limitations and workarounds, Power Automate Limitations and
Workarounds, Integrating with Other Power Platform Applications

“List rows present in a table” action, Returning a Formatted Table of
Results

“List rows” action, Finding the Right Connector, Renaming Actions and
Triggers

logic

adding parallel branches, Adding Parallel Branches-Adding Parallel
Branches

calling Child flows, Calling Child Flows-Calling Child Flows

controlling actions with conditions, Controlling Actions with
Conditions-Controlling Actions with Conditions

implementing, Implementing Logic

processing arrays with "Apply to each" loops, Processing Arrays with
“Apply to each” Loops-Processing Arrays with “Apply to each” Loops

troubleshooting logic errors, Logic Errors

using Switch actions, Using Switches-Using Switches

using “Do until” loops, Using “Do until” Loops

logs, reviewing, Reviewing Run History-Read the Error Message

loops

“Apply to each” loops, Selecting Dynamic Content to Add, Processing
Arrays with “Apply to each” Loops-Processing Arrays with “Apply to
each” Loops, Returning a Formatted Table of Results

“Do until” loops, Using “Do until” Loops

preventing infinite, Implementing Trigger Conditions

low-code/no-code development, Why Use Power Automate?, Key
Licensing Terms

M

manual triggers, Power BI

Markdown language, Returning a Formatted Table of Results

Microsoft 365

licensing requirements, Microsoft 365 Licensing

services included in, Key Licensing Terms

Microsoft Dataverse

creating Dataverse tables, Example Introduction: Creating a BPF-
Example Introduction: Creating a BPF

description of, Key Licensing Terms

environment variable for Solutions, Environment Variables

locating connector for, Finding the Right Connector-Finding the Right
Connector

Microsoft Power Automate (see also licensing requirements)

approach to learning, Why I Wrote This Book, How This Book Will
Teach Power Automate

benefits of, Preface, Why Use Power Automate?

chapter overviews, Navigating This Book-Chapter 9: Business Process
Flows

citizen developers for, Who Should Read This Book, Who Are Citizen
Developers?

getting started, Getting Started: What You Need to Know

high-level overview of, What Is Microsoft Power Automate?

limitations and workarounds, Power Automate Limitations and
Workarounds, Integrating with Other Power Platform Applications

migrating from SharePoint Designer, Migrating from SharePoint
Designer to Power Automate

minimizing data communications, Managed Versus Unmanaged
Solutions

versus PAD, What Is Robotic Process Automation (RPA)?

related Power Apps, Power Apps Licensing

tasks handled by, Preface, What Is Microsoft Power Automate?

Microsoft Power Platform (see Power Platform applications)

“Modified by email” action, Using Flow Templates

N

no-code software development, Why Use Power Automate?, Key Licensing
Terms

notes, adding to actions and triggers, Adding Notes

O

OAuth (Open Authorization), Connection References

Office 365 (see Microsoft 365)

“On block error” action, Handling Errors

on-premises data gateways, Key Licensing Terms

OnSelect() function, Invoking a Flow from a Power App

OnVisible() function, Invoking a Flow from a Power App

Or operator, Controlling Actions with Conditions

Output parameters, Calling Child Flows

outputs, secure, Secure Inputs and Secure Outputs

P

PAD (see Power Automate Desktop)

Pagination feature, Pagination

parallel branches, adding, Adding Parallel Branches-Adding Parallel
Branches

parameters

passing input parameters in Power Apps, Passing Input Parameters

passing to and from desktop flows, Passing Parameters to and from a
Desktop Flow-Passing Parameters to and from a Desktop Flow

Parent flows, returning results to, Calling Child Flows-Calling Child Flows

Parse JSON action, Managed Versus Unmanaged Solutions

ParseJson() function, Returning Values

pay-as-you-go license, Pay-as-You-Go Licensing

percentage signs (%), Working with Variables

Power Apps

description of, Key Licensing Terms, Integrating with Other Power
Platform Applications

invoking flows from, Invoking a Flow from a Power App

licensing requirements, Power Apps Licensing

passing input parameters, Passing Input Parameters

Power Apps Developer Plan, Power Apps Developer Plan, Power Apps
Developer Plan-Power Apps Developer Plan

returning values, Returning Values-Returning Values

task automation with, Preface, What Is Microsoft Power Automate?

Power Automate Desktop (PAD)

benefits of, Desktop Flows

installing, Installing Power Automate Desktop-Installing Power
Automate Desktop

licensing requirements, Windows Licensing, Licensing Requirements

machine settings, Machine Settings

versus Power Automate, What Is Robotic Process Automation (RPA)?

prerequisites for, Prerequisites for Power Automate Desktop

Power BI, Preface, What Is Microsoft Power Automate?, Integrating with
Other Power Platform Applications, Power BI

“Power BI button clicked” trigger, Power BI

Power Pages, Preface, What Is Microsoft Power Automate?, Integrating
with Other Power Platform Applications, Power Pages

Power Platform applications (see also Microsoft Power Automate)

integration with, What Is Microsoft Power Automate?, Integrating with
Other Power Platform Applications

Power Apps, Preface, What Is Microsoft Power Automate?, Key
Licensing Terms, Integrating with Other Power Platform Applications,
Power Apps-Returning Values

Power BI, Preface, What Is Microsoft Power Automate?, Integrating
with Other Power Platform Applications, Power BI

Power Pages, Preface, What Is Microsoft Power Automate?,
Integrating with Other Power Platform Applications, Power Pages

Power Virtual Agents, Preface, What Is Microsoft Power Automate?,
Key Licensing Terms, Integrating with Other Power Platform
Applications, Power Virtual Agents-Returning a Formatted Table of
Results

Solutions, Using Solutions-Managed Versus Unmanaged Solutions

Power Platform environments, Key Licensing Terms

Power Virtual Agents (PVAs)

basics of, Preface, What Is Microsoft Power Automate?, Power Virtual
Agents

description of, Key Licensing Terms, Integrating with Other Power
Platform Applications

invoking flows from Chatbots, Invoking a Flow from a Chatbot-
Returning a Formatted Table of Results

licensing requirements, Power Virtual Agents License

returning formatted tables of results, Returning a Formatted Table of
Results-Returning a Formatted Table of Results

Process Mining, Improving Performance with Process Mining

PVA (see Power Virtual Agents)

Q

questions and comments, How to Contact Us

R

recording user interactions, Recording User Interactions-Recording User
Interactions

recurrence triggers, Power Automate Limitations and Workarounds, Power
Apps Licensing, Triggers, Scheduled Cloud Flows, Choosing a Trigger,
Power BI, Resubmitting Flows

“Respond to a Power App or flow” action, Calling Child Flows, Returning
Values

Retry Policy types, Retry Policy

“Return values()” action, Returning a Formatted Table of Results

robotic process automation (RPA) (see also desktop flows; Power Automate
Desktop)

attended versus unattended, Attended Versus Unattended RPA

basics of, What Is Robotic Process Automation (RPA)?

examples from PAD, Learning from Desktop Flow Examples-Learning
from Desktop Flow Examples

PAD licensing requirements, Licensing Requirements

RPA (see robotic process automation)

“Run a Child Flow” action, Calling Child Flows

“Run a flow built with Power Automate Desktop” action, Passing
Parameters to and from a Desktop Flow, Passing Parameters to and from a
Desktop Flow

Run After

adjusting settings, Adjusting Run After Settings

using Scope actions with, Using Scope Actions with Run After

using Terminate action with, Using the Terminate Action

runtime errors, Handling Errors

S

SAP ERP, Environment Variables

Scope action

overview of, The Control Connector

using with Run After, Using Scope Actions with Run After

Secure Inputs and Outputs features, Secure Inputs and Secure Outputs

security

confidential data in flows, Secure Inputs and Secure Outputs

managing roles in BPFs, Managing Security Roles

seeded licenses, Getting Started: What You Need to Know

“Send an Email (V2)” action, Controlling Actions with Conditions, Adding
Parallel Branches, Example Introduction: Creating a BPF

"Send email” action, Logic Errors

“Send me an email notification” action, Using Scope Actions with Run
After

“Set variable” action, Using Switches, Working with Variables

Set() function, Returning Values

SharePoint Designer (SPD), Migrating from SharePoint Designer to Power
Automate, Environment Variables

software development, traditional versus no-code, Why Use Power
Automate?

Solutions

Connection References, Connection References

creating new, Creating a New Solution-Creating a New Solution

environment variables, Environment Variables-Environment Variables

managed versus unmanaged, Managed Versus Unmanaged Solutions-
Managed Versus Unmanaged Solutions

using, Using Solutions

SPD (see SharePoint Design)

Split On feature, Split On

Stages, Business Process Flows, What Is a Business Process Flow?

standalone plans, Power Automate Standalone Plans

“Start an approval” action, Using Flow Templates

“Start and wait for an approval” action, Timeout, Controlling Actions with
Conditions

Static Results option, Streamlining Testing

status codes

200 status code, Asynchronous Pattern

202 status code, Asynchronous Pattern

storage capacity, Key Licensing Terms, Pay-as-You-Go Licensing

Switch action, Using Switches-Using Switches

Switch() function, Using Switches

T

tables, returning formatted, Returning a Formatted Table of Results-
Returning a Formatted Table of Results

target audiences, Who Should Read This Book

templates (see also Visio)

how to use, How to Use Templates

learning from, Using Templates as a Learning Experience

using flow templates, Using Flow Templates-Using Flow Templates

Terminate action

overview of, The Control Connector

using for error handling, Using the Terminate Action

testing, streamlining, Streamlining Testing

timeouts, Timeout

toLower() function, Understanding Function Syntax

Tracked Properties feature, Tracked Properties

trial license, Power Automate Trial License, Power Automate Trial-Power
Automate Trial (see also licensing requirements)

Trigger Conditions feature, Implementing Trigger Conditions-Summary

triggers and actions (see also individual actions; individual triggers)

adding actions, Adding Actions-Adding Actions

adding comments, Adding Comments

adding dynamic content, Adding Dynamic Content-Where Is My
Dynamic Content?

adding notes to, Adding Notes

anatomy of flows, Anatomy of a Flow-Connectors

basics of, Triggers, Actions, and Connectors, Adding Actions

changing action settings, Changing Action Settings-Tracked Properties

choosing triggers, Choosing a Trigger-Choosing a Trigger

copying actions, Copying Actions

deleting and replacing triggers, Choosing a Trigger

filtering triggers, Choosing a Trigger

finding correct connector, Finding the Right Connector-Finding the
Right Connector

renaming actions and triggers, Renaming Actions and Triggers

trigger settings, Trigger Settings-Summary

using Action ellipsis (...) menu, Using the Action Ellipsis (…) Menu-
Adding a New Connection

using JSON, Using JSON-Parsing JSON

working with expressions, Working with Expressions-Format Data by
Examples

troubleshooting (see also error handling)

common errors, Common Errors-Logic Errors

dynamic content, Selecting Dynamic Content to Add, Where Is My
Dynamic Content?

monitoring and tracking cloud flows, Monitoring and Tracking Cloud
Flows-Improving Performance with Process Mining

reviewing run history, Reviewing Run History-Read the Error Message

try-catch blocks, Adjusting Run After Settings

U

“Update file properties” action, Controlling Actions with Conditions

“Update file” action, Using Scope Actions with Run After

“Update item” action, Implementing Trigger Conditions

Upper() function, Using Switches

user interactions, recording, Recording User Interactions-Recording User
Interactions

V

values

checking with Compose actions, Using Compose Actions to Check
Values

returning results to Parent flows, Calling Child Flows-Calling Child
Flows

returning to Power Apps, Returning Values-Returning Values

variables

environment variables in Solutions, Environment Variables-
Environment Variables

working with in PAD, Working with Variables

Visio

BPMN flowcharts, Design a Workflow in Visio-Design a Workflow in
Visio

designing flows with, Design a Flow with Visio

exporting templates, Design a Workflow in Visio-Design a Workflow
in Visio

exporting workflows to Power Automate, Design a Workflow in Visio

prerequisites for, Prerequisites

W

“Wait for an approval” action, Adding Parallel Branches

“When an HTTP request is received” trigger, Calling Child Flows

Windows licensing, Windows Licensing

Z

“Zip files” action, Handling Errors

About the Author
Paul Papanek Stork is the owner and principal architect at Don’t Pa..Panic
Consulting. He has worked in the IT industry for over 35 years and has
been awarded the Microsoft Most Valuable Professional (MVP) award for
the last 16 consecutive years. In addition to being a frequent book
contributor and conference speaker, Paul is currently one of the only triple
Super Users on the Microsoft Power Platform forums, where he answers
questions and troubleshoots issues on Power Apps, Power Automate, and
Power Virtual Agent.

Colophon
The animal on the cover of Learning Microsoft Power Automate is a zebu
(Bos indicus or Bos taurus indicus), also known as humped cattle. Some
believe them to be the oldest domesticated breed of cattle in the world,
having been domesticated in the Indus Valley as much as 6,000 to 7,000
years ago.

Zebu have a large fatty hump above their shoulders, drooping ears, upward-
curving horns, and a large flap of loose skin around their neck called a
dewlap. They are well adapted to warm climates and have a high tolerance
for heat and drought, and these adaptations have led to them being
introduced to other parts of the world, particularly Africa and Brazil. They
have also been crossbred with many other varieties of cattle to produce new
breeds. While zebu can be found in many countries, the largest herds are in
Brazil and India.

The zebu population is large and worldwide, so they are therefore not listed
on endangered species lists. However, many of the animals on O’Reilly
covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line
engraving from Shaw’s Zoology. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Chapter 1: What Is Microsoft Power Automate?
	Chapter 2: Getting Started: What You Need to Know
	Chapter 3: Building Your First Flow
	Chapter 4: Working with Triggers and Actions
	Chapter 5: Implementing Logic
	Chapter 6: Integrating with Other Power Platform Applications
	Chapter 7: Troubleshooting Tips
	Chapter 8: Desktop Flows
	Chapter 9: Business Process Flows

	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. What Is Microsoft Power Automate?
	Why Use Power Automate?
	Who Are Citizen Developers?
	Migrating from SharePoint Designer to Power Automate
	Why Not Use SPD Workflows?
	Power Automate Limitations and Workarounds

	How This Book Will Teach Power Automate
	Summary

	2. Getting Started: What You Need to Know
	Key Licensing Terms
	Licensing Options
	Power Automate Free
	Microsoft 365 Licensing
	Dynamics 365 Licensing
	Power Apps Licensing
	Power Automate Standalone Plans
	Pay-as-You-Go Licensing

	Special Case Licenses
	Power Virtual Agents License
	Power Automate Trial License
	Power Apps Developer Plan
	Windows Licensing

	Anatomy of a Flow
	Triggers
	Actions
	Connectors

	Types of Flows
	Automated Cloud Flows
	Instant Cloud Flows
	Scheduled Cloud Flows
	Desktop Flows
	Business Process Flows

	Accessing Power Automate
	Power Automate Trial
	Power Apps Developer Plan

	Summary

	3. Building Your First Flow
	How to Use Templates
	Using Flow Templates
	Using Templates as a Learning Experience

	Creating a New Cloud Flow
	Starting with a Blank Flow
	Creating a Flow from a Description

	Design a Flow with Visio
	Prerequisites
	Design a Workflow in Visio

	Summary

	4. Working with Triggers and Actions
	Triggers, Actions, and Connectors
	Finding the Right Connector
	Choosing a Trigger
	Adding Actions

	Adding Dynamic Content
	Selecting Dynamic Content to Add
	Where Is My Dynamic Content?

	Using JSON
	Understanding JSON Syntax
	Looking Up JSON Syntax
	Parsing JSON

	Working with Expressions
	Understanding Function Syntax
	Adding Dynamic Content to an Expression
	Format Data by Examples

	Using the Action Ellipsis (…) Menu
	Copying Actions
	Renaming Actions and Triggers
	Adding Comments
	Adding Notes
	Adding a New Connection

	Changing Action Settings
	Pagination
	Secure Inputs and Secure Outputs
	Asynchronous Pattern
	Automatic Decompression
	Timeout
	Retry Policy
	Tracked Properties

	Trigger Settings
	Split On
	Custom Tracking ID
	Controlling Concurrency
	Implementing Trigger Conditions

	Summary

	5. Implementing Logic
	The Control Connector
	Controlling Actions with Conditions
	Using Switches
	Calling Child Flows
	Processing Arrays with “Apply to each” Loops
	Using “Do until” Loops

	Adding Parallel Branches
	Summary

	6. Integrating with Other Power Platform Applications
	Using Solutions
	Creating a New Solution
	Connection References
	Environment Variables
	Managed Versus Unmanaged Solutions

	Power Apps
	Invoking a Flow from a Power App
	Passing Input Parameters
	Returning Values

	Power Virtual Agents
	Invoking a Flow from a Chatbot
	Returning a Formatted Table of Results

	Power BI
	Power Pages
	Invoking a Flow from a Power Page

	Summary

	7. Troubleshooting Tips
	Reviewing Run History
	Filtering the All Runs View
	Read the Error Message

	Common Errors
	Authentication Failures
	Action Configuration Errors
	Data Errors
	Logic Errors

	Monitoring and Tracking Cloud Flows
	Email Notifications
	Monitoring Cloud Flow Activity
	View Analytics for Cloud Flows
	Improving Performance with Process Mining

	Fixing Flow Errors
	Using the Flow Checker
	Using Compose Actions to Check Values
	Streamlining Testing
	Adjusting Run After Settings
	Using the Terminate Action
	Using Scope Actions with Run After
	Resubmitting Flows
	Canceling Running Flows

	Summary

	8. Desktop Flows
	What Is Robotic Process Automation (RPA)?
	Prerequisites for Power Automate Desktop
	Installing Power Automate Desktop
	Machine Settings
	Licensing Requirements

	Creating a Desktop Flow
	Exploring the Desktop Flow Design Surface
	Learning from Desktop Flow Examples
	Recording User Interactions
	Adding and Editing Actions
	Working with Variables
	Handling Errors

	Calling a Desktop Flow from a Cloud Flow
	Attended Versus Unattended RPA
	Passing Parameters to and from a Desktop Flow

	Summary

	9. Business Process Flows
	What Is a Business Process Flow?
	Creating a Business Process Flow
	Prerequisites
	Limitations
	Adding Stages and Steps
	Managing Security Roles
	Validating and Activating a BPF
	Example Introduction: Creating a BPF

	Summary

	Conclusion
	Where Can I Learn More?
	Power Automate Documentation
	Microsoft Learning Website
	Additional Resources
	Additional Help

	Finally

	Index
	About the Author

