
Mastering
Sof tware
Architecture

A Comprehensive New Model and Approach
—
Michael Carducci
With Daniel Tippie

Mastering Software
Architecture

A Comprehensive New Model
and Approach

Michael Carducci
With Daniel Tippie

Mastering Software Architecture: A Comprehensive New Model and Approach

ISBN-13 (pbk): 979-8-8688-0409-0		 ISBN-13 (electronic): 979-8-8688-0410-6
https://doi.org/10.1007/979-8-8688-0410-6

Copyright © 2025 by Michael Carducci

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Kripa Joseph

Cover designed by eStudioCalamar

Cover image designed by R. Buckminster Fuller and adapted from US Patent 2,682,235 Building
Construction/Geodesic Dome
filed December 12, 1951 SN 261,168 granted June 29, 1954
Pursuant to 37 CFR 1.71(d) & (e) and 1.84 (s) this image is not subject to copyright restrictions.

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book can be found here:
https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Michael Carducci
Parker, CO, USA

https://doi.org/10.1007/979-8-8688-0410-6

For Kaden, may your creative philosophy live on.

v

About the Author��xv

About the Contributing Author��xvii

About the Technical Reviewer���xix

Acknowledgments���xxi

Foreword��xxv

Preface: Holism in Software Architecture��xxvii

Introduction���xxxi

Section 1: Foundations�� 1

Chapter 1: �The Scope and Role of Architecture��� 3

What Exactly Is Architecture?�� 4

Why Architecture?�� 5

Patterns�� 6

It Depends�� 9

Thinking, Reasoning, and Navigating Nuance�� 10

Understanding Business Drivers�� 12

Architects Bring Breadth of Knowledge��� 13

The Scope of Architecture�� 15

Summary��� 15

Chapter 2: �Breadth of Knowledge: The Architect’s Superpower������������������������������ 17

Balancing Depth vs. Breadth�� 19

Discovering Linchpins�� 22

“Soft” Skills��� 23

Table of Contents

vi

The Essential Unity of All Knowledge��� 24

New Challenges��� 25

Summary��� 26

Chapter 3: �Capabilities: The Language of the Architect�� 27

Architectural Capabilities of Key Interest��� 28

Category: Performance��� 30

Category: Agility�� 33

Category: Integration�� 38

Category: Feasibility and Manageability��� 41

Category: Reliability�� 45

Category: Safety and Security�� 46

Summary��� 49

Chapter 4: �Aligning on Vision and Architectural Requirements������������������������������ 53

Laserdisc Solved the Wrong Problem�� 57

Architecture Must Solve the “Right” Problem�� 58

The Tailor-Made Requirements Analysis Process�� 59

Step 1: Preparing for the “Business Conversation”�� 59

Step 2: Identifying Stakeholders��� 60

Step 3: The First Meeting�� 62

Step 4: Identifying Architecture Capability Requirements�� 68

Step 5: Qualifying and Quantifying Capabilities with Stakeholders�� 69

Step 6: Documenting and Scoring Capabilities�� 73

Summary��� 75

Chapter 5: �KPIs, Metrics, and Data-Driven Architecture Decisions������������������������� 77

What Is a KPI?�� 78

Good and Bad KPIs��� 78

What Motivates Organizations to Use KPIs?�� 80

Evaluating KPIs in Relation to Architecture�� 81

Identifying Requirements from KPIs��� 87

Connecting Architecture Capabilities to KPIs��� 89

Table of Contents

vii

KPIs by Department��� 90

Business Management��� 90

Product��� 91

Sales��� 95

Marketing��� 97

Financial��� 98

Presenting KPIs to a Target Audience�� 99

Summary��� 101

Chapter 6: �Architectures Are Not “Chosen,” They Are Designed��������������������������� 103

The Limitations of Pattern-Driven Architecture�� 104

Summary��� 107

Chapter 7: Architectural Constraints: Designing for
Deterministic Capabilities��� 109

The Origins of Architecture Capabilities��� 109

Closing the Capability Gap��� 113

Constraints for Deterministic Outcomes�� 114

Summary��� 115

Chapter 8: �Architectural Styles: The Tailor-Made Pattern Language��������������������� 117

Architectural Styles and Architectural Patterns��� 118

Why “Style”�� 119

Summary��� 120

Chapter 9: �Architectural X Factors: Environment, Organization, and Teams��������� 121

The Many Dimensions of “Fit”��� 121

X Factors and the Road to Microservices�� 122

Team Constraints�� 126

Organizational Constraints��� 126

Environmental Constraints��� 127

Constraint Dependencies��� 127

Summary��� 129

Table of Contents

viii

Chapter 10: �Abstract Styles: A New Look at Patterns��� 131

Ready-to-Wear��� 132

Tailored Off-the-Rack��� 134

Made-to-Measure��� 135

Bespoke Tailoring��� 136

Summary��� 137

Section 2: Patterns, Abstract Styles, and Architecture As a Continuum����� 139

Chapter 11: �Architecture As a Multifaceted Continuum�� 141

Agile Architecture��� 142

When to Evolve Architecture�� 144

How to Evolve Architecture�� 145

Summary��� 148

Chapter 12: �The Layered Monolith Abstract Style��� 149

The Big Ball of Mud Style��� 150

Abstraction��� 151

Affordability�� 151

Agility�� 151

Deployability��� 152

Elasticity��� 152

Evolvability��� 152

Fault Tolerance��� 153

Integration�� 153

Performance��� 153

Scalability��� 153

Simplicity�� 154

Testability��� 154

Workflow�� 154

The Semi-structured Big Ball of Mud Style�� 156

The Semi-structured, DB-Backed, Big Ball of Mud Style��� 157

The Layered Monolith Abstract Style��� 159

Table of Contents

ix

Inside the Monolith�� 161

The Presentation Layer��� 162

The Services Layer��� 163

The Business Logic Layer��� 163

The Persistence Layer�� 164

Layer Encapsulation and Abstraction��� 166

Summary��� 168

Chapter 13: �The Distributed N-Tier Architecture Abstract Style���������������������������� 171

Adding Constraints��� 173

The Client/Server Constraint�� 173

API Constraints��� 175

Changing Constraints��� 179

Coarse-Grained Component Granularity Constraint�� 179

Independent Deployability�� 181

The Distributed N-Tier Abstract Style��� 183

Tailoring This Abstract Style��� 184

Summary��� 188

Chapter 14: �The Modular Monolith Abstract Style��� 191

Changing Constraints: Domain Partitioning Constraint�� 192

Module Granularity��� 196

Organizing Code Within a Domain Module��� 197

Partitioned Shared Database Constraint�� 199

The Modular Monolith Abstract Style��� 202

Summary��� 204

Chapter 15: �The Service-Based Abstract Style�� 207

Changing Constraints: Medium Component Granularity�� 207

Interservice Communication��� 209

Independent Deployability�� 214

Adding Constraints��� 215

The Mature, Medium-Grained, Domain Partitioned RPC Client/Server Style������������������������������ 215

Table of Contents

x

The Service-Based Abstract Style�� 216

Tailoring This Abstract Style��� 219

Summary��� 220

Chapter 16: �The Microservices Abstract Style�� 223

Changing Constraints��� 223

Fine Component Granularity��� 223

Isolated Databases��� 229

Adding Constraints��� 240

Highly Decoupled Components��� 240

The Microservices Abstract Style��� 247

Summary��� 248

Chapter 17: �Choreographed Event-Driven Abstract Style�������������������������������������� 251

Changing Constraints��� 253

Technical Partitioning��� 253

Choreography-Driven Interactions�� 255

Adding Constraints��� 262

PubSub Messaging��� 262

The Choreographed Event-Driven Abstract Style��� 266

Summary��� 269

Chapter 18: �Orchestrated Event-Driven Abstract Style��� 271

Changing Constraints��� 271

Orchestration-Driven Interactions�� 271

Persistent Queue Messaging�� 281

Preventing Data Loss�� 283

Orchestration-Driven Event-Driven Abstract Style��� 284

Summary��� 286

Chapter 19: �The Space-Based Abstract Style�� 289

Adding Constraints��� 290

Transactional Data Stored In-Memory�� 290

Decoupled Database��� 293

Table of Contents

xi

The Space-Based Abstract Style�� 294

The Processing Unit�� 295

The Data Grid�� 295

The Virtualized Middleware Layer�� 296

The Message Grid��� 296

The Processing Grid��� 296

The Deployment Manager�� 296

Data Pumps�� 296

Summary��� 298

Chapter 20: �The Microkernel Abstract Style�� 301

Changing Constraints��� 302

Adding Constraints��� 302

Uniform Interface�� 302

Plug-In Architecture�� 306

Fine Component Granularity��� 309

The Microkernel Abstract Style�� 309

Summary��� 313

Chapter 21: �Summary of Constraints and Abstract Styles������������������������������������ 315

A Taxonomy of Architectural Styles�� 315

Level 1: Module Partitioning��� 316

Level 2: Persistence Options�� 318

Level 3: Granularity��� 320

Level 4: Component Communication�� 322

Summary of Abstract Styles�� 324

Summary of Constraints�� 333

Section 3: Executing Architecture Effectively�� 339

Chapter 22: �Deriving a Tailor-Made Architecture�� 341

Tailoring Existing Architectures�� 342

Made-to-Measure Architecture�� 343

Phase I: Identifying Abstract Styles�� 343

Table of Contents

xii

Phase II: Evaluating for Temporal Fit�� 344

Phase III: Evaluating for Team, Organizational, and Environmental Fit��������������������������������� 346

Phase IV: Reviewing Candidate Styles�� 346

Phase V: Presenting Candidate Architectures for Review��� 347

Phase VI: Design and Document the Architecture�� 351

Summary��� 351

Chapter 23: �Paved Roads and Variances��� 353

Paved Roads�� 355

Variances��� 357

The Role of Variances in Software Architecture��� 357

Managing Variances��� 358

Summary��� 358

Chapter 24: �Documenting Architecture��� 361

Architectural Decision Records (ADRs)�� 361

ADRs Serve You�� 362

ADRs Serve Future You��� 362

ADRs Serve Teams�� 363

ADRs Serve Future Teams�� 363

The Anatomy of an ADR�� 364

Title and Metadata�� 364

Context and Problem Statement��� 364

Decision Drivers��� 365

Considered Options�� 365

Decision Outcome�� 366

Positive and Negative Consequences��� 367

Pros and Cons of the Options��� 368

Links��� 368

The Constraint Document�� 369

Title and Metadata�� 369

Motivation��� 369

Table of Contents

xiii

Description��� 370

Considered Alternatives�� 370

Risks��� 371

Support��� 371

Implementation Guidance��� 372

Governance�� 373

Resources��� 373

The Architectural Style Document�� 374

Title and Introduction��� 374

Motivation��� 375

Summary of Constraints��� 375

Scope�� 376

High-Level Overview�� 376

Links��� 377

Diagramming and Visualizing Architecture�� 377

C4 Abstractions�� 379

C4 Diagrams��� 383

General Diagram Advice��� 396

Summary��� 398

Chapter 25: �Architectural Enforcement and Governance�������������������������������������� 399

Define Clear and Comprehensive Architectural Principles��� 400

Establishing a Governance Framework��� 401

Architectural Enforcement Mechanisms�� 402

Empower Teams to Succeed�� 404

Summary��� 405

Chapter 26: �The Art of Being an Architect��� 407

Identify the Problems That Require Change��� 408

Identify Potential Changes��� 409

The Four-Way Test�� 409

Assertiveness vs. Cooperativeness�� 410

Table of Contents

xiv

The Weighted Decision Matrix�� 412

Understanding the Attributes of an Innovation��� 414

Identify Resources Necessary to Make the Change��� 415

Some Terminology�� 415

Identify the Resources Necessary to Make the Change�� 417

Know the Entanglement, Environment, and Endurance of Change�������������������������������������� 417

Know the Organization��� 419

Know Yourself and Your Place in the World�� 420

Truly Know Your Counterparts�� 422

The Diagnostic Matrix��� 423

The Approach Matrix�� 426

Plan to Orchestrate the Change��� 429

Packaging Your Solution��� 429

Optimize Your Proposed Solution��� 431

Optimizing Complexity�� 432

Optimizing Trialability��� 432

Optimizing Observability��� 433

Write Down the Plan��� 433

Execute the Plan�� 434

Prepare for Change��� 434

Prepare for Success��� 434

Summary��� 435

�Index�� 437

Table of Contents

xv

About the Author

Michael Carducci is a seasoned IT professional with over

25 years of experience, an author, and an internationally

recognized speaker, blending expertise in software

architecture with the artistry of magic and mentalism. 

Michael’s career spans roles from individual contributor

to CTO, with a particular focus on strategic architecture and

holistic transformation. Notable roles over the past 15 years

include being named the chief architect at a Fortune 100

company you have certainly heard of and being named chief

architect of a social media startup you certainly have not

heard of.

As a magician and mentalist, Michael has captivated audiences in dozens of

countries, applying the same creativity and problem-solving skills that define his

technology career. He excels in transforming complex technical concepts into engaging

narratives, making him a sought-after speaker and emcee for tech events worldwide.

In his consulting work, Michael adopts a holistic approach to software architecture,

ensuring alignment with business strategy and operational realities. He empowers

teams, bridges tactical and strategic objectives, and guides organizations through

transformative changes, always aiming to create sustainable, adaptable solutions.

Michael’s unique blend of technical acumen and performative talent makes him an

unparalleled force in both the tech and entertainment industries, driven by a passion for

continuous learning and a commitment to excellence.

xvii

Daniel Tippie has been a software architect, software

engineer, systems architect, systems engineer, and technical

lead with over 17 years of experience working in both

commercial and DoD software development. 

He has a passion for taking computer science theory,

software engineering practices, and systems engineering

principles and converting that knowledge into practical

application. He has also spent years designing, building,

and integrating complex projects of various sizes and phases

of development. Daniel applies methodical and flexible

approaches to everything that he does.

Daniel loves to discuss computer science, math, physics, ballistics, astrodynamics,

science fiction, and dogs. He has a very supportive wife, kids, parents, and in-laws.

About the Contributing Author

xix

Darrell Rials is an accomplished software and enterprise

architect, helping teams deliver worthwhile solutions for

over 25 years in the manufacturing, building automation,

financial services, and telecommunications industries. A

lifelong learner, writer, and teacher, Darrell maintains an

abundance mindset, believes that the way we treat people

matters a lot, and is grateful to be able to experience this

mystery we call life.  

About the Technical Reviewer

xxi

Acknowledgments

If I have seen further, it is by standing on the shoulders of giants.

—Sir Isaac Newton

As I look at this long and dense manuscript that I have spent the past two years writing,

I cannot help but remain surprised. Honestly, I never thought I would ever have enough

to say to fill a book, let alone the ability to sit down and write one. Yet here we are. Life,

sometimes, surprises us.

My entire adult life I have juggled dual careers in magic and technology with an

intention to retire from software and focus completely on magic. In fact, I did just that

in 2014.

Just when I thought I was out, they pull me back in!

—Michael Corleone, The Godfather Part III

I have Jay Zimmerman, founder of the No Fluff Just Stuff (NFJS) conference series, to

thank for pulling me back in. In 2008 or 2009, he found me online and booked me to

perform a magic show at his flagship conference, ÜberConf. At that time, nobody knew

that software engineering was my “day job”; however, my domain knowledge was clearly

evident in the show that I wrote, and that performance was exceptionally well received

by the audience. Well, almost.

As I was leaving the ballroom, I heard a voice bellow “You’re wrong, by the way!”

I turned to the source of the comment, and the volunteer critic expanded on his

statement, pointing out a factual error in my script. OK, the show was well received

except by that one guy. You can’t please everyone.

On the success of the show at ÜberConf, Jay booked me for another conference

that year, this time in Florida where I delivered a similar performance. Once again, the

show was exceptionally well received. While I was packing up to head to the evening

reception, a member of the audience approached me to say “Kudos! You fixed your

script!” It was the volunteer critic I met at ÜberConf, six months earlier. The critic was

xxii

not an attendee, as I had first assumed, but rather was Brian Sletten who was—and is—a

regular speaker at NoFluff events. It is Brian Sletten to whom I owe an enormous debt of

gratitude.

Despite a rather gruff initial interaction, Brian and I have grown to be good friends,

and he has contributed enormously to my philosophy and collection of mental models.

Brian is a deep thinker who is a master of critical thought and possesses the rare ability

to see things as they really are.

Brian is not the only NoFluff speaker who has had a profound impact on my personal

and professional growth. In fact, many subsequent conference performances allowed me

to meet and befriend many brilliant thought leaders. I cannot name them all; however, at

a minimum, I want to thank the tour regulars. Venkat Subramanium, Ken Kousen, Raju

Gandhi, Ken Sipe, Danny Brian, Daniel Hinojosa, Jonathan Johnson, Doug Hawkins, Tim

Berglund, Craig Walls, Chris Maki, Nate Schutta, Scott Davis, and Llewellyn Falco have

all supported me and inspired me to become who I am today.

I also owe a particular debt to Mark Richards and Neal Ford. For years, these

towering intellects dominated the architecture tracks at most of the conferences I have

participated in. Although they are no longer regulars at NoFluff events, their friendship

and influence live on. It is no surprise that I cite and quote these individuals and their

work frequently throughout this book.

I’m also extraordinarily grateful to Roy Fielding, both for his contributions to the Web

and for his dissertation which introduced me to a new model of software architecture

that has informed my thinking ever since.

There is, of course, more to the story than just doing magic tricks at conferences.

As the NFJS resident magician, my software bona fides were not widely known. The

speakers and crew, however, welcomed me into the fold without question. Jay always

recognized that there was more to me than meets the eye, and, within a year or two of

giving shows, he invited me to speak. At that point, the two worlds that I fought so hard

for so long to keep separate irrevocably collided. Like it or not, I was back in the game.

History repeats itself. I met Martin Anderson, an early mentor and my first employer

in the tech industry, when I was the resident magician at TGI Friday’s back in the late

1990s. Through sheer luck, I learned of Martin the night before we met. His name had

come up as someone I should approach for an internship or junior developer role,

and subsequent research turned up a personal home page he had built as an exercise

to learn HTML. The website laid out his, and his family’s, whole life story. Such inside

information is particularly valuable when giving mindreading demonstrations. I can

Acknowledgments

xxiii

only imagine that the “insight” I displayed was nothing short of astounding. When

I had finally deployed every fact at my disposal (and, thus, finally time to conclude

my extended performance), I mentioned that I was “a keen amateur programmer”

who might be in the market for an entry-level software development position. Martin

responded by saying “If you’re half as good at that as you are at this, you’re hired” and

gave me a job on the spot.

I suppose I should have come clean to Martin, but the timing never seemed right. In

the beginning, it seemed too soon to confess and pull the rug out from underneath the

first impression I had created. Before long, the optimal window for sharing the truth had

passed. Consequently, the story never came up. Martin, if you are learning this for the

first time, let me take this opportunity to say both “Thank you” and “I’m sorry.”

Another notable employer is Robert Harris, a standout boss, friend, and mentor

who instilled a sense of ruthless pragmatism into me and taught me how to navigate the

complex human element of software engineering. I also owe a debt to another manager,

Ståle Veipe, who encouraged me to refine and sharpen my unique perspective on

software architecture.

Of course, I must go even further back to thank my parents, Bob and Jackie, for

somehow acquiring an Apple IIgs in the 1980s, where I first learned to program. I also

owe a debt to Jim Rogers, my neighbor growing up, for mentoring me during my early

programming journey and who first connected me to the Internet in 1993, allowing me

to participate in the dawn of the Web. Also, my sister Sara who lit the spark of magic in

me at an early age, which led me to where I am today.

Michael Lewis, my stepfather, also helped me greatly during my formative

years exploring technology and facilitated many opportunities that were not yet

commonplace.

As I enumerate the names of those who have been instrumental in my journey,

I realize a list of acknowledgments will never be complete. In truth, I owe a debt to

so many people who have helped me along my journey. Even if you do not see your

name in this section, it is not a reflection of the extent of your contribution, but rather a

reflection of the challenges inherent to writing an “acknowledgments” section for a book

that I know will always be incomplete.

Before I close, however, I want to personally thank a few more people. I am grateful

to Celestin John and the team at Apress for their patience as they waited for me to finally

respond to their requests for me to join the ranks of their authors (and their patience

as they waited for a completed manuscript). Thanks to my good friend, Joshua van

Acknowledgments

xxiv

Allen, who was always there for me with support, encouragement, and is a reliable

sounding board. All my early reviewers and beta readers, who have provided invaluable

suggestions and feedback as this book was taking shape. The most prolific reviewers

are Darrell Rials, my official technical reviewer; Jerome Broekhuijsen, who has been

reviewing chapters as fast as I can write them; Kevin D’Ornellas, a former colleague

and good friend who has given me support and encouragement throughout this entire

project; Schusselig, who provided much invaluable, unvarnished feedback; and Bill

DeSmedt, another good friend and former colleague who voluntarily edited the entire

first draft of Section 1.

I particularly need to call out Daniel Tippie, this book’s contributing author. I

originally asked Daniel to submit two chapters that he has unique insights on, but

he sat next to me throughout the final editing process and provided incredible depth

and feedback. He fearlessly challenged me on almost every line of this book. Without

Daniel’s tireless effort, this book would not be what it is today; it might never have made

it to a final draft.

As valuable as all the reviewer and contributor feedback has been, good or bad, I

take full responsibility for the quality of this book, but I promise you it wouldn’t be nearly

what it is today without these individuals’ contributions.

For everyone I have met over the past decade+ of speaking at conferences, I thank

you. You have given me purpose and drive to continue growing, learning, and polishing

my talks and writing.

I especially want to thank my wife, Kate, who has been a source of unwavering

support and encouragement for this and every project I undertake. Although writing a

book is hard, living with someone writing a book is probably even harder.

Finally, I want to thank you. Yes, you. If you are reading this far into the off-topic

minutiae, you and I are kindred spirits, and I hope the pages that follow reward you

handsomely for your diligence and open-mindedness. One of the secrets to success

in software architecture is looking at things from multiple perspectives, and you have

demonstrated a willingness and aptitude to go much deeper than most in our industry.

Whether I have named you explicitly or not, I sincerely hope that life repays you

tenfold for the joy and support you have given me over the years.

For all of you, from the bottom of my heart, I thank you.

Acknowledgments

xxv

Foreword

It’s not every day you get asked to write the Foreword to a book that points out that you

can occasionally be a bit of an asshole. Yet here we are. Life, sometimes, surprises us.

If you don’t know what I am talking about, please go read the “Acknowledgments”

section. I encourage you to read the whole thing as it is genuine and heartfelt, but

specifically the first part. I’ll wait.

Back? I don’t dispute his claims, but here’s my side of the story. When I heard there

was going to be a magician at ÜberConf, my first thought was, “Oh, the balloon animal

guy must have been busy.” Look, I know who I am. I own it. I made sure to go check out

his show with the full expectation of Hate Watching it, but within minutes I realized that

I was completely wrong. Not only was he a great showman, his magic was good. Really

good. A perfect fit for the conference.

I didn’t go out of my way to track him down afterward. He walked by and I felt

compelled to say what I said not to demean him, but to very modestly improve an

otherwise exceptional show. To his credit, he listened patiently, accepted the ding, and

absorbed the feedback into his performance.

The other reason I said what I said was because he was factually wrong, and I

chafed at the idea that a room full of software people were given misinformation

about password management. I couldn’t fix that, but I could try to stop it happening

again. Because of Michael’s openness to feedback and thoughtful processing of what I

said, we did.

Too much of what goes on in our industry involves people parroting what other

people say without thinking about it (cf. current AI hype). This must change. Reality is

often much more nuanced, contextual, and driven by forces that compel old ideas to fall

by the wayside in time.

Our social, technical, commercial, geopolitical, and environmental contexts

are rapidly changing how and where software is being used. This requires us to

constantly evaluate what makes sense. The role of the architect is to make reality-based

recommendations, to identify issues, correct for them, and to use their words to convey

why certain decisions matter to both technical and nontechnical stakeholders.

xxvi

It’s a complex role that requires skills in multiple disciplines. It necessitates an

openness to feedback and a willingness to change your mind when presented with

new evidence. It requires honesty, rigor, and a compassion for your audience, whoever

they may be. It also requires you to do the hard work. To think for yourself. You must

listen to others, but you have to do research and understand history both within your

organization and your industry. I don’t know many people who embody all of these

characteristics as well as Michael does. This is why when he felt incapable of producing

a book as broad and deep and well researched as this one has become, I knew he would

and told him so.

Good authors need good audiences. If you are reading this, you are very likely a good

audience and have attributes that already set you apart from your peers. Michael doesn’t

tell you what to do in this book, he tells you how to think about what to do. Your work

isn’t done when you finish it. In fact, it is just beginning.

I’m convinced you’ll be better prepared for having read this book.

Brian Sletten

Foreword

xxvii

Preface: Holism in Software
Architecture

You never change things by fighting the existing reality. To change some-
thing, build a new model that makes the existing model obsolete.

—R. Buckminster Fuller

An undergraduate course on applied mathematics will focus on general principles

and concepts, simplifying the complex by reducing the dimensionality of the problem

space. We simplify for the sake of theory, overlooking the true complexity of reality. A

mass might be attached to a “light, inextensible string.” There are only perfect pulleys,

frictionless planes, and systems always operating in a vacuum.

It has often been said that “software architecture cannot exist in a vacuum,” yet that

vacuum remains one that is notoriously difficult to escape. This fact is compounded

by the common approach of many works in this field, focusing only on one or a small

number of aspects of the field in the abstract. In reality, architecture forms part of a

living, breathing ecosystem of humans, technologies, networks, machines, customers,

dreams, and aspirations. Applying architecture requires making the abstract concrete

and designing models that integrate all the fragments of architecture theory as well as

the messiness of the reality that architecture must exist within.

Historically, it has only been possible to connect these discrete pieces into a

much larger understanding over the course of a lengthy career with a checkered

record of successes and failures. A more comprehensive and holistic look at this field

is long overdue, and this integrated view is the ambitious goal of Mastering Software

Architecture.

Of all the various engineering disciplines that have emerged over the course

of human history, software is arguably the youngest by a substantial margin. Civil,

mechanical, and military engineering evolved over millennia. Chemical and electrical

engineering span centuries. In contrast, software engineering has only been around for a

handful of decades. We still have much to learn and discover.

xxviii

It was only as early as 1975 when the first notions of structured software1 began

to enter the industry lexicon. At that point, proto-architecture began to emerge as a

unification of software engineering and systems engineering. In 1976, a handful of

forward-looking individuals saw a future marked by increasingly complex software

systems composed of numerous components built and maintained by multiple teams.2

These pioneers in the software development space began to explore ideas around system

components, modularity, and higher-level conceptual descriptions of software systems.

A changing world also required changing software, so increasing effort went into novel

approaches to optimally structure code for understandability, maintainability, and

evolvability. By 1990, the first books with an explicit focus on what we now call software

architecture3 appeared, and the industry soon believed it had found its silver bullet.4 Yet

we seem doomed to discover again and again that, as Fred Brooks asserted in 19865 and

Roy Fielding reiterated in 2000,6 there are no silver bullets. Unfortunately, silver bullet

thinking still permeates our industry.

In software architecture, there are no best practices; there are no universal and

objective “right answers.” There are only trade-offs. The weight of this fact is so

significant that Neal Ford and Mark Richards codified this as their First Law of Software

Architecture.7

Designing systems today requires practitioners to evaluate many decisions, weigh

many trade-offs, and arrive at a locally optimal design for a given project, system,

subsystem, or component relative to the time of decision (although a system’s needs

will change in the future). The decisions and trade-offs span many dimensions, from

the technological to the human and from the environmental to the organizational. For

the field of software architecture to continue to evolve, new models must be applied that

1 Yourdon, E., Constantine, L. (1975). Structured Design: Fundamentals of a Discipline of
Computer Program and System Design, Yourdon Press
2 De Remer, F., Kron, H. (1976). Programming in the Large Versus Programming in the Small. In:
IEEE Transactions on Software Engineering, pp. 312–327
3 Best, L. Application Architecture: Modern Large-Scale Information Processing, John Wiley &
Sons, 1990
4 Cox, B. (1990). There is a Silver Bullet. Byte; Vol. 15, No. 10:209–218
5 Brooks, F. (1986). No Silver Bullet—Essence and Accident in Software Engineering. Proceedings of
the IFIP Tenth World Computing Conference: 1069–1076
6 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures.
Doctoral dissertation, University of California, Irvine
7 Ford, N., Richards, M. (2020). Fundamentals of Software Architecture: An Engineering Approach
O’Reilly

Preface: Holism in Software Architecture

xxix

take a more holistic perspective. The individual patterns, technologies, practices, and

tools have value and continue to be necessary, but they have proven to be insufficient in

isolation at making an architect effective.

Consider the headwinds today’s architects face. Since Brad Cox first suggested

there might be a “silver bullet,” we have learned that many paths toward system design

are available, and each path yields different outcomes. An outcome that is best for

one project will be suboptimal for another. Different systems require different sets of

architectural characteristics and inherent system capabilities. These capabilities must

originate from business requirements and needs, which are never communicated in the

domain-specific language and idiom of the architect or programmer. Moreover, where

these capabilities are not expressed, they must be inferred. If we fail at this foundational

task, it is impossible to be effective as an architect.

Even if an architect can correctly infer these architectural requirements, if the

architect’s metaphorical quiver only contains a relatively small number of patterns and

potential implementations while lacking a more sophisticated and nuanced set of tools

and mental models to derive architectures rather than shoehorning existing patterns into

the problem, their efficacy will be severely constrained.

Assuming the architect can perfectly design a target architecture, this, too, is not

enough. Their vision and architecture must be communicated with high fidelity, such that

implementation teams may understand and execute effectively. If the most vital details

of the design are lost in translation, even an optimal architecture for a system will be moot.

Executing architecture within an organization provides yet another challenge.

Virtually every decision an architect makes will be challenged. Many knowledgeable

and experienced individuals are responsible for implementing any given project.

These individuals may have different ideas around how the system should be built. The

architecture may not be compatible with existing organizational biases, preferences,

norms, and conventions; yet the macro system must be cohesive which requires

adherence to architectural standards and conventions. To be effective, the architect must

not only be skilled in the art of requirements analysis and system design but also be an

equally skilled communicator and change agent. If we are not able to build consensus

that spans project stakeholders and teams, much of the design work will be for naught.

Finally, the architect must be aware of messy realities that can be easily overlooked

in theoretical discussions of architecture yet cannot be ignored in the practice of

delivering software. These are external factors such as the nature, structure, and maturity

of the organization; the skills, maturity, and practices of the teams; and the factors

governing the environment within which the project exists.

Preface: Holism in Software Architecture

xxx

Architecture is no longer as simple as a set of best practices to organize complex

codebases or modeling tools to describe a system at a high level. It is not just about

the newest patterns that have emerged over the past 20 years. There are many crucial

aspects of software architecture beyond the “what” and “how” that require further

exploration. In short, for our field to continue to evolve, we must embrace the idea of

holism in our approach to architecture. The work that follows is an ambitious attempt to

do exactly that.

Preface: Holism in Software Architecture

xxxi

Introduction

All models are wrong, but some models are useful.

—George Box

This book, and the Tailor-Made Architecture Model described within, is an attempt to

address myriad challenges today’s architects face. Much of the body of literature in this

space addresses these challenges in a piecemeal way or overlooks some of them entirely.

Mastery of software architecture requires an integrated approach that, historically,

has required a great deal of experience, trial and error, and failures to grow into a truly

effective architect. In other words, failure is an integral part of the learning process as

we continue to grow and evolve. This book aims to accelerate your journey to mastery

by providing a broad base of knowledge to build a career upon. Although many chapters

could be expanded to fill an entire book, this work primarily aims to illuminate unknown

unknowns to enable you to continue to pursue depth as needed in your future. This book

is written to begin your learning journey rather than end it.

While many technical books are written as reference works, where individual

chapters and subsections may be consulted in isolation in arbitrary order, as necessary,

to fill specific knowledge or skill gaps, this work is designed to first be read sequentially.

A holistic look at software architecture requires connecting many discrete and seemingly

disjoint concepts. Each chapter introduces a number of these concepts and ideas, while

each subsequent chapter builds upon the growing body of knowledge, connecting them

in important ways. Furthermore, the structure of this work is designed to combat the

effect of “semantic diffusion”1 in the tech industry.

1 Fowler, M. (2006). Semantic Diffusion, https://martinfowler.com/bliki/
SemanticDiffusion.html

https://martinfowler.com/bliki/SemanticDiffusion.html
https://martinfowler.com/bliki/SemanticDiffusion.html

xxxii

Semantic diffusion occurs when you have a word that is coined by a person
or group, often with a pretty good definition, but then gets spread through
the wider community in a way that weakens that definition. This weaken-
ing risks losing the definition entirely – and with it any usefulness to the term.

—Martin Fowler

In the technology space, a great many terms have succumbed to semantic diffusion.

TDD, REST, agile, DevOps—even architecture patterns such as microservices—are

examples of ideas that, today, have wildly differing definitions in practice. Semantics

requires context; in addition to building upon and connecting concepts, the structure

of this book is intended to set that context within the scope of the pages that follow. This

is particularly true for the chapters in Section 1 and Section 2. The chapters in Section 1

build an important foundation for the remainder of the work, even if it may be tempting

to skim or skip topics that appear familiar; holism requires comprehensive context.

Likewise, in the chapters in Section 2 where we re-derive the common/mainstream

architectural patterns, the defining constraints that are shared across multiple patterns

are only introduced once and simply referenced wherever they reappear. It is important

to remember that the patterns described in Section 2 are necessary for common

understanding and communication; however, these are introduced in support of a more

nuanced approach to system design.

Finally, this book incrementally introduces the Tailor-Made Software Architecture

Model and its constituent concepts, practices, ceremonies, and motivations. The model

itself is an integrated approach to software architecture from gathering requirements, to

design, evaluation, documentation, communication, enforcement, and evolution. Given

this model is repeatedly referenced throughout the book while individual aspects are

being described, an advanced summary may be helpful to you, the reader.

�The Tailor-Made Architecture Model in a Nutshell
This model consists of a number of ideas, some of which may be—or appear to be—

familiar to the reader while others may seem new. It must be stressed that none of the

ideas are revolutionary. Instead, they are simply evolutionary (Figure 1). The heart of this

model is architectural design by constraint. One of the earliest explorations of this idea

Introduction

xxxiii

appeared in Fred Brooks’ 1975 work The Mythical Man-Month,2 while this same idea is

central to Foundations for the Study of Software Architecture,3 Architectural Styles and the

Design of Network Based Software Architectures,4 and Software Architecture Constraint

Reuse-by-Composition.5

Figure 1.  Timeline of Architectural Design by Constraint

The Tailor-Made Architecture Model (TMAM) begins with the understanding that

there are no best practices in software architecture as every nontrivial software system

is unique in both its needs and their measure. Every architecturally significant decision

carries with it both positive and negative consequences, and, to be effective as an architect,

the business impact of each consequence must be understood and weighed. Throughout

this book, you are provided tools and techniques to navigate this complex space.

TMAM deviates from conventional architectural design approaches to address

their numerous shortcomings. Rather, it embraces the long-standing (but largely

forgotten) idea of design by constraint. The model extends the 30+ years of work in this

area by defining both the trade-offs inherent in each constraint, but also associated

numeric weighting for each trade-off. This replaces much of the trial and error currently

necessary in many architecture practices with rich, design-time feedback on candidate

architectures. Additionally, this approach results in much more deterministic outcomes.

2 Fowler, M. (2006). Semantic Diffusion, https://martinfowler.com/bliki/SemanticDiffusion.html
3 Perry, D., Wolf, A. (1992). Foundations for the Study of Software Architecture, ACM SIGSOFT,
pp. 40–52
4 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures.
Doctoral dissertation, University of California, Irvine
5 Tibermacine, C., et al. (2016). Software Architecture Constraint Reuse-By-Composition. Future
Generation Computer Systems, 61, pp. 37–53

Introduction

https://martinfowler.com/bliki/SemanticDiffusion.html

xxxiv

Design by constraint has the side effect of solving endemic problems in

communicating architectures to the organization. A key concept in TMAM is that of an

“architectural style” defined by Fielding as “a named, coordinated set of architectural

constraints.” We will introduce (or, perhaps, reintroduce) the concept of an architectural

style and show how it solves many architecture communication issues and addresses the

inherent challenge of semantic diffusion within an organization.

While this work alone is valuable and has the potential to change the way many

practitioners think about architecture and system design, architecture decisions must be

made holistically. Beyond meeting the business and system needs, for an architecture to

truly fit it must be compatible and within reach of the teams and organizations as well

as the environments within which they operate. TMAM accepts that people are integral

to the architect’s success or failure. Thus, people and the organizations within which

they exist form critical components to the model. Therefore, TMAM connects these

architecture decisions to architectural X factors, thereby providing another dimension of

design-time feedback on architectures that might look good “on paper” but will likely fail

in practice.

TMAM rejects the idea that architectures must be rigidly defined by isolated and

largely incompatible patterns. Our exploration of design by constraint will prove that

architecture exists as a continuum rather than a finite set of discrete patterns. This aspect

of the model forms a foundation for building truly agile and evolvable architectures that

need neither be over- or under-engineered up front. Section 2 explores the common

architecture patterns and their defining architectural constraints and how these patterns

are modified or evolved by adding/changing constraints at design time (or modernization

time). Ultimately, this section demonstrates the power and flexibility of the model as well

as providing you with additional tools to reduce risk, confusion, and missed expectations.

TMAM emphasizes the importance of holistic architectural fit. Fit requires tailoring,

tweaking, and customization (both up front and over time), and this model produces

designs which are highly customizable to achieve this ideal fit.

Finally, TMAM is not just about design, but execution. The model includes

processes, practices, and ceremonies around documentation, communication, and

effecting meaningful change across teams and organizations. Additionally, mastery

of software architecture requires a spectrum of skills to build strategic relationships,

engender buy-in, and support the organization toward the optimal system design.

Introduction

xxxv

In short, TMAM is a total, integrated, holistic approach to software architecture that

will provide you with many powerful tools and mental models to become more effective

in your practice. A growing body of contributors are now expanding this model. If you

would like to subscribe to updates or get hands-on training and experience for yourself

or your teams, visit https://MasteringSoftwareArchitecture.com/.

Introduction

https://MasteringSoftwareArchitecture.com/

SECTION 1

Foundations

3
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_1

CHAPTER 1

The Scope and Role
of Architecture

You don‘t drive the architecture, the requirements do. You do your best to
serve their needs.

—Richard Monson-Haefel

Like so many words in software development today, the term “architect” has become

vague and overloaded. A quick survey of open architect roles along with their

requirements and job descriptions underscores the diversity (and often incompatibility)

of existing definitions. For some, rightly or wrongly, an architect is primarily a kind

of super-developer (a senior developer++, if you will) responsible for the patterns and

conventions adopted by the rest of the team. For others, an architect is just a cloud

platform expert. There are enterprise architects, solution architects, system architects,

and application architects, to name but a few. Many more definitions and variations

exist in the wild. Some define the scope of an individual’s contributions; others define

the area of expertise within which the individual must specialize. This muddies the

waters surrounding expectations of the role and may lead to impostor syndrome as it

is easy to find a variety of “architect” jobs or positions that you or I am yet seemingly

unqualified for.

Although many sub-specializations exist, leading to a variety of paths an architect

may pursue over the course of their career, there remains an ongoing tension between

the idea that an architect is yet another type of software development specialist and the

idea that an architect is a type of “master generalist.” As will be explored further, this

work asserts that an architect is not simply another species of subject matter expert

(SME), but rather a “master generalist” who trades depth of knowledge in a small

https://doi.org/10.1007/979-8-8688-0410-6_1#DOI

4

number of areas for breadth of knowledge across a spectrum of areas while deploying

diverse mental models. In this practice, the architect will collaborate with SMEs while

bringing a higher-level perspective to the solution.

Likewise, the definition of “architecture” has evolved considerably since the term

was first introduced into the technology industry lexicon in the late 1980s. Architecture

can exist in various scopes within a project, system, or organization. For the context

of this book, these terms must be defined generally by exploring their common

and unifying themes and ideas. We can deduce that “architects,” at some level, are

responsible for the decisions relating to “architecture,” so perhaps it would be wise to

begin by defining “architecture.”

�What Exactly Is Architecture?
Many definitions have been put forward in answer to this question. For example, in 2007,

the International Organization for Standardization (ISO) published ISO/IEC 42010:2007

Systems and software engineering — Recommended practice for architectural description

of software-intensive systems which defines software architecture as

The fundamental organization of a system, embodied in its components,
their relationships to each other and the environment, and the principles
governing its design and evolution.

We see similar definitions across a host of other sources, including Software Systems

Architecture by Rozanski and Woods who put forward this definition:

Software architecture is the discipline concerned with model-based descrip-
tion and analysis of software systems, with a particular focus on the sys-
tem’s highest-level components and their interaction.

And in Software Architecture in Practice by Bass, Clements, and Kazman, we see

software architecture defined as

…the set of structures needed to reason about the system, which comprise
software elements, relations among them, and properties of both.

as well as many others. The common themes relate to the organization of the system,

its major components or elements, their interactions, and the decisions that drive the

design and evolution of the system.

Chapter 1 The Scope and Role of Architecture

5

While all these definitions address the “what” of software architecture, we must also

consider the why.

�Why Architecture?
Why is more important than how-Second Law of Software Architecture1

“Why” is the operative word here. What value does architectural thinking contribute

over that of a senior developer focused on building and delivering the features of the

software system?

At its core, architecture is the set of high-level decisions driving the essence of the

software, transcending functional requirements and defining everything it can do beyond

providing the defined features and functions.

The ultimate success of a system is defined not only by delivering the right set of

features, but those features must be implemented in such a way that crucial capabilities

(e.g., scalability, elasticity, evolvability, agility, overall simplicity, etc.) are also present

in the system. These capabilities (frequently referred to by many other names, including

architectural characteristics, system quality attributes, nonfunctional requirements, or

simply -ilities) are the heart of the “why” in software architecture. Architecture is much

more than components and their interactions or a high-level description of the system;

architecture must constrain the degrees of freedom in software development to ensure

the macro system exhibits the necessary capabilities for the overall success of the system.

In pursuit of this goal, many approaches were developed, and, over time, architecture

patterns began to emerge. A pattern is a general, reusable approach to solving common

and recurring problems in system design or development. The common/recurring

problems addressed in architecture patterns revolve around approaches to induce those

crucial capabilities alongside delivery of desired features and functions. Architectural

patterns describe the structure, components, and interactions of a software system, but,

it must be reiterated, architecture is much more than components and their interactions,

as will be seen in continued exploration of this topic.

1 Ford, N., & Richards, M. (2020). Fundamentals of software architecture: An engineering approach.
O’Reilly Media

Chapter 1 The Scope and Role of Architecture

6

�Patterns
Early patterns simply focused on approaches to organizing code for maintainability,

understandability, and reuse. As expectations of software evolved from monolithic

desktop or mainframe applications, new problems arose that required innovative

solutions. Both single-host and distributed client-server architectures emerged

with the requirement to scale to support more users or decomposition to manage

growing complexity (or both). This approach also provides independent evolvability

by decoupling dependent components and allowing modifications to one component

to take place without impacting others. These new capability requirements became

particularly important as applications were increasingly deployed to the Internet.

Architects discovered a new disparity between existing conventions, their relative

strengths, and which capabilities the software had to support that, in turn, led to more

patterns.

Patterns are often a product of their time and sometimes fall into disfavor as

better alternatives appear. Consequently, some patterns may seldom be used for new

development but remain relevant in architectural literature both for the legacy systems

that still apply them and as teaching tools to learn lessons from both their successes and

failures, thereby informing future architectural decisions.

At the time of this writing, most architecture literature focuses on one or more of

several patterns prescribing a particular organization of the components to induce.

These patterns promise expected strengths and weaknesses when it comes to desired

system capabilities. An overview of these patterns can be seen in Figure 1-1 and will be

explored in depth in Section 2 of this book.

Chapter 1 The Scope and Role of Architecture

7

Fi
gu

re
 1

-1
. 

A
 D

ep
ic

ti
on

 o
f S

ev
er

al
 C

om
m

on
 A

rc
hi

te
ct

u
ra

l P
at

te
rn

s

Chapter 1 The Scope and Role of Architecture

8

At a high level, the architectural patterns in Figure 1-1 represent nine options for

defining components, their boundaries, and their interactions. It is possible to build

a software system with a given set of features/functions using any of the patterns.

Remember, however, architecture transcends features and functions by providing a set of

high-level design decisions that determine the overall capabilities of the system beyond

the features.

If you do not have the right architecture in place—or you choose the wrong
architecture for a given project—generally the functionality may work, but
the application as a whole will not be a success.

—Mark Richards

This quote is exemplified by a study of the launch of Twitter in 2006/2007.2

Twitter was launched on the hypothesis that people would find Twitter’s concept of

“microblogging” compelling. A set of features was built and deployed that were a hit.

Within a few months, however, users began to see the infamous fail whale (Figure 1-2)

indicating that the system was overcapacity and thus currently unavailable.

Figure 1-2.  The Infamous Twitter Fail Whale

2 Hoff, T. (2009). Scaling Twitter: Making Twitter 10000 Percent Faster. High Scalability. https://
highscalability.com/scaling-twitter-making-twitter-10000-percent-faster/

Chapter 1 The Scope and Role of Architecture

https://highscalability.com/scaling-twitter-making-twitter-10000-percent-faster/
https://highscalability.com/scaling-twitter-making-twitter-10000-percent-faster/

9

While the functionality of Twitter worked, the system, as a whole, struggled. It lacked

important capabilities that originated not from features and functionality, but from

architecturally significant decisions. It lacked key architectural capabilities. Over the

next five to six years, Twitter evolved their architecture to elicit these crucial capabilities

like scalability, elasticity, and reliability. Although the features remained largely static

during the transition, the capabilities ensured the platform would continue to grow more

successful over the next several years. Does that mean the architecture of 2006 Twitter

was wrong? Not necessarily. The original architecture of Twitter likely fit in 2006, but it

did not in 2008.

“Likely” is the operative word here. Based on the frequent, high-profile failures of

early Twitter and the subsequent redesign, it would be natural for you or me to deduce

that the architecture was a failure. Reality, as always, is far more nuanced. Architecture

must be driven by business value, and the highest business value can—and will—change

over time. This is exemplified in Eric Reis’ book, The Lean Startup, which emphasizes the

value of a Minimum Viable Product (MVP).

An argument can be made that, despite the limitations and outages, the initial

architecture of Twitter was the locally optimal choice in 2006. For a startup with limited

runway and an unorthodox idea, there is value in getting software released quickly to

resolve market uncertainty. In fact, as Joe Yoder, who popularized the term “Big Ball of

Mud”3 to refer to a “haphazardly structured, sprawling, sloppy, duct-tape and bailing

wire, spaghetti code jungle,” reminds us, there can even be value in a big ball of mud.

�It Depends
Designing for billions of monthly visits often makes little sense when the business does

not yet know if there will be any interest in the project at all. That level of architecture

and engineering leaves little room for pivoting and creates excessively long feedback

cycles. At the same time, there is value in building something scalable out of the gate

to avoid considerable growing pains. Each approach has pros and cons; each approach

involves trade-offs. Which is best? As is so often the case in software architecture, the

answer is it depends. There is no objective “right” answer; there are no “best practices,”

only trade-offs. Tools and techniques to help you navigate this tension and move toward

an optimal solution will be introduced later in the book.

3 Foote, B., & Yoder, J. (1997). Big Ball of Mud. Presented at the 4th Conference on Patterns,
Languages of Programs (PLoP)

Chapter 1 The Scope and Role of Architecture

10

This reality, however, makes our job challenging, but it also makes effective

architects increasingly valuable. In late 2022, large language models (LLMs) rocketed

into the collective consciousness with the introduction of ChatGPT. These models

quickly began to demonstrate proficiency in generating code from natural language

requirements which was previously the exclusive domain of humans. Largely through

inductive learning, these models can connect the concepts expressed in a prompt with

the syntax rules of a language to produce what is often working code and even evaluate

different implementation options. At this level, however, generating code distills down to

an admittedly complex set of best practices and rules to follow. Conversely, they tend to

perform poorly in problem spaces that are not so cut and dried and often require explicit

prompting from an experienced practitioner to account for security, performance,

documentation, reuse, conventions, etc. In other words, they might be able to write

code, but are a long way from being able to design systems as the decision contexts go

well beyond what can be inferred and deduced from the training corpus. They lack the

kind of thinking, reasoning, and navigation of nuance that we, as good architects, must

exhibit. Currently, indications continue to suggest that level of reasoning remains a long

way off. A further exploration of architectural reasoning is needed.

�Thinking, Reasoning, and Navigating Nuance
There is currently no direct, academic path to becoming an architect. Consequently,

most architects grow into the role from an individual contributor (IC) developer role

after a number of years.

Imagine, if you will, the hypothetical path of a self-taught developer entering

the industry with the ability to cobble together some code to make the computer do

something. Over time, this developer begins to see that their approach of hacking

together code to ship features may be an expedient means to an end, but the resulting

codebase is becoming unwieldy and difficult to maintain. Also, over time, they begin

to adopt design patterns that make the code more maintainable and robust. This

process continues over the years, and this developer gains increasingly more long-term

perspective. Eventually, if they have had to live with—and learn from—their decisions,

they develop a broad base of knowledge and a sense of what good code and good

systems look like. It is this experience that yields fertile soil for becoming a burgeoning

architect. The transformation, however, is not complete.

Chapter 1 The Scope and Role of Architecture

11

Since architecture is, at its core, grounded in decisions that elicit capabilities in a

system—and given there are many different paths to achieve said capabilities—each

fraught with trade-offs and pitfalls—architecture decisions should originate from

thinking about capabilities, not code. This is not always easy. Take the ongoing debates

about REST vs. graphQL vs. gRPC vs. whatever. The function of all these things might

reductively look like different approaches to simply move data across the wire, yet

the capabilities of each can be massively different. gRPC trades performance for tight

coupling and highly constrained clients. graphQL brings speed to market, developer

productivity, and some flexibility at the cost of long-term evolvability, scalability,

performance, and security. “REST,” in the form of RPC over HTTP, provides common

and well-supported protocols for integration along with the convenient mental model

of exposing functionality over the wire. Conversely, “REST” that more closely aligns to

the REST Architectural Style as defined by Fielding4 allows a system to be completely

decoupled enabling significant long-term evolvability, abstraction, and longevity, but

that trade is made in exchange for increased up-front design work and potentially

reduced network efficiency. An average developer might argue that one of these options

is objectively superior, but thinking like an architect means realizing that none of these

are inherently good or bad, superior or inferior, nor necessarily an either/or proposition;

they are different approaches that involve different trade-offs. The best choice is the

one with the optimal set of trade-offs based on the needs of the business and the actual

problems being solved.

There are no best practices, only trade-offs.

Every decision involves trade-offs. Every. Single. One.

True perfection is often far too elusive to be obtainable within reasonable time and

budget constraints. Because there will always be trade-offs, it is frequently said architects

do not aim to produce the “best” architecture, just the “least worst” architecture. This

looks different for every project, every time. It will even look different for the same

project over time (e.g., the earlier Twitter example). This is not an easy space to navigate.

Effective architects aim to define an architecture that holistically aligns with the specific

product needs and the nature of the business.

4 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures.
Doctoral dissertation, University of California, Irvine

Chapter 1 The Scope and Role of Architecture

12

�Understanding Business Drivers
Capabilities alone are not enough; they must be the subjectively “right” capabilities.

Capabilities must be aligned with business drivers, and every architectural decision

must be made in the context of the business value being provided (and, potentially,

the business value being sacrificed). No capability comes for free, and every decision

is a trade-off that must be made deliberately and mindfully. Far too many architecture

decisions are made first based on preferences, biases, resume skill gaps, or the architect’s

comfort zone. Ultimately, no matter how cool, how shiny, how trendy, how good

technology X will look on the architect’s resume, if it does not directly solve a business

problem and provide relative business value it has no place in their architecture. In

short, architects cannot have a conversation about architecture until they have had the

business/customer value conversation.

Beyond the current problem set, the architect brings a different and/or broader

perspective. Interpreting business drivers requires a certain visionary quality, to look at

the present with an eye toward the future (without overengineering the solution) and

often reading between the lines. As the saying goes in jazz, “you’ve got to listen to the

notes that aren’t being played.”

The typical business problem space is complex. There are often many competing

priorities and several interrelated and cross-dependent problems to solve. It would

be wonderful if the business spoke the language of developers and architects, but

that fantasy has no basis in reality. The business is going to speak the language of the

business. They will talk about things like feasibility, cost, compliance, user satisfaction,

and domain challenges.

Communication failures often account for a significant portion of product failures.

A core skill of an architect is to be able to speak the language of the business and

translate business requirements, vision, marketing materials, and pitch decks into the

language of the architect. Further, architects must communicate with the development

teams (as well as other organizational areas) in their language. In short, as architect

and speaker Nate Schutta often says, architects must become the Organizational

Rosetta Stone (Figure 1-3).

Chapter 1 The Scope and Role of Architecture

13

Figure 1-3.  The Rosetta Stone5

This is all, of course, part of developing a new set of “soft skills” that do not always

come naturally.

�Architects Bring Breadth of Knowledge
In addition to shifting focus from functions to capabilities, architects must possess

vision, wisdom, and problem-solving skills. This shift represents a stark contrast

between the role of developer and the role of an architect. The core value proposition

of a developer is often largely a function of their technical depth. Developers must

bring deep knowledge of the specific technologies they work with. Transitioning from

developer to architect requires inverting focus to breadth rather than depth, which can

5 Hillewaert, H. (November 21, 2007). The Rosetta Stone in the British Museum [Photograph].
Wikimedia Foundation. https://commons.wikimedia.org/wiki/File:Rosetta_Stone.
JPG. Licensed under CC BY-SA 4.0

Chapter 1 The Scope and Role of Architecture

https://commons.wikimedia.org/wiki/File:Rosetta_Stone.JPG
https://commons.wikimedia.org/wiki/File:Rosetta_Stone.JPG

14

be a challenging shift. It often means letting go of a certain amount of depth to focus on

a broader foundation of knowledge. This is necessary as architects must make room for

additional tools in their professional toolbox.

At a minimum, architects must have a broad awareness of various technologies

and ideas, including ones that do not seem relevant to any current project. This

provides what author David Epstein calls “range.”6 The range concept champions

breadth of knowledge to power our ability to connect diverse ideas in novel ways. This

prevents practitioners from overreliance on a small number of solutions and opens our

perspective to creative and innovative potential solutions. In short, range vastly expands

the domain of potential options in various pursuits.

…breadth of training predicts breadth of transfer. That is, the more contexts
in which something is learned, the more the learner creates abstract mod-
els, and the less they rely on any particular example. Learners become bet-
ter at applying their knowledge to a situation they’ve never seen before,
which is the essence of creativity.

—David Epstein, Range

An architect’s technical (and nontechnical) breadth is the toolbox from which they

work. If an architect only possesses depth in a handful of areas, they too easily fall into

the trap of solution space thinking (e.g., this is what I know how to do, therefore this is

what I will do). Depth still matters, but balancing depth in some areas vs. breadth in

others is a tightrope that we architects must constantly walk. Naturally, this requires

yet another mindset shift as well as letting go of some degree of depth (which has been

many technologists’ core value proposition throughout most of their careers).

Therefore, we must also continuously refine our skills in broad learning and abstract

thinking. This requires understanding the broader technology ecosystem, the available

tools, the problems they solve, and their relative strengths and weaknesses.

6 Epstein, D. (2019). Range: How Generalists Triumph in a Specialized World. Macmillan

Chapter 1 The Scope and Role of Architecture

15

�The Scope of Architecture
The scope of architecture varies by the role and the individual. An enterprise architect

might drive organization-wide architecture constraints, but there is no one-size-

fits-all blueprint at that level. The needs of individual subsystems, applications, and

components might necessitate deviation from prescribed conventions. Solution or

systems architects may need to work with an enterprise architect to negotiate variances,

or they may have free reign over the system(s) they oversee. The same is often true of

application architects working under solution architects. Typically, architects with

more focused scopes will work more closely with the developers to assist in adhering to

architectural guidelines and guardrails, while architects tasked with broader scopes will

often work more closely with the business (Figure 1-4).

Figure 1-4.  Example Architecture Scopes

Although not all levels of architecture will require detailed interfacing with the

business, the business drivers and business value must be understood at all levels.

�Summary
Architecture may be about components, their interactions, and the rules governing

their interaction, but it is so much more. The architectural decisions must be driven,

first and foremost, by business value. Business value is achieved by identifying the right

capabilities for the system and making decisions that induce those capabilities.

Chapter 1 The Scope and Role of Architecture

16

In addition to some level of technical prowess, architects must possess many “soft”

skills. Communication, business domain knowledge, analyst skills, and a broader

perspective are all crucial. While breadth resolves many cognitive biases, it introduces a

new one; “the curse of knowledge,” a concept popularized by economists Colin Camerer,

George Loewenstein, and Martin Weber.7 As we develop breadth and range, we risk a

new cognitive bias where we assume other people know what we know.

For developers moving into an architect role, many shifts in how they work, think,

and learn are necessary. Those transitioning are encouraged to enter the space with

“the beginner’s mind” and the necessary willingness to be “new” at something again

(which can be uncomfortable 10+ years into a career). It can be daunting, but it can

also be rewarding. We must adopt and maintain a mindset of continuous learning with

an emphasis on understanding to support application of what we learn. We must also

be cautious of many marketers and industry pundits who peddle their wares as “silver

bullets.”

Data is not information, information is not knowledge, knowledge is not
understanding, and understanding is not wisdom.

—Cliff Stoll

Also, note that the role of “architect,” like “leader,” is not necessarily constrained to

specific titles. Just as an individual can embody the virtues and attributes of a leader without

a formal title, many thoughtful developers can perform the role of a great architect without

ever possessing the formal title or occupying a specific box on the org chart.

7 Camerer, C., Loewenstein, G., Weber, M. (1989). The Curse of Knowledge in Economic Setting: An
Experimental Analysis. Journal of Political Economy 97(5)

Chapter 1 The Scope and Role of Architecture

17
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_2

CHAPTER 2

Breadth of Knowledge:
The Architect’s
Superpower

The ideal engineer is a composite … not a scientist, not a mathematician,
not a sociologist, or a writer; but [one who] may use the knowledge and
techniques of any or all of these disciplines in solving engineering problems.

—N. W. Dougherty

In 1932, a young Claude Shannon entered the University of Michigan with the intention

of building depth in the fields of engineering and mathematics, but Shannon was a

passionately curious individual who prized breadth as much as depth. Despite the

considerable academic load of a dual major, Shannon made time to pursue many

tangents. He participated in the Junior Math Club, the Radio Club, the gymnastics team;

he taught himself to juggle and ride a unicycle. He would also take elective classes on

subjects outside of his majors.1 Through the narrow lens of that time, it might appear

that Shannon lacked focus and was squandering his chance at an academic career, but it

was his breadth of knowledge and diversity of thought that paved the way for Shannon to

fundamentally change the world.

The seemingly inconsequential decision that would define the course of much of

Shannon’s life was to take Philosophy 33 as an elective. According to the University of

Michigan General Register, Philosophy 33 taught students “the general principles of both

inductive and deductive logic.”

1 Soni, J., & Goodman, R. (2017). A Mind at Play. Simon and Schuster

https://doi.org/10.1007/979-8-8688-0410-6_2#DOI

18

It is important to note that, while mathematics and philosophy have a concept of

logic, those concepts—and how they are applied—differ in key ways. Philosophy takes

a broader view of logic, with a particular emphasis on rhetoric and syllogisms, what

makes a valid argument, how arguments may be classified, and how arguments function

in language. This education undoubtedly armed Shannon with new mental models

to bring to his core academic focus, but, more importantly, it introduced Shannon to

new ideas to which he might not have otherwise been exposed, including the work of a

relatively obscure mid-19th-century philosopher, George Boole, who explored a unique

approach to symbolic logic.

1st. To express the Proposition, “The proposition X is true.”

x = 1

2nd. To express the Proposition, “The proposition X is false.”

x = 0.

3rd. To express the disjunctive Proposition, “Either the proposition X is true
or the proposition Y is true;” it being thereby implied that the said proposi-
tions are mutually exclusive, that is to say, that one only of them is true

x(1 − y) + y(1 − x) = 1

An Investigation of the Laws of Thought (1854)2

This idea of performing logic with ones and zeros found their way into Shannon’s

postgraduate thesis on electronic switching circuits, and later his ideas grew and

blossomed with the publication of his landmark paper “A Mathematical Theory of

Communication”3 which paved the way for information theory and our modern digital

age. With Shannon’s insight, entire classes of problems once thought intractable were

solved. The linchpin originated from exposure to a broader set of ideas and mental

models, including George Boole’s work from 1847 and 1854, then connecting them. This

is an example of linchpin knowledge. Facts, ideas, or patterns that single-handedly bring

the whole solution together; the one dot that connects all the dots.

2 Boole, G. (1854). An Investigation of the Laws of Thought
3 Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical
Journal, 27(3)

Chapter 2 Breadth of Knowledge: The Architect’s Superpower

19

It just happened that no one else was familiar with both those fields at the
same time

—Claude Shannon4

There is an ongoing debate in the technology world, whether a technologist should

focus on depth and specialization or whether they should focus on breadth. Like so

many such debates, this need not be—and is not—an either/or proposition.

Certainly, early in one’s career, depth in a particular skill is a key value proposition

and often necessary for “breaking into” the industry. As one progresses in terms of

seniority, often breadth—in addition to strategic depth—becomes increasingly valuable.

Good, senior developers are often described as “T-Shaped” with depth in the small

number of tools and technologies they work with on a day-to-day basis, but that depth

is surrounded by shallow breadth. Different mental models, awareness of different

technologies, etc.

At the level of architect, however, we are expected to have a much broader view of

the world. Our metaphorical shape is often the “broken comb,” vast breadth and varying

amounts of depth in many areas. The areas of breadth and (limited) depth encompass

everything from various business domains, human relations, various coding skills, and

the state of the current technology landscape. Our breadth, consequently, relies on many

diverse mental models. In the world of the architect, deep/narrow knowledge becomes

a liability as it hampers our ability to connect problems with solutions. The linchpin

to whatever problem we may face likely resides outside of a single, narrow view. Like

everything in the field of software architecture, breadth and depth are trade-offs. The

key, as always, is finding the optimal balance.

�Balancing Depth vs. Breadth
Anything an individual knows (or does not know) will fall into one of four quadrants in

the “Knowledge Matrix” (Figure 2-1).

4 Horgan, J. (1992). Claude Shannon: Tinkerer, prankster, and father of information theory. IEEE
Spectrum, 29(4), 34–411

Chapter 2 Breadth of Knowledge: The Architect’s Superpower

20

Figure 2-1.  The Knowledge Matrix

The fundamental and inescapable truth is there will always be gaps in any

technologist’s knowledge. Often, these gaps are merely tactical or syntactic: “How do I do

X with framework Y?” or “How do I apply construct A in language B?” These are examples

of known unknowns and are rarely linchpins. The unknown unknowns, however, are

more insidious, and it is here that most linchpins lie. To become effective, architects

must continually strive to move as much as possible from the unknown unknowns to the

known unknowns.

The shift from depth toward breadth requires the architect to carefully choose which

areas of depth should be allowed to atrophy to free up time and energy to build breadth

and cognitive diversity. With this new capacity, the architect must spend more time

exploring what Allen Newell and Herbert Simon referred to as the “problem space” and

“solution space.”5

In software engineering, the solution space is the domain of all the interesting

technologies, tools, patterns, frameworks, languages, and libraries, including those that

typically appear in certain roles (e.g., operations, security, and QA). Although we may

never develop mastery or even proficiency with most of these tools, we should possess

sufficient awareness to be able to answer questions like: “What is this technology?”

“What problem does this solve?” “What are its trade-offs?”

5 Newell, A., & Simon, H. A. (1972). Human Problem Solving. Prentice-Hall

Chapter 2 Breadth of Knowledge: The Architect’s Superpower

21

There are several strategies to accomplish this. Live technology conferences

generally present a broad spectrum of timely content and provide value both from the

lectures and the “hallway track” where ad hoc conversations between attendees take

place between sessions, during meals, or after hours. These conversations not only

reframe and add context to new knowledge but also allow us to escape the echo chamber

of our own team and organization.

Attending conferences consistently proves to be a valuable learning environment.

At a live conference, the ad hoc conversations arm us with multiple contexts, but,

additionally, the immersive learning environment is conducive to long-term retention.

This is exemplified by the “Learning Pyramid” (Figure 2-2) that originated at the National

Training Laboratories Institute in the early 1960s.6

Figure 2-2.  Learning Pyramid or Cone of Learning7

6 Letrud, Kåre (2012). A rebuttal of NTL Institute’s learning pyramid. Education (133): 117–124
7 Anderson, J. (2012). Learning Pyramid or Cone of Learning [Illustration]. Wikimedia Foundation.
https://en.wikipedia.org/wiki/Learning_pyramid#/media/File:Edgar_Dale’s_cone_of_
learning.png.https://commons.wikimedia.org/wiki/File:Rosetta_Stone.JPG. Licensed under
CC BY-SA 3.0

Chapter 2 Breadth of Knowledge: The Architect’s Superpower

https://en.wikipedia.org/wiki/Learning_pyramid#/media/File:Edgar_Dale
https://commons.wikimedia.org/wiki/File:Rosetta_Stone.JPG

22

Unfortunately, organizational responsibilities and realities often limit time for

conferences. However, conference lectures are often published to video sharing sites.

While the additional value of the immersive environment and hallway track may be

absent, these videos provide valuable information and sufficient focus on new ideas and

technologies to chip away at our unknown unknowns.

Another valuable source of diverse new ideas and technologies is the available

collection of industry news aggregators on the Web. At the time of this writing, the

technology consulting company Thoughtworks publishes a quarterly “Technology

Radar” (https://www.thoughtworks.com/radar) and provides tools for practitioners to

begin to create and cultivate your own technology radar.

In addition to Thoughtworks’ technology radar, the TIOBE Index (https://tiobe.
com/tiobe-index/) is also useful for navigating addition or inclusion of languages and/

or technologies to your architecture.

Finally, Tiago Forte’s Building a Second Brain methodology8 prescribes a high-level

filing system for knowledge that might not yet need to be top of mind but can be easily

located and retrieved at a later date for review or expansion.

By cultivating and maintaining breadth of knowledge of the technology and solution

landscape, you are better positioned to select the right solution for a given problem or,

at the very least, to know where to begin exploring to build sufficient depth to tackle the

problem at hand.

�Discovering Linchpins
The solution space is interesting and valuable, but it does not provide enough to enable

an architect to be effective. The solution space is the domain of answers. Perhaps, at one

time, technology problems were so homogeneous that architects could leap directly

into the solution space and enjoy a reasonable probability of success. Today, however,

the problems we solve are much more complex. It is not enough for architects to simply

understand the answers, they must also understand the questions.

The “problem space,” while typically less interesting from an engineering

perspective, is where the questions reside. Only by exploring the problem space can

architects begin to ask the right questions, and only by asking the right questions can

they consistently map problems to solutions. Discovering linchpin knowledge begins

8 Forte, T. (2022). Building a Second Brain. Atria Books

Chapter 2 Breadth of Knowledge: The Architect’s Superpower

https://www.thoughtworks.com/radar
https://tiobe.com/tiobe-index/
https://tiobe.com/tiobe-index/

23

with skillfully navigating the problem space. Understanding the problem, the business

context, and asking the right questions at the outset of a project will often lead architects

into surprising and unexpected places. Jumping directly to the solution space rarely

yields new insights.

If I had only one hour to save the world, I would spend fifty-five minutes
defining the problem, and only five minutes finding the solution.

—Albert Einstein

�“Soft” Skills
The final area where architects must expand their knowledge is in the realm of the so-

called “soft” skills. Architecture is more than designing solutions; those solutions must

eventually make it into production. Tools to communicate with the business, approaches

to build consensus, the ability to be “wrong” and course correct, relationship building,

and the ability to inspire teams are all important.

Arguably, the greatest work in this area remains the timeless How to Win Friends

and Influence People by Dale Carnegie. This comprehensive work teaches empathy,

relationship building, communication and collaboration skills, and negotiation. I believe

this book should be required reading for all architects because so much of an architect’s

role involves skillful communication, collaboration, negotiation, and building broad

consensus across the organization.

Wisdom from Schusselig

Previously in my career I was on a team that was embracing Agile in the way
programmers with limited experience do. We were accelerating our release
schedule and feeling great. One release went out that resulted in an outage for
several hours. The fix was not a rollback, but another release to fix the culprit bug.
In the meantime, a manager of a certain ilk took the opportunity to convince the
owners of the company to rein us in significantly. Granted, we eschewed things
like comprehensive test suites, automated build and deploy, but worse we failed to
honor the two “soft skill” values on the [agile] manifesto.

Chapter 2 Breadth of Knowledge: The Architect’s Superpower

24

Had someone on the team had the breadth to nurture the relationships with the
business side of the company, we could have avoided going from “release features
when they’re ready” to “once a month” releases (for bug fixes too—if the bug was
big enough to warrant a release, then that meant rollback). Such a person could
have proven the linchpin to get us to where we wanted to go (both the tech team
and the business folks).

�The Essential Unity of All Knowledge
Filling in linchpin gaps also requires looking at problems from new and unique

perspectives. We gain these perspectives when we deviate from the course of deep

specialization and explore ideas from outside of our core domain.

Specialization tends to shut off the wide-band tuning searches and thus to
preclude further discovery.

—R. Buckminster Fuller9

Richard Hamming, a renowned mathematician and computer scientist, worked

to instill a sense of holism in his students’ approach to knowledge acquisition. He

acknowledged that knowledge is taught as individual fragments but urged his students to

embrace the connected nature of knowledge and value all knowledge equally.

In your future anything and everything you know might be useful, but if you
believe the problem is in one area you are not apt to use information that is
relevant, but which occurred [elsewhere]

—Richard Hamming10

Shannon could not have anticipated the impact of both taking the philosophy class

and learning Boolean logic during his undergraduate program. Often, the value of some

idea, fact, or mental model can only be realized in hindsight. Beyond the problem space

and the solution space, an architect should possess a level of intellectual curiosity and be

willing to let that curiosity and intuition drive continuous broader exploration.

9 Fuller, R. B. (1969). Operating Manual for Spaceship Earth. Simon & Schuster
10 Hamming, R. W. (2020). The Art of Doing Science and Engineering: Learning to Learn.
Stripe Press

Chapter 2 Breadth of Knowledge: The Architect’s Superpower

25

�New Challenges
The landscape of software is changing. The development work of the coming decades

will undoubtedly involve creating solutions to problems that currently seem impossible.

There are almost certainly business problems one could begin to solve today with the

help of a single linchpin fact, but the challenge is finding it. We are almost never aware

of missing linchpin knowledge. These linchpins are particularly critical when tackling

modern problems that reside in the complex Cynefin11 domain (Figure 2-3).

Figure 2-3.  Visualization of the Cynefin Domains12

The Cynefin framework illustrates that a strategy or solution that works well in one

domain is not necessarily transferable to another. Much of the low-hanging fruit in our field

has been picked. We need to develop the skills and breadth necessary to operate effectively

in the complex domain, as well as helping organizations escape the chaotic domain.

11 Snowden, David (1999). “Liberating Knowledge,” in Liberating Knowledge. CBI Business Guide.
London: Caspian Publishing
12 Cox, T. (September 22, 2022). Cynefin framework 2022 [Digital image]. Wikimedia Foundation.
https://commons.wikimedia.org/wiki/File:Cynefin_framework_2022.jpg. Licensed under
CC BY-SA 4.0. Adapted from https://commons.wikimedia.org/wiki/File:Cynefin_as_of_1st_
June_2014.png

Chapter 2 Breadth of Knowledge: The Architect’s Superpower

https://commons.wikimedia.org/wiki/File:Cynefin_framework_2022.jpg
https://commons.wikimedia.org/wiki/File:Cynefin_as_of_1st_June_2014.png
https://commons.wikimedia.org/wiki/File:Cynefin_as_of_1st_June_2014.png

26

�Summary
Fundamentally, the transition from developer to architect requires a significant shift in

focus and perspective. Perhaps architects could, at one time, coast on familiar patterns

and tools, but today’s emerging needs require diverse thinking and ideas. Breadth

and range are the architect’s superpowers. Illuminating unknown unknowns and

transitioning them to known unknowns is ongoing work that builds a foundation for

discovering future linchpin knowledge.

The real work of the modern architect takes place in the complicated and complex

Cynefin domains. Navigating this space effectively is the value proposition of the 21st-

century architect—how they think, how they solve problems, and how they connect

diverse ideas into novel solutions. In short, the future of software development requires

radically different thinking to that which is currently commonplace. The most valuable

architects and engineers of the coming decades will be those who can discover the

linchpins and translate these into a vision and a direction that teams and organizations

can follow. Breadth and soft skills are the way.

Chapter 2 Breadth of Knowledge: The Architect’s Superpower

27
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_3

CHAPTER 3

Capabilities: The Language
of the Architect

Everything is vague to a degree you do not realize ‘til you have tried to make
it precise.

—Bertrand Russell

As you learned in Chapter 1, much of architecture is focused on design decisions that

induce certain capabilities of a system that transcend its features and functions. If you

were asked to name a few of these, capabilities like performance or scalability might

immediately leap to mind. If you continued to think about it, many more would emerge.

Eventually, you would run out of ideas. Have you missed any? How many are there?

At the time of this writing, Wikipedia lists 86 “System Quality Attributes”1 which

could be considered capabilities, and that list is certainly incomplete. Capabilities are

often self-describing; thus, should a new capability be introduced, you could probably

infer its meaning quickly.

Although capabilities are easily understood, we are faced with two challenges:

	 1.	 When considering the capabilities for a candidate architecture, we

must ensure we’re considering all relevant capabilities. It is easier

to see what is unnecessary than to see what’s missing.

	 2.	 Even self-describing capabilities can become overloaded or fall

victim to semantic diffusion if effort is not made to ensure that

everyone is using the same definitions.

1 https://en.wikipedia.org/wiki/List_of_system_quality_attributes

https://doi.org/10.1007/979-8-8688-0410-6_3#DOI
https://en.wikipedia.org/wiki/List_of_system_quality_attributes

28

While we cannot enumerate all possible capabilities in this chapter, we will focus on

a subset that is most commonly top of mind for architects. By establishing a common

context, we can ensure precise communication throughout the remainder of this book.

This precision also enables a more mindful exploration of the trade-offs that permeate

all of software architecture.

�Architectural Capabilities of Key Interest
After examining a broad sample of projects spanning multiple domains, many

practitioners, and countless person-decades, numerous capabilities appear with a

consistently high frequency. Conventional architectural thinking often universally

connects capabilities to architectural patterns. This kind of thinking is, however, overly

reductive. While some capabilities emerge as a consequence of a particular topology,

pattern, or prescribed modularity, others emerge from architectural decisions or

guidance that may be applied to any pattern or style. Therefore, for the purposes of our

work, we will break them down into two groups.

The first group encompasses capabilities directly influenced by the general

definition of a given pattern. These include

•	 Abstraction

•	 Affordability

•	 Agility

•	 Deployability

•	 Elasticity

•	 Evolvability

•	 Fault tolerance

•	 Integration

•	 Performance

•	 Scalability

•	 Simplicity

•	 Testability

•	 Workflow

Chapter 3 Capabilities: The Language of the Architect

29

The capabilities above are among the primary attributes we will use to evaluate the

relative strength of each pattern (style) in the abstract. This, however, only provides a

partial view into the architectural process. Our work as architects requires our designs

to holistically meet a broader set of needs that span the business, the customers,

the users, the developers, and more. Consequently, operating effectively requires

additional tailoring to induce the full set of capabilities needed for a given project. We

must, therefore, consider this group of capabilities—induced by prescribing additional

architectural constraints—in any of the abstract styles described in Section 2.

The second group of capabilities include, but are not limited to, the following:

•	 Availability

•	 Composability

•	 Customizability

•	 Feasibility

•	 Efficiency

•	 Interoperability

•	 Maintainability

•	 Multitenancy

•	 Observability

•	 Privacy

•	 Reliability

•	 Reusability

•	 Safety

•	 Security

•	 Visibility

Capabilities tend to fall into a natural taxonomy of closely adjacent and conceptually

related attributes. The following sections will follow such a taxonomy, grouping

capabilities into the higher-level categories: performance, agility, integration and

interoperability, feasibility and manageability, and reliability.

Chapter 3 Capabilities: The Language of the Architect

30

Being clear on what you’re trying to achieve through measurement is 100%
essential and unavoidable. If you skip this crucial step, you only achieve
your organizational objectives by accident.

—Bernie Smith2

�Category: Performance
“Performance” is often an extremely overloaded term, with wildly varying definitions

and implications depending on the communication context. In our context, performance

refers to the responsiveness and efficiency with which a software system operates.

Specifically, it gauges the system's ability to handle its tasks within an acceptable time

frame and with appropriate use of resources. In some projects, “performance” may be

a key capability; however, there are many elements of performance, and, as such, they

represent individual capabilities that may need to be fine-tuned.

�Network Efficiency/Network Performance

Network efficiency refers to how effectively a software system uses network resources to

communicate and transfer data among various components or external entities. When

evaluating or designing software architectures, ensuring efficient use of the network

is often important, especially in distributed systems, cloud architectures, or any setup

where components communicate over a network.

Network efficiency is largely driven by bandwidth usage, latency, protocol overhead,

payload compression, connection management, and serialization efficiency. It is

important to note that these factors often exist in tension with other capabilities.

�Compute Efficiency

At a high level, compute efficiency refers to the amount of CPU time or energy needed

to produce a given result (and many optimizations may be either-or when it comes to

CPU time efficiency vs. power efficiency). Traditionally, compute efficiency has been

informed by code optimization which is usually outside the scope of architecture. Times

have changed significantly.

2 Smith, B. (2013). KPI Checklists: Practical how to guide templates included. Metric Press

Chapter 3 Capabilities: The Language of the Architect

31

Distributed architectures occupy a larger hardware footprint, and, without careful

architectural consideration, this can lead to runaway cost and underutilized hardware.

Modern software increasingly requires specialized hardware for specific tasks and

will continue for the foreseeable future. This trend is particularly pronounced as demand

for artificial intelligence (AI) and machine learning (ML) solutions increases. GPUs,

for example, will significantly outperform CPUs by orders of magnitude for the linear

algebra workloads underpinning many of the algorithms utilized by AI and ML.

�Scalability

Scalability defines how easily resources can be allocated and put to use as those

resources become needed. Once again, this requires careful architectural consideration

and evaluation of the various dimensions.

How an architect might scale for total users might be different from concurrent users

or even simply scaling for data/storage. Consequently, conversations around scalability

should revolve around the idea of “what is enough” and which specific resources must be

scalable.

Be aware that “scalability” has become overloaded. Some years ago, I was consulting

on a project, and one of the stakeholders kept repeating that the system needed “to be

scalable.” This confounded me somewhat as the anticipated limits of storage, compute,

and total/concurrent users were relatively low. Following several probing questions, I

understood that this stakeholder was using scalability as a synonym for extensibility. At

the time, I felt that “scalability” had become yet another industry buzzword. I have since

come to understand that there are many dimensions to scalability. One could argue this

stakeholder was not referring to load scalability (the ability for a system to expand to

accommodate increased amounts of processing, memory, traffic, storage, etc.) but rather

functional scalability (the ability to enhance the system by adding new functionality

without disrupting existing activities).

Other dimensions of scalability3 include geographic scalability (the ability

to maintain effectiveness during expansion from a local area to a larger region),

administrative scalability (the ability for an increasing number of organizations or users

to access a system), generation scalability (the ability of a system to scale by adopting

new generations of components), and heterogeneous scalability (the ability to adopt

components from different vendors).

3 El-Rewini, H., Abd-El-Barr, M. (2005). Advanced Computer Architecture and Parallel Processing
John Wiley & Sons

Chapter 3 Capabilities: The Language of the Architect

32

Personally, I prefer the extensibility moniker over functional scalability, but, as you

will see throughout this chapter, many terms overlap and there can be a great deal of

nuance in their discussion. In the context of this book, we will use scalability primarily to

refer to load scalability to avoid ambiguity.

�Elasticity

Elasticity is another dimension of scalability that is often conflated with load scalability

and used interchangeably. Again, we will break apart these two capabilities within the

context of this book. Elasticity, as the name implies, is not only about “stretching” to

adapt to a higher workload but also an ability to contract as load decreases to return to

baseline. Fellow architect and friend, Jerome Broekhuijsen likes to point out there is also

a cost factor motivating elasticity. Without elastic resources, we tend to over-

provision static resources to prepare for bursts of peak loads, and most of the time

those over-provisioned resources are spinning their wheels wastefully, which manifests

unnecessary costs in multiple ways: financial (e.g., server rental/usage fees), server

space, cooling, maintenance, etc.

Notably, certain decisions can afford some degree of elasticity to almost any

architectural pattern; the question always comes back to “what is enough” as well as how

well any given architecture will fit the organization and the problem as a whole.

�User-Perceived Performance
Perception is reality to the one in the experience

—Toba Beta

While the raw metrics of performance have value, in some cases the perception of

performance is enough. Architects can sometimes mitigate performance trade-offs

with decisions that enhance perceived performance. Caching, asynchronous processing,

careful user experience design, eager/speculative processing or prefetching, and more

can dramatically improve the perception of performance to the end user, compensating

for performance trade-offs elsewhere in the architecture.

It is also important to point out that it is not always about perception being “enough.”

There are aspects of optimizing the things that make sense to optimize. An example

Chapter 3 Capabilities: The Language of the Architect

33

of this is when processing batches of data. If the user knows that it will take an hour

to process the data, then they can go take lunch rather than sitting there watching the

progress bar. They may not mind that some things take a while if they have control over

when they take that one hour hit to their schedule and they understand what is being

done is computationally or transactionally expensive. In this case, the perception is

improved not because of caching or asynchronous processing but because the user is

not actively waiting for a result (i.e., watching paint dry).

�Category: Agility
The trouble with programmers is that you can never tell what a program-
mer is doing until it’s too late.

—Seymour Cray

If scalability is approaching buzzword-level, “agility” has passed that point with such

velocity that a sonic boom follows. Seemingly everyone wants to be “agile” (or, at least,

everyone wants to be able to say they are agile).

What is “agility”? At its core, it refers to the ability of a system, process, or

organization to quickly respond to change in an efficient and effective manner. Agility is

defined by several enabling capabilities:

•	 Evolvability: The ability for a system to gracefully adopt and absorb

both business and technical change. This is often accomplished

through some combination of

•	 Extensibility: The ability for a system to be changed to support

functionality or behavior for which it was not originally designed

•	 Composability: The ability for a system to induce new

functionality in a system through the composition of components

or modules with minimal additional code, adding new

functionality or behavior in a system beyond what was originally

designed

•	 Adaptability: The ability for a system to be used in novel ways to

support functionality or behavior for which it was not originally

designed

Chapter 3 Capabilities: The Language of the Architect

34

•	 Testability: The ease, completeness, and confidence in an automated

testing process.

•	 Deployability: The ease, completeness, and confidence in deploying

changes to the system.

Let us examine these dimensions of agility in more detail.

�Evolvability

This is an attribute that rarely materializes by accident. Building most software systems is

like working with concrete—easy to pour, mold, and shape in the beginning, but once it

hardens changes require a jackhammer and can be very disruptive. It is no wonder that

often organizations would prefer to rebuild a system from scratch rather than try to make

significant changes (although this almost never makes economic sense4, 5).

“Agile” methodologies accept the inherent uncertainty of initial requirements and

inevitable change once the system is deployed. Or “Schrödinger’s Spec,” as my friend,

mentor, and former boss, Robert Harris, calls it:

Schrödinger’s Spec – you can know what the client wants, or what they
actually need, just not at the same time.6

Numerous decisions from the micro-architecture of code to the macro-architecture

of a system can impact evolvability. A great case study on evolvability for architects is

the World Wide Web. Some brilliant decisions were made that enabled the Web to grow

and change radically from what was originally envisioned without ever stopping for

a rewrite. Web resources were once simply coarse-grained hypertext documents and

images forming an information-space that could be explored; today, the granularity

has changed, enabling smooth, responsive document interactions enabling a new

platform for application delivery and interaction with a rich set of first-class resources

and bidirectional flows of data, audio, and video. I don’t know of a single system that can

compare with the Web in terms of its evolvability. There are many architectural ideas

4 Spolsky, J. (April 6, 2000). Things You Should Never Do, Part I. Joel on Software. https://www.
joelonsoftware.com/2000/04/things-you-should-never-do-part-i/
5 Martin, R. (January 9, 2009). The Big Redesign in the Sky. Object Mentor. https://www.
luckymethod.com/2013/03/the-big-redesign-in-the-sky/
6 Harris, R. (April 19, 2020). Simple rules for keeping dev teams out of trouble. https://
robertnharris.com/2020/04/19/simple-rules-for-keeping-your-development-team-and-
project-out-of-the-ditch/

Chapter 3 Capabilities: The Language of the Architect

https://www.joelonsoftware.com/2000/04/things-you-should-never-do-part-i/
https://www.joelonsoftware.com/2000/04/things-you-should-never-do-part-i/
https://www.luckymethod.com/2013/03/the-big-redesign-in-the-sky/
https://www.luckymethod.com/2013/03/the-big-redesign-in-the-sky/
https://robertnharris.com/2020/04/19/simple-rules-for-keeping-your-development-team-and-project-out-of-the-ditch/
https://robertnharris.com/2020/04/19/simple-rules-for-keeping-your-development-team-and-project-out-of-the-ditch/
https://robertnharris.com/2020/04/19/simple-rules-for-keeping-your-development-team-and-project-out-of-the-ditch/

35

and lessons that can be taken away from this example. Evolvability is therefore another

area where architects often need a certain amount of vision to anticipate the potential

rate of change of a system and make sure decisions accommodate this.

�Extensibility

Effectively, this describes how easy it is to extend the functionality of the system without

breaking/disrupting what is already there. How architects think about modularity,

interfaces, and abstraction at the system level is usually an important starting point. The

microkernel architecture (Chapter 20) is an example of how to induce this capability

architecturally. A common exemplar of this architecture at the time of this writing is

Microsoft’s open source editor, VS Code. At its core, VS Code is a simple text editor that

can be expanded through the inclusion of various plug-ins. Plug-ins offer language

support, syntax checking, highlighting, build-tool integration, and more. In this case,

extensibility is achieved through composability.

�Composability

Composability refers to the ability to create, adapt, and scale systems by combining

existing, often reusable, components in various configurations to satisfy different

requirements. Composability emphasizes the design of components in a way that they

can be seamlessly and flexibly composed together to achieve desired functionality or

behavior.

The centerpiece of UNIX is composability of simple tools through a uniform

interface. This enables a wide array of small, self-contained, single-purpose tools that

can be composed in any number of combinations and configurations to solve a wide

variety of problems. This is exemplified by “The UNIX Philosophy” summarized as7

•	 Write programs that do one thing and do it well.

•	 Write programs to work together.

•	 Write programs to handle text streams, because that is a universal

interface.

7 Salus, P. (1994). A Quarter-Century of Unix Addison-Wesley

Chapter 3 Capabilities: The Language of the Architect

36

The Web adapted this idea for large, distributed systems, using the uniform interface

constraint of the REST architectural style. The resource abstraction creates a flexible,

stable mechanism to build highly composable systems.

Also notable are subsequent abilities to create a composable data fabric using ideas from

the architecture of the Web and linked data. The core ideas and motivation are detailed in

the data-centric manifesto.8 As always, there are significant trade-offs associated with these

ideas, but if long-term agility (or any subcomponent) is highly aligned with the business

drivers, these are ideas worth exploring and adding to your technical breadth.

�Adaptability

Best defined by asking the question: How easy is it to use a system in unanticipated

ways without requiring code changes? Regardless of what we intentionally design into a

system, there will always be users who will try to use a tool for a different purpose (think

driving screws with a hammer). Sometimes, that is not a problem, but other times it can

create unwanted side effects.

The popular spreadsheet application, Excel, offers a great deal of adaptability

(whether or not any particular adaptations make the most sense). The tabular data

structure and low-code mechanisms to define behavior cause many people to use Excel

for database use cases, for displaying tabular data when tables in an application like

Word might be more appropriate, or leveraging its VBA interpreter to use it in lieu of

Matlab, Python, Mathematica, etc.

Contrast this with the text editor vim. Vim has been used for databases,

programming, or its core use case of viewing and editing text. Vim is designed to be

adapted to many use cases through robust configuration and extension mechanisms.

I think it is helpful at design time to imagine how a user may creatively apply the tool

we are about to create and try to hem in the user to a safe range of purposes.

�Testability
It’s fragile because even the smallest of changes can break it down com-
pletely. Code doesn’t degrade slowly. It crashes.

—Lasse Koskela9

8 The Semantic Arts (n.d.). The Data Centric Manifesto. The Data Centric Manifesto. https://www.
datacentricmanifesto.org/
9 Koskela, L. (2013). Effective Unit Testing: A Guide for Java Developers. Manning

Chapter 3 Capabilities: The Language of the Architect

https://www.datacentricmanifesto.org/
https://www.datacentricmanifesto.org/

37

Change does not exist in a vacuum, and change necessarily involves risk. If an organization

wishes to be agile—if they operate in a problem space where the risk of stagnation is

greater than the risk of change—the business must be able to make changes confidently.

How easily can developers test and validate changes before they are released?

Any time a developer wants to refactor code (separate from making a functional

change or fixing a bug), they want to have confidence that the refactoring does not

inadvertently break relied-upon functionality. Having a bank of tests in place gives them

confidence when doing a refactoring by providing a contract of expected behavior.

The granularity of tests is also influential here. This is where architecture can directly

influence the testability of a system. One architecturally significant decision is how we

prescribe module boundaries/seams in the system. Domain-driven module boundaries

tightly constrain testing scope and blast radius. This is also improved by how we think

about component abstraction and API interfaces.

Bringing this back to the points already made, having a bank of good/useful tests is

only possible if you have testability baked into your system. Generally, more modular

architectures with clear boundaries and contracts for interactions produce more testable

systems. The surface area of the risk becomes smaller as does the blast radius of a defect.

We recently encountered two Big Balls of Mud that were so intertwined that they were

deemed “untestable”—certainly unit tests were not possible without a LOT of brittle

mocking, and higher-order tests were too hard (and time-consuming) to write. TDD as a

philosophy often becomes a forcing function to help to bake in testability.

TDD helps you pay attention to the right issues at the right time so you can
make your designs cleaner, you can refine your designs as you learn.

—Kent Beck10

�Deployability
Releasing software is too often an art; it should be an engineering discipline.

Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation

10 Beck, K. (2003). Test-Driven Development by Example. Addison-Wesley

Chapter 3 Capabilities: The Language of the Architect

38

Another component of agility is deployability—how quickly, easily, and confidently

changes may be released. Generally, the more granular the architecture pattern, the

easier it is to deploy changes, providing there exist clear module boundaries and well-

defined interfaces. Patterns like microservices are considered to be more deployable due

to their highly granular nature, strict module isolation, and resulting small deployment

scope. It is worth emphasizing that this capability influences far more than initial

releases but also changes, patches, upgrades, and other improvements.

This particular capability also influences horizontal scalability; if a component can

be easily deployed, additional instances can be easily deployed. Notably, there are other

implied decisions that are part of that pattern that are enablers for deployability.

�Category: Integration
Integration as a capability is determined by measuring the ability of merging distinct

systems or components, allowing them to function as one. It is not just about connecting

A to B; it is about ensuring that A and B communicate effectively, efficiently, and

seamlessly.

There are several distributed architecture patterns, and they are generally popular

(even when the promised benefits rarely materialize for reasons that will be explored

in a later chapter). While most literature on distributed architectures focuses on

taking systems apart, remember that it will be necessary to “put Humpty Dumpty

together again.” Moreover, when building new systems, often they need to interact

and interoperate with legacy and third-party systems. Finally, enterprises are not

static entities. Mergers and acquisitions are often almost inevitable. Depending on the

organization, it may be necessary to design systems that will be able to integrate with

other, as-yet unknown systems in the future.

Integration can be a daunting task due to diverse technologies, but it can be valuable

to foster a unified (or flexible) solution. Architecture decisions around tools, adherence

to standards, and different approaches to APIs or messaging services can affect the

amount of friction systems experience when cross-communicating. As always, there

are many options, and each brings its own trade-offs. This can be an important area for

architects to continue to build breadth of knowledge.

Like scalability and agility, this category of capabilities overlaps with several

capabilities.

Chapter 3 Capabilities: The Language of the Architect

39

�Interoperability

Interoperability goes deeper than just connectivity between systems—it is the ability of

the systems to exchange, interpret, and cooperatively use information.

Often, we have many approaches to integration (e.g., the use of an application

protocol such as FTP or SMTP to allow systems to seamlessly exchange data regardless

of their implementation details); however, we often want to do more than simply

connect these systems, we want them to work together without excessive intervention.

The Microsoft Office suite consists of a number of independent applications focused

on a particular set of functions, but the tools interoperate extremely well. A spreadsheet

forms an effective data source for a mail-merge operation; shapes can be copied from a

PowerPoint document and pasted into a Word document without loss of fidelity. They

share a set of common standards.

As an alternative analogy, consider early trains and rail networks. Separate rail

companies often operated independently, but at junctions, they rely on meticulously

designed intersections to allow trains to switch tracks, combine routes, or operate side by

side. Interoperability is achieved not through patterns or abstract architectural styles, but

rather through the prescription of compliance with standards. In early, heterogeneous

rail networks, the lack of standards (or the abundance of competing standards) made it

enormously difficult to move rail cars from one rail network to another.

When designing a distributed, domain-partitioned system, architects quickly realize

that, even in the same organization, different business units define terms and concepts

in very different ways. One of the first and most important steps is to do the work to

define each business domain’s ubiquitous language (to use the DDD parlance).

Architects can try to build consensus between upstream and downstream

components using the conformist pattern; we can “agree to disagree” and build an anti-

corruption layer to translate terms across domains, we can define a shared kernel,11 or we

can think about the problem differently and exchange information (data with context)

rather than mere data (e.g., JSON serialized decontextualized name/value pairs). Linked

data, which was mentioned earlier, is perhaps one of the best options to achieve this.

Linked data embraces the non-unique naming assumption and resolves the inherent

conflicts and challenges surrounding global consensus. None of these approaches are

easy, of course, and all of them involve trade-offs.

11 Evans, E. (2003). Domain Driven Design: Tackling complexity in the heart of software.
Addison-Wesley

Chapter 3 Capabilities: The Language of the Architect

40

�Abstraction

When considering how two software components might interact and interoperate,

there is often an overemphasis on integration mechanisms. We must, however, pay

attention not only to which components must interact but also how we insulate portions

of the components to ensure implementation changes do not introduce breaking

changes outside of those components. When a change to one component requires

a compensatory change to another component in order to maintain the broader

system’s correctness, these components are said to be connascent (a form of coupling).

Abstraction is one of our primary tools to manage coupling.

There are many dimensions to coupling that are useful to understand. Equally, it is

important to understand the concept of cohesion as well as the interplay between the two.

Finally, we suggest that the cost of modification of a system will be mini-
mized when its parts are:

–– Easily related to the problem

–– Modifiable Separately12

For coupling, two modules are considered completely independent if each can

operate entirely without the other. This means there are no interconnections between

the modules, whether they are direct or indirect, explicit or implicit, obvious or subtle.

This establishes a baseline level of independence.

For cohesion, related things are kept “close” to one another, as was described in the

1975 book Structured Design.

What we are considering is the cohesion of each module in isolation—how
tightly bound or related its internal elements are to one another.

—Edward Yourdon and Larry Constantine

Microservices, as an architecture pattern, deeply embrace the idea of cohesion by

creating independent, standalone services that encapsulate everything necessary to

complete a particular domain behavior within a single piece of working software. It

is also important to note that structuring software as a set of highly cohesive modules

12 Yourdon, E., Constantine, L. (1975). Structured Design: Fundamentals of a Discipline of
Computer Program and System Design. Yourdon Press

Chapter 3 Capabilities: The Language of the Architect

41

with low coupling is not unique to fine-grained microservices but can also be achieved

through medium-grained “mini” services or even monolithic component granularities.

�Workflow

The above idea of cohesion suggests “things that belong together are placed together.”

There is, however, a practical limit to cohesion. Nontrivial software systems are

constructed by many teams with differing organizational affinities. Therefore, they

will tend to take different approaches to tackling their independent (but related)

problems. Broader organizational business processes will often span multiple software

components to cohesively execute a given domain workflow. The architecture of the

system will influence how easily (or not) individual components can be composed into a

broader business process or workflow.

In Ford and Richards’ 2020 book, Fundamentals of Software Architecture, they

assign a number of high scores to several architectural capabilities promised by the

microservices pattern. These scores are a product of the pattern’s topology of highly

decoupled, independent components. The nature of this pattern also results in a

very low score for the workflow capability. As soon as a domain workflow requires

chaining together many microservices for a single domain behavior, we begin to erode

those scores as the pattern’s high independence is undermined by reintroducing

dependencies in a distributed system. Mark Richards has introduced a concept of

“Domain to architecture isomorphism” which asks us to consider whether the “shape” of

the architecture matches the “shape” of the problem.

Consequently, we must evaluate the need for composing software components in

such a way that we may execute domain workflows in a way that does not compromise

other system capabilities.

�Category: Feasibility and Manageability
Just as there exist many ways to write code to deliver a set of features, there exist many

paths to design a system architecture. Thinking about system architecture is interesting

and challenging in and of itself, but architects cannot escape two realities:

	 1.	 At some point, the software must be built and released.

	 2.	 Once the software is deployed, it must be able to be understood

and maintained.

Chapter 3 Capabilities: The Language of the Architect

42

As systems grow, complexity can become a significant problem. With a distributed

system, developers cannot simply set a breakpoint or step through the code anymore.

Additional capabilities are necessary.

�Visibility

Visibility refers to the ability to “see” into a system. It could be as simple as having an

up-to-date map of microservices or what components are online/offline, healthy or

not. Visibility focuses on what’s happening but may not explain the why of the current

state. Thus, while visibility provides crucial insights, it may not offer the depth required

to understand complex issues, especially in distributed systems where problems might

arise due to intricate interactions. An architect might select tools or standards around

how the components produce metrics and logs or standardize how health checks are

performed.

�Observability

While closely related, visibility and observability differ in depth, scope, and application.

Observability is a measure of how well you can understand the system’s internal state

based on its external outputs. It not only lets you see what is happening but understand

why it is happening.

Observability is particularly valuable in environments where the system is too

complex to predict all potential problems beforehand. Instead of trying to foresee

every possible issue, teams build systems that can be interrogated for insights when

unexpected situations arise. If this is an important concern, an architect might prescribe

distributed tracing tools or logging solutions that can correlate data from various sources

to provide a more complete picture. For example, some teams will employ technologies

like Splunk or LogRhythm to be able to unify log sources from many services to improve

a team’s ability to debug complex issues that transcend a single service. Also, many cloud

providers include tools like Datadog, Helios, Honeycomb, etc. for a similar ability to

provide insight into the overall state of a system.

�Affordability

Affordability typically refers to the total cost of ownership (TCO) of the system. What will

it cost to build the proposed system? What will it cost to run and maintain the system?

Chapter 3 Capabilities: The Language of the Architect

43

Given a fixed amount of money, an architect will inevitably need to make trade-off

decisions to place an upper bound on cost. This is a constraining reality of every project.

You may encounter situations where there are different categories or “buckets”

of money for activities like research and development, development, operations and

maintenance, etc. The design and the implementation will have changes funded in

any phase of the project, so it is important to satisfy the needs of the phase while also

accounting for the larger goals of the product. Prototype code will not be as refined as

code that has been fielded and has accumulated operations and maintenance changes.

You must become good at determining which changes should be funded at what

phase. Picking which battles are fought is an important skill for anyone who wishes to

effect change.

�Maintainability

Nearly every system that is used will require patches for defect repairs, security

vulnerabilities, performance enhancements, and new functionality. There are important

decisions about architecture, data, and implementation that will influence how easy

it will be to make changes, debug, upgrade, and alert users of issues. The overall

architecture of the system will strongly influence maintainability.

We don’t create things we change them. Development is a nested set of
change cycles. Stop thinking about outcomes.

—Dave Thomas

�Reusability

The software industrial revolution, as some call it, mirrors the previous industrial

revolution in that much of what we build is composed of many reusable software

components. The industrial revolution optimized the production of many instances of

objects, whereas the software industrial revolution has all but eliminated any cost of

the instances. This has led to interesting challenges with capitalization for businesses. A

piece of software that is built once but can be used in many different contexts becomes

an asset on the balance sheet and will be accounted for differently than a system with

software that can only be purchased by one customer and cannot be adapted or resold

to another. There is much more value in creating software that can service multiple

Chapter 3 Capabilities: The Language of the Architect

44

customers or multiple users within an organizational unit to a customer. When software

is made available outside of an organizational unit, it opens up the potential for new

revenue opportunities, especially when licensing includes a repeated collection of fees

per use or fees per unit of time.

Licensing for software has evolved from

	 1)	 Companies building the computer and the software for a client:

1940s–now

	 2)	 Shrink-wrapped software: 1980s–now

	 3)	 Shareware/Free and Open Source Software (FOSS): 1980s–now

	 4)	 Subscription-based software: 1990s–now

	 5)	 License server/shared licenses: 2000s–now

	 6)	 SaaS/PaaS/IaaS/FaaS: 2000s–now

No licensing scheme has ever fully displaced the other schemes. Different products

will lend themselves to a particular scheme better than to others. The licensing will

influence many of the software architect’s decisions.

�Multitenancy

When software is reusable, we must consider how it will be used. Particularly

whether the instances will be shared or not. When shared, multitenancy provides a

way for multiple users to concurrently access functionality within a single instance.

Multitenancy leads to a series of trade-offs:

•	 Complexity added to handle the nature of having multiple users

concurrently accessing the single software instance and the cost

saving of not having multiple instances of the software (including the

increased computing hardware)

•	 Decreased risk of loss of software IP against the ability for users to

run offline

•	 Data isolation and security against cost

•	 Loss of control over the system or components of the system against

lower total cost of ownership

Chapter 3 Capabilities: The Language of the Architect

45

•	 Etc. (the considerations will vary widely across industries and even

applications within industries)

It is an important consideration that, again, will influence many of the architect’s

decisions.

�Simplicity

Ultimately, there is a point where the solution space of a project becomes too hard.

Microservices, for example, are quite possibly one of the most difficult architecture

patterns to execute well. Breaking apart teams is difficult, breaking apart data is difficult,

Domain-Driven Design (DDD) is difficult, reorgs are difficult, building the infrastructure

and tooling to support development, deployment, and management of microservices

is difficult. Perhaps one of the reasons so many microservice implementations fail is

that organizations massively underestimate the complexity inherent in this pattern. It

is important to look at architecture holistically and determine what level of complexity

and disruption the organization can withstand. This kind of architectural intuition tends

to develop with time and experience. Getting the level of simplicity wrong can make or

break a project. It is often advisable to err slightly on the side of simplicity, it is much

easier to add complexity than remove it.

�Category: Reliability
�Fault Tolerance

At some point, things will fail. Ultimately, failure is the only option. Sometimes systems can

withstand the occasional service disruptions; other times it can literally be the difference

between life and death. Most systems, however, operate somewhere in the middle.

Generally, it is desirable to avoid small failures cascading into larger failures; thinking about

the characteristic of fault tolerance can be helpful. Architecture decisions, choice of pattern,

how inter-component communication is implemented, and how we coordinate/manage

distributed transactions all impact the system’s and component’s level of fault tolerance.

�Availability

Availability is a broader look at the concept of fault tolerance and is usually measured in

uptime as a percentage of total time (e.g., 99.99% uptime). Generally, in discussion with

Chapter 3 Capabilities: The Language of the Architect

46

the business, architects will determine how much downtime is acceptable for a system

or component and make decisions to maintain that service-level agreement (SLA). There

are many paths to ensure a minimum level of uptime.

�Category: Safety and Security
One final category that must be explored is the capabilities that surround safety and

security. These capabilities are rarely induced directly by a particular architectural

topology, but rather stem from additional architectural constraints that define certain

implementation details. These capabilities almost always have some baseline value,

but we must determine the extent of these capabilities as well as whether a baseline

achieved through adherence to a set of defined “best practices” is sufficient or whether

additional architectural constraints must be prescribed to exceed the baseline.

�Safety

Safety refers to managing the system’s ability to cause harm to people, property, or the

environment when the system is operating normally or under fault conditions. While

commonly associated with industrial control systems, medical devices, weapon systems,

or autonomous vehicles, safety is increasingly relevant to a broader range of software-

driven contexts as systems integrate more deeply with the physical world. Safety

considerations may span from ensuring that emergency shutdown procedures can

execute reliably to guaranteeing that a data analysis error does not inadvertently mislead

critical decision-making. Safety may be induced by architectural patterns that support

isolation, redundancy, controlled failover mechanisms, and continuous monitoring of

operational conditions.

Ultimately, safety is often achieved through a combination of deterministic system

design, rigorous testing (including stress and chaos testing), formal verification of critical

subsystems, and adherence to relevant industry regulations or standards.

Unfortunately, in this industry, unlike other engineering disciplines ethics

considerations are not held in the same regard. Some of the trade-offs come in the form

of increased complexity, higher development costs, earlier delivery, decreased quality,

and potentially reduced performance. As always, we architects must work with the

business and domain experts to determine what level of safety is “enough,” balancing

the substantial costs of increased rigor against the practical risks inherent in the

system’s domain.

Chapter 3 Capabilities: The Language of the Architect

47

�Security

Security as a capability ensures that the system is protected from unauthorized access,

tampering, data breaches as well as user data protections, and system monitoring or

auditing.

A secure architecture typically includes multiple layers of defense—from network

segmentation, encryption, and secure communication protocols to well-defined

authentication and authorization mechanisms at the application level, static code

analysis to decrease accidental introduction of security flaws, and penetration/

exploitation testing to prevent delivery of products with known issues.

After delivery, security often includes protective measures like anomaly detection,

intrusion detection/prevention systems, and secure coding practices.

However, perfect security is an illusion; there is always a spectrum of potential

threats, and attempting to defend against all possible exploits can rapidly inflate costs

and complexity beyond any reasonable level of benefit. The challenge, therefore, is

determining what is “enough” security for a given scenario. We must consider the value

of the protected assets, compliance requirements, the system’s threat profile, and the

organization’s risk tolerance.

In short, secure software that is “good enough” optimally aligns the system’s defense

posture with business drivers, regulatory obligations, and practical limitations, without

overengineering every software component and compromising business agility or

affordability.

�Privacy

Privacy, as a capability, focuses on protecting the personal data and sensitive

information entrusted to the system. This involves ensuring that data is collected

and processed according to privacy regulations (such as GDPR, HIPAA, or CCPA),

as well as meeting user expectations regarding data handling. Privacy-preserving

architectures incorporate mechanisms like data minimization, anonymization, and

pseudonymization; they also enforce strict governance over data storage, retention, and

sharing. Determining how much personal information should be collected, retained,

and exposed to various system components is a delicate balance. Overly permissive

data handling can result in loss of user trust, regulatory penalties, and reputational

harm. On the other hand, collecting no data at all may render some desirable features or

Chapter 3 Capabilities: The Language of the Architect

48

analytics impossible. Thus, privacy considerations must be thoughtfully integrated into

the architectural design, often guided by legal counsel, compliance teams, and a clear

understanding of user expectations.

�Auditability

Auditability refers to the ability to trace actions within the system, from user interactions

to machine-level operations, enabling investigators to understand historical events,

detect fraud, analyze user or system behavior, and validate compliance.

Systems that value auditability often employ immutable logs, event sourcing, or

cryptographically verifiable ledgers to produce tamper-evident records. You might

prescribe architectural decisions that support fine-grained event logging, secure log

storage, and correlation mechanisms that can integrate with monitoring or observability

tools. However, achieving strong auditability can be at odds with privacy. Detailed audit

trails that record which user performed what actions can be immensely helpful for

compliance, forensic investigations, and governance—but the same granular tracking

can degrade user privacy and raise the risk of regulatory noncompliance if sensitive data

inadvertently leaks into logs or metadata. This creates a tension between transparency

and discretion.

While they might seem to always be at odds, often auditing can also help protect user

data and therefore privacy.

In practice, you must work closely with legal, compliance, and privacy experts to

determine the right balance. Perhaps only certain user actions are logged, or sensitive

fields are masked or encrypted in audit records.

The guiding principle should be to log and store ‘just enough’ information
to accomplish the auditability goals—detecting illicit activity, complying
with industry regulations, or providing transparency for stakeholders—
without compromising user trust or violating privacy standards.

Balancing these considerations ensures the system can both demonstrate

accountability and uphold the data protection principles crucial to user confidence.

Chapter 3 Capabilities: The Language of the Architect

49

�Summary
This chapter provides a set of high-level definitions and offers a few potential decisions

around these capabilities as well as broader considerations that will enable you to

navigate future architecture decisions effectively. These capabilities are summarized as

follows:

Category Capability Brief Definition

Performance Network Efficiency Efficient use of network resources (bandwidth, latency,

protocols) to enable effective communication.

Compute Efficiency Optimal usage of computing resources (CPU, energy) to

produce results with minimal overhead.

Scalability The ability to increase or scale resource capacity to

handle varying workloads.

Elasticity The ability to dynamically expand and contract

resources as load fluctuates.

User-Perceived

Performance

Enhancing the end user’s sense of responsiveness,

often through caching, asynchronous operations, or

careful UX design.

Agility Evolvability The ease with which a system can accommodate and

adapt to both business and technical changes.

Extensibility The ability to add new functionality without disrupting

existing features.

Composability The ability to build new capabilities by reusing and

combining existing components and modules.

Adaptability The ease of using the system in new, unanticipated

ways without code changes.

Testability The ease and confidence with which changes can be

verified and validated through testing.

Deployability The ease and confidence in rolling out software

updates, patches, and new releases.

(continued)

Chapter 3 Capabilities: The Language of the Architect

50

(continued)

Category Capability Brief Definition

Integration and

Interoperability

Integration The capability to connect distinct systems or

components so they function as a cohesive whole.

Interoperability The ability of separate systems to exchange, interpret,

and cooperatively use shared information with limited

intervention.

Abstraction Managing complexity and change by encapsulating

details behind stable interfaces and contracts.

Workflow The ease of orchestrating and automating multi-step

processes that span multiple components.

Feasibility and

Manageability

Visibility The capability to “see” into the system’s state (e.g.,

health, status) at a basic level.

Observability The ability to understand the system’s internal behavior

from its external outputs and telemetry.

Affordability The total cost of ownership, ensuring the solution fits

within budget constraints.

Maintainability The ease with which the system can be updated, fixed,

and improved over its lifetime.

Reusability The ability to leverage components or modules across

multiple contexts or applications.

Multitenancy Supporting multiple, distinct users or organizations

within a single, shared software instance.

Simplicity Ensuring the architecture and design remain as

straightforward as possible, minimizing unnecessary

complexity.

Customizability The ability to tailor or configure the system to meet

specific needs without extensive redevelopment.

Feasibility Ensuring that the architectural approach can

realistically be implemented with given constraints and

resources.

Chapter 3 Capabilities: The Language of the Architect

51

Category Capability Brief Definition

Reliability Fault Tolerance The ability to handle failures gracefully without causing

systemic breakdowns.

Availability Ensuring the system (or components) remains

accessible and operational within agreed-upon service

levels.

Safety and

Security

Safety Reducing or eliminating harm to users, property, or the

environment under normal or fault conditions.

Security Protecting the system against unauthorized access,

data breaches, and malicious activities.

Privacy Safeguarding personal or sensitive data in compliance

with legal and user expectations.

Auditability The ability to trace and verify actions and changes,

balancing the need for accountability with user privacy.

Chapter 3 Capabilities: The Language of the Architect

53
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_4

CHAPTER 4

Aligning on Vision
and Architectural
Requirements

…the architect is the interface between the business and the technology
team, the architect must understand every aspect of the technology to be
able to represent the team to the business without having to constantly refer
to others. Similarly, the architect must understand the business in order to
drive the team toward their goal of serving the business.

—Richard Monson-Haefel

Architecture does not exist in a vacuum, and we must avoid projecting our own

biases and preferences into this work. As architects, we cannot begin architecture

conversations and planning without first having business conversations; we must

approach architectural requirement analysis deliberately and with rigor. Anything less is

putting the cart before the horse, which many describe as architecture anti-pattern.1

The Cart Before the Horse Anti-Pattern

The “cart before the horse” anti-pattern in software architecture refers to
making architectural decisions without—or before—understanding the
business needs. To avoid this anti-pattern, decisions should be based on
business needs, system characteristics, and constraints.

1 Richards, M. (May 10, 2021). Cart Before the Horse Anti-Pattern. Developer to Architect.
https://www.developertoarchitect.com/lessons/lesson113.html

https://doi.org/10.1007/979-8-8688-0410-6_4#DOI
https://www.developertoarchitect.com/lessons/lesson113.html
https://www.developertoarchitect.com/lessons/lesson113.html

54

It is tempting to believe that simply providing “a lot” of architectural capabilities is an

adequate approach to delivering business value. Too much, perhaps, is better than not

enough. Unfortunately, this often leads to enormous complexity and excessive cost up

front while delivering little net business value. Let us look for a moment at how this type

of thinking can emerge by looking at the respective capabilities of various architecture

component patterns without context.

In their 2020 book,2 Neal Ford and Mark Richards developed an architecture

scorecard star-rating system, where a one-star rating indicates that particular

capability is not well supported in the architecture, while a five-star rating denotes that

characteristic is one of the strongest features in the pattern. The result of their work can

be seen in Figure 4-1.

2 Ford, N., Richards, M. (2020). Fundamentals of Software Architecture: An Engineering Approach.
O’Reilly

Chapter 4 Aligning on Vision and Architectural Requirements

55

Fi
gu

re
 4

-1
. 

Fo
rd

/R
ic

ha
rd

s
A

rc
hi

te
ct

u
re

 P
at

te
rn

 S
co

re
 M

at
ri

x

Chapter 4 Aligning on Vision and Architectural Requirements

56

Reviewing these scores, it would be easy to proclaim microservices a “clear

winner”—after all, it has the most five-star ratings of any of the patterns. In the absence

of specific business requirements, selecting this pattern for its abundance of strong

capabilities would be a meaningful potential hedge, right? As a hedge, never.

The microservices architecture demands enormous technical and organizational

complexity, as well as considerable cost. Consequently, adopting such a pattern must be

a very deliberate decision in response to extremely specific business and system needs

within a very mature development organization.

Assuming that the highest-scoring option must be the “best” option results in

another anti-pattern known as the “Out-of-Context Scorecard Anti-pattern.”3 Anyone

who has ever used an unpleasant piece of enterprise software will have experienced this.

Regrettably, the customers of such software are rarely the users. Committees tasked with

selecting and standardizing upon a piece of software or service will often decide based

on a feature matrix, and whichever option has the most “check marks” will often win out.

Users of the software would decide based on the context of the problems they are trying

to solve, but committees often lack this context. More capabilities do not always equate to

success—they must be the right capabilities.

The Out-of-Context Scorecard Anti-pattern

The “Out-of-Context Scorecard” anti-pattern occurs when architects or developers
use scorecards or other matrices to compare options, like shared services
vs. custom libraries, without considering the specific context of the system.
While scorecards can be helpful for identifying trade-offs, they often lead to
flawed conclusions if the context (such as operational or business needs) is not
considered. The solution is to tailor the evaluation process to the specific needs
and circumstances of the project or architectural decision.

An interesting example of how this anti-pattern manifests can be taken from a system

developed in the 1970s that failed to be successful over lessor competitors in the following

decades. Introduced in 1976, VHS won out over arguably superior alternatives and

remained the dominant media format until the late 1990s, when it was supplanted by DVDs.

3 Richards, M. (Oct 10, 2022). The Out-of-Context Scorecard Antipattern. Developer to Architect.
https://www.developertoarchitect.com/lessons/lesson146.html

Chapter 4 Aligning on Vision and Architectural Requirements

https://www.developertoarchitect.com/lessons/lesson146.html

57

No, not Betamax.

Laserdisc was an optical media format patented in 1968 and brought to market in

1978, just two years after VHS. As Figure 4-2 shows, Laserdisc checked a lot of boxes for

desirable features. Many of the features that made Laserdisc stand out were identical to

those which led to the rise of DVDs decades later.

Figure 4-2.  Capability Comparison of VHS and Laserdisc

By every metric above, Laserdisc was superior. Some still argue this fact should have

led to Laserdisc supplanting VHS the same way DVD did two decades later. It was better,

cheaper, and more capable than either VHS or Betamax. Yet we remember the Betamax

vs. VHS war and not Laserdisc. This is because, at the height of their competition, one

Laserdisc player sold for every 50 VCRs, but why was that?

�Laserdisc Solved the Wrong Problem
Consider the context at the time. Building an at-home library of videos was not yet in the

consumer collective consciousness. In that era, video content was consumed primarily

through broadcast television. This meant that, to watch any given program, a viewer had

to be at home and tuned to the correct channel when the content was broadcast. If the

viewer was away, or someone was already watching a different program on a different

channel, the viewer simply missed out and that was it. Maybe they would get another

chance when the program entered syndication in a year, but they would still need to be

in the exact right place at the right time to view the rebroadcast. The market had spoken;

consumers were primarily interested in time shifting—the ability to record one channel

Chapter 4 Aligning on Vision and Architectural Requirements

58

at a given time for later viewing while they were away or while a different channel was

being watched live. Although the cassettes were relatively expensive, they were highly

reusable. Once a viewer had watched the program they did not want to miss, they were

free to record over that content with a new program. It is right there in the name, Video

Cassette Recorder (VCR). The idea of building a library of video content did not come

until later, and by that time there was a large installed base of VCRs in the world. Despite

its technical advantages, Laserdisc never stood a chance.

�Architecture Must Solve the “Right” Problem
In Chapter 3, various architecture capabilities were defined, but which of these matter—

and in what measure—must be inferred and derived from what the business needs

(which is often distinct from what the business says they want).

Architecture patterns such as microservices currently remain very trendy. A highly

evolved and advanced architecture is certainly something that can confer bragging

rights as well as resume fodder, but if that architecture does not translate to real, tangible

business value, it is moot. This is why architecture decisions must be made, not through

bias or resume-driven design but based on the domain problems that need to be solved.

While an architecture pattern such as microservices solves many problems (e.g., extreme

scalability, elasticity, testability, deployability, agility, etc.), when the business truly only

needs to solve a subset of those problems, the trade-offs are not warranted. Often, when

clients inform me that they “want microservices,” I usually respond that what they really

want is something they believe microservices will provide to them.

To design an architecture that is a better fit, seek to uncover the true needs and

desires (as well as their extent) and design an architecture that does not overengineer

where it is not currently needed.

Another common pitfall that architects sometimes fall prey to is “waiting” for the

business to give them the “nonfunctional” requirements or capabilities of the system.

Given these capabilities form part of the language of the architect and not the language

of the business, the architect will be waiting a long time.

Moreover, even if the business did somehow communicate needs in the language

of architecture, this is not their native tongue, and what the business says and what they

mean will rarely align. This misalignment is exemplified in the earlier case where the

business has expressed interest in adopting microservices when they really want certain

anticipated capabilities.

Chapter 4 Aligning on Vision and Architectural Requirements

59

As the chapters that follow will show, there are many paths to various capabilities,

each with radically different trade-offs. It is the responsibility of the architect to translate

from the language of the business to concrete technical and architectural requirements,

thereby teasing out which capabilities are actually needed.

In short, architecture is not just about building robust or scalable systems or “future-

proofing” our designs—it is about aligning those systems with the business’s core

objectives. Too often, the allure of technical perfection can overshadow the real-world

problems architecture aims to solve. As with VHS vs. Laserdisc and the pitfalls of the

“Out-of-Context Trap,” success does not always go to the technically superior. It goes to

the solution that best addresses the underlying needs. Likewise, an optimal architecture

is one that best addresses the business’s needs and goals; it must solve the “right”

problems. Determining what the “right” problems are often requires both requirement

analysis (below) and objective measurement (Chapter 5).

�The Tailor-Made Requirements Analysis Process
As you have read, architecture is as much about understanding the problem as it is about

devising the solution—“Why is more important than how.” We must ensure that every

architectural decision that is made serves the larger goals of the business and user. Deep

exploration and understanding of the “problem space” is paramount. The Tailor-Made

model offers a foundational analysis framework for arriving at such an understanding

that may be followed, adapted, or expanded as needs dictate.

�Step 1: Preparing for the “Business Conversation”
The foundation of this process begins with exploring the domains of the business,

customers, and users of the system. Identify the typical problems, pain points, and

challenges they face on a daily basis. If available, a high-level business process flow or

data flow diagram is also often useful.

Next, locate documents and decks detailing requirements, vision, existing

contractual requirements or KPIs, as well as available marketing materials. It may

require some search, but such artifacts frequently exist. Although some projects begin

unexpectedly, in order for many planned projects to be greenlit, the business first had to

outline a clear vision and make a compelling case to investors, leadership, customers,

or budget committees. Notably, this will be true whether the project is a greenfield

Chapter 4 Aligning on Vision and Architectural Requirements

60

(brand-new development) or a brownfield (an existing, legacy application that will

undergo modernization). In fact, inferring capabilities is often easier in a brownfield as

there will also exist well-known challenges, key performance indicator (KPI) thresholds

to improve, and objectives and key results (OKR) that can be measured. Although KPIs

will be explored in depth in the following chapter, as a brief heuristic consider KPIs

as akin to goals that a businessperson might use, while OKRs are akin to goals that a

product owner might have.

As you review these artifacts, you may notice they are often vague and laden with

buzzwords. For clarity of your understanding, consider involving a domain expert to

provide context as well as define any terms that have unique domain-specific meanings.

Aim to read each line from multiple perspectives while determining how the ideas

being described bring new value to others. Typically, these perspectives include

•	 The target customer(s)

•	 The user(s)

•	 Business actors

Ultimately, you are creating a mental draft of a vision and understanding of the

project. The first draft is exactly that, a first draft. There will remain knowledge gaps,

misunderstandings, market changes, and implicit assumptions that require correction.

After consuming the available material, write a document articulating your

understanding of the project and its goals. Include open questions, enumerated

assumptions, and identify areas for further exploration. If candidate architectural

capabilities emerge, you should note them here, but the focus at this stage is understanding.

Next, we must aim to validate and align their vision to that of the business.

�Step 2: Identifying Stakeholders
To validate and align your draft vision, key stakeholders must be directly involved in the

process. To this end, stakeholders must first be identified. These will often include the

authors of the documents studied, and these authors may be able to identify who else

should be part of a conversation around the core goals of the project.

Since implementing architecture often requires technical and organizational change,

those able to drive such change will also potentially be key stakeholders. Daniel Tippie, a

seasoned software architect in Colorado and contributing author to this book, points to

five components necessary to effect change in an organization. They are

Chapter 4 Aligning on Vision and Architectural Requirements

61

•	 Authority

•	 Accountability

•	 Responsibility

•	 Knowledge (know-how)

•	 Will

It is exceedingly rare to find an architect (or any single individual) who possesses all

five; however, a good architect knows which they possess and will gather the actors with

the other components.

That said, know-how may also be lacking at this stage—this is okay and is not a

failing. Once the problem is well understood, it will often illuminate the path to know-

how (the important part is to start with the context of the problem to solve).

Authority and responsibility vary within the scope of a project. Executive leadership

or a budget committee may have responsibility over spending and authority for

approvals. Authority to direct development teams toward certain technologies and

practices may be culturally or organizationally under the purview of architecture or may

be the responsibility of a software engineering manager.

For every element missing, you may find an individual, team, or committee that

controls that element. These people form the foundation for a list of key stakeholders.

Without consensus, alignment, and buy-in from them, the effort is likely doomed

to fail. A useful tool for this process is shown in Figure 4-3. Utilize this table for each

discrete problem within the project’s domain. As a tip, pay attention to overly complex

or conjunctive problem statements as these may indicate composite problems that you

must first break down into smaller, constituent problems.

Figure 4-3.  Stakeholder Identification Matrix

Chapter 4 Aligning on Vision and Architectural Requirements

62

Additional stakeholders may be individuals driving the project vision. Part of the

process is to identify these people, along with who communicates the vision, either up

or down the organization. Two common examples are the authors of the documents

mentioned above and the lead product owner(s) who may already be at work translating

the business vision to a road map of effort.

Some parsimony is important in compiling your list of stakeholders. While a broader

hierarchy of stakeholders may be valuable, the meetings and discussions outlined in this

requirements analysis process should be focused only on key stakeholders. For example,

development team leads may possess some authority within the scope of their teams,

but these leads may ultimately operate under the authority of the software engineering

manager. The leads may be stakeholders, but the manager is the key stakeholder.

With this list of key stakeholders, the first discussion should be planned and

scheduled. All key stakeholders should be invited and as many as possible should

attend, or the meeting should be rescheduled to accommodate everyone’s availability.

�Step 3: The First Meeting
Agenda:

•	 Introductions and roles

•	 Align on project vision

•	 Questions and clarifications from architecture

�Introduction and Roles

The goal of the first meeting is to build trust and alignment between architecture and

business while fostering an atmosphere of cooperation and collaboration. To cultivate

such an atmosphere, you will begin by first asking everyone to introduce themselves and

their role/background on the project.

Beyond setting the stage for collaboration, these introductions are often helpful for

both architecture and other participants. Once all other parties have been introduced,

the architect will introduce themselves. Although you are leading this meeting, all who

are present should be able to contribute, and this process sets the stage for ongoing

participation.

Chapter 4 Aligning on Vision and Architectural Requirements

63

It is important to limit everyone’s assumptions. Participants in this meeting may

or may not have worked with an architect before, or they may have differing ideas on

the role of architecture. In light of this inherent uncertainty, it is a good habit to always

explain your goals and role as part of this introduction.

My name is Michael and I’m an architect on this project. We’ve got a clear
backlog of features to deliver, and my job is to think about the best way to
deliver these features to minimize risk and maximize our chance of success.
There is a near-infinite number of ways to write software to deliver features
and I want to ensure that we choose the optimum path for the present and
future of this project.

This quick introduction accomplishes two key aims. First, it clearly outlines the role

of architecture. Second, it reiterates that architecture and business are “on the same

side.” It should be clear that you want what the business actors want. If successful, this

will plant a seed of trust and orient the entire relationship to one of collaboration.

�Align on Project Vision

Following this introduction and framing, you will continue by detailing your business-

level understanding of the project and its aims.

Before we get too far, I want to validate that our vision and understanding
are aligned…

At this stage in the process, you are operating on a first draft understanding which

will almost always be incomplete. This conversation is an opportunity to flesh it out

and address misunderstandings early. As stakeholders weigh in to add depth, color, or

corrections, pause to listen carefully and capture these insights in your notes for further

review and eventual incorporation into subsequent effort.

�Questions and Clarifications from Architecture

After aligning on a shared vision and understanding, the next step is to probe deeper by

exploring what has not yet been said and what remains architecturally ambiguous. We

also seek to validate any identified assumptions on our part. Many of these questions

and identified assumptions will originate from the list produced during step 1 that is

based on your preliminary reading and research, but others may have emerged during

the meeting. Others, still, may originate from your experience or architectural judgment.

Chapter 4 Aligning on Vision and Architectural Requirements

64

For example, business actors will rarely express the importance of testability.

However, you may perceive testability to be a high priority capability due to the

numerous failures of systems within your current or past organization(s) that can be

traced back to a failure to adequately test prior to production deployment. This is one

of many areas where we must be guided by business requirements but exercise good

architectural judgment. This means both validating our assumptions and biases while

guiding the business as much as they are guiding us.

Pay particular attention to things like budget, timeline, and hiring plans. Important

details to account for at this stage are immediate scope and goals; is this project focused

on building a minimum viable product (MVP) or a proof of concept (POC)? What does

the business hope to achieve with the first release (of either the new or “modernized”

system)?

When it comes to identifying architectural requirements that are not stated, it is often

helpful to a list to act as a prompt to identify that which is missing. From experience,

your authors have compiled a checklist of commonly overlooked requirements in these

discussions, shown in Figure 4-4.

Chapter 4 Aligning on Vision and Architectural Requirements

65

Fi
gu

re
 4

-4
. 

E
xa

m
pl

e
R

eq
u

ir
em

en
ts

 C
he

ck
li

st

Chapter 4 Aligning on Vision and Architectural Requirements

66

Fi
gu

re
 4

-4
. 

(c
on

ti
n

u
ed

)

Chapter 4 Aligning on Vision and Architectural Requirements

67

When using the checklist, it can be helpful to know your audience. For a technically

savvy participant in this meeting, you may be able to ask about some of these aspects

directly. For others, it may be better to attempt to tease out some of these details

indirectly, by asking about related pain points or business challenges.

Throughout this entire process, strive to understand each stakeholder’s friction and

pain points. What “keeps them up at night?” Not only is this important in the context of

the initial meeting, but continued exploration of friction and pain points will take place

in many subsequent conversations. These conversations strengthen understanding,

build trust and empathy, and enable better communication of decisions and proposals

to these individuals in meaningful context. These conversations also arm you with the

tools necessary to communicate more persuasively and contextually to stakeholders in

subsequent interactions (i.e., “…and architecture arrived at this particular decision to

make your pain point X go away”).

In addition to pain points, it can be equally important to begin to compile a “not”

list—things the customer, user, and management do not care about. This is often more

important than most people realize.

During this initial conversation and subsequent meetings, you may also pick up

on various biases and idiosyncrasies that stakeholders have which better prepare you

for future meetings and interactions. One example from a past project is the use of the

term “nonfunctional requirements” to describe architectural capabilities. The project

stakeholders were heavily oriented toward functional requirements—what the system

would do—which caused them to immediately “tune out” at the mention of anything

nonfunctional. I quickly adapted my language to refer to “capabilities.” In my case, I not

only adapted my language in the context of that particular project, I continue to use this

terminology to this day.

At this stage, resist the urge to jump into solutioning. This is not yet the time as this

meeting is purely problem focused; here, we are focused on the “why” rather than the

“how.” If potential solutions jump mind, capture these in notes in the moment for future

review and analysis. These potential solutions are often important and typically driven

by a combination of what is being heard and implicit assumptions.

Stakeholders may also begin solutioning at this point. In such a case, it often makes

sense to challenge the assumptions that may have led those things to be defined by the

non-architect because they may be due to buzzword affinity and not practicality.

Chapter 4 Aligning on Vision and Architectural Requirements

68

While solutioning is out of scope for this meeting, these sparks of ideas are often an

opportunity to enumerate and validate assumptions. Ultimately, we should strive to ask

questions centered around the problems being discussed, not any particular solution

being imagined.

The only common exception to the “remain in the problem space” rule is identifying

the boundaries of the solution space. Will this project run in the cloud or on premises (or

both)? Are there restrictions on the use of open source software or libraries? Is there a

target operating budget that architecture must remain within?

In architecture, the future is almost as important as the present. It is critical to

consider solutions in a long-term context. To this end, close by asking the stakeholders

how they imagine this system will look in five and ten years’ time (will it be largely static

or radically different?). Although we do not want to architect for the millionth user

before we have our first, having an idea of the anticipated direction of growth allows

us to design an architecture that fits the present while leaving doors open for future

evolution. Despite Grady Booch’s famous definition of architecture as “the stuff that’s

hard to change,” the Tailor-Made model enables the design of highly evolvable and agile

architectures (which we will explore in depth in Section 2).

As the meeting heads to a conclusion point, list the reading done to date and ask if

there is anything else that should be reviewed. Depending on the scope of the project,

this first meeting can take quite some time. Ensure adequate time is allotted for the

conversation. Also, where possible, take copious notes as there is still much work to do,

and the discussion will help identify what that work should focus on.

�Step 4: Identifying Architecture Capability Requirements
Following this meeting, you will now go back and review your notes and any other

documents line by line and try to tease out architectural capabilities. These capabilities

may be a subset of those defined in Chapter 3, or they may include capabilities from the

broader set of system quality attributes currently defined or yet to be discovered.

Each capability must be directly tied back to pain points, customer needs, or

some statement the business made (either in the meeting from step 3 or in existing

documents). These capabilities need not be in any particular order, but your initial

attempt at prioritization is useful. This candidate ranking of capabilities and relative

priority can be a useful metric to gauge architecture and business alignment. In

subsequent meetings, the business will provide input on the relative importance

Chapter 4 Aligning on Vision and Architectural Requirements

69

of capabilities. If your hypothetical priorities are aligned with the business’ actual

priorities, this is a strong signal that you are in good alignment with the business. If the

priorities do not align, you will receive early feedback on additional implicit assumptions

or underlying divergence in vision. This divergence is bidirectional, and it is equally

probable that the architect might be operating under a faulty assumption or that you see

something the business does not.

With this initial list of capability requirements, you are ready for the next round of

meetings with the key stakeholders.

�Step 5: Qualifying and Quantifying Capabilities
with Stakeholders
Agenda:

•	 Further alignment on business vision

•	 Review architectural requirements

•	 Prioritize “business-critical” system capability needs

Depending on the organizational dynamics and how aligned the key stakeholders

are, this phase of the process may take the form of a single meeting with all key

stakeholders. Alternatively, you may decompose this step into a series of meetings

with one or more stakeholders in each. This alternative approach prevents any single

stakeholder perspective from dominating the conversation. Should you decompose

this step, it is good practice to conclude with a meeting among all stakeholders to

communicate a synopsis of the decisions and conclusions.

�Further Alignment on Business Vision

You will kick off these meetings by restating your understanding of the business vision.

This need not—and should not—be exhaustive; a high-level summary is sufficient,

unless any new questions have emerged since the first meeting described in step 3. This,

once again, sets a collaborative framing for ensuing discussion. This framing is further

strengthened by making a concerted effort to speak to the various participants using

their language and articulating your understanding of the vision.

Chapter 4 Aligning on Vision and Architectural Requirements

70

�Review Architectural Requirements

The next step is to begin to work through the prepared list of candidate architectural

capabilities. While these capabilities might be prioritized from the perspective of

architecture, care must be taken to ensure the conversation is not influenced unduly by

your hypothetical prioritization.

Your first aim is to qualify each capability (i.e., do we truly need this?). For each

capability on the list, verify if that capability needs to be expressed as part of the

architecture requirements or if it can be eliminated from the architectural requirements.

This is not to say a removed capability does not remain a notable nonfunctional

requirement, but maybe it is out of scope of architecture, significantly less important

compared to most others, or addressable elsewhere by hardware or developer guidance.

Some capabilities are business-critical, some are important, some are nice-to-have,

others the business could take-or-leave, the rest can be eliminated.

You also aim to quantify capabilities by determining an upper bound on a capability

requirement. For each qualified capability, you need to determine how much of that

capability is necessary to satisfy the current business needs. When quantifying, the range

“how much” is defined as extremely low, very low, low, below average, average, above

average, high, very high, and extremely high.

Quantification is a crucial process as some capabilities are seen by business actors

as “universally critical” and, if left unquantified, may lead to significant overengineering.

Examples of these are availability, security, and scalability. The question is not whether

these capabilities are important, but instead determining the extent of architecture and

engineering necessary to deliver enough of these capabilities. To objectively determine

enough, ask qualifying business value–focused questions.

For example, when speaking about availability as a yet-unqualified capability, you

probably should not frame the question as “Is high availability important?” as this will

rarely result in a useful answer. Instead, ask questions like “How negatively would the

business be impacted if we experienced six seconds of downtime per week? How about 60

seconds?” and so on, until a target service-level agreement (SLA) is determined. This line

of questioning allows you to both qualify and quantify availability into a percentage of

uptime. As you will see in Figure 4-5, should you determine that a 99% SLA is adequate,

the capability could be scored below average. Alternatively, if a 99.9999% SLA is

necessary, this capability would be quantified as extremely high.

Chapter 4 Aligning on Vision and Architectural Requirements

71

Fi
gu

re
 4

-5
. 

A
va

il
ab

il
it

y
SL

A
 T

ab
le

Chapter 4 Aligning on Vision and Architectural Requirements

72

Around security: “What would the impact of a data breach be to this project and

organization? What are the most important assets?” This helps us determine if security

should be an expressed, focused capability or an implied capability (in other words, is

a baseline of security and best practices enough or are there particularly sensitive data

assets that must be secured beyond best practices?).

Around scalability: “How many users (both total and concurrent) do we expect

the system to support at launch, in a year, five years, and ten years? Do we have an

anticipated rate of growth?”

As you ask further qualifying questions, record in your notes who answered each.

When you document the resulting architectural decisions, these ensure each decision is

backed by solid source citations. Then, when you communicate these decisions to the

rest of the organization, they have organizational “weight.”

�Prioritize Business-Critical Capabilities

When you have a list of qualified and quantified architectural capabilities, you must

finally work to prioritize them. While it can be tempting to seek to prioritize every

qualified capability in the context of this meeting, this often results in the participants

going in endless circles as different stakeholders will inevitably disagree on some of the

minutia. The target of this phase of the meeting is to build consensus on what is business-

critical.

The upper bound of business-critical capabilities is four. If more than four business-

critical capabilities are identified, we must guide the stakeholders through a process

of determining relative ranking of each. Not every capability can be business-critical.

If everything is high priority, ipso facto everything is low priority; when everything

becomes of equal importance, there is no basis for choosing what to do first or last or

where to apply architectural trade-offs.

Crucial to the success of this process is leadership. Deadlocks may occur that must

be resolved, and biases and fears will creep in that can derail constructing an accurate

set of capabilities. Even when focusing only on what is business-critical, different

business actors bring different perspectives and priorities. There are tools, such as the

weighted decision matrix described in Chapter 26, which allow you to quantify the

options and can help resolve conflicts amicably.

By the conclusion of this meeting, you and your architecture team will possess a

qualified, quantified, and partially prioritized list of target capabilities, each linked to

some written requirement or in-meeting discussion with named stakeholders.

Chapter 4 Aligning on Vision and Architectural Requirements

73

�Step 6: Documenting and Scoring Capabilities
Following the meeting in step 5, you will now begin formally documenting these

capabilities and their score using the workbook and templates available at

https://MasteringSoftwareArchitecture.com.

Documenting these capabilities begins by enumerating each constraint, its target

quantity, trade-offs, and driving motivations. This will later inform the creation of an

architectural style document. Although Chapter 24 describes this artifact (and other

supporting artifacts) in detail, an architectural style document first outlines a summary

of the vision and then identifies the business-critical capabilities the system must

exhibit to enable that vision while linking to individual architectural decisions and

supporting constraints. Your notes in this process are instrumental in providing context.

Consequently, whenever you are documenting the architecture or its constituent

decisions, quote and link sources wherever possible.

Scoring these capabilities takes place in the Tailor-Made Workbook. Within this

workbook, the architect will list target capabilities and begin to assign scores to each

capability on a nonlinear scale of –5 to 5 with each step broken into quarters.

Qualified Capability Score

Extremely Low –4 to –5

Very Low –3 to –3.75

Low –2 to –2.75

Below Average –1 to –1.75

Average –0.75 to 0.75

Above Average 1 to 1.75

High 2 to 2.75

Very High 3 to 3.75

Extremely High 4 to 5

It must be understood that these scores are absolute. The scores introduced by

Ford/Richards (Figure 4-1) indicate, in a relative sense, how well a given architectural

capability is supported within an architecture. A common mistake made by architects

is conflating the business importance of a given capability with the strength of support

Chapter 4 Aligning on Vision and Architectural Requirements

https://MasteringSoftwareArchitecture.com

74

a candidate architecture is purported to offer. In other words, a score of 5 does not

represent the relative importance of a capability, but rather the maximum extent

possible this capability can exist in a system. Consider the capability of scalability.

A score of 5 represents Netflix, Google, or Amazon levels of scalability. While many

projects and applications may deem scalability to be business-critical, defining scalability

by its maximum possible value (5) and deriving an architectural style targeting that value

will often result in an overengineered and overly complex architecture with scalability

capabilities far too high for most applications. A prototype tool for capturing these scores

to evaluate candidate architectural styles is shown in Figure 4-6.

Figure 4-6.  The Tailor-Made Architecture Workbook

Notably, this scale places a large theoretical upper bound on the total number of

architecture capability requirements, although the practical limit is closer to ten.4

Provided the key capabilities are quantified, it should be clear from the meeting in

step 5 how to score the business-critical capabilities. There can—and should—be gaps

between the scores of the half-dozen or so that remain.

4 Carducci, M. (2023), Tailor-Made Architecture Workbook,
https://masteringsoftwarearchitecture.com

Chapter 4 Aligning on Vision and Architectural Requirements

https://masteringsoftwarearchitecture.com

75

Although the ranking of the remaining capabilities did not take place in the meeting,

you should possess a good, shared vision and a reasonable understanding of the

problem space, the needs of the customer, and the goals of the project. As such, you

should review the remaining capabilities and attempt to prioritize and score them.

While completing this exercise, remain cognizant of the answers received about the

business’s vision and expectations for the future. Architecture is not just about V1.0 or

V10.0 (and, of course, there must be a V1.0 before there can be a V10.0). The rankings

produced by the architect are not set in stone. This is simply another tool to strengthen

understanding and evaluate what exists with an eye toward the future.

In subsequent conversations, we should verify our rankings of important, notable,

and nice-to-have capabilities. It can be more efficient and productive to introduce

these in pairs rather than present the entire list to the business. The entire list can

be potentially overwhelming (and lead to relitigating previous discussions and

agreements). The goal is simply to gauge relative importance for capabilities that are not

identified as business-critical.

Once this process is completed, you may choose to communicate the results of your

analysis. It is important that all relevant parties feel they have been heard, even if not

every decision went the way they may have hoped. Transparency is key in building and

maintaining trust and an atmosphere of collaboration.

�Summary
At the conclusion of this process, architecture is no longer in a vacuum. Business needs

are understood, vision is shared, and architecture has clear requirements to begin the

design process. Along with the critical capabilities, the broader perspective provided by

the scoring process reduces risk and assists architecture in solving the right problems

and creating a highly tailored architecture that fits. This tailored “fit” is the result of the

Tailor-Made Architecture Model’s capability for fine-grained control of architectural

capabilities. The business-critical capabilities may drive major architectural decisions,

but the important, notable, and nice-to-have will illuminate additional decisions in the

design process. Consequently, each score becomes a target, and it is often possible to get

remarkably close to each of those targets. It is simple, but it is not easy.

Chapter 4 Aligning on Vision and Architectural Requirements

77
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_5

CHAPTER 5

KPIs, Metrics, and
Data-Driven Architecture
Decisions

Without Data, you’re just another person with an opinion.

—W. Edwards Deming

In Chapter 4, we introduced the Tailor-Made Requirements Analysis Process. Although

there is much that can be learned from the research, analysis, and discussions outlined

in that chapter, quantifying capabilities (i.e., how much is enough) as well as identifying

unspoken nonfunctional requirements often remains challenging. Furthermore, as you

will see in Section 3, metrics are helpful for improving the overall observability of your

design. Metrics provide important tools for monitoring and evolving your architecture

over time as the variables driving design decisions inevitably change, and the system’s

needs evolve. Consequently, business metrics often become extremely valuable for you

as an architect.

Unlike the well-structured Tailor-Made Analysis Process, navigating business metrics

often requires a more contextual approach. In this chapter, we will introduce various

metrics, show how they might apply in various business contexts, and illustrate how we

may utilize these to improve the design and evolution of the systems you will create.

https://doi.org/10.1007/979-8-8688-0410-6_5#DOI

78

�What Is a KPI?
Key performance indicators, also known as KPIs, are quantifiable ways to gauge a

company or project’s performance for the business actors. Businesspeople view KPIs as a

means of measuring and tuning their business and products because KPIs often identify

strengths and weaknesses in both. Businesses also use KPIs to decide what should and

should not be funded. Management might also use them to justify the projects to the

various entities and stakeholders. Since a central concern of architecture is connecting

technology strategy with business strategy, KPIs provide us with valuable data to drive

and justify architectural decisions.

�Good and Bad KPIs
Good KPIs will have several aspects that make them useful to collect. They will

•	 Quantitatively measure something in a more objective way

•	 Have a goal established by the leadership of the organization

•	 Have a data source where the KPI data may be collected consistently

(preferably automatically)

•	 Be consistently collected at the same frequency (i.e., time interval or

event frequency)

•	 Have a single individual responsible for collecting and reporting the

KPI data regularly (there should be a backup assigned for when that

individual is unavailable)

•	 Communicate how your business is succeeding or can improve

Unhealthy or bad KPIs will have one or more of the following traits:

•	 KPIs that are unclear on how they help the organization

•	 KPIs with difficult data collection mechanisms

•	 KPIs with thresholds that are not attainable without heavy reliance

on external actors (e.g., not on your immediate team)

•	 KPIs that have no threshold indicating success or failure

•	 KPIs that are overly rigid such that collection frequency cannot be

adjusted as business needs evolve

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

79

Each KPI offers a sliver of information which could be viewed as a facet of a diamond

that provides a different perspective on the performance of the business. No single KPI
should be viewed in isolation, or it will likely be abused which leads to unhealthy
outcomes for the business. Consequently, your analysis of KPIs must also account for

the various ways a single KPI can be “gamed.”

When a metric becomes a target, it ceases to be a good metric.

—Charles Goodhart

LoC—A Terrible Metric for Developer Productivity

Some years ago, I was working for a company that sought to measure productivity.
For many in the organization, there were reasonable metrics that could be
collected; however, the business struggled with measuring developer productivity.
Eventually, they settled on lines of code (LoC) as a suitable metric.

First, we in the development team were tasked with implementing this metric.
Since some files used carriage returns for line endings and others used line feeds,
we naturally counted each. Additionally, file minification skewed our metrics so we
also counted semicolons. In most cases, each line was counted three times.

As the codebase evolved, optimization and refactoring would frequently reduce the
LoC count which would negatively skew our metrics. The entire development team
quickly adopted the convention of never deleting code. Instead, dead code was
simply wrapped with

if(false) {
...
}

Although we found the local maxima for the metric, our codebase suffered
immensely which adversely affected our long-term productivity. The moral of the
story is, as Charles Goodhart famously said, when a metric becomes a target, it
ceases to be a good metric.

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

80

As is often the case in architecture, there are typically many competing

considerations and drivers. With this reality in mind, it is important to identify

approximately five (plus-or-minus two) KPIs which are the most important to the part

of the organization with which you are working. You may be producing artifacts for,

reporting on, and designing based on a couple dozen KPIs but only reporting a selected

handful to any single department as the system progresses.

There are a couple of mechanisms to evaluate how well defined a KPI is. First,

by using the same criteria used for metrics as defined in Beyond Requirements1—

“Comparative,” “Understandable,” “Is a Ratio or Rate,” and “Changes Behavior”—we

can eliminate the temptation to add fuzzy or subjective metrics. Second, by using a

subset of the criteria used for requirements as defined in NASA Systems Engineering

Handbook2—“Clarity,” “Completeness,” “Compliance,” “Consistency,” “Traceability,” and

“Correctness”—the KPI will provide additional informational value and not just be a low-

value data input for the user that requires additional knowledge to evaluate its meaning.

�What Motivates Organizations to Use KPIs?
Organizations have often realized that they needed information about their own

products, processes, and people to make business decisions whether they were the

producer or the consumer of the software products being measured. A great example

is described in the book Software Metrics: Establishing a Company-Wide Program.3

Hewlett-Packard invested significant resources to put together a “Software Metrics

Council” and give the council the resources and the authority to specify what should be

measured, how the data could be collected, and why it should be collected. The effort led

to improved transparency, and the organization was influenced by both the process and

the resulting metrics that were collected.

Another book that provides great insights into both the risks and potential benefits

of applying metrics to software development is The Mythical Man Month.4 The book

describes lessons learned from development efforts at IBM via a series of essays. If you

1 McDonald, K. (2016). Beyond requirements: Analysis with an agile mindset. Addison-Wesley
2 Hershorn, S. NASA systems engineering handbook (SP-2016-6105 Rev2). NASA, 2016
3 Grady R., Caswell, D. Software metrics: Establishing a company-wide program. Prentice
Hall, 1987
4 Brooks, F. The Mythical Man Month. Addison-Wesley, 1975, 1995

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

81

look at both the essay Progress Tracking and the essay Communication, the spirit of KPIs

is present, even though the terminology had not yet been coined.

It is important to note that both books were the product of their era. Many

developers today might consider them the deep past with metrics they might view

as quaint, naive, or invasive. In both cases, the use of KPIs was motivated by a set of

common organizational desires:

•	 To connect product development to the organization’s success

•	 To detect and diagnose development issues as early as possible

•	 To make early, inexpensive changes rather than experience late,

expensive changes or outright failure

There should be benefits that motivate the collection of the KPIs for the organization:

•	 Defining thresholds for taking business action

•	 Providing clear indications of how things are proceeding

•	 Providing a common understanding of what victory looks like to

everyone in the organization

It is important to do things right. It is equally important to do the right
things. We can be the best developers that money and technology allow, but
if we are not meeting market demand, there is little hope for our survival as
a business. We must be strategically aligned with the business objectives.

—Measuring the Software Process5

�Evaluating KPIs in Relation to Architecture
Each KPI represents one or more requirements that will impact—or be impacted by—

your project. Accounting for them can significantly influence the perception of your

project and the success of your product by your own organization, customers, and users.

If you keep the KPIs in mind as you design your architecture, you may be able to

identify services, tools, or artifacts that will help you report KPI findings to the business

leadership, customer, and user. Each product is a revenue stream for the business, and

5 Garmus, D., Herron, D. (1996). Measuring the Software Process. Yourdon

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

82

your management will view it that way. Most engineers and architects have a hard time

seeing how their work impacts the business or the customer, and they benefit from

knowing that their work is making a difference.

Some service calls or application actions may be able to log metrics automatically in

a way that can help your organization consistently collect the KPIs. For example, tools

like Jenkins, GitLab, Sonargraph, ArchUnit, and SonarQube could automatically notify

a user and/or log when some action has completed. This can be useful as an automated

mechanism for collecting data, but it is important to account for situations where

someone performs an undo. In those cases, the undo should not count or be subtracted

from the count following the undone action.

When possible, automatic collection is ideal because it will provide an unbiased and

low-cost mechanism for data collection. Moreover, automatic KPI collection enables

continuous collection which enables you to surface negative trends earlier.

Not all KPIs will need input from a software architect. There are business-level KPIs

that have more to do with the performance of departments like marketing or sales,

and there is not much that you, as the architect, can influence. Conversely, some KPIs

provide an opportunity for you to better tie your efforts to business goals.

Some architectures will lend themselves to better alignment with your organization’s

business model than others. For example, if your business favors ongoing small

payments over large single payout license sales, then a SaaS solution will be more

successful than a shrink wrap monolith application.

As shown in the table below, we have broken down the KPIs into several business

units: sales, marketing, finance, business management, and revenue stream. We have

listed 23 sales KPIs, 34 marketing KPIs, 22 financial KPIs, 26 business management

KPIs, and 121 revenue stream/product KPIs. Although this list is not comprehensive, it

is a good starting point. To remain brief, later in this chapter, each section will have one

or two examples of KPIs for different business units that you might directly influence

through your work.

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

83

(c
on

ti
n

u
ed

)

Sa
le

s
M

ar
ke

tin
g

Fi
na

nc
ia

l
Bu

si
ne

ss

M
an

ag
em

en
t

Pr
od

uc
t/

Re
ve

nu
e

St
re

am

•	
M

ar
ke

t s
ha

re

•	
M

on
th

ly

sa
le

s
gr

ow
th

•	
M

on
th

ly
 s

al
es

/n
ew

cu
st

om
er

s

•	
M

on
th

ly
 n

ew

le
ad

s/
pr

os
pe

ct
s

•	
Nu

m
be

r o
f

qu
al

ifi
ed

 le
ad

s

•	
Ne

w
 b

us
in

es
s

se
rv

ic
e

en
ab

le
m

en
t

•	
Re

so
ur

ce
s

sp
en

t o
n

si
ng

le

no
np

ay
in

g

cu
st

om
er

•	
Re

so
ur

ce
s

sp
en

t

on
 s

in
gl

e
pa

yi
ng

cu
st

om
er

•	
Cu

st
om

er
 li

fe
tim

e

va
lu

e/
cu

st
om

er

pr
of

ita
bi

lit
y

•	
Le

ad
-t

o-
sa

le

co
nv

er
si

on
 ra

te

•	
M

on
th

ly
 n

ew
 le

ad
s/

pr
os

pe
ct

s

•	
Qu

al
ifi

ed
 le

ad
s

pe
r m

on
th

•	
Pr

os
pe

ct
 to

 Q
ua

lif
ie

d

Le
ad

 c
on

ve
rs

io
n

ra
te

•	
To

ta
l A

ct
iv

e

M
ar

ke
tin

g
Qu

al
ifi

ed

Le
ad

s
(M

QL
)

•	
Sa

le
s-

Ac
ce

pt
ed

Le
ad

s
(SA

L
)

•	
Sa

le
s

Qu
al

ifi
ed

Le
ad

s
(S

QL
)

•	
Co

st
 p

er
 le

ad

ge
ne

ra
te

d

•	
Ne

t p
ro

m
ot

er
 s

co
re

•	
Co

st
 p

er
 c

on
ve

rs
io

n

•	
Co

st
 p

er
 c

on
ve

rs
io

n

by
 c

ha
nn

el

•	
Ne

t P
ro

fit
 M

ar
gi

n

•	
Op

er
at

in
g

Ca
sh

Fl
ow

 (O
CF

)

•	
Ne

t P
ro

fit
 M

ar
gi

n

•	
W

or
ki

ng
 C

ap
ita

l

•	
Cu

rr
en

t A
cc

ou
nt

s

Re
ce

iv
ab

le

•	
Cu

rr
en

t

Ac
co

un
ts

 P
ay

ab
le

•	
Ac

co
un

ts
 P

ay
ab

le

Tu
rn

ov
er

•	
Ac

co
un

ts

Re
ce

iv
ab

le

Tu
rn

ov
er

•	
Ac

co
un

ts
 P

ay
ab

le

Pr
oc

es
si

ng
 C

os
t

•	
Ac

co
un

ts

Re
ce

iv
ab

le

Tu
rn

ov
er

•	
Bu

dg
et

 V
ar

ia
nc

e

•	
Bu

dg
et

 C
re

at
in

g

Cy
cl

e
Ti

m
e

•	
Pl

an
ne

d
va

lu
e

(PV
)

•	
Ac

tu
al

 c
os

t (
AC

)

•	
Ea

rn
ed

 v
al

ue
 (EV

)

•	
Co

st
 v

ar
ia

nc
e

(C
V)

(p
la

nn
ed

 b
ud

ge
t v

s.

ac
tu

al
 b

ud
ge

t)

•	
Sc

he
du

le

va
ria

nc
e

(SV
)

•	
Sc

he
du

le

pe
rfo

rm
an

ce

in
de

x
(SP

I
)

•	
Co

st
 p

er
fo

rm
an

ce

in
de

x
(C

PI
)

•	
Pl

an
ne

d
ho

ur
s

of

w
or

k
vs

. a
ct

ua
l

•	
Cu

rr
en

tly
 o

ve
rd

ue

pr
oj

ec
t t

as
ks

•	
Le

ad
 T

im
e

•	
Ep

ic
s/

Fe
at

ur
es

De
liv

er
ed

•	
Re

le
as

e
Ca

de
nc

e

•	
Cu

st
om

er
/U

se
r

Sa
tis

fa
ct

io
n

•	
Re

sp
on

se
 T

im
e

•	
M

et
 o

bj
ec

tiv
es

 s
et

 b
y

cu
st

om
er

s

•	
Cu

st
om

er

Ti
ck

et
 V

ol
um

e

•	
In

ci
de

nt
s

•	
Te

ch
ni

ca
l D

eb
t

•	
Pr

od
uc

tio
n

Su
pp

or
t

•	
Av

ai
la

bi
lit

y/
Up

tim
e

•	
De

fe
ct

 E
sc

ap
e

Ra
te

•	
De

fe
ct

 V
ol

um
e

•	
M

at
ur

ity
 (c

od
e

co
m

m
itt

ed
 +

 C
od

e

vo
la

til
ity

)

•	
Do

cu
m

en
ta

tio
n

Co
ve

ra
ge

•	
Ap

pl
ic

at
io

n

Pe
rfo

rm
an

ce

•	
M

ea
n

Ti
m

e
to

Re
co

ve
r (

M
TTR

)

•	
M

od
e

Ti
m

e
to

Re
co

ve
r (

M
TTR

)

•	
Be

st
 T

im
e

to

Re
co

ve
r (

BTTR

)

•	
W

or
st

 T
im

e
to

Re
co

ve
r (

W
TTR

)

•	
M

ea
n

Ti
m

e
to

Ac
kn

ow
le

dg
e/

Ac
ce

pt
 (M

TTA
)

•	
M

od
e

Ti
m

e
to

Ac
kn

ow
le

dg
e/

Ac
ce

pt
 (M

TTA
)

•	
Be

st
 T

im
e

to

Ac
kn

ow
le

dg
e/

Ac
ce

pt
 (B

TTA
)

•	
W

or
st

 T
im

e
to

Ac
kn

ow
le

dg
e/

Ac
ce

pt
 (W

TTA
)

•	
M

ea
n

Ti
m

e
to

Im
pl

em
en

t a
nd

De
pl

oy
 (M

TI
D)

•	
M

ea
n

Ti
m

e
to

Te
st

 (M
TTT

)

•	
M

od
e

Ti
m

e
to

Te
st

 (M
TTT

)

•	
Be

st
 T

im
e

to

Te
st

 (B
TTT

)

•	
W

or
st

 T
im

e
to

Te
st

 (W
TTT

)

•	
M

ea
n

Ti
m

e
to

De
liv

er
 (M

TTD
)

•	
M

od
e

Ti
m

e
to

De
liv

er
 (M

TTD
)

•	
Be

st
 T

im
e

to

De
liv

er
 (B

TTD
)

•	
W

or
st

 T
im

e
to

De
liv

er
 (W

TTD
)

•	
M

ea
n

Ti
m

e
to

 V
er

ify
/

Va
lid

at
e

(M
TTV

)

•	
M

od
e

Ti
m

e
to

 V
er

ify
/

Va
lid

at
e

(M
TTV

)

•	
Be

st
 T

im
e

to
 V

er
ify

/

Va
lid

at
e

(B
TTV

)

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

84

Sa
le

s
M

ar
ke

tin
g

Fi
na

nc
ia

l
Bu

si
ne

ss

M
an

ag
em

en
t

Pr
od

uc
t/

Re
ve

nu
e

St
re

am

•	
Co

st
 p

er
 le

ad
 b

y

ea
ch

 p
ro

du
ct

•	
Co

st
 o

f a
 n

ew

cu
st

om
er

 b
y

ea
ch

 c
ha

nn
el

•	
Ho

ur
ly,

 d
ai

ly,

w
ee

kl
y,

m
on

th
ly,

qu
ar

te
rly

, a
nd

an
nu

al
 s

al
es

•	
Av

er
ag

e

co
nv

er
si

on
 ti

m
e

•	
Cu

st
om

er

tu
rn

ov
er

 ra
te

•	
Nu

m
be

r o
f m

on
th

ly

sa
le

s
de

m
os

•	
Cu

st
om

er

en
ga

ge
m

en
t l

ev
el

•	
Nu

m
be

r o
f

m
on

th
ly

qu
ot

es
/o

rd
er

s

•	
Av

er
ag

e
m

on
th

ly
/

qu
ar

te
rly

/a
nn

ua
l

sa
le

s
vo

lu
m

e
pe

r

cu
st

om
er

•	
Av

er
ag

e
tim

e
of

co
nv

er
si

on

•	
Re

te
nt

io
n

ra
te

•	
At

tri
tio

n
ra

te

•	
Tr

af
fic

 (f
oo

t,
w

eb
,

ca
lls

, e
tc

.)

•	
Re

tu
rn

in
g

vs
. n

ew

vi
si

to
rs

•	
Vi

si
ts

 p
er

 p
ro

du
ct

•	
Av

er
ag

e
tim

e
of

cu
st

om
er

 to
 b

us
in

es
s

ex
po

su
re

•	
Av

er
ag

e
tim

e

on
 p

ag
e

or
 in

ap
pl

ic
at

io
n

•	
Cl

ic
k-

th
ro

ug
h

ra
te

 o
n

w
eb

 p
ag

es

•	
Pa

ge
s

pe
r v

is
it

•	
Co

nv
er

si
on

 ra
te

 fo
r

ca
ll-

to
-a

ct
io

n
co

nt
en

t•	
Li

ne
 It

em
s

in

th
e

Bu
dg

et

•	
Pa

yr
ol

l

he
ad

co
un

t r
at

io

•	
Ve

nd
or

 E
xp

en
se

s

•	
Pa

ym
en

t

Er
ro

r R
at

e

•	
In

te
rn

al
 A

ud
it

Cy
cl

e
Ti

m
e

•	
De

bt
 to

Eq
ui

ty
 R

at
io

•	
Re

tu
rn

 o
n

Eq
ui

ty

•	
Co

st
 o

f M
an

ag
in

g

Bu
si

ne
ss

•	
Re

so
ur

ce

Ut
ili

za
tio

n

•	
To

ta
l c

os
t

of
 fi

na
nc

ia
l

bu
si

ne
ss

 u
ni

t

•	
Cr

os
se

d/
m

is
se

d

de
ad

lin
es

•	
%

 o
f o

ve
rd

ue

pr
oj

ec
t t

as
ks

•	
Pe

rc
en

ta
ge

of
 p

ro
je

ct
s

co
m

pl
et

ed
 o

n
tim

e

•	
Pe

rc
en

ta
ge

 o
f

ca
nc

el
ed

 p
ro

je
ct

s

•	
M

is
se

d
m

ile
st

on
es

•	
Nu

m
be

r o
f b

ud
ge

t

ite
ra

tio
ns

•	
Pe

rc
en

ta
ge

 o
f t

as
ks

co
m

pl
et

ed

•	
Pe

rc
en

ta
ge

 o
f

pr
oj

ec
ts

 o
n

bu
dg

et

•	
Pr

oj
ec

t r
es

ou
rc

e

ut
ili

za
tio

n

•	
Te

st
 C

ov
er

ag
e

•	
Au

to
m

at
ed

 T
es

t P
as

s

Pe
rc

en
ta

ge

•	
M

er
ge

 R
eq

ue
st

/P
ee

r

Re
vi

ew
 L

ag

•	
Co

de
 V

ol
at

ili
ty

•	
Co

de
 C

om
pl

ex
ity

•	
M

ea
n

Ti
m

e
to

Fa
ilu

re
 (M

TT
F)

•	
M

od
e

Ti
m

e
to

Fa
ilu

re
 (M

TT
F)

•	
Be

st
 T

im
e

to

Fa
ilu

re
 (B

TT
F)

•	
W

or
st

 T
im

e
to

Fa
ilu

re
 (W

TT
F)

•	
M

ea
n

Ti
m

e
Be

tw
ee

n

Fa
ilu

re
 (M

TB
F)

•	
M

od
e

Ti
m

e
Be

tw
ee

n

Fa
ilu

re
 (M

TB
F)

•	
M

od
e

Ti
m

e
to

Im
pl

em
en

t a
nd

De
pl

oy
 (M

TI
D)

•	
Be

st
 T

im
e

to

Im
pl

em
en

t a
nd

De
pl

oy
 (B

TI
D)

•	
W

or
st

 T
im

e
to

Im
pl

em
en

t a
nd

De
pl

oy
 (W

TI
D)

•	
M

ea
n

Ti
m

e

to
 D

et
ec

t a
nd

Co
m

m
un

ic
at

e

(M
TTD

&
C)

•	
M

od
e

Ti
m

e

to
 D

et
ec

t a
nd

Co
m

m
un

ic
at

e

(M
TTD

&
C)

•	
Be

st
 T

im
e

to

De
te

ct
 a

nd

Co
m

m
un

ic
at

e

(B
TTD

&
C)

•	
W

or
st

 T
im

e
to

 V
er

ify
/

Va
lid

at
e

(W
TTV

)

•	
Co

st
 p

er
 T

ra
ns

ac
tio

n

•	
Co

st
 p

er

Ch
an

ge
 R

eq
ue

st

•	
Co

st
 p

er
 R

el
ea

se

(D
ep

lo
ym

en
t T

im
e

+

Re
so

ur
ce

 C
os

t)

•	
De

pl
oy

m
en

t

Fr
eq

ue
nc

y

•	
De

pl
oy

m
en

t

Fa
ilu

re
 R

at
e

•	
Le

ad
 T

im
e

(C
om

m
itt

ed
 c

od
e
➤

Re
le

as
e)

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

85

(c
on

ti
n

u
ed

)

•	
Av

er
ag

e
m

on
th

ly

sa
le

s
vo

lu
m

e
pe

r

cu
st

om
er

•	
Re

la
tiv

e

m
ar

ke
t s

ha
re

•	
Pr

od
uc

t/s
er

vi
ce

us
ag

e
ev

er
y

da
y

•	
Pe

rc
en

ta
ge

 o
f t

ot
al

sa
le

s
fro

m
 e

xi
st

in
g

cu
st

om
er

s

•	
In

bo
un

d
lin

ks

to
 w

eb
si

te

•	
Tr

af
fic

 fr
om

or
ga

ni
c

se
ar

ch

•	
Ne

w
 le

ad
s

fro
m

or
ga

ni
c

se
ar

ch

•	
Nu

m
be

r o
f u

ni
qu

e

ke
yw

or
ds

 th
at

dr
iv

e
tra

ffi
c

•	
Ke

yw
or

ds
 in

to
p

10
 SERP

•	
Ra

nk
 in

cr
ea

se
 o

f

ta
rg

et
 k

ey
w

or
ds

•	
Co

nv
er

si
on

 ra
te

pe
r k

ey
w

or
d

•	
Go

og
le

 P
ag

eR
an

k

•	
Tr

af
fic

 fr
om

so
ci

al
 m

ed
ia

•	
Le

ad
s

an
d

co
nv

er
si

on
s

fro
m

pa
id

 a
dv

er
tis

in
g

•	
Ov

er
he

ad
 (c

os
t

of
 m

an
ag

in
g

pr
oc

es
se

s)

•	
Re

tu
rn

 o
n

in
ve

st
m

en
t

(RO
I

)

•	
Em

pl
oy

ee
 re

te
nt

io
n

•	
M

ot
iv

at
io

n

m
or

al
e

•	
Re

sp
on

si
ve

ne
ss

to
 c

ha
ng

e

•	
Sk

ill
s

gr
ow

th

•	
Cr

os
s-

te
am

co
lla

bo
ra

tio
n

•	
In

te
rn

al
-t

ea
m

co
lla

bo
ra

tio
n

•	
Be

st
 T

im
e

Be
tw

ee
n

Fa
ilu

re
 (B

TB
F)

•	
W

or
st

 T
im

e
Be

tw
ee

n

Fa
ilu

re
 (W

TB
F)

•	
M

ea
n

Ti
m

e
to

 R
es

to
re

Se
rv

ic
e

(M
TRS

)

•	
M

od
e

Ti
m

e
to

 R
es

to
re

Se
rv

ic
e

(M
TRS

)

•	
Be

st
 T

im
e

to
 R

es
to

re

Se
rv

ic
e

(B
TRS

)

•	
W

or
st

 T
im

e
to

 R
es

to
re

Se
rv

ic
e

(W
TRS

)

•	
W

or
st

 T
im

e

to
 D

et
ec

t a
nd

Co
m

m
un

ic
at

e

(W
TTD

&
C)

•	
Fo

un
d

to
 P

la
nn

ed

W
or

k
(F

TP
W

)

•	
M

ea
n

Ti
m

e
to

Di
ag

no
se

 (M
TTD

)

•	
M

od
e

Ti
m

e
to

Di
ag

no
se

 (M
TTD

)

•	
Be

st
 T

im
e

to

Di
ag

no
se

 (B
TTD

)

•	
W

or
st

 T
im

e
to

Di
ag

no
se

 (Q
TTD

)

•	
M

ea
n

Ti
m

e
to

Im
pl

em
en

t (
M

TT
I)

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

86

•	
Co

st
 p

er

ac
qu

is
iti

on
 (C

PA
)

•	
Co

st
 p

er

co
nv

er
si

on
 (C

PC
)

•	
Nu

m
be

r o
f

co
nv

er
si

on
s

fro
m

so
ci

al
 m

ed
ia

•	
Pe

rc
en

ta
ge

 o
f

co
nv

er
si

on
 fo

r s
oc

ia
l

m
ed

ia
 le

ad
s

•	
M

od
e

Ti
m

e
to

Im
pl

em
en

t

(M
TT

I)

•	
Be

st
 T

im
e

to

Im
pl

em
en

t

(B
TT

I)

•	
W

or
st

 T
im

e
to

Im
pl

em
en

t

(W
TT

I)

Sa
le

s
M

ar
ke

tin
g

Fi
na

nc
ia

l
Bu

si
ne

ss

M
an

ag
em

en
t

Pr
od

uc
t/

Re
ve

nu
e

St
re

am
Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

87

�Identifying Requirements from KPIs
Most organizations already have KPIs, whether they call them KPIs or not. You may be

able to just ask for the KPIs for each department or pay attention during staff meetings

and take note of what the organization measures to evaluate success.

If the organization does not have any explicit KPIs, then you may be able to provide

the KPIs of your choosing when you present status for your project. This will help to

show management or the customer how your project is benefiting them. Remember, it

is important to show the KPIs that are relevant to the parties to whom you present. We

recommend those be restricted to only the KPIs that are relevant and permitted to be

presented to those parties.

Once you identify the KPIs relevant to the various parties, your focus should shift to

determining the best way to collect the related raw data. Automating the collection and

processing of data will be useful in ensuring that the KPIs are available for reporting. This

will also minimize the cost and effort of subsequent report generation.

Some KPIs may not have a direct tie to application or system architecture, but

you may, regardless, be the ideal person to provide materials and/or assist the

organization with those KPIs. Although not directly KPIs, providing artifacts that reflect

KPIs such as feature internal comparison table (Figure 5-1) and external comparison

tables (Figure 5-2), product descriptions and selling points (for brochures, websites,

advertising materials, or RFIs/RFQs/RFPs) (Figure 5-3), or product bill of materials (list

of subcomponents used) (Figure 5-4) is frequently valuable. All of these will be helpful

in engendering further alignment between the architect and organization. Additionally,

these artifacts can help the marketing team be more of an “inbound marketing”–

focused team (focused on high-fit customers) rather than trying to just be a general

marketing team.

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

88

Product E

 Feature A Feature B Feature C Feature D Feature E

Product A

Product B

Product C

Product D

Figure 5-1.  Example Product Comparison Table

Product A

Feature A Feature B Feature C Feature D Feature E

Version 2.1.6

Version 3.4.5

Version 4.3.3

Version 5.5.2

Version 6.7.2

Figure 5-2.  Example Version Comparison Table

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

89

Figure 5-3.  Example Trifold Brochure

Figure 5-4.  Example Bill of Materials

�Connecting Architecture Capabilities to KPIs
Identifying which architectural aspects can be associated with a particular KPI is

challenging. This is especially true when an architect has biases toward particular

architectural patterns. To provide some examples, the following sections illustrate

multiple KPI-to-architectural aspect mappings.

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

90

�KPIs by Department
As a concrete example, we will define a hypothetical company that provides a product

that comes in two licensed versions: a “community” edition that is free to use but limited

in functionality and a “professional” edition that includes additional features for a

monthly fee (e.g., the professional edition might integrate with other products that the

company produces that increase team productivity).

�Business Management
We will begin with business management, with whom you will often frequently interact.

To help facilitate your future interactions, we will start by exploring KPIs germane to this

audience.

�Planned Work vs. Actual Work

Architectures that favor loose coupling and more fine-grained modularity (whether

distributed or monolithic) are increasingly favored for three reasons: initial

implementation effort, long-term maintainability, and cost predictability. While the

initial implementation and maintainability are important, the cost predictability is more

pertinent to the planned work vs. actual work KPI.

With highly modular architectures such as the Modular Monolith, Service Based, or

Microservices—which we will explore in detail in Section 2—it will be easier to estimate

effort for the individual services themselves, but keep in mind that there is also a cost

associated with integrating those services.

Keep in mind that a very limited monolith may be easy to plan for; therefore, it is

important that an architect constrains the scope to remain small. It is, however, easy for

things to get out of hand whenever one requires developers to limit the scope of their

own components. They will often feel that it is easier to just add a little more code than

incur the cost and overhead required to create a whole new small module, but it is often

worth it in the end. Human nature favors adding one more feature to an existing module

when, in reality, it is often better to separate concerns and produce smaller modules that

will be easier to maintain, test, and reuse.

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

91

�Product
In addition to management, you will also frequently interact with the product

development teams. Like business management, it is particularly important to measure

architecture in alignment with the product’s subjective worldview.

�Service Stability

The development teams’ ability to decrease operations and maintenance costs by

maximizing reliability is key to the success of the business and customer. The most

common KPIs related to reliability are Mean Time Between Failure (MTBF) and Mean

Time to Repair (MTTR). Common from a business perspective, MTBF shows how much

time the system operates without issue, is easy to measure, and can be a straightforward

metric for use as a contract requirement. Contrast this with MTTR, which measures the

average time to resolve a defect once it has been discovered.

For most of the history of software, optimizing for MTBF was seen as highly desirable

as the cost (both in terms of time and currency) of updating software was significant. In

the modern, cloud-native era, designing software for high MTBF rarely makes the sense

it once did. With good DevOps practices and automation, releasing patches is often

quick and painless. It ultimately depends on the consequence of a failure and the cost of

remediation.

While we often aim to design the objective “best” systems, overengineering for

excessive reliability typically comes at a cost that may be difficult to recuperate. This

practice often slows organizational agility as much more engineering effort is necessary

prior to releasing a feature for the all-important user feedback. Sometimes the highest

value we can deliver is a bulletproof system; sometimes the highest value we can

deliver is the answer to a question: “Will this feature meaningfully improve the customer

experience?” As always, there are no best practices, only trade-offs.

It is common to have one KPI composed of multiple nested KPIs as is described as a

KPI tree in KPI Checklists.6 MTTR is really a composite of multiple KPIs which are Mean

Time to Accept (MTTA) and Mean Time to Implement and Deploy (MTID) which are

each composite KPIs as well. This is shown in both the KPI tree (Figure 5-5) and the KPI

timeline (Figure 5-6).

6 Smith, B. (2018). KPI Checklists – Practical How To Guide. Metric Press

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

92

Figure 5-5.  Mean Time to Repair KPI Tree

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

93

Fi
gu

re
 5

-6
. 

M
ea

n
 T

im
e

to
 R

ep
ai

r
Ti

m
el

in
e

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

94

Mean Time to Acknowledge (MTTA) occurs between the time that a failure actually

happens and when the company acknowledges that there is an issue to be resolved

for the customer and user. There are two KPIs that define MTTA. The first is the Mean

Time to Detect and Communicate (MTTD&C). The second is the Found to Planned

Work (FTPW).

Mean Time to Implement and Deploy (MTID) measures the time between when the

issue has been added to the maintainers’ workload and when the fix is deployed in the

production environment. It is composed of four components: Mean Time to Diagnose

(MTTD), Mean Time to Implement (MTTI), Mean Time to Test (MTTT), and Mean Time

to Deliver (MTTD). Each of these steps can represent a significant amount of time in the

process of resolving the issue. If the time is tracked and managed for each step, then the

time can be minimized significantly.

You can’t improve what you don’t measure

—Peter Drucker

An architect can do several things to decrease the cost of MTTR, and analyzing

all the way down to the lowest phase of the repair process makes it easier. Building in

observability and notification to detect failures and automatically notify the maintainers

when failures occur—in addition to better system log aggregation and analysis that some

Security Information and Event Management (SIEM) tools support—can dramatically

decrease MTTA and help diagnose the issue. Additionally, having a high level of test

coverage at unit, API/integration, and system levels decreases the time required for

both diagnosis and testing while simultaneously decreasing the likelihood that a new fix

causes some other regression in functionality. Finally, ensuring that all subcomponents

can be patched by using either plug-in frameworks or container-based blue-green

deployment strategies will drastically decrease the time spent delivering and deploying

the patch to production.

The more modular your system, the harder it is to consolidate the logging; however,

the easier it is to test and deploy fixes owing to the reduced regression surface area that

such modularity introduces.

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

95

�Sales
Although you will interact more frequently with business and product, it is helpful to

expand the scope of audiences as project stakeholders often appear from all areas of the

organization.

There are two KPIs that demonstrate how an architect can connect their work to

business KPIs. The first is “Resources spent on a single Nonpaying Customer.” This KPI

represents a feature that the customer either gets for free to help marketing and sales sell

other products, is part of a package that sweetens the sale, or gets the customer to use

your other products. The second KPI is “Resources spent on a Single Paying Customer”

and identifies aspects of the product or service that are worth spending resources on that

truly add value to the customer, user, and/or your business to produce what is known as

a return on investment (ROI) for using your product or service.

�Resources Spent on Single Nonpaying Customer

Before continuing our exploration of this KPI, we will first define a few terms:

•	 A Potential Customer is someone who may be willing to buy in the

future but has not yet.

•	 A Hooked Potential Customer is a customer who is spending—

or about to spend—money and may be willing to increase their

expenditure.

•	 A Value-Added Customer is one who has spent money but is willing to

make further investment.

•	 A Nonpaying Customer is a user of the free products or services that

the company provides.

While it is important that any expenses related to Nonpaying Customers are

minimized, the sales department focuses their attention on the product’s ability to add

bonus features for the paying customers and to “hook” Potential Customers.

The sales department wants to see a low total Cost of Operations and Maintenance

(COM) billed to their department but a high number of both Hooked Potential Customers

and Value-Added Customers. This ratio is called Cost Efficiency.

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

96

Variables:

H = Hooked Potential Customers

VA = Value Added Customers

COM = Total Cost of Operations and Maintenance

CPC = Average Cost Per Customer

Functions:

COM = (H + VA) * CPC

CPC = (H + VA) / COM

The ideal is to identify aspects of the product or service that are so trivially

inexpensive that there is effectively no cost to support/host a Nonpaying Customer, but

sales may be willing to pay well above that if they see a high rate of conversion from

Nonpaying to Paying Customer.

The easier that the product converts from the “community” edition to the

“professional” edition, the better that conversion will be. In this scenario, we should

design the architecture to make it easy for a user/customer to upgrade through the

application itself (e.g., by adopting a plug-in architecture or prescribing feature toggling),

contact the sales department via live chat, or support temporary licensing to get the user

acclimated to the “professional” edition features.

�Resources Spent on Single Paying Customer

The business sales department will be even more interested in the resources spent on

a single Paying Customer than they are on the resources spent on a single Nonpaying

Customer that they view as a Potential Customer because the customer has already

shown that they are willing to spend money on products. That said, the Nonpaying

Customer is still considered important because there is already a relationship and

product familiarity that can be leveraged to convert them to a Paying Customer.

The calculations are very similar, but, in the case of Nonpaying Customer products,

the low-level sales personnel will be very interested in the free products because they

help them to make a sale. In contrast, the paid-for product is of more interest to sales

leadership, as long as the for-profit product adds enough value.

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

97

It is less important that any expenses related to paying customers are minimized

because the cost is absorbed by the licensing fees or monthly service fees. The sales

department wants to see a low total COM billed to their department but a high number

of both Hooked Potential Customers and Value-Added Customers. The ideal is to identify

aspects of the product or service that are so valuable to the customer and user that they

can easily see the ROI.

�Marketing
Although sales and marketing are often conflated, they represent two distinct

perspectives on customer acquisition. Consequently, they are often focused on

different KPIs.

�Prospect to Qualified Lead Conversion Rate

Before we begin this example, we will start with a couple definitions:

•	 A prospect is a potential candidate that seems to meet some criteria

that the seller believes would make them a good customer.

•	 A qualified lead is a candidate that the marketing team has confirmed

has met all the criteria to be a good customer.

There are a couple artifacts that an architect can provide to the marketing team

to help them achieve their prospect-to-qualified-lead conversions. Providing a

questionnaire or feature table to customers can help the marketing team tie the product

features to the prospect. If the product features do not align completely with the

prospect’s needs, but the software architecture is flexible enough to allow for additional

features or for turning off unwanted features in short time spans, the software changes

can be made to help establish a qualified lead.

Ultimately, the business often aims to attract customer and user attention by

providing features that not only overlap with the competition but exceed what the

competition includes within their product.

While architecture is generally not responsible for defining these tantalizing

features, this can inform architecture capabilities around agility, customizability, and

deployability. Another thing to keep in mind is that it will help if your product can

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

98

convert the data from competing products into your product’s preferred format as a

function of interoperability. This kind of compatibility being built into a product can be

in and of itself what is known in the business world as a “moat.”

The term ‘economic moat,’ popularized by Warren Buffet, refers to a busi-
ness’ ability to maintain competitive advantage over its competitors in
order to protect its long-term profits and market share. Just like a medieval
castle, the moat serves to protect those inside the fortress and their riches
from the outsiders.

—Chris Gallant7

In short, being able to both completely overlap with the competition’s feature set and

being able to ingest the competition’s data format will decrease the “barrier to entry” for

your users transitioning to your product.

�Financial
Sales and marketing are both focused on revenue and growth. In contrast, the finance

department focuses on minimizing cost and risk. Consequently, their subjective

worldview changes.

�Vendor Expenses

Vendors supply parts, supporting products, and services that are used within a greater

product offering or service offering that an organization can sell. This is a function of the

affordability capability. As an architect, there are multiple things we can do to minimize

the licensing costs and licensing risks associated with the use of third-party libraries and

frameworks.

First, prescribing that third-party libraries are wrapped with suitable interfaces

and abstractions can decrease overall financial risk. Such an abstraction will decrease

the cost of swapping out libraries without impacting your own product’s functionality

should a change become necessary.

7 Gallant, C. (2023). How an Economic Moat Provides a Competitive Advantage. Investopedia.
Retrieved from https://www.investopedia.com/ask/answers/05/economicmoat.asp

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

https://www.investopedia.com/ask/answers/05/economicmoat.asp

99

Second, primarily using products whose licensing costs are extremely low or free is

an excellent way to decrease vendor expenses, thus further improving affordability.

It is important to note that not all open source licenses are created equally. Open

source software often comes with licensing agreements that dictate how you may use

and distribute the code. Permissive licenses are generally more flexible, but some

copyleft licenses require you to make any derivative works available under the same

terms, which can conflict with closed source objectives. Many organizations have

policies on which open source licenses are permissible; you need to know what these are.

Sometimes, the benefits of using a paid-for vendor product that will decrease

development time or risk may overpower the motivation to decrease the vendor expense

KPI. However, it is important to document this trade-off when doing a trade study or

presentation in anticipation of any questions that the financial team will have because

they will primarily be interested in minimizing vendor expenses. Tools for documenting

such decisions will be discussed in Chapter 24.

�Presenting KPIs to a Target Audience
When developing software, it is important to remember that there are multiple entities

that will both influence and be influenced by the software being developed. The entities

involved are the user, customer, business, development team(s), and the environment.

•	 The user is the actor who will directly interact with your product or

service.

•	 The customer is the actor who will be writing the check to purchase

your product or service. Notably, the customer and the user might

not be the same individual or entity.

•	 The business is the organization that is paying the team(s) for

their efforts and will collect the payments from the customer. It is

important to remember that the business is made up of different

internal organizations and that each one will have different KPIs.

•	 The development team(s) includes the initial developers and the

maintainers of the product or service.

•	 The environment is anything else that will impact—or be impacted

by—your architecture not covered by the previous four entities.

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

100

It is important to identify to whom each KPI is intended to inform and influence.

Most target audiences will not be comfortable looking at raw data, so it is critical to

turn data into meaningful information by providing context. This helps uncover trends

or where the current state is relative to the target thresholds. Many businesses will be

content with a PowerPoint presentation or a report, but some may want more real-time

information using things like dashboards or dynamically updated web reports.

It is also critical to use the correct visualization when creating simple dashboards and

reports. If, for instance, one wants to demonstrate a KPI that has a couple regions specified

by thresholds yet they only show the data at a single point in time, then a dial may make

sense for both a report and for a dashboard. However, if they want to see the trend over

time, a line graph with highlighted thresholds would be more appropriate. As described

in the paper “Dashboard design and its relation to KPIs,”8 the process should follow the

following phases: “define the objective of the dashboard,” “define metrics and identify the

content (KPI),” “seek user input,” “create initial prototype,” and “launch and monitor.”

Make sure that the recipient knows how to interpret the information so that they do

not over- or underreact to newly available information. It is very dangerous to assume

that the other parties understand your metrics or the implications of the metrics that you

present without first confirming that they are on the same page as you. It is advisable to

set up a plan ahead of time for scenarios where KPI thresholds are not met and inform

all relevant parties about these plans. Otherwise, they might attempt to “manage” the

situation themselves, unaware that it is already being handled.

It is also important to define how often the KPI will be collected and how often it will

be reported. For example, it does not make sense to report on the metric weekly when

that metric is only updated quarterly. The additional output will just be noise. The rate

of metric collection is more likely to be in the software architect’s hands, whereas the

reporting rate will be defined by the other management, users, or customers. If there

is no way to collect or update KPI data between reports, it is important to differentiate

between a lack of data collection and a value that was collected and happens to match

the value from a previous report.

8 Berglund, C. & Tenic. Dashboard design and its relation to KPIs: A qualitative case study on a
software company. Linnaeus University Sweden. 2020

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

101

�Summary
KPIs provide a valuable way to connect the management, customer, and user needs to

the architectural decisions that must be made during the software development lifecycle.

These KPIs can help you explicitly identify constraints that will influence future design

decisions.

It is important to know which KPIs are of interest to the management, customer, and

user. These should be the north star that guides decision-making rather than simply

choosing KPIs based on how easy they are to measure or blindly selecting KPIs that

are favored by the architect. The answer must not originate from the architect, but the

architect must get the answer from the other parties.

You may have to produce artifacts that you are especially well placed to create

but may not have been what you would typically consider a part of your traditional

responsibilities. However, those artifacts will often give you even more insight into what

is truly important to the business, development team(s), user, and customer.

While KPIs may feel onerous, in many cases knowing what they are will free you from

having to guess what is important and needlessly overengineering or missing a crucial

capability within your design.

This is a deep topic but valuable for our work as architects. Although it is not as

exciting and creative as other aspects of our field, your knowledge in this area positions

you to make better data-driven decisions and communicate more effectively to a wider

audience. Your effort to make it this far will continue to pay dividends throughout your

career. Kudos for making through what might be the least exciting chapter in this book!

Chapter 5 KPIs, Metrics, and Data-Driven Architecture Decisions

103
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_6

CHAPTER 6

Architectures Are Not
“Chosen,” They Are
Designed

Everything is designed. Few things are designed well.

—Brian Reed

Once a set of architectural requirements is identified, the natural and intuitive next

step is to “choose” an architecture that best fits the requirements. This generally means

selecting one of the nine or so common patterns. This conventional approach, however,

may lead to disastrous consequences.

In the multifaceted world of software architecture, there is a tantalizing allure to

architectural patterns promising a given set of capabilities. Architects often gravitate

toward these seemingly well-structured models, expecting that by employing “Pattern X,”

their deployed system will exhibit “Capabilities A, B, and C.” Others gravitate to a single

pattern as their “golden hammer,” anticipating that past success is a guarantee of future

results. In both cases, reality often paints a different picture.

Despite an architect’s sincerest intentions and methodical adherence to models,

these expected capabilities can prove elusive, with few clues as to where and how the

divergence occurred. This divergence is not just a hiccup in the grand scheme of system

design, it is an essential reminder that patterns as architectural blueprints, foundational

as they seem, often lack both context and completeness. This fundamental disconnect

was one of the major drivers leading to formalization of the Tailor-Made Architecture

https://doi.org/10.1007/979-8-8688-0410-6_6#DOI

104

Model. Understanding why deterministic results from architectural patterns are so

mercurial—and often more of a mirage than a milestone—requires a deeper exploration

of this inconsistency.

�The Limitations of Pattern-Driven Architecture
Any given set of architectural requirements in the form of qualified, quantified, and

prioritized target capabilities will provide an excellent starting point for the architectural

design process. The requirements provide a clear idea of what characteristics the system

must possess. At this point, the architect could elect to simply select the pattern that

appears to be the closest match. The Ford/Richards scorecard1 introduced earlier in

this book (Figure 6-1) provides a direct set of expectations for the capabilities of a given

component pattern.

Figure 6-1.  Ford/Richards Architectural Capabilities Scorecard

1 Ford, N., & Richards, M. (2020). Fundamentals of Software Architecture: An Engineering
Approach. O’Reilly Media

Chapter 6 Architectures Are Not “Chosen,” They Are Designed

105

For an architect adopting pattern-driven architecture, certain patterns that might

otherwise be appropriate with tailoring will be immediately disqualified due to poor

initial scoring in key areas. Of what remains, the architect will select the closest fit. The

Tailor-Made Requirements Analysis Process detailed in Chapter 4 will provide a direct

set of target capabilities which may be compared against these scores. Overlaying the

capability scores of the closest pattern against the scored capability targets will, almost

universally, show an imperfect fit. Figure 6-2 illustrates what this mismatch—of the

closest fit—might look like at design time.

Figure 6-2.  Capability Targets vs. Pattern Capability Scores

This mismatch underscores the first of two particularly important truths in software

architecture—that business and software challenges simply will not fit into just nine
sizes. To lean into the tailoring metaphor for a moment, if this were a suit it would be a

bit wide in the shoulders, tight in the body, long in the sleeves, and bunching in the back.

As it is, this suit will not be a great fit without some alterations, some tailoring. The scope

and the consequences of this poor fit will manifest in tangible ways once the system is

released to production and the next few years will consist of design tweaks in the form

of costly trial-and-error changes. If the project survives this phase, either the design will

have evolved to a point that the architecture is an acceptable fit, or the problems will

have compounded to the point that many in the organization will be calling for a rewrite,

but, without new approaches, there is little reason to expect the outcome of the rewrite

will result in anything beyond more of the same.

Chapter 6 Architectures Are Not “Chosen,” They Are Designed

106

You cannot solve a problem with the same thinking that created it.

—Albert Einstein

Assuming, for a moment, that the hypothetical system survives the period of growing

pains and the implementation of that architecture pattern evolves to the point that

it aligns much more closely to the desired characteristics, what might one now call

this architecture? In all likelihood, those working on that project would still adopt the

label of whichever pattern they started with or the one now most topologically similar.

Alternatively, they may classify their architecture as a hybrid of two patterns.

Software architecture patterns exist in a regrettably flat taxonomy that has failed

us for far too long. For any of the common architecture patterns, there are countless

organizations who claim to have adopted that pattern, yet a closer look reveals almost

as many variations on that pattern as there are adopters, and their ultimate experiences

in production as well as macro system capabilities will vary wildly. Consequently, many

will look at an architecture scorecard such as that introduced in the Ford/Richards book,

proclaim “these scores don’t align with my reality,” and perhaps conclude incorrectly that

software architecture is, and will always be, a crapshoot.

The flat classification scheme fuels this disconnect. With a vanishingly small number

of classes to sort the near endless variety of pattern implementations that exist today,

the definition of that class is reduced to the lowest common denominator of component

topology, which leads to high imprecision in defining a concrete definition of any

architecture pattern. While adept architects may take the time to deeply understand the

details and nuances of any given pattern, communication becomes a major problem.

Patterns are common in software engineering as a high-bandwidth mechanism to

communicate shared ideas; however, the prevalence of innumerable variations of each

pattern means, at any meaningful scale, there are no shared definitions of an architecture

pattern.

The inescapable need for tailoring for any common pattern to fit, the untold number

of variations that self-identify as an instance of a given pattern with widely differing

capabilities, and the inevitable regression to the lowest common denominator definition

result in the second important truth of software architecture: the capabilities that
patterns promise are not absolute.

This is not to say that the Ford/Richards pattern scores are a fabrication; they are not.

Instead, the takeaway is that architecture capabilities come from decisions, not patterns.

Chapter 6 Architectures Are Not “Chosen,” They Are Designed

107

�Summary
The lowest common denominator classification scheme that currently pervades software

architecture, as we have seen, is deeply problematic; a new model is long overdue. The

wealth of five-star ratings under the microservices pattern is a consequence of much

more than the topology. Breaking an application into hundreds of tiny pieces will not

magically make those capabilities appear, and, likewise, a monolithic build artifact does

not automatically presage a big ball of mud.

The microservices pattern—like every architecture pattern—is, fundamentally, a set

of design decisions. There are core design decisions that a practitioner should almost

never deviate from, there are well-defined extension decisions that modify the pattern

to better suit a given project, and there are optional decisions that might be outside the

scope of any formal pattern but nevertheless modify the resultant system capabilities.

Each individual decision is an atomic component of the architecture that modifies the

capabilities of the system—with some capabilities strengthened and others weakened—

each decision is a trade-off. It is the decisions that matter; the patterns are a side effect.

This is not to say you should throw out all the patterns and completely reinvent the

wheel for every project. Instead, the Tailor-Made approach advocates a more holistic

design approach that centers on the decisions and directly connects decisions to

outcomes at design time, regardless of whether the project is greenfield or a brownfield

development. The patterns hold a valuable place in this model, not as an end but as a

starting point. In Tailor-Made Software Architecture, an architecture pattern is simply a

foundational set of decisions that may be modified or built upon. By assigning positive

and negative numeric weights to the capabilities impacted by each constraint, the

Tailor-Made Architecture Model provides design-time feedback on the side effects

of each decision. The consequence, as you will see in the coming chapters, is an

approach that

•	 Reduces risk

•	 Yields significantly more deterministic results

•	 Gives us tools to surgically tailor an architecture without costly trial

and error

Chapter 6 Architectures Are Not “Chosen,” They Are Designed

108

•	 Eliminates ambiguity

•	 Clearly communicates architecture descriptions

The next chapter introduces this foundational approach to architectural design:

design by composition of architectural constraints.

Chapter 6 Architectures Are Not “Chosen,” They Are Designed

109
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_7

CHAPTER 7

Architectural
Constraints: Designing
for Deterministic
Capabilities

Constraints are not limitations; they are insight.

—Steve Sanderson

In the world of software architecture, very little is black and white; the answer to almost

any question is, invariably, “it depends.” But “depends” on what?

The Tailor-Made Software Architecture Model champions a design/decision-driven

approach to architecture. Chapter 6 introduces this concept, but more precision is

required. “Decision” is far too broad. Some decisions absolutely do impact system

capabilities, others do not. There exists a set of things called decisions, and within

that set, there exists a subset of those decisions that modify system architectural

characteristics. To identify that subset, the question of where capabilities ultimately

come from must first be answered.

�The Origins of Architecture Capabilities
Counterintuitively, architectural capabilities are elicited through constraints. Constraints

in this context are architecturally significant decisions that reduce the degrees of

freedom of implementation, thus driving the attributes of the system toward a desirable

https://doi.org/10.1007/979-8-8688-0410-6_7#DOI

110

state. As a concrete example, take the infamous “Big Ball of Mud” pattern.1 The Big

Ball of Mud emerges when unlimited degrees of freedom exist for implementation;

UI concerns, business logic, and data access may be freely mixed. The resulting code

is difficult to test, difficult to maintain, and difficult to understand. Constraining the

degrees of freedom by prescribing separation of concerns and modularity materially

impacts the resulting system capabilities.

The software industry at large may not typically think about their designs that way

or use that precise terminology (constraints may, instead, be called design principles,

“paved roads,” or simply “design decisions”), but they exist. One of the most explicit

explorations of the direct relationship between constraints and capabilities was in the

year 2000 by Roy Fielding.2 While this paper has been widely read, most readers skipped

ahead to Chapter 5 where Fielding begins to talk about REST, which has historically

received more attention than the core thesis of this paper. Fielding’s work was neither

the first nor last to explore the relationship between constraints and architectural

capabilities. Many scholars and practitioners in both software engineering, design,

and architecture have touched upon this idea. Software Architecture: Perspectives on

an Emerging Discipline3 also explores this idea of design by constraint and how these

constraints influence architectural styles. In The Mythical Man-Month4 and other

writings, Fred Brooks touches on the idea that constraints, both in terms of software and

project management, influence the architecture and design of systems. More recently,

the paper “Software Architecture Constraint Reuse-by-Composition”5 by Tibermacine

et al. further explored how constraints are also useful for more precise definition

and documentation of software architecture and how constraints are reusable and

composable architectural design elements.

1 Foote, B., & Yoder, J. (1997). Big Ball of Mud. Presented at the 4th Conference on Patterns,
Languages of Programs (PLoP)
2 Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures
(Doctoral dissertation). University of California, Irvine
3 Shaw, M., & Garlan, D. (1996). Software architecture: Perspectives on an emerging discipline.
Prentice Hall
4 Brooks Jr., F. P. (1975). The mythical man-month: Essays on software engineering. Addison-Wesley
5 Tibermacine, C., Sadou, S., Ton That, M. T., & Dony, C. (2016). Software architecture constraint
reuse-by-composition. Future Generation Computer Systems, 61, 37–53

Chapter 7 Architectural Constraints: Designing for Deterministic Capabilities

111

Perhaps the most widely known and tangible example of how constraints may

be applied to realize desirable system qualities are the SOLID principles introduced

by Robert C. Martin6 (with the SOLID mnemonic coined by Michael Feathers7). The

SOLID principles are widely considered to be a set of design principles or best practices

for object-oriented software development. One could equally say they are design

constraints, and, by adhering to those constraints, certain desirable characteristics

emerge in the codebase. Although SOLID is code/language level, it provides a tangible

microcosm that most developers and architects are already familiar with (but are briefly

summarized below).

The Single Responsibility Principle introduces a constraint that, informally stated,

constrains each class to have a single purpose. The consequence of adopting this

constraint is code that is easier to reuse, understand, and reason about with a reduced

test surface area, which also makes the code easier to maintain.

The Open/Closed Principle introduces a constraint that declares classes open for

extension but closed for modification. One consequence of this constraint is that code

becomes more extensible while remaining easy to maintain and test. Another is that, by

making classes closed for modification, backward compatibility is maintained, resulting

in both stability and evolvability.

The Liskov Substitution Principle is a constraint that formally describes the idea of

“design by contract.” This constraint induces improvements in the code’s modularity and

testability (among others).

The Interface Segregation Principle constrains code to prefer client-specific

interfaces rather than general ones. Consequently, any concrete implementation only

requires what is necessary without needing to implement every conceivable method.

This results in code that is more modular, decoupled, and easier to refactor, change, and

redeploy.

Finally, the Dependency Inversion Principle defines a set of constraints, namely:

•	 All member variables in a class must be interfaces or abstracts.

•	 All concrete class packages must connect only through interface or

abstract class packages.

6 Martin, R. C. (2000). Design principles and design patterns. Objectmentor.com
7 Martin, R. (2017). Clean architecture: A craftsman’s guide to software structure and design.
Prentice Hall

Chapter 7 Architectural Constraints: Designing for Deterministic Capabilities

112

•	 No class should derive from a concrete class.

•	 No method should override an implemented method.

•	 All variable instantiation requires the implementation of a creational

pattern such as the factory method or the factory pattern8 or the use

of a dependency-injection framework.

Most notably, this improves testability, extensibility, and adaptability.

By adopting these constraints in code, developers can deliver the same features

with significantly improved adaptability, evolvability, extensibility, maintainability,

simplicity, testability, and understandability. Each constraint moves the needle on these

characteristics and others. Architectural constraints mirror this methodology. In fact,

some SOLID constraints are frequently applied, albeit in varied forms, to distributed

architectures. For example, in the microservices architecture, some champion IDEALS9

defined as Interface segregation, Deployability (is on you), Event-driven, Availability

over consistency, Loose coupling, and Single responsibility. Notably, while the

SOLID constraints are considered a set of best practices for object-oriented software

development, in architecture there are no best practices, only trade-offs; nothing comes

for free. Every constraint that strengthens one architecture capability will weaken

another.

Care must be taken to recognize when the effects of one constraint may
counteract the benefits of some other constraint.

—Dr. Roy Fielding

Constraints provide a robust set of atomic architectural primitives that may be

composed in numerous ways to design and define an architecture. It is through the

careful and thoughtful composition of constraints that a target architecture may be

derived or, through the addition and modification of constraints, that a pattern may be

heavily tailored and fine-tuned at design time or redesign (modernization) time. This is a

powerful idea that has been overlooked for far too long.

8 Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
9 Merson, P. (2021). Principles for microservice design: Think IDEALS, rather than SOLID. The
InfoQ eMag, 91

Chapter 7 Architectural Constraints: Designing for Deterministic Capabilities

113

�Closing the Capability Gap
Historically, many architectural constraints are implicit. Neal Ford and Mark Richards

are seasoned architects and have worked together collaboratively for close to two

decades. They are undoubtedly very consistent with their various approaches in the

projects on which they consult. The wider industry, however, is a different story. Books,

videos, lectures, blog posts, and implementations of various architecture patterns

fluctuate significantly. Likely every architect practicing today has been exposed to

architecture descriptions from different sources that include implied constraints in

their description and implementation. In working with architecture teams, a common

exercise involves asking them to define the set of constraints inherent to a given pattern.

At the outset, they believe they have an aligned and precise definition of the pattern,

but upon completing the exercise, the team realizes their differing interpretations

(Figure 7-1). No team has universally agreed on a full definition of an architecture

pattern to date.

Figure 7-1.  A Team of Architects or Developers with No Common Definitions of a
Common Pattern10

It is no wonder practitioners seem to get varying results from architecture patterns.

This underscores the problems with a flat taxonomy of architecture patterns and

applying the same label to different collections of constraints that are only superficially

or topologically similar.

10 Artwork inspired by Rasmusson, J. (2010). The agile samurai: How agile masters deliver great
software. Pragmatic Bookshelf

Chapter 7 Architectural Constraints: Designing for Deterministic Capabilities

114

Through explicit specification of the underlying constraints of an otherwise

overloaded and ambiguous label, we can now begin to see more deterministic and

consistent results. Undoubtedly, given more time in sessions discussing capability

discrepancies with architects between the Ford/Richards scores and their experiences,

the group would identify the delta between the Ford/Richard scores and their observed

results in the field. Additionally, almost every pattern includes core, nonnegotiable

constraints, but without thinking explicitly in this way, it can be easy to miss them.

Consider the case of any of the numerous microservice mega-disasters discussed in

blog posts and at conferences. Many stem from absent core constraints (the absence of

clearly defined bounded contexts, domains, and domain-aligned teams or violation of

the independent deployability constraint appears quite often) while overfocusing on

irrelevant metrics like lines of code. By evaluating these underperforming architectures

through the lens of constraints, a better path forward is almost always obvious.

�Constraints for Deterministic Outcomes
Although Fielding’s work on layering constraints to induce a set of architectural

capabilities was groundbreaking, metrics to precisely quantify the impact of each

constraint on the architecture properties they affect were not available, leaving the

architect to work by their intuition. Since then, Ford and Richards took important steps

to remedy this by quantifying the relative strengths and weaknesses in each pattern

when implemented as described in Fundamentals of Software Architecture. It is by

building and extending upon their work that the trade-offs of each constraint may now

be numerically weighted, providing architects with a new heuristic to visualize the

result of each decision at design time, using a common scale, and ultimately fine-tune

architecture to better fit the needs of the organization.

Another addition to this model of architectural constraints is formally expressing

relationships between constraints. There are constraints that are dependent on each

other, in that applying one constraint requires that its dependent constraint be applied.

Other constraints are mutually exclusive, in that selecting “Constraint A” or “Constraint

B” is a binary either/or proposition. A contribution of the Tailor-Made model is a formal,

logical expression of each constraint, its description, and any axiomatic rules that

govern it.

Chapter 7 Architectural Constraints: Designing for Deterministic Capabilities

115

The Tailor-Made model not only formalizes a process based on the work of Fielding

and others but offers great power to simulate many candidate architectures at design

time with relative accuracy while also receiving immediate feedback on logical model

violations.

�Summary
As Tibermacine et al. show in their research, “constraints can serve as a documentation

to better understand an existing architecture description, or can serve as invariants that

can be checked after the application of an architecture change to see whether design rules

still hold.” In Dr. Fielding’s dissertation, he shows, “Since properties are created by the

application of architectural constraints, it is possible to evaluate and compare different

architectural designs by identifying the constraints within each architecture, evaluating

the set of properties induced by each constraint, and comparing the cumulative properties

of the design to those properties required of the application.”

Ultimately, constraints form the foundation of an architectural model that allows for

both precise definition of architectural design and fine-grained control of architectural

capabilities with deterministic results. The model applies both at design time as well as

throughout the life of the project.

As stated in Chapter 6, patterns are simply collections of design decisions in the form

of architectural constraints that may be taken individually and applied to a candidate

architecture or applied en masse.

For now, understand that there are many possible constraints and that ultimately,

by getting through the remaining chapters, you will have a firm understanding of how

to select and tune constraints to align with business requirements. Section 2 will define

each of the nine common architectural patterns by the core constraints necessary to

achieve rough parity with the Ford/Richards scorecard. Section 3 will expand on how

to tweak the capabilities in the base pattern or in your custom, derived architecture

as well as how to clearly document, communicate, and execute it. These sections will

illustrate that many constraints are germane to several patterns. Within these sections,

a catalog of reusable, composable constraints will emerge empowering you to fine-tune

architectures for any set of capability targets. Equipped with this knowledge, you will be

better positioned to implement the entirety of the Tailor-Made model and process.

Chapter 7 Architectural Constraints: Designing for Deterministic Capabilities

117
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_8

CHAPTER 8

Architectural Styles:
The Tailor-Made Pattern
Language

An architectural style is a named, coordinated set of architectural
constraints.

—Roy Fielding

As noted in previous chapters, the business problems architects tackle seldom align

perfectly with just nine sizes (the common/conventional architecture patterns). More

often than not, any system’s architecture that adheres to a named pattern tweaks it

significantly while leaving the label unchanged. This deviation brings forth two critical

challenges that the Tailor-Made approach seeks to address.

Firstly, the prevalent tendency to oversimplify diverse and distinct systems filled

with numerous modifications into a single pattern label leads to miscommunication and

ambiguity in portraying the architecture’s intricacies (as illustrated in Figure 7-1 in the

previous chapter). Secondly, as we also explored in the previous chapter, relying on a

pattern-based language holds value only if there’s a unanimous consensus regarding the

pattern’s definition.

In short, the “flat taxonomy” of architectural patterns is overdue for replacement

with a new, more comprehensive model; that model is the architectural style. This

concept is not new to the Tailor-Made model. Although architectural styles factored

https://doi.org/10.1007/979-8-8688-0410-6_8#DOI

118

heavily in Roy Fielding’s influential postgraduate work,1 architectural styles were first

explored in 1992 by D. E. Perry and A. L. Wolf2 who defined an architectural style as an

abstraction comprising element types and formal aspects from an assortment of specific

architectures.

The significance of this concept lies in its ability to encapsulate key architectural

decisions directly tied to the style’s label, rather than one of countless variations that

share a common name. Such an adaptation ensures clearer definitions and more

transparent architectural communication. Moreover, it unlocks a vast spectrum of

architectural styles, moving beyond the confines of the common nine patterns.

An architectural style is a coordinated set of architectural constraints that
restricts the roles/features of architectural elements and the allowed rela-
tionships among those elements within any architecture that conforms to
that style.

—Dr. Roy Fielding

Architects adopting the Tailor-Made model are no longer “choosing” an architecture.

Instead, starting with target capabilities, architects are composing architectural

constraints (or abstract styles—more on that later!) to derive new, tailored architectural

styles. The axioms, heuristics, and weighting introduced within the Tailor-Made model

make this approach even more powerful.

�Architectural Styles and Architectural Patterns
The architectural patterns known today emerged as common solutions to recurring

problems in business and system design, and, as such, they are known to have value.

Architectural patterns represent hard-earned lessons in software architecture that

should not be forgotten. Yet, with this focus on constraints and styles, where do patterns

fit into this model?

1 Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures
(Doctoral dissertation). University of California, Irvine
2 Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes, 17(4), 40–52

Chapter 8 Architectural Styles: The Tailor-Made Pattern Language

119

An architectural style is simply a named composite of architectural constraints—

those key, architecturally significant decisions that act as the smallest atomic

architectural primitive which act as building blocks of a given candidate or selected

architectural design.

As a named, coordinated set of constraints, any architectural style may function

as a more coarse-grained building block providing similar composability to individual

constraints. Chapter 6 notes that a named architectural pattern is simply a set of

implicit architectural constraints in the form of design decisions. If each pattern is

explicitly described in terms of core constraints that are common across most mindful

implementations, that pattern becomes a formal architectural style in its own right—at

least in the abstract sense.

The key to using patterns as architectural styles lies in precise definition of the

underlying constraints. In Section 2, the common patterns will each be defined by their

core constraints in alignment with the decisions from which the scores were derived.

�Why “Style”
Although formally defining architecture patterns by their constraints brings much

needed semantic clarity to the realm of architecture patterns, “style” has the potential to

introduce new ambiguity. Before closing this chapter, it is worth addressing the potential

confusion this term may introduce.

In the technology industry today, “style” tends to refer to an individual’s or

community’s preferences, biases, or adopted conventions. Developers are often said to

have a “coding style”; certain languages and frameworks will prescribe a style to provide

consistency within a respective community. Based on common usage, the two usages

are at odds. Although “style” in the context of architecture may share similar roots to

“style” as it is used in most contexts, the two carry different meanings.

Fielding adopted the use of “architectural styles” as he was building on the work of

Perry and Wolf, who first coined the term. In doing so, he scrutinized the term “style”

noting that this term might insinuate that a particular style emanates from individualistic

stylistic choices. However, a deeper understanding of “style” emerges when we delve

into architectural usages from diverse eras and locales. Here, styles reflect design

constraints—be it available resources, construction methodologies, societal norms,

or even the specific requirements or whims of local leadership. In essence, in building

Chapter 8 Architectural Styles: The Tailor-Made Pattern Language

120

architecture, the emergent styles are the manifestation of design constraints. Numerous

scholars have further accentuated this perspective, viewing this convention as a tool to

interpret architectural descriptions and defining an architectural style.

Since referring to a named set of constraints as a style makes it easier to
communicate the characteristics of common constraints, we use architec-
tural styles as a method of abstraction, rather than as an indicator of per-
sonalized design.

—Dr. Roy Fielding

�Summary
In the Tailor-Made context—as in Fielding’s—any distinct mix of constraints leads to the

creation of a novel architectural style. Architects will be crafting novel architectural styles

by blending constraints, other architectural styles, or even a mix of both. This new style

would be christened and documented formally, enabling crystal-clear communication

regarding its definition. Although “style” may be ambiguous to outsiders, your styles—

and the architectures you design that implement them—will not be.

Chapter 8 Architectural Styles: The Tailor-Made Pattern Language

121
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_9

CHAPTER 9

Architectural X
Factors: Environment,
Organization, and Teams

When I write software, I know that it will fail, either due to my own mistake,
or due to some other cause.

—Wietse Venema

Today, software projects continue to fail (or at least fail to live up to their potential) at

alarming rates. Architectures regularly fall short of promised capabilities. The underlying

causes of such failures are manifold. Certainly, some—if not many—failures in the

architectural realm are due to a lack of constraints or the wrong constraints. Yet even

the perfect set of constraints, the ideal architectural style provides vanishingly few

guarantees of success. There exist X factors outside the intellectual space of architectural

design that must be understood and addressed in order for an architect to become

truly effective in their work. The Tailor-Made model emphasizes the concept of “fit” in

architecture, but “fit” is a concept with a deceptively vast scope. At this stage, a deeper

exploration of our couture metaphor is necessary.

�The Many Dimensions of “Fit”
A gentleman’s suit is a marvelous garment that offers incredible range and versatility to

adapt to numerous body types. Short, tall, athletic, rotund, slim, or broad, a well-tailored

suit will result in a dapper presentation and flattering silhouette. Shifting fashions

notwithstanding, the core elements of a suit have remained relatively unchanged over

https://doi.org/10.1007/979-8-8688-0410-6_9#DOI

122

the past 150+ years due to this quality of versatility of fit. The tailor must balance many

measurements, choices, and other variables to produce an optimum fit for the wearer.

This is difficult but crucial work as an ill-fitting suit will never look good regardless of

cost, material, label, or any other single detail. Fitting the body, however important,

is but the first dimension of fit. Beyond sizing, the color and fabric of the suit must

complement the skin tone and accessories of the wearer. The style of the suit must fit

the environment in which it will be worn. The suit must fit within the wearer’s broader

wardrobe. It must fit the style of the time. The overall cost must be within means. The

relative value of purchasing a suit is a function of many other considerations, and “fit”

when viewed holistically is so much more than just physical measurements.

Architectural fit, in many ways, is analogous. Thus far, the Tailor-Made model has

examined only the first dimension of fit, aligning business needs with architectural

capabilities. More precise measurements and tools have been introduced to reduce risk

and uncertainty in this process, but architecture, like a suit, must fit holistically. Before

we close this section, the nature of these additional dimensions must be examined along

with how these might be integrated into the Tailor-Made model. Consider the frequent

failures of the microservices architecture.

�X Factors and the Road to Microservices
The Ford/Richards architecture scorecard awards the microservices pattern extremely

high marks across several capabilities. Based on these scores, an architect might expect

their reality to mirror those scores (Figure 9-1), but anecdotally the reality often falls far

short of these lofty expectations (Figure 9-2). Rarely are organizations able to manifest

the full scope of the benefits this approach promises, and industry analyst Gartner once

predicted 90% of the organizations who attempt to adopt microservices will struggle

to such an extent that they pivot to a different architectural approach.1 One of the

most high-profile shifts this prognostication predicted happened in 2023 when a team

at Amazon announced they were pivoting from microservices back to a monolithic

architecture.2

1 Cope, R. (July 3, 2019). Multigrain services: Micro vs. mini vs. macro. The Software Development
Times. https://sdtimes.com/devops/multigrain-services-micro-vs-mini-vs-macro/
2 Jackson, J. (May 4, 2023). Return of the Monolith: Amazon Dumps Microservices for Video
Monitoring. The New Stack. https://thenewstack.io/return-of-the-monolith-amazon-dumps-
microservices-for-video-monitoring/

Chapter 9 Architectural X Factors: Environment, Organization, and Teams

https://sdtimes.com/devops/multigrain-services-micro-vs-mini-vs-macro/
https://thenewstack.io/return-of-the-monolith-amazon-dumps-microservices-for-video-monitoring/
https://thenewstack.io/return-of-the-monolith-amazon-dumps-microservices-for-video-monitoring/

123

Figure 9-1.  The Promised Capabilities of Microservices Architecture

Figure 9-2.  The Anecdotal Reality of Many Microservices Implementations

While it is true that many microservices architectures are prescribed without

specifying many of the constraints that would otherwise elicit these capabilities, those

constraints represent only part of the story; the challenges facing potential adopters

extend far beyond the technical and design concerns.

The microservices pattern was not the result of a sudden flash of insight in the mind

of some architect who realized that tiny, distributed components were a panacea for

architecture problems. It was not simply an idea that was just waiting to be discovered.

If an architect were to travel back in time a decade before the first microservices as

we know them went into production to encourage early adoption of this pattern, they

would be considered crazy. It is not that, at the time, the ideas were radical; they were

Chapter 9 Architectural X Factors: Environment, Organization, and Teams

124

impossible. The pattern was not discovered, it emerged over time due to changing

cultures, technologies, practices, and organizational theory; these are the X factors, the

hidden variables necessary for success. The pattern itself, and its defining constraints,

cannot operate effectively without the X factors instrumental in driving the development

and success of this approach. What were some of these X factors?

The Agile Manifesto, signed in 2001,3 was more than just an acknowledgment that

change is inevitable so it must be embraced; it was a call to the industry to work in new

ways that facilitate change. Practices like Test-Driven Development (TDD) developed by

Kent Beck,4 a signatory on the original Agile Manifesto, provided developers with new

tools for fast feedback on the correctness of software and the relative safety of a given

change. This enabled more widespread adoption of the ideas surrounding continuous

integration, paved the way for continuous delivery, and ultimately the DevOps

movement from which many operational automation capabilities were born.5

Continuous Integration, Continuous Delivery, and Continuous Deployment 

We see the effects of semantic diffusion in our industry surrounding these
concepts and terms. Throughout this book, we will define these terms as defined
by Jez Humble and David Farley in their 2010 book.

Continuous Integration

A team is practicing continuous integration (CI) only when the following statements
are true:

–– Every team member commits to main/trunk at least once per day.

–– Each commit results in both a build and a full execution of all
relevant test suites/quality gates.

–– If the build breaks, resolution is top priority (typically the build is
fixed within 10–15 minutes).

3 Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., …
& Thomas, D. (2001). Manifesto for Agile Software Development. Retrieved from http://
agilemanifesto.org/
4 Beck, K. (2003). Test-Driven Development: By Example. Addison-Wesley
5 Humble, J., Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Addison-Wesley

Chapter 9 Architectural X Factors: Environment, Organization, and Teams

http://agilemanifesto.org/
http://agilemanifesto.org/

125

Although often considered to be an agile “best practice,” true CI is seldom
practiced. More accessible practices like GitFlow and feature branches delay
integration to later in the development lifecycle. One of the primary challenges is
the commit cadence of work in progress. Practices like feature toggling (where
features in progress can be disabled until the feature is fully ready) are often
necessary, enabling practices for CI.

Continuous Delivery

Continuous delivery builds on the practice of continuous integration by prescribing
that, at the end of the CI stage, an artifact is produced that is in a ready-to-deploy
state. Notably, a team cannot practice continuous delivery unless they are already
practicing continuous integration. The essence of continuous delivery is described
by Martin Fowler6 as

–– Your software is deployable throughout its lifecycle.

–– Your team prioritizes keeping the software deployable over working
on new features.

–– Anybody can get fast, automated feedback on the production readiness
of their systems any time somebody makes changes to them.

–– You can perform push-button deployments of any version of the
software to any environment on demand.

The key point of continuous delivery is your system is always in a ready-to-deploy
state. This does not necessarily mean every build is deployed; rather, every build
can be deployed.

Continuous Deployment

In highly agile environments where release velocity is considered a very high
priority, continuous deployment dictates that every commit is released (once
all tests and quality gates pass) automatically. In other words, your code’s main
branch and the production environment are always in sync.

6 Fowler, M. (2013). Continuous Delivery. Retrieved from https://martinfowler.com/bliki/
ContinuousDelivery.html

Chapter 9 Architectural X Factors: Environment, Organization, and Teams

https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/ContinuousDelivery.html

126

Other impediments to achieving the level of modularity prescribed by microservices

are determining appropriate module boundaries and enabling teams to operate

effectively within those boundaries. The influence of organizational communication

structures on the systems those organizations produce (commonly known as Conway’s

Law) has been known since the late 1960s,7 but it was not until 2003, when Eric Evans

published Domain-Driven Design8 (DDD), that organizational structures could truly

evolve to support such an architecture.

We can define the microservices architecture pattern by architectural constraints,

but the X factors enumerated above form subtle dependencies necessary for success.

These dependencies roughly fall into three categories: team constraints, organizational

constraints, and environmental constraints.

�Team Constraints
These constraints will define skills, practices, behaviors, and habits the implementation

teams must possess to effectively adhere to and implement the system’s architecture.

Team constraints will also dictate how they balance short-term priorities against long-term

vision and the teams’ incentives for each. The incentives and motives of the team must be

aligned with those of architecture; otherwise, architecture will be seen as an impediment

rather than an asset. One additional facet of some team constraints that blur the line

between team and organizational constraints is the development teams’ hierarchy.

Architects may produce the blueprints, but it is the teams that perform the actual

construction. Without consideration of this fact, the blueprints become little more than a

suggestion.

�Organizational Constraints
These constraints will define the nature of the organization, process maturity, structure,

and additional variables the architect must consider. While architecture and business

may be aligned on vision, it is uncommon for alignment to extend beyond that. For

example, organizations tend to be very risk-averse and will often equate change to risk.

Consequently, architectural decisions that require sweeping organizational change

7 Conway, M. E. (1968). How do Committees Invent? Datamation, 14(5), 28–31
8 Evans, E. (2003). Domain-driven design: Tackling complexity in the heart of software.
Addison-Wesley

Chapter 9 Architectural X Factors: Environment, Organization, and Teams

127

(such as embracing DevOps or DDD) may be an uphill struggle to implement effectively.

The initial delivery timeline and budget also represent organizational constraints that

must be considered.

�Environmental Constraints
These constraints not only define the runtime and development environments of the

system, infrastructure maturity, and deployment maturity but also encompass other

factors. One notable factor is the complexity of the problem space. Another is the

complexity of the solution space. The cognitive load of solving challenging domain

problems may necessitate simplicity elsewhere. Likewise, operating at the bleeding edge

of technology is unavoidable at times, but, as always in software architecture, trade-offs

may be necessary. Finally, if the environment is not one of innovation but stagnation,

architects may be limited in what architectural constraints may be available in their

toolbox.

�Constraint Dependencies
A microservices implementation will consist of many constraints which will vary from

project to project and implementation to implementation. The core constraints that

nearly all will share may be summarized as “Highly decoupled, independently deployable,

fine-grained components that each control their own independent database, and are

grouped by domain and partitioned at the bounded context with communication

facilitated by some kind of API interface and running in an environment with high

operational automation.” In essence, seven architectural constraints. Although that is

by no means a complete set of constraints for any implementation, it provides a solid

foundation.

These architectural constraints have profound implications on the teams,

organization, and operational environment. Decomposing a monolithic system

into microservices calls for more than untangling code; it requires determining

understanding domain boundaries which typically requires an investment into properly

exploring, understanding, and defining the business domains by way of the practices

prescribed in DDD. This effort, however, is insufficient. The organization’s structure

and team focus must morph into a domain-aligned structure to better conform to

these domains; otherwise, the design will fall victim to Conway’s Law. This type of

Chapter 9 Architectural X Factors: Environment, Organization, and Teams

128

organizational structure is not typical in most software environments (“feature” teams

and teams that are focused on a particular technology are more common) and generally

only exists as a result of deliberate analysis and change. The Domain Partitioning

constraint—where module boundaries are defined by domain boundaries, rather than

technical boundaries—requires the organizational constraints of Well-Defined Domains

(we must know the domains and their boundaries) and Domain-Aligned Teams (as

“Organizations, who design systems, are constrained to produce designs which are copies

of the communication structures of these organizations”).

To achieve a high degree of decoupling of components, many points of coupling

are aggressively severed. Where many implementations might opt to reuse code

where possible, following the adage of “Don’t Repeat Yourself” (DRY),9 microservices

often favor the principle of “Please Repeat Yourself” (PRY) to decouple individual

microservices from one another or shared libraries. This practice flies in the face

of a career’s worth of “best practice” for many developers; consequently, there is a

team constraint that development teams must operate at a level of sophistication to

understand why the “rules” exist and when they should be broken.

Further constraints dictate that developers must not only produce functional code

but must produce it in a manner aligned with the agile principles emphasizing mature

testing strategies and a high degree of automation. Often, these are secondary skills in

many developers, and adopting these practices will cause team friction. The up-front

investment in testing and automation often feels like impediments slowing their “coding

flow” or productivity. Without a strong team and organizational commitment to these

values, the practices will be short-lived.

Teams must be able to work independent of each other, requiring yet another shift

in how software is traditionally built. Teams must define and publish message schemas,

API interfaces, and contracts early in the development lifecycle, so other teams focused

on building neighboring services may code to that interface in parallel. In mainstream

practice, it is much more common for these interfaces and contracts to emerge while the

code is being written. However, this practice will introduce frequent blockers for teams

that must wait for the other services to be fully developed.

Mature and sophisticated pipelines must be created and managed by development

teams for whom such work might be outside of their current core skillset. In short,

development teams must embrace the practices and philosophies of DevOps.

9 Hunt, A. Thomas, D. (1999). The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley

Chapter 9 Architectural X Factors: Environment, Organization, and Teams

129

Long-term delegation of this work to dedicated “DevOps” teams is a strong indication that

the adoption of DevOps has failed and that the wall between “Dev” and “Ops” remains

alive and well (except, in this case, “Ops” has been renamed “DevOps,” ensuring the

organization remains buzzword compliant for a thin veneer of technical sophistication).

Finally, the environment must be one that supports a high degree of operational

automation and flexibility. Although with great care such an environment may be

constructed using on-prem hardware, cloud providers offer Infrastructure as a Service

(IaaS) and Platform as a Service (PaaS) that generally provide better flexibility and

capabilities. Again, embracing these necessitates additional skills and practices

of developers as much operational automation support must be baked into the

microservices themselves. The broader environment must also be one that supports

independent, autonomous development by teams.

Architects cannot operate effectively in a vacuum, and, while the underlying

business needs fill part of that vacuum, the reality of the teams, organization, and

environment must also fill important parts of that void. These team, organizational,

and environmental constraints are prerequisites for adopting many of the architectural

constraints central to microservices. Because the non-architectural constraints are

dependencies on their architectural constraint counterparts, ignoring these non-

architectural constraints results in the architecture violating architectural constraints.

The result is a loss of key capabilities and the emergence of undesirable system

characteristics. Architectural styles are defined by their constraints; remove any

constraint and the resulting system will have adopted a different architectural style

and perhaps one better avoided if it becomes an anti-style. Just as removing some

constraints from the Layered Monolith style results in an anti-style—the Big Ball of

Mud—subtracting the independent deployability constraint of microservices also results

in an anti-style—the distributed monolith. Remove more and the system becomes the

Distributed Big Ball of Mud.

�Summary
Unlike architectural constraints, which constrain the degrees of freedom for

implementation teams, team, organizational, and environmental constraints constrain

the degrees of freedom for the architect. Any architectural constraint that carries

dependent constraints of this type put the architect in a quandary. Ultimately, we must

either perform the prerequisite work of driving organizational change up front, or they

Chapter 9 Architectural X Factors: Environment, Organization, and Teams

130

must accept our current reality and derive what may be a suboptimal architectural style

when viewed through the lens of a single dimension for the sake of broader fit. At design

time, these are truly the only available options.

A suboptimal architecture is never the goal of an architect, but a given set of

circumstances may dictate certain compromises. To reiterate what was said in Chapter 1,

“Often it is said architects don’t aim to produce the best architecture, just the ‘least worst’

architecture,” or, as the saying goes, engineering is never about perfect solutions, but

rather it involves doing the best with what is available at the time.

Although we often need to become comfortable with designing suboptimal

architectures for the sake of holistic fit, it is also important to recognize these

compromises need not be permanent. Perhaps the pain an architect might foresee is

theoretically avoidable; however, change often only happens when the risk of inaction

becomes greater than the risk of action. Ultimately, architectural change and evolution is

inevitable—even for “optimal” architectures. Architects must put the project on the best

available course and always keep an eye toward the future.

Fortunately, as we shall explore in Section 2, architectural evolution need not be

nearly as challenging as conventional wisdom dictates.

Chapter 9 Architectural X Factors: Environment, Organization, and Teams

131
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_10

CHAPTER 10

Abstract Styles: A New
Look at Patterns

The main lesson here is that not every problem can be solved at the level of
abstraction where it manifests.

—Michael T. Nygard

We have established in this section that Architectures Aren’t Chosen, They’re Designed.

On the surface, this statement might seem to suggest that patterns are irrelevant

in this model; however, I do not advocate throwing away the established patterns

and reinventing the wheel for many projects. There are many paths to a candidate

architecture, and each has their trade-offs. Let us briefly return to the suit metaphor to

provide context to how patterns can be selected, designed, and adapted.

First, it must be noted that “fit” (both in suits and architecture) is of the utmost

importance. The extent of the fit is proportional to both the care of selection and the

amount of tailoring or customization of the garment or its underlying measurements

and design. When fit is a secondary concern to time or cost, the most expedient option

is to purchase a “ready-to-wear” garment. This essentially means finding the closest fit

and rolling with it, as is. We will start with why this is often a suboptimal approach and

explore how various levels of tailoring or design can yield an increasingly optimal fit.

https://doi.org/10.1007/979-8-8688-0410-6_10#DOI

132

�Ready-to-Wear
Ready-to-wear suits come in many sizes, all of which are denoted by just two

components—a chest measurement and a height component of “short,” “regular,”

or “long.” How do these height modifiers translate to body length, sleeve length, and

inseam? It depends on the manufacturer and their base patterns, but these are based on

an average of the measurements that fall into the short, regular, and long buckets.

In Todd Rose’s book, The End of Average,1 he recounts a story where an increasing

number of noncombat aviation incidents and accidents were found to be caused by

designing the cockpit of a complex aircraft to fit the “average pilot.” Even after putting a

policy in place to only recruit pilots that, on paper, fit the average, accidents remained

alarmingly high.

Using the size data he had gathered from 4,063 pilots, Daniels calculated
the average of the ten physical dimensions believed to be most relevant for
design, including height, chest circumference and sleeve length. These
formed the dimensions of the “average pilot,” which Daniels generously
defined as someone whose measurements were within the middle 30 per
cent of the range of values for each dimension. So, for example, even though
the precise average height from the data was five foot nine, he defined the
height of the “average pilot” as ranging from five-seven to five-11. Next,
Daniels compared each individual pilot, one by one, to the average pilot.

Before he crunched his numbers, the consensus among his fellow air force
researchers was that the vast majority of pilots would be within the average
range on most dimensions. After all, these pilots had already been pre-
selected because they appeared to be average sized. (If you were, say, six
foot seven, you would never have been recruited in the first place.) The sci-
entists also expected that a sizable number of pilots would be within the
average range on all ten dimensions. But even Daniels was stunned when
he tabulated the actual number.

Zero.

—Todd Rose, The End of Average

1 Rose, T. The end of average: Unlocking our potential by embracing what makes us different.
HarperOne 2017

Chapter 10 Abstract Styles: A New Look at Patterns

133

Averages may provide ranges of measurements suggesting generalized fit, but, in

any individual case, the probability of a good fit is close to zero. Consequently, if our

notation of architecture is simply selecting a pattern, the results will not be great. This

is the approach we continue to take with traditional pattern-driven architecture. When

an architect looks at the relative capabilities of one pattern (such as the Ford/Richards

scores), it is naturally assumed that those scores represent the best case for that pattern

in practice. In reality, however, those scores simply communicate the base expectations

of the pattern in the abstract.

Ultimately, the US Air Force discarded averages as their reference standard and

embraced the new guiding principle of individual fit. At first blush, manufacturers

proclaimed this new philosophy as wildly impractical, bordering on impossible.

Eventually, manufacturers uncovered novel approaches that were both inexpensive and

easy to implement; they designed cockpits that were easy to tailor to the individual from

the baseline. They designed adjustable seats, adjustable foot pedals, adjustable helmet

straps and flight suits, providing a foundational design that can be adjusted to optimize

for individual fit. To quote Rose’s book:

Once these and other design solutions were put into place, pilot perfor-
mance soared, and the U.S. air force became the most dominant air force
on the planet. Soon, every branch of the American military published
guides decreeing that equipment should fit a wide range of body sizes,
instead of standardized around the average.

—Todd Rose, The End of Average

Even ready-to-wear suits can—and should—be tailored (as illustrated in

Figure 10-1). The same is true of any predefined architecture pattern. The Tailor-Made

model provides practical guidance to architects to perform such tailoring based on the

needs and realities of the project, the business, the teams, and the organization. The

performance of a candidate architecture will similarly benefit from a philosophy of

individual fit. This is accomplished by treating the mainstream architecture patterns

as abstract architectural styles. In other words, an abstract style is one that is—like

all architectural styles—defined by a common and well-defined set of architectural

constraints. An abstract style, like an abstract class, cannot (or should not) be directly

instantiated; rather, it is a blueprint from which the optimal implementation is derived

and extended. In the Tailor-Made model, this is the place for patterns.

Chapter 10 Abstract Styles: A New Look at Patterns

134

Figure 10-1.  Tailored vs. Ready to Wear

�Tailored Off-the-Rack
A reasonable fit may be achieved by beginning with the closest fit and making some

quantity of changes and adjustments to the garment to achieve improved individual

fit at a low cost. Your author typically wears a tailored instance of a 42S suit. Most base

patterns for a 42S suit make assumptions about how the “short” height is composed (legs

vs. torso), overall body girth, and sleeve length. Consequently, my individual fit typically

requires hemming trousers to an inseam length of 30”, taking in the waist to around 32”

(a 10” drop) and taking in the body of the jacket. The result is an inexpensive path to an

acceptable fit.

This is the de facto approach to architecture today, albeit with caveats. Architects or

developers often begin with pattern selection and, upon deployment, begin to learn all

the areas where the architecture is deficient and make multiple adjustments over time.

Since these traditional approaches lack the granular controls and detailed design-

time feedback of the Tailor-Made model, this process typically requires extensive (and

Chapter 10 Abstract Styles: A New Look at Patterns

135

costly) trial and error. This is analogous to purchasing a ready-to-wear suit, wearing it to

a function, then returning for tailoring after receiving comments that the suit does not

fit very well. It is preferable to tailor the garment or the architecture in the beginning. A

much better fit can be achieved at comparable cost by modifying the pattern at design

time. This is known in the field as “made-to-measure.”

�Made-to-Measure
These days, most custom suits follow an approach that optimizes both cost and

individual fit. In the same way we begin with a detailed requirements analysis process

to identify target fit, the tailor will begin with a more robust consultation process that

results in not only significantly improved fit on day one but also provides improved

holistic fit.

Many measurements are taken, which are used to modify one of several generic

patterns. Since the garment is made to order, a closer holistic fit may now be realized as

the tailor will collaborate with the customer to select from a broader range of fabrics,

styles, features, etc.

In most cases, this is the recommended path when following the Tailor-Made model.

In essence

•	 Begin with a standard reference pattern.

•	 Modify the pattern at design time based on true requirements for fit.

•	 Work closely with implementation teams to apply further

customizations, variances, or implementation guidance, as

necessary.

•	 Build the software.

Made-to-measure architecture provides a much richer set of tools to achieve

optimal fit right out of the gate. Of course, once the system is in production, changing

and evolving needs will necessitate additional tweaks and tailoring; however, these are

typically much smaller in scope and, consequently, typically lower in risk. Notably, while

fit inevitably changes over time, a well-designed architecture or suit provides many

opportunities and paths for ongoing tailoring which is key for long-term business-value

capture.

Chapter 10 Abstract Styles: A New Look at Patterns

136

Made-to-measure architecture provides a balance between individual fit, cost,

design effort, and time to production; however, this is not the only path to improved fit.

The rarest, most expensive, but most comprehensive approach is bespoke tailoring.

�Bespoke Tailoring
There remain a handful of skilled craftspeople in the world who specialize in bespoke

tailoring. Unlike made-to-measure, the bespoke process begins from scratch, providing

the client with complete control over every detail. Suits made this way will not only

fit every contour of the client’s body perfectly, but they will also equally fit the client’s

personality, identity, and environment. This truly holistic fit is a result of the deep

collaboration between the tailoring house and the client and the house’s precision and

attention to detail. The cost of such a holistic fit is high; the process is labor-intensive

and expensive.

Holistic fit always begins with understanding the client’s needs and requirements.

Accordingly, bespoke tailoring begins with a salesperson who collaborates with the

client to understand their unique needs and advise as appropriate. The cutter is the

architect of the garment, collaborating with both the client and the salesperson to

understand the vision and infer unstated requirements. The cutter takes the necessary

measurements and, in concert with the requirements, constructs a unique pattern for

the suit. The cutter then cuts the fabric according to the pattern. The tailor, who acts as

the implementation team, then assembles the garment.

Early fittings are the feedback loops in the construction process. Following the

first fitting of the work-in-progress suit, the cutter will disassemble the suit and recut

the fabric to refine the fit during construction. These feedback loops are important to

validate early assumptions and course correct along the way.

We should strive to approach architecture with the same rigor and utilize feedback

loops to validate we are on the right path, even if our approach to architecture more

closely resembles made-to-measure or tailored off-the-rack. As for determining when to

take a bespoke approach, the answer, unsurprisingly, is “it depends.”

Architectural Styles and the Design of Network-Based Architectures2 introduces

the reader to architecture design by constraint. In Chapter 5, Fielding describes and

formalizes the REST Architectural Style, which is architecture of the World Wide Web.

2 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures.
Doctoral dissertation, University of California, Irvine

Chapter 10 Abstract Styles: A New Look at Patterns

137

In the early to mid-1990s, when the Web was still in its formative stages, there were no

patterns or well-known solutions for such a system that could scale from one user to

billions. There were no patterns that promised the kind of evolvability the Web required.

The REST Architectural Style was, consequently, a bespoke architecture derived from

scratch (or, as Fielding described it, the null architectural style) based on the domain

problems and requirements of the World Wide Web, expressed in Chapter 4 of the

dissertation.

While deriving truly bespoke architecture may be uniquely interesting and

challenging, this is rarely necessary. The diversity of software systems running today has

led to numerous common problems with known solutions from which we may profit.

�Summary
In Chapters 6, 7, and 8, we explored the problems surrounding the current “flat

taxonomy of patterns” and how each pattern has devolved into vague umbrella terms

that encompass many diverse implementations that share superficial topological

similarities. In this section, we aim to remedy this disconnect between terminology

and explicit meaning by redefining each of the nine common patterns by their core

constraints. Remember that constraints, at their core, are named, codified, reusable,

architecturally significant decisions capable of both effecting and affecting a system’s

architecture capabilities. When precisely defined, each pattern becomes an abstract

style, making explicit what is often implicit (and potentially overlooked) and providing

a valuable starting place for our work. A derived architectural style will thus extend an

abstract style with additional or modified constraints as necessary to achieve optimal fit.

As you will see in the upcoming section, not only does this approach reduce risk,

improve fit, and ultimately result in true clarity of architectural communication, a

constraint-driven (or decision-driven) approach unlocks an unprecedented path for

architectural execution and evolution.

One final note, although the next section is ostensibly about patterns, it is really

about the constraints that make up those patterns and elicit their capabilities.

Remember, patterns are not architecture, they are a side effect of architecture. In the

following chapters, as each architectural constraint is first introduced, we will discuss

Chapter 10 Abstract Styles: A New Look at Patterns

138

considerations, trade-offs, and implementation details. The constraint descriptions,

considerations, and implementation details will form the foundation of your work as

you go from defining a style to designing an architecture (a blueprint for a concrete

implementation of a style for a given system). As familiar constraints are subsequently

referenced in additional styles, rather than repeat the trade-offs and implementation

guidance, the chapter where that constraint is first introduced will be referenced.

Chapter 10 Abstract Styles: A New Look at Patterns

SECTION 2

Patterns, Abstract Styles,
and Architecture As a
Continuum

141
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_11

CHAPTER 11

Architecture As a
Multifaceted Continuum

When you change the way you look at things, the things that you look
at change.

—Eugene Burger

For too long, we have regarded architecture the same way Martin Fowler once observed:

“…things that people perceive as hard to change…”1 which has resulted in a great deal of

overengineering up front in countless projects, thus introducing significant risk. Mature

and sophisticated architectures require equally mature and sophisticated development

teams, environments, and organizations. Significant, rapid cultural change is extremely

difficult to execute. That said, generally, practitioners see the risk of premature

optimization as preferable to a downstream rewrite (where decomposing a monolithic

system into a well-factored distributed system can take many years of effort). In truth,

however, this is a false dichotomy.

As a practicing, independent software architect, my clients often express a desire

to move in the direction of microservices. I am frequently known to respond to such

statements with “No, you don’t want microservices, you want something that you
believe microservices will give you. Why don’t we talk about what that is, then we can
figure out the best way to get there.”

There are many architectural capabilities that microservices promise, all of which

are a consequence of the style’s underlying constraints. If a system requires any subset

of those capabilities, typically only a corresponding subset of the constraints is required.

1 Fowler, M. (2003). Who Needs an Architect? IEEE Computer Society

https://doi.org/10.1007/979-8-8688-0410-6_11#DOI

142

Looking at architecture as a multifaceted continuum will illuminate new evolutionary

paths. Change becomes much less daunting, and a promise of increased architectural

agility materializes as a result.

�Agile Architecture
Once you let go of the fantasy of software development as delivering what
the customer wants, and embrace the reality of software development as
helping them to figure that out, it gets a lot easier

—Jason Gorman

The Agile Manifesto grew from repeated confirmation that all software begins as

a hypothesis. When we blindly accept a hypothesis as fact, we rob ourselves of the

opportunity to confirm our assumptions. Teams invest significant effort in the direction

of unquestioned assumptions and untested hypotheses. It is only when we begin to get

real feedback on working software that we learn if our efforts produced value or waste.

This late-stage feedback will often shatter our assumptions and incinerate development

budgets. Agile approaches, in their purest form, center on setting up feedback loops

to quickly determine what is value, what is waste, and how development should pivot

based on feedback.

We tend to think about agility in terms of product evolution. However, if the product

and market are evolving, so too are the necessary architectural capabilities. We tend to

think about overall agility as a product of design. Martin Fowler expressed this very well

in his Design Stamina Hypothesis2 illustrated in Figure 11-1.

2 Fowler, M. (2007). The Design Stamina Hypothesis. Retrieved from: https://martinfowler.com/
bliki/DesignStaminaHypothesis.html

Chapter 11 Architecture As a Multifaceted Continuum

https://martinfowler.com/bliki/DesignStaminaHypothesis.html
https://martinfowler.com/bliki/DesignStaminaHypothesis.html

143

Figure 11-1.  The Design-Payoff Pseudo-Graph

Fowler’s pseudo-graph illustrates how “putting effort into the design of your software

improves the stamina of your project, allowing you to go faster for longer”; however, this

is only a high-level illustration, leaving the reader to determine what is “good design.” If

Fowler’s hypothesis is correct, it would appear our choices are “no design” (such as the

Big Ball of Mud Style described in Chapter 12) and “good design” which could arguably

be any abstract or intermediary styles described later in this section. Moreover, like

features in a software system, the definition of “good” changes over time. Ultimately, any

notion of “good design” is elusive, subjective, and mercurial. As a result, architecture

efforts either frequently fail or fail to reach their true potential.

Following a multi-year, root-cause analysis, I have uncovered common themes.

In the order I have typed them, these partial or total failures are often caused by some

combination of

•	 The wrong pattern

•	 The wrong capabilities

•	 The right capabilities, but in the wrong measure

•	 Architecture decisions incompatible with the realities of the

organization

•	 Communication failures

•	 Leadership failures

•	 Premature optimization

Chapter 11 Architecture As a Multifaceted Continuum

144

Notably, this list seems to parallel many of the problems the Agile Manifesto sought

to address.

It is okay to outgrow architecture—As long as you know when and how to
evolve it.

�When to Evolve Architecture
Architecture should evolve when you can show that the system no longer meets the

needs of the business or that the change will otherwise materialize meaningful and

concrete business value. The analysis tools introduced in Chapter 4 and the metrics

introduced in Chapter 5 arm you with tools to make these determinations.

Most practitioners only acknowledge outgrown architecture after there has been

a period of pain; this is human nature. Recognizing this early is key to a project's

successful growth. As a system’s architecture becomes more sophisticated and capable,

the underlying constraints make increasing demands on the environment, teams,

and organizations. Some constraints, such as domain-driven module partitioning

or switching from monolithic to distributed component granularity, can come with

significant cost and/or organizational friction. It is important to undertake such

efforts only when there is a clear, net-positive return on investment from the business

perspective. This suggests that there is more than one “payoff line,” and, more

importantly, not every project will reach every payoff line, nor will every project follow

the same trajectory. An example of a possible trajectory and evolution can be seen in

Figure 11-2.

Chapter 11 Architecture As a Multifaceted Continuum

145

Figure 11-2.  Multiple Payoff Lines for Architecture Evolution

We can see that a more data-driven, agile approach will reduce risk, waste, and

provide clarity around the subjective definition of “good” over time. Far too often,

architectural evaluation only takes place up front and after the fact. This is insufficient;

architecture is often as much about monitoring as it is about design.

Both architectural oversight of the system’s components’ alignment with the
prescribed constraints and iteratively reviewing runtime feedback to ensure
ongoing fit should be a near-constant activity.

�How to Evolve Architecture
The false dichotomy of overengineer now or rewrite later is a consequence of the

prevailing pattern-based way of thinking. Pattern-driven architecture suggests the

capabilities of each pattern are static, and changing capabilities will require changing

patterns. Realizing the truth that patterns are not a set of discrete options but rather

waypoints along a vast, multifaceted continuum of possibilities annihilates this notion.

Constraints are atomic primitives that comprise architectural styles and induce

architectural capabilities. If a monolithic system is insufficiently evolvable and agile,

Chapter 11 Architecture As a Multifaceted Continuum

146

in addition to wholesale pattern replacement, we can individually apply relevant

constraints from a more agile style (e.g., microservices) to increase agility. Every addition

or modification of constraints moves the system along the architecture continuum.

The architecture of a system is not, in and of itself, difficult to change. The evolution

of one architecture style to another through mindful addition or modification of

architectural constraints gives us powerful tools. However, all constraints are not created

equal. Some architectural constraints are trivial to change and adapt to while others

remain enormously difficult. One of the more difficult constraints to change is that of

how module boundaries are defined. The Layered Monolith Abstract Style, described

in the next chapter, prescribes module boundaries defined by a technical area (UI, API,

business logic, persistence, etc.) producing large, horizontal slices of a system. Each

layer encapsulates a technical concern, offering a measure of abstraction, yet coupling

within a layer is typically out of scope from the standpoint of architecture. This coupling

becomes enormously problematic when attempting to switch to a domain-based

module partitioning strategy, which prescribes dividing the system into vertical slices

that entirely encapsulate a subdomain, or bounded context (depending on prescribed

granularity).

DDD Definitions 

Domain I n the realm of Domain-Driven Design (DDD) and software architecture,
a domain refers to a core area of expertise or business activity that your software is
designed to address. This provides a conceptual space where your software solutions
are applied to solve specific problems. For example, in an ecommerce application,
one domain encompasses everything related to online shopping, such as product
listings, orders, payments, and customer interactions. Understanding each domain
deeply is crucial because it guides how you design, build, and evolve your software.

Subdomain  Within a larger domain, subdomains are distinct areas of functionality
or expertise that can be isolated and understood independently. They represent
smaller, more manageable pieces of an overall domain. In our ecommerce example,
subdomains might include inventory management, user authentication, and shipping
logistics. Each subdomain has its own set of rules, logic, and complexities. Identifying
subdomains helps in breaking down a problem space into more digestible parts,
making it easier to design and implement solutions.

Chapter 11 Architecture As a Multifaceted Continuum

147

Bounded Context A bounded context is a crucial concept in DDD that defines
boundaries within which a particular model is valid. It is a specific, well-delineated
part of a domain where a certain set of concepts, rules, and relationships apply
consistently. Each bounded context has its own ubiquitous language—a set
of terms and definitions understood uniformly by all stakeholders within that
context. For instance, the term “order” might mean different things in the context
of inventory management vs. customer service. By clearly defining bounded
contexts, you prevent the confusion and complexity that arises from overlapping or
conflicting interpretations of the same terms and concepts.

These definitions help streamline communication and design processes, ensuring
everyone on the team has a clear, shared understanding of each domain and
its subdomains. Consequently, it can be helpful to build a dictionary/glossary of
ubiquitous language terms within a bounded context.

Decomposing a technically partitioned system into subdomain modules or bounded

contexts is a tedious and expensive process. As you shall soon see, however, this is not

the only way to decompose a monolith. The path to low-friction architectural evolution

involves introducing new architectural constraints or changing the constraints that are

easier to change. With each change to the prescribed constraints, a new architectural

style emerges. Once again, architecture is a multifaceted continuum and not a finite set

of discrete choices that demand major rewrites or rework to switch from one to another.

Moving along your system’s continuum in small steps results in tractable

architectural evolution. However, the next steps available to us—and their subsequent

adoption effort magnitude—will depend on the system’s current position within the

continuum, as defined by the current architectural style with its underlying constraints.

This is true whether the design exists in production or on paper. Consequently,

understanding both current and anticipated future needs, combined with the Tailor-

Made model, will arm you with the ability to design for the optimum fit now while

leaving the door open to ongoing architectural evolution.

In short, you will be able to clearly see multiple paths of evolution to align

architecture to current or future needs. Moreover, this new perspective enables

deliberate and mindful choices.

Chapter 11 Architecture As a Multifaceted Continuum

148

�Summary
When we view architecture not as a finite set of discrete patterns but as inestimable

possibilities within a continuum, the prospect of designing an architecture that is

optimal for the current point in time with sufficient flexibility and evolvability for

ongoing tailoring is now in reach. We no longer need to overengineer up front which

often introduces significant risk and friction to a project. Additionally, this model

enables us to practice architecture with a greater degree of precision and reliability, all

while reducing risk.

In the subsequent chapters in this section, we will look at hypothetical systems

and, through the introduction, addition, and modification of constraints, derive nine

common patterns as new abstract styles while deriving “intermediary” styles that

enhance each pattern along the way. You will understand the “how” and “why” behind

each constraint along with its impact on capabilities and inherent trade-offs. Finally, you

will see the Tailor-Made model in action.

Chapter 11 Architecture As a Multifaceted Continuum

149
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_12

CHAPTER 12

The Layered Monolith
Abstract Style

With the growing emphasis on microservices and other distributed archi-
tectures, there is this idea that monoliths are inherently bad. ‘Monolith’ is
not a pejorative; there are many monoliths that are well designed. Moreover,
not every system should be a distributed system.

—Jeff Scott Brown

The humble layered monolith, an architecture that has stood the test of time, remains

relevant and popular to this day. Variations of this style are known by different names.

The “Clean Architecture”1 describes a variant of this style that follows the structured,

modular, testable, and maintainable approach to system design this style prescribes.

The “Onion Architecture”2 is another variation, with its choice of name a reflection of

the system’s composition of layers, with each layer depending only on the layers beneath

it. Even the “Hexagonal Architecture”3 (alternatively named “Ports and Adapters”) can

describe a variation of this style.

Many software projects, in the absence of a prescribed architecture, naturally gravitate

to this style as a sensible starting point for modularizing and organizing the codebase. For

this reason, architects might refer to this style as “the de facto architecture.”

In general, this style and its numerous variations are widely understood, inexpensive,

easy to implement, easy to deploy, and offer reasonable testability and maintainability.

Unlike many of the styles that will follow, this style (and certain other monolithic styles)

1 Martin, R. (2017). Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Pearson
2 Palermo, J. (2008). The Onion Architecture. Jeffreypalermo.com
3 Cockburn, A. (2005). Hexagonal Architecture. Alistair.cockburn.us

https://doi.org/10.1007/979-8-8688-0410-6_12#DOI

150

lends itself well to offline operation which can be helpful for systems that must continue

operation in environments with tenuous network availability. Examples of these types

of environments include—but are not limited to—spacecraft (e.g., satellites, probes,

and even manned spacecraft), commercial aircraft transport, remote field operations,

military applications, cargo shipping, remote scientific infrastructure (e.g., weather

stations in places like Antarctica or mid oceanic buoys), and disaster response where

communications are likely to be intermittent at best.

Like all abstract styles, there exist countless minor—and major—variations in

production today, with the monolithic component topology being the single unifying

attribute. Consequently, developers and architects often erroneously conflate this style

with the Big Ball of Mud. The flat taxonomy strikes again.

To draw a contrast between the titular abstract style of this chapter and the Big

Ball of Mud Style, we will begin by defining the latter. From this foundation, we will

incrementally derive abstract and intermediary styles through addition and modification

of constraints over the chapters that follow in this section.

�The Big Ball of Mud Style
A BIG BALL OF MUD is haphazardly structured, sprawling, sloppy, duct-
tape and bailing wire, spaghetti code jungle. We’ve all seen them. Their
code shows unmistakable signs of unregulated growth, and repeated, expe-
dient repair. Information is shared promiscuously among distant elements
of the system, often to the point where nearly all the important information
becomes global or duplicated. The overall structure of the system may never
have been well defined. If it was, it may have eroded beyond recognition.
Programmers with a shred of architectural sensibility shun them. Only
those who are unconcerned about architecture, and, perhaps, are comfort-
able with the inertia of the day-to-day chore of patching the holes in these
failing dikes, are content to work on such systems.

—Brian Foote and Joseph Yoder

The Big Ball of Mud4 is an architectural style characterized by few architectural

constraints. It is a free-for-all where anything goes. The absence of any prescribed

architectural constraints results in a system that exhibits few architectural capabilities

Chapter 12 The Layered Monolith Abstract Style

151

(Figure 12-1). The Big Ball of Mud abstract style is defined by only two architectural

constraints (both of which are implicit, not prescribed). They are

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

Breaking down this style by capabilities of key interest reveals the following.

�Abstraction
The lack of architectural constraints defining this abstract style results in zero

abstraction. UI concerns, data access, and business logic may comingle. Abstraction is

Extremely Low.

�Affordability
The initial cost of developing a Big Ball of Mud is low. Over time, however, the lack of

structure, testability, maintainability, and scaling overhead will significantly increase

total cost of ownership. These forces exist in tension with one another. The net result of

these forces is an affordability quality that is Below Average.

�Agility
The lack of any kind of structure or any prescribed modularity results in a system that is

enormously difficult and risky to change, let alone change quickly in response to market

demands. It is often extremely challenging to locate all the areas in the code that must

change, and, without clear interfaces and interaction contracts, it is even more difficult

to predict where regression may occur. Agility is Extremely Low.

4 Foote, B., & Yoder, J. (1997). Big Ball of Mud. Presented at the 4th Conference on Patterns,
Languages of Programs (PLoP)

Chapter 12 The Layered Monolith Abstract Style

152

�Deployability
The monolithic component granularity results in a straightforward deployment process.

Since the entire system is deployed all at once, in a single step, little—if any—additional

work is necessary. The lack of constraints defining this style, however, introduces other

challenges surrounding deployment confidence, patching, and deployability at scale.

Deployability of such a system is Average.

�Elasticity
Although many modern hosting environments provide an auto-scaling option that will

respond to bursts in demand, all monolithic architectures exhibit weaker-than-average

elasticity. A sudden spike in demand that triggers auto-scaling will, ideally, allow

requests to be load balanced to the new instance right away.

Large, monolithic codebases often exhibit a slower start time due to the overhead

of loading the application, performing Just-In-Time (JIT) compilation, processing

annotations at startup, and other startup/warm-up tasks. Start times are measured in

seconds (often dozens of seconds), and, during this time, some number of requests will

typically time out. Scaling an entire monolith in response to demand provides a very

blunt tool; the entire system must be scaled even when the burst in demand is very

tightly scoped to a smaller subset of functionality.

Finally, the lack of constraints will often result in a system that is highly stateful

which results in additional complexity in load balancing requests. While a monolith can

usually demonstrate a degree of elasticity, the overall elasticity of this style is Very Low.

�Evolvability
The lack of structure and abstraction results in a high degree of coupling across the

entire codebase. The code is often highly connascent. Connascence is a software

quality metric developed by Meilir Page-Jones5 that measures complexity caused by

dependency relationships. Two components are connascent if a change in one would

require the other to be modified to maintain the overall correctness of the system.

5 Page-Jones, M. Comparing Techniques by Means of Encapsulation and Connascence,
Communications of the ACM, Volume 35, Issue 9, 1992

Chapter 12 The Layered Monolith Abstract Style

153

Changes become increasingly difficult and risky with this style. The overall evolvability of

this style is Extremely Low.

�Fault Tolerance
Another aspect of monolithic architectures in general, and poorly factored monoliths

specifically, is a low degree of fault tolerance. In most cases, the entire system is either up

or down, with little room in between. The lack of modularity inherent to this style, which

precludes any form of bulkheads which might arrest cascading failures, compounds

this problem. Furthermore, as mentioned in the section on elasticity, stateful systems

introduce complexity when attempting to fail traffic over to a healthy instance. The

overall fault tolerance of this style is Very Low.

�Integration
The ad hoc and haphazard approach to building a Big Ball of Mud results in no well-

defined interfaces necessary to improve the capability of integration. Integration might

be possible, but APIs are typically inconsistent, incomplete, and the lack of strong

interfaces and abstraction results in APIs that often introduce breaking changes. The

overall integration of this style is Below Average.

�Performance
Monolithic architectures generally exhibit reasonable performance owing to code

invocation taking place on the stack rather than over the network. Abstractions will often

trade performance for structure and modularity; thus, removing these more generalized

interfaces in favor of tight coupling may further modestly improve performance. The

ceiling of performance will often be governed by the combination of resources on the

host machine and the required resources for your application. The challenges with

scaling will limit overall performance. The performance of this style is Above Average.

�Scalability
As we established in the section on elasticity, a monolith can scale. One way to

accomplish this is by scaling up the hosting environment, a vertical scaling operation

Chapter 12 The Layered Monolith Abstract Style

154

to increase the total amount of resources available to an instance of the system.

Additionally, a monolith may be scaled out, a horizontal scaling operation accomplished

by spinning up additional instances of the system. As you have already seen, the

mechanism for scaling—loading the entire system in a second instance—is blunt.

Moreover, in the absence of other constraints, load balancing across instances can be

challenging. The scalability of this style is Low.

�Simplicity
The initial development of a Big Ball of Mud asks little of a developer; write whatever

code you want and put it wherever you feel like. The lack of governing constraints makes

the act of writing code simple. However, the fact remains that any kind of maintenance

and evolution will become increasingly challenging over time. This offsets overall

simplicity. The complexity of this style has a nonlinear relationship with the code

volume. Doubling the application’s codebase may increase the complexity by parabolic

or hyperbolic rates. Consequently, the overall simplicity of this style is Below Average.

�Testability
The high degree of coupling, the lack of modularity, interfaces, and abstraction result

in a system that is incredibly difficult to test. Little—if any—functionality can be tested

in isolation. Typically, every change will require a comprehensive regression test,

encompassing many potential code paths. Unstructured and ungoverned codebases

often have exceedingly high cyclomatic complexity. Cyclomatic complexity is a metric

that quantifies the number of linearly independent code paths through the source code.6

Excessive use of branching statements will negatively impact cyclomatic complexity and

will often increase the potential code paths beyond what can be manually tested (or even

known). The testability of this style is Extremely Low.

�Workflow
While any system can model and implement business workflows, this style offers

few paths to orchestrate such a workflow resulting in a preference for hardcoded

6 McCabe, T. (1976). A Complexity Measure. IEEE Transactions on Software Engineering SE-2

Chapter 12 The Layered Monolith Abstract Style

155

implementations that often lack observability and flexibility. The workflow capability of

this style is Below Average.

BIG BALL OF MUD ABSTRACT STYLE

Abstraction Extremely Low

Affordability Below Average

Agility Extremely Low

Deployability Average

Elasticity Very Low

Evolvability Extremely Low

Fault-Tolerance Very Low

Integration Below Average

Performance Above Average

Scalability Low

Simplicity Below Average

Testability Extremely Low

Workflow Below Average

Figure 12-1.  Architectural Capabilities of the Big Ball of Mud

Chapter 12 The Layered Monolith Abstract Style

156

�The Semi-structured Big Ball of Mud Style
The Big Ball of Mud Style has few strengths and many weaknesses. It may be suitable

for a simple system that exhibits very low code volatility and runtime requirements. It

may be equally suitable for a proof of concept, but be cautious of business pressure to

quickly release a proof of concept as a production system. The capabilities of such an

architecture begin to change when you define additional rules for the system in the form

of additional architectural constraints.

We can derive a new architectural style by extending the defining constraints to

include a degree of separation of concerns. For example, let us separate the UI from the

rest of the application. Since the underlying constraints have changed, we now have a

new architectural style, the Semi-structured Big Ball of Mud Style (Figure 12-2), defined

by the following constraints:

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

•	 (Limited) Separation of Concerns

Figure 12-2.  The Semi-structured Big Ball of Mud Style

This additional constraint will modestly improve total cost of ownership, evolvability,

simplicity, and testability. The only perceptible improvement on our scale of extremely

low to extremely high occurs with testability (which now scores Low). If there is a

Chapter 12 The Layered Monolith Abstract Style

157

data storage component to this system, we might prescribe some form of shared data

persistence such as a shared database.

�The Semi-structured, DB-Backed, Big Ball
of Mud Style
By prescribing a shared, persistent storage mechanism such as a relational database,

there is an additional separation of concerns that takes place further improving

simplicity. The database exposes a standard interface and offers possibilities to

perform certain tasks (such as joining records) closer to the data itself which will often

reduce bandwidth, I/O, and computation cost (improving total cost of ownership and

performance). Stored procedures can be defined independently of the application code

which can improve maintainability, performance, and potentially testability. The Semi-
structured, DB-Backed, Big Ball of Mud Style (Figure 12-3) is defined by the following

constraints:

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

•	 Separation of Concerns

•	 Shared Database

A Word on Databases 

While virtually all databases provide similar functionality (the ability to store and
retrieve data using a standardized query language and interface), they do not
all offer similar architectural capabilities. NoSQL databases such as MongoDB
are generally easier to scale out as structure naturally lends itself to sharding—
distributing data across multiple nodes—while this is generally more difficult with
relational databases. NoSQL databases can also offer improved raw query speed
as many queries do not require joins to retrieve a representation of a complete
object. This does not mean that NoSQL databases are objectively superior to
relational databases, only that the trade-offs are different. Relational databases

Chapter 12 The Layered Monolith Abstract Style

158

were not created to simply optimize storage cost (which was admittedly quite
high when Ed Codd first created the relational paradigm7), but rather, they were
designed to embrace the reality that many data entities are inherently related. By
decoupling shared relations through the process of database normalization, the
relational database provides better consistency with less overall overhead to keep
state consistent.

The choice of database type will depend not only on the required architectural
capabilities of the overall system or component but also on the shape of the data.
Inherently relational entities will often benefit from a normalized, relational model,
whereas entities that have few—if any—logical relations will perform better in
document or object databases. Other systems will benefit from key-value stores.

The lines that separate these different database types have been steadily blurring.
NoSQL databases increasingly offer join capabilities, and many modern relational
databases can not only be denormalized as required but are also progressively
becoming multi-model. A multi-model database can comprise of relational
tables, JSON object stores, graphs, and more, all stored within a single Database
Management System (DBMS). These discrete storage models will often interact
seamlessly.

Choice of database technology depends on the shape of the data, storage and
hosting costs, licensing costs, team or organizational skills, and the required
degree of identified architectural capabilities. In short, it depends.

7 Codd, E. F. A Relational Model of Data for Large Shared Data Banks, IBM Research
Laboratory, 1970

Chapter 12 The Layered Monolith Abstract Style

159

Figure 12-3.  The Semi-structured, DB-Backed, Big Ball of Mud Style

The Semi-structured, DB-Backed, Big Ball of Mud Style offers Low testability (an

improvement over the Very Low testability of the Big Ball of Mud), Average performance,

Average affordability, and Above Average simplicity. The next phase of evolution of

this style requires replacing the remaining ball of mud component with something a

little more structured. By adding two additional constraints, we arrive at the Layered
Monolith Abstract Style.

�The Layered Monolith Abstract Style
Escaping the Big Ball of Mud family of architectural styles begins by prescribing some

form of modularity. The Layered Monolith Abstract Style (Figure 12-4) prescribes

the layered system constraint. The layered system constraint dictates a hierarchical

organization of the system, with each layer providing services to the layer above it

and serving as a client to the layer below. The precise boundaries of these layers are

controlled by the technical partitioning constraint which dictates that layer boundaries

are defined by technical area. In total, the defining constraints of the Layered Monolith
Abstract Style are

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

Chapter 12 The Layered Monolith Abstract Style

160

•	 Separation of Concerns

•	 Shared Database

•	 Layered System

•	 Technical Partitioning

It is through the composition of constraints that we move from the accidental

architecture of the Big Ball of Mud Style to a deliberately designed abstract style that

represents a formal, foundational definition of the Layered Monolith pattern. However,

as we explore this abstract style, we will derive many concrete styles by exploring the

impact of additional constraints.

Figure 12-4.  The Layered Monolith Abstract Style

This pattern, as an abstract style, acts as one of our primary starting points for a

tailored or made-to-measure architectural style designed to fit the business, the project,

the teams, the organization, and the environment holistically. Let us take a deeper look

at this foundational, abstract style.

Chapter 12 The Layered Monolith Abstract Style

161

�Inside the Monolith
In this style, the first layer of modularity occurs in the form of coarse-grained layers that

provide both functional cohesion and clear roles and responsibility models (Figure 12-5).

For example, a UI-focused team might own the presentation layer, while DBAs or DB

developers might own the persistence and database layers. One or more backend teams

might own the services or business logic layers. From an organizational standpoint, this

structure aligns with many extant organizational structures. This is important as Conway’s

Law dictates that “Organizations that produce systems, are constrained to produce designs

which are copies of the communication structures of these organizations.”8 In other words,

regardless of the architecture we design, we will ship the org chart. For organizations

structured around technical teams or feature teams, we must either design architectures

that mirror that structure or we need to change the structure of the organization to mirror

the design. This is an example of a nonnegotiable organizational constraint.

Figure 12-5.  Example Layers Inside the Monolith

Inside this monolith, the number and nature of the layers is often an implementation

detail which the architecture may, or may not, prescribe. Layers may be combined (e.g.,

business logic and persistence) or may be further decomposed in a manner consistent

with additional architectural constraints (when prescribed) or by developer preference

8 Conway, M. E. (1968). How do Committees Invent? Datamation, 14(5), 28–31.

Chapter 12 The Layered Monolith Abstract Style

162

(when left as a decision for the implementation teams). For example, by including

a Model-View-Controller (MVC) constraint, the presentation layer may look like

Figure 12-6.

�The Presentation Layer

Figure 12-6.  Illustration of an MVC Presentation Layer

In the MVC-Layered-Monolith style, the presentation layer will contain controllers

which marshal user requests and views that present responses. One key aspect of this

style is the abstraction afforded by these layers; the controllers and views do not need to

know anything about the database, just how to handle requests and format responses.

This layered approach has the added benefit of decomposing a complex application into

smaller, approachable components.

The addition of the MVC constraint prescribes additional modularity within the

presentation layer which improves testability, agility, maintainability, abstraction,

evolvability, and simplicity.

The MVC pattern and its descendants are not the only way to design the

presentation layer. In a forms-style application, the UI layer is comprised of forms

and the “code-behind” the forms (Figure 12-7).

Figure 12-7.  Illustration of a Forms-Style Presentation Layer

Chapter 12 The Layered Monolith Abstract Style

163

The entire presentation layer can also be sliced off the monolith, which is

accomplished by prescribing the Client/Server constraint in a concrete/derived style. In

this tailored style, the exposed layer on the backend is typically some sort of API (which

may be yet another prescribed architectural constraint) and a standalone client which

might be in the form of a fat-client application, a native mobile app, or a web-

based single-page application (SPA). These are all derived variations of the abstract

style forming a new concrete style. While there is significant ambiguity attached to a

generic pattern label, a defined architectural style is precise and leaves little room for

misunderstanding.

�The Services Layer
The purpose of the services layer is to expose defined use cases to the presentation layer

while providing an abstraction between the presentation and business logic layers. This

layer may be a mini ball of mud, or it might be extremely well factored, with modular

business services that are typically grouped by entity or domain workflow. An example

depiction of this can be seen in Figure 12-8.

Figure 12-8.  Illustration of an Example Services Layer

The services layer typically provides specific domain or subdomain workflows

through the composition of more general business logic components, which reside in

the next layer, the business logic layer.

�The Business Logic Layer
As we traverse down the layers of the onion, we get closer to the application core, this

time focusing on the business logic (Figure 12-9). Isolating the business logic from the

services layer allows for better reuse of business logic modules. Once again, generally

business logic components are broken up by business entity.

Chapter 12 The Layered Monolith Abstract Style

164

In theory, as business logic components evolve, their module boundaries provide

natural bulkheads to scope changes to a single component. They might be shared

across other applications or exist as standalone modules within the system. There are

trade-offs to both approaches. Reusable business logic components tend to require

broad consensus and will often involve some amount of coupling with the consumers

of these components. This will introduce challenges in attempting to evolve a single

business logic component shared across multiple systems without introducing some

kind of breaking change. Building truly general interfaces can often impact overall

efficiency of the system since these core components are not optimized for any specific

implementation. Notably, it is also possible to use a combination of custom components

and shared components (Figure 12-9). Custom interfaces or optimized business logic

components might simply extend generic, shared interfaces or components.

Figure 12-9.  Illustration of an Example Business Logic Layer with Shared
Components

As a general guideline, business logic exists independent of data storage concerns,

which suggests another layer, the persistence layer.

�The Persistence Layer
This layer is responsible for connecting the application to the underlying storage system.

The classic depiction of the layered monolith architecture (Figure 12-5) suggests this is

the innermost—or lowest—layer of the system. However, the mental model afforded by

the hexagonal architecture suggests the core is the business entities, surrounded by the

business logic, with the UI being a user-facing “port” (with controllers as the “adapters”)

on the surface. Likewise, the persistence layer being a technology-facing “port” with the

persistence layer being its respective “adapter” (Figure 12-10). In the depiction below,

the left half represents user-facing ports, and the right half represents technology-

facing ports.

Chapter 12 The Layered Monolith Abstract Style

165

The key to the “ports and adapters” approach to modeling a system lies in dividing a

system into several loosely coupled, interchangeable components. The ports represent

where these components are “plugged in” to the system, and the adapters provide the

standard interface, which powers the subsequent interchangeability. The Layered,

Hexagonal, and Onion models are similar but different ways of describing, depicting,

and reasoning about a system.

Figure 12-10.  Layered Architecture Described by Ports and Adapters

The Layered Monolith Abstract Style prescribes a single, shared database.

Consequently, all transactions can be atomic, even when a specific domain workflow

modifies multiple entities. Adapters often take the form of the repository pattern, where

each component is responsible for a single business entity (which may occupy one or

more tables in a relational database or an external service), orchestrated by a single Unit

of Work (Figure 12-11).

Chapter 12 The Layered Monolith Abstract Style

166

Figure 12-11.  Illustration of an Example Business Logic Layer

�Layer Encapsulation and Abstraction
Each layer in this family of styles provides some amount of abstraction, encapsulating a

well-defined category of behavior. Lower layers do not have dependencies on any of the

layers above them. In many cases, one layer cannot “see” beyond the next layer below it.

When this is true, the immediate lower layer is said to be “closed.”

We can explore this concept using the metaphor of a restaurant. The customer

represents the user interacting with the system, the waiter or waitress (a.k.a. server)

is the presentation layer (taking orders and serving up the food as it’s ready), the

restaurant point of sale (POS) is the services layer, the kitchen is the business logic
layer, the walk-in fridge/freezer is the persistence layer.

In the normal flow of events, the customer interacts with the server, the server enters

the orders into the POS, and the kitchen receives these orders and prepares the food,

retrieving ingredients from the walk-in as needed. When the food is ready, the server

takes the food from the kitchen and delivers it to the customer.

It would be highly unusual for the server to perform the actual cooking, and the

customer should not be interacting with the restaurant’s POS. All these layers can be

considered “closed” (Figure 12-12).

Chapter 12 The Layered Monolith Abstract Style

167

Figure 12-12.  Closed Layer Request Flow

The ability for each actor in this system to specialize in a small number of scoped

tasks will result in a smooth operational experience most of the time. A server does

not need to know how to grill, sauté, prepare sauces, create desserts, etc. The kitchen

can focus on this without the overhead and distractions that come with handling

customer interactions. Having all kitchen requests flow through the POS streamlines

communication between front-of-house and back-of-house following a first-in/first-out

(FIFO) flow. Our software systems may benefit from similar encapsulation/abstraction.

What about exceptions? Imagine the server delivers the prepared food to the table

but an item is missing or prepared incorrectly. Entering a correction into the POS,

placing it in the back of a FIFO queue is a suboptimal action to take. In this scenario,

it would be preferable if the server could bypass the POS and simply walk directly into

the kitchen to request the missing item or the remake “on the fly.” To account for this

scenario, the services layer might be defined as an “open” layer, a layer that should be

used for the common case but may be bypassed when necessary (Figure 12-13).

Chapter 12 The Layered Monolith Abstract Style

168

9 Ford, N., Richards, M. (2020). Fundamentals of Software Architecture: An Engineering Approach.
O’Reilly

Figure 12-13.  Open Services Layer

While exceptions and deviations from the “happy path” are examples where an open

layer can be useful, there are also often situations where intermediary layers add no

value, they simply accept input and then turn around and directly forward that input to

the next layer. In such cases, intermediary layers add zero value, just overhead. This is

referred to as the Architectural Sinkhole Anti-pattern9 and is another case where open

layers may be warranted to decrease accidental complexity.

�Summary
This is a relatively long chapter to describe such a simple architecture pattern, but

remember, this chapter has covered not one but numerous architectural styles. The

pattern-driven architect might see all these styles as identical, but the holistic architect

sees each distinct architectural style as a unique architecture with various strengths and

weaknesses.

Chapter 12 The Layered Monolith Abstract Style

169

Beyond the core constraints that define the abstract style, we introduced the

following additional, optional architectural constraints:

•	 Stateless constraint

•	 MVC

•	 Forms UI

•	 Fat client-server

•	 Web client-server

•	 API constraint

•	 Additional database constraints

•	 Constraints around code reuse

•	 Modularity within individual layers

•	 Open/closed layer constraints

We also discussed an organizational constraint that requires that system component

boundaries align with organizational structure in the context of Conway’s Law.

Because none of these additional constraints define the core abstract style but rather

exist as additional options available to us for tailoring or fine-tuning, we will not include

them as part of our abstract style definition. Therefore, in aggregate, the abstract style

will elicit the characteristics shown in Figure 12-14.

Chapter 12 The Layered Monolith Abstract Style

170

THE LAYERED MONOLITH ABSTRACT STYLE

Affordability Extremely High

Agility Below Average

Abstraction Average

Configurability Average

Deployability Average

Elasticity Average

Evolvability Average

Fault-Tolerance Low

Integration Below Average

Interoperability Below Average

Performance Above Average

Scalability Low

Simplicity Extremely High

Testability Average

Workflow Below Average

Figure 12-14.  Architectural Capabilities of the Layered Monolith Abstract Style

Chapter 12 The Layered Monolith Abstract Style

171
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_13

CHAPTER 13

The Distributed N-Tier
Architecture Abstract
Style

Layered system constraints allow intermediaries—proxies, gateways, and
firewalls—to be introduced at various points in the communication with-
out changing the interfaces between components, thus allowing them to
assist in communication translation or improve performance via large-
scale, shared caching.

—Roy Fielding

In the last 15 years or so, there has been a great deal of effort undertaken to decompose

layered monoliths into microservices which is, as has already been noted in this section,

incredibly difficult. In truth, the microservices architecture is not the only path to

decomposing a layered monolith into standalone services. Prior to the introduction

of that pattern (along with the various, enabling X factors), the next logical step in a

growing system was the Distributed N-Tier Architecture. Let us explore this evolutionary

path by continuing along the architecture continuum to our first distributed

abstract style.

Imagine you are responsible for the architecture of a successful, growing software

system. The MVP was built using a tailored version of the Layered Monolith Abstract

Style; however, a consequence of the success of the system means it has outgrown its

architecture.

https://doi.org/10.1007/979-8-8688-0410-6_13#DOI

172

Following a detailed requirements analysis effort (based on the process described

in Chapter 4), you determine the current architecture is underperforming in key areas.

First, performance and scale are becoming problematic. The current architecture offers

Low scalability, but current needs are closer to Above Average or High scalability.

Likewise, the current system exhibits Above Average performance, but the business

now requires High performance. Occasional downtime is also causing complaints; the

system must evolve from Low fault tolerance to Above Average or High fault tolerance.

Success has led to increased competition, and the business would like to remain

competitive by getting new features to market faster. Agility must shift from Below
Average to High. You have determined the improvement in agility will require enhanced

testability and deployability. Ideally, both testability and deployability must go from

Average to Above Average. Finally, although the current system is Extremely simple

with high affordability with respect to the cost to maintain and run; both the business

and implementation teams do not mind sacrificing cost and simplicity to achieve these

new goals. In short, the architectural capabilities necessary for success have changed;

consequently, the system’s architecture must change accordingly.

Conventional wisdom insists this will require either a complete rewrite or a very

lengthy monolith-to-microservices refactor. In a competitive market, both options are

risky, perhaps to the point of becoming an existential threat. If all resources are directed

to reaching feature parity in a new architecture rather than keeping up with market

demand, more agile competitors might seize the opportunity to overtake your system.

That is not to say there is never a time for a rewrite or a monolith-to-microservices

migration, but, for the sake of argument, assume this is not one of those times.

In contrast to conventional wisdom, we know that the system’s architecture simply

needs ongoing tailoring to add additional room in the places we have outgrown. This

tailoring is accomplished by adding or changing constraints. Let us look at one possible

path available to us by evolving our Layered Monolith into a Distributed N-Tier system.

Assume the existing system architecture is defined by the core constraints of the Layered

Monolith Abstract style, namely:

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

•	 Separation of Concerns

•	 Shared Database

Chapter 13 The Distributed N-Tier Architecture Abstract Style

173

•	 Layered System

•	 Technical Partitioning

�Adding Constraints
�The Client/Server Constraint
We can modestly improve evolvability, agility, deployability, elasticity, scalability,

simplicity, and testability by adopting the Client/Server constraint. There are notable

trade-offs to this approach. First, it may require a complete frontend rewrite to operate

as a standalone client (which introduces time and cost overhead). Second, we are

already entering the territory of distributed systems. Distributed systems introduce new

complexity that, if not carefully considered and accounted for, can come back and bite

you. In other words, team skills may constrain your options.

The Fallacies of Distributed Computing

In Everett Rogers’ landmark book, Diffusion of Innovations, he notes that
“Individuals cannot deal with an innovation except on the basis of the familiar.”1
This often manifests in applying an old mindset to a new situation, one where
the old mindset may no longer apply. This phenomenon has been so pervasive
in the realm of distributed computing that Peter Deutsch enumerated a list of
false assumptions that virtually every developer makes when they first build a
distributed application. The original list was compiled in 1994, when Deutsch was
a Fellow at Sun Microsystems, and they are

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

1 Rogers, E. (2003). Diffusion of Innovations, 5th Edition, Free Press

Chapter 13 The Distributed N-Tier Architecture Abstract Style

174

5. Topology doesn’t change.

6. There is one administrator.

7. Transport cost is zero.

In 1997, James Gosling, inventor of Java and another Sun Fellow, added an eighth:

8. The network is homogeneous.

What are the consequences of these fallacies?

Assuming the network is reliable will result in overlooking the numerous failure
conditions that can occur during an operational request. During a network outage,
an application may stall or enter an infinite retry loop or fail to restart when the
network becomes reliable again.

Network latency and bandwidth limitations are another fact of life, both between
client and server as well as within a cloud environment. Failure to account for this
will result in unanticipated bottlenecks and performance potentially falling short of
expectations.

Complacency regarding network security can have massive consequences.
Notable incidents include authentication cookies sniffed and stolen on public
Wi-Fi networks. Even within “private” networks, this is not a safe assumption.
Should a threat actor gain entry to a private VLAN in your cloud environment, this
assumption often enables unrestricted lateral movement within the network.

Network topology can—and often will—change. Ignoring this reality can have
negative effects on both bandwidth and latency, causing similar problems.

Multiple administrators may implement conflicting traffic policies. Ignorance of
these will often result in complications.

Transport costs will, almost universally, be nonzero. These can be quite significant,
and failure to consider this reality will often result in budget overruns and revenue
shortfalls.

Finally, if the network is erroneously believed to be homogeneous, the system can
experience the same problems that manifest from the first three fallacies.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

175

Some would argue that High-Availability (HA) clusters have addressed this
among the subcomponents of your architecture. Two aspects that have not been
addressed are connectivity between the HA cluster and the client, and the clusters
become a restriction on your architecture’s ability to scale.

Distributed systems incur what architects occasionally refer to as the distributed

system tax—additional latency, overhead, complexity, additional failure conditions,

and cost that are not present in nonnetwork-based architectures. In our hypothetical

scenario, however, these costs are justified.

Given our system will soon be comprised of at least two discrete, networked

components, they should have some mechanism to communicate. We must prescribe an

API Constraint.

�API Constraints
At first glance, the specifics of an API strategy may seem like an implementation detail.

After all, API strategies all appear functionally identical, but architecture transcends

functionality. Architecture defines the essence of the software, everything it can

do beyond providing the features and functions. Different API approaches bring

consequences that significantly impact architectural capabilities and their measure.

When creating APIs, Kent Beck offers a philosophy defined by three rules for API

design in his JUnit Pocket Guide:2

•	 “Frameworks should be intersections not unions”

•	 “Do your best”

•	 “Evolve slowly”

An explanation for the first rule is that it makes the API simple while maximizing the

utility for the API’s target user base. The second recognizes that your API will have wide-

reaching positive or negative impact. The third recognizes the frustration that the user

community experiences when APIs frequently introduce breaking changes. Providing

2 Beck, K. (2004). JUnit Pocket Guide. O’Reilly

Chapter 13 The Distributed N-Tier Architecture Abstract Style

176

an API with good cohesion and low coupling will make it a pleasure to use your

API. Notably, some API strategies address this philosophy better or worse than others.

For completeness, we will compare and contrast different potential API constraints.

Formally Defining REST—Again

REST was first formally defined in Fielding’s 2000 doctoral dissertation,
Architectural Styles and the Design of Network-Based Architectures.3 While
the paper was largely about the design-by-constraint approach to software
architecture, the REST Architectural Style was defined in Chapter 5 as an example
of how the approach was used to design the architecture of the World Wide Web.
Fielding gave us the tools to define our own architectural styles, but our industry
collectively dismissed this and instead corrupted REST. Once the idea was out in
the wild, REST became yet another victim of semantic diffusion. Like architecture
patterns, so many different APIs have been described as “REST” that the word has
lost all meaning and we revert to a lowest common denominator definition.

The common definition of REST is little more than HTTP+JSON, while, in reality,
REST is an architectural style defined by six constraints. Virtually no REST APIs in
production today adhere to all the defining constraints. Although we know that a
different set of constraints begets a different architectural style with a different
name, the broader industry historically did not, and the name stuck. In 2008,
Leonard Richardson, in an effort to disambiguate all the competing definitions,
introduced a maturity model4 for evaluating how close a “REST” API is to the formal
definition.

Level Zero was originally defined as “One URI, one HTTP method” (think SOAP,
XML-RPC, and graphQL where one endpoint serves all requests via HTTP POST
operations) and has since come to encompass most RPC-over-HTTP APIs since
they do not meet the criteria of a level one system.

3 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures.
Doctoral dissertation, University of California, Irvine
4 Richardson, L. (2008). Justice Will Take Us Millions of Intricate Moves – Act Three: The Maturity
Heuristic, https://www.crummy.com/writing/speaking/2008-QCon/act3.html

Chapter 13 The Distributed N-Tier Architecture Abstract Style

https://www.crummy.com/writing/speaking/2008-QCon/act3.html

177

Level One is where we begin to decouple client and server. Rather than applying
the old mental model of invoking methods and functions, the system defines
information (or non-information) resources as a means of abstracting the
implementation. URIs become stable (i.e., they do not change) identifiers for
resources rather than function endpoints. A level one system does not properly
utilize HTTP’s uniform interface.

Level Two requires use of the resource abstraction, stable URIs as identifiers, and
correct use of the HTTP uniform interface.

Level Three is the only maturity level that fully adopts all REST’s defining
constraints which includes Hypermedia As the Engine of Application State
(HATEOAS), a key component of the REST Architectural Style’s Uniform Interface
constraint. Each of REST’s constraints positively and/or negatively impact
architectural capabilities; hence, API strategy is architecturally significant.

�GraphQL API Constraint

GraphQL is a popular API approach that does not require a client to invoke certain

functions or prescribe any particular resource representation. Instead, graphQL exposes

a query endpoint with which a client may invoke any arbitrary query to retrieve or

modify data. It is exceedingly flexible and efficient from a client perspective as over-

fetching/under-fetching (a common criticism of RESTful APIs) becomes a thing of the

past. This consumer-driven approach significantly influences client agility and client

portability. Initial implementation is also relatively fast.

There are significant trade-offs, however, chief among these being security. Without

great care, exposing an out-of-the-box graphQL endpoint to a web client will expose far

more data than business rules might permit. Securing a public-facing graphQL endpoint

often requires evaluating permissions for every entity and field returned which can

introduce significant performance overhead. Allowing a client to issue any arbitrary

query can result in simple denial-of-service attack vectors by exploiting cycles in entity

relationships. Rate limiting and metering are also challenging as there is no common

unit of per-query cost.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

178

�Level 1 REST API

Abstracting identity and representation from implementation results in a significantly

more evolvable system. The generality of even a level 1 REST interface improves client

portability, reusability, and composability. This often improves overall agility. Securing

a REST API does not typically need the kind of fine-grained controls and verification

required by graphQL, allowing security to be managed at the resource or collection

level. Request metering and throttling are also significantly easier. Finally, as REST is

the architecture of the World Wide Web, it may be the only truly web-scale architecture

out there.

Once again, the trade-offs are significant. It takes a great deal of effort to design a

good API; the cost of longevity and evolvability must be paid up front. The generality

of the REST interface also comes at a cost of network efficiency, with over-fetching/

over-posting common. Client-side resource composition might require several network

requests vs. one graphQL query or a client-optimized remote-procedure call.

�Backend-for-Frontend (BFF) Constraint

It can be difficult to design an API that satisfies multiple clients, particularly when

different clients have vastly dissimilar needs. As an alternative to designing an API that

seeks to satisfy all clients, this approach prescribes client-specific APIs for the various

supported frontends (e.g., SPA, mobile app, CLI, etc.). Each API is optimized for a

specific client, improving speed to market, network efficiency, and design simplicity.

The trade-offs here include maintaining multiple APIs and tight coupling (although

less significant since an organization typically controls the release cycles of both client

and server).

�RPC API Constraint

Remote Procedure Call (RPC) is a style of API that exposes methods and functions to the

network. RPC APIs are very quick and easy to build, relatively easy to understand, and

can be useful when decomposing monolithic systems into distributed systems. Stack

method invocation is replaced with network invocation (ideally while also accounting

for the fallacies of distributed computing). They can also perform reasonably well given

request and response payloads can both be optimized around the specific operation.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

179

On the other hand, exposing code in this way leads to tight coupling between API

and implementation. This results in APIs that can be difficult to change and evolve and

may not be suitable for a wide variety of clients.

Given the ubiquity and overall simplicity of RPC-style APIs, we will select this

constraint for our abstract client-server style despite the numerous trade-offs.

Remember, however, that you have options.

�Changing Constraints
So far, we have a Layered-Client Server RPC Monolith architectural style, derived

by extending our layered monolith with the Client/Server constraint and an RPC

API constraint. Although the addition of these constraints will improve the system’s

architectural capabilities in the desired direction (with acceptable trade-offs), more work

is required.

To continue to improve scalability, elasticity, deployability, and agility, we need to

begin to decompose the system. Breaking apart the monolith will provide the system

with smaller, standalone components that may be scaled independently both on

demand and over time. The reduced binary sizes will also positively impact start time.

Further, smaller components exposing well-defined API interfaces will provide improved

deployability by reducing overall change risk surface area.

�Coarse-Grained Component Granularity Constraint
In the same manner that the Client/Server constraint sliced off the UI into a standalone

component, we can carve out standalone services by extracting additional layers

(Figure 13-1). This is accomplished by replacing the Monolithic Component Granularity

Constraint with the Coarse-Grained Component Granularity Constraint which results in

a new style, the Distributed Layered Client/Server RPC Style.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

180

Figure 13-1.  Slicing a Monolith Along the Seams

The key to the success of this approach for decomposing a layered monolith lies

in the fact that we are not changing the module boundary constraint; this is still a

technically partitioned architecture. As a natural consequence, we are decomposing the
system along existing module boundaries, rather than redefining them across the
codebase.

Although decomposing a system by following existing seams and boundaries

is straightforward and will induce improvements in scalability, fault tolerance, and

elasticity, this constraint brings trade-offs. Notably operational cost and complexity

increases, as well as reduced performance due to the introduction of multiple network

hops to satisfy requests.

Any change to the Component Granularity Constraint will require additional

environmental constraints. For a monolith, a simple Platform as a Service (PaaS) is fine.

However, when the monolith is decomposed, we must begin to think about how to put

Humpty Dumpty together again.

Running a distributed system requires more than APIs to connect our components

together; we must be able to monitor each service, aggregate logs, and trace requests

across multiple distributed components or services. To properly orchestrate such

a system, our environment needs a mechanism to add hosting resources to the

environment as the system grows or changes, ideally through Infrastructure as Code

(IaC) which implies the Simple Environment Automation Environmental Constraint.

Additionally, request routing, service discovery, and authentication must be baked into

the entire environment—a Distributed System Environmental Constraint.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

181

That being said, to achieve an improvement in overall agility, one more constraint is

necessary, Independent Deployability.

�Independent Deployability
If we have decomposed our monolith into multiple standalone services but we continue

to deploy it like a monolith, what have we really accomplished? Without changing the

Monolithic Deployment Granularity Constraint, we simply end up with a different kind

of monolith, a distributed monolith. In many ways, a distributed monolith offers the

worst of both worlds—all the complexity and overhead of a distributed system with

the constrained agility and deployability of a monolith. Deployments require high

coordination costs, huge testing scopes, and increased risk. Consequently, releases

become less frequent while productivity-diminishing code freezes become more

frequent. For this reason, we must replace the Monolithic Deployability Granularity

Constraint with the Independent Deployability Constraint. In essence, this constraint

dictates that each component of the system must have independent development and

release cycles. This constraint requires more than a simple dictate from on high; the
teams, organization, and environment must evolve to enable this constraint.

�Team, Organizational, and Environmental Constraints

Virtually, all distributed systems will contain some amount of interservice dependency.

Accordingly, achieving independent deployability requires significant changes to how

teams have historically worked in monolithic environments, beginning with how APIs

and public interfaces are defined.

The overwhelmingly common approach to API development today centers around

emergent design; as code is written, the API emerges (in direct violation of Beck’s second

rule—“Do your best”). As changes are made to the codebase, a new API emerges. Other

teams who rely on this API can make little progress until a final API is published. A high-

churn API results in a high-churn client, which will incur additional integration testing

overhead (thus violating Beck’s third rule—“Evolve slowly”). Often, this integration

testing happens in a shared development environment (which may reside in the cloud

or locally using desktop container orchestration tools like Docker Compose). When the

client is tested and validated in the shared environment, it might appear to be ready

to deploy, but, with independent release cycles, there is no guarantee the version of

the server in dev—and its API—will match what exists in production (which suggests

Chapter 13 The Distributed N-Tier Architecture Abstract Style

182

the need for a Development Environment Isolation Environmental Constraint).

Ultimately, the development and release cycles of both the client and server are coupled,

meaning releases must be coordinated. Scale this to multiple teams and services and the

Independent Deployability Constraint goes out the window.

Alternatively, teams depending on an emerging API simply wait for the definitive

version of the API to emerge and be released. The agility promised by the Independent

Deployability Constraint evaporates as independent development and deployment

cycles become sequential development and deployment cycles. In either case, as

additional breaking changes emerge, additional coordinated releases must take place.

Contrast this with an API-first or design-first approach to API development. In this

scenario, the API is fully designed before writing a single line of code, and this design

becomes a standalone artifact in the form of a well-defined interface that can be mocked

or faked by implementation teams who depend on the API. Design first is also a path

toward more stable APIs as the design phase requires deeper and more deliberate

thought. This design must act as a contract which includes an implicit promise not to

break it. Although defining abstractions is not always easy, and rarely a skill that comes

naturally to developers, effort in this area will almost always yield benefits in terms of

agility and loose coupling within the environment. In short, an API-first team constraint

trades simplicity for long-term agility and deployability.

API first is generally easier with REST APIs than, say, RPC APIs as the resource

abstraction naturally decouples the API from implementation. In contrast, RPC API

styles depend, in part, on the code. To achieve independent deployability, the up-front

design effort is equally important.

More frequent independent deployments also require the investment of effort

into pipelines and automation. The production environment is not the ideal place to

first discover integration failures; the feedback must be “shifted left” which requires

additional testing, additional quality gates, and more sophisticated automation. To

achieve the desired agility, teams can no longer delegate deployment to an operations

team but instead must practice DevOps either on their own or in collaboration with

operations.

The organization must also adjust how they organize backlogs. Features or stories

that require changes to multiple services must be decomposed and sequenced. This is

significantly more challenging in a technically partitioned system when compared with a

domain-partitioned system (as you will see in subsequent chapters).

Chapter 13 The Distributed N-Tier Architecture Abstract Style

183

In short, we cannot simply prescribe independent deployability or a distributed

granularity as these constraints depend on team, organizational, and environmental

constraints that must be in place, addressed, or you must select a different set of

constraints with fewer dependent constraints. For an architecture to “fit,” your designs
must be in reach of the teams and organizations.

�The Distributed N-Tier Abstract Style
Through composition of constraints, we have derived a new abstract style (Figure 13-2).

Figure 13-2.  The Distributed N-Tier Abstract Style

When adopting this style, many concepts from the Layered Monolith style are carried

over since this style is an evolved variation of the foundational pattern. It should be

noted that this style is not necessarily a layer-for-layer decomposition. Perhaps business

logic and persistence make sense to be grouped, or API and business services. This

Chapter 13 The Distributed N-Tier Architecture Abstract Style

184

layered architecture also opens opportunities to not only abstract the database but also

legacy and external systems, as well as shared caches. The possibility for broader reuse of

business logic components is also now present.

A detailed breakdown of the capability ratings for this abstract style will appear in the

summary at the end of this chapter, but, before we get there, we will explore additional

potential concrete styles that bring us closer to the architectural requirements stated at

the beginning of this chapter.

�Tailoring This Abstract Style
By decomposing the system into standalone services, the overall amount of available

resources has increased. Each component may also be independently scaled, which

further improves scalability, elasticity, and offers better overall resource utilization. Scale

will influence overall performance, but gains will be slightly offset by network latency.

This is why thinking carefully about service granularity is important, particularly for

distributed technically partitioned styles where most requests will require coordination

of multiple services.

As the system grows, the bottleneck will inevitably move to the database. As we

explored in Chapter 12, NoSQL databases will often scale out easier than relational

databases, although that is not to say that relational databases cannot scale. One

approach is to apply the Command Query Responsibility Segregation (CQRS)
Constraint.

�The CQRS Constraint

CQRS, at a high level, describes a strategy to route reads and writes to different servers

which can have significant effects on the overall architectural capabilities. Many

applications perform significantly more reads than writes, and, in such cases, it can be

valuable to distribute read queries across multiple database replicas, routing only writes

to the primary database (Figure 13-3). In essence, we are segregating the responsibility

of commands and queries. Because of this constraint, scalability and performance will

increase. Additionally, this approach retains the simplified integration and logic that is

inherent to a monolithic database.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

185

Figure 13-3.  CQRS N-Tier Architectural Style

Like all constraints, the CQRS constraint will bring trade-offs. First, with more

moving parts comes more complexity. Rolling out schema changes as part of a release

can be challenging. Finally, CQRS introduces edge cases that teams and architecture

must account for.

A single relational database offers ACID (Atomic, Consistent, Isolated, and Durable)

properties; however, when writes are routed to the primary instance and reads to

replicas, there will be cases where a read returns stale or missing data due to replication

latency. Acceptance of this fact or more sophisticated routing logic is necessary in

such cases.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

186

CQRS and Flexibility: Overcoming Write Saturation

Approximately 15 years ago, I was working as the chief architect at a social media
startup. Prior to being recruited, the MVP was designed and built using a MySQL
database. Over time, this database was beginning to struggle due to increased
load. After building multiple read replicas, we implemented CQRS by way of
MaxScale, a DB Proxy which acted as an intermediary, routing writes and certain
read requests to the primary while load balancing read queries to the replicas.
This approach opened up tremendous growth, but we did eventually reach a
point of write-saturation on the primary. The long-term solution, of course, was to
decompose the system but the economics of startups sometime require creative
short-term solutions.

Ultimately, we discovered a handful of write “hotspots.” The worst offender was
integrated telemetry and logging that was tightly coupled to both the database
and the broader codebase. Knowing this would be difficult to untangle from the
codebase given time and budget constraints, we turned to an axis of flexibility that
CQRS offered by reconfiguring the primary DB along with most of the read replicas.

MySQL supports pluggable storage engines, with options well beyond the common
InnoDB and MyISAM. To alleviate write pressure, we replaced the default storage
engine with the very niche “blackhole” storage engine. Blackhole performs no
I/O at all; writes are acknowledged, then discarded. These writes are, however,
replicated. Most read replicas also utilized the blackhole storage engine, so the
heavy write load only occurred on the one or two instances actually persisting the
writes (and were not included in the load balancing rotation).

The flexibility offered by CQRS combined with the creativity of the team enabled
rapid remediation of the performance problems, buying time for implementing
longer-term solutions.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

187

�Mixed Component Granularity Constraint

In the abstract, the Distributed N-Tier Style prescribes coarse-grained components;

however, there may be components that benefit from further decomposition

(Figure 13-4). Business services are often a good candidate for this decomposition,

particularly if they become shared across multiple applications. Doing so will generally

improve agility, scalability, elasticity, and MTTR.

Figure 13-4.  Multigrain Proxy CQRS N-Tier Style

�Precision Tailoring for a Precision Fit

Based on the business requirement received at the beginning of this chapter, we

decomposed our monolith and tailored the architecture in a straightforward manner

that is largely compatible with the existing architecture, the teams, the environment,

and the organization. The design-time feedback of the Tailor-Made model shows a near

perfect alignment of architectural capabilities for this example derived style with the

new requirement targets. This can be visualized and explored using the Tailor-Made

Workbook (introduced in Section 1) which incorporates the model's capability trade-off

weighting for rapid evaluation of candidate styles.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

188

�Summary
Although we have looked at some concrete variations of this abstract style, let us close

this chapter by summarizing this abstract style’s defining constraints:

•	 Coarse Component Granularity

•	 Layered System

•	 Technical Partitioning

•	 Client/Server

•	 Independent Deployability

•	 Separation of Concerns

•	 Shared Database

•	 RPC API

This collection of constraints requires the following team, organization, and

environmental constraints:

•	 ENV: Development environment isolation

•	 ENV: Simple environment automation

•	 ENV: Distributed system environment support

•	 ORG: Optimized backlog for independent development

•	 TEAM: API-first development

•	 TEAM: Pipeline development skills

•	 TEAM: Automation skills

The non-architectural constraints are necessary for the successful adoption of

non-monolithic granularity and independent deployability. The base capabilities of this

abstract style are shown in Figure 13-5.

Chapter 13 The Distributed N-Tier Architecture Abstract Style

189

THE MODULAR MONOLITH ABSTRACT STYLE

Abstraction Average

Average

Average

Average

Average

Average

Average

Affordability

Agility

Deployability Above Average

Elasticity

Evolvability

Fault-Tolerance

Integration

Performance

Scalability

Simplicity

Testability

Workflow Below Average

THE MODULAR MONOLITH ABSTRACT STYLE

Abstraction

Affordability High

Agility

Deployability Above Average

Above Average

Above Average

Elasticity

Evolvability

Fault-Tolerance

Integration

Performance Below Average

Scalability

Simplicity

Testability

Workflow Below Average

Figure 13-5.  Architectural Capabilities of the Distributed N-Tier Abstract Style

Chapter 13 The Distributed N-Tier Architecture Abstract Style

191
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_14

CHAPTER 14

The Modular Monolith
Abstract Style

Enter the ‘Goldilocks’ architecture: the Modular Monolith. This architec-
ture promises to strike a balance that is ‘just right’ for many applications,
offering the simplicity of a monolith with the flexibility of microservices.

—Steve Smith

In Chapter 13, we explored one path to evolve the Layered Monolith style into a new,

distributed style. Agility improved, but only modestly. Why? Because the challenge with

technically partitioned layered architectures is that routine development often involves

changes to most or all layers. These multilayer changes require a full regression test of

the entire system, and, when these changes introduce breaking changes, releases require

coordination. A large component of the agility the microservices architecture promises

derives from defining module boundaries not by technical area, but by bounded

context. This approach to granularity enables the overwhelming majority of changes

to be confined to a single microservice. The trade-offs inherent to microservices, as

you will see in the chapter on this style, are vast. Can a system exhibit comparable

agility to microservices without the cost and complexity? The Tailor-Made model

says “yes.” We start with just a subset of the constraints that define the microservices

architecture to derive an abstract style that offers a compelling balance of flexibility and

simplicity. Consequently, this style achieves a comparable level of decoupling seen in a

microservices architecture within a monolith. This architectural style just might make

architects love the monolith again.

Since architecture is a multifaceted continuum—and the tailoring process is how we

move along said continuum—we will derive this abstract style by tailoring our Layered

Monolith. As with the previous chapter, we will start with a hypothetical existing system

https://doi.org/10.1007/979-8-8688-0410-6_14#DOI

192

that is ready to move beyond the limitations of the layered architecture. As we continue

this process through additional architectural styles in subsequent chapters, you will

further see the power of this model and how an agile, evolvable architecture can remain

reliably within reach.

Imagine our hypothetical system is an MVP that launched in the form of a layered

monolith six months ago. The positive reception of the release has validated product

fit and resolved any market uncertainty. On the strength of the MVP, the business has

been able to raise significant capital and has now set a course for long-term growth and

evolution.

Consequently, agility, deployability, and evolvability are high priorities with the

requirements analysis process determining the needs for these capabilities are Above
Average, Above Average, and High, respectively. The system has a good base of users,

but not so many that scale and elasticity are becoming problematic yet; Average is

fine for both. The business would prioritize a lower defect escape rate over scale and

elasticity. You have quantified this as a requirement for Above Average testability.

Integration plays a significant role in the future vision of the system, so integration

and abstraction need to be Average to Above Average. That said, it is still a smallish

organization so it would like to maintain a High level of simplicity but can certainly be

flexible on affordability.

It is important to note that the abstract style described in this chapter will not

perfectly align with these quantified needs. For example, integration and abstraction will

score Below Average; however, this can be overcome either through the prescription

of additional architectural constraints or additional human capital investment. Scale

and elasticity also fall short of targets; however, this style will prove to be a useful

intermediary style which enables further decomposition and architectural evolution

over time. Sometimes, the best course of action for us is incremental improvement and

evolvability rather than over fixating on the “perfect” architecture.

�Changing Constraints: Domain
Partitioning Constraint
So far, we have only looked at module boundaries defined by technical concern, as

defined by the Technical Partitioning Constraint. If we replace this constraint with the

Domain Partitioning Constraint, it requires us to identify vertical slices of functionality

(Figure 14-1). Each vertical slice captures a bounded context or subdomain. The result

Chapter 14 The Modular Monolith Abstract Style

193

of this approach to modularity is significantly improved agility as most changes will only

touch a single slice. Typically, changes within a single slice will involve only a single

team, and the testing scope and blast radius of the change will be well constrained.

Figure 14-1.  Taking Vertical Slices from a Layered Monolith

By applying the Domain Partitioning Constraint, we have a new style, the Domain
Partitioned Monolith Style (Figure 14-2). In this style, each domain module is built as

a separate, precompiled, package or assembly that is imported by the host application

at startup by virtue of dynamic linking. To enforce modularity, everything in these

packages is scoped as internal with the host application configured to be able to see

and expose controllers or other relevant public interfaces. This enforced modularity

approach is a form of architectural governance, making it difficult for a team to decide to

take a shortcut and bypass another module’s API and directly access code methods. This

can—and should—be part of a broader strategy of architectural governance (which will

be discussed more in Chapter 25).

Chapter 14 The Modular Monolith Abstract Style

194

Figure 14-2.  Domain Partitioned Monolith Style

When building a Domain Partitioned Monolith from scratch, typically development

will begin with a host application that contains the bare minimum to bootstrap the

application (API or MVC framework code, authentication, logging, and any other cross-

cutting concerns). Likewise, when migrating from a layered monolith, the process is

to extract individual domain modules into the separate packages/assemblies over

time. Whether your long-term goal is a more agile and maintainable monolith or

succeeding with microservices, this style offers a safe and pragmatic path for modular

decomposition with a great deal of architectural flexibility and long-term agility.

The important question here is: “How do we determine module scope and module

boundaries?” A common mistake is to simply design modules around entities; however,

this approach is not only simplistic, but it will also undermine the goals of this level of

modularity. Instead, this is where Domain-Driven Design (DDD) comes in.

Chapter 14 The Modular Monolith Abstract Style

195

A Little More on DDD 

Domain-Driven Design is a strategic approach to software development that
emphasizes the importance of understanding the business domain and using that
knowledge to inform the design and architecture of a system. At its core, DDD
is about creating a shared understanding of the domain among all stakeholders,
which is facilitated through a set of collaborative practices and ceremonies.

The key ceremonies in DDD include1

Domain Modeling: Collaborative sessions where developers and domain experts
create models that reflect the business processes and rules. These models help
ensure everyone has a collective understanding of the domain.

Event Storming:2 A workshop-style technique used to explore complex domains
by mapping out domain events. It helps identify key events, commands, and
aggregates, fostering a deeper understanding of how the system should behave.

Ubiquitous Language: The practice of using a consistent vocabulary shared
by both domain experts and developers. This language permeates the code,
documentation, and discussions, reducing misunderstandings and ensuring
alignment.

By engaging in these practices, teams can identify and define bounded contexts—
the specific boundaries within which a particular domain model is valid. Each
bounded context is effectively a module, with clear boundaries and responsibilities,
allowing teams to determine module boundaries in a system naturally. This
alignment of module boundaries with business domains ensures that the system's
architecture reflects the real-world processes it aims to support, leading to more
maintainable and adaptable software.

1 Vernon, V. (2013). Implementing Domain-Driven Design. Addison-Wesley Professional
2 Brandolini, A. (2015–2021). Introducing EventStorming: An Act of Deliberate Collective Learning.
LeanPub, https://www.eventstorming.com/book/

Chapter 14 The Modular Monolith Abstract Style

https://www.eventstorming.com/book/

196

Adopting the Domain Partitioning Constraint requires architecture to champion the

idea and either arrange or facilitate one or more DDD ceremonies. These usually involve

getting numerous business stakeholders and domain experts in the same room and

working over a period of hours or days until the domains are well defined. The Well-
Defined Domains Constraint is a necessary enabling organizational constraint and thus

a prerequisite for adopting the Domain Partitioning Constraint.

In accordance with Conway’s Law, communication structures within the

organization will dictate the ultimate module topology that emerges through the

development process. For a clean, decoupled, standalone module to go from design to

implementation, team/communication structures must be similarly modularized and

decoupled. To achieve this, typically, teams will own either one or a small number of

modules, and that team is responsible for the full stack within the module. This reality

dictates that the Domain-Aligned Teams Constraint is a second necessary, enabling

organizational constraint. As Conway’s Law has shown repeatedly, without these two

organizational constraints, you are unlikely to succeed with the Domain Partitioning

Constraint.

Ultimately, to succeed with the Domain Partitioning Constraint, the architecture

and the org chart must align. When architecture precedes team formation, we have

much more latitude to influence team topologies. When the inverse is true—the teams

are already in place—we must either constrain our architecture decisions to reflect this

reality or restructure the teams to align with architecture. The latter is known as “the

inverse Conway maneuver” and requires considerable political capital.

Although the Domain Partitioning Constraint, in partnership with the necessary

DDD work, will illuminate natural boundaries in the system needed to carve out

modules, this effort will rarely inform module granularity.

�Module Granularity
With a technically partitioned architecture, the layer boundaries are usually quite clear.

In contrast, domains are comprised of multiple subdomains, which typically contain

multiple bounded contexts. The modules derived from domain analysis can range from

coarse to extremely fine. Naturally, both “coarse” and “fine” are subjective and depend

on the environment and context. How do we get granularity correct for a given project?

Chapter 14 The Modular Monolith Abstract Style

197

First, consider purpose. Each domain module should be functionally cohesive,

contributing one significant domain behavior on behalf of the overall system. Beyond

domain modeling, event storming can be useful to model various business workflows

or processes. Armed with this information, we can draw a candidate architecture and

model various business processes to see how modules interact or depend on each

other. Pay attention to how entities interact. Entities that consistently need to cooperate

or form part of a common atomic database transaction are good indicators of shared

module boundaries. Be aware that this can lead to tight coupling within modules if one

is not careful. Coupling within a module is not always bad; however, coupling that spans

multiple modules can prove to be problematic. During this modeling process, if you

notice that a workflow involves orchestrating multiple modules, the odds are that those

modules are too fine and may require consolidation prior to finalizing the architecture

and design.

Use caution during this process as it is easy to overengineer modularity. Ultimately,

determining optimal module boundaries is an iterative process. Performing as much

iteration as possible at design time is optimal, but post-implementation revisions

are often common. For this reason, it is important to favor an iterative process that

begins with more coarse-grained modules (likely more coarse-grained than you might

otherwise be comfortable with) and subsequently introducing further decomposition, as

necessary. Splitting one module into two is typically easier as the domain behavior being

extracted in the decomposition process has already been shown to stand alone. When

module boundaries are very fine, the code required to manage these modules increases,

leading to more work and higher risk when combining them at runtime.

Notably, this process is much easier within a Domain Partitioned Monolith.

Consequently, the abstract style emerging in this chapter is a powerful starting point

for microservices architectures as the modules can easily be extracted into standalone

services as needed in the future. Beginning with coarse-grained modules decreases

infrastructure requirements, provides a practical space for iterating on granularity, and

reduces overall architectural risk.

�Organizing Code Within a Domain Module
Each domain module is, in essence, a micro-application (micro as in scope, not

necessarily lines of code). The limited scope means that, if the behavior is correct and

the interface stable, the contents do not particularly matter, and an individual module

Chapter 14 The Modular Monolith Abstract Style

198

could be quickly rewritten if necessary. That said, generally some structure is desirable.

It is extremely common for the contents of a domain module to be organized in layers

(Figure 14-3); this is particularly common when migrating from a layered monolith.

Alternatively, a domain module may be a more coarse-grained module representing a

portion of a subdomain and containing some number of more fine-grained mini-

domain modules (Figure 14-4).

Figure 14-3.  A Layered Domain Module

Figure 14-4.  A Coarse-Grained Domain Module Containing Smaller Modules
That Represent Individual Bounded Contexts

Chapter 14 The Modular Monolith Abstract Style

199

If you have experience with the microservices architecture, you will note that

individual domain modules look remarkably like individual microservices, albeit

without the complexity of a fine-grained distributed system. This is how we achieve,

as Steve Smith describes it in this chapter’s introductory quote, “…the simplicity

of a monolith with the flexibility of microservices…” In fact, this modular approach

achieves much of the same decoupling and improved cohesion found in microservices

architectures.

Like microservices, we must now consider how to handle shared or common code.

Because this style prescribes a monolithic deployment granularity and a monolithic

build artifact, we will receive build-time integration feedback, so a single “shared”

module may be used to make shared utilities and interfaces available to the individual

modules. That said, multiple strategies have been pioneered to address cross-

cutting concerns, including Aspect-Oriented Programming (AOP), Object-Oriented

Programming (OOP), dynamic module loading, and static module compilation. As the

architect, you must determine both the boundaries of the shared code modules and

which mechanism(s) should be deployed for a given project. This will ensure good

encapsulation and independence of individual modules, keeping code changes tightly

scoped and increasing agility while reducing risk.

In this style, code changes are almost always scoped to a single module, but what

about code changes that require database schema changes? Microservices architectures

tend to follow a principle which prescribes that each microservice owns its own data,

but, in the absence of any additional constraints, coupling still exists in the database.

A domain module might opt to join directly to a table that rightfully belongs to another

module for the sake of expediency which will cause problems if/when that schema

changes. To truly achieve the desired agility and change safety, we must not only

decouple the code but also decouple the database.

�Partitioned Shared Database Constraint
A database-per-domain module is excessive at this point, given that much of the

simplicity of this style is a function of the monolithic application and database.

Remember, this style aims to achieve a comparable level of decoupling seen in a

microservices architecture within a monolith. A simplified database decoupling can

be accomplished by defining a distinct schema or catalog for each top-level domain

module. The same way this style prescribes scoping all classes within a domain module

Chapter 14 The Modular Monolith Abstract Style

200

as internal to prevent code boundaries from “leaking,” this constraint applies additional

enforcement of module boundaries within the database. It provides yet another

feedback loop for determining optimal module granularity. If a single atomic business

transaction requires crossing module boundaries to commit, it is an indicator that the

modules may be too fine.

Breaking apart databases is often challenging. If you have ever looked at an entity

relationship diagram (ERD), you have undoubtedly seen wide-reaching entities serve as

the nexus for countless dependency relationship lines. Consequently, in any nontrivial

system, there will be edge cases—scenarios where queries or transactions must span

multiple data boundaries. The earlier we can address these in the design, the better.

Module-crossing transactions might be painless now, but, as the system evolves, you

may be baking complex, distributed transactions into the future architecture which can

impede evolution or introduce other long-term challenges.

In both the Partitioned Shared Database Constraint that we have just introduced

and its distributed sibling, the Isolated/Independent Database Constraint that we will

discuss in later chapters, our primary options for each edge case are as follows:

•	 Accepting the boundary-crossing edge cases as is

•	 Consolidating the modules

•	 Replicating the data

•	 Using coarser “data domains”

Each of these options brings trade-offs that you must consider.

Accepting boundary-crossing edge cases as is will introduce additional complexity

both short term and long term. For boundary-crossing write transactions (whether

applied to a partitioned shared or discrete database), a single atomic commit is no

longer available. New transactional failure conditions are introduced that must be

accounted for. Partial failures require rollback or remediate/retry logic which introduces

additional complexity that is only compounded when services and databases are

distributed, and the Fallacies of Distributed Computing must be overcome. Boundary-

crossing read transactions are inherently less complex but can be extremely expensive.

Read queries that span two or more domain boundaries cannot perform traditional

joins inside the database; instead, the join logic must take place on the application side.

A database join can take advantage of indexes, reducing I/O by performing the join

operation on a subset of the data, but an application-side join requires reading most or

Chapter 14 The Modular Monolith Abstract Style

201

all the table, sending everything across the network, loading the full dataset in memory,

then joining the datasets in code. Only if the edge cases are rare, and the risk/complexity

can be adequately mitigated long term, does this become an acceptable option.

Consolidating the modules can often be a useful strategy if the edge cases are

less “edgy” and more frequent than expected. In such a case, we may opt to simply

consolidate the modules and their respective data partitions (or databases), effectively

refactoring the domain model mapping within the architecture. This approach correlates

positively with cohesion but negatively with agility. Changes that are small in scope

and have a highly constrained blast radius are low risk and lend themselves to frequent

releases. As domain modules become larger, the blast radius of each change increases

along with testing/validation scope. Frequent and repeated consolidation of modules

can become a slippery slope that leads back to the layered monolith.

Replicating the data is common in the microservices world for otherwise module-

spanning read operations.

This approach is often the most expedient and effective solution. In a shared

database, triggers, periodic batch jobs, or even views imbued with specific permissions

to cross domain boundaries all function as simple mechanisms for replication. A shared

database can also be denormalized. In a distributed system, strategies for replication

include using event sourcing, linked tables, or periodic batch jobs.

In contrast with the inflated cost and overhead of application-side joins, replicated

data takes advantage of database-level optimizations, but this frequently raises the

issue of eventual consistency. Whether an event-sourcing approach is taken (where one

service broadcasts state changes in the form of events that other services can consume

as a source of truth), or some sort of ETL/batch job that is periodically invoked, there will

be some delay before the replicated data is consistent across the system. Some domains

can tolerate eventual consistency; others cannot. Within a partitioned shared database,

this latency might be zero if triggers or views are used, but we have reintroduced

coupling to the database layer. Which team should own the triggers or views? How will

schema changes be coordinated to avoid difficult-to-detect regression outside the scope

of the module boundaries? You must answer these questions, either at design time or in

an incident postmortem. When the strategy of denormalization is deployed, there must

be a mechanism in place to cascade updates to maintain logical consistency, which adds

complexity and reintroduces challenges around eventual consistency.

Chapter 14 The Modular Monolith Abstract Style

202

Finally, you must consider the long-term expectations of the system. If evolution into

a distributed system is anticipated, it would be valuable to consider both short-term and

long-term replication strategies when selecting this option.

Using coarser data domains is one more tool in our toolbox. There is no rule that

states there must be a 1:1 relationship between code module boundaries and data

boundaries. From a pure domain logic standpoint, we may end up with one model

for the code and a separate model for the data. A data domain is a distinct set of

logical boundaries within the database that might span multiple domain modules or

microservices.

Note that this approach can quickly become a blunt instrument when not wielded

carefully. A sufficiently large data domain will inevitably span multiple teams which

reintroduces increased coordination cost that the modularity of this style aims to avoid.

The value of the Partitioned Shared Database Constraint diminishes as the database

becomes increasingly monolithic.

On paper, this constraint seems simple and logical. However, in practice you will

uncover many such edge cases and learn that there is no best practice or one-size-fits-

all solution. Consequently, you may find yourself applying any or all these options on a

case-by-case basis.

�The Modular Monolith Abstract Style
As a result of changing the module partitioning constraint and the shared database

constraint, we arrive at the next common pattern and another abstract style, the Modular

Monolith Abstract Style (Figure 14-5).

Chapter 14 The Modular Monolith Abstract Style

203

Figure 14-5.  The Modular Monolith Abstract Style

Monolithic applications have existed for as long as software has existed. The layered

approach to organizing larger, monolithic codebases has remained largely unchanged

for a period spanning decades; however, this style reimagines the structure of a monolith

by applying the new techniques and lessons learned in the 21st century ranging from the

problems identified in the Agile Manifesto and the software craftsmanship movement3

to the techniques pioneered by Eric Evans4 and the early DDD community, as well as the

success of microservices. This style embodies the Tailor-Made philosophy of borrowing

just enough architecturally significant decisions from styles like microservices to induce

necessary capabilities in a monolith. The Tailor-Made model’s emphasis on constraints

makes this process explicit and better informs future evolution.

3 McBreen, P. (2001). Software Craftsmanship: The New Imperative. Addison-Wesley
4 Evans, E. (2003). Domain-Driven Design: Tackling complexity at the heart of software.
Addison-Wesley

Chapter 14 The Modular Monolith Abstract Style

204

The modular monolith is often a suitable place to start a greenfield project. Typically,

proving your MVP and capturing market share are more immediate business concerns

over massive scalability and elasticity at the project inception. With the foundation

of a modular monolith, the initial time to value for the code is short, but architectural

flexibility and long-term evolution is baked into its foundations.

The architectural flexibility of this style is an antidote to the trend of up-front

overengineering and premature optimization. Rather than guess what the architectural

requirements will be in 3–5 years, we can take a more agile approach. As metrics, KPIs,

and telemetry begin to show that scale requirements have changed, we can scale the

monolith or apply additional constraints such as the CQRS constraint or the Client/

Server constraint. If the nature of the domain requires any orchestration of multiple

modules, it can be useful to consider prescribing the team constraint of API-first
development to further reduce coordination costs, increase team independence, and

drive more stable and well-thought-out public interfaces. Finally, if the data shows a

need for decomposition into a distributed system, you will see in the next chapter that

extracting a standalone service or microservice is trivial compared to decomposing a

traditional monolith since the hard part—redefining module boundaries vertically—is

already complete. A modular monolith is also already partway toward microservices.

In fact, the modular monolith style is also a popular, pragmatic, and low-risk step in

the process of decomposing an existing monolith into “miniservices” or microservices

without requiring the recombination of components necessary when migrating from a

distributed n-tier style.

�Summary
The modular monolith is a powerful way to balance cost and simplicity against

architectural agility and long-term evolvability. If a monolith provides enough

capabilities for the short term (whether it be an MVP or a system that is still ramping up

users and market share), and the organizational constraints are within reach and can be

applied, this style should be given thoughtful consideration.

Chapter 14 The Modular Monolith Abstract Style

205

This abstract style is defined by the following architectural constraints:

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

•	 Domain Partitioning

•	 Partitioned Shared Database

This collection of architectural constraints requires the following organizational

constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

By adopting the same constraints that drive modularity and encapsulation in the

microservices architecture, this style offers significant advantages over its layered

counterpart. The notable improvements over the Layered Monolith Abstract Style are

shown in Figure 14-6.

Chapter 14 The Modular Monolith Abstract Style

206

THE MODULAR MONOLITH ABSTRACT STYLE

Abstraction Above Average

Affordability Very High

Agility High

Deployability Above Average

Elasticity Low

Evolvability High

Fault-Tolerance Low

Integration Below Average

Performance Above Average

Scalability Low

Simplicity Very High

Testability High

Workflow Below Average

Figure 14-6.  Architectural Capabilities of the Modular Monolith Abstract Style

Chapter 14 The Modular Monolith Abstract Style

207
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_15

CHAPTER 15

The Service-Based
Abstract Style

It’s exciting to see modular thinking—along with loose coupling and high
cohesion—to reenter our software design. Microservices is an extreme that
is a fit for a few. The lessons from it are a fit for many.

—James Higginbotham

In Chapter 14, we evolved a layered monolith into a modular monolith in response to

changing architectural needs and a directive from the business to invest in long-term

agility and evolvability. While many of the qualified and quantified requirements from

that scenario have been satisfied by the Modular Monolith Abstract Style, elasticity,

integration, and scalability are still falling below target. Additional tailoring, in the form

of adding or changing constraints, will lead us further along the continuum toward an

optimal fit. To achieve increased scale, we will decompose our monolith by changing the

component granularity constraint and adding the Client/Server constraint (Chapter 13).

To improve integration and interoperability, we will prescribe an API strategy.

�Changing Constraints: Medium
Component Granularity
Improving scalability in line with the stated business requirements requires

decomposing our monolith into smaller, standalone services. When we previously

decomposed a monolith in Chapter 13, we took the simple approach of decomposing

the system along the existing, horizontal module boundaries. Since each module was

a broad, horizontal slice, our only practical option (barring significant refactoring and

https://doi.org/10.1007/979-8-8688-0410-6_15#DOI

208

rewrites) was Coarse Component Granularity. Following the effort to redefine module

boundaries using domain-derived boundaries in Chapter 14, we have more options

available to us.

Recall that the domain components inside the modular monolith are closely

analogous to embedded microservices. At this point, there may be a temptation to jump

directly to fine-grained microservices, extracting each domain module as a separate

service. In this context, however, such a leap would be both premature and unwise. For

our project, High scalability is sufficient, thus making the Extremely High scalability of

microservices styles—along with the added expense and complexity—excessive.

The pragmatic solution in this case is to choose Medium Component Granularity.

The goal is to design a topology that offers enough scalability, enough elasticity, and

enough agility while keeping cost and complexity manageable. As we saw with our

efforts to define new module boundaries in the previous chapter, we must take care

when defining component/service boundaries. In fact, getting module granularity right

matters more in a distributed topology, and the network introduces new complexity

and operational challenges. Defining granularity as “monolithic” leaves little room

for interpretation; everything is inside the monolith. However, “coarse,” “medium,”

and “fine” granularities all leave room for interpretation with “medium” potentially

being the vaguest of the three. For the purposes of this book, these terms are used in

the relative sense. To continue our couture metaphor, they are analogous to small,

medium, and large; none of which are likely to fit you perfectly without tailoring.

Likewise, in architecture, optimal granularity within any such constraint will vary from

system to system. Instead of grasping for absolutes, while we wait for someone to invent

mechanism(s) or metric(s) to absolutely measure and define component granularities,

we simply consider our goals within the scope of this book and the Tailor-Made model.

Medium Component Granularity seeks to balance performance, cost, complexity,

and scale.

One of the benefits of the Medium Component Granularity Constraint of this style

over the Fine Component Granularity of microservices is increased cohesion and

lower complexity. This cohesion manifests as reduced or eliminated cross-service

coordination. Complexity is lower as this granularity prescribes fewer services to manage

and fewer distributed transactions. Ford and Richards suggest that services of this

granularity tend to range from four to twelve.

Chapter 15 The Service-Based Abstract Style

209

Because the services typically share a single monolithic database, the num-
ber of services within an application context generally range between 4 and
12 services, with the average being about 7 services.1

This granularity also improves performance because, beyond communication

between client and server, or component and database, there is little to no network I/O

and associated latency.

Determining optimal granularity can seem arbitrary or driven by a judgment call;

however, more mindful approaches are available to us. Defining services by domain

or subdomain is usually a good starting point for a first draft design. Use this design to

model domain behaviors and workflows. When two services must frequently cooperate,

there is a good case for consolidation. When this process identifies groups of models

within a single service that do not interact, they may benefit from being extracted into a

separate service.

Beyond domain boundaries, data-driven approaches may also inform your topology.

Telemetry data, for example, might highlight specific domain behaviors or workflows

that have higher-than-average or bursty loads. In such a case, this may warrant further

decomposition in support of improved elasticity and scalability.

In all cases, pay particular attention to distributed transactions. These are another

signal that the granularity of a particular service is too fine. Getting granularity right is

an iterative process. The more we iterate on service granularity at design time, the less

disruptive rework will be necessary by the implementation teams.

�Interservice Communication
Although a single service designed according to this constraint will be able to single-

handedly satisfy the domain behaviors and workflows within its scope, some amount

of cross-service coordination may be unavoidable. When such cases emerge, we must

consider how these services will communicate in different scenarios.

If services already expose an API, communication can take place in the form of

synchronous API calls. The Fallacies of Distributed Computing caution us, however,

against making assumptions about network performance and reliability. Response times

will vary, and requests will occasionally time out. Consider the following scenarios that

1 Richards, M., Ford, N. (2020). Fundamentals of Software Architecture: An Engineering Approach
O’Reilly

Chapter 15 The Service-Based Abstract Style

210

take place within a simple topology of a user, Service A and Service B, where the user

is making a request to Service A, and Service A needs to call Service B to satisfy this

request.

The most direct failure occurs when the request from Service A to Service B simply

times out (Figure 15-1). Service A will have no visibility into why the request failed and

where it failed. Did Service B receive the request? Did it process the request? Without a

response, Service A simply cannot know the answer. Should Service A retry the request?

It depends on the request.

Figure 15-1.  Failed Call to Service B from Service A

If the operation is safe (meaning the operation does not have side effects) or

idempotent (meaning the operation will produce the same result regardless of the

number of times it is performed), the retry option is available to us. If the operation is

unsafe and not idempotent (e.g., Service B is a payment service attempting to charge the

user’s credit card), the interaction may need to be refactored to allow retries without

double-billing the user. A more robust design for such an interaction would require

Service A to include a session ID, request token, or nonce (a single-use random or

unique value) in the request to allow Service B to evaluate if it has already completed the

work in a previous request.

A defensively designed or otherwise idempotent request enables Service A to retry

the request; however, what if Service B is overloaded and unhealthy? Rapid, repeated

retries will only compound the problem. The request from the user’s client to Service

A is also a network interaction, with little visibility into failures. If the client’s request to

Service A times out while it waits for a response from Service B, the client may also retry

the request. Furthermore, if Service A is actively processing multiple similar requests

that are all suffering the same failures in Service B, parallel retry loops may snowball

into an accidental denial-of-service (DOS) attack on Service B. Service A might also start

to experience issues, such as timeouts or slow responses. This can lead to a cascading

failure, where the problem within one service spreads to others, potentially bringing

down the entire system.

Chapter 15 The Service-Based Abstract Style

211

Circuit breakers are a pattern that developers and architects put in place to prevent

cascading failures. Put simply, the circuit breaker is normally in a “closed” state, meaning

it allows requests from Service A to Service B to flow. When a circuit breaker detects the

problem, however, it moves to an “open” state, which causes Service A to immediately

fail any request to Service B, without even attempting it. This prevents further load in

Service B and allows it time to recover. Service A must either defer to a fallback code path

or a fallback response (e.g., “Please try again later”) instead of failing entirely.

A Cautionary Tale of Cascading Failures

On Monday, May 6, 2024, a SaaS-powered email client experienced an issue
where its backend services were unable to communicate with their database.
Clients depend on this service for synchronization and sending/receiving
messages. When the client’s sync requests failed, the client would simply retry.
With all running clients repeatedly retrying sync requests, the backend services
went from unhealthy to completely offline.

According to public updates from the software vendor, developers had to update
database client libraries in multiple places across the codebase. The remediation
work was challenging as there was little abstraction in place. Developers had to
implement fixes all over the codebase. In total, the fixes took four days, yet the
downtime persisted.

For undisclosed reasons, the backend fix required client updates. Consequently,
outdated clients were still DDOSing backend services. Additional effort was
needed to mitigate the traffic and roll updates out to the software’s installation
base. Even after hot fixing backend services and updating clients, the app was still
nonfunctional, leaving users either frustrated or abandoning the product in droves
as downtime rolled into a fifth day.

It turns out a backend agent responsible for synchronizing email between providers
and their platform had been operating in an infinite retry loop for the duration of
the downtime. These agents were responsible for a DOS attack on third-party
email servers. This traffic pattern forced email providers to rate-limit or block
traffic from this app. Both the company and their customers had no choice but
continue to wait while access was restored.

Chapter 15 The Service-Based Abstract Style

212

In total, this email app was unusable for seven days. There were clearly multiple
contributing factors in this failure; among them is an illustration of the importance
of planning for failure conditions. An exponential backoff (where retry attempts
are increasingly delayed) on the synchronization agent could have avoided email
providers rate-limiting or blocking their traffic. Additionally, circuit breakers
elsewhere in the system would have arrested cascading failures. Finally, better
abstraction of the database could have reduced the time to repair.

An alternative to synchronous communication is asynchronous communication.

Does Service A truly need a synchronous acknowledgment or success confirmation from

Service B? Or is a response from Service A that indicates the work performed by Service

B is pending acceptable?

Consider again the case where Service B is the payment service. Service A could

simply enqueue a request to process the payment, then immediately return a response

to the user. User-perceived performance is significantly higher in this scenario. The

system also becomes more fault tolerant as Service A can enqueue requests whether

Service B is overloaded or idle, online or offline. A queued request will simply be

processed as resources allow, and a separate asynchronous request can communicate

state changes back to Service A. Service B is also better positioned to handle retries;

however, architecture or development must define a strategy and a plan to handle

persistent failures. This may be a “dead letter” queue, writing to a log, or simply an

update to the caller indicating that the request failed.

The downside of the asynchronous approach is that queues and services can still

fail which can result in dropped messages. More robust asynchronous communication

mechanisms might promise at least once delivery instead of exactly once delivery which

might result in the queue or topic consumer service double-processing a message if

appropriate safeguards are not in place.

The third option is to bypass external services and perform coordination directly in

the database. If Service A relies on Service B for additional data, and the two services

share a single database, Service A can simply bypass the API altogether and reach

directly into Service B’s tables. This approach is simple, fast, and cheap; however,

these benefits come at a cost. Cross-service coordination via the database introduces

additional coupling which will undermine agility and evolvability. Teams must

Chapter 15 The Service-Based Abstract Style

213

coordinate database changes across teams and services, resulting in more frequent

coordinated releases. It is also important to note that this coupling is not always

immediately visible, causing additional deployment risk.

�Shared Code Across Services

In a modular monolith (Chapter 14), many cross-cutting concerns are handled

by the host application, breaking apart that monolith requires distributing those

responsibilities. These typically include logging, authentication, and—if the Shared

Database Constraint is present—the data model and persistence layer.

The conventional solution for sharing code is extracting that functionality into a

series of versioned, shared libraries. This can be a good option if the shared libraries

either exhibit low code volatility or can be versioned in such a way that each service can

manage its own upgrade cycles. Be cautious, however, as external libraries introduce a new

potential point of coupling. When a medium-to-high volatility library frequently introduces

breaking changes, the system will inevitably violate the Independent Deployability

Constraint. Designing a distributed system that lacks independent deployability will result

in a distributed monolith, which is an anti-pattern which we must strive to avoid.

Another possibility is the creation of a shared service. Like the shared library

approach, this creates a single source of truth with the added benefit of an independent

release cycle that will not impact running services unless a breaking change is

introduced. The downside, of course, is that calls to this service incur network overhead

and latency. Either architects or development teams must determine a plan for request

timeouts, retry logic, circuit breakers, and fallbacks for each service or prescribe some

alternative approach.

The extreme and counterintuitive solution is to duplicate code in each service. This

might appear to violate the best practice of “Don’t Repeat Yourself” (DRY); however,

in architecture, there are no best practices, only trade-offs. There are advantages and

disadvantages both to DRY and “Please Repeat Yourself” (PRY). The chief advantage of

the latter approach is that it aggressively eliminates coupling and reduces coordination

costs to achieve consensus on changes to the code. That said, such an approach

introduces trade-offs and new challenges that might better be avoided, particularly in a

medium-grained topology where the trade-offs might not make sense. This approach is

often necessary in larger environments with many services that require extreme agility

and extreme deployment velocity. We will undertake a detailed exploration of the trade-

offs for this approach in the next chapter where it is more applicable.

Chapter 15 The Service-Based Abstract Style

214

�Team, Environment, and Organizational Constraints

Like the Coarse-Grained Component Granularity Constraint introduced in Chapter 13,

this constraint brings dependencies to induce the desired capabilities in the system. For

reference, these are

•	 ARCH: Independent Deployability

•	 ORG: DevOps Commitment

•	 ENV: Loose Coupling Between Components

•	 ENV: Development Environment Isolation

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

�Independent Deployability
Our (now) distributed system will be a distributed monolith unless we replace the

Monolithic Deployment Granularity Constraint with the Independent Deployability

Constraint and its enabling team, organizational, and environmental constraints

(described in Chapter 13).

�Implementation Guidance

Independent deployability always introduces risk. Even with good modularity and

component isolation, it can be difficult to predict when a change might have knock-

on effects that will require coordinated deployments. In general, an investment

into DevOps, automation, a fairly representative test bed with similar hardware and

configuration to the production environment, along with a decent worst-case scenario

automated test data generator will help to identify issues before shipping/deploying

the product. In other words, our build pipelines and quality gates must do more than

build and test a single component; pipelines must also run integration tests against

other services and, ideally, run all component integration tests prior to release (and

continually after release). The goal is to detect integration failures with external

dependencies before releasing to production as well as early detection of integration

failures when other services are updated.

Chapter 15 The Service-Based Abstract Style

215

�Adding Constraints
As we decompose this system, we must also prescribe the Client/Server constraint

(described in Chapter 13). Both improving integration and interoperability and enabling

the Client/Server constraint will require, at a minimum, prescribing an API Constraint.

Chapter 13 noted that API strategy is architecturally significant and explored the trade-

offs between the available options. The emphasis in the requirements on integration and

evolvability suggests a Level 1 or Level 2 REST API; however, for the sake of simplicity

when defining this abstract style, we will select the RPC API Constraint.

�The Mature, Medium-Grained, Domain Partitioned
RPC Client/Server Style
Through the composition of constraints, we have arrived at a concrete architectural style

(Figure 15-2) that satisfies the business requirements outlined in the previous chapter

while balancing cost and complexity.

Figure 15-2.  The Mature Medium-Grained, Domain Partitioned, RPC Client/
Server Style

Chapter 15 The Service-Based Abstract Style

216

The following constraints define this style:

•	 Medium Component Granularity

•	 Independent Deployability

•	 Domain Partitioning

•	 Client/Server

•	 RPC API

•	 Partitioned Shared Database

This collection of constraints requires the following team, organization, and

environmental constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: Loose Coupling Between Components

•	 ENV: Development Environment Isolation

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

Although we have arrived at this style through a process of evolution, this style is a

slight variation on the Service-Based Abstract Style. The only difference between the set

of constraints in this concrete style and the defining constraints of the Service-Based

Abstract Style is the Partitioned Shared Database Constraint. The abstract style does

not prescribe this constraint (but it can be added through the tailoring process—see the

section “Tailoring This Abstract Style”).

�The Service-Based Abstract Style
This abstract style offers a highly pragmatic approach to building distributed systems.

Components exhibit manageable granularity, ACID transactions remain the norm, it

requires limited cross-service coordination, and the enabling practices are within reach

of most teams.

Chapter 15 The Service-Based Abstract Style

217

Because of the Domain Partitioning Constraint, the evolutionary path, both to

and from this style, is low friction, low risk, and straightforward. Migration to this

style involves breaking a modular monolith into multiple mini-modular monoliths

(Figure 15-3). For projects that do not yet require the scale and complexity of a

distributed system, the agile architecture approach is to begin with a modular monolith

and let the business and metrics determine the decomposition decision. The modular

nature of this style offers significant flexibility for tailoring or further decomposition,

again, as metrics and business needs dictate. Microservice styles are always overkill,

except when they are not. Up-front overengineering and premature optimization are not

necessary when incremental, data-driven evolution is baked into the system’s design.

Chapter 15 The Service-Based Abstract Style

218

Fi
gu

re
 1

5-
3.

 I
n

si
de

 S
er

vi
ce

-B
as

ed
 C

om
po

n
en

ts

Chapter 15 The Service-Based Abstract Style

219

�Tailoring This Abstract Style
Variations of this style replace the Domain Partitioning Constraint with the Technical

Partitioning Constraint. This is often due to organizational incompatibility that

cannot be easily or immediately overcome. Replacing this constraint brings additional

simplicity, but that comes at a cost. The Domain Partitioning Constraint is the engine

of both High evolvability and Very High agility. A Technically Partitioned Service-Based

Style does not require the organizational constraints but will inherit the trade-offs

inherent in all technically partitioned systems, and further decomposition will require

significant work to carve out vertical slices.

Although this variation is not the goal or focus of this chapter, styles can be tailored

to meet different needs and align with different organizational realities. In short, keep

in mind that Layered Monolith and Distributed N-Tier styles are not the only options for

technically partitioned systems.

�Partitioned Shared Database Constraint

This is another optional constraint that will improve both agility and evolvability. In

essence, this constraint will move the style along the continuum toward microservices

and the capabilities they bring without inheriting their complexity. Additionally, should

future needs dictate further evolution toward microservices, the migration will be

simplified as less effort will be necessary to break apart the database.

�CQRS Constraint

As described in Chapter 13, distributed systems are inherently more scalable; however,

a single, shared, monolithic database will still introduce a bottleneck. This constraint

allows reads to be load balanced across multiple database server instances.

�Coarse Federated Databases

If you already have a partitioned shared database, an option to achieve higher scale is to

begin to split apart the database (Figure 15-4). If a logical data domain is already isolated

in the form of a distinct schema or catalog with a unique connection string, it is trivial to

simply move that schema to its own server. Agility and scale go up, but complexity does

as well.

Chapter 15 The Service-Based Abstract Style

220

Figure 15-4.  Federated DB Service-Based Style

�Summary
In Chapter 9, we referenced Gartner’s prediction that 90% of organizations who try

microservices will find the paradigm too disruptive. In contrast, the Service-Based

Abstract Style is a balanced and deeply pragmatic approach to distributed system design

that will satisfy all but the most extreme requirements for agility and scale. However, like

the modular monolith, this style leaves doors open for further architectural evolution.

The superficial topological similarity between this style and microservices leads

many developers and architects to conflate this style with microservices; however, there

are key differences in the underlying constraints as you will see in the next chapter.

The following architectural constraints define this abstract style:

•	 Medium Component Granularity

•	 Independent Deployability

•	 Domain Partitioning

Chapter 15 The Service-Based Abstract Style

221

•	 Client/Server

•	 RPC API

•	 Shared Database

This collection of constraints requires the following team, organization, and

environmental constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: Loose Coupling Between Components

•	 ENV: Development Environment Isolation

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

A concrete style derived from this abstract style may require additional architectural

constraints or implementation guidance around interservice communication. Additional

environmental constraints may also be necessary to support things like circuit breakers

and self-healing services.

This style is a waypoint on the architectural continuum between the modular

monolith and microservices offering numerous advantages over the former with what

are often manageable trade-offs. The notable improvements over the Modular Monolith
Abstract Style are shown in Figure 15-5.

Chapter 15 The Service-Based Abstract Style

222

THE SERVICE-BASED ABSTRACT STYLE

Affordability High
Agility Very High
Abstraction Above Average
Deployability High
Elasticity Above Average
Evolvability High
Fault-Tolerance High
Integration Above Average
Performance Above Average
Scalability High
Simplicity Above Average
Testability High
Workflow Below Average

Figure 15-5.  Architectural Capabilities of the Service-Based Abstract Style

Chapter 15 The Service-Based Abstract Style

223
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_16

CHAPTER 16

The Microservices
Abstract Style

A microservice is a single purpose, independently deployable unit of soft-
ware that does one thing well.

—Mark Richards

The Service-Based Abstract Style, introduced in the previous chapter, offers many

Above Average and High capabilities balanced against manageable cost and complexity.

The capabilities afforded by the defining constraints of that style will satisfy all but the

most extreme demands. However, there do exist systems where anything less than

extreme agility, extreme scalability, and extreme fault tolerance poses an existential

threat. Achieving such extremes is not easy and requires a similarly demanding set of

architectural constraints to maximize the capabilities of the system.

We will progress along the continuum by introducing and modifying constraints.

Throughout this process, we will significantly enhance many of the capabilities provided

by the Service-Based Abstract Style, elevating them to an extremely high level.

�Changing Constraints
�Fine Component Granularity
In the pursuit of the extremes the Microservices Abstract Style promises, the first

change we must prescribe is a further reduction of individual component granularity.

Microservices takes the approach of decomposing a software system into its smallest

practical, irreducible components. Ideally, each medium-grained service component in

the Service-Based style is already a mini-Modular Monolith, with standalone domain

https://doi.org/10.1007/979-8-8688-0410-6_16#DOI

224

components that are ready to be extracted into discrete microservices. In this case,

changing granularity is, once again, straightforward. However, regardless of the level of

difficulty you or your development teams will face during decomposition, the challenges

this constraint introduces are only beginning.

First, this constraint offers little in the form of guidance on what this level of

granularity looks like in practice. Good answers rarely materialize until we begin to ask

the right questions. In accordance with the First Law of Software Architecture,1 “Why is

more important than how,” let us first explore the “why.”

Fine component granularity drives the characteristic “micro” scope of the

microservices architecture. In many ways, this constraint is analogous to the Single-

Responsibility Principle (SRP) of object-oriented design. SRP states that only the

necessary cohesive functionality needed for a single responsibility be present in each

OO class. As developers introduce additional responsibilities into a single class, coupling

increases and additional code paths emerge that developers and architects must identify

and test. The code becomes harder to change as, often, the changes result in unexpected

side effects. Adherence to the SRP favors composition of multiple single-purpose

classes to achieve a single domain behavior, rather than inheritance to fully encapsulate

the domain behavior in a single, concrete class. By way of the Fine Component

Granularity Constraint, the microservices style advances this concept from code-level

to architecture-level. A fine-grained microservice serves as a single-responsibility

component that, through composition with other microservices, delivers more coarse-

grained domain behaviors (with trade-offs, of course).

The parallels between SRP in OO and its microservices cousin are not exact.2

Does single responsibility imply microservices scope should be as “micro” as a single

function? Perhaps, but not necessarily. Generally, the distinction between the two SRP

guidelines is that, in microservices, a single service should encapsulate a single domain

responsibility (vs. a single code responsibility in OO). There are also times where

separation of a single domain may be done because of constraints like cyber security

(e.g., read being absolutely separated from create, update, and delete), data persistence

(e.g., writes may be pushed through a different interface than reads for certain high-

volume circumstances or in situations where a query interface may be available but

1 Ford, N., & Richards, M. (2020). Fundamentals of software architecture: An engineering approach.
O’Reilly Media
2 Merson, P. (2020). Principles for Microservice Design: Think IDEALS, Rather than SOLID.
InfoQ. Retrieved from https://www.infoq.com/articles/microservices-design-ideals/

Chapter 16 The Microservices Abstract Style

https://www.infoq.com/articles/microservices-design-ideals/

225

a data stream is also available), or in situations where a domain service with certain

options is provided to one group of consumers but a different set is made available to

other users (paying vs. free service users). In such cases, you will need to decide whether

these sorts of isolation occur at the service component level or whether a service will

encapsulate these alternatives. Precision in domain modeling is especially important in

getting granularity right at design time.

A well-designed, single-purpose, fine-grained service offers the possibility of

significant gains in evolvability, enabling increased product or organizational agility.

When interfaces are stable, and the service’s behavior well designed and scoped,

development or implementation teams can implement, test, and deploy changes with

great velocity. Not only does this constraint enable implementation teams to release

individual changes as soon as they are ready, but a frequent release cadence of small

changes will significantly reduce risk. In fact, should a team discover that the most

recent change is somehow faulty, rolling back that deployment will only affect that single

service, while other, successful changes continue to roll forward, leaving overall product

and organizational agility extremely high. Good service boundaries form important

bulkheads that both limit the testing surface while also isolating the impact of any

individual change. However, when services have unstable interfaces and abstractions

that multiple other microservices depend on, the resulting coupling can complicate this

process, introducing unexpected side effects which are difficult to anticipate.

The bulkheads afforded by this constraint also offer the potential for massively

improved fault tolerance. When a monolithic application is offline, all functionality is

unavailable. Distributed architectures have the capability to remove single points of

failure within a system, and a fine-grained distributed architecture further reduces the

impact of a failure down to, potentially, a single domain behavior. You must exercise care

when designing these fine-grained architectures to avoid the scenario where a whole

group of interdependent services introduces a many single points of failure scenario. As

a simple example of a many single points of failure scenario, consider cheap Christmas

lights where every bulb forms an integral part of a single circuit. A single bulb coming

lose or burning out will black out the entire string of lights and, perhaps, all subsequent

daisy-chained strings. Finding the failed component is so difficult and time-consuming

that many will simply opt to purchase an entirely new string of lights. We rarely have

such luxuries in software (but customers often do—see “A Cautionary Tale of Cascading

Failures” in Chapter 15).

Chapter 16 The Microservices Abstract Style

226

As we explored in the last chapter, cascading failures emerge as a new scenario

that we must identify and mitigate. However, so long as architecture mitigates this risk

through application of the required environmental constraint of bulkheads and circuit

breakers to enable dependent services to gracefully indicate that a portion of their

functionality is unavailable, overall fault tolerance will increase.

The single responsibility “micro” scope of microservices this constraint prescribes

will correlate strongly with similarly “micro” binary artifact sizes. These artifacts will

boast a significantly reduced cold start time. Consequently, a burst in demand can

be met with additional capacity by dynamically scaling a single service horizontally

(or vertically). As demand for that service subsides, the system can similarly react by

reducing the number of available individual instances.

In addition to offering elastic response to demand, this granularity enables

individual atomic domain behaviors to adapt to persistent load and demand. Overall

compute and storage capacity can be applied where needed with extreme precision

through horizontal and vertical scaling. This enables efficient resource allocation which

offers levels of scale well beyond what coarse-grained architectures are capable of.

This constraint is clearly a crucial ingredient to achieving the highest possible levels

of evolvability, agility, fault tolerance, scalability, and elasticity. These gains, however,

come at a significant cost.

First, this architecture will test the mettle of any architect during the design stage.

Getting granularity right requires detailed and sophisticated domain modeling and a

deep alignment between the organizational structure and the domain model. Unlike

other granularity constraints, the Fine Component Granularity Constraint requires

domain partitioning which, consequently, requires well-defined domains and domain-

aligned teams. One litmus test for microservice granularity is to attempt to specifically

describe the service’s domain behavior. A typical microservice can be described in a

single sentence, without the use of conjunctive words like and/or. This is not to say

that service descriptions will never deploy a conjunctive word indicating multiple

domain behaviors, but such cases will suggest additional scrutiny in the design. This is

sometimes referred to as a “design smell.”

On paper, service boundaries may initially appear obvious, but lurking just beneath

the surface are countless edge cases waiting to be discovered. Each edge case must

be identified and compensated for. Sometimes, architecture can address an edge

case through service consolidation, or a data replication strategy, or the creation of a

shared service, a data domain, or through some other mechanism. You must evaluate

Chapter 16 The Microservices Abstract Style

227

and address each edge case on a case-by-case basis; there are currently no broad best

practices or objective test for optimal granularity that can be applied here.

Beyond boundary edge cases, you must also meter the amount of performance that

this style exchanges for the other architectural capabilities. At this level of granularity,

many domain workflows that rely on in-process function invocation in coarse-grained

architectures become out-of-process network calls—network calls that necessarily incur

bandwidth and latency overhead. Optimal granularity necessitates that performance

does not fall below a threshold defined by the business or product.

Beyond reduced performance, a new challenge arises in the form of observability.

When a process fails in a monolithic component, the application will dump the entire

state and stack trace into a single log. Contrast this with a failure that spans several

microservices. The logs from any single service only offer a piece of the puzzle which

rarely tells the whole story. This constraint requires the Distributed Tracing and Logging

Environmental Constraint.

Tracing is a technique to track and log the flow of requests across service boundaries

to monitor, debug, and optimize distributed systems. Tracing enables the production of a

distributed stack trace for analyzing and resolving problems and failures. For total visibility,

an engineer investigating an issue will require more than the trace; they must also piece

together the rest of the story from the logs of multiple services.3 To achieve this, we require

some mechanism to collate related log entries (some common options are enumerated

in Chapter 3 under “Observability”). Often a request will be assigned a unique request ID

or correlation ID that is common across all service hops for the life of that single request.

Through this unique identifier, multiple interservice requests can be tracked to form a

single, end-to-end trace and the mechanism by which otherwise disparate logs can be

combined to surface a complete picture of what happened. There are many tools and cloud

services that will collate log entries and make them visible on a dashboard or through

proactive notifications. The practices that enable this constraint—along with the prescribed

tooling—must form part of the development process’ standard operating procedure.

Fine Component Granularity requires an environment that supports a high degree of

operational automation. Beyond build, test, and deployment automation, development

teams must define each service’s infrastructure requirements and conditions for scaling

up and down. This will necessitate some knowledge of Kubernetes or another cloud

orchestration system as well as Infrastructure as Code (IaC) skills.

3 Fowler, S. (2016). Production-Ready Microservices. O’Reilly

Chapter 16 The Microservices Abstract Style

228

In such an automated environment, where service instances are spinning up or

down based on demand and where unhealthy instances are terminated and restarted,

request routing must become dynamic. There must be a mechanism for each service

instance to broadcast its availability, status, health, and location. Architecture must

prescribe an environmental constraint of Service Discovery and Routing.

Finally, as with other non-monolithic granularity constraints, this constraint depends

on Independent Development Cycles, Independent Deployability, and API-first development.

Getting granularity right under this constraint is more difficult than in medium or

coarse-grained styles. The disadvantages and trade-offs of this constraint will provide

feedback on when a service is “too micro.” Remember the advice in Chapter 14 on evaluating

granularity and iterating where possible in the direction of coarser to finer. Use the presence

of distributed transactions (discussed in the next constraint) as another “design smell” that

granularity might be too fine-grained. Likewise, use the business metrics introduced in

Chapter 5 as a signal for when further decomposition by architecture is required.

Scenario  Granularity

To illustrate the nuanced challenges inherent to this constraint, below is a
hypothetical scenario where architecture must make a judgment call. In this (and
subsequent) scenario, there is no objective “right answer.” These exercises are,
instead, focused on providing practice for you to think through the options and
their trade-offs.

Scenario E ach call to a microservice requires an authorization step (either from
a client or between services). Your choices are to create a shared authorization
service, a shared library, an authorization sidecar, or a shared/coupled API layer.
Describe your choice and trade-off analysis.

Other Info:
110 Microservices
Low volatility
100ms latency between services
30 Requests/second
350ms AVG response time

Chapter 16 The Microservices Abstract Style

229

In total, this constraint depends on the following non-architectural constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: High Operational Automation

•	 ENV: Distributed Tracing and Logging

•	 ENV: Bulkheads and Circuit Breakers

•	 ENV: Service Discovery and Routing

•	 ENV: Development Environment Isolation

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

•	 TEAM: Cloud/Orchestration Skills

•	 TEAM: IaC Skills

�Isolated Databases
An additional ingredient to this style’s extreme agility, scalability, and fault tolerance

is prescribing that each microservice owns its own database. As with the Partitioned

Shared Database Constraint described in Chapter 14, this constraint precludes database

coupling across components. When one microservice completely controls one database,

the code and database changes can be released atomically and confidently. All changes

are safely scoped, so long as the API contract of the service remains stable.

Unlike the case with the Partitioned Shared Database Constraint, this constraint

eliminates the single monolithic database from the architecture. This removes both a

scaling bottleneck and a single point of failure.

As previous chapters in this section (Chapters 14 and 15) have already noted,

breaking apart data along clean boundaries is extremely difficult. The need for

distributed transactions increases in proportion with service granularity; finer

granularity results in more individual microservices that must communicate and

Chapter 16 The Microservices Abstract Style

230

coordinate. Consistent with what this and previous chapters have stated, we should

avoid distributed transactions; they are often a symptom of granularity problems.

However, with more fine-grained styles, we cannot always avoid them. Where distributed

transactions are inevitable, we must make a choice on how we will navigate the CAP

theorem (Figure 16-1).

Figure 16-1.  CAP Theorem Diagram

CAP Theorem T he CAP theorem, or Brewer's theorem,4 is a fundamental
concept in distributed systems that highlights the inherent trade-offs when
designing such systems. It states that in the context of a distributed data store, you
can only achieve up to two out of the following three guarantees at any given time:
consistency, availability, and partition tolerance.

•	 Consistency means that every read request will receive the most
recent write (or an error), ensuring all nodes see the same data
simultaneously.

4 Gilbert, S., Lynch, N. (2002). “Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services.” ACM SIGACT News. 33. Association for Computing Machinery
(ACM): 51–59

Chapter 16 The Microservices Abstract Style

231

•	 Availability ensures that every request receives a response—
success or failure—without waiting indefinitely (although it may
not reflect the latest state).

•	 Partition Tolerance is the ability of the system to continue
operating despite an arbitrary number of messages being dropped
(or delayed) between nodes or other network failures that divide
the system into isolated segments.

The theorem forces us to make choices. For instance, if you prioritize consistency
and availability, you might have to sacrifice partition tolerance, meaning the system
could fail if network issues occur. On the other hand, if you opt for availability and
partition tolerance, you might have to relax consistency rules, leading to scenarios
where different nodes could see different data. Finally, choosing consistency and
partition tolerance might mean the system is not always available, especially
during network partitions.

The CAP theorem is a reminder that in distributed systems, perfection is not
achievable. It is about understanding which trade-offs align with your system’s
requirements and making informed decisions accordingly.

With the Isolated Database Constraint in effect, the traditional ACID guarantees

offered by monolithic relational databases—Atomicity, Consistency, Isolation, and

Durability—are no longer feasible across multiple services. This limitation poses a

significant challenge in ensuring data consistency and reliability in complex, distributed

architectures. However, we can address this challenge by adopting the Saga Pattern,

a powerful mechanism for managing transactions in a distributed system. The Saga

Pattern provides a way to maintain consistency by orchestrating a series of local

transactions, each confined to a single service.

�The Saga Pattern

In the Saga Pattern, a transaction is broken down into a sequence of smaller, discrete

steps, each of which can be handled independently by different services. If a step fails,

the system attempts to undo the changes made by previous steps using compensating

Chapter 16 The Microservices Abstract Style

232

transactions, ensuring that the system remains consistent. Notably, the approach of

compensating transactions is not always possible, which further informs our approach

to distributed transactions.

�Key Concepts in the Saga Pattern

Compensable Transactions: These are transactions that can be reversed by executing

another transaction with the opposite effect. For instance, if a service successfully debits

an account, but a subsequent service fails to complete the corresponding credit, a

compensable transaction will credit the account to undo the debit. This compensating

mechanism is crucial for maintaining consistency when parts of a distributed

transaction fail.

Pivot Transaction: The pivot transaction is the critical decision point in a saga.

It determines whether the saga will continue to completion or abort. Once the pivot

transaction commits, the saga is committed to running to the end. Pivot transactions are

typically non-compensable and non-retriable, thus serving as the go/no-go point in the

saga. You can look at these transactions as the final checkpoint before the system fully

commits to the transaction.

Retriable Transactions: After the pivot transaction, retriable transactions follow.

These transactions are guaranteed to succeed eventually, even if temporary failures

occur. They provide resilience to the saga, ensuring that once the system passes the pivot

point, it can handle intermittent issues and still complete the process.

�Coordination in the Saga Pattern

Distributed transactions require coordination across multiple services, and the Saga

Pattern offers two primary approaches for this: choreography and orchestration.

�Choreography

Choreography involves a decentralized approach to coordination. Each service involved

in the saga listens for events from upstream services and reacts accordingly, executing

its transaction and publishing events to signal the next step. This approach is akin to a

dance where each participant knows its steps and responds to others.

Chapter 16 The Microservices Abstract Style

233

Advantages

•	 Ideal for simple workflows with few participants, where the logic is

straightforward.

•	 There is no need for additional coordination services, reducing

overhead and maintenance.

•	 Avoids creating a single point of failure, as responsibilities are

distributed across the participants.

Drawbacks

•	 As a transaction workflow grows in complexity, choreography can

become difficult to manage, with services becoming entangled in a

web of dependencies.

•	 Adding new steps can be confusing, as it is hard to track which

services are listening for which events.

•	 There is a risk of cyclic dependencies between services, complicating

the system further.

•	 Integration testing is challenging, requiring all services to be

operational to simulate a full transaction.

�Orchestration

Alternatively, orchestration centralizes the control of the saga in a single orchestrator

service. The analogy here is that of an orchestra with many players who all take their

respective queues from a central conductor. Each player knows their respective notes,

but the conductor brings the whole symphony together.

In an orchestrated saga, the orchestrator issues commands to each participant

service, dictating the global sequence of actions. This method provides more control

over the flow and makes it easier to manage complex transactions involving many

services.

Chapter 16 The Microservices Abstract Style

234

Advantages

•	 Well suited for complex workflows with many participants or

scenarios where new services or behaviors may be added over time.

•	 Centralized control over the process flow and participants, reducing

the risk of cyclic dependencies.

•	 Participants are isolated from each other’s commands, leading to a

clear separation of concerns and simpler business logic.

Drawbacks

•	 Introduces additional design complexity, as the orchestrator needs to

manage the entire workflow.

•	 The orchestrator becomes a potential point of failure, requiring

robust failover strategies to ensure resilience.

�Challenges and Considerations in Implementing the Saga Pattern

Implementing the Saga Pattern requires a shift in mindset, especially when transitioning

from monolithic systems to microservices. Some challenges to consider include

•	 Debugging Complexity: The distributed nature of sagas makes

them hard to debug, particularly as the number of participants

grows. Careful monitoring and logging are essential to trace issues

effectively.

•	 Data Rollback Limitations: Unlike traditional transactions, data in

a saga cannot be easily rolled back. Once a service commits its local

transaction, that change is permanent unless explicitly reversed by a

compensating transaction.

•	 Handling Transient Failures and Ensuring Idempotence: Services

must be designed to handle transient failures gracefully. This often

involves ensuring that operations are idempotent, meaning they can

be repeated without causing unintended side effects. For instance,

when processing messages, the system should be able to retry

operations without altering the outcome, maintaining consistency

even in the face of failures.

Chapter 16 The Microservices Abstract Style

235

•	 Observability: Given the complexity of sagas, it is crucial to

implement observability tools to monitor and track the progress of

transactions. This visibility is key to managing and debugging sagas

effectively.

•	 Durability Challenges: The lack of isolation between participants

poses durability challenges. Each participant commits changes to its

local database at different stages, which can lead to inconsistencies

if not properly managed. Implementing measures to minimize

anomalies and ensure data durability is critical.

�Saga Forces

In Software Architecture: The Hard Parts,5 the authors identify three fundamental forces

that influence the design and implementation of sagas:

•	 Communication: Whether to use synchronous or asynchronous

communication between services. This choice affects the

responsiveness and reliability of the saga.

•	 Consistency: The decision between requiring strict atomic

consistency and allowing eventual consistency across the system.

•	 Coordination: The choice between orchestration and choreography,

each with its trade-offs in terms of control, complexity, and resilience.

How these forces interact will determine other properties of the saga, such as

coupling.

The Saga Pattern is a powerful tool for managing distributed transactions, but it

comes with its own set of challenges and considerations. Understanding the trade-offs

between choreography and orchestration, ensuring idempotence, and implementing

robust observability are crucial for success. As with any architectural strategy, the key

is to align the Saga Pattern with your system's specific needs and constraints, using it to

achieve the desired balance between consistency, availability, and partition tolerance in

your distributed microservices style architecture.

5 Ford, N., Richards, M., Sadalage, P., Dehghani, Z. (2021). Software Architecture: The Hard Parts:
Modern Trade-Off Analyses for Distributed Architectures. O’Reilly Media

Chapter 16 The Microservices Abstract Style

236

�Sharing Data

In addition to coordinating database writes, we must also often coordinate reads.

Unfortunately, tables and columns do not always file neatly into isolated data domains;

there is inevitably some amount of overlap. For a concrete example, let us look at a

hypothetical ecommerce system that has been decomposed according to the constraints

prescribed in the Microservices Abstract Style.

Among various components, we find three that are germane to our data sharing

scenario, the Product Catalog service, the Inventory service, and the Cart service.

The Product Catalog’s database contains entries for each product, including Stock

Keeping Unit (SKU), images, name, description, and other properties. The Inventory

service tracks the quantity and locations of each SKU in the warehouse, and the Cart

service knows which SKUs are currently in the customer’s cart along with the desired

quantity. Of course, a customer does not care about the SKU or other database keys; they

care about the product’s name. Product also wants the cart UI to display a thumbnail

image of the product. Finally, business rules dictate that out-of-stock items cannot

remain in the cart. The Cart service, therefore, depends on data that is owned and

controlled by at least two other services (Figure 16-2).

Figure 16-2.  Service Data Dependencies

Chapter 16 The Microservices Abstract Style

237

What are our options? One of the first approaches that will come to mind for

developers is to simply perform one or more calls to the other service(s) API. This is

commonly known as the aggregator pattern, where the service request will gather and

aggregate all the necessary data to return the response. This is a useful pattern to have

at your disposal. However, beware of chaining together too many microservices as

interservice calls incur latency and bandwidth overhead. Additionally, these branching

and chaining aggregates can quickly begin to involve ad hoc orchestration of several

microservices. This undermines performance and fault tolerance while increasing

coupling (thus lowering agility). There are other trade-offs as well. Let us look at

different ways to implement the aggregation requests and close with a brief look at an

asynchronous, event sourcing approach.

�Simple REST API

The simplest option is for the client to make a request to the Cart service which, in turn,

makes synchronous REST requests to the dependent services.

GET /product/id/1234
Accept: application/json

200 OK
Content-Length: 247469
...
...

While this approach will certainly work, there are trade-offs. First, this decision has

reduced user-perceived performance as a synchronous request to load the cart requires

a chain of requests behind the scenes that must complete before a response is returned

to the customer. If one or both requests fail, the Cart service must also implement

fallback logic to gracefully degrade behavior and arrest cascading failures. Another issue

is a REST API will typically return a full representation of the resource. Among other

problems, we have now introduced bandwidth overhead.

Even if our service only needs the product name (~200 bytes), a REST API that

serves a complete representation of the product will often be orders of magnitude larger.

A 250kb response or larger is well within the realm of possibility. The unnecessary

bandwidth overhead can really add up. At just 2000 requests/sec, our service is already

consuming half a gigabyte of bandwidth.

Chapter 16 The Microservices Abstract Style

238

Our REST approach also introduces stamp coupling to our component. Stamp

coupling, also known as data-structured coupling, occurs in software architecture

when components or modules share a composite data structure, but only use a portion

of it. This type of coupling is a form of interdependence where the modules rely on

the structure of the data rather than just the specific data elements they need. Stamp

coupling introduces a higher level of dependency between components, making the

system more brittle and harder to modify or extend.

�Optimized REST API

REST does not dictate that representations are always one-size-fits-all. In fact, we can

suggest or prescribe that the Catalog Service support content negotiation, where a client

can request a custom representation of the resource that is optimized for this use case by

supplying more precise Accept: headers in the request.

GET /product/id/1234
Accept: application/cart+json

200 OK
Content-Length: 548
...
...

This more refined approach will reduce bandwidth overhead but does not

necessarily solve stamp coupling unless a custom representation is available for every

common use case.

Alternatively, the REST API might offer some kind of custom field selector.

GET /product/id/1234?fields=name
Accept: application/json

200 OK
Content-Length: 281
...
...

Chapter 16 The Microservices Abstract Style

239

The optimized REST approaches also offer the benefit of the cacheability of GET

requests. As a trade-off, the optimal implementation of the customized approaches will

require further API standardization and likely some form of architectural governance to

ensure conformance.

�GraphQL

GraphQL offers an out-of-the-box solution for consumer-driven contracts which

introduces flexibility and optimization, but such requests are not cacheable and still

potentially introduce data model coupling.

Synchronous approaches will guarantee consistency, but availability of the

dependent services will impact the availability of the Cart service.

�Asynchronous Replication and Event Sourcing

As an alternative to synchronous approaches to response composition, asynchronous

options are also available to us (Figure 16-3).

Figure 16-3.  Asynchronous Data Replication

In this arrangement, upstream services will asynchronously broadcast state changes

as they happen. These might be in the form of a dedicated, point-to-point queue or

as part of a fan-out, PubSub approach. Here, the Cart service (or a standalone agent

that shares the database with the main microservice) will subscribe to updates via the

Chapter 16 The Microservices Abstract Style

240

queue or PubSub topic and update a local copy of state as changes are consumed. Event

Sourcing is an example of this approach, which we will explore in more detail in the next

chapter when describing the PubSub Messaging Constraint.

The asynchronous solution to this problem eliminates stamp coupling, eliminates

the interservice requests, caching necessary state locally and thus improving

performance while making more efficient use of bandwidth. With a queue or a PubSub

in between the services, we achieve a topology that provides independent availability

of the Cart service, and asynchronous communication is inherently partition tolerant;

however, this approach can only guarantee eventual consistency.

Once again, we must consider and handle these scenarios on a case-by-case basis.

A concrete style derived from the Microservices Abstract Style must prescribe these

additional constraints and specify their scope.

�Adding Constraints
In addition to changing the granularity and database constraints (with their dependent

team, organizational, and environmental constraints), this abstract style requires the

addition of the following architectural constraints.

�Highly Decoupled Components
The Microservices Abstract Style achieves agility and fault tolerance by, among

other constraints, prescribing a shared-nothing approach to system design. Fine

Component Granularity and Isolated Databases Constraint will eliminate much—but

not all—coupling (specifically afferent coupling, which measures how many different

classes call upon a particular class, and data coupling, respectively). This additional

constraint continues to aggressively remove coupling (specifically efferent coupling,

which measures the number of different classes a particular class calls upon) between

components wherever practical.

One of the most common sources of efferent coupling is shared code. In the

frictionless plane of theoretical architecture, each microservice will stand entirely on its

own. However, in the real world, there inevitably exist many cross-cutting concerns and

overlapping code implementations that span many or all services. How we handle this

reality will depend on additional constraints prescribed in a concrete style.

Chapter 16 The Microservices Abstract Style

241

�Handling Shared Code

�Versioned Libraries

Sharing common code across multiple codebases is not a new requirement. Dedicated

repositories and package managers exist to support this model for external dependencies.

We can extend this model to manage our internal dependencies by publishing shared

libraries to a private repository and managing these semantically versioned dependencies

using the same tooling and process as our external dependencies.

The Open/Closed Principle (Chapter 7) offers a path to extend and customize these

libraries; however, once again, we need to consider granularity. Large common libraries

will exhibit increased code volatility and increase coupling across, potentially, hundreds

of microservices. When a shared library has the potential to require an update and

redeployment of any number of microservices, it is time to consider other strategies.

Advantages

•	 A simple and well-understood approach to code sharing.

•	 Offers the ability for library developers to make versioned changes.

•	 Shared libraries are easy to extend and expand.

•	 Provides a “single source of truth” for the implementation of

common/shared behavior.

•	 Ideal for well-scoped, low-code volatility libraries.

Drawbacks

•	 Introduces an axis for coupling that this style aims to avoid

•	 Introduces complexity around version adoption and depreciation

•	 Poorly suited for polyglot and heterogenous code environments

�Shared Services

Another “single source of truth” approach to addressing the need for shared code is

to encapsulate the code into a shared service. A shared service is a microservice that

exposes the shared code via some kind of API. Using this approach, services that require

the behavior or functionality exposed by one of these shared services perform a network

call when needed.

Chapter 16 The Microservices Abstract Style

242

Extracting common functionality into a shared service completely decouples

individual microservices from the common code. The shared service has its own

independent lifecycle, and a single update to that service will immediately cascade

the change to all dependent services without requiring a coordinated redeployment of

running services, thus honoring the independent deployability constraint. We must,

however, consider the performance and fault tolerance trade-offs inherent to this option.

Network calls incur overhead and reduce performance. The unavailability of the shared

service may also result in cascading failures across the system.

Advantages

•	 Maintains a “single source of truth” for implementation

•	 Particularly well suited to polyglot environments

•	 A useful option for shared code with high volatility

Drawbacks

•	 Versioning is more difficult. Breaking changes may still require

coordinated redeployments.

•	 Network requests introduce a performance penalty.

•	 A shared service is a potential single point of failure and may

introduce further availability or fault tolerance issues.

•	 A shared service may introduce a bottleneck that introduces

scalability and throughput issues.

•	 There is a higher probability of releasing a breaking change that has

broad impact within the system.

�Service Consolidation

Depending on the scope of the shared dependency, we may simply opt for service

consolidation. For example, if a common code dependency spans only two or three

microservices within the same subdomain, we can make the case that the most

expedient and pragmatic solution is to merge these two or three services into a new,

single service.

Chapter 16 The Microservices Abstract Style

243

Advantages

•	 No code sharing

•	 No network performance or bandwidth penalty

•	 No need for version management

Drawbacks

•	 Larger services bring a larger testing scope (reducing evolvability,

deployability, and agility).

•	 Larger services are slower to start, reducing elasticity.

•	 Increased service scope correlates to increased deployment risk.

•	 This approach only works for some code-sharing scenarios.

•	 Coarser services reduce overall agility.

�The Sidecar Pattern

For some cross-cutting concerns, we can colocate the shared code with a service without

directly coupling the two through the adoption of the sidecar pattern.

The sidecar pattern is a microservices design pattern that addresses the challenges

of managing cross-cutting concerns in a distributed system. In this pattern, a sidecar

is a companion service that runs alongside the primary service, typically in the same

execution environment, such as a pod in Kubernetes. Incoming and outgoing requests

for a microservice will typically flow through the sidecar, rather than the microservice

directly invoking behavior in the sidecar. The sidecar handles auxiliary tasks that are not

part of the core domain logic but are essential for the service's operation, such as tracing,

logging, monitoring, configuration management, or network security.

By offloading these responsibilities to a sidecar, the primary service can remain

focused on its core functionality, leading to a more modular and maintainable system.

The sidecar pattern promotes separation of concerns, as the primary service does not

need to be aware of the sidecar's existence or operations. This decoupling makes it easier

to evolve and scale individual components without affecting the rest of the system.

Additionally, because the sidecar and the primary service share the same lifecycle, they

can communicate directly and efficiently, often over a loopback interface, minimizing

Chapter 16 The Microservices Abstract Style

244

latency and overhead. The sidecar pattern is especially useful in environments like

service meshes, where it can enforce consistent policies and behaviors across a fleet

of microservices, ensuring that cross-cutting concerns are handled uniformly across

the system.

Advantages

•	 Decouples cross-cutting concerns from the primary service, leading

to cleaner and more maintainable codebases

•	 Enhances the modularity of the system, allowing the primary service

to focus on its core logic without being burdened by auxiliary tasks

•	 Simplifies the evolution and scaling of individual components

since the sidecar can be updated or replaced independently of the

primary service

•	 Minimizes latency and overhead through direct communication

between the sidecar and the primary service, often via a loopback

interface

•	 Ensures uniform handling of cross-cutting concerns across multiple

services, particularly in service mesh environments

•	 Reduces the blast radius of faults, as issues within the sidecar do not

directly impact the primary service’s core functionality

•	 Supports polyglot environments, as the sidecar operates

independently of the service’s implementation language

Drawbacks

•	 Introduces additional components that must be managed,

monitored, and maintained, which can increase overall system

complexity.

•	 Adds to the resource footprint, as each service must now allocate

resources for both the primary service and its sidecar.

•	 While the sidecar and primary service are decoupled in functionality,

they share the same lifecycle, which may complicate deployments

and restarts.

Chapter 16 The Microservices Abstract Style

245

•	 The introduction of a sidecar can make debugging more complex, as

issues may arise from the interaction between the primary service

and the sidecar.

•	 A sidecar and a service mesh may take competing approaches to retry

failed transactions which may cause conflicts or performance issues.

•	 Requires robust deployment and lifecycle orchestration as well as

monitoring tools to manage the sidecar and ensure that it is correctly

deployed and functioning as expected.

�Please Repeat Yourself

In addition to the options listed above, we may simply opt to duplicate the code in each

microservice that is dependent on the code. Although this approach appears to violate

an entire career’s worth of best practice, in an environment where we must apply

extreme decoupling to achieve extreme scale, fault tolerance, and agility, this practice

often makes sense. In contrast with environments and codebases where “Don’t Repeat

Yourself” (DRY) is the law of the land, microservices environments are more apt to

declare “reuse is abuse” and “please repeat yourself.”

The copy/paste approach to code sharing is yet another trade-off to evaluate.

Prescribing this constraint in relevant scenarios requires teams that are mature with

respect to trade-offs. Also, it can be valuable for teams to maintain a registry of where

code is duplicated. This way, if a bug is found that affects one thing, the other places can

be scrutinized. It mitigates some of the consequences of not using shared code while

also allowing the similar code to diverge and specialize over time.

Advantages

•	 Simple approach to code sharing.

•	 Ideal for code with low volatility

•	 Offers maximum decoupling across services

Drawbacks

•	 It can be exceedingly difficult to coordinate the deployment of

changes due to bugs or evolution in the shared code.

•	 Polyglot environments will require multiple implementations of the

same code, which adds even more bug fix/evolution challenges.

Chapter 16 The Microservices Abstract Style

246

•	 Replicated code can be difficult to expand.

•	 When a development team tweaks their copy of the code to tailor

behavior for a single microservice, coordinating updates becomes

even more difficult.

•	 Teams new to this approach may reject this constraint.

Scenario  Code Sharing

Each call to a microservice requires an authorization step (either from a client or
between services). Your choices are to create a shared authorization service, a
shared library, an authorization sidecar, or a shared/coupled API layer. Describe
your choice and trade-off analysis.

Other Info:
110 Microservices
Low volatility
100ms latency between services
30 Requests/second
350ms AVG response time

Chapter 16 The Microservices Abstract Style

247

�The Microservices Abstract Style

Figure 16-4.  The Microservices Abstract Style

Rice is great when you’re really hungry and want to eat 2,000 of something

—Mitch Hedberg

A visualization of the microservices abstract style can be seen in Figure 16-4. Forward-

leaning software engineer, thinker, speaker, and author Brian Sletten uses the above

quote to illustrate the absurdity of quantity for quantity’s sake. We should not design

a system composed of hundreds of microservices simply because we can; we should

instead only prescribe such extreme constraints when they translate to tangible business

value. The more I have learned about microservices over the past 15+ years, the more

convinced I am that anyone who truly understands microservices would never adopt

this style unless it was absolutely necessary, and no other option will suffice. Scenarios

where this is the case are unusual yet ever-present in our industry.

The landscape of software has evolved considerably since the late 1980s and

early 1990s, when software architecture began to arise as a formal discipline. The

emergence—and subsequent popularity—of the Web has created new, global markets

with vastly different dynamics and economics. The reach of software today is vast and no

Chapter 16 The Microservices Abstract Style

248

longer constrained by requiring a particular operating system or processor architecture.

Physical location, time zone, device hardware, or operating system are increasingly

irrelevant. We are in an era where businesses can measure the total addressable market

of a piece of software in the hundreds of millions—and occasionally billions—of users.

Regardless of the depth and quality of a system’s functionality, if it cannot scale to meet

genuine demand, the system will consistently fall short of its potential.

Beyond simply scaling to meet demands, global-scale software introduces a new

challenge; when the entire world is a potential customer, the entire world is also a

potential competitor. Disruption is rife, and a business running a system that cannot

evolve quickly in response to changing market conditions will frequently be disrupted by

one that can. Agility, in such markets, becomes yet another first-class concern.

Finally, at this scale, the potential impact of outages and failures grows alarmingly

fast. In 2023, Amazon.com saw a total of $12.90 billion in revenue over their highest-

grossing 48-hour period6 or $74,700 per second. With an average spend of $58.67 per

customer, we can calculate a minimum of 1274 checkouts/second (if we generously

assume each customer made all their purchases in a single transaction). A 99.9%

availability SLA that might be more than adequate for a different system could

potentially cost more than $15.7 million in lost revenue without violating the SLA. A

major outage could cost billions in lost retail sales. In short, this style is extreme, but

there is a time for extremes in software architecture.

�Summary
The Microservices Abstract Style is a successful and proven approach to achieve

extremely high agility, deployability, elasticity, evolvability, scalability, and testability,

but the trade-offs are legion. This is one of the most difficult architectures to execute

well, and you should only adopt this after empirically proving that only extremely high

quantification of key capabilities will suffice.

The following architectural constraints define this abstract style:

•	 Fine Component Granularity

•	 Highly Decoupled Components

6 Capital One Shopping Team (2024). “Global Impact of Amazon Prime Day 2023.”
The Capital One Shopping website, https://capitaloneshopping.com/research/
amazon-prime-day-statistics/

Chapter 16 The Microservices Abstract Style

https://capitaloneshopping.com/research/amazon-prime-day-statistics/
https://capitaloneshopping.com/research/amazon-prime-day-statistics/

249

•	 Independent Deployability

•	 Domain Partitioning

•	 Client/Server

•	 RPC API

•	 Isolated Databases

This collection of constraints requires significant team, organization, and

environmental constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: Development Environment Isolation

•	 ENV: High Operational Automation

•	 ENV: Service Discovery and Routing

•	 ENV: Bulkheads and Circuit Breakers

•	 ENV: Distributed Tracing and Logging

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

•	 TEAM: Maturity with Respect to Trade-Offs

•	 TEAM: IaC Skills

•	 TEAM: Independent Development Cycles

The composition of these constraints offers capability improvements over those

offered by the Service-Based Abstract Style (see Figure 16-5).

Chapter 16 The Microservices Abstract Style

250

Affordability Extremely Low

Agility Extremely High

Abstraction Above Average

Deployability Extremely High

Elasticity Extremely High

Evolvability Extremely High

Fault-Tolerance Extremely High

Integration Above Average

Performance Average

Scalability Extremely High

Simplicity Extremely Low

Testability Extremely High

Workflow Extremely Low

THE MICROSERVICES ABSTRACT STYLE

Figure 16-5.  Architectural Capabilities of the Microservices Abstract Style

Chapter 16 The Microservices Abstract Style

251
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_17

CHAPTER 17

Choreographed Event-
Driven Abstract Style

It’s really become clear to me in the last couple of years that we need a new
building block and that is the domain events.

—Roy Schulte (2003)

In the last chapter, we explored the constraints that describe the Microservices Abstract

Style. The conclusion of that chapter introduced the concept of “Domain to Architecture

Isomorphism” and how microservices styles are generally not well suited to workflow-

driven workloads. The root of this weakness lies in the architectural topology of the

microservices style, which first emerged in request-driven systems. In such systems, the

overwhelming majority of functionality is designed to be invoked through some kind

of request that initiates a defined behavior and then returns a response. For example, if

we return to our ecommerce microservices example, clicking “add to cart” will initiate

a request to the Cart service to perform that action. The Cart service will, in turn,

update the state of the customer’s cart in the database before returning a response. In a

microservices style, each service will handle a narrow set of requests.

Complications arise when we introduce workflows that require orchestrating

requests across multiple microservices according to a set sequence of operations.

This is particularly true when the workflow demands conditional logic to determine

the next step based on information gained in the current step. This is not intended to

imply that microservices styles cannot support such workloads—in fact, as we learned

in the section on sagas (Chapter 16), workflows can be supported in those styles—

however, tying together request-driven microservices undermines the significant effort

to decompose the system into isolated, standalone microservices and, consequently,

degrades the overall architectural capabilities of the system.

https://doi.org/10.1007/979-8-8688-0410-6_17#DOI

252

Contrast this with event-driven systems, where each component in the architecture

does not listen for requests; instead, it reacts to domain events. Typically, once a reactive

component performs some action in response to a domain event, it broadcasts a new

event that another component might react to and further the processing of the workflow.

A key distinction is that requests instruct the system to do something, while events, on

the other hand, announce that something has happened.

Designing such a system begins with making a choice between orchestration and

choreography. In this chapter and the next, we will look at two event-driven styles which

offer exceptional workflow support beginning with the choreographed event-

driven style.

A choreographed event-driven system consists of four main components

(Figure 17-1). First, there is the initiating event which triggers the entire workflow. This

event is published on an event channel on the event broker (which is usually federated,

and divided into event channels or topics), our second component. An event processor

asynchronously consumes events from the event channel and performs a specific task

before it produces a processing event to a new event channel in the event broker to be

consumed by the next event processor and the workflow continues. The event broker

facilitates asynchronous communication and decouples producers and consumers.

Figure 17-1.  Components in Choreographed Event-Driven Systems

Chapter 17 Choreographed Event-Driven Abstract Style

253

On the architecture continuum, it is common for concrete implementations of

the Microservices Abstract Style to apply constraints from event-driven styles such as

asynchronous communication and utilizing the broker topology. Introducing such

constraints into a microservices-derived concrete style forms a “reactive” or “hybrid”

microservices style. However, consistent with the previous chapters, we will focus on the

distinct constraints that define these “pure” event-driven abstract styles, arming you with

additional tools to derive a tailored architecture capable of boasting a perfect fit.

�Changing Constraints
�Technical Partitioning
In its pure form, this style supports—but does not require—domain partitioning; in fact,

technical partitioning is the norm and thus forms a defining constraint of this abstract

style. This style continues the use of the Fine-Component Granularity Constraint;

however, each component is not a domain service but rather an even finer-grained event

processor. Event processors generally focus on a single technical behavior.

As a concrete example for this chapter, I was once an architect on a system that

ingested and processed unstructured data to feed an AI-powered engineering platform

(Figure 17-2). Whenever the system received a new file, the workflow published an

initiating event. An event processor would consume the initiating event and classify the

file type based on metadata in the event payload. Following the file classification step,

the classifier component publishes the first processing event which various format-

specific event processors would subsequently consume to continue the ingestion

workflow.

Chapter 17 Choreographed Event-Driven Abstract Style

254

Figure 17-2.  File Processing Workflow

If the file triggering the event was a PDF, a PDF-specific event processor would

attempt to extract the text. If the text extraction process was successful, the processor

would publish another processing event to trigger text indexing and vectorization. If

the PDF only contained images of text, the processor would produce a different event

to extract text using Optical Character Recognition (OCR) before publishing another

processing event to resume the workflow.

In the above example, event processors are defined by technical boundaries

rather than by domain boundaries. These processors are either continuously running

microservice-style components that poll or subscribe to an event channel or serverless

functions invoked by new events.

Chapter 17 Choreographed Event-Driven Abstract Style

255

�Choreography-Driven Interactions
The second departure from the constraints that define the Microservices Abstract Style

is how components communicate. The microservices style prescribed an RPC API,

necessary for a request-based system. This style, however, is event based. This style

replaces the RPC API Constraint with the Choreography-Driven Interactions Constraint.

Choreography requires only that each component understands its individual

role while remaining agnostic of the rest of the workflow. Every event processor

will publish a new processing event upon completion of its work, even if there is no

component to consume the event. Events, in this context, are just that—things that have

happened rather than requests to do something. Not all asynchronous communication

between components in a distributed system necessarily need to operate this way, but

communication via idempotent, post-processing notification events is central to the

Choreography-Driven Interactions Constraint. To model events as requests requires

foreknowledge of what component(s) will process the request which introduces coupling

and violates a core tenant of choreographed event-driven architectures. Consumers do
not know about producers and producers do not know about consumers, just where

to listen for, and where to publish, relevant events.

�Architectural Extensibility

This constraint results in highly decoupled event processors, with the only coupling

being the initiating event(s) an individual component listens for and the processing

event(s) it produces.

The listen-process-publish flow of the Choreography-Driven Interactions affords

a surprising amount of architectural flexibility and extensibility. If an event processor

publishes a processing event, and there is no component to consume it, the event either

remains in queue indefinitely or the event is removed after a defined retention period.

At any point, development teams may deploy a new event processor to consume these

events, and the processor instantly becomes part of the workflow with no additional

coordination effort.

Consider an event-driven ecommerce system. Clicking the “add to cart” button fires

an initiating event that the cart processor will consume. Once the cart processor updates

the state of the cart, it, in turn, publishes a processing event. Each time an item is added

or removed from the cart, the cart processor publishes an additional “cart changed”

event. The state of the cart is finalized when an initiating “checkout” event is fired.

Chapter 17 Choreographed Event-Driven Abstract Style

256

In this scenario, of what use are the “cart changed” events? If the state of the cart

at checkout is one of Product A, one of Product B, and one of Product C, does it matter

how we arrived at that state? Is there a difference between three “added to cart” events

or two “added to cart” events, a “removed from cart” event, and two more “added to

cart” events? It depends on your perspective. A developer or fulfillment employee

might only care about the final state, but a data scientist might be deeply interested in

events that led to that final state. If all the “cart changed” events accumulate in the event

channel on the broker with an indefinite retention period, at any time a development

team can deploy a new event processor to consume the accumulated events to tune

recommendation and ranking models.

Beyond serving as an example of architectural extensibility, the ability to replay

state changes that have taken place over time is an example of event sourcing which

the previous chapter briefly introduced in the section on sharing data between

microservices. Event sourcing is a powerful pattern within event-driven and hybrid

architectures that focuses on capturing all changes to the state of a system as a sequence

of immutable events. Rather than simply storing the current state of an entity, event

sourcing records every state change as an event in an append-only log. This approach

provides a complete audit trail, allowing the system to reconstruct any past state by

replaying the events in sequence. It also enables advanced scenarios such as temporal

queries, where you can see the state of the system at any point in time, and easy

integration with other systems through event streams. By adopting event sourcing,

you not only gain a robust method for maintaining eventual consistency in distributed

systems but also unlock new possibilities for analytics and system evolution over time, as

every decision and action in the system is transparently recorded.

�Performance and Scale

The broker does more than decouple components, it also absorbs bursts of events to

prevent a processor from becoming overwhelmed. Each processor can also be scaled

independently in response to broker backpressure. This constraint also results in

workflows that parallelize particularly well, as multiple event processors can consume the

same event if the broker supports fan-out communication. Consequently, this constraint

results in high-performance systems, both in terms of absolute performance and user-

perceived performance (as a client does not have to wait for anything more than an

acknowledgment that the initiating event has been published). This constraint can even

enable real-time processing in styles such as the Kappa architecture (described below).

Chapter 17 Choreographed Event-Driven Abstract Style

257

The asynchronous nature of communication under this constraint favors availability

and partition tolerance over consistency, which will significantly improve overall fault

tolerance.

Kappa Architecture

Kappa architecture is a streamlined approach to real-time data processing,1
often considered a special case of choreographed event-driven architectures.
In both paradigms, events are the central unit of work, driving system behavior
and enabling highly decoupled, scalable, and responsive systems. The Kappa
architecture builds on this foundation by focusing exclusively on processing events
as a continuous stream, eliminating the need for separate batch processing layers.

In choreographed event-driven architectures, services or components respond to
events without a central orchestrator, leading to a more organic flow of information
through the system. Each service reacts to relevant events, triggering other
events in turn, creating a chain of reactions that drives the system forward. Kappa
architecture can be seen as an application of this idea but with an emphasis
on handling large volumes of data in real time. It uses event streams as the
backbone of its processing pipeline, where each event triggers transformations,
computations, or actions as soon as it arrives, aligning with the principles of event
choreography.

By treating all data as part of an event stream, Kappa architecture naturally fits
within the broader category of choreographed systems. It leverages the decoupling
and reactivity inherent in event-driven designs to achieve high throughput and
low-latency processing, making it an excellent choice for modern applications that
require real-time insights and actions. The elimination of batch processing not
only simplifies the architecture but also ensures that all components are aligned
around the same flow of events, reinforcing the core principles of event-driven
choreography.

1 Kreps, J. (2014). Questioning the Lambda Architecture. O’Reilly. https://www.oreilly.com/
radar/questioning-the-lambda-architecture/

Chapter 17 Choreographed Event-Driven Abstract Style

https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/

258

�Failures and Error Handling

When designing a choreographed workflow, we must think about more than the happy

path and consider failure cases as well. What should happen if an event processor is

unable to perform its task? Failure events are often equal in value to success events. At a

minimum, an event processor should publish failure events to a “dead letter queue” for

periodic human review. As these reviews unveil novel failure conditions, development

teams can build new event processors that listen to the dead letter queue, resolve the

issue, and republish the event to the upstream event channel for reprocessing.

We must also consider failures that do not produce a failure event. Consider a

scenario where an event processor simply crashes. Choreography-driven systems

do not involve an external mediator that is monitoring and controlling steps in the

workflow. If a processor consumes an event but does not publish a processing event on

the other side, the business process abruptly ends, potentially leaving the system in an

inconsistent state. Because choreographed workflows are dynamic and evolving, there

is rarely a clear “process completed” state or event which further obscures such failures.

Recovering in such scenarios cannot be as simple as restarting the workflow either, as

upstream components may have already performed some amount of work. There must

also be automated and manual processes to handle silent failure scenarios.

Error handling becomes even more challenging as workflows grow more complex.

Consider a “checkout” event on a cart that multiple processors (e.g., payment, inventory,

fulfillment) consume. In this topology, a payment failure will not prevent the inventory

service from decrementing available stock, nor will it prevent the fulfillment service from

directing warehouse employees to pick and pack the order.

Beyond error handling, we must consider scenarios where event processor

components process events in a sequence that is different from the order of events we

might assume. Most asynchronous communication middleware will follow a first-in-

first-out (FIFO) sequence; however, when there are delays or other workflow exceptions,

we can no longer rely on any order of message processing. The workflow process must

either be designed to be resilient to out-of-order messages or an orchestration-driven

approach (Chapter 18) must be chosen.

In short, you must model choreographed systems extremely carefully. Ask as many

“what if” questions as possible during the design process and ensure you have a plan to

handle every edge case as well as for detecting unanticipated failures. Also, consider that

any change to the event flow will require extensive regression and exploratory testing to

uncover any surprise outcomes from the new changes.

Chapter 17 Choreographed Event-Driven Abstract Style

259

�Modeling Choreographed Systems

Modeling choreographed event-driven systems can be complex due to the decentralized

nature of the architecture. However, there are several tools, techniques, and processes

that can help architects, business actors, and developers to design, visualize, and

implement these systems effectively.

�Tools

EventStorming
EventStorming is a Domain-Driven Design technique created by Alberto Brandolini2

in 2015 offering a lightweight way to explore and identify what is happening within

the domain of a software program. Although we are introducing this constraint in the

context of a technically partitioned system, domain modeling still holds immense value

in building a shared understanding of the domain, its full behavior, and complexity

that can be valuable in designing any system’s architecture. It is particularly germane

to this constraint as EventStorming tackles domain modeling through business process

modeling. Think of EventStorming as a form of event-first design that focuses first on

the flow of information, rather than the Cart Before the Horse approach of service-

first design.

EventStorming involves architecture or development teams bringing key product

stakeholders and domain experts together in the same room to visualize the domain by

representing various domain concepts as sticky notes, laid out sequentially on a wall

or large roll of paper, with different colored sticky notes denoting different classes of

concepts. The basic process is as follows:

	 1.	 Identify various domain events, events that occur in the business

or domain process. By convention, orange sticky notes are used

for domain events and always written in the past tense.

	 2.	 Identify the command that caused each domain event. Commands

may be user-initiated or process-initiated. By convention,

commands are written on blue sticky notes and placed directly

before each event.

2 Brandolini, A. (2015–2021). Introducing EventStorming: An Act of Deliberate Collective Learning.
LeanPub, https://www.eventstorming.com/book/

Chapter 17 Choreographed Event-Driven Abstract Style

https://www.eventstorming.com/book/

260

	 3.	 Where appropriate, identify the actor responsible for initiating

a command. In the case of event-driven architectures, the actor

is usually responsible for the command that generates the

initiating event. By convention, actors are written on small, yellow

sticky notes and are connected to the lower-left corner of the

command sticky.

	 4.	 Where appropriate, identify aggregates. Aggregates are clusters of

domain objects that can be conceptually treated as a single unit.

By convention, these are larger yellow sticky notes placed above

command and domain event pairs.

	 5.	 Identify business processes, the elements which process a

command according to business rules or logic and create one or

more domain events. Subsequent iterations in the EventStorming

process should expand these processes out to visualize the

sequence and rules. By convention, these are written on purple

sticky notes.

	 6.	 Identify external systems on which a command or aggregate

depends. By convention, external systems are represented with

pink sticky notes.

	 7.	 Identify views, the interfaces through which users interact to carry

out a task in the system. By convention, views are written on green

sticky notes.

EventStorming produces a unified and shared understanding of the domain,

processes, and domain events, as well as their relationships within the system. The

resulting picture (Figure 17-3) will not only inform the design of an event-driven system

but is also useful for identifying domain boundaries and aligning communication within

domains and subdomains by surfacing each domain’s ubiquitous language.

Chapter 17 Choreographed Event-Driven Abstract Style

261

Figure 17-3.  An Example EventStorming Visualization3

�Activity Diagrams, State Machines, and Statecharts

Often, workflows can be modeled as state machines that aim to reach a desired end

state. In this case, a chart of possible states and potential changes provides another

mechanism for visualizing and understanding the workflow. Thinking about the process

in this way can be useful to determine how each state change impacts the workflow,

and services should respond to events. Statecharts, which extend state machines with

hierarchical states and parallelism, can be particularly useful for complex event-driven

workflows.

A comprehensive event-centric visualization of a domain is also a useful tool for

exploring the various “what if” scenarios described in the “Failures and Error Handling”

section above, guarding against errors of omission.

�Behavior-Driven Development (BDD)

Using BDD with a focus on event flows can help in defining and testing the expected

behavior of the system in response to different events. BDD tool syntax can be extended

to describe event interactions and outcomes, guiding both development and test. BDD

scenarios are typically defined using a natural domain-specific language (DSL) to

3 Chapuy, J. (2021). The Elements of Event Storming and Their Interactions. Retrieved from:
https://jordanchapuy.com/posts/2021/11/les-ingredients-d-un-event-storming-et-
leurs-interactions/ Image Licensed CC-BY 4.0

Chapter 17 Choreographed Event-Driven Abstract Style

https://jordanchapuy.com/posts/2021/11/les-ingredients-d-un-event-storming-et-leurs-interactions/
https://jordanchapuy.com/posts/2021/11/les-ingredients-d-un-event-storming-et-leurs-interactions/

262

formalize a shared understanding of how the system should behave. The DSLs typical to

modern BDD tooling produce scenarios understandable to not only BDD testing tools

but also developers and nontechnical business stakeholders.

�Adding Constraints
In addition to the modified constraints above, this style must prescribe a mechanism for

asynchronous communication.

�PubSub Messaging
In their pure form, distributed event-driven systems do not communicate directly;

instead, communication takes place via asynchronous messages passed between

components which requires some form of message-oriented middleware (broker)

to facilitate such communication. The dominant options in this category are queues

and the Publish/Subscribe (PubSub) model. Although both offer asynchronous

communication, offering an additional axis of elasticity by smoothing out workload

spikes, each of these options will influence architecture capabilities in different ways.

Consequently, the asynchronous communication paradigm is an architecturally

significant decision.

In a PubSub model,4 we conceptually divide components into publishers and

subscribers. Publishers emit events to a centralized broker, which then distributes these

events to all interested subscribers. In a choreographed event-driven system, most

subscribers are also publishers as each event processor will broadcast events following

the completion of a task.

The superficial similarity of PubSub and queues will sometimes cause developers or

architects to conflate the two (this is compounded by the fact that many commercial and

open source queues can be configured to behave like a PubSub and vice versa); however,

there are differences that you must understand.

Queues generally follow a push/pop flow, where producers push a message into

a queue and consumers subsequently pop messages from the queue as they are read,

resulting in exactly once delivery.

4 Berglund, T. (2020). Kafka as a Distributed System. InfoQ. https://www.infoq.com/
presentations/kafka-controller-zookeeper

Chapter 17 Choreographed Event-Driven Abstract Style

https://www.infoq.com/presentations/kafka-controller-zookeeper
https://www.infoq.com/presentations/kafka-controller-zookeeper

263

In contrast, PubSub producers place messages in a topic that is defined within a

broker. Topics form an append-only log of activity, meaning that there are no direct side

effects when consumers read messages from a topic to which they subscribe. The broker

retains the messages (either indefinitely or for a defined period known as the retention

period). Of course, this introduces a new wrinkle in event-driven system design; PubSub

topics promise at least once delivery, meaning an event processor might react to the

same event more than once. Processing the same message multiple times increases in

likelihood as the number of running instances of an individual event processor increases.

Each consumer of a PubSub topic must maintain some kind of state. Typically, each

message in a topic is assigned an ever-increasing identifier known as an offset. Services

must maintain some state with respect to the topic(s) to which it subscribes. This “last

offset” state is typically shared across instances, allowing each service to receive and

process only messages with an offset greater than what has been seen last. Even sharing

this state, however, will not prevent every possible race condition or double read. We

must keep this reality top of mind and design idempotence into each domain event or

component.

Although the persistence of messages within PubSub topics introduces challenges in

preventing duplication of work, the append-only nature of a topic also brings benefits.

At least once delivery enables multiple distinct consumers to subscribe to the same topic

in parallel, which is useful for more complex workflow scenarios. Additionally, this fact

improves fault tolerance. If an event processor crashes while processing a message, once

the processor restarts it can resume processing starting at the first unprocessed message.

Let us look at how PubSub works under the hood.

�Inside a PubSub Broker

In its simplest form, a PubSub consists of a broker which hosts one or more topics. To

support both high throughput and fault tolerance, brokers are often federated and topics

partitioned (Figure 17-4). Each federated broker hosts distinct topic partitions as well

as replicas of other topic partitions. Both reads and writes can be distributed across

multiple broker instances, with writes distributed across topic partitions based on a

defined partition key. When a message is sent to a broker, it will hash the partition key

and use that hash to determine which partition the message should be appended to.

Chapter 17 Choreographed Event-Driven Abstract Style

264

Figure 17-4.  Partitioned Topics in a PubSub

Partition key selection can be important for two reasons. First, the partition key

should be a property or value with a uniform distribution to prevent overutilizing a

small number of partitions. Second, although writes to a topic follow a FIFO sequence, a

precise order of message consumption can only be guaranteed within a single partition.

Consider the following example of a stock trading platform.

Within a high-performance trading platform that handles highly variable volume, a

choreographed event-driven architecture offers a reasonable architectural foundation.

However, in our modern era of high-frequency trading, order of processing not only

matters, but it is also essential to the success of this system.

Suppose a trader initiates a BUY order of 100 shares of AAPL, a second BUY order of

50 shares of MSFT, then a SELL order of 50 shares of AAPL: all in rapid succession. We

can guarantee FIFO order if we limit our topic to a single partition. However, a single

topic partition will introduce a bottleneck that will unacceptably constrain throughput.

If those trade events are distributed arbitrarily across multiple topic partitions, we

eliminate a bottleneck and solve our throughput issues, but we have introduced the

possibility that the AAPL SELL order is processed before the AAPL BUY order.

Partitioning is still an option, but we need to be mindful in our partition key

selection. Of the three example trades, only the BUY and SELL orders on AAPL must

happen in FIFO order. The MSFT trade, however, can happen in any sequence relative to

trades on other securities. If we define the partition key by the ticker symbol on the trade

order topic, all trades on a single ticker will always be written to the same topic partition

Chapter 17 Choreographed Event-Driven Abstract Style

265

in FIFO order. Through careful selection of the partition key, we have eliminated

bottlenecks in the broker while still guaranteeing processing order only where it matters.

Another consideration is topic retention. Storing every message indefinitely can

grow costly over time, particularly when using commercial, managed PubSub offerings.

You should consider what retention periods make sense for each subdomain, then

fine-tune on a topic-by-topic basis. If there is not a clear answer, or you find that a small

number of edge cases seem to be pushing you in the direction of indefinite retention,

pick a retention period that will satisfy 90% of cases and build a small consumer that

serializes aging messages and store them in a lower-cost blob storage service or a data

lake. These archived messages can always be replayed through a topic, if necessary.

A widely used PubSub is Apache Kafka (https://kafka.apache.org/). Although

Kafka began as a PubSub, it has grown into a framework with a vast ecosystem of tools to

solve common problems.

A notable utility in the Kafka ecosystem is the schema registry, which is part of

Kafka’s commercial offering, Confluent Cloud. The schema registry offers an additional

layer of decoupling components. Because producers do not know about consumers and

consumers do not know about producers, it can be difficult to determine the potential

impact to consumers when evolving or changing a message schema. The schema registry

further decouples producers and consumers by simultaneously supporting multiple

versions of a message schema, similar in concept to content negotiation in REST. A

V2 schema, for example, would include mapping information from the V1 schema.

Consequently, the producer could switch to the new V2 schema without risk. Existing

consumers simply specify the V1 schema as part of their consume operation, and Kafka

automatically transforms the message.

Chapter 17 Choreographed Event-Driven Abstract Style

https://kafka.apache.org/

266

�The Choreographed Event-Driven Abstract Style

Figure 17-5.  Choreographed Event-Driven Abstract Style

A visualization of the choreographed event-driven abstract style can be seen in

Figure 17-5. Although we changed only two constraints that define the Microservices

Abstract Style, and added one, we arrive at a style that looks topologically similar but

offers notably different capabilities. When workloads are naturally event driven, and

the workflow is not too complex, variations of this style are worth exploring.

Often, event processors are exceedingly small with blazingly fast start times. Since

their sole purpose is to react to events, rather than wait for requests, they only need to be

running when an event occurs. This style is a good fit for serverless architecture.

Serverless Architecture

Serverless architecture is a cloud computing model where the cloud provider
automatically manages the infrastructure, scaling, and provisioning of resources
needed to run applications.5 In a serverless setup, developers write and deploy
functions—small, stateless units of code—that are executed in response

5 Sbarski, P., Cui, Y., Nair, A. (2020). Serverless Architecture on AWS. Manning

Chapter 17 Choreographed Event-Driven Abstract Style

267

to specific events or triggers. The serverless platform handles all aspects of
infrastructure management, including scaling the application up or down based
on demand and charging only for the compute time consumed. This model allows
developers to focus on writing code rather than worrying about the underlying
infrastructure, reducing the complexity of the High Operational Automation
Constraint.

In the context of choreographed event-driven systems, serverless architecture
offers a compelling approach to managing the execution of event-driven workflows
with high efficiency, minimal operational overhead, and simplicity in deployment
and maintenance. This aligns well with the principles of event-driven systems,
where the logic is naturally broken down into discrete, independent components
that react to events as they occur.

One of the key advantages of using serverless architecture in a choreographed
event-driven system is its ability to automatically scale in response to varying
workloads without additional development team effort. As events are published,
serverless functions can be triggered in parallel, with the underlying platform
handling the scaling to meet demand. This ensures that the system remains
responsive even under heavy loads, without the need for pre-provisioning or
managing servers. Additionally, because serverless platforms typically charge
based on the actual execution time and resources consumed, this approach can be
cost-effective, especially in systems with unpredictable or spiky traffic patterns.

However, it is important to be mindful of the limitations and challenges of
serverless architecture. Cold start latency, for example, can introduce delays when
functions are invoked after being idle, which might impact performance in time-
sensitive applications. Additionally, the stateless nature of serverless functions
requires careful management of state and context between invocations, often
necessitating the use of external storage or state management services.

Serverless architecture offers a highly compatible and scalable option for
implementing choreographed event-driven systems, allowing for rapid
development and deployment while aligning with the key principles of decoupling
and flexibility inherent in such systems.

Chapter 17 Choreographed Event-Driven Abstract Style

268

One of the most notable downsides of this style is complexity in debugging,

performance analysis, and monitoring. Since components do not directly interact,

tracing the flow of an event through the system can be difficult, especially in complex

architectures with multiple publishers and subscribers. This can lead to challenges in

identifying the root cause of issues, as there is no direct linkage between the origin of an

event and its consumers without the use of SIEM tools like LogRhythm or Splunk.

As workflows grow more complex, the suitability of this style falls. The

understandability of implementations of this style falls exponentially over time, while the

“what if” modeling of edge cases grows exponentially. Imperfect understanding of the

system can cause issues such as cycles emerging in the workflow.

Finally, observability can be extremely challenging which makes it hard to know

when many workflows are “done.” It requires careful consideration and management to

mitigate complexities and potential pitfalls inherent to this style.

All that said, architecture is not an all or nothing proposition. Rarely will you see a

“pure” event-driven system. Software often needs users, and users need interfaces, and

interfaces need to make requests. Choreographed event-driven architectural styles may

not be suitable for the entire system, but a subdomain may exist where this family of

styles is a perfect fit. Architectural styles may be prescribed at the enterprise level, the

system level, the subdomain level, or even the component level. It just depends.

Also, remember architectures are not chosen, they are designed. As you have seen in

the preceding chapters, the capabilities are the product of the constraints. The defining

constraint of this architectural style shows up in many hybrid applications.

Hybrid microservices and service-based architectures are increasingly common.

Tailoring a distributed style by introducing the PubSub constraint will result in a style

that offers both a request-based API and an event-based data backplane. When the

Choreography-Driven Interactions Constraint is introduced to microservices, the

workflow deficiencies quickly evaporate. Even in a monolithic system, there can be

instances where it makes sense to extract a few services to handle higher-volume, simple

workflows.

Finally, choreography is not our only option for event-driven styles. In the next

chapter, we will explore the constraints that make up the Orchestrated Event-Driven

Abstract Style.

Chapter 17 Choreographed Event-Driven Abstract Style

269

�Summary
The Choreographed Event-Driven Abstract Style is a powerful tool. Its defining

constraints offer much in terms of scalability, elasticity, and fault tolerance. The

broadcast nature of PubSub offers an extremely high degree of decoupling. Being

asynchronous, the entire system is incredibly responsive. The PubSub broker will also

buffer activity spikes without necessarily needing to scale compute resources. Workflows

can evolve organically with little to no coordination cost, and the features in various

PubSub ecosystems provide many useful tools and implementation options.

This style does bring challenges and trade-offs. Complex workflows are not well

suited to this style as we must grapple with increased error handling complexity, silent

failures, the potential for cycles, out-of-order processing, debugging, understandability,

and observability/monitoring.

The following architectural constraints define this abstract style:

•	 Fine Component Granularity

•	 Technical Partitioning

•	 Highly Decoupled Components

•	 Independent Deployability

•	 Choreography-Driven Interactions

•	 PubSub Messaging

This collection of constraints requires the following team, organization, and

environmental constraints:

•	 ORG: DevOps Commitment

•	 ENV: Development Environment Isolation

•	 ENV: High Operational Automation

•	 ENV: Distributed Tracing and Logging

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

•	 TEAM: Maturity with Respect to Trade-Offs

•	 TEAM: IaC Skills

•	 TEAM: Independent Development Cycles

Chapter 17 Choreographed Event-Driven Abstract Style

270

The composition of these constraints offers capability improvements over those

offered by the Microservices Abstract Style (see Figure 17-6).

THE CHOREOGRAPHED EVENT-DRIVEN ABSTRACT STYLE

Affordability Above Average

Agility High

Abstraction Very High

Deployability High

Elasticity Extremely High

Evolvability Extremely High

Fault-Tolerance Extremely High

Integration Above Average

Performance Very High

Scalability Extremely High

Simplicity Extremely Low

Testability Low

Workflow High

Figure 17-6.  The Choreographed Event-Driven Abstract Style

Chapter 17 Choreographed Event-Driven Abstract Style

271
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_18

CHAPTER 18

Orchestrated Event-Driven
Abstract Style

Four years from now, ‘mere mortals’ will begin to adopt an event-driven
architecture (EDA) for the sort of complex event process that has been
attempted only by software gurus…

—Roy Schulte (2003)

Event-driven styles are, undoubtedly, well suited for workflow-driven workloads, but

the nature and complexity of the processing will influence your choice of underlying

constraints. The Choreographed Event-Driven Abstract Style introduced in the last

chapter offers a very high degree of agility and architectural extensibility, but this

approach brings certain limitations. In this chapter, we will look at another event-

driven abstract style that changes two defining constraints to address some of those

limitations. Every architectural style introduces a different set of trade-offs. It is up to you

to determine which set of trade-offs make the most sense in the context of a project or to

derive a tailored style that provides the right capabilities where they are needed most.

�Changing Constraints
�Orchestration-Driven Interactions
The first constraint we change is how components interact. In contrast with the

Choreography-Driven Interactions Constraint, where each component only knows its

individual role, orchestration introduces a central mediator (or orchestrator) which

controls the workflow from start to finish through direct interaction with each of the

required processing components in sequence (Figure 18-1).

https://doi.org/10.1007/979-8-8688-0410-6_18#DOI

272

Figure 18-1.  Depiction of a Mediator-Orchestrated Workflow

With a central mediator orchestrating the workflow, we eliminate the need for

detailed choreography of every exception and edge case. The mediator has visibility into

errors and can manage these to either roll back or restart/recover. This makes it much

more difficult to lose messages or get into an inconsistent state. The Orchestration-

Driven Interactions Constraint also guards against accidental cycles in the workflow

process and other potential negative emergent behaviors.

This constraint enables the modeling and implementation of both simple and

complex workflows with less complication and risk. The mediator is inherently coupled

with the workflow and the processing components as this style requires that the mediator

has knowledge of each component with which it must interact as well as how to interact

with them. The mediator must also know each step of the workflow and how to handle

exception conditions.

The coupling of mediator and processing components results in a workflow that is

more difficult to evolve. Coordinated deployments are often inevitable, meaning our

testing scope increases and our deployability decreases. Agility is also constrained.

�Mediator Topology

This abstract style is a variation of choreographed style described in the previous

chapter. As such, this style describes a technically partitioned, distributed system.

Consequently, in many cases, we do not want a single, monolithic mediator. Often

multiple mediators will be associated with each domain, and a single mediator will exist

for each domain workflow or for each subcomponent of a domain workflow where a

Chapter 18 Orchestrated Event-Driven Abstract Style

273

mediator is warranted. This opens some useful topological possibilities in our design.

In an orchestrated event-driven style, a single mediator will listen for an initiating event

on the relevant event channel; however, this does not imply that a single mediator must

orchestrate every step or every possible permutation of a single domain workflow.

When designing a system to support an orchestrated workflow, begin by categorizing

the overall workflow as simple, hard, or complex. Simple workflows can easily be

handled by a single simple, lightweight mediator (like the example in Figure 18-1). In

the case of hard or complex workflows, we have a choice to either expand the scope and

complexity of a single mediator or utilize multiple mediators in a hierarchical topology to

isolate and contain the overall complexity.

To determine whether to expand the mediator or expand the topology, first take a

critical look at the problem to ensure you are dealing with essential complexity and not

compounding accidental complexity.1 In the latter case, I would recommend taking

a step back to the drawing board and evaluating the architectural requirements. It is

always important to check our assumptions and, in this case, ensure such a topology is

truly necessary.

Assuming the complexity is essential, next break down the business process to

determine if the entire workflow is complex or if there merely exist pockets of complexity

in the overall flow. Even in complex workflows, there is often a mix of simple and

complex stages (hence, pockets of complexity). Often these pockets of complexity take

two distinct forms that each will inform the overall workflow topology:

	 1.	 An inherently complex subset of steps in the overall workflow

	 2.	 An inherently complex edge case

In the case of the first form, it can be useful to bundle the subset of individual, atomic

steps into a single, molecular delivery. In such a topology, all requests flow through a

common, lightweight mediator that will orchestrate both the processing components

responsible for performing simple tasks as well as child or delegate mediators which

control the more complex sequences.

In the case of the second form, where complexity emerges from certain edge cases,

once again all requests flow through a common, lightweight mediator acting as the entry

point for the workflow, and this mediator will make the determination of whether a given

instance of the workflow triggered by the initiating event can follow the comparatively

1 Brooks, F. (1986). No Silver Bullet—Essence and Accident in Software Engineering. Proceedings of
the IFIP Tenth World Computing Conference

Chapter 18 Orchestrated Event-Driven Abstract Style

274

simple “happy path” or if the workflow instance will require a more powerful mediator.

In the latter case, the simple mediator will hand off the work to a more specialized and

complex delegate mediator.

In both scenarios, you are decomposing the problem to isolate complexity and limit

testing scope, which will marginally improve testability, deployability, and overall agility.

�Building/Implementing Mediators

Orchestration is a common need in many distributed environments. Consequently,

we have many implementation options available to us, with each option capable of

supporting different levels of complexity. Depending on the system’s environment,

existing tools may already be in place and ready to utilize. When considering various

possibilities, consider the following features which are useful in an event-driven

architecture:

•	 Routing: Determine how messages are passed from one component

to another.

•	 Transformation: Convert message formats as they move between

services.

•	 Mediation: Act upon the message content or headers to make

decisions about business logic.

•	 Adapters/Connectors: Connect to various systems and protocols.

There is no one-size-fits-all solution, and you will need to consider ecosystem and

language compatibility, complexity, performance, community, and support. Let us look

at a few common options along with their advantages and trade-offs.

�Custom Component

The first option is building a custom orchestration service component that listens to

events and triggers other services via APIs or events. For simple workflows, this may be

more than adequate.

This option allows developers to utilize existing software development skillsets

to develop a mediator component. Teams have full control over the domain-specific

orchestration logic, allowing them to implement complex workflows, customize error

handling, and adjust the behavior as their needs evolve. With a custom solution, teams

Chapter 18 Orchestrated Event-Driven Abstract Style

275

can implement detailed logging, monitoring, and tracing specifically designed for their

workflows, making it easier to identify and resolve issues.

Developing and maintaining a custom orchestration service can be complex,

especially as workflows evolve. This approach often requires a significant investment

of time and resources, both during development and ongoing maintenance. Over time,

the service may become difficult to manage, requiring significant effort to maintain

and extend. As workflows change, the custom service might accumulate technical debt,

particularly if not carefully managed. This can lead to increased maintenance burdens

and potentially limit agility in adapting to new requirements. There is also a risk of

overengineering the solution, adding unnecessary complexity that might not be needed

immediately or at all. This can make the service harder to understand and maintain.

Additionally, custom solutions may rely heavily on the knowledge of the developers

who built it. If those developers leave the organization, it could be challenging to

maintain or extend the service. Consequently, maintaining good documentation in

such cases is a necessary countermeasure that trades incremental cost for improved

maintainability.

Finally, in many cases, we are reinventing the wheel. As you will see below, there

are many existing orchestration frameworks, platforms, and tools that provide robust

workflow orchestration capabilities. Building a custom solution might mean duplicating

functionality that already exists, diverting resources from differentiating efforts that

provide concrete user value.

�Cloud Services

AWS Step Functions, Azure Logic Apps, and Google Cloud Workflows are all tools

to build powerful integration solutions and orchestrate data and services. When

considering cloud-based orchestration solutions such as these, the inherent advantages

include rapid deployment and scalability, allowing you to leverage the vast infrastructure

and reliability of these platforms. These services are designed to integrate seamlessly

with other cloud services, providing out-of-the-box connectors and simplifying

the orchestration of complex workflows without the need to manage underlying

infrastructure. However, the trade-offs include additional cost and potential vendor lock-

in, which might limit your flexibility if you need to switch platforms later. Additionally,

while these services reduce the need for custom code, they might also impose

constraints on your workflows, limiting customization to what the platform supports,

which could be a significant drawback for highly specialized or complex processes.

Chapter 18 Orchestrated Event-Driven Abstract Style

276

�Service Mesh

If available, using a service mesh like Istio or Linkerd combined with custom controllers

offers a powerful and flexible approach to managing microservices communication and

orchestration. The inherent advantages of this solution include fine-grained control over

service-to-service interactions, enhanced security with features like mutual transport

layer security (TLS), and advanced observability through metrics, logging, and tracing.

By integrating custom controllers, you can automate and extend the orchestration

capabilities to fit your specific needs, providing a tailored solution that leverages

the robust features of the service mesh. However, the trade-offs include increased

complexity in managing the service mesh itself, which can be resource-intensive and

require a steep learning curve. Additionally, the overhead of maintaining both the mesh

and custom controllers can lead to higher operational costs and potential performance

implications, especially as your system grows in complexity.

�RabbitMQ with Workflow Plug-ins

Leveraging RabbitMQ in conjunction with workflow plug-ins provides a message-driven

approach to orchestrating workflows, offering robust, asynchronous communication

between services. The inherent advantages of this option include high reliability and

fault tolerance, as RabbitMQ ensures messages are delivered even in the face of service

failures. Workflow plug-ins can add orchestrated control flows, making it easier to

manage complex sequences of tasks across distributed systems. However, the trade-offs

include potential latency due to message queuing, the added complexity of managing

message brokers, and the challenge of ensuring the system remains performant as the

number of messages and services scales. Additionally, while RabbitMQ provides strong

guarantees for message delivery, the orchestration logic might become more challenging

to maintain and debug as workflows grow more intricate.

�Apache Camel

Apache Camel offers a highly flexible and lightweight approach to integrating and

orchestrating workflows across diverse systems. As an integration framework, it allows

you to route and transform data between various protocols and technologies using a

wide array of predefined enterprise integration patterns (EIPs). The inherent advantages

of Apache Camel include its ease of integration, extensive library of connectors, and

the ability to create complex routing and mediation rules with minimal overhead.

Chapter 18 Orchestrated Event-Driven Abstract Style

277

This makes it particularly well suited for environments where agility and lightweight

integration are key. However, the trade-offs include its focus on integration rather

than full-featured process management, which may limit its utility for comprehensive

workflow orchestration, and the potential complexity in managing and debugging

intricate routing logic as your system scales.

�Business Process Management (BPM) Tools

Commercial and open source BPM tools offer powerful orchestration capabilities in

distributed systems. A few examples that are relevant at the time of this writing are as

follows.

Camunda BPM is a highly flexible BPM tool designed to model, automate, and

monitor business processes. It integrates seamlessly with Java applications and provides

a comprehensive suite of tools for defining workflows using business process model and

notation (BPMN), case management model and notation (CMMN), and decision model

and notation (DMN) standards. The main advantages of Camunda BPM are its rich

feature set, strong community support, and ease of integration into existing enterprise

systems. However, it can introduce complexity in terms of setup and maintenance,

particularly in large-scale distributed systems, and may require considerable resources

to manage effectively.

Zeebe is a cloud-native workflow engine designed by Camunda specifically

for orchestrating microservices in distributed systems. It offers scalable workflow

orchestration using BPMN 2.0, making it ideal for high-throughput environments

where traditional BPM solutions might struggle. Zeebe’s strengths lie in its scalability,

fault tolerance, and seamless integration with distributed architectures. However, as

a relatively newer solution, it may not have as extensive a feature set or community

support as more established BPM tools, and its focus on cloud-native environments may

limit its applicability in certain on-premise scenarios.

Cadence and Temporal are open source workflow orchestration engines that

provide strong guarantees for the execution of complex, long-running business

processes. Developed by Uber (Cadence) and later forked into Temporal, these tools

offer rich features like fault tolerance, state management, and seamless integration with

microservices. The primary advantage is their ability to handle workflows that require

consistency, retries, and time-based triggers, making them highly reliable. However,

these tools come with a steep learning curve and can introduce significant operational

overhead due to the complexity of their infrastructure.

Chapter 18 Orchestrated Event-Driven Abstract Style

278

The main advantages of BPM tools include the ability to model, automate, and

monitor complex workflows with strong guarantees for reliability and scalability.

These tools excel at managing long-running processes and integrating diverse systems.

However, the trade-offs often involve increased complexity, both in terms of learning

curve and operational overhead, and, in some cases, limitations in feature sets or

community support. BPM-driven engines are overkill for simple flows, but powerful for

complex flows. Choosing the right BPM tool—or a non-BPM alternative—depends on

the specific requirements of your distributed system and the balance you seek between

flexibility, scalability, and ease of management.

�Mediator Communication

In contrast to choreographed styles, mediators communicate with processing services or

components in a direct, point-to-point manner and rely on a request/response pattern

of interaction. Consequently, processors do not typically broadcast results. Although

this constraint is presented in the context of an event-driven style, mediators may

communicate synchronously or asynchronously with processing services.

When an individual workflow step can take place within a reasonable timeout

period, the mediator can adopt synchronous communication (Figure 18-2) utilizing

existing APIs to perform workflow steps. This approach has the advantage of simplicity

and the ability to reuse existing APIs. Synchronous communication also makes it

easier to manage dependencies between tasks since the orchestrator can wait for a

response before moving on to the next step, ensuring that tasks are completed in a

specific sequence. However, synchronous calls can limit the scalability of the system.

If the orchestrator must wait for each task to complete, it can become a bottleneck,

particularly under high load or if there are multiple long-running tasks. Synchronous

communication will also lead to tighter coupling between the orchestrator and

processing components, making the system less flexible and harder to evolve over

time. A final downside of this approach is the inherent stateful nature of the mediator.

Additional design and effort must be put in place to handle long-running workflows and

restart logic should the mediator crash.

Chapter 18 Orchestrated Event-Driven Abstract Style

279

Figure 18-2.  Synchronous Communication Between Mediator and Processor

Alternatively, communication can take place asynchronously. In this configuration,

two mediator/component-specific point-to-point messaging channels are utilized. The

first channel is reserved for requests; the second is reserved for responses. Since the

request and response will always occur in separate execution contexts, a correlation ID

is used to connect initial requests to their asynchronous responses (Figure 18-3). Unlike

choreography, where messages represent events that have happened and are modeled in

the past tense, asynchronous requests in this style are typically request driven, meaning

messages are requests for the processor to perform some action.

Chapter 18 Orchestrated Event-Driven Abstract Style

280

Figure 18-3.  Asynchronous Event/Workflow Request Orchestration

Asynchronous communication allows the orchestrator to send a task to a processing

component and immediately move on to other tasks. This decouples the orchestrator

from the processing speed of individual components, enabling better scalability

and throughput, especially in distributed systems. The orchestrator also does not

need to wait for a response, reducing latency in the workflow, particularly when

tasks can be processed in parallel or when the orchestrator can continue with other

independent tasks.

As we learned in the previous chapter, asynchronous systems are typically more

resilient to failures. If a processing component is temporarily unavailable, the message

remains in the queue to be consumed when the service is available, ensuring that

tasks are eventually processed without blocking the entire workflow. Asynchronous

communication encourages loose coupling between components, making the system

Chapter 18 Orchestrated Event-Driven Abstract Style

281

more modular and easier to maintain and extend. It also allows for greater flexibility in

replacing or scaling individual components.

Unlike the fire-and-forget asynchronous communication approach common in

choreographed styles, the mediator will require some notification mechanism when

the processing step has completed. The biggest challenge can be determining how

long to wait for a response. Synchronous communication enables the mediator to catch

and handle errors in real time, simplifying the process of managing exceptions and

ensuring that the workflow can respond to failures as they occur. When communication

is asynchronous, the mediator must wait an unspecified amount of time for a response.

Consequently, errors are not immediately apparent to the orchestrator, which may only

learn about failures after a significant delay. This can complicate error handling and

recovery, particularly in workflows where timely responses are critical.

The choice between synchronous and asynchronous communication in

an orchestrated event-driven architecture hinges on the specific needs of your

workflow. Synchronous communication offers simplicity and immediate feedback,

but can introduce latency, scalability issues, and tighter coupling. Asynchronous

communication, on the other hand, provides greater scalability, resilience, and flexibility

but at the cost of increased complexity in managing workflows and handling delayed

error responses.

As this is an abstract style to be tailored, we will prescribe the common case of

asynchronous communication.

�Persistent Queue Messaging
The Choreographed Event-Driven Abstract Style utilizes PubSub semantics for

communication. The inherent broadcast capabilities and at least once delivery behavior

are very useful in a choreographed context. Orchestrated event-driven architectures

typically use queue semantics rather than PubSub for several key reasons:

	 1.	 Message Ordering and Delivery Guarantees
Queues are designed to ensure that messages are delivered in a

specific order (typically FIFO—first in, first out) and are processed

exactly once by a single consumer. This is crucial in orchestrated

workflows where the sequence of events and tasks must be strictly

controlled to maintain the integrity of the process.

Chapter 18 Orchestrated Event-Driven Abstract Style

282

PubSub, on the other hand, typically delivers messages to

multiple subscribers, and the order of message processing may

vary depending on the subscriber's processing capabilities and

the underlying infrastructure. This can lead to inconsistencies in

workflow execution if strict ordering is required.

	 2.	 Task Coordination and State Management

In an orchestrated architecture, the mediator needs to coordinate

tasks across various services. Queues allow the orchestrator

to assign tasks to specific services, ensuring that each task is

processed once and in the correct sequence. This is critical for

managing the state and ensuring that each step in the workflow is

completed before moving to the next.

PubSub systems broadcast messages to all subscribers, which is

ideal for services and multiple consumers to react to the same

event independently. However, in orchestrated workflows, this can

lead to challenges in managing state and coordinating tasks, as the

orchestrator needs to have tight control over the execution flow,

particularly as workflows grow more complex.

	 3.	 Scalability and Load Management

Queues allow for effective load balancing by distributing messages

to consumers based on their availability and capacity. This

ensures that tasks are processed efficiently without overwhelming

any single service. The orchestrator or environment can scale

consumers up or down as needed, which is vital in maintaining

performance in large-scale systems.

While PubSub also supports scalability, it is more suited to

scenarios where multiple independent services need to be notified

of the same event rather than coordinating the execution of a

series of dependent tasks.

Chapter 18 Orchestrated Event-Driven Abstract Style

283

	 4.	 Reliability and Fault Tolerance

Queues typically offer stronger reliability guarantees, such as

ensuring that messages are persisted until they are successfully

processed by a consumer. This is crucial in orchestrated workflows

where failure to process a message could disrupt the entire

workflow. Queues often support features like message retries and

dead-letter queues, which help in handling failures gracefully.

PubSub systems can also offer reliability, but the focus is more

on delivering messages to multiple subscribers rather than

ensuring that each message is processed exactly once in a

controlled manner.

�Preventing Data Loss
In the past, queues have struggled with issues surrounding data loss as the contents

of the queue is frequently held in volatile memory; however, this constraint prescribes

the use of a persistent queue, namely, one that offers data retention, even if the queue

crashes and requires a restart. When avoiding data loss is important, it is necessary

to wait for a full write acknowledgment when pushing a message into a queue and

potentially configuring a queue to hold a pending message until the consumer

fully acknowledges the read. These guarantees might be off by default in pursuit of

favorable throughput benchmarks, but we must ensure these guarantees are in place

when needed.

Chapter 18 Orchestrated Event-Driven Abstract Style

284

�Orchestration-Driven Event-Driven Abstract Style

Figure 18-4.  Orchestrated Event-Driven Abstract Style

Orchestrated event-driven architecture (Figure 18-4) is all about managing complex

workflows by coordinating the interactions between various services, or processing

components, through central orchestrators. These orchestrators act as mediators,

directing the flow of tasks, ensuring that each step in the process is executed in the

correct order, and handling any errors or exceptions that arise. The beauty of this

architecture lies in its ability to decouple services, allowing each component to focus on

its specific task while the orchestrator manages the overall process.

Orchestration-Driven Service-Oriented Architecture 

One of the earliest distributed architectures to leverage orchestration was
Service-Oriented Architecture (SOA), which emerged in the 1990s. By then, many
organizations had already made significant strides in their digital transformation
efforts, implementing numerous business systems. However, the cost of
developing these systems was steep, and computing resources were both scarce
and expensive. This context pushed architects toward distributed architectures
that prioritized reuse as a fundamental principle, thereby reducing costs and

Chapter 18 Orchestrated Event-Driven Abstract Style

285

improving efficiency. This strategy led to the creation of a service taxonomy, with
distinct layers of business, enterprise, application, and infrastructure services, all
coordinated by a central orchestration engine (Figure 18-5).

Figure 18-5.  Orchestration-Driven Service-Oriented Architecture

In this architecture, Business Services often served as the entry point for defined
behaviors. These were not typically code modules but rather definitions of inputs,
outputs, and sometimes schema, usually shaped by business users. Below this,
Enterprise Services were fine-grained, shared implementations—think of operations
like calculateTax or createCustomer—that served as the building blocks for
the more coarse-grained business services, all tied together by the orchestration
engine. Application Services, on the other hand, were typically one-off utilities,
such as geolocation services, designed for specific needs without the intention of
broad reuse. Infrastructure Services handled cross-cutting concerns like logging,
monitoring, and authentication, providing the necessary operational backbone.

At the heart of this architecture was the orchestration engine, typically in the form
of an Enterprise Service Bus (ESB), which connected and coordinated everything.
The orchestration engine played a crucial role in integrating business services and
managing transactional behavior across the system. However, while SOA aimed to

Chapter 18 Orchestrated Event-Driven Abstract Style

286

provide flexibility and promote reuse, it quickly became evident that this approach
introduced significant challenges. The heavy emphasis on reuse led to substantial
coupling between services, making incremental changes risky and complex. The
necessity for coordinated deployments and extensive testing further complicated
the development process, often stalling progress and leading to inefficiencies.

Moreover, the architecture's focus on technical partitioning turned out to be a
practical nightmare. Domain concepts became so fragmented across the architecture
that even simple tasks required changes to multiple services and database schemas,
undermining the original goals of reuse and efficiency. This fragmentation also
resulted in significant coupling within the architecture, particularly around the
orchestration engine, which became a bottleneck and a single point of failure.

While this architectural style did achieve some success in areas like scalability
and elasticity, its poor performance, deployability, and testability, coupled with high
complexity and cost, ultimately led to its downfall. The lessons learned from this
era underscored the value of standardized service interfaces, the challenges of
managing distributed transactions, and the practical limits of technical partitioning,
paving the way for more modern, adaptable architectural styles that could better
meet the evolving needs of the industry.

The Orchestrated Event-Driven Abstract Style is comprised of a unique set of

constraints that offer very strong workflow capabilities. Like this style’s choreographed

counterpart, defining constraints of this style often show up in other tailored and hybrid

styles. For example, orchestration is common when implementing the Saga Pattern in

microservices styles.

�Summary
Orchestrated event-driven architecture offers several key architectural capabilities. It

provides centralized control, where the orchestrator manages and coordinates the execution

of workflows, ensuring tasks are completed in the correct sequence and handling exceptions

gracefully. This architecture supports decoupled processing services, allowing each service to

focus on its specific tasks while the orchestrator manages the overall process flow, improving

maintainability and enabling services to evolve independently. Additionally, it excels in

scalability, especially with asynchronous communication, allowing the orchestrator to

Chapter 18 Orchestrated Event-Driven Abstract Style

287

handle multiple tasks concurrently and distribute workloads without the need for immediate

responses. This architecture also offers flexibility in process management, enabling the

modeling and management of complex workflows with branching logic, conditional tasks,

and long-running processes to suit a wide range of business scenarios.

However, these strengths come with trade-offs. This architecture introduces

additional complexity, particularly in managing workflow states, handling asynchronous

communication, and ensuring message ordering and delivery, which can make

development, debugging, and maintenance more challenging. Synchronous

communication, while offering immediate feedback, can reduce system performance

due to tight coupling between services, while asynchronous communication, despite

improving scalability, increases the complexity of task coordination. There is also an

operational overhead in managing the orchestrator and the supporting infrastructure,

as ensuring the high availability and reliability of the orchestrator is crucial due to its

central role. Finally, the orchestrator can become a potential bottleneck or single point of

failure, which, if not properly designed for scalability and fault tolerance, can disrupt the

entire workflow execution and impact the overall system.

The following architectural constraints define this abstract style:

•	 Fine Component Granularity

•	 Technical Partitioning

•	 Independent Deployability

•	 Orchestration-Driven Interactions

•	 Persistent Queue Messaging

This collection of constraints requires the following team, organization, and

environmental constraints:

•	 ORG: DevOps Commitment

•	 ENV: Development Environment Isolation

•	 ENV: High Operational Automation

•	 ENV: Distributed Tracing and Logging

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

•	 TEAM: IaC Skills

•	 TEAM: Independent Development Cycles

Chapter 18 Orchestrated Event-Driven Abstract Style

288

When compared with the Choreographed Event-Driven Abstract Style, the following

capabilities are improved by the two changed defining constraints (Orchestration-

Driven Interactions and Persistent Queue Messaging). See Figure 18-6.

THE ORCHESTRATED EVENT-DRIVEN ABSTRACT STYLE

Abstraction Above Average

Affordability Low

Agility Average

Deployability Below Average

Elasticity Above Average

Evolvability Below Average

Fault-Tolerance Above Average

Integration Above Average

Performance Average

Scalability High

Simplicity Very Low

Testability Very Low

Workflow Extremely High

Figure 18-6.  The Orchestrated Event-Driven Abstract Style

Chapter 18 Orchestrated Event-Driven Abstract Style

289
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_19

CHAPTER 19

The Space-Based Abstract
Style

Any optimization that is not about the bottleneck is an illusion of
improvement.

—Federico Toledo

Despite the advantages of architecture design by constraint and the Tailor-Made

Software Architecture Model, achieving holistic fit in software architecture is not

easy. As you know, every architectural constraint will strengthen some capabilities

while weakening others. Moreover, the benefits of different capabilities do not always

materialize immediately, providing uneven visibility of architectural value which can

undermine your efforts.

Take, for example, the capability of evolvability. Many factors influence the overall

evolvability of a system; however, while those factors are often measurable, true visibility

into a system’s overall evolvability only emerges as the system repeatedly demonstrates

an ability to gracefully adopt and absorb both business and technical change. Notably,

it is also significantly easier to notice the presence of a problem than to notice the

absence of a problem. Without careful communication with development teams,

architectural constraints that induce long-term benefits might be rejected or abandoned

by development teams in favor of more directly visible capabilities.

One such directly visible capability is that of performance. When some aspect of

the system’s runtime-based behavior is optimized, in contrast with evolvability, the

performance improvement is immediately visible. Software engineers often desire to

produce elegant and efficient code, with performance as a key measure. This fact often

puts architecture and engineering teams in tension.

https://doi.org/10.1007/979-8-8688-0410-6_19#DOI

290

Many architectural styles strive to balance performance with other capabilities based

on relative business value. As such, we have not yet seen an architectural style that offers

extremely high performance. That changes in this chapter as we introduce an abstract

style that is laser focused on delivering the highest possible performance, the Space-

Based Abstract Style.

When compared with the other abstract styles introduced in this section, this style’s

closest sibling is the Service-Based Abstract Style. Both styles utilize a distributed

topology with medium-grained domain components, both styles utilize a shared

database, and both prescribe an API (RPC style, in the abstract). In addition to the

common constraints, this style prescribes three additional constraints to massively boost

performance (at the expense of reduced agility, affordability, deployability, simplicity,

and testability.

�Adding Constraints
�Transactional Data Stored In-Memory
Systems responsible for online transaction processing (OLTP) typically make heavy use

of databases in every request, potentially introducing a bottleneck that places a ceiling

on the maximum performance at scale. The simple act of retrieving state requires a

network call to the database server, which must parse and compile each query it receives

before execution. Execution may require physical I/O if the necessary data is not already

in memory on the database. Finally, the response is transmitted back over the network

to the calling service. In extremely performance-sensitive environments, these factors all

add up to potentially unacceptable latency.

Developers and architects have long known that an in-memory cache can

outperform even the most powerful databases. Conventionally, these caches are

standalone services although it is common for some services to cache certain data

locally for simplicity or to avoid the network overhead of an external cache.

This constraint takes the idea of a local cache to its logical extreme by dictating

that all necessary data is preloaded in memory, eliminating all physical and network

I/O when handling requests. When a service receives a request to get state, the service

simply fetches the data from RAM, and when the service receives a request to modify

state, it makes the modification in memory before returning a response. Depending on

the nature and the structure of the data, the in-memory dataset may exist in the service’s

Chapter 19 The Space-Based Abstract Style

291

heap memory, may utilize an embedded in-memory database, or it may be handled by a

private, colocated in-memory DBMS.

Such an extreme constraint will naturally raise questions like

•	 What happens if the service crashes?

•	 What happens if we dynamically add new processing nodes?

•	 How do we handle data drift between service instances?

•	 What if the full dataset does not fit in memory?

The next two constraints will address the first three questions; however, the final

question must still be addressed in the context of this constraint.

�Granularity and Near Cache

The service modeling process for this style is similar to that of the Service-Based Abstract

Style. Individual modules need to be highly cohesive and able to stand alone when

handling requests. Through this process, we once again must identify data domains that

can be isolated from other components; however, unlike microservices styles, this style

prescribes a shared database, meaning the data domains represented in the various

space-based domain service components can easily overlap. Under this constraint, a

new variable of dataset size is introduced and must be considered. Ideally, we aim to

achieve a highly cohesive, standalone service with the smallest practical dataset.

Today, cloud services offer options for high-memory instances within their compute

platforms. These instances are often purpose-built for the task of running large, in-

memory databases, and an individual instance can currently scale to tens of terabytes

of memory per instance.1 With these high-memory instances, cost can quickly become

a limiting factor especially since processor core count typically increases proportionally

with memory allocation.

It can be tempting to adopt a distributed caching strategy known as near cache. A

near cache is a hybrid caching model that combines in-memory data grids (the front

cache) with a distributed cache (the full backing cache). The front cache holds a smaller

subset of data from the full backing cache, using an eviction policy—such as Most

1 AWS (2024). Amazon EC2 High Memory (U-1) Instances. https://aws.amazon.com/ec2/
instance-types/high-memory

Chapter 19 The Space-Based Abstract Style

https://aws.amazon.com/ec2/instance-types/high-memory
https://aws.amazon.com/ec2/instance-types/high-memory

292

Recently Used (MRU),2 Most Frequently Used (MFU),3 Least Frequently Used (LFU),4

or Random Replacement (RR)5—to manage space. While front caches are synchronized

with the full backing cache, they are not synchronized across different service instances,

leading to potential inconsistencies in performance and responsiveness. This lack of

synchronization makes the near-cache model unsuitable for space-based style.

�Replicated Shared Data Grid

The previous constraint asked two important questions, namely:

•	 What happens if we dynamically add new processing nodes?

•	 How do we handle data drift between service instances?

This constraint prescribes that styles lean on a replicated cache model, where each

processing unit maintains its own in-memory data grid. These grids are synchronized

across all units sharing the same cache, ensuring that updates in one unit are quickly

propagated to the others. This approach offers exceptional speed and fault tolerance,

with no single point of failure since there is no central cache server. However, replicated

caches can face challenges with large data volumes or high update rates. When the

internal cache grows beyond certain limits or the update frequency becomes too intense,

the synchronization process might lag, impacting performance and scalability. In these

scenarios, a tailored style might prescribe a distributed cache—centralized and accessed

by processing services via a common protocol—that might be more appropriate, though

it sacrifices some performance and fault tolerance for improved consistency. The

choice between replicated and distributed caching hinges on the specific needs of the

system, such as the type of data being cached, the required consistency, and the balance

between performance and fault tolerance.

2 GeeksForGeeks (2022). Program for K Most Recently Used (MRU) Apps. https://www.
geeksforgeeks.org/program-for-k-most-recently-used-mru-apps/
3 GeeksForGeeks (2023). Most Frequently Used (MFU) Algorithm in Operating System. https://
www.geeksforgeeks.org/most-frequently-used-mfu-algorithm-in-operating-system/
4 GeeksForGeeks (2024). LRU Cache – Complete Tutorial. https://www.geeksforgeeks.org/
lru-cache-implementation/
5 Luu, D. (2014). Caches: LRU v. random. https://danluu.com/2choices-eviction/

Chapter 19 The Space-Based Abstract Style

https://www.geeksforgeeks.org/program-for-k-most-recently-used-mru-apps/
https://www.geeksforgeeks.org/program-for-k-most-recently-used-mru-apps/
https://www.geeksforgeeks.org/most-frequently-used-mfu-algorithm-in-operating-system/
https://www.geeksforgeeks.org/most-frequently-used-mfu-algorithm-in-operating-system/
https://www.geeksforgeeks.org/lru-cache-implementation/
https://www.geeksforgeeks.org/lru-cache-implementation/
https://danluu.com/2choices-eviction/

293

�Decoupled Database
The final challenge we must address is data volatility. Although, under normal

circumstances, data in this style is held in-memory and replicated to other instances,

a complete failure of all instances or a global restart of all instances of a given service

(perhaps due to deployment of a new version) will lose data not backed on disk

somewhere. Direct communication with the database introduces a bottleneck this style

seeks to eliminate; consequently, this constraint prescribes the database is entirely

decoupled from the services. In other words, a service will never perform direct database

I/O. Instead, the asynchronous replication of data between service instances will also

asynchronously write data to the database. In the case of a cold start, the entire dataset

needed by a service will be asynchronously published to one or more service instances

or directly introduced into the data replication fabric. Specialized components referred

to as data pumps handle asynchronous database I/O. We will describe data pumps in the

next section.

Chapter 19 The Space-Based Abstract Style

294

�The Space-Based Abstract Style

Figure 19-1.  Space-Based Abstract Style

The composition of constraints yields a very high-performance style known as the

Space-Based Abstract Style. This style takes its name from the concept of tuple space,

an implementation of a shared memory space for parallel/distributed computing. It

provides a repository of tuples that can be addressed and manipulated concurrently.

In this style, the defining constraints aggressively eliminate potential performance

bottlenecks which results in a high performance and massively scalable architecture.

The database is decoupled from the application by choosing to have each processing

unit store the entire dataset in memory in the form of replicated data grids and

Chapter 19 The Space-Based Abstract Style

295

eliminating all direct database reads and writes. Writes to the in-memory dataset are

synchronized between worker nodes through some form of middleware which also

asynchronously reads and writes to the underlying database. A separate component

monitors overall load and scales the number of available workers up or down based

on demand.

Although not easy (nor cheap), this abstract style forms the foundation of a

highly performant, highly scalable, and highly elastic system architecture which

offers a meaningful alternative to attempting to scale a database or adding in caching

technologies to a less scalable architecture. Let us explore what this model looks like in

practice.

�The Processing Unit
The processing unit is the component of the system that contains the application logic

and performs the business functions (whatever they may be). For practical reasons,

the processing unit is generally a medium-grained component with carefully scoped

data and optimal cold start times. In other words, there may be multiple tuple spaces

depending on the size and scope of the overall system. Tuple space boundaries are often

most easily identified through domain modeling and system modeling. In addition

to the application logic, the processing unit contains the in-memory data grid and

replication engine.

�The Data Grid
The data grid6, 7, 8 is the replicated in-memory state of the processing units and is a

central concern of this architecture. It is essential that each processing unit always

contains an identical state. The data grid may reside entirely within the processing

unit with replication happening asynchronously between processing units, but, in

some implementations, an external controller is necessary in which case the controller

element of the data grid would form part of the virtualized middleware layer.

6 Apache Ignite, https://ignite.apache.org/use-cases/in-memory-data-grid.html
7 GridGain, https://www.gridgain.com/
8 Hazelcast, https://hazelcast.com/

Chapter 19 The Space-Based Abstract Style

https://ignite.apache.org/use-cases/in-memory-data-grid.html
https://www.gridgain.com/
https://hazelcast.com/

296

�The Virtualized Middleware Layer
This layer contains components that handle infrastructure concerns that might control

some aspects of the data synchronization and request handling and might take the form

of off-the-shelf products or custom code.

�The Message Grid
The messaging grid is a load balancer in this style. The messaging grid manages requests

and session state and will determine which processing units are available and distribute

requests appropriately.

�The Processing Grid
This is an optional component that handles request orchestration, should multiple

processing units be required to satisfy a given request.

�The Deployment Manager
The deployment manager acts as the supervisor in this style, observing load and capacity

and either adding or removing processing units to/from the pool as required.

�Data Pumps
Although, in theory, this architecture could indefinitely hold all critical data in volatile

memory, we must plan for inevitable cold start/cold restart scenarios. Data pumps

provide eventual consistency between the in-memory datasets and the persistent

storage with the database.

Data pumps come in two forms, the data reader and the data writer. Data readers

subscribe to the state changes asynchronously broadcast by processing units and then

synchronously write state changes to disk. A data reader is a separate pump responsible

for providing initializing state to the processing units in the event of a cold start scenario.

With both this component and the data grid, remember the CAP theorem and the

challenges inherent to eventual consistency introduced in Chapter 16.

Chapter 19 The Space-Based Abstract Style

297

I feel the need—the need for speed!

Years ago, I was the chief architect on a project to build a highly extensible knowledge
platform. At the heart of this platform was an enterprise knowledge graph built from
data gathered from dozens or hundreds of systems of record. Although the knowledge
graph offered a comprehensive and highly connected view of the entirety of the
organization’s knowledge, access to—and visibility of—any individual node in the
graph was dependent on the end user’s access privileges within the source system.
As new source systems became integrated and existing systems were updated, our
policy graph was also frequently changing.

In addition to the core knowledge graph, many microservices hosted aggregates
and subgraphs, optimized for particular domain functions. Consequently, every user
interaction within this system required both early and late authorization to take place.
The former would verify the user was authorized to request a specific resource, and
the latter would filter the response to ensure that it only contains graph nodes the
user has explicit permission to access. A single user request could potentially require
hundreds or even thousands of authorizations to take place in real time. Access
control introduced a significant bottleneck into normal operations of this system.

The architecture team made the decision to implement the policy system as a space-
based style since extremely high performance and throughput were business-critical
capabilities.

In our implementation, we utilized our existing Kafka infrastructure to handle
replication across the shared data grid. This enabled individual processing units to
broadcast state changes to other instances as well as the data writer. The data reader
initially populated this topic, and because our topology used a variation of event
sourcing, once this initial load took place the reader was largely idle/unnecessary.
Should a cold start become necessary, a processing unit could read the entire state
from the Kafka topic.

The result was an extremely high-performance policy system that met our high
service–level objectives and did not degrade as load and scale increased.

Chapter 19 The Space-Based Abstract Style

298

Although this abstract style is nominally a domain-partitioned architecture, there

are also elements of technical partitioning to be found in the data pumps and virtualized

middleware.

�Summary
Typical OLTP systems involve requests that flow from a user’s client to a server, then to

a database server. This setup works fine with a small user base but quickly encounters

bottlenecks as user load increases, particularly at the database layer, which can be the

hardest and most expensive to scale. This style addresses these scalability challenges by

eliminating the database as a real-time constraint and instead using replicated in-

memory data grids, removing the bottleneck associated with database scaling, allowing

the system to handle high user loads and variable concurrency with near-infinite

scalability. As load increases, additional processing units can be dynamically deployed,

and when the load decreases, they can be shut down, ensuring efficient resource usage.

This architecture style is particularly suited for applications with unpredictable and

extreme spikes in demand, such as online ticketing or auction systems, where rapid

scalability and elasticity are critical. While space-based architecture offers significant

performance and scalability benefits, it introduces complexity in terms of data

consistency and testing, requiring careful management to avoid data loss and ensure

reliability.

The following architectural constraints define this abstract style:

•	 Medium Component Granularity

•	 Technical Partitioning

•	 Domain Partitioning

•	 Decoupled Database

•	 Transactional Data Stored In-Memory

Chapter 19 The Space-Based Abstract Style

299

•	 Replicated Shared Data Grid

•	 Shared Database

•	 RPC API

This collection of constraints requires the following team, organization, and

environmental constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: Loose Coupling Between Components

•	 ENV: Development Environment Isolation

•	 ENV: High Operational Automation

•	 ENV: Service Discovery and Routing

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

Chapter 19 The Space-Based Abstract Style

300

THE SPACE-BASED ABSTRACT STYLE

Abstraction Above Average

Affordability Below Average

Agility Above Average

Deployability Above Average

Elasticity Extremely High

Evolvability High

Fault-Tolerance High

Integration Above Average

Performance Extremely High

Scalability Extremely High

Simplicity Low

Testability Low

Workflow Below Average

Figure 19-2.  The Space-Based Abstract Style

Chapter 19 The Space-Based Abstract Style

301
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_20

CHAPTER 20

The Microkernel Abstract
Style

A system is never the sum of its parts; it is the product of their interaction.

—Russell Ackoff

Some time ago, I was in a meeting with a development team at a client site when the vice

president of IT made an unscheduled visit to say hello and meet new team members.

Apropos of nothing, he announced, “I like modularity! Software that can be assembled

like Lego bricks.” Composable software is, indeed, an attractive vision—a vision shared by

Brad Cox, an early and influential exponent of the Object-Oriented Programming (OOP)

movement. OOP offered Cox a glimpse at the future potential for composable software

architectures that would usher in “A software industrial revolution based on reusable and

interchangeable parts…” that would, he promised, “…alter the software universe.1”

Composition has always been at the heart of engineering, and everything in our

modern world exists as a composite of basic elements. The architectural styles we have

examined in this section are no different; every architectural style is simply a composite

of different architecturally significant decisions. In both architecture and engineering,

as we create various composites new properties frequently emerge. For example, the

basic elements of iron and carbon have known properties. When we create a composite

of the two, we get something new; we get steel. Steel has unique properties that neither

iron nor carbon possess. When we create a composite of calcium carbonate, silica and

alumina, iron ore, and calcium sulfate, we get cement (which, again, yields useful new

properties). A composite of cement, water, sand, and gravel, we get concrete, and when

we combine concrete and steel, we get reinforced concrete. Nearly every new composite

1 Cox B. There is a Silver Bullet. Byte 1990; Vol. 15, No. 10:209–218

https://doi.org/10.1007/979-8-8688-0410-6_20#DOI

302

opens the door to possibilities that were previously out of reach. The prospect of creating

arbitrary software composites on demand continues to tease our industry with powerful

potential.

Since 1990, when Cox penned his influential essay, software development has

gradually shifted in this direction. Most modern software involves both creation and

composition with reusable and interchangeable parts taking the form of libraries hosted

in various package repositories. Design-time composition has dramatically increased

developer productivity; however, the full flexibility of this vision often remains elusive.

In this chapter, we will explore an architectural style that offers unique, runtime

composability.

This style can be seen as an extension of the Modular Monolith Abstract Style

(Chapter 14), so we will derive this abstract style by first beginning with that style’s

defining constraints and adding additional architectural constraints to create a new

composite with novel properties.

�Changing Constraints
This style does not prescribe a partitioning model, as the composition of a microkernel

architecture might include domain modules, technical modules, or both. Consequently,

the domain partitioning constraint is not prescribed and is removed from this style

in the abstract. Additionally, the abstract style this chapter describes assumes a

shared database (Chapter 12) but does not prescribe a partitioned shared database

(Chapter 14).

�Adding Constraints
�Uniform Interface
Contrary to that VP’s assertion, modularity alone does not beget truly composable

systems. As an analogy, modularity produces simple bricks, and simple bricks require

cement to assemble. Once the cement dries, however, those bricks are no longer

interchangeable and rearrangeable. What makes Lego bricks distinct from other types

of bricks is the presence of studs and anti-studs which enable the bricks to be easily

connected, disconnected, and rearranged without cement or mortar. Studs in Lego are

the distinctive cylindrical bumps or knobs on the surface of the brick that universally

Chapter 20 The Microkernel Abstract Style

303

measure 1.6mm in height and 4.8mm in diameter. Anti-studs are the 4.8mm wide

indentations in the bottom of Lego bricks and plates that serve as a stud receptacle.2 It is

the standardization and uniformity of the stud/anti-stud interface that gives Lego bricks

their unique property of composability and interchangeability. In other words, every

Lego brick ever created conforms to a common uniform interface.

Although Cox’s idea of interchangeable, composable software modules was novel

when it was first published, the idea was not entirely new. In fact, we first saw this

approach to software take shape in the 1960s, and it strongly influenced the design and

philosophy of UNIX.

We should have some ways of [connecting] programs like garden hose –
screw in another segment when it becomes necessary to massage data in
another way.

—Doug McIlroy, Internal Bell Labs Memo 19643

The key to adopting this constraint lies in creating our own system of studs and anti-

studs, a common interface with which all modules must conform. The most successful

uniform interfaces are usually quite simple. Designing such an interface, however, is

not easy.

I think most people just make the mistake that it should be simple to design
simple things. In reality, the effort required to design something is inversely
proportional to the simplicity of the result.

—Roy Fielding

�Interface Constraints
In order to obtain a uniform interface, multiple architectural constraints
are needed to guide the behavior of components.

—Roy Fielding

2 Bartneck, C. (2019). LEGO Brick Dimensions and Measurements. https://www.bartneck.
de/2019/04/21/lego-brick-dimensions-and-measurements/
3 Kernighan, B. (2020). UNIX: A History and a Memoir. Kindle Direct Publishing

Chapter 20 The Microkernel Abstract Style

https://www.bartneck.de/2019/04/21/lego-brick-dimensions-and-measurements/
https://www.bartneck.de/2019/04/21/lego-brick-dimensions-and-measurements/

304

A uniform interface must be defined by interface constraints, the rules that all

components must follow. The first notable example of these interface constraints

appeared a decade after Doug McIlroy’s ideas were circulated around Bell Labs, when

Ken Thompson found a practical solution and implemented it into the third edition of

UNIX. The core interface constraints are as follows:

•	 Every program shall interact with text streams: stdin, stdout, and

stderror.

•	 “Expect the output of every program to become the input to another,

as yet unknown, program. Don’t clutter output with extraneous

information. Avoid stringently columnal or binary input formats.

Don’t insist on interactive input.”4

By adopting these interface constraints, the output of one program could become the

input of another using the vertical bar character | which is now commonly referred to as

the “pipe” character. When Thompson first tried this technique, he called the result “mind

blowing,” and this set of interface constraints remains relevant and valuable 50+ years later.

The addition of pipes led to a frenzy of invention that I remember viv-
idly…Everyone in the Unix room had a bright idea for combining programs
to do some task with existing programs rather than by writing a new
program.

—Brian Kernighan, UNIX: A History and a Memoir

Another notable example is the REST architectural style. A uniform interface is one

of the six constraints that define the style; however, the description of this constraint

includes the following interface constraints:5

•	 Identification of resources (URIs)

•	 Manipulation of resources through representations of state

•	 Self-descriptive messages

•	 Hypermedia as the engine of application state

4 McIlroy, D. The Bell Labs Technical Journal on UNIX. July 1978
5 Fielding, R. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000

Chapter 20 The Microkernel Abstract Style

305

Once again, although remarkably simple, the value and utility of this uniform

interface continues to power the evolution of the Web more than three decades later.

The longevity of both uniform interfaces is a function of their generality. Both REST

and UNIX pipes take a very generalized approach to component interaction and do not

presume to know how any individual component will interact with another in the future.

The trade-off, however, is a degradation of efficiency as information must be transferred

in a standardized form rather than one that is specifically designed for an application or

use case’s needs.

Adopting the uniform interface constraint will typically require additional interface

constraints.

�Designing an Interface

Interfaces must be general and stable. Therefore, designing a uniform interface requires

abstracting as much component implementation detail as possible. Two common

approaches to expose a uniform interface are APIs and hooks.

REST adopts an API approach. The common case of REST is HTTP interactions.

The request methods of HTTP (GET, PUT, POST, DELETE, PATCH, etc.) form one half

of the “self-descriptive messages,” and the standardized response codes, headers,

and semantics embedded in hypermedia form the other. You may notice that these

additional interface details are absent from the interface constraints enumerated above.

This is because REST does not explicitly prescribe HTTP. Instead, the first interface

constraint “Identification of Resources” explicitly prescribes URIs as identifiers. A URI is

composed of multiple components, including

•	 A scheme—for example, https://, or urn://

•	 An authority (host name + port for http, or a namespace for URNs)—

for example, example.com

•	 An optional path—for example, /books/mastering-software-
architecture

Depending on the scheme, a client will use the appropriate communication protocol

and context-specific data elements to interact with the authority and request the

resource by its path.

Chapter 20 The Microkernel Abstract Style

306

When designing a uniform API interface, consider a wide variety of use cases. Look

for ways to generalize interactions such that new use cases do not continuously need the

addition of new API endpoints.

Hooks offer a different mechanism for implementing a uniform interface. Hooks

are publicly exposed functions or mechanisms that allow a component to “hook into” a

system or framework to extend its functionality or modify its behavior without changing

its original code. They provide a way to interact with the system in a consistent and

standardized manner. Hooks form the anti-studs, and tapping into a hook from another

component will form the studs. This allows for a modular and flexible design where

developers can add or override certain functionalities as needed while still adhering to a

consistent interface provided by the framework or system.

Beyond hooks, APIs, and streams (UNIX pipes and filters), asynchronous events

(Chapter 17) can form the basis of a uniform interface when the self-descriptive

messages interface constraint is added. Whether you intend to use hooks, streams,

messages, APIs, or some other approach, the ultimate implementation of your uniform

interface will likely depend on how your architecture implements the next constraint.

�Plug-In Architecture
The uniform interface constraint prescribes standardized, interchangeable components.

Our system also needs the ability to perform dynamic, runtime composition of these

uniform components. UNIX and its derivatives adopt a Pipeline Architecture, a style

where components are connected in series, and the output of one component is

the input of the next one. In the case of this style, we aim to build a cohesive set of

functionalities available through a single interface that is customized and configured by

adding discrete plug-in components. We induce this capability by adopting the Plug-In

Architecture Constraint.

This constraint prescribes some mechanism for plug-ins to be introduced into

the system, and there are many options. Adopting a plug-in architecture is a common

requirement for creating extensible and modular applications.6 In most technology

ecosystems, a variety of options are available, ranging from open source libraries to

commercial products and custom-built solutions.

6 Acher, M., Cleve, A., Collet, P. et al. (2013). Extraction and evolution of architectural variability
models in plugin-based systems. https://doi.org/10.1007/s10270-013-0364-2

Chapter 20 The Microkernel Abstract Style

https://doi.org/10.1007/s10270-013-0364-2

307

�Roll-Your-Own

When implementing this approach, a bespoke option may be suitable for simple use

cases. An example of a simple approach can be found in OhMyZsh, a framework for

managing Zsh that enables users to customize their shell through the addition of

hundreds of available plug-ins. Plug-ins are installed in a directory (~/.oh-my-zsh/
plugins/) and enabled by enumerating desired plug-ins in the ~/.zshrc configuration

file. The configuration file is loaded and processed implicitly when the shell session

begins, dynamically modifying the features of the shell at runtime. The configuration file

can also be reloaded after a shell session begins and a .zshrc file has been modified by

using the source command.

Depending on the system and the profile of the end user (who might not be a

Linux power user comfortable editing configuration files), you may want to provide a

user interface for managing plug-ins. When rolling your own implementation of this

constraint, you may need to dynamically load compiled code modules. Most common

languages, frameworks, and runtimes support dynamic loading of modules.

In the .NET ecosystem, you can manually load assemblies using Assembly.Load

and dynamically discover types using reflection.7 This approach provides maximum

flexibility but requires significant effort to manage dependencies, versioning, and

security. It is ideal for scenarios where existing frameworks are too restrictive or when

custom features are needed.

In the Java ecosystem, you can create custom ClassLoader implementations to load

plug-ins dynamically at runtime.8 Like .NET’s custom assembly loading, this approach

offers flexibility but at the cost of increased complexity. In both cases, you need to

handle classpath management, potential compatibility issues, and isolation of plug-ins.

Additionally, you must consider and mitigate both runtime performance penalties as

well as potential security issues.

7 Pine, D., Wagner, B., Dykstra, T., Schonning, Nick., Sherer, T., Peterson, T. (2021). How to: Load
and unload assemblies. https://learn.microsoft.com/en-us/dotnet/standard/assembly/
load-unload
8 Baeldung (2024). Class Loaders in Java. https://www.baeldung.com/java-classloaders

Chapter 20 The Microkernel Abstract Style

https://learn.microsoft.com/en-us/dotnet/standard/assembly/load-unload
https://learn.microsoft.com/en-us/dotnet/standard/assembly/load-unload
https://www.baeldung.com/java-classloaders

308

�Open Source Options

In the .NET ecosystem, one popular option is the Managed Extensibility Framework

(MEF).9 MEF is a built-in library in .NET that facilitates the creation of extensible

applications by allowing the discovery and composition of parts (plug-ins) at runtime.

Although MEF is mature and integrates seamlessly with .NET applications, it can

become complex when dealing with nontrivial dependencies between plug-ins or when

plug-ins need to be loaded/unloaded dynamically. Unfortunately, at the time of writing,

MEF targets the older .NET Framework and may not be compatible with the latest, cross-

platform .NET versions.

In the Java/JVM ecosystem, Open Service Gateway Initiative (OSGi) is a popular

and robust framework for building modular Java applications.10 It supports dynamic

discovery, installation, and updating of components (bundles) at runtime. OSGi is

powerful but comes with a steep learning curve. The complexity of managing OSGi's

lifecycle and dependencies can be overwhelming for smaller projects.

Another option is the Plug-in Framework for Java (PF4J). PF4J is a simple and

extensible plug-in framework for Java, focusing on ease of use. It supports dynamic

loading of plug-ins and integrates well with existing Java applications. PF4J is less

complex than OSGi but also less feature rich. It is an excellent choice for applications

where ease of use is a priority over advanced features.

�Commercial Options

In the Java/JVM ecosystem, Eclipse Rich Client Platform (RCP) might be worth

exploring. Eclipse RCP is a commercial framework based on OSGi that provides tools for

building rich client applications with a plug-in architecture. While powerful and backed

by the Eclipse Foundation, it is complex and can be overkill for smaller projects. It is best

suited for large-scale enterprise applications.

Choosing the right approach depends on your project’s specific requirements:

•	 Use open source frameworks (MEF, OSGi, PF4J) if you need a balance

of features and community support without licensing costs.

9 Mak (2024). C# – How to load assemblies at runtime using Microsoft Extensibility Framework
(MEF). https://makolyte.com/csharp-how-to-load-assemblies-at-runtime-using-
microsoft-extensibility-framework-mef/
10 Baeldung (2024). Introduction to OSGi. https://www.baeldung.com/osgi

Chapter 20 The Microkernel Abstract Style

https://makolyte.com/csharp-how-to-load-assemblies-at-runtime-using-microsoft-extensibility-framework-mef/
https://makolyte.com/csharp-how-to-load-assemblies-at-runtime-using-microsoft-extensibility-framework-mef/
https://www.baeldung.com/osgi

309

•	 Consider commercial options if your project requires enterprise-level

features, support, and you have the budget for licensing.

•	 Roll your own if you need maximum flexibility or if existing

frameworks do not fit your unique requirements, but be prepared to

handle the additional complexity.

Each option has its trade-offs, so the choice should align with your project’s scale,

complexity, and long-term maintenance needs. In other words, you are looking for a

holistic fit.

�Fine Component Granularity
This style is unique in that the core system is a monolith; however, the plug-in

components are typically fine-grained. Because granularity is mixed, some of the

benefits of Fine Component Granularity (e.g., agility, deployability, testability, etc.) are

present but without introducing the complexity and demanding team, organizational,

and environmental constraints of a fine-grained distributed system.

�The Microkernel Abstract Style

Figure 20-1.  The Microkernel Abstract Style

Chapter 20 The Microkernel Abstract Style

310

The microkernel abstract style (shown in Figure 20-1), sometimes referred to as

the “plug-in” architecture, applies constraints affecting the overall modularity of the

application and builds on the concept of a microkernel from computer science. At the

center of the pattern is the core system. In both computer science and in this pattern, the

core system microkernel is the near-minimum amount of code necessary to implement

the system. External plug-ins provide additional functionality. This approach isolates a

codebase with low code volatility from plug-in modules that typically have much higher

volatility. Users can add, remove, and swap plug-ins at runtime without requiring a

redeployment of the core system, and the nature of this architecture dramatically reduces

impact from changes in plug-in modules. Therefore, plug-in modules can be quickly

developed that extend the core system, and, at runtime, plug-in modules can be added in

various combinations and configurations to build arbitrary collections of functionalities.

To see this pattern in action, one need only look as far as the popular editor, Visual

Studio Code. The core system provides basic functionality (primarily a text editor), and

the functionality is extended by installing plug-ins. As an authoring tool, the core system

is not especially powerful. With the addition of plug-ins that introduce spell-checking

capabilities, markdown support, git support, and terminal support (among others), VS

Code quickly becomes a powerful authoring environment with all necessary tools and

capabilities. Likewise, when performing software development, data modeling, and even

personal knowledge management11 using this tool, additional plug-ins will enable all

these features. Syntax support for a new language is as simple as another plug-in. As you

see, the Microkernel Architecture Pattern is highly configurable. Any instance of the core

system is free to select the set of plug-ins optimal for the given use case. The instance

also typically controls its update frequency improving overall configurability.

If a given concrete implementation of this style utilizes storage, plug-ins often share

access to a single shared data store. A good practice to consider when plug-in components

have access to a shared database is to enforce some mechanism to namespace tables

to avoid object naming collisions. VS Code utilizes the file system for persistence, but

another example of this style is WordPress which allows plug-ins to not only create

database objects (tables, indexes, views, etc.) in a single shared database, but the shared

nature of that resource also means a plug-in has access to other tables in the system. If

there are potential security or privacy considerations, a concrete implementation of this

style should prescribe the Partitioned Shared Database Constraint.

11 Eväkallio, J. “Foam PKM Project.” https://foambubble.github.io/foam/

Chapter 20 The Microkernel Abstract Style

https://foambubble.github.io/foam/

311

Although the Abstract Microkernel Style prescribes a Monolithic Deployment

Granularity, the fine granularity of plug-ins overcomes the traditional limitations of this

component granularity. Users of the system can easily extend it in unforeseen ways,

improving agility, adaptability, extensibility, and evolvability. To achieve this, the core

system exposes a uniform interface that defines both plug-in entry points and an API or

other mechanisms for plug-ins to interact with the core system (and, potentially, each

other). Given the uniform interface constraint will constrain the interaction of plug-ins

with the core system, the system becomes slightly more fault tolerant. A malfunctioning

plug-in rarely takes down the entire system (often the core system will simply disable a

problematic plug-in).

On the surface, it may appear that this style is best suited for software products that

are stored and run locally (e.g., VS Code); however, the broader applications of this style

should not be overlooked. Many web-based and SaaS applications use this approach to

make their platform configurable and extensible (both by the vendor and third parties).

The abstract style is monolithic; however, it is possible to scale the ideas to allow

dynamic runtime composition of external services in a distributed system.

NetKernel: A Distributed Microkernel Architecture

NetKernel is an innovative software system that extends the microkernel
architecture to distributed computing, applying the principles of Resource-
Oriented Computing (ROC) and the REST architectural style representing a
significant evolution in how we think about and design distributed systems.

In traditional microkernel architectures, a minimal core (the microkernel) provides
basic services, such as low-level hardware communication, while higher-level
services run in user space, independent of each other. This separation promotes
modularity, fault isolation, and ease of extension. NetKernel takes these principles
and applies them to a distributed system, effectively creating a microkernel for
the Web.

NetKernel abstracts all system resources—data, services, or even code—as
addressable resources that adopt a uniform interface, much like the REST
approach to web services. This generalization of the microkernel idea to a
distributed environment allows components to communicate over a network with
the same simplicity and consistency as they would within a single system. The

Chapter 20 The Microkernel Abstract Style

312

abstractions provided by NetKernel result in a system whose design does not
care if it is monolithic or distributed; those details are completely transparent to
the system.

One of NetKernel’s most brilliant innovations is its application of the REST
architectural style, originally designed for the Web, to distributed computing.
NetKernel treats everything as a resource, accessible via uniform resource
identifiers (URIs). Resources can be dynamically composed, cached, or
transformed, allowing for an incredibly flexible system where the boundaries
between local and remote, static and dynamic, data and services blur. This
extended approach to REST is the enabler for ROC.

ROC, the paradigm on which NetKernel is built, treats all software components—
whether data, processes, or services—as resources that can be composed and
interacted with dynamically. ROC provides a high degree of abstraction, where
resources are not merely passive entities but can represent complex computations
or data transformations.

This approach enables loose coupling between components, which is essential
for building scalable and resilient distributed systems. Since resources are
addressable through URIs and interact via standard protocols, the system can scale
horizontally, distribute workloads efficiently, and maintain considerable flexibility in
how components are assembled and reused.

NetKernel represents a significant advancement in distributed computing by
extending the microkernel architecture into the realm of distributed systems. It
provides a powerful, scalable, and flexible platform that simplifies the development
and maintenance of complex distributed systems. This approach not only leverages
the strengths of the microkernel design but also opens new possibilities in
how distributed systems can be architected, operated, and even rearchitected
dynamically at runtime.

NetKernel is a significant shift to how we currently design, build, and run
distributed systems, and the mental model is foreign to many but has shown
far-reaching benefits in many cases. We may well see this idea come into the
mainstream in the future.

Chapter 20 The Microkernel Abstract Style

313

�Summary
The Microkernel Abstract Style is a minimalist approach to software design, where the

core system only handles essential functions and most functionality is extended through

the addition of plug-ins. This separation enhances modularity and fault isolation, as

plug-in failures do not typically crash the entire system, making it easier to update or

replace individual components without affecting others. Although not suitable for every

system, this style comes close to delivering the vision of “Software that can be assembled

like Lego bricks.”

When adopting this style, care and forethought must go into the design and

specification of the uniform interface. The interface must be stable (or backward

compatible) as combinations of plug-ins and versions cannot be known at design time.

Testability can be challenging as any number of plug-ins and configurations may exist at

runtime. There typically must also be some kind of discoverability of available plug-ins.

Consequently, in addition to developing the core system, development teams may need

to invest time and effort into the creation of a plug-in registry.

The following architectural constraints define this abstract style:

•	 Monolithic Component Granularity

•	 Separation of Concerns

•	 Shared Database

•	 Plug-In Architecture

•	 Uniform Interface

•	 Fine Component Granularity

This collection of constraints requires only few additional team and environmental

constraints:

•	 TEAM: Interface First

•	 ENV: Plug-in Registry (optional)

Chapter 20 The Microkernel Abstract Style

314

When compared with the Modular Monolith (Chapter 14) upon which this abstract

style has been derived, the capability improvements provided in Figure 20-2 are seen.

THE MICROKERNEL ABSTRACT STYLE

Abstraction High
Affordability Extremely High
Agility High
Deployability High
Elasticity Low
Evolvability High
Fault-Tolerance Low
Integration High
Performance Above Average
Scalability Low
Simplicity Very High
Testability High
Workflow Below Average

Figure 20-2.  The Microkernel Abstract Style

Chapter 20 The Microkernel Abstract Style

315
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_21

CHAPTER 21

Summary of Constraints
and Abstract Styles

Software architecture is the set of design decisions which, if made incor-
rectly, may cause your project to be cancelled.

—Eoin Woods

Throughout this section, we have seen the power of architectural design by constraint.

Beginning with the Big Ball of Mud style in Chapter 12, we navigated the architectural

continuum by adding and changing constraints until we have derived the nine abstract

styles that align with their corresponding established mainstream architecture patterns.

This underexplored approach to software architecture yields many novel insights.

Let us visualize these insights in the form of a new taxonomy of architectural styles.

�A Taxonomy of Architectural Styles
Historically, most software architecture literature has focused on monolithic and

distributed styles; however, this mental model obscures many nuances of architectural

evolution. Take, for example, the relative ease with which we may decompose a

monolithic system into discrete services or components. In both Chapters 13 and 15, we

accomplished this by changing the granularity constraint. In both cases, the necessary

effort was straightforward, and we can typically measure the overall effort in weeks,

rather than a period of years that conventional thinking would suggest. The disconnect

between expectations and reality is a product of pattern-based thinking and a historical

overemphasis on the transition between layered monolithic styles and microservices

styles. You now know the true complexity lies in changing the module partitioning

https://doi.org/10.1007/979-8-8688-0410-6_21#DOI

316

constraint. In fact, many popular approaches to this migration involve first carving

out vertical slices of functionality—evolving the layered style into a modular monolith

style—before beginning the decomposition process. As we build a new taxonomy of

architectural styles, we must recognize that the effort of changing constraints is not

uniform. The hierarchy of our taxonomy, therefore, will reflect the relative difficulty

of changing a given constraint. As this is, potentially, the most difficult constraint to

change, we will define this as the top level of our taxonomy of styles.

�Level 1: Module Partitioning
Moving beyond the Big Ball of Mud style, we must introduce some kind of separation of

concerns and model for modularity which requires constraining the degrees of freedom

surrounding the definition of module boundaries. The determination of module

boundaries is one of the most foundational architectural constraints and thus form the

first level of our architectural styles taxonomy tree as shown in Figure 21-1.

Figure 21-1.  Taxonomy Level 1

The ubiquity of the Layered Monolith style is a consequence of Conway’s Law1

which states “Organizations, who design systems, are constrained to produce designs

which are copies of the communication structures of these organizations.” The natural

and default organizational structure will delineate responsibilities across teams by

their technical focus, skillset, and clear responsibility models. Often, organizational will

have frontend teams (or subteams) and backend teams. Depending on the scale and

complexity of the system, the organizational structure will define backend teams focused

on a subset of functionality such as API development, database development, business

logic development, etc. Under this organizational structure, it does not matter what

type of architecture we design; the structure of the system will mirror the organizational

1 Conway, M. E. (1968). “How do Committees Invent?” Datamation, 14(5), 28–31

Chapter 21 Summary of Constraints and Abstract Styles

317

structure. Our options, as architects, are to either ignore the realities of Conway’s Law

(to our peril), accept the realities of Conway’s Law (constrain our architecture designs

to match the existing structure of the organization), or first change the communication

structure of the organization (known as the Inverse-Conway Maneuver2).

Adopting the Domain Partitioning Constraint (described in Chapter 14) first

requires we champion the effort to satisfy the Well-Defined Domains organizational

constraint. This means either leading the effort to perform a detailed domain analysis

with business stakeholders and domain experts or bringing in an expert to lead this

effort. As architects, leading such an effort requires sufficient knowledge of Domain-

Driven Design (DDD). The definitive work on this subject remains Eric Evans’ 2003 book

Domain-Driven Design.3 If you choose to read that book (which dwarfs the book you are

currently holding), follow the advice your author wishes he had when he first read it;

read section 1, then section 4, followed by section 3, and finally section 2. Alternatively,

there have been several books that followed Evans’ seminal work on the subject.

Vaughn Vernon’s Implementing Domain-Driven Design4 is a practical and accessible

resource written to prepare developers and architects to apply the important concepts

of DDD. For a more lightweight introduction, I recommend Vernon’s comparatively light

volume, DDD Distilled.5 One other valuable resource is Alberto Brandolini’s important

work on event storming.6

Understanding the nuances of the domain is the first step. We can design a domain-

partitioned system based on the structure and boundaries within a domain; however,

we remain constrained by the organizational structure. Our design will require

Domain-Aligned Teams which may require deploying the Inverse-Conway Maneuver

to restructure the organization. This process is both expensive and difficult, but many

organizations have successfully made the transition. By building on the wisdom and

experience of the authors listed above—as well as the advice on effecting meaningful

change in the next section—you will be better positioned to make this change.

2 Leroy, J. (2010). “Dealing with Creaky Legacy Platforms.” Cutter IT Journal
3 Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley Professional
4 Vernon, V. (2013). Implementing Domain-Driven Design. Addison-Wesley Professional
5 Vernon, V. (2016). Domain-Driven Design Distilled. Addison-Wesley Professional
6 Brandolini, A. (2015–2021). Introducing EventStorming: An Act of Deliberate Collective Learning.
LeanPub, https://www.eventstorming.com/book/

Chapter 21 Summary of Constraints and Abstract Styles

https://www.eventstorming.com/book/

318

�Level 2: Persistence Options
In Chapter 14, we got our first glimpse of the effort needed to break relational databases

along domain lines as well as how those lines begin to blur as we find multiple bounded

contexts that need to share some amount of data. You will notice that it is the domain-

partitioned parent constraint that enables the Partitioned Shared Database and Isolated

Database Constraint (Chapter 16). The addition of this level to our taxonomy tree is

shown in Figure 21-2.

Chapter 21 Summary of Constraints and Abstract Styles

319

Fi
gu

re
 2

1-
2.

 T
ax

on
om

y
L

ev
el

 2

Chapter 21 Summary of Constraints and Abstract Styles

320

The taxonomy tree focuses on architectural constraints and styles introduced in this

section but is not exhaustive. Additional persistence constraints, such as a multitenant

shared database, or database-per-tenant constraints, for example, can be applied to

evolve/extend a style but are not represented in this conceptual taxonomic tree. Moving

forward, where the branches from a node in the tree are substantially similar to its

neighbors, a dotted arrow will be used as an abbreviation.

�Level 3: Granularity
Component granularity is a straightforward change when decomposing along existing

module boundaries and comparatively easier than changing any of the parent

constraints. Our updated taxonomy tree is shown in Figure 21-3.

Chapter 21 Summary of Constraints and Abstract Styles

321

Fi
gu

re
 2

1-
3.

 T
ax

on
om

y
L

ev
el

 3

Chapter 21 Summary of Constraints and Abstract Styles

322

When an architectural style crosses into the realm of distributed systems, you

must prescribe additional constraints. The most important of these is the Independent

Deployability Constraint (Chapter 13). Without this constraint, the promised benefits

surrounding agility, testability, deployability, and evolvability all suffer. In short, a

distributed style without this constraint will produce a distributed monolith which is an

anti-pattern (or anti-style).

Independent deployability is enabled by the following non-architectural

constraints, namely:

•	 TEAM: Pipeline Development Skills (Chapter 13)

•	 TEAM: IaC Skills (Chapter 13)

•	 TEAM: Automation Skills (Chapter 13)

•	 TEAM: API-First Development (Chapter 13)

•	 TEAM: Independent Development Cycles (Chapter 13)

•	 ENV: Development Environment Isolation (Chapter 13)

•	 ORG: DevOps Commitment (Chapter 13)

Fine Component Granularity requires additional non-architectural

constraints, namely:

•	 ENV: High Operational Automation (Chapter 16)

•	 ENV: Service Discovery and Routing (Chapter 16)

•	 ENV: Bulkheads and Circuit Breakers (Chapter 16)

•	 ENV: Distributed Tracing and Logging (Chapter 16)

•	 TEAM: Maturity with Respect to Trade-Offs (Chapter 16)

•	 TEAM: IaC Skills (Chapter 16)

�Level 4: Component Communication
When we add this final level to our basic taxonomy, you begin to see how the abstract

styles defined in this section find their way into this model. Of course, Figure 21-4 shows

only a subset of the abstract styles and offers only a partial representation of all possible

architectural styles.

Chapter 21 Summary of Constraints and Abstract Styles

323

Fi
gu

re
 2

1-
4.

 T
ax

on
om

y
L

ev
el

 4

Chapter 21 Summary of Constraints and Abstract Styles

324

The Modular Monolith Abstract Style and Space-Based Abstract Style either do not

prescribe module partitioning or span both module partitioning schemes. These are also

not absolutes, and the diagram excludes hybrid styles and derived variations.

The intent of Figure 21-4 is to demonstrate the directions we have thus far derived

abstract styles. This taxonomy also demonstrates the relative effort to evolve one

style into another (as well as potential intermediary waypoints on the continuum

for incremental evolution). Notably, the Layered Monolith Abstract Style and the

Microservices Abstract Style are on extreme ends of the tree, indicating a considerable

amount of effort to make the necessary architectural modifications to realize the final

style. In contrast, the Service-Based Abstract Style and Microservices Abstract Style are

adjacent to each other, indicating a lower amount of effort to evolve the system between

those two styles.

When considering multiple potential architectural styles for a given problem,

creating a similar diagram can be useful to visualize the available paths for architectural

evolution over time. This will allow you to provide an architectural style that meets

immediate needs with confidence that the long-term evolution in an anticipated future

direction remains possible and practical.

�Summary of Abstract Styles
This section has derived and described nine abstract styles, as well as several

intermediary and tailored styles. Each chapter introduced new architectural constraints,

which are combined in different ways to derive a diverse set of abstract styles. Because

constraints are reusable and composable architecture primitives, each chapter provides

details and implementation guidance as it introduces each new constraint, rather

than giving implementation guidance at the style level. Below is a summary of the

defining constraints of each abstract style, along with a reference to the chapter that

first introduces and describes the constraint. Finally, we break down the dependent

non-architectural constraints necessary to achieve the architectural capabilities

induced by each constraint. This review will provide you with a quick reference for each

abstract style along with a visualization of the body of architectural knowledge you have

developed after reading this section.

Chapter 21 Summary of Constraints and Abstract Styles

325

Layered Monolith Abstract Style (Chapter 12)

Abstract Style Defining Constraints Constraint
Dependencies

The Layered Monolith Abstract Style

Monolithic Component
Granularity

(Chapter 12)
N/A

(Chapter 12) N/A

Monolithic Deployment
Granularity

(Chapter 12)
N/A

(Chapter 12) N/A

Shared Database
(Chapter 12) N/A

Layered System
(Chapter 12) N/A

Figure 21-5.  Summary of the Layered Monolith Abstract Style

Chapter 21 Summary of Constraints and Abstract Styles

326

Distributed N-Tier Abstract Style (Chapter 13)

Abstract Style Defining Constraints Constraint Dependencies

The Distributed N-Tier Abstract
Style

Coarse Component
Granularity

(Chapter 13)

ENV: Simple environment

ENV: Distributed system environment
support

(Chapter 12) N/A

Independent
Deployability
(Chapter 13)

ENV: Development environment

ORG: DevOps Commitment (Chapter
13)

TEAM: Pipeline development skills
(Chapter 13)

TEAM: API first Development (Chapter
13)

(Chapter 12) N/A

Layered System
(Chapter 12) N/A

Client/Server (Chapter
13) N/A

Shared Database
(Chapter 12) N/A

Figure 21-6.  Summary of the Distributed N-Tier Abstract Style

Chapter 21 Summary of Constraints and Abstract Styles

327

Modular Monolith Abstract Style (Chapter 14)

Abstract Style Defining Constraints Constraint
Dependencies

The Modular Monolith Abstract
Style

Monolithic Component
Granularity

(Chapter 12)
N/A

Monolithic Deployment
Granularity

(Chapter 12)
N/A

(Chapter 14)

ORG: Well-Defined
Domains (Chapter 14)

ORG: Domain-Aligned
Teams (Chapter 14)

Database
(Chapter 14)

(Chapter 14)

Data-Domain
(Chapter 14)

Data-Sharing Strategy
(Chapter 14)

Figure 21-7.  Summary of the Modular Monolith Abstract Style

Chapter 21 Summary of Constraints and Abstract Styles

328

Service-Based Abstract Style (Chapter 15)

Abstract Style Defining Constraints Constraint
Dependencies

The Service-Based
Abstract Style

Medium Component
Granularity

(Chapter 15)

ENV: Simple environment

(Chapter 13)

ENV: Distributed system
environment support

(Chapter 13)

Independent
Deployability
(Chapter 13)

ENV: Development

(Chapter 13)

ORG: DevOps
Commitment
(Chapter 13)

TEAM: Pipeline
development skills

(Chapter 13)

(Chapter 13)

TEAM: API first
Development
(Chapter 13)

(Chapter 14)

ORG: Well-Defined
Domains (Chapter 14)

ORG: Domain-Aligned
Teams (Chapter 14)

(Chapter 12) N/A

Shared Database
(Chapter 12) N/A

RPC API (Chapter 13) N/A

Figure 21-8.  Summary of the Service-Based Abstract Style

Chapter 21 Summary of Constraints and Abstract Styles

329

Microservices Abstract Style (Chapter 16)

Abstract Style Defining
Constraints Constraint Dependencies

The Microservices
Abstract Style

Fine
Component
Granularity

(Chapter 16)

(Chapter 16)

(Chapter 16)
ENV: Bulkheads & Circuit Breakers

(Chapter 16)
ENV: Distributed Tracing & Logging

(Chapter 16)
TEAM: IaC skills (Chapter 16)

Independent
Deployability
(Chapter 13)

ENV: Development environment

ORG: DevOps Commitment
(Chapter 13)

TEAM: Pipeline development skills
(Chapter 13)

13)
TEAM: API first Development

(Chapter 13)

Domain

(Chapter 14)

ORG: Well-Defined Domains
(Chapter 14)

ORG: Domain-Aligned Teams
(Chapter 14)

Highly
Decoupled

Components
(Chapter 16)

TEAM: Maturity w/r/t Trade-offs
(Chapter 16)

Isolated
Databases

(Chapter 16)

Data-
14)

Data-Sharing Strategy (Chapter 14)
RPC API

(Chapter 13) N/A

Figure 21-9.  Summary of the Microservices Abstract Style

Chapter 21 Summary of Constraints and Abstract Styles

330

Choreographed Event-Driven Abstract Style (Chapter 17)

Abstract Style Defining
Constraints Constraint Dependencies

The Choreographed
Event-Driven Abstract Style

Fine Component
Granularity

(Chapter 16)

(Chapter 16)
ENV: Distributed Tracing & Logging

(Chapter 16)
TEAM: IaC skills (Chapter 16)

Independent
Deployability
(Chapter 13)

ENV: Development environment

ORG: DevOps Commitment
(Chapter 13)

TEAM: Pipeline development skills
(Chapter 13)

TEAM:
13)

TEAM: API first Development
(Chapter 13)

Technical

(Chapter 12)
N/A

Highly
Decoupled

Components
(Chapter 16)

TEAM: Maturity w/r/t Trade-offs
(Chapter 16)

Choreography-
Driven

(Chapter 17)

Workflow Modeling (Chapter 17)

PubSub
Messaging

(Chapter 17)

ENV: PubSub Broker
(Chapter 17)

Figure 21-10.  Summary of the Choreographed Event-Driven Abstract Style

Chapter 21 Summary of Constraints and Abstract Styles

331

Orchestrated Event-Driven Abstract Style (Chapter 18)

Abstract Style Defining
Constraints Constraint Dependencies

The Orchestrated
Event-Driven Abstract Style

Fine Component
Granularity

(Chapter 16)

(Chapter 16)
ENV: Distributed Tracing & Logging

(Chapter 16)
TEAM: IaC skills (Chapter 16)

Independent
Deployability
(Chapter 13)

ENV: Development environment

ORG: DevOps Commitment
(Chapter 13)

TEAM: Pipeline development skills
(Chapter 13)

13)
TEAM: API first Development

(Chapter 13)
Technical

(Chapter 12)
N/A

-
Driven

(Chapter 18)

Data-
14)

Data-Sharing Strategy (Chapter 14)
Persistent

Queue
Messaging

(Chapter 18)

ENV: Queue
(Chapter 18)

Figure 21-11.  Summary of the Orchestrated Event-Driven Abstract Style

Chapter 21 Summary of Constraints and Abstract Styles

332

Space-Based Abstract Style (Chapter 19)

Abstract Style Defining Constraints Constraint
Dependencies

The Space-Based
Abstract Style

Medium Component
Granularity

(Chapter 15)

ENV: Simple environment

(Chapter 13)

ENV: Distributed system
environment support

(Chapter 13)

(Chapter 14 & 12)

ORG: Well-Defined
Domains (Chapter 14)

ORG: Domain-Aligned
Teams (Chapter 14)

Shared Database
(Chapter 12) N/A

Decoupled Database
(Chapter 19)

ENV: Data Reader (Chapter
19)

ENV: Data Writer (Chapter
19)

In-Memory
(Chapter 19)

ENV: High-Memory
Compute Instances

(Chapter 19)

Replicated Shared Data
Grid

(Chapter 19)
N/A

RPC API (Chapter 13) N/A

Figure 21-12.  Summary of the Space-Based Abstract Style

Chapter 21 Summary of Constraints and Abstract Styles

333

Microkernel Abstract Style (Chapter 20)

Abstract Style Defining Constraints Constraint
Dependencies

The Microkernel Abstract Style

Monolithic + Fine
Component Granularity
(Chapter 12 + Chapter

16)

N/A

Independent
Deployability
(Chapter 12)

N/A

(Chapter 12) N/A

Shared Database
(Chapter 12) N/A

Uniform Interface
(Chapter 20)

ARCH: Interface
Constraints (Chapter 20)

Team: Interface First
(Chapter 20)

Plug-in Architecture
(Chapter 20)

ENV: Plug-in Framework
(Chapter 20)

ENV: Plug-in Registry
(Chapter 20)

Figure 21-13.  Summary of the Microkernel Abstract Style

�Summary of Constraints
We will close this chapter and this section with an overview of all the architectural

constraints introduced. This list is not exhaustive, as you may identify various additional

architectural constraints as you progress through your career, designing and evolving

the architecture of various systems. Figure 21-14 will, however, be instructive when

introducing new architectural constraints into this model. Each constraint introduces a

relative influence on the overall capabilities of a style, which we will indicate as follows.

Chapter 21 Summary of Constraints and Abstract Styles

334

A minus (–) symbol indicates the constraint will negatively impact a particular

architectural capability, a (+) indicates a positive influence on a capability, and the

plus-minus (±) indicates a mixed influence that may depend on additional constraints

or domain details to resolve. Although the Tailor-Made model aims to be more precise

by including weighted values for each of the trade-offs, this generalization will provide

a rough overview appropriate for this book. The weights and calculation model will be

available in the tools introduced in the next section.

Chapter 21 Summary of Constraints and Abstract Styles

335

Figure 21-14.  Summary of Constraints

Architectural Constraint Aff
or

da
bi

lit
y

Ag
ili

ty

De
pl

oy
ab

ili
ty

Ev
ol

va
bi

lit
y

Fa
ul

t-T
ol

er
an

ce

Pe
rfo

rm
an

ce

Sc
al

ab
ili

ty

Si
m

pl
ici

ty

Te
st

ab
ili

ty

W
or

kfl
ow

As
yn

c

Persistent-Queue Messaging + ± + + + + + - +

Pub-Sub Messaging + ± ± + + + + + + - +

Queue Messaging + ± + ± + + + - +

Replicated Shared Data Grid - - ± + ± - -

Co
m

po
ne

nt

Co
ns

tr
ai

nt

All Data stored in-memory - - - + ± -

Highly Decoupled Components - + + + + + - + -

+ + + + +

De
pl

oy
m

en
t

Co
ns

tr
ai

nt

Independent Deployability + + + + + ±

Monolithic Deployment Granularity - - - - +

En
vi

ro
nm

en
t

+ + + + +

Gr
an

ul
ar

ity

Coarse Component Granularity - + + + + + + + - + +
Fine Component Granularity - + + + + + - ± + - + -

Medium Component Granularity + + + + + - + + ± ± -

Monolithic Component Granularity - + - - - - - + - + -

Chapter 21 Summary of Constraints and Abstract Styles

336

graphQL API + + + ± + ± + ± -

gRPC API ± + - - - + + + -

Level 1 REST API + - + + + + + - + ± + -

Level 2 REST API ± + + + + + + - + ± + -

RPC API + - + - - + ± + ± -

In
t

er
a + + ± ± + - + + - +

- - ± - ± - ± + ± - - +

In
te

rfa
ce

Plug-in Architecture + + + + + + + + - +

Uniform Interface + + + + - ± +

M
od

ul
e

+ ± + + + + ± +

- + ± - - + ±

Pe
rs

ist
en

ce

Decoupled Database + + ± ± + + -

Isolated Databases - + + + + - + + - + -

+ + + - ± - -

Shared Database - + - - - - ± - +

Figure 21-14.  (continued)

Chapter 21 Summary of Constraints and Abstract Styles

337

Figure 21-14.  (continued)

CQRS - - + + + + + -

Event-sourcing - + + + + - + ±

To
po

lo
gy Client-Server

Layered System + ± + ± + - + -

Chapter 21 Summary of Constraints and Abstract Styles

SECTION 3

Executing Architecture
Effectively

341
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_22

CHAPTER 22

Deriving a Tailor-Made
Architecture

Software and cathedrals are much the same; first we build them, then
we pray.

—Samuel T. Redwine Jr.

The aim of the Tailor-Made Software Architecture model is achieving holistic fit. Your

reading to this point will prepare you to execute on this mission in a manner that exceeds

many established practitioners in this space. The first and most obvious dimension of

fit is aligning the capabilities of the system with the business needs. The requirements

analysis process introduced in Chapter 4 produces a prioritized set of capabilities along

with target scores that range from –5 (Extremely Low) to +5 (Extremely High) with

several steps in between.

In your conversations with business stakeholders, it is rare that the business will

assert that architecture should score “extremely low” or even negatively on any given

capability. This is why the effort associated with ranking and prioritizing capabilities is

so important. Styles that offer high scores in one capability often display the inherent

trade-offs in other capabilities which score either average or in the negative range. The

ranking of each individual capability is instructive of the direction that trade-offs must

take place. An important or business-critical capability can come at the cost of degrading

a lower priority capability, but not a higher priority capability. Negative scores (–1/below

average or lower) do not reflect a business requirement but rather an organizational

tolerance. For example, affordability and simplicity of microservices styles typically score

Extremely Low; when the relative business value of the system’s agility, fault tolerance,

scalability, and elasticity is sufficiently high, this factor will influence the business’s

https://doi.org/10.1007/979-8-8688-0410-6_22#DOI

342

overall tolerance for extremely low simplicity and affordability qualities. In short,

balancing the highs and lows of any candidate style requires careful calculus on the part

of the architect.

The Mad Potter on the Value of Enough

Many years ago, I was driving across the state of Wyoming on a long and desolate
highway. I eventually passed through a small town that was entirely devoid of life
save for a former automotive service station with the hand-painted words “Monk
King Bird Pottery” emblazoned across the exterior. It was the studio of independent
potter, Byron Seeley, established in a ghost town that had been abandoned
decades ago. Curiosity got the better of me, and I pulled over to view his wares.

Byron greeted me and gave me a tour of his live-in studio and retail space. I was
impressed with his creations but baffled by the choice of location. At one point, I
asked him “Do you get a lot of business?” which seemed a fair question given the
lack of traffic or local population.

He looked at me and asked, “What’s ‘a lot?’”

It was a question I was unprepared for, so I blurted out “I don’t know.” And his
response has stuck with me to this day.

“Neither do I,” he replied. “But I know what enough is. I get enough business.”

Since then, I tend to favor the quantifiable concept of enough over the vague
notion of a lot. Our architectures should do the same, offering enough of important
capabilities as a lot can easily turn into too much and come at unexpected cost.

�Tailoring Existing Architectures
When approaching an existing system that requires enhancement or evolution, first

strive to understand the current set of constraints. This may require examining the

codebase, reviewing current and target metrics and KPIs, and several conversations with

Chapter 22 Deriving a Tailor-Made Architecture

343

developers and stakeholders. During this process, you are both documenting the existing

architecture and performing a modified version of the requirements analysis process

described in Chapter 4.

Once you understand where the system is, you must tailor this architecture to arrive

at where the business needs the system to be. From here, you can begin the made-

to-measure design process with one small modification. Rather than starting with an

abstract style or style(s), you will be starting with the current architectural style as you

have now defined it.

�Made-to-Measure Architecture
When approaching a greenfield project, the most pragmatic approach is often to follow

the Made-to-Measure approach (Chapter 10).

�Phase I: Identifying Abstract Styles
We begin this process by looking at the qualified and quantified capabilities you

enumerated during the requirements analysis process (Chapter 4) and evaluating them

against the capability scores of the abstract styles in Section 2. Although you may have

identified several valuable capabilities for the prospective system, it is exceedingly

unlikely that any abstract style will align perfectly with the business’s requirements. You

should be focusing primarily on alignment with only the business-critical capabilities at

this stage as other capabilities can later be modified through addition and modification

of architectural constraints.

The Tailor-Made Architecture Model introduces a tool to support this process,1

where you can define target capabilities and visualize these target scores against the base

scores of each abstract style.

It is possible you will identify multiple abstract styles that are potential candidates.

This is a good thing and highlights the fact that there is more than one path to a solution

in software architecture. For each abstract style, add or modify the constraints inside the

worksheet with the goal of approximating alignment with the various target scores you

defined in the analysis process. Figure 21-14 in Chapter 21 is a helpful reference for this

1 https://masteringsoftwarearchitecture.com

Chapter 22 Deriving a Tailor-Made Architecture

https://masteringsoftwarearchitecture.com

344

process, as it highlights the capabilities each constraint influences. In the worksheet, the

constraints introduced in this book are present and pre-weighted to provide design-time

feedback on the relative influence of each constraint.

It is important to note that your goal is not simply to find a collection of

constraints that will make the targets line up as this will generally result in a

nonsensical architectural style that looks good in the worksheet but offers little value

in practice. Instead, this process must be guided first by your architectural intuition

and understanding of how constraints operate and interact with your design and,

secondarily, on how those constraints influence the scores of your candidate derived

architecture. The worksheet is a tool, and, like any tool, its utility is a function of the skill

of the person who wields it. The worksheet is useful for rapid design efforts and early

feedback but cannot replace the unique skill of a thoughtful architect.

At the conclusion of this process, you will have one or more candidate architectural

styles for consideration and evaluation.

�Phase II: Evaluating for Temporal Fit
Often, the business documents that will influence your efforts will communicate a grand

vision of the future, painting a picture of what long-term success looks like. While this is

useful, it will often lead to overengineering. Let us look at a concrete example.

Ted Neward, a software architect, has adapted Dave Thomas’ concept of “Code

Katas” for software architects.2 One such architectural kata that Ted has made available

to the community is called “Going Green.” A description of this hypothetical project

is below:

Going Green

A large electronics store wants to get into the electronics recycling business and
needs a new system to support it. Customers can send in their small personal
electronic equipment (or use local kiosks at the mall) and possibly get money for
their used equipment if it is in working condition.

Users: Hundreds, hopefully thousands to millions

2 Neward, T. (2012). Architecture Katas: Practicing Architecture. https://www.architecturekatas.com

Chapter 22 Deriving a Tailor-Made Architecture

https://www.architecturekatas.com

345

Requirements

Customers can get a quote for used personal electronic equipment (phones,
cameras, etc.) either through the Web or a kiosk at a mall. Customers will receive
a box in the mail, send in their electronic, and if it is in good working order receive
a check. Once the equipment is received, it is assessed (inspected) to determine
if it can be either recycled (destroyed safely) or sold (eBay, etc.). The company
anticipates adding five to ten new types of electronic that they will accept each
month. Each type of electronic has its own set of rules for quoting and assessment.

Additional Context

This is a highly competitive business and is a new line of business for us. If we
haven’t received a type of electronic equipment in a year, we will remove it from
our system. We need to maintain a list of electronic equipment we are willing to
accept as it changes often.

Each piece of equipment has its own assessment (inspection) rules. We have
the right to change the original quote to the customer if the product isn’t in the
condition they said it was.

When approaching this system, the forward-looking nature of this project brief

might lead one to designing a complex and high-scale architecture with advanced

workflow capabilities. However, by reading between the lines, it becomes clear that

the most immediate value is releasing a Minimum Viable Product (MVP) and quickly

iterating on it.

Optimally, you would design the anticipated end-state architecture (what the

system will look like if/when the system is rolled out nationwide) and then determine

what constitutes enough of the architectural capabilities for the initial MVP. Chapter 21

introduced a taxonomy of constraints that define our abstract styles in a structure that

indicates their relative evolvability. If you believe a tailored version of the Service-Based

Abstract Style is the ideal end state, a tailored Modular Monolith might form an ideal

style for the MVP. In this case, you will have a concrete style that is practical for temporal

fit, with an idea of how the architecture can evolve over time.

Chapter 22 Deriving a Tailor-Made Architecture

346

�Phase III: Evaluating for Team, Organizational,
and Environmental Fit
When evaluating an abstract style, you must consider the feasibility of a given style. As

you learned in the previous section, many architectural constraints carry dependencies

that must be satisfied for the capabilities they promise to materialize. One or more

constraints that make significant demands will require either driving significant

change in the organization or compromising the architecture to better fit the teams,

environment, and organization. Both options carry risk, and there is no clear answer

to which option is better in any given scenario. You will need to rely on your judgment,

objectivity, and candid conversations with business stakeholders.

In the case of our architectural kata, this is a new business line, so it may be possible

to influence the communication structure of this new division, thus opening the

possibility of domain-partitioned styles. In other cases, it may not be cut and dried.

�Phase IV: Reviewing Candidate Styles
Before you are ready to receive feedback on one or more candidate styles, you must first

step back to take a critical look at the constraints the styles prescribe. It is important to

take a balanced approach when prescribing architecture. When you are too prescriptive,

you risk micromanaging the architecture. Likewise, when you under-support constraints,

you risk becoming an ivory tower architect, leaving teams to fend for themselves when

challenges arrive. In both cases, teams may ultimately reject parts or all of the prescribed

architecture.

Review each constraint that defines the proposed style(s). You should be able to

succinctly articulate the why behind each constraint. Next, objectively assess if the

constraint is truly architecturally significant. Could the project be sufficiently successful if

this constraint were omitted? Is this a decision that can be left to implementation teams?

Architecture necessarily constrains the degrees of freedom available to developers, but,

when we constrain freedom too much, we end up micromanaging teams in a way that

robs them of the joy of software engineering. Follow the philosophy of the judiciary and

“do not decide that which need not be decided.”

When examining each constraint, determine the extent to which each constraint

deviates from established practices and norms within development teams. Some

constraints will simply formalize the requirement to continue standard operating

Chapter 22 Deriving a Tailor-Made Architecture

347

procedures, while others will represent a significant shift. In the latter case, you must

begin to think about how you will support such a change. Will the teams accept such

a change? Must the change happen all at once, or is there a path toward incremental

maturity? In either case, we must also ask if the shift in behavior the constraint requires

is well described by any existing source. Are there books, training, tutorials, examples,

reference implementations, or tools available? If such resources exist, begin to

enumerate these in your notes. If not, you need a plan to create these resources.

Every constraint requires team and organizational buy-in which may be challenging

when it represents a significant change. That said, resist the temptation to prematurely

optimize a style for organizational compatibility. Too often, when making any kind of

request, we censor ourselves. We assume “they will never go for that” and present the

diluted option without ever giving them an opportunity to say “yes” to the original/

ideal option. Instead, we should keep our simplified or phased approach to constraint

adoption in our metaphorical back pocket. When you present the proposed architecture

(as described in the next section in this chapter), begin by presenting your full vision

of the new architecture and the process to get there. Only when a constraint is rejected

outright by the teams should you retreat to the compromise option—and be prepared

to do this right away, in the current conversational context. It is not what we typically

do, but it is the optimal approach. In a study cited by Dr. Robert Cialdini, he found this

approach can triple the number of “yes” responses to the exact same question.3

Keep in mind that an architectural style is not your system’s architecture. The

architecture is the blueprints for the system. The style represents the constraints

governing decisions within the blueprint.

�Phase V: Presenting Candidate Architectures for Review
It is at this point that the candidate style(s) should be presented to representatives of the

various development teams. Your goal is to show one or more architectural blueprints

for each candidate style and get feedback on the feasibility. These can be fairly high level

at this stage but provide sufficient detail to show what the concrete implementation of

the system will look like when following the various architectural styles. You will also

communicate what it will take for the organization to get there.

3 Cialdini, R. (1993). Influence: The Psychology of Persuasion. Quill

Chapter 22 Deriving a Tailor-Made Architecture

348

Invite team leads and the executive stakeholders that the team lead(s) report to. First,

articulate the business context and your understanding of the immediate and long-

term requirements. This represents the why of the architecture you are about to present.

Answer any questions as they arise. Once you have reached consensus on the problem,

present the candidate architecture(s).

Your goals in this meeting are as follows:

•	 Achieve alignment on the problem context and the desired outcomes

•	 Identify potential implementation challenges that must be addressed

to move forward

•	 Foster a sense of cooperation and collaboration between the

business, development teams, and architecture

The teams may have other ideas about how this system should be designed. Although

you should be prepared to articulate why you are prescribing an alternative direction,

the goal is not to railroad the teams but rather to collaborate. Rather than simply shutting

down an idea, take time to understand the drivers behind these counterproposals. Strive

to understand why the team representative feels their suggestion has merit. If you have

already evaluated this option and rejected it for cause, communicate your evaluation and

how you arrived at this conclusion. Ask if you have overlooked any key aspects and be

open to the possibility that you have. Being honest and open-minded is crucial to building

a collaborative relationship between architecture and teams and mirrors an approach

championed in Dale Carnegie’s timeless book, How to Win Friends and Influence People,

where he advises that “If you want to gather honey, don’t kick over the beehive.” Consider

borrowing this turn of phrase from this work to diffuse potential conflict:

I may be wrong, I frequently am, let’s examine the facts

—Dale Carnegie4

As in the process detailed in Chapter 4, listen carefully to the various viewpoints

expressed in this meeting and take detailed notes. Remember, this may be your final

opportunity to course correct in the event of an error or omission. As such, approach

these conversations with an open mind. Ultimately, what matters most is what is right,

rather than who is right.

4 Carnegie, D. (1936). How to Win Friends and Influence People. Simon & Schuster

Chapter 22 Deriving a Tailor-Made Architecture

349

Another, asynchronous approach to getting feedback on a candidate architecture,

constraint, or project standard is to publish a Request for Comments (RFC) document.

An RFC is a formal document used in the technical community, most commonly

seen in use by the Internet Engineering Task Force (IETF), to propose new standards,

protocols, procedures, or revise on existing ones. These documents serve as the primary

means by which protocols and standards are developed and disseminated across a

community or organization.

Key Points About RFCs

	 1.	 Purpose: RFCs are used to propose and discuss new ideas or

modifications to existing protocols and standards. They document

the technical details and provide a basis for consensus building

among experts.

	 2.	 Process: The process starts with the creation of an RFC draft,

which is then reviewed and commented on by the community.

After sufficient discussion and revision, it may be published as an

official standard.

	 3.	 Numbering: RFCs are sequentially numbered, and once

published, they are never revised or updated beyond notating

errata or referencing superseding RFC. If changes are needed, a

new RFC is created to supersede the old one.

	 4.	 Categories: RFCs can be informational, experimental, best

current practice (BCP), or standards track documents. Standards

track RFCs, in particular, can eventually become standards after

going through a rigorous review process.

	 5.	 Historical Significance: The first RFC was published in 1969,

and since then, they have become the cornerstone of Internet

standards development, including foundational protocols

like TCP/IP.

In essence, an RFC is a collaborative way for a technology community to develop

and agree on the protocols and standards that underpin their work while providing

transparency about decisions as well as the process leading up to them.

Chapter 22 Deriving a Tailor-Made Architecture

350

If the RFC approach is new to an organization, you may face challenges with

engagement as reviewing and commenting on RFC is not yet standard operating

procedure. In such cases, a combination of publishing RFCs for asynchronous review,

then hosting the real-time meeting described above will offer a suitable level of

engagement for these discussions.

Each constraint that defines your architectural style will carry risk. Following the

meeting or RFC process (or both), you will be poised to evaluate the risk associated with

each candidate style and mitigate it. One useful tool for this approach is the constraint

risk matrix (Figure 22-1).

Figure 22-1.  Constraint Risk Matrix

The risk associated with a constraint may be mitigated through offering various

support resources to implementation teams. These might take the form of training,

reference implementations, developer tooling, or some other mechanism depending on

the unique situation of the teams and the constraints.

Although many of these support resources will land in the backlog of the architecture

team to prepare, it is worth asking the lead of the team or teams who raised a concern

if there are members of that team who may be interested in exploring the solution.

Ideal candidates for such collaboration are developers who are naturally curious,

enjoy exploring new ideas, and perhaps those interested in a future career in software

architecture. Your collaborators in the various development teams will also be useful as

reference points and champions of the architecture during implementation. Finally, this

approach furthers a collaborative relationship between development and architecture.

Chapter 22 Deriving a Tailor-Made Architecture

351

�Phase VI: Design and Document the Architecture
Once you have arrived at one or more styles that align with the current needs of the

business (with a path to future evolution), a final architecture style must be selected and

formally documented. Chapter 24 provides tools to document your architectural style as

well as subsequent architecturally significant decisions.

Your work as an architect is not complete with the derivation or selection of an

architectural style. From here, you will begin to describe the specific implementation

of the systems. What are the components, where are their boundaries, how do they

communicate? Which teams are responsible for which components? What does the

runtime environment look like?

It is here your architecture goes from high-level architectural style to concrete and

actionable blueprints. Again, Chapter 24 provides detailed guidance for documenting

and diagramming architecture. Describing what your system will look like after adopting

your chosen architectural style(s) forms the final, crucial steps that must take place

before your initial design work is completed.

�Summary
The Tailor-Made Software Architecture Model is your tool for achieving a holistic fit

between business needs and system capabilities. This chapter has guided you through

the nuanced process of aligning architectural decisions with business priorities,

emphasizing the importance of balancing trade-offs to achieve enough rather than

an excess of certain capabilities. Whether you are tailoring an existing architecture or

designing a new system, the key lies in thoughtful, measured adjustments that respect

both the current organizational context and future evolution. By meticulously evaluating

and adjusting architectural styles, considering temporal fit, organizational readiness,

and fostering collaboration through tools like RFCs, you are positioned to design

architectures that are not only technically sound but also pragmatically aligned with

business goals and organizational reality. Your success as an architect hinges on this

delicate balance—where every decision is justified, every constraint purposeful, and

every system fit for its unique environment and future evolution.

Chapter 22 Deriving a Tailor-Made Architecture

353
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_23

CHAPTER 23

Paved Roads
and Variances

How can organizations streamline their development processes and ensure
that their teams are productive and aligned? The solution lies in adopting
the ‘paved road’ approach.

—Joshua Morris

To be effective as a software architect, there are many core truths we must accept.

Among these

•	 There are no one-size-fits-all solutions in software architecture.

•	 There are multiple paths to achieve an end.

•	 Architectural constraints are only part of the answer.

The precision of fit offered by an architectural style is inversely proportional to

the scope of the architecture. A large and complex system that is comprised of many

subdomains with different architectural requirements cannot be effectively served by a

single style.

Some architectural styles are often portrayed as ‘silver bullet’ solutions for
all forms of software. However, a good designer should select a style that
matches the needs of the particular problem being solved.

—Roy Fielding

https://doi.org/10.1007/979-8-8688-0410-6_23#DOI

354

Fielding’s words ring true a quarter century after they were written1 and will continue

to resonate for the foreseeable future. Does this mean we should treat each subdomain

as discrete and disjoint entities, requiring a distinct architectural style for each? Not

necessarily. This approach will often result in a fragmented ecosystem of tools, practices,

conflicting architectural constraints, increased cognitive load, and an inconsistent

level of knowledge and expertise. Instead, seek to define a top-level architectural style

from which other styles in the system are derived. Remember, an architectural style is

simply a named, coordinated set of architectural constraints. Styles may be composed

of individual, atomic constraints, or they may be comprised of a combination of other

styles and individual constraints.

A top-level style specifies the core, guiding principles that govern all development

within the system. You, or architects closer to the various problem domains, will

then define new styles, derived from the top-level style that will apply to individual

subdomains or subsets of the system’s components.

If, over the course of your career, you find yourself in an Enterprise Architect role, you

may adopt this same approach to define a shared foundation for architecture within the

enterprise or technical ecosystem. In this role, your primary responsibility is to ensure

that the IT infrastructure and software systems are not only effective and efficient but

also flexible enough to adapt to the organization’s evolving needs. By defining high-level,

enterprise-wide governing principles, you can ensure the enterprise’s entire hierarchy of

architects is aligned in both mission and approach. As the architecture roles get closer to

implementation teams, the precision of the styles increases while adhering to common

constraints and tooling. An example of such a hierarchy is depicted in Figure 23-1.

1 Fielding, R. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000

Chapter 23 Paved Roads and Variances

355

Figure 23-1.  Hierarchy of Architecture Roles

The top-level architectural style that cascades down throughout the organization is

an example of a paved road.

�Paved Roads
In software development and architecture, the concept of paved roads refers to a set of

common architectural constraints, preferred practices, tools, languages, and frameworks

that are officially endorsed, supported, or prescribed within an organization. These

are the paths that have been tested, optimized, evaluated for holistic fit, and deemed

the most efficient and reliable for developers to follow. Think of it as a well-maintained

highway, where everything is smooth, predictable, and designed to get you to your

destination with minimal friction.

Chapter 23 Paved Roads and Variances

356

The idea is to reduce cognitive load and decision fatigue by providing developers

with a clear, standardized way of building, deploying, and maintaining software. When

you follow the "paved road," you are leveraging prebuilt infrastructure, battle-tested

libraries, and standardized processes that have been refined over time. This does not

just make individual development tasks easier—it also aligns the entire team's efforts,

ensuring consistency and reducing the risk of costly mistakes.

However, the paved road concept is not about stifling creativity or innovation. It is

about providing a reliable, well-lit path that allows teams to move quickly and efficiently

while reserving the off-roading for when it is truly necessary. When a team chooses to

deviate from this path, it should be a deliberate decision, made collaboratively with

architecture while maintaining full awareness of the trade-offs and potential challenges.

Some paved roads are highly prescriptive. For example, the Choreographed

Event-Driven Abstract Style (Chapter 17) includes a constraint that prescribes PubSub

messaging but does not explicitly name a particular PubSub. The cohesiveness of the

system will quickly fall apart if some teams adopt Kafka while others adopt a fan-out

configuration of RabbitMQ, while others adopt yet another approach. A paved road, in

this case, would define a single common messaging platform. This also points to a key

distinction between an architectural style and any particular implementation. As Fielding

points out, both architectures and architectural styles are abstractions that allow us to

design and reason about concrete systems.

Architecture is therefore an abstraction of implementation, and styles are
the named patterns by which we can understand architectures and archi-
tectural design.

—Roy Fielding2

Other paved roads offer implementation teams limited degrees of freedom. For

example, based on the skills and expertise within the organization, you may define

three options for the choice of a database (e.g., “you can use PostgreSQL, DynamoDB,

or Redis”). You may also leave the choice of architectural style for a given subdomain or

component to development teams (e.g., “you can follow architectural style A, B, or C”);

however, as an exercise in architectural thinking, the team should provide a justification,

perhaps in the form of an Architectural Decision Record (introduced in the next

2 Fielding, R. (2008). On Software Architecture. Untangled. https://roy.gbiv.com/
untangled/2008/on-software-architecture

Chapter 23 Paved Roads and Variances

https://roy.gbiv.com/untangled/2008/on-software-architecture
https://roy.gbiv.com/untangled/2008/on-software-architecture

357

chapter). This gives some autonomy back to implementation teams without completely

compromising the architecture of the system. It also frees teams from the paradox of

choice3 where an overabundance of options induces anxiety in individuals and leads to

general unhappiness with any chosen outcome.

As you continue through your career as an architect, you will inevitably find unique

scenarios where none of the paved roads are suitable for a particular system component

or edge case. In this case, you must determine if any of the supported options will be

good enough or if architecture must issue a variance.

�Variances
A variance refers to an approved deviation from the established architectural standards

or guidelines within an organization. It is akin to offering a different route than the one

mapped out by your paved roads. Variances are intentional choices to diverge from the

norm, often driven by specific project needs, environmental limitations, or innovative

approaches that do not quite fit within the predefined framework.

In an ideal world, every project would neatly follow the architectural blueprint

laid out by the architect. However, neither of us lives in “ideal worlds,” and real-world

scenarios often require flexibility. A variance might be necessary when a particular

technology, pattern, or approach offers significant advantages for a specific use case

that the standard architecture does not fully accommodate. For example, a team might

opt to use a different database technology because it better supports the performance

requirements of a new application, even if it is not the standard choice for the

organization.

�The Role of Variances in Software Architecture
Variances serve as a safety valve in the rigid structure of architectural governance. They

allow for innovation and adaptability while ensuring that these deviations are carefully

considered and managed. When a variance is requested, it typically goes through a

3 Schwartz, B. (2004). The Paradox of Choice: Why More Is Less. Harper Perennial

Chapter 23 Paved Roads and Variances

358

review process where its merits, risks, and long-term implications are evaluated. This

helps balance the need for consistency across the organization with the flexibility to

meet unique project demands.

Variances are a necessary part of navigating the complex landscape of technology

decisions. They provide the flexibility to address unique challenges while ensuring that

these decisions are made with full awareness of their implications. When managed

correctly, variances can contribute to innovation and agility without compromising the

cohesion and reliability of the organization’s architectural framework.

�Managing Variances
Effective management of variances is crucial. Each variance should be documented

as a formal architectural decision with a corresponding architecture decision record

(Chapter 24). This documentation must communicate a clear rationale for why the

deviation is necessary and how it aligns with the project’s goals as well as defining a

specific and narrow scope for this variance. It is also essential to assess the potential

impact on the broader architecture, such as integration challenges, increased

maintenance costs, or potential technical debt. By keeping a close eye on variances, an

organization can ensure that these deviations remain the exception rather than the rule,

preserving the integrity of the overall architecture.

�Summary
In the evolving landscape of software architecture, balancing standardization with

flexibility is paramount. The concepts of paved roads and variances offer a framework for

achieving this balance. Paved roads provide a solid, reliable foundation for development,

ensuring consistency and efficiency across the organization. They reduce cognitive load,

minimize risks, and streamline the development process, allowing teams to focus on

delivering value.

At the same time, variances acknowledge the reality that one size does not fit all.

They offer the flexibility to innovate and adapt to unique challenges when the paved

road is not sufficient. However, these deviations must be carefully managed to prevent

fragmentation and maintain the integrity of the overall architecture.

Chapter 23 Paved Roads and Variances

359

As an architect, your role is to guide the organization through these decisions,

ensuring that paved roads are followed where possible and that variances are well

justified and thoughtfully implemented. This balance of consistency and adaptability

is what allows an organization to build robust, resilient systems that can evolve with its

needs, driving long-term success.

Chapter 23 Paved Roads and Variances

361
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_24

CHAPTER 24

Documenting Architecture
An architecture that is not documented, and not communicated, may still
be a good architecture, but the risks surrounding it are enormous.

—Len Bass

As you have seen throughout this book, the architectural capabilities of a system are the

product of architecturally significant decisions. Unfortunately, it is not always clear to

all involved which decisions are architecturally significant, the broader scope of these

decisions, the “why” behind them, and how they interact to form a cohesive system.

For an architecture to be successful, it must be understood. For example, when the

importance of a given decision is not widely understood, the development teams may

overlook these decisions when they are not clearly communicated or simply ignore them

if the teams lack consensus on the decision drivers. Likewise, both the parts and the whole

must be understood. Effective architects are effective communicators, and this chapter focuses

on several documentation and diagramming tools to support your efforts. The artifacts

you create can then be document controlled, versioned, cross-linked, and searchable.

Publication in this manner will scale your communication across the organization.

To begin, we will look at an essential artifact for architects everywhere, the

Architectural Decision Record.

�Architectural Decision Records (ADRs)
An ADR is simply a document that captures when, why, and how every architecturally

significant decision was made. Documentation is, undoubtedly, one of the least exciting

or popular aspects of software engineering and architecture. I have a uniquely strong

aversion to writing documentation. However, I have learned through bitter experience

to never “pencil whip” an ADR; instead, I approach every ADR with focus, precision, and

attention to detail. Why are ADRs so important?

https://doi.org/10.1007/979-8-8688-0410-6_24#DOI

362

�ADRs Serve You
First, ADRs offer an environment to ruthlessly evaluate a decision. Neither you nor I

am immune to biases and blind spots. In other words, we might naturally gravitate to a

familiar or favorite approach or technology even when it is not the optimum solution

to a given problem. We may also easily overlook an option that is not top of mind when

we are making an architectural decision. The ADR is the first environment where we

prove the merit of our ideas. The ADR serves as a fast feedback loop on the validity of our

decisions.

An ADR with a clear problem context and decision drivers, which weighs the

pros and cons of all relevant options, will sometimes surprise us by illuminating an

overlooked blind spot that leads us to pivot to a different decision.

�ADRs Serve Future You
As a project grows and evolves over time, it becomes increasingly difficult to keep the

entire architectural design and context in your head. At many points in your career,

you—or a new architect on the team—will find certain decisions mystifying. The

question in this moment will be “why are we doing this thing that way?” The ADR that

captured that decision would provide a detailed answer to that question.

An ADR that captures a past decision will necessarily include the context and drivers

behind that decision. This is crucial as the decision context might change over time.

Capturing both the decision and the underlying drivers that led to that decision will

provide tools to reevaluate the decision over time and determine when that decision is

no longer relevant. In this case, you will document a new decision based on the present

problem and business context. This new ADR will supersede the existing ADR.

You may find yourself in an organization where the creation and publication of

ADRs has not, historically, been standard operating procedure. In such cases, both

architecture and implementation teams will typically continue to follow established

conventions without understanding their original purpose and motivation. Retroactively

creating ADRs will aid in understanding the historical decisions and enable change and

innovation where appropriate.

Every Architecture Decision Will Be Challenged.

Chapter 24 Documenting Architecture

363

Additionally, well-crafted ADRs potentially free future you from relitigating every

decision over and over again. The recommended structure for ADRs below not only

communicates why a particular option was chosen, but why competing options were

not. As such, we can avoid lengthy arguments with implementation teams who may

prefer other approaches that are more familiar, productive, or performant. Instead, we

simply point to the ADR that captures the what and the why of the decision.

This assumes that the alternative idea—and its trade-offs—is present in the ADR. If

the existing ADR did not evaluate that alternative, it may indicate you have overlooked a

viable alternative option. In this case, take this as constructive feedback to increase your

diligence in future ADRs. To settle the dispute, either you or the developer(s) should

submit a superseding ADR that includes this additional option for review and approval.

�ADRs Serve Teams
Teams that are committed to excellence still require a concrete definition of what

“good” looks like. ADRs are part of this definition and form the basis of a permanent

and ongoing point of reference. Moreover, ADRs offer an efficient communication

mechanism that aids in the dissemination of key decisions to teams.

Additionally, ADRs are a tool to foster better relationships with development and

implementation teams. Architecture often has a reputation for operating from an “Ivory

Tower” that is disconnected from the reality of teams. Architecture decisions can often

seem arbitrary or excessive. An ADR that effectively captures the what, the how, and the

why will challenge this misconception.

�ADRs Serve Future Teams
ADRs offer an asynchronous mechanism for communicating and cascading architectural

decisions across the organization to both existing and new team members over time.

ADRs enable efficient onboarding for new teams without the need for architecture

to “hop on a call” to onboard each new team or teammate on a per-architectural

decision basis.

Chapter 24 Documenting Architecture

364

�The Anatomy of an ADR
Each ADR captures and documents a single, granular, decision that is germane to

the architecture of the project or system. This section describes an ADR’s constituent

components.

�Title and Metadata
The first part of an ADR will include a title that captures the solved problem and

solution. Each ADR will have a status (e.g., proposed, rejected, accepted, deprecated, or

superseded) along with the names of the individual(s) responsible for the decision. The

metadata will also include the date of the decision and optionally link to a work item

related to this decision. Figure 24-1 shows an example of this section of an ADR.

Figure 24-1.  ADR Title and Metadata Template

�Context and Problem Statement
The next section of an ADR communicates the problem context. You will typically

articulate this context as either a statement of fact or in the form of a question.

Figure 24-2 shows a template for this section of an ADR.

Figure 24-2.  ADR Context and Problem Statement Template

Chapter 24 Documenting Architecture

365

�Decision Drivers
In this section, you will communicate the internal and external factors that must be

satisfied by the final decision. As you may recall, the requirements analysis process

detailed in Chapter 4 recommended making notes of key statements from business

stakeholders. This is a good place to reference both the statements and the individual(s)

who made the statements. In addition to backing up the statements in this section, these

references allow you to borrow authority from business stakeholders. Figure 24-3 shows

an example of this section in an ADR.

Figure 24-3.  ADR Decision Drivers

�Considered Options
This is the section of the ADR where your up-front effort will first pay dividends in

the communication process. Here, you list all the options you have considered when

making the decision. When considering options, you want to look at the options that

make sense in the context of architecture as well as attempting to anticipate alternatives

that development teams may request or counter with. It is important to understand

that the latter options are not simply straw men to knock down; instead, you must

treat each option with equal rigor; otherwise, you risk undermining the credibility

of the architecture team. At this point of the document, you are merely enumerating

possibilities. A more detailed analysis will come later. Figure 24-4 shows an example of

this section in an ADR.

Chapter 24 Documenting Architecture

366

Figure 24-4.  Considered Options Section of an ADR

�Decision Outcome
Next, you will communicate the chosen option, the decision outcome. This section

communicates not only the decision but also a summary that communicates the why

behind that decision. Figure 24-5 shows an example of this section.

Figure 24-5.  Decision Outcome Section of an ADR

These four sections provide the minimum necessary information for the reader

to understand the decision. This structure essentially offers a tl;dr that shows respect

for the reader’s time, allowing them to get to the meat of the decision quickly, offering

an efficient way for the reader to navigate information effectively, and this removes a

common barrier to entry present in most documentation. However, this is not the end of

the document.

Chapter 24 Documenting Architecture

367

�Positive and Negative Consequences
Here, we communicate both the good and the bad of the decision. Remember the first

law of software architecture,1 every decision is a trade-off. In this section, the author

provides full transparency of both the good and the bad outcomes that emerge from

this decision. This is also a test of your understanding of the decision. If you have not

identified any negative consequences of the decision, the odds are you have simply

overlooked the trade-off. The corollary to the first law of software architecture states that,

if you believe you have identified an architecture decision that is not a trade-off, it is; you

just have not identified the trade-off yet.

This section will also head off many debates with implementation teams. For

example, if a developer prefers a different option or approach than the decision

outcome, they will likely seize upon a negative consequence of the decision to challenge

the ADR. If you have done your due diligence when authoring this document, the ADR

will express that negative consequence and will show both how and why the positive

consequences outweigh the negatives in this context. Conversely, if you have not

performed sufficient due diligence, you have left the architecture decision open to being

attacked or ignored. Figure 24-6 shows an example of this section.

Figure 24-6.  Positive and Negative Consequences of the Decision

1 Ford, N., & Richards, M. (2020). Fundamentals of software architecture: An engineering approach.
O’Reilly Media

Chapter 24 Documenting Architecture

368

�Pros and Cons of the Options
This section is where you demonstrate that you have done your due diligence and

carefully considered each option. This is also the section where you prove to yourself that

this is the optimum decision in the current problem context. Again, it is important not to

leave the decision open to attack by omitting key factors that might have led to a different

decision outcome. The more effort you put into this section, the stronger the ADR will be

when it faces inevitable scrutiny. Figure 24-7 shows an example of this section in an ADR

template.

Figure 24-7.  Pros and Cons of Each Option

�Links
An ADR is a lightweight document, and its length should not exceed a couple of pages. This

closing section is where an interested reader who has made it to the end of the document

can go to learn more. This section might include links to implementation guidance,

tutorials, further reading, or other related documents that support the ADR or those

intending to follow the ADR. Figure 24-8 shows an example of this section of an ADR.

Chapter 24 Documenting Architecture

369

Figure 24-8.  Links Section in an ADR

�The Constraint Document
Architectural constraints are a special class of architectural decisions. Although the structure

of an ADR will adequately capture any given architectural constraint, I recommend using a

slightly different format to capture and communicate architectural constraints.

In this book, we have adopted the established convention of defining architectural

constraints; however, you may not wish to frame them this way for communication with

non-architectural audiences. Depending on the project and organization, you may want

to choose a less restrictive sounding moniker such as “Governing Principles.”

�Title and Metadata
Like ADRs, a constraint document begins with Title and Metadata (Figure 24-9).

Figure 24-9.  Constraint Decision Record Title and Metadata

�Motivation
The second law of software architecture states that “Why is more important than how.”2

This section outlines the why behind the constraint the document describes. This is,

again, where you return to your efforts from the requirements analysis process described

2 Ford, N., Richards, M. (2020). Fundamentals of Software Architecture: An Engineering Approach.
O’Reilly

Chapter 24 Documenting Architecture

370

in Chapter 4. You want to be clear when constraining implementation teams’ degrees

of freedom and communicate that this is not an arbitrary decision. Cite or link to

authoritative statements, people, and documents. See Figure 24-10 for an example of this

section.

Figure 24-10.  Constraint Motivation

�Description
It is here you describe the constraint. A good description section communicates not

only the constraint but also what it means to implementation teams. Where appropriate,

provide diagrams or high-level implementation details (more detailed guidance will be

linked later in the document). Figure 24-11 shows this section of the constraint document.

Figure 24-11.  Constraint Description

�Considered Alternatives
The table at the end of Chapter 21 listed various constraints and their influence on

the architectural capabilities of key interest discussed in this book. Look at any single

column, and you will see numerous constraints that will positively influence that

capability. There is almost always more than one option. The effort to enumerate these

options will benefit both you and your reader. You will be in a position to release this

document and decision with much more confidence as this effort should force you to

perform necessary due diligence, and it will benefit your reader by communicating the

level of care and consideration that went into the decision. As such, you want to express

succinctly in this document why the other options were not selected. Figure 24-12 shows

an example of this section.

Chapter 24 Documenting Architecture

371

Figure 24-12.  Considered Alternative Constraints

�Risks
An architecture only has value if implementation teams adopt and follow its core,

guiding principles. Building on Chapter 22, we must be continuously mindful of the

various risks associated with a given architecture. Performing this analysis at the

constraint level is a useful tool to help ensure you do not overlook potential risks. We

must ask ourselves the question “How might this constraint fail? What would be the

outcome?” and express these risks in this document. Figure 24-13 shows this section of

the constraint document.

Figure 24-13.  Constraint Document Risks Section

�Support
Unfortunately, we cannot be consistently effective if we design an architecture and

simply “throw it over the wall” to the implementation teams. We are not operating

from the architectural “ivory tower”; instead, we aim to align technology strategy with

business strategy. Because architecture necessarily constrains developer’s degrees of

freedom, every constraint must come with support. Support can come in many forms,

including tutorials, training, reference implementations, and tooling. In this section,

Chapter 24 Documenting Architecture

372

you will enumerate the support resources available to implementation teams. The more

care and detail you put into this section, the more sustainable the constraint’s adoption.

Figure 24-14 shows an example of this section.

Figure 24-14.  Constraint Document Support Section

�Implementation Guidance
The next section of the constraint document will detail any necessary implementation

guidance and often forms part of the “paved roads” referred to in the previous chapter.

These are typically additional, external links to keep this document lightweight which

might include, but not limited to

•	 Diagrams

•	 Reference implementations

•	 Standards

•	 Tooling

•	 Recommended frameworks/infrastructure

When linking to external references, it is often helpful to link to both normative and

non-normative documents.

Normative documents formally describe a standard and represent the “letter of

the law” as it were. Normative documents are written with the rigor of a legal contract

and are the definitive source of truth. Non-normative documents are more informal

in writing style and are usually friendlier to the reader. However, when a document is

non-normative, it means any error or omission in the document cannot be construed

as overriding the standard. As an example, a blog post describing how to implement

Chapter 24 Documenting Architecture

373

the Internet calendar specification is non-normative, while RFC 2445 provides a more

detailed and precise, normative, description of the standard. The blog post would be a

friendlier read, but RFC 2445 is the authoritative source of truth on the topic (and should

probably be linked or referenced in the blog post from this example).

�Governance
As part of our due diligence as architects, we must also think about how a given

architecture constraint will be enforced. For this chapter, we will briefly mention this

section of a constraint document and its role in capturing and communicating the

governance and enforcement mechanisms for a given constraint; however, Chapter

25 goes into architectural governance in more detail. Your aim here is to capture

and communicate how adherence to a constraint is measured by architecture, by

implementation teams, and how compliance is enforced. Figure 24-15 shows an example

of this section.

Figure 24-15.  Governance Section of a Constraint Document

�Resources
We close our constraint document with any additional resources that might be

valuable for the reader or implementation teams. These resources might include ADRs,

other constraint documents, or further reading that does not fit in any other section.

Figure 24-16 shows an example of this section.

Figure 24-16.  Other Resources

Chapter 24 Documenting Architecture

374

�The Architectural Style Document
Although it is the atomic constraints that define the architectures you produce, an

architectural style is the molecular delivery that describes the style. One more important

document in your arsenal is, therefore, the architectural style document. This document

is a high-level document that defines the style, links to the style’s defining constraints,

other relevant ADRs, and justifies this style’s existence in the current context. As such,

an architectural style document may be general and potentially reusable; however, the

production on an architectural style should communicate the motivation of the style

in the project’s context. The architectural style document consists of the following six

sections.

�Title and Introduction
This section includes your architectural style’s name and a brief introduction of the

style. In contrast with ADRs, this document does not include status, date, or author

information as an architectural style document simply communicates the style’s defining

constraints and scope. The decision to adopt or deprecate a style and migrate to a new

style will be communicated in an ADR. In other words, the system evolves, not the

style (since a different set of constraints begets a different style). Figure 24-17 shows an

example of this section.

Figure 24-17.  Architectural Style Title and Introduction

Chapter 24 Documenting Architecture

375

�Motivation
This section briefly summarizes why this style was created and why it matters.

Remember, every decision that originates from architecture will be challenged. We must

justify our decisions.

This section will be strongly informed by the notes you took in the requirements

analysis process in Chapter 4. Your document will carry more weight if you rigorously

cite your sources. Figure 24-18 shows an example of this section.

Figure 24-18.  Architectural Style Motivations

�Summary of Constraints
This section simply lists the style’s defining architectural constraints, with links to each

constraint’s defining document, the Constraint Definition Record (CDR). Figure 24-19

shows an example of this section.

Chapter 24 Documenting Architecture

376

Figure 24-19.  Summary of Constraints Section

�Scope
As we have established throughout this book, architecture is not about one-size-fits-

all solutions. In a single, nontrivial system, there may be multiple architectural styles

that apply to different subdomains or portions of the system. Some styles may exist as

a tightly scoped variance or apply to a subset of system components. Here, you will

explicitly define where the style applies and where it does not, linking to individual ADRs

as appropriate. Figure 24-20 shows an example of this section.

Figure 24-20.  Architectural Style Scope Section

�High-Level Overview
Here, you will provide a high-level description of the architectural style. It can sometimes

be helpful to include architectural diagrams (see below) or link to ADRs, requirements,

and other resources as needed. When providing diagrams, highlight how the various

constraints factor in. Figure 24-21 shows an example of this section.

Figure 24-21.  Architectural Style Overview Section

Chapter 24 Documenting Architecture

377

�Links
The final section of this document is a links section to provide helpful resources for

implementation teams. These may be training, tutorials, reference implementations, or

other relevant documents not previously linked. Figure 24-22 shows an example of this

section.

Figure 24-22.  Example Links Section

�Diagramming and Visualizing Architecture
Although the documents described above will capture much of the essence of the

architecture you have created, diagrams help bring the gap between architectural style

and implementation. Here, you are no longer simply enumerating the architectural

constraints that define the style but also what the system that should adopt this style will

look like.

You have, no doubt, heard the adage “a picture is worth 1000 words.” A picture

of the architecture alongside your architecture documentation will save readers the

effort of trying to visualize the architecture based on hundreds of thousands of words

of documentation. A diagram will also reduce the risk of conflicting interpretations

as, between documents and diagrams, little is left to the imagination. This assumes,

of course, that the architect responsible for producing the diagram is a skilled visual

communicator.

Ask somebody in the building industry to visually communicate the archi-
tecture of a building and you'll be presented with site plans, floor plans,
elevation views, cross-section views and detail drawings. In contrast, ask a
software developer to communicate the software architecture of a software
system using diagrams and you'll likely get a confused mess of boxes and

Chapter 24 Documenting Architecture

378

lines … inconsistent notation (color coding, shapes, line styles, etc.), ambig-
uous naming, unlabeled relationships, generic terminology, missing tech-
nology choices, mixed abstractions, etc.

—Simon Brown3

The challenges in effectively visualizing a system’s architecture and the diversity

of notational systems and tools led to the creation of the Unified Modeling Language

(UML) by Rational Software in 19944 to facilitate a shared understanding of a system

(not necessarily a software system), which was later adopted by the Object Management

Group (OMG) as a formal standard in 1997. As UML grew in scope, complexity in its use

grew in proportion. In the early 2000s, SysML was created as a lighter weight dialect of

UML, led in part by OMG, to define and extend a subset of UML 2.0 that is purely focused

on system design and engineering. In 2006, software architect Simon Brown began

work on the C4 model as an alternative lightweight modeling technique for software

architecture that, like SysML, has roots in UML. Although not yet a formal standard, C4

(the focus of this section) is gaining traction in the architecture community.

Many architects eschew formal modeling techniques and proscriptive notation in

favor of the friendlier and flexible drag-and-drop diagramming tools (e.g., LucidChart,

OmniGraffle, Microsoft Visio, and others). Although these tools do not share the learning

curve of formal modeling notations, there is value in the clear, unambiguous semantics

of the latter. Tools like LucidChart offer a large library of existing shapes to satisfy various

scenarios. However, those shapes do not share the precise semantics of UML (and its

derivatives) which can lead to miscommunication. It is always important to include a

legend of symbols in your diagrams, even when using formal graphical notations like C4.

This can aid the reader in correctly interpreting the diagrams you produce.

The formal modeling notations are also more prescriptive than their “blank canvas”

counterparts as to how to create various views of a system. Whether you use formal or

informal visual notations, the guidance from the C4 model can be helpful. The entire C4

model is Creative Commons licensed, and a helpful portion is reproduced below.

3 Brown, S. The C4 model for visualizing software architecture. Retrieved from https://c4model.
com. Licensed under CC BY 4.0.
4 Booch, G., Rumbaugh, J., Jacobson, I. (2005). The Unified Modeling Language User Guide 2nd
Edition. Addison-Wesley Professional

Chapter 24 Documenting Architecture

https://c4model.com
https://c4model.com

379

�C4 Abstractions
In order to create these maps of your code, we first need a common set of abstractions

to create a ubiquitous language that we can use to describe the static structure of a

software system. A software system is made up of one or more containers (applications

and data stores), each of which contains one or more components, which in turn are

implemented by one or more code elements (classes, interfaces, objects, functions,

etc.). And people may use the software systems that we build. The people interacting

with the software system forms the context. An example visualization of C4 abstractions

is shown in Figure 24-23.

Chapter 24 Documenting Architecture

380

Fi
gu

re
 2

4-
23

. 
C

4
A

bs
tr

ac
ti

on
s

Chapter 24 Documenting Architecture

381

�Person

A person represents one of the human users of your software system (e.g., actors, roles,

personas, etc.).

�Software System

A software system is the highest level of abstraction and describes something that

delivers value to its users, whether they are human or not. This includes the software

system you are modeling, and the other software systems upon which your software

system depends (or vice versa).

Unfortunately, the term “software system” is the hardest of the C4 model abstractions

to define, and this is not helped by the fact that each organization will also have

their own terminology for describing the same thing, typically using terms such as

“application,” “product,” “service,” etc. One way to think about it is that a software system

is something a single software development team is building, owns, has responsibility

for, and can see the internal implementation details of. Perhaps the code for that

software system resides in a single source code repository, and anybody on the team is

entitled to modify it. In many cases, the boundary of a software system will correspond

to the boundary of a single team. It may also be the case that everything inside the

boundary of a software system is deployed at the same time.

�Container

Not Docker! In the C4 model, a container represents an application or a data store.

A container is something that needs to be running in order for the overall software

system to work. In real terms, a container is something like

•	 Server-Side Web Application: A Java EE web application running on

Apache Tomcat, an ASP.NET MVC application running on Microsoft

IIS, a Ruby on Rails application running on WEBrick, a Node.js

application, etc.

•	 Client-Side Web Application: A JavaScript application running in a

web browser using Angular, Backbone.js, jQuery, etc.

Chapter 24 Documenting Architecture

382

•	 Client-Side Desktop Application: A Windows desktop application

written using WPF, an OS X desktop application written using Swift

or Objective-C, a cross-platform desktop application written using

JavaFX, etc.

•	 Mobile App: An Apple iOS app, an Android app, a Microsoft

Windows Phone app, etc.

•	 Server-Side Console Application: A standalone (e.g., “public static

void main”) application, a batch process, etc.

•	 Serverless Function: A single serverless function (e.g., Amazon

Lambda, Azure Function, etc.)

•	 Database: A schema or database in a relational database

management system, document store, graph database, etc., such as

MySQL, Microsoft SQL Server, Oracle Database, MongoDB, Riak,

Cassandra, Neo4j, etc.

•	 Blob or Content Store: A blob store (e.g., Amazon S3, Microsoft

Azure Blob Storage, etc.) or content delivery network (e.g., Akamai,

Amazon CloudFront, etc.)

•	 File System: A full local file system or a portion of a larger networked

file system (e.g., SAN, NAS, etc.)

•	 Shell Script: A single shell script written in Bash, etc.

•	 Etc.

�Component

The word “component” is a hugely overloaded term in the software development

industry, but in this context a component is a grouping of related functionality

encapsulated behind a well-defined interface. If you are using a language like Java or

C#, the simplest way to think of a component is that it is a collection of implementation

classes behind an interface. Aspects such as how those components are packaged (e.g.,

one component vs. many components per JAR file, DLL, shared library, etc.) are separate

and orthogonal concerns.

Chapter 24 Documenting Architecture

383

An important point to note here is that all components inside a container typically

execute in the same process space. In the C4 model, components are not separately
deployable units.

�C4 Diagrams
The C4 model prescribes different diagrams for different purposes. This guidance is

helpful regardless of whether C4 is formally used. Each diagram provides a different

perspective on the system that will be useful to different audiences.

�System Context Diagram

A System Context diagram is a good starting point for diagramming and documenting

a software system, allowing you to step back and see the big picture. Draw a diagram

showing your system as a box in the center, surrounded by its users and the other

systems that it interacts with.

Detail is not important here as this is your zoomed out view showing a big picture of

the system landscape. The focus should be on people (actors, roles, personas, etc.) and

software systems rather than technologies, protocols, and other low-level details. It is

the sort of diagram that you could show to nontechnical people. An example C4 system

context diagram is shown in Figure 24-24.

Chapter 24 Documenting Architecture

384

Figure 24-24.  A C4 System Context Diagram

Chapter 24 Documenting Architecture

385

Scope: A single software system.

Primary elements: The software system in scope.Supporting elements: People

(e.g., users, actors, roles, or personas) and software systems (external dependencies) that

are directly connected to the software system in scope. Typically, these other software

systems sit outside the scope or boundary of your own software system, and you do not

have responsibility or ownership of them.

Intended audience: Everybody, both technical and nontechnical people, inside and

outside of the software development team.

Recommended for most teams: Yes.

�Container Diagram

Once you understand how your system fits into the overall IT environment, a really

useful next step is to zoom in to the system boundary with a Container diagram. A

“container” is something like a server-side web application, single-page application,

desktop application, mobile app, database schema, file system, etc. Essentially, a

container is a separately runnable/deployable unit (e.g., a separate process space) that

executes code or stores data.

The Container diagram shows the high-level shape of the software architecture

and how responsibilities are distributed across it. It also shows the major technological

choices and how the containers communicate with one another. It is a simple, high-

level technology-focused diagram that is useful for software developers and support/

operations staff alike. An example C4 Container diagram is shown in Figure 24-25.

Chapter 24 Documenting Architecture

386

Fi
gu

re
 2

4-
25

. 
A

 C
4

C
on

ta
in

er
 D

ia
gr

am

Chapter 24 Documenting Architecture

387

Scope: A single software system.

Primary elements: Containers within the software system in scope.Supporting
elements: People and software systems directly connected to the containers.

Intended audience: Technical people inside and outside of the software

development team, including software architects, developers, and operations/

support staff.

Recommended for most teams: Yes.

Notes: This diagram says nothing about clustering, load balancers, replication,

failover, etc. because it will likely vary across different environments (e.g., production,

staging, development, etc.). This information is better captured via one or more

deployment diagrams.

�Component Diagram

Next, you can zoom in and decompose each container further to identify the major

structural building blocks and their interactions.

The Component diagram shows how a container is made up of a number of

“components,” what each of those components are, their responsibilities, and the

technology/implementation details. An example C4 Component diagram is shown in

Figure 24-26.

Chapter 24 Documenting Architecture

388

Fi
gu

re
 2

4-
26

. 
A

 C
4

C
om

p
on

en
t D

ia
gr

am

Chapter 24 Documenting Architecture

389

Scope: A single container.

Primary elements: Components within the container in scope.Supporting
elements: Containers (within the software system in scope) plus people and software

systems directly connected to the components.

Intended audience: Software architects and developers.

Recommended for most teams: No, only create component diagrams if you feel

they add value and consider automating their creation for long-lived documentation.

�Code Diagram

Finally, you can zoom in to each component to show how it is implemented as code,

using UML class diagrams, entity relationship diagrams, or similar.

This is an optional level of detail and is often available on demand from tooling such

as IDEs. Ideally, this diagram would be automatically generated using tooling (e.g., an

IDE or UML modeling tool), and you should consider showing only those attributes

and methods that allow you to tell the story that you want to tell. This level of detail is

not recommended for anything but the most important or complex components. An

example code diagram is shown in Figure 24-27.

Chapter 24 Documenting Architecture

390

Fi
gu

re
 2

4-
27

. 
A

 C
4

C
od

e
D

ia
gr

am

Chapter 24 Documenting Architecture

391

Scope: A single component.

Primary elements: Code elements (e.g., classes, interfaces, objects, functions,

database tables, etc.) within the component in scope.

Intended audience: Software architects and developers.

Recommended for most teams: No, particularly for long-lived documentation

because most IDEs can generate this level of detail on demand.

�System Landscape Diagram

The C4 model provides a static view of a single software system, but, in the real world,

software systems never live in isolation. For this reason, and particularly if you are

responsible for a collection/portfolio of software systems, it is often useful to understand

how all of these software systems fit together within a given enterprise, organization,

department, etc. Essentially, this is a map of the software systems within the chosen

scope, with a C4 drill-down for each software system of interest.

From a practical perspective, a system landscape diagram is really just a system

context diagram without a specific focus on a particular software system. An example C4

system landscape diagram is shown in Figure 24-28.

Chapter 24 Documenting Architecture

392

Fi
gu

re
 2

4-
28

. 
A

 C
4

Sy
st

em
 L

an
ds

ca
pe

 D
ia

gr
am

Chapter 24 Documenting Architecture

393

Scope: An enterprise/organization/department/etc.

Primary elements: People and software systems related to the chosen scope.

Intended audience: Technical and nontechnical people, inside and outside of the

software development team.

�Dynamic Diagram

A dynamic diagram can be useful when you want to show how elements in the static

model collaborate at runtime to implement a user story, use case, feature, etc. This

dynamic diagram is based upon a UML communication diagram (previously known

as a “UML collaboration diagram”). It is similar to a UML sequence diagram although

it allows a free-form arrangement of diagram elements with numbered interactions to

indicate ordering. An example dynamic diagram is shown in Figure 24-29.

Chapter 24 Documenting Architecture

394

Fi
gu

re
 2

4-
29

. 
A

 C
4

D
yn

am
ic

 D
ia

gr
am

Chapter 24 Documenting Architecture

395

Scope: A particular feature, story, use case, etc.

Primary and supporting elements: Your choice—you can show software systems,

containers, or components interacting at runtime.

Intended audience: Technical and nontechnical people, inside and outside of the

software development team.

Notes: Feel free to use a UML sequence diagram if you prefer that visual style.

�Deployment Diagram

A deployment diagram allows you to illustrate how instances of software systems and/

or containers in the static model are deployed on to the infrastructure within a given

deployment environment (e.g., production, staging, development, etc.). It is based

upon a UML deployment diagram.

A deployment node represents where an instance of a software system/container

is running; perhaps physical infrastructure (e.g., a physical server or device), virtualized

infrastructure (e.g., IaaS, PaaS, a virtual machine), containerized infrastructure (e.g.,

a Docker container), an execution environment (e.g., a database server, Java EE web/

application server, Microsoft IIS), etc. Deployment nodes can be nested.

You may also want to include infrastructure nodes such as DNS services, load

balancers, firewalls, etc.

Feel free to use icons provided by Amazon Web Services, Azure, etc. to complement

your deployment diagrams … just make sure any icons you use are included in your

diagram key/legend. An example deployment diagram is show in Figure 24-30.

Chapter 24 Documenting Architecture

396

Fi
gu

re
 2

4-
30

. 
A

 C
4

D
ep

lo
ym

en
t D

ia
gr

am

Chapter 24 Documenting Architecture

397

Scope: One or more software systems within a single deployment environment (e.g.,

production, staging, development, etc.).

Primary elements: Deployment nodes, software system instances, and container

instances.

Supporting elements: Infrastructure nodes used in the deployment of the

software system.

Intended audience: Technical people inside and outside of the software

development team, including software architects, developers, infrastructure architects,

and operations/support staff.

�General Diagram Advice
To close this section, one final excerpt from the official C4 web page is reproduced for

general advice that applies to any good software architecture diagram to ensure your

diagram makes sense to the reader and can stand alone without you or another architect

providing an external narrative. The C4 model makes the following recommendations:

Diagrams

•	 Every diagram should have a title describing the diagram type and

scope (e.g., “System Context diagram for My Software System”).

•	 Every diagram should have a key/legend explaining the notation

being used (e.g., shapes, colors, border styles, line types,

arrowheads, etc.).

•	 Acronyms and abbreviations (business/domain or technology)

should be understandable by all audiences or explained in the

diagram key/legend.

Elements

•	 The type of every element should be explicitly specified (e.g., Person,

Software System, Container, or Component).

•	 Every element should have a short description, to provide an “at a

glance” view of key responsibilities.

•	 Every container and component should have a technology explicitly

specified.

Chapter 24 Documenting Architecture

398

Relationships

•	 Every line should represent a unidirectional relationship.

•	 Every line should be labeled, the label being consistent with the

direction and intent of the relationship (e.g., dependency or data

flow). Try to be as specific as possible with the label, ideally avoiding

single words like “Uses.”

•	 Relationships between containers (typically these represent inter-

process communication) should have a technology/protocol

explicitly labeled.

�Summary
Effective documentation and communication are the bedrock of successful software

architecture. As you have seen, capturing both the what and the why behind

architectural decisions is not just a formality—it is a critical practice that ensures clarity,

alignment, and continuity across teams and time. ADRs serve as the living memory of

your project, providing a rigorous framework for decision-making, defending choices,

and guiding future actions. By investing in meticulous documentation, you safeguard

your architecture from misinterpretation and erosion, empowering both current and

future teams to maintain, adapt, and evolve the system with confidence. The discipline

of documenting and communicating your architecture is not merely about preserving

the past; it is about securing the future of your project, your team, and your role as a

software architect.

Chapter 24 Documenting Architecture

399
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_25

CHAPTER 25

Architectural Enforcement
and Governance

Even systems with well-defined architectures are prone to structural ero-
sion. The relentless onslaught of changing requirements that any successful
system attracts can gradually undermine its structure. Systems that were
once tidy become overgrown as PIECEMEAL GROWTH gradually allows
elements of the system to sprawl in an uncontrolled fashion.

—Joseph Yoder and Brian Foote

Many well-designed architectures have failed to withstand the test of time. As the

quote above notes, “Even systems with well-defined architectures are prone to structural

erosion.”1

I want to stress that rarely is this the direct fault of developers. Should this type

of decay occur over the course of your career, resist the temptation to assign blame.

Llewellyn Falco, creator of strong-style pair programming and a leading exponent of the

mob programming/teeming movement, advises teams to “treat everyone with kindness,

consideration, and respect.” In his book on mob programming,2 he continues with a

valuable maxim:

We always assume that the person who wrote the code before us did the best
they could with the knowledge and circumstances they were in at the time
they wrote it.

1 Foote, B., & Yoder, J. (1997). Big Ball of Mud. Presented at the 4th Conference on Patterns,
Languages of Programs (PLoP)
2 Pyhäjärvi, M., Falco, L. (2015–2018). Mob Programming Guidebook. LeanPub. https://www.
mobprogrammingguidebook.com/

https://doi.org/10.1007/979-8-8688-0410-6_25#DOI
https://www.mobprogrammingguidebook.com/
https://www.mobprogrammingguidebook.com/

400

This underscores a valuable truth that rarely (if ever) do the problems prevalent

in decaying software system originate from maliciousness or a general disregard for

architectural efforts; rather, these problems are a result of circumstances that are often

outside the control of any single individual. This also means that such circumstances

are also outside of our control. Our primary tool to combat structural erosion in a

software system is to implement guardrails in the form of architectural governance and

enforcement.

Architectural governance and enforcement are critical components of ensuring that

an organization's software architecture aligns with its strategic goals, delivers value, and

remains both aligned and sustainable over time. Proper governance helps to maintain

the integrity of the architecture, while enforcement ensures adherence to standards,

guidelines, and best practices.

�Define Clear and Comprehensive
Architectural Principles
As you have seen throughout this work, the prevalence of pattern-driven architecture

often leads to misunderstanding and misalignment of vision when the architecture

is defined by a broad pattern label. The Tailor-Made approach of deriving a unique

architectural style that does not suffer from an overloaded label and is instead defined

by architectural constraints will do much to reduce the risk of such misunderstandings.

Broad understanding of an architectural style is, instead, limited by your documentation

and communication efforts. The previous chapter offered extensive guidance on

valuable practices that foster alignment and clear, unambiguous communication of both

the what and the why of your architectural style.

In documenting your architectural style, its defining constraints, and other relevant

paved roads and variances, you establish a set of clear, well-documented architectural

principles that reflect the project or organization’s strategic objectives, technical goals,

and cultural values. Effort in capturing problem context, motivation, and decision

drivers ensures that the architecture directly supports the organization’s mission, vision,

and operational goals.

Your documentation efforts should also comprehensively communicate well-

defined architectural standards and guidelines that cover key aspects of software

development, including technology selection, system design, data management,

security, and deployment. Architecture diagrams also provide a living reference through

Chapter 25 Architectural Enforcement and Governance

401

which architecture and implementation teams may validate their work against to

ensure ongoing alignment. Living is the operative word in this sentence. Regularly

review and update these standards, diagrams, and architecture decisions to reflect new

technological advancements, lessons learned from past projects, and changes in the

business environment or underlying requirements.

It is critical that these resources are easily available to all concerned and should be

published and updated in a specific location that is within convenient reach of teams.

Beyond simply publishing documents, hosting regular tech talks, workshops, trainings,

or architecture update meetings with development teams are effective ways to cascade

and ensure everyone both understands the architectural standards and can apply

them effectively. These efforts form part of the ongoing support that is crucial to avoid

becoming an ivory tower architect.

Beyond communication with implementation teams, it is important that business

stakeholders also understand the value of architecture. Often, structural decay is a

consequence of shortsighted business decisions that put pressure on teams to cut

corners and undermine the long-term viability of the overall architecture. Your detailed

notes from the requirements analysis process (Chapter 4) will provide the business

language to articulate to key stakeholders the long-term consequences of violating an

important architectural principle for the sake of expediency. Do not expect this advice to

be consistently dispositive and strive to trust that well-informed stakeholders are doing

their best to balance short- and long-term needs.

�Establishing a Governance Framework
The ADR template described in Chapter 24 includes the “deciders” in the Title and

Metadata section. In the beginning, this might just be you or the architecture team. A

more sustainable, long-term approach is to formalize the “deciders” by creating a formal

governance structure that includes an architecture review board (ARB) or equivalent

body. The ARB should be composed of senior architects, technical leads, and key

stakeholders from across the organization.

Beyond sustainability, an ARB increases transparency and helps to further

foster a culture of collaboration and shared ownership. For your ARB or other

governance frameworks to operate smoothly, it is important to clearly define roles and

responsibilities. This includes who is responsible for approving architectural decisions,

managing variances, and enforcing standards.

Chapter 25 Architectural Enforcement and Governance

402

This process democratizes decision-making. However, you should implement

structured processes for decision-making, including the approval of architectural

designs, technology stacks, and variances. Ensure that these processes are transparent,

consistent, and efficient.

Within your governance framework, you must also establish a formal process

for requesting and approving variances from architectural standards. This process

should include a thorough evaluation of the proposed variance’s impact on the overall

architecture, including risks, benefits, and trade-offs/negative consequences. Ensure

that every approved variance is documented in detail, including the rationale, scope,

and conditions under which it was granted. This documentation should be easily

accessible for future reference. You, or the governance body, should regularly review

the implementation of variances to ensure teams applied these as intended. Conduct

periodic reviews to assess whether variances are still necessary or if they should be

phased out.

Design your governance framework to scale as the organization grows. This

includes planning for the addition of new teams, technologies, and business units while

maintaining architectural coherence. Also, ensure that your governance framework

can adapt to new innovations and changes in the technology landscape. This might

involve setting up innovation labs or “skunkworks” teams that can experiment with novel

approaches outside the constraints of the standard governance model.

�Architectural Enforcement Mechanisms
There are many avenues available for architectural enforcement. The most basic

option is to perform periodic architecture or code reviews. This is especially important

for critical projects or those involving complex or novel technologies. These reviews

should assess compliance with established standards and identify any potential risks or

deviations. Although simple, the primary challenge with this approach is one of scale.

As the organization grows, this process can quickly place an untenable burden on the

architecture team or otherwise cause architecture to become a bottleneck, undermining

the value of your contributions to the project and the organization. This approach can

also only identify deviations after they have happened. If the architecture is frequently

ordering rework, this can foster an adversarial relationship between development and

architecture.

Chapter 25 Architectural Enforcement and Governance

403

As an alternative, consider that the easiest problem to fix is the one that

never happened. W. Edwards Deming pioneered important improvements in the

manufacturing sector with his Total Quality Management (TQM) strategy,3 and his work

continues to influence our modern DevOps movement. One of his famous 14 Points for

Management states the following:

Cease dependence on inspection to achieve quality. Eliminate the need for
inspection on a mass basis by building quality into the product in the
first place.

A key component of Deming’s theories around quality is to empower every

individual on the factory floor to stop the entire line at any time as soon as they discover

a problem. The modern equivalent of this is a continuous delivery pipeline that contains

quality gates.

When we think about quality gates in software delivery, the emphasis is usually on

automated testing and static analysis. Although these tools have immense value, code

that is behaviorally correct is not necessarily architecturally correct.

In Chapter 14, you learned about the Modular Monolith Abstract Style. In this

style, each domain module is implemented as a separate package or assembly, and

all classes are scoped internal to enforce and maintain modularity and decoupling

across components. When developers follow this practice, the structure of the system

is maintained, even in a shared codebase. When the time comes to decompose that

monolith into a Service-Based style, the process is trivial if no developer ever decides to

cut corners. Consider the scenario where a team is coding down to the wire to prepare for

that Friday night deployment that we prefer not to talk about. In the moment, it would

seem to be such a trivial sin to, just this one time, couple two modules by violating the

architecture’s modularity constraints. This is where our CI/CD pipelines must “halt the

assembly line” because it has detected a quality violation.

You can accomplish this by introducing automated architectural enforcement. My

go-to tool for this purpose is Sonargraph (https://www.hello2morrow.com/products/
sonargraph). Sonargraph is a powerful static code analyzer that allows you to monitor a

software system for technical quality and enforce rules regarding software architecture,

metrics, and other aspects in all stages of the development process. One aspect of

Sonargraph is a DSL to describe software architecture, and, through this, we can define

3 Deming, W. E. (1986). Out of the Crisis. MIT

Chapter 25 Architectural Enforcement and Governance

https://www.hello2morrow.com/products/sonargraph
https://www.hello2morrow.com/products/sonargraph

404

rules that define permitted and prohibited interactions between modules. Integrated

into a CI pipeline, Sonargraph will immediately detect a violation as soon as the build is

triggered, halting the process and informing the developer of the violation.

Other tools in this vein include ArchUnit (https://www.archunit.org/), a free,

simple, and extensible library for checking the architecture of your Java code using any

plain Java unit test framework. ArchUnit’s .NET counterpart is the C# fork of ArchUnit,

ArchUnitNet, a free, simple library for checking the architecture of C# code. Another

.NET alternative inspired by ArchUnit is NetArchTest (https://github.com/BenMorris/
NetArchTest), which offers a fluent API for .NET Standard that can enforce architectural

rules in unit tests. At the time of this writing, ArchUnitNet seems to be more active than

NetArchTest.

When designing APIs that must conform to a standard, Spectral (https://
stoplight.io/open-source/spectral) offers an open source API style guide enforcer

and linter.

These tools and others aid in integrating architectural governance with DevOps

practices to ensure that architecture standards are enforced throughout the software

delivery lifecycle.

�Empower Teams to Succeed
Invest in continuous education and training for architects and development teams

to keep them updated on the latest architectural practices, tools, and technologies.

Encourage open communication and collaboration between architects, developers,

and other stakeholders. This can be facilitated through regular meetings, architecture

workshops, and collaborative tools.

Also, consider creating communities of practice or guilds, where architects and

developers can share knowledge, discuss challenges, and collaboratively solve problems.

This fosters a sense of ownership and collective responsibility for architectural integrity.

Deming consistently focused on creating a culture of continuous improvement;

I encourage all architects to do the same in collaboration with software development

leadership. You should regularly hold retrospectives on architectural governance

processes to identify what’s working and what needs improvement. Involve a broad

range of stakeholders in these discussions to get diverse perspectives.

Chapter 25 Architectural Enforcement and Governance

https://www.archunit.org/
https://github.com/BenMorris/NetArchTest
https://github.com/BenMorris/NetArchTest
https://stoplight.io/open-source/spectral
https://stoplight.io/open-source/spectral

405

Architectural governance can be disruptive initially. It is helpful to use pilot

programs to test new approaches or tools before rolling them out across the

organization. This allows you to identify potential issues and refine your approach based

on real-world experience.

Finally, recognize that architectural governance is not static. Be willing to evolve your

governance processes as the organization’s needs change, technology advances, and

new preferred practices emerge.

�Summary
Architectural governance and enforcement are vital for ensuring that an organization’s

software architecture is aligned with its business goals, remains robust, and can adapt

to changing needs. By defining clear principles, establishing a strong governance

framework, and implementing both automated and manual enforcement mechanisms,

you can maintain the integrity of your architecture while allowing for necessary

flexibility. Managing variances, fostering a culture of excellence, and ensuring alignment

with agile and DevOps practices are also crucial components of effective governance.

Moreover, by continuously measuring effectiveness, planning for evolution, and

encouraging ongoing improvement, you can create a governance model that not only

supports current operations but also positions the teams or organization for future

success. In essence, effective architectural governance is about balancing control

with flexibility, ensuring that innovation thrives within a well-defined and sustainable

framework.

Chapter 25 Architectural Enforcement and Governance

407
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_26

CHAPTER 26

The Art of Being
an Architect

We are called to be architects of the future, not its victims.

—R. Buckminster Fuller

At this point, we have covered much of what it takes to master software architecture.

You now have the broad foundation of knowledge necessary to design an architecture

that is a holistic fit. Unfortunately, after analyzing requirements, deriving one or more

candidate tailor-made architectures, evaluating said architectures, collaboratively

selecting a single style, documenting it, designing a software system that adheres to

the style, and communicating the design to the implementation teams, your work is

just beginning. Architecture is more than simply solving problems, deriving styles,

or designing systems; it is ultimately about stepping into a role of visionary technical

leadership and effecting meaningful change within an organization. This is arguably the

single most difficult aspect of software architecture. Your skills in effecting change will be

the ultimate measure of success over the course of your career.

The Tailor-Made Architecture Model focuses on architecture design by constraint,

and you have seen that several architectural styles presented in the previous section

often require substantial change in technologies used, practices and behavior of teams,

and even the entire organizational structure. Every organization has a finite tolerance for

change that will necessarily temper our efforts. Although you may have a grand vision for

the future of any given system or organization, it is important to remain pragmatic and

balanced in your approach to change. This may require you to take a phased approach

to architecture, where you limit your efforts to only a limited number of changes at a

time. In truth, this is one of the most difficult realities to accept as an effective software

architect.

https://doi.org/10.1007/979-8-8688-0410-6_26#DOI

408

There have been many attempts to systematize this process like the Architecture

Tradeoff Analysis Method (ATAM)1 process described in the book Evaluating Software

Architectures, the techniques described in the book Discussing Design,2 and the approach

provided in the book Articulating Design Decisions;3 however, many of them share

certain elements. These were analyzed and combined with personal experience to

provide an approach that will apply to most situations.

To systematize the process, you can break it down into the following stages:

	 1.	 Identify the problems that require change

	 2.	 Identify potential changes

	 3.	 Identify resources necessary to make the change

	 4.	 Plan to orchestrate the change

	 5.	 Execute the plan

This chapter will describe how to be effective in all those phases of effecting change.

�Identify the Problems That Require Change
Before attempting to define the problem, you must understand both the problem and

the environment surrounding the problem. The requirements analysis process described

in Chapter 4 provides a useful starting point for identifying problems within the business

domain. In this process, you should identify and define all the problems and then

investigate potential solutions, keeping in mind that those solutions may impact the

other problems and solutions for the project, company, customer, or user. Documenting

the problems and solutions forces you to think through problems and solutions before

presenting them to others. The more thought you and your team put into both the

problems and solutions before communicating them, the more competent you will

appear. One useful approach is to start by writing down each problem, without solutions,

and break them down in the following way:

1 Clements, P., Kazman, R., Klein, M (2012). Evaluating Software Architectures: Methods and Case
Studies, Addison-Wesley
2 Connor, A., Irizarry, A. (2015). Discussing Design: Improving Communication and Collaboration
Through Critique, O’Reilly Media
3 Greever, T. (2020). Articulating Design Decisions: Communicate with Stakeholders, Keep Your
Sanity, and Deliver the Best User Experience, O’Reilly Media

Chapter 26 The Art of Being an Architect

409

	 1.	 State each of the problems, remembering to avoid specifying

a solution, emotional or personal biases, or accusations. Also,

remember to minimize the scope to only cover a single problem.

	 2.	 State the implications and impacts of the problem. Remember to

document identifying measures or thresholds if possible.

	 3.	 State the best possible outcome that any solution to the problem

could reasonably achieve.

Keep in mind that identifying and defining many problems like this will take time.

If you are new to the team, you should spend a few months doing this process as you

work on the project itself. For a new project (since there is no knowledge of what the

existing problems are yet), it might make sense to use a predefined architectural style for

a couple of months before making changes from prior experience.

�Identify Potential Changes
Key factors for any proposed change are the costs and benefits to others as well as

how others may respond to the potential solution, the relative advantage of your

proposed change. There are a couple approaches to evaluating viable solutions and the

approaches to apply those changes.

�The Four-Way Test
When defining the problems and the solutions, evaluate how ethical or fair your

evaluation of the problem is and, more importantly, how ethical or fair each alternative

solution is. Instead of creating a mechanism from scratch, it is wise to draw from existing

sources.

Rotary, an organization that helps business owners and operators, has created

a simple rubric for making business decisions4 which you may apply when defining

alternative solutions. Rotary calls this rubric the “Four-Way Test” and defines it as

follows:

… a nonpartisan and nonsectarian ethical guide for Rotarians to use for
their personal and professional relationships.

4 Rotary.org. Guiding Principles. Retrieved from https://my.rotary.org/en/guiding-principles

Chapter 26 The Art of Being an Architect

http://rotary.org
https://my.rotary.org/en/guiding-principles

410

The four questions to ask regarding these decisions are

	 1.	 Is it the TRUTH?

	 2.	 Is it FAIR to all concerned?

	 3.	 Will it build GOODWILL and BETTER FRIENDSHIPS?

	 4.	 Will it be BENEFICIAL to all concerned?

These rules are an excellent starting point when deciding if you should pursue the

identified change.

�Assertiveness vs. Cooperativeness

Cooperation is always more powerful than competition.

—Bob Proctor

Assessing how to achieve agreement on solutions and, occasionally, even on problem

definitions is crucial. Some may not even view the identified problems as problems. This

is particularly true for preventative solutions, speculative solutions, or technological

and process improvements that bring gradual benefit over time. These can be a tough

sell, particularly in the absence of a perceived need. Regrettably, sometimes the relative

value of a potential solution can be difficult for others to see until the pain of the need is

first felt.

There also exist many cases where one person’s problem is viewed by others as a

feature. For example, if it takes four months to bring someone up to speed on how the

code works on a system because there is no documentation, no automated tests, and the

code is not structured very well, some teammates might view the situation as beneficial

for job security, and they may not want to fix the problems. However, another teammate

may point out that the employee cannot go on a long vacation or may have to work

long hours because they are the only person who can do the job, making the situation

a problem rather than a benefit. From the project manager’s perspective, code that

many of the developers can maintain rather than only one or two is more valuable code

because there is less inherent risk associated with that code.

Chapter 26 The Art of Being an Architect

411

One method for establishing a strategy for building consensus is known as the

Assertiveness vs. Cooperativeness diagram, based on the Thomas-Kilmann conflict

mode instrument5 as shown in Figure 26-1.

Figure 26-1.  The Assertiveness vs. Cooperativeness Diagram

An architect’s goal should be to work to present changes or solutions in such a

way that one is as far to the upper right as is possible. Avoidance is bad. Competition,

compromise, or accommodation is a little better, but collaboration is the ultimate goal.

Not every situation will allow you to get the other parties all the way to the collaboration

level. Your aim should be to prevent both avoidance for yourself and others while

working collaboratively.

5 Thomas, K., Kilmann, R. (1978). Comparison of Four Instruments Measuring Conflict Behavior.
Psychological Reports, 42

Chapter 26 The Art of Being an Architect

412

�The Weighted Decision Matrix
Once all the problems have been defined and all of the other parties’ positions have been

considered, it is time to identify solutions. Beware to avoid blanket solutions without

defining alternatives such as “this team should use scrum and all of their productivity

problems would be solved” or “this team should use microservices because all their design

problems would be solved.”

As a rough target and an exercise in comprehensive thinking, aim to produce and

document at least two or three alternative solutions for each identified problem. As you

saw in Chapter 24, the architecture documentation process is a tool for both evaluation

and communication. You may solicit solutions from others (e.g., the process in Chapter

22), but you should be careful to emphasize that architecture will consider multiple

approaches, including, potentially, not making a change. Once you or your team have

defined at least two solutions, it is time to evaluate each solution. Some use a weighted

decision matrix (also known as Pugh matrix,6 decision grid, solution matrix, criteria

rating form, or criteria-based matrix). To create a decision matrix, start by identifying the

criteria for evaluating the solutions on one side, and then list the different alternatives

across the top. In any problem domain or context, each criterion will possess a different

level of relative importance. Consequently, the weighted decision matrix approach

prescribes assigning a relative weight to each criterion. The weights for the various

criteria should add up to 100 as this forces you to rate them relative to one another. It

is usually a bad sign if any two criteria possess the same weight. Most importantly, to

maintain objectivity in this process, you should define these weights before evaluating

any of the solution alternatives.

Once you have defined all the weights of the criteria, you are ready to take an

impartial look at each of the alternatives and determine how well each addresses the

various evaluation criteria. During this process, rank each solution using a value one to

n where n is the number of alternatives. Higher values indicate how well the solution

addresses a given criterion. It is important that none of them tie in any single criterion.

Should this occur, it will take time to mindfully break ties if the two are extremely close.

During this process, a good test of objectivity is consistently scoring both the positive

and the negatives that a potential solution brings for each criterion. Everything is a

trade-off, and failure to identify trade-offs (e.g., one option is consistently positive, or one

6 Pugh, S. (1981). Concept selection: a method that works. Proceedings International Conference
on Engineering Design

Chapter 26 The Art of Being an Architect

413

option is consistently negative) is a sure sign of either bias or an error of omission. An

example is shown in Figure 26-2.

Solution Alternative 1 Solution Alternative 2 Solution Alternative 3

Criteria 1 (30) 1 3 2

Criteria 2 (25) 2 1 3

Criteria 3 (10) 2 1 3

Criteria 4 (15) 3 2 1

Criteria 5 (20) 1 2 3

Totals: 165 195 240

Figure 26-2.  A Completed Weighted Decision Matrix

Some will make two passes through this process. The two-pass approach first focuses

on considering the relative cost, and the second pass focuses on considering the relative

benefit for each potential solution. While the two-pass approach takes longer, the

additional exercise will lead you toward richer decisions.

This process is helpful to arriving at objective solutions; however, this is not

merely an academic exercise, it is the first step toward leading change in the project or

organization.

Another benefit of this process is its ability to help overcome a pro-innovation bias

common in many software architects. Our breadth of knowledge and the diversity of

contexts within which we tend to work commonly correlate with a trait of techno-

optimism. The key to success (and building credibility over time) lies in the ability to

connect a potential innovation to a genuine need within an organization. Change and

innovation purely for change’s sake is rarely a path to success and adoption. There

must be a broad perception of value across both those individuals who have authority

and influence to drive change and those who adopt it. The operative word here being

perception. If we see value that others do not, we will not be successful; shaping

perceptions is key.

Organizationally speaking, change equates to risk. Driving change requires clearly

communicating that the risk of inaction outweighs the risk of action.

Chapter 26 The Art of Being an Architect

414

�Understanding the Attributes of an Innovation
Another approach to evaluating potential solutions is to examine them through the

lens of the core attributes of an innovation or solution. Everett Rogers’ Diffusion of

Innovations7 formally defines the five key attributes of an innovation (Figure 26-3).

Attribute Definition

Relative Advantage The degree to which an innovation is perceived as better
than the idea it supersedes.

Compatibility
The degree to which an innovation is perceived as being
consistent with the existing values, past experience, and
needs of potential adopters.

Complexity The extent of the difficulty or friction adopters experience
in attempting to adopt an innovation

Trialability The degree to which an innovation may be experimented
with on a limited basis.

Observability The degree to which the results of an innovation are visible
to others.

Figure 26-3.  Everett Rogers’ Innovation Attributes

Each of these attributes correlates either positively or negatively to the overall

probability of success for a given solution and is common to virtually every innovation.

Looking at any innovation through the lens of these variables can prove illuminating.

Sometimes, the solution is not perceived as advantageous; sometimes, the advantages

are clear, but teams are too set in their ways or can’t make time for change. Sometimes,

the change is simply too complex.

Use any or all the above tools to evaluate potential solutions and understand that the

more effort you put into evaluating potential solutions, the better positioned you will be

to effect meaningful change.

7 Rogers, E. (2003). Diffusion of Innovations, 5th Edition, Free Press

Chapter 26 The Art of Being an Architect

415

�Identify Resources Necessary to Make the Change
An architect position is a technical leadership position. Your efficacy in such a role

depends on your ability to

•	 Communicate, guide, influence, and improve the outcome for others

on the development teams, the management, the customer, and

the user

•	 Identify things that you can, cannot, or should not influence

•	 Analyze your own influence, the influence of others within your

organization, and your organization itself on the problem and the

potential solutions

These factors are the measure that sets good and great architects apart from people

who just have the title.

�Some Terminology
Before moving forward, it is important to define several key terms: processes, products,

services, decisions, and evaluation.

�Processes

A process is a collection of planned tasks, events, and activities, usually arranged in

a sequence, which allows the organization to meet their goals and objectives. Many

organizational processes are informal, lacking documentation or strict enforcement. It

is important to recognize that even informal processes may be just as important—and

sometimes as hard—to effect change in as more well-documented processes that the

organization enforces with rigor.

�Products

A tangible or intangible item that the organization produces using labor. Sometimes,

different departments will refer to company offerings as products, while another part

of the organization will refer to them as services. Many accounting, marketing, or

salespeople will refer to anything that the organization sells as a product. Others may

Chapter 26 The Art of Being an Architect

416

define products as objects the organization sells, licenses, leases, or gives to another

party. This semantic ambiguity underscores the value of tools like DDD that explicitly

define domain vocabulary in the form of the ubiquitous language.

Notably, very few products exist in isolation and instead are often accompanied by

services to either add value to the product, maintain the product, enhance the benefits of

the product, or decrease the ongoing costs of the product.

�Services

A business service is often an intangible asset that the organization provides for a fee,

given as an incentive, or included as part of a broader offering. Services are sometimes

tangible, or involve tangible assets, leading to challenges in differentiating services from

products. Services provide a measurable, tangible, real-world change that may not reside

on the customer or users’ hardware.

�Decisions

A conclusion or definition of action used in future activities. These may take the form

of which product to pursue, what order to produce products, hiring, firing, technology

usage, and many other actions that an organization makes. Whether you are making

decisions such as picking technologies, architectural styles, or design processes or other

collaborators (managers, users, customers, or developers) making decisions such as

financial, acceptance of the product, implementation, or any one of many business

decisions, the success or failure of an organization is influenced by many daily decisions

made by you and your collaborators.

�Evaluation

Any effort to analyze a situation or state concluding with an appraisal or assessment.

You must learn to evaluate all the aspects of the situation to know what can be done and,

more importantly, what cannot or should not be done. Some inputs for evaluation are

•	 The costs (financial costs, time costs, opportunity costs, etc.) and

benefits for each evaluated option

•	 The organization, yourself, and the others involved before deciding

to attempt to effect change

Chapter 26 The Art of Being an Architect

417

Formal evaluations may feel onerous at first, but after performing them a few times

or over a certain period, you will become comfortable with all aspects of evaluating

and find yourself immediately performing the analysis informally while in meetings or

when reading emails. This process forms an integral part of your overall architectural

awareness and is a key skill you will continue to utilize throughout your entire career.

�Identify the Resources Necessary to Make
the Change
�Know the Entanglement, Environment, and Endurance
of Change
There are three things to consider about any process, product, service, or decision that

you must consider:

•	 How entangled is it with other aspects of the project?

•	 How embedded in the environment is it?

•	 How much endurance does the solution (and the organization) have?

This is especially important in the case of solutions where the benefit

of payoff of the effort comes later.

�Entanglement

The decision of whether to pursue a change must include how entangled that change

is with other aspects of the project. These entanglements may have direct or indirect

impacts on the architecture and software development teams.

An example that has both direct and indirect entanglement is a decision to refactor a

legacy project from using SOAP to RESTful interfaces.

Direct

•	 Communication efforts and meetings to convince both the customer

and management that the change is justified

•	 Effort on the part of the team(s) necessary to create the new service

interfaces

Chapter 26 The Art of Being an Architect

418

•	 Effort on the part of the team(s) to deprecate and later remove the

legacy SOAP interfaces

•	 The effort involved in rigorous testing of the new interfaces as any

failures will be far more politically damaging than defects introduced

from new functionality

Indirect

•	 The consumers of the services will have to rewrite portions of

their code.

•	 The schedule will be impacted by a delay in delivery of user

functionality.

•	 The customers will have to pay for the changes both in development

costs and in decreased value in the short term from pending user

functionality.

�Environment

The decision of whether to pursue a change must also include why that aspect originally

occurred in the project, business, or customer that established the original process,

product, service, or decision. When evaluating the environment within which you intend

to make a change, a few questions should be asked:

•	 Why was the decision originally made the way that it was (are there

existing ADRs or other decision documentation)?

•	 Would the same decision be made now as was made originally (has

the problem context changed)?

•	 What has changed that should convince others to change it now?

•	 How will this impact all parties?

•	 How will all parties perceive this change?

•	 Is there a plan to phase in the new change?

•	 Is there a way to determine if it is working (or working better) or not?

Chapter 26 The Art of Being an Architect

419

�Endurance

Finally, you should approach the decision of whether to pursue a change with more

care and consideration than is typical among architects today. Consider how much

effort is necessary to complete the change, including non-optimal paths to success, time

impacts to the delivery schedule, risk of reputation damage if failure occurs, and risk of

impact to the existing project’s progress. Also, consider the ongoing costs post change

and compare them to the costs of leaving things the same. Based on these factors, make

a calculated choice to determine if you are willing to take on the change. Picking your

battles is critical.

�Know the Organization
�Systematic Analysis

It is important for you to truly set aside any biases you may have when evaluating an

organization. This part of the analysis may be best performed the first few times with a

group of coworkers who possess both good judgment and good insight into the broader

organization. You must strive to create an environment of candor, where participants

feel comfortable being very honest about the organization, and it may need to be at least

partially anonymous to encourage such candor. There are five categories that this group

should evaluate.

�Rigid/Flexible

Analyze how rigid the organizational structure is.

�Alignment

Recognize whether your position lines up with the change that needs to occur and

evaluate if the organization will allow one to effect change even if it pushes boundaries

for an architect’s typical job description.

�Resources

Check to see if the change you want to make will be affordable both in the short and long

term and/or if going without the change is affordable if the change is a potential cost

savings.

Chapter 26 The Art of Being an Architect

420

�Time

Evaluate if there is enough schedule to make changes and still meet deadlines.

�Relationships

Determine how strong the relationship is between

•	 Business management and the customer

•	 The architect and the user

•	 Management and the team

•	 The architect and management

•	 Owners/stockholders and the management

�Know Yourself and Your Place in the World
�Systematic Analysis

Objective self-evaluation is rarely a skill that comes naturally. Consequently, you should

initially perform this part of the analysis with the aid of a trustworthy and motivated

colleague. Again, fostering an environment of trust and candor is essential; your

colleague will need to feel comfortable being very honest.

This may be an uncomfortable experience at first. However, the good news is that

your self-evaluation regarding various changes you hope to initiate will become easier

to evaluate over time. It is also important to keep in mind that the answer will often be

that you should not try to effect a given change for one or more of many reasons that will

emerge during this analysis. Chapter 4 introduced five components that are necessary to

effect change, namely:

•	 Authority

•	 Accountability

•	 Responsibility

•	 Knowledge

•	 Will

Chapter 26 The Art of Being an Architect

421

It is necessary to evaluate your position and role with respect to these five

components.

�Authority

Has anyone in the organization granted you authorization or authority over the problem

or the solution? If so, is this authority recognized by others involved in the change effort?

�Accountability

Are the outcomes, both positive and negative, directly impacting you, personally? Can

you afford the consequences of a worst-case failure scenario?

�Responsibility

Do you have an obligation to influence the thing you wish to change? Is this within the

scope of your job description?

�Knowledge (Know-How)

Do you know about the thing that you wish to change? Do you know what all the

available alternatives are? Do you know what the result of an evaluation of the

alternatives is? Do you know what the best and worst outcomes could be?

�Will

Do you have the desire to overcome the challenges related to making the change you are

proposing? In other words, are you prepared for the emotional, intellectual, and political

investment required? Moreover, do you genuinely want to engage in leading the change?

There are tools later in this chapter that will take the results of this analysis and

predict issues as well as identify remediation actions to help prevent the worst negative

outcomes.

Also, it is unlikely that you will possess all five components necessary for change.

Where gaps exist, you must identify your counterparts able to fill those gaps.

Chapter 26 The Art of Being an Architect

422

�Truly Know Your Counterparts
�Systematic Analysis

Consistent with the previous areas of analysis, to achieve objectivity this part of the

analysis may be best performed the first few times with a colleague you trust to deliver

an unvarnished perspective rather than simply agreeing with your assessment of the

problem or a particular solution out of misplaced loyalty or friendship. As always, an

environment of trust and candor is necessary as they need to feel comfortable being

very honest about others. Likewise, you need to be in an environment where you can

be honest about how you feel toward others while guarding against preconceptions

that may cloud the evaluation of others. It is particularly important not to get into any

gossiping or bad mouthing but instead be as factual, detached, and unbiased as possible

to perform a proper evaluation.

Once again, it is important to keep in mind that the answer will often be that one

should not try to effect the change for one or more of many reasons that will emerge in

this analysis. We must evaluate our counterparts using the same five components to fill

necessary gaps.

�Authority

Do they possess authorization or authority over the problem or the solution? If so, is this

authority recognized by others involved in the change effort?

�Accountability

Are the outcomes, both positive and negative, directly impacting them, personally? Can

they afford the consequences of a worst-case failure scenario?

�Responsibility

Do they have an obligation to influence the thing you wish to change? Is this within the

scope of their job description?

Chapter 26 The Art of Being an Architect

423

�Knowledge

Do they know about the thing that you wish to change? Do they know what all the

available alternatives are? Do they know what the result of an evaluation of the

alternatives is? Do they know what the best and worst outcomes could be?

�Will

Do they have the desire to overcome the challenges related to making the change you are

proposing? Are they prepared for the emotional, intellectual, and political investment

required? Moreover, do they genuinely want to engage in leading the change?

�The Diagnostic Matrix
The following diagnostic matrix identifies the potential outcomes of pursuing a change.

It specifies the worst-case outcome, but remember that the reality will probably be

less absolute. When reviewing this matrix, do not become discouraged; instead, treat

this as a tool to aid in identifying potential paths and outcomes you wish to avoid. The

Diagnostic Matrix will help you predict or understand where things are going wrong,
while the Approach Matrix in the next section will help identify paths to success.

To use the tool for predictions of possible negative outcomes, first evaluate yourself

regarding the change you wish to make in the categories on the left side and then

second evaluate your organization using the criteria across the top. Alternatively, it can

be used to help identify the potential missing attributes for actors by reading the cells

and seeing which scenarios apply to your situation and then see which organizational

and individual attributes may be causing the issue. The diagnostic matrix is shown in

Figure 26-4.

Chapter 26 The Art of Being an Architect

424

Fi
gu

re
 2

6-
4.

 T
he

 D
ia

gn
os

ti
c

M
at

ri
x

O
rg

an
iz

at
io

n/
Pr

oj
ec

t
Pr

oj
ec

t F
le

xi
bi

lit
y

(O
rg

an
iz

at
io

n
do

es

no
t c

ha
ng

e
w

it
h

th
e

re
qu

ir
em

en
ts

)

St
ru

ct
ur

e
M

is
m

at
ch

(p

ro
je

ct
 o

r
co

m
pa

ny

st
ru

ct
ur

e)

Fu
nd

in
g

(T
ig

ht
 o

r
in

su
ffi

ci
en

t f
un

di
ng

)

Sc
he

du
le

(T

ig
ht

 o
r

in
su

ffi
ci

en
t t

im
e

av
ai

la
bl

e)

Re
la

ti
on

sh
ip

 S
tr

en
gt

h
(M

an
ag

em
en

t t
o

Cu
st

om
er

,
U

se
r,

 T
ea

m
, a

nd

O
w

ne
rs

)

Au
th

or
it

y
(r

ec
og

ni
ze

d
as

 a

pe
rs

on
 to

 m
ak

e
th

e
fi

na
l

de
ci

si
on

)

D
el

eg
at

io
n

is
 n

ot

“r
ea

l”
 a

nd
 c

ha
ng

e
ca

nn
ot

 a
ct

ua
lly

oc

cu
r.

 E
ve

ry
th

in
g

is
 a

 b
ur

ea
uc

ra
cy

.

Yo
u

do
 n

ot
 h

av
e

th
e

au
th

or
it

y
to

dr

iv
e

ch
an

ge
 s

o
no

on

e
co

lla
bo

ra
te

s
w

it
h

yo
u

be
ca

us
e

ot
he

r
au

th
or

it
ie

s
ha

ve
 m

or
e

pu
ll

th
an

 y
ou

.

Yo
u

do
 n

ot
 h

av
e

th
e

au
th

or
it

y
to

 g
et

pe

op
le

 fu
nd

ed
 to

 d
o

w
or

k
so

 th
e

w
or

k
ne

ve
r

ge
ts

 d
on

e.

Yo
u

ca
nn

ot
 a

cq
ui

re

th
e

fu
nd

in
g

fo
r

to
ol

s
so

 th
e

w
or

k
is

 n
ot

go

od
 e

no
ug

h
or

ne

ve
r

ge
ts

 d
on

e.

Yo
u

ar
e

un
ab

le
 to

m

ov
e

th
in

gs
 a

ro
un

d
in

 th
e

sc
he

du
le

.
W

he
n

so
m

et
hi

ng

co
m

es
 u

p
an

d
de

pe
nd

en
ci

es
 a

re

in
ve

rt
ed

, t
he

re
 is

 n
o

w
ay

 fo
r

yo
u

to

co
ur

se
 c

or
re

ct
.

N
o

on
e

lis
te

ns
 to

 y
ou

.
Yo

u
ar

e
no

t a
bl

e
to

eff

ec
t c

ha
ng

e
be

ca
us

e
yo

u
ha

ve
 n

ot

es
ta

bl
is

he
d

au
th

or
it

y
in

yo

ur
 r

el
at

io
ns

hi
ps

 s
o

pa
ss

iv
e

ag
gr

es
si

ve

be
ha

vi
or

 o
r

pa
ss

iv
e

di
sr

eg
ar

d
oc

cu
rs

.

Ac
co

un
ta

bi
lit

y
(O

ne
 w

ill
 g

et
 in

tr

ou
bl

e
if

 it

fa
ils

)

N
ot

hi
ng

 c
an

ch

an
ge

 s
o

yo
u

do

no
th

in
g

be
ca

us
e

no
th

in
g

w
ill

ha

pp
en

 to
 y

ou
 a

nd

ev
er

yt
hi

ng
 b

ur
ns

ar

ou
nd

 y
ou

.

Yo
u

do
 n

ot
 h

av
e

ac
co

un
ta

bi
lit

y.

Th
er

e
ar

e
no

co

ns
eq

ue
nc

es

w
he

n
yo

u
fa

il,
 s

o
yo

u
st

op
 b

ei
ng

m

ot
iv

at
ed

 to

su
cc

ee
d.

Yo
u

ca
n

sp
en

d
m

on
ey

 b
ut

 y
ou

 d
o

no
t c

ar
e

if
 it

 is

eff
ec

ti
ve

. Y
ou

be

co
m

e
w

as
te

fu
l,

an
d

so
m

ed
ay

so

m
eo

ne
 r

ea
liz

es
 it

an

d
el

im
in

at
es

 y
ou

.

Th
in

gs
 th

at
 a

re
 la

te

ha
ve

 n
o

co
ns

eq
ue

nc
es

 fo
r

yo
u.

 E
ve

nt
ua

lly

so
m

eo
ne

 g
et

s
fe

d
up

, b
ut

 it
 ta

ke
s

lo
ng

en

ou
gh

 th
at

 y
ou

de

st
ro

y
yo

ur

re
pu

ta
ti

on
.

N
o

on
e

lis
te

ns
 b

ec
au

se

no
 o

ne
 w

ill
 b

e
hu

rt
 if

th

ey
 d

o
no

t d
o

th
in

gs

fo
r

yo
u.

 T
he

y
kn

ow

th
er

e
ar

e
no

co

ns
eq

ue
nc

es
 a

nd
/o

r
th

ey
 d

o
no

t c
ar

e
ab

ou
t

yo
u.

Individual

Chapter 26 The Art of Being an Architect

425

Fi
gu

re
 2

6-
4.

 (
co

n
ti

n
u

ed
)

Re
sp

on
si

bi
lit

y
(P

ar
t o

f j
ob

de

sc
ri

pt
io

n
an

d
re

co
gn

iz
ed

 b
y

ot
he

rs
)

N
ot

hi
ng

 c
an

ch

an
ge

 a
nd

 y
ou

kn

ow
 th

at
 y

ou
 w

ill

no
t b

e
bl

am
ed

be

ca
us

e
yo

u
“d

id

yo
ur

 p
ar

t.”
 In

 th
e

en
d

yo
u

ar
e

as
so

ci
at

ed
 w

it
h

th
e

or
ga

ni
za

ti
on

’s

fa
ilu

re
s.

Yo
u

do
 n

ot
 h

av
e

re
sp

on
si

bi
lit

y
fo

r
th

e
th

in
g

th
at

 is

fa
ili

ng
. Y

ou
 w

ill

ei
th

er
 d

is
ta

nc
e

yo
ur

se
lf

or

so
m

eo
ne

 w
ill

 tr
y

to

m
ak

e
yo

u
ac

co
un

ta
bl

e
fo

r
it

ev

en
 th

ou
gh

 it
 is

no

t y
ou

rs
.

Yo
u

do
 n

ot
 h

av
e

th
e

re
sp

on
si

bi
lit

y
fo

r
th

e
fu

nd
s

be
ca

us
e

so
m

eo
ne

 e
ls

e
is

re

sp
on

si
bl

e
fo

r
th

e
ac

co
un

ti
ng

, b
ut

 y
ou

an

sw
er

 fo
r

it
 a

nd

m
al

in
ve

st
m

en
t

oc
cu

rs
.

Yo
u

ha
ve

 n
o

ab
ili

ty

to
 a

ff
ec

t t
he

sc

he
du

le
 a

nd
 e

nd
 u

p
on

 a
 s

er
ie

s
of

 “
de

at
h

m
ar

ch
”

pr
oj

ec
ts

.

N
o

on
e

lis
te

ns
 to

 y
ou

be

ca
us

e
yo

u
ar

e
tr

yi
ng

to

 c
ha

ng
e

so
m

et
hi

ng

th
at

 is
 n

ot
 y

ou
r

jo
b.

Th

ey
 h

av
e

no
 p

er
so

na
l

st
ak

e
in

 h
el

pi
ng

 y
ou

be

ca
us

e
th

ey
 k

no
w

 th
at

yo

u
w

ou
ld

 n
ot

 g
o

ab
ov

e
an

d
be

yo
nd

 fo
r

th
em

.

Kn
ow

le
dg

e
Yo

u
do

 n
ot

 k
no

w

ho
w

 to
 fi

x
th

in
gs

an

d
th

er
e

ar
e

no

re
so

ur
ce

s
to

 le
ar

n.

Yo
u

w
at

ch
 a

s
th

in
gs

 fa
il,

 a
nd

 y
ou

ei

th
er

 g
iv

e
up

 a
nd

le

av
e

or
 y

ou
 g

et

bu
rn

ed
 o

ut
.

Yo
u

ca
nn

ot
 c

on
ve

y
yo

ur
 k

no
w

le
dg

e
to

th

e
co

rr
ec

t p
eo

pl
e,

or

 th
ey

 w
ill

 n
ot

ac

ce
pt

 it
.

Yo
u

w
ill

 n
ot

 le
ar

n
ho

w
 to

 fi
x

it
 b

ec
au

se

th
ey

 w
ill

 n
ot

 p
ay

 fo
r

yo
ur

 e
du

ca
ti

on
.

Yo
u

w
ill

 n
ot

 le
ar

n
ho

w
 to

 fi
x

it
 b

ec
au

se

th
er

e
is

 n
ot

 ti
m

e.

Yo
u

do
 n

ot
 k

no
w

 h
ow

to

 b
ui

ld
 a

nd
 m

ai
nt

ai
n

re
la

ti
on

sh
ip

s.
 Y

ou
 g

o
fr

om
 te

am
 to

 te
am

be

in
g

“t
ha

t g
uy

”
th

at

ju
st

 c
om

pl
ai

ns
 b

ut

ne
ve

r
id

en
ti

fi
es

un

de
rl

yi
ng

 is
su

es
 o

r
pr

ov
id

es
 s

ol
ut

io
ns

 to

pr
ob

le
m

s.

W
ill

Yo
u

do
 n

ot
hi

ng

be
ca

us
e

no
th

in
g

w
ill

 h
ap

pe
n

to
 y

ou

be
ca

us
e

yo
u

ar
e

no
t m

ot
iv

at
ed

 to

fo
rc

e
ch

an
ge

. Y
ou

se

e
w

ha
t i

s
ha

pp
en

in
g

an
d

gr
ad

ua
lly

 e
it

he
r

st
op

 c
ar

in
g

or
 g

et

fe
d

up
.

Yo
u

ar
e

no
t i

n
th

e
po

si
ti

on
 to

 e
ff

ec
t

ch
an

ge
. Y

ou

be
co

m
e

a
pe

st
 to

th

os
e

to
 w

ho
m

 y
ou

ta

lk
 a

bo
ut

 th
e

pr
ob

le
m

. Y
ou

 g
et

bu

rn
ed

 o
ut

 tr
yi

ng

to
 p

us
h

th
e

bo
ul

de
r

up
 th

e
hi

ll.

Th
e

pr
oj

ec
t w

ill
 n

ot

ge
t t

he
 r

es
ou

rc
es

ne

ed
ed

 to
 fi

x
it

.

It
 w

ill
 n

ot
 b

e
fi

xe
d

in
 ti

m
e

an
d

th
e

pr
od

uc
t w

ill
 e

it
he

r
be

 s
ub

st
an

da
rd

 o
r

w
ill

 n
ev

er
 b

e
fi

el
de

d.

Yo
u

do
 n

ot
 c

ar
e

ab
ou

t
ot

he
r

pe
op

le
. Y

ou
 d

o
no

t i
nv

es
t i

n
th

em
 s

o
th

ey
 a

re
 n

ot
 in

sp
ir

ed
 to

in

ve
st

 in
 y

ou
.

Chapter 26 The Art of Being an Architect

426

�The Approach Matrix
Addressing what is learned from the Diagnostic Matrix is the hard part, but at least

you now recognize the challenges ahead. Below is another tool that helps to identify

what you need to add to the plan. To use the tool, identify the cells of the previous

diagnostic matrix that apply to the situation and then find the corresponding cells on

the approach matrix. Once you have located the cells where you are seeing issues in

the previous diagnostic matrix, write them down the issue from the previous tool and

the corresponding steps to help resolve the issue from the approach matrix below as

inputs for the plan. Each generic procedure or alternative is just a starting point, and it

is important to take each generic procedure and tailor it to your unique situation. The

approach matrix is shown in Figure 26-5.

Chapter 26 The Art of Being an Architect

427

Organization/Project

Project Flexibility
(Organization does
not change with the

requirements)

Structure Mismatch
(project or company

structure)

Funding
(Tight or

insufficient
funding)

Schedule
(Tight or

insufficient time
available)

Relationship Strength
(Management to

Customer,
User, Team, and

Owners)

Authority
(recognized as a
person to make
the final
decision)

1. Identify and write
down the
person(s) who
have the
authority.

2. Find out what it
would take to
motivate them to
collaborate.

3. Find out what
processes all
parties will need
to execute.

4. Build the
relationship.

1. Update your resume to
reflect a position that
would have that
authority and look for a
position on your team
with those
responsibilities.

5. Approach management
about changing
position/
responsibilities.

1. Find out who
has the ability
to approve the
financial
aspects and
establish a
relationship.

6. Then
communicate
the needed
changes.

1. Find out who
has the
authority to
approve
updates to the
schedule and
establish a
relationship.

7. Then
communicate
the needed
changes.

1. Determine which
relationships are
the least well
developed, most
confrontational, or
most
counterproductive.

8. Work to develop
your relationships
with all of the
parties
(management,
users, customers,
teammates, and
company
ownership).

Accountability
(One will get in
trouble if it
fails)

1. Identify and write
down the
person(s) who are
impacted by both
the problem and
the change.

2. Find out what it
would take to
motivate them to
collaborate.

3. Build the
relationship.

1. Update your resume to
reflect a position that
would have that
authority and look for a
position on your team
with those
responsibilities.

4. Approach management
about changing
position/
responsibilities.

5. Establish consequences
for oneself (set a
threshold that you will
take actions on like
leaving the program or
restructuring the team
if you have the
authority).

1. Establish
some
thresholds for
Return On
Investment
for your
customer or
businesses
investments
and use self-
discipline to
adhere to that
threshold.

1. Establish what
the task
dependencies
are.

6. Establish what
the critical path
is.

7. Establish some
thresholds for
late deliveries
along the
critical path
items.

1. Establish better
relationships so
that they care
about your success,
and you care about
their success.

2. Establish a more
team focused
environment.

Responsibility
(Part of job
description and
recognized by
others)

1. Identify and write
down the
person(s) who
usually would

be involved
in doing the work.

2. Find out what it
would take to
motivate them to
collaborate with
you.

3. Build the
relationship.

1. Update your resume to
reflect a position that
would have that
authority and look for a
position on your team
with those
responsibilities.

4. Approach management
about changing
position/
responsibilities.

5. Establish consequences
for oneself (set a
threshold that you will
take actions on like
leaving the program or
restructuring the team

1. Find out who
knows how to
have the funds
allocated.

2. Work with
those
individuals to
get it done.

1. Find out who
knows how to
adjust the
schedule.

2. Work with
those
individuals to
make the
schedule
changes

1. Show that you care
about the outcome
of the thing that
you are changing.

2. Communicate how
it impacts you and
why you are taking
the tasking on.

In
d
iv

id
u
al

Figure 26-5.  The Approach Matrix

Chapter 26 The Art of Being an Architect

428

Figure 26-5.  (continued)

if you have the
authority)

Knowledge 1. Identify what
needs to be
learned or ask
others what needs
to be learned.

2a. Request
resources
to address the lack
of knowledge.

2b. If there are
no resources, you
may be able to take
it on yourself.

1. Find out what you need
to know and learn it.

2. Work on your
communication skills
(both written and
verbal).

1. View it as an
investment in
your own
career and
buy books or
pay for
education on
project cost
estimation or
accounting.

1. View it as an
investment in
your career as
an architect
and learn to
use tools like
Gantt charts,
Work
Breakdown
Structures
(WBS), Earned
Value
Management,
etc. to help you
interface with
the rest of the
organization.

1. Improve your
communication
skills.

2. Demonstrate that
you can analyze
the situation and
the possible
solutions.

Will 1. Evaluate what is
causing your lack
of will.

2. Find a mentor or
collaborator with
experience with
some aspect of
the problem

3. Break problem
down into
manageable parts
or steps if you are
overwhelmed.

1. Motivate yourself to
move into a position
where you will be more
engaged.

2. If you realize that you
do not have the
required will then it is
important to either find
someone else who does
or evaluate if issue is
actually the problem or
if is just a nuisance that
can be disregarded.

1. Determine
why you are
not motivated
to allocate the
resources
using a cost
benefit
analysis or a
product cost
comparison.

1. Determine why
you are not
motivated to
move the
schedule to the
right or
reallocate
resources to
make it
possible to
work tasking in
parallel.

1. Determine why you
do not care about
other people
(personal apathy,
no team spirit, or
toxic team
situation).

Chapter 26 The Art of Being an Architect

429

�Plan to Orchestrate the Change

An hour of planning can save ten hours of doing

—Dale Carnegie

After following this framework for identifying the problem, identifying the solution,

identifying the path to success, identifying any barriers to that success, and committing

yourself to the task, it is important to plan. One thing to remember is that your change

effort might be more likely to succeed if you first pave the road to success before

proceeding. This is accomplished by laying out how to address any potential issues

before even advertising what the plan is. Most likely, the things you must do to be

successful in this pursuit will be necessary for other pursuits, so it may make sense to

invest in those actions or activities on their own. For example, you may discover that

there is someone who needs to take a certain action to ensure the change is a success.

That same individual will often be important to other future efforts. Building a solid

relationship with them may be more rewarding in the long term than creating a shallow

relationship that only satisfies the immediate need.

�Packaging Your Solution
Often you will have a solution to a problem; however, even if your solution is well

defined, the potential benefits are understood, and the formalized solution optimized for

the organization, more work is necessary. Typically, some amount of effort is necessary

to “package” the solution into a form that is ready for adoption. Often architects can

be overly excited, with a fervent desire to unleash the solution on the world, but it is

important to proceed carefully here. Every change invites some disruption, exemplified

by the “J curve”8 (Figure 26-6).

8 Jellison, J. (2006). Managing the Dynamics of Change. McGraw-Hill

Chapter 26 The Art of Being an Architect

430

Figure 26-6.  The “J” Curve

There is often an expectation and implicit assumption (by both architects and

members of the organization) that the solution will trace a steady improvement over

time, but, almost universally, changes introduce a striking initial disruption that must

be overcome. Many promising solutions and architectural innovations are abandoned

during the j-curve dip. Proper packaging of an innovation is a crucial step in reducing

the potential disruption of a change. The less potential adopters must learn and the

fewer ingrained behaviors/habits they need to change, the better the odds of success for

the innovation.

Packaging is the process of removing as much initial adoption friction as possible.

Packaging may involve building a POC, reference implementation, or tooling. It may

involve training or coaching/mentoring. There is no one-size-fits-all approach.

Chapter 26 The Art of Being an Architect

431

�Optimize Your Proposed Solution
If you examined your solution through the lens of Rogers’ Innovation Attributes, the

following would aid you in optimizing those variables.

�Optimizing Relative Advantage

Obviously, the higher the perceived relative advantage of the innovation, the higher the

likelihood of adoption. The degree of relative advantage may be measured in economic

terms, but social prestige factors, convenience, and satisfaction are also important

factors. Relative advantage, however, is always in the eye of the beholder. Savvy and

adroit architects and change agents will look at relative advantage from multiple angles.

When presenting the innovation to potential early adopters and champions, you must

be able to succinctly communicate both what the innovation is and why they should

care. The precise framing of this message will vary depending on the audience, and you

should be able to articulate the value proposition of your solution to a wide variety of

potential audiences.

�Optimizing Compatibility

A strong belief in the benefits of a solution often leads us to assume that the practices our

solution seeks to replace are so inferior they can be completely dismissed, yet history

repeatedly shows the folly in this thinking. Adopters of your solution can only deal

with a new idea within the context and basis of what is already familiar. You must ask

yourself how compatible your solution is with the existing ways of working and existing

mental models.

The truly revolutionary ideas and solutions simply cannot be introduced all at once.

As Nikola Tesla’s character in the 2006 film, The Prestige, says:

The world only tolerates one change at a time.

—The Prestige

Personally speaking, one of the hardest realities I have had to accept in my career is

meaningful change often must take place in stages. On a case-by-case basis, the solution

must be evaluated to determine if the big innovation can be broken down into smaller,

more compatible changes that pave the way toward the final innovation.

Chapter 26 The Art of Being an Architect

432

Your solution must be ruthlessly examined to identify potential areas of flex or

deferral. Perfection is the enemy of progress.

�Optimizing Complexity
New ideas that are simpler to understand are adopted more rapidly than solutions that

require potential adopters to develop new skills and understandings. Similar to how we

must approach compatibility, ruthless examination must take place to identify where

ideas can be simplified in the short term. We must look for every opportunity to reduce

adoption complexity.

Taking time to create learning guilds, book clubs, or regular lunch-and-learn

sessions are an ideal forum to gradually introduce ideas into the organization well before

pitching them as solutions. This creates a foundation of fertile soil for future learning on

a topic to take root and blossom.

It is also important to have “skin in the game.” Taking the time to build POCs, tooling,

reference implementations can aid greatly. Automation is another avenue to reduce

friction points. Finally, consider a training strategy. You may possess the skill of building

effective and engaging training, but also consider delegating so you may scale yourself.

�Optimizing Trialability
To many stakeholders, change almost universally equates to risk. A solution that

individuals can evaluate on a trial basis is one that carries significantly lower risk. The

value of presenting a trial should not be underestimated.

Think carefully about the opportunities to trial your solution within a subset of

the organization. First, the limited perceived scope of the risk will win over some who

are skeptical, but also consider the trial as part of building your growing body of early

adopters. Relatively earlier adopters of an innovation or solution perceive trialability

as more important than do later adopters since we can see others’ success later in the

adoption process. For those later adopters, peers who perform early exploration of your

solution amount to a vicarious trial.

Chapter 26 The Art of Being an Architect

433

�Optimizing Observability

You can’t improve what you don’t measure.

—Peter Drucker

Think about ways to measure and demonstrate growing success over time. Your plan

should consider how you might increasingly demonstrate that

•	 The innovation is successful.

•	 The problem is tractable.

•	 The benefits are materializing.

•	 This is better than the status quo.

The challenge for you lies in making this data visible. Based on what you have

learned in Chapter 5, find metrics germane to various groups you wish to influence in

the organization. The key is to figure out what you can measure and show to reduce

uncertainty and then communicate this.

�Write Down the Plan
Writing down your plan brings multiple benefits. First, the process will illuminate

potential gaps and risks in strategy. Additionally, your plan will help you stay on track

when things get tough.

As time goes by, it may be hard to stay motivated. Periodically looking back on what

has been successful can aid in maintaining motivation and will. Each new problematic

barrier or detour that occurs will seem easier to overcome when you shift your

perspective by looking back on the series of successes that may have been hard fought

or more circuitous than originally planned. Also, you will find that it is harder to give up

when reflecting on what has already been invested and accomplished.

The plan should outline steps broken down into smaller tasks whenever possible,

but the key is to determine the sequence and dependencies. The plan needs to remain

adaptable, acknowledging that real-world events will not perfectly align with the

planned activities.

Chapter 26 The Art of Being an Architect

434

The “happy path” your plan creates is only a starting point. Each step along the

way should have an alternate route in case things do not work out as anticipated. Know

that you cannot plan for every contingency. Invest more thought into the primary path

to success, but do not neglect some amount of investment into alternative paths to

success. Also, define points along the way where one can evaluate the cost of completion

and sunk cost and decide if continuing the pursuit is worth it. The world is constantly

changing, and you do not want to pursue something to completion if it will no longer

bring material value.

Make sure to fully plan rigorously. If you only provide a simple road map without

analyzing thoroughly and things go wrong that should have been easy to identify in

advance, then you will lose credibility in your technical knowledge and leadership

abilities.

Once you have written down the plan, it is time to begin communicating the idea for

the change and even the plan to accomplish the change with the individuals that will be

involved in and/or impacted by the change.

�Execute the Plan
It is important to account for all the barriers and opportunities that have been identified

and utilize these opportunities once execution of the plan begins.

�Prepare for Change
Once an architect has identified a process, product, service, or decision that they wish

to see changed and analyzed their influence, their counterparts’ influence, and their

organizational situation relative to the change that they wish to make, they can proceed

to take action.

�Prepare for Success
There will be a significantly higher likelihood of success once you grow accustomed

to performing the analysis and using the resultant knowledge to help the organization

effect change.

Chapter 26 The Art of Being an Architect

435

�Summary
The Tailor-Made Architecture Model aims to bring the practice of designing systems

closer to a science, but the soul of the role of architect may always be an art that develops

over time with practice and patience. While mastering the technical aspects of software

architecture provides the necessary foundation, your true value emerges in your

ability to execute architecture and drive meaningful change within an organization.

This chapter has equipped you with a systematic approach to identify, evaluate, and

implement solutions. The lessons and guidance in this chapter are hard won that

emerged out of many failures and frustration. I encourage you to profit from our past

failures. Remember, it is not enough to design an elegant architecture; you must also

skillfully navigate the complexities of organizational dynamics and change management.

The ability to influence and lead others toward a shared vision is what will ultimately

distinguish you as a truly effective software architect.

It has been a pleasure and an honor to join you on this phase of your journey.

Although there is much more to learn and discover, this completes the book and what’s

next is up to you. How exciting!

I will bid you farewell for now, but you can contact me anytime at michael@

magician.codes or view my travel schedule, speaking dates, and training classes at

https://magician.codes/. I am grateful for our time together through these pages, and

I hope our paths cross again in the future. I wish you joy, growth, and enlightenment for

the many years and adventures to come.

Chapter 26 The Art of Being an Architect

https://magician.codes/

437
© Michael Carducci 2025
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6

Index

A
Abstraction, 40, 151, 166–168
Abstract styles, 324, 343, 344

bespoke tailoring, 136, 137
made-to-measure, 135, 136
ready-to-wear, 132, 133
tailored off-the-rack, 134, 135

Accidental complexity, 168, 273
Activity diagrams, 261
Adaptability, 33, 36, 311, 357
Administrative scalability, 31
Affordability, 42, 43, 151, 250
Aggregator pattern, 237
Agile architecture, 68, 142–144, 217
Agility

adaptability, 36
composability, 35, 36
definition, 33
deployability, 38
evolvability, 34, 35
extensibility, 35
layered monolith abstract style, 151
testability, 36, 37

Anti-studs, 302, 303, 306
Apache Camel, 276–277
API-first/design-first approach, 182
Application programming

interface (API)
BFF, 178
definition, 175
GraphQL, 177
level 1 REST, 178

RPC, 178
rules, 175, 176

Approach matrix, 423, 426, 427
Architectural awareness, 417
Architectural capabilities, 28

distributed N-tier architecture
abstract style, 189

layered monolith abstract style, 170
microservices abstract style, 250
modular monolith abstract style, 206
origins, 109–112
service-based abstract style, 222
tailor-made model, 68, 69
See also Capabilities

Architectural decision records (ADRs)
anatomy

advantages and
disadvantages, 368

considered options, 365, 366
context and problem statement, 364
decision drivers, 365
decision outcome, 366
links, 368, 369
positive and negative

consequences, 367
title and metadata, 364

asynchronous mechanism, 363
context, 362
documentation, 361
fast feedback loop, 362
implementation teams, 363
structure for, 363

https://doi.org/10.1007/979-8-8688-0410-6#DOI

438

Architectural enforcement, 400
mechanisms, 402–404

Architectural extensibility, 255, 256, 271
Architectural fit, 121, 122
Architectural governance, 193, 239,

400, 405
Architectural principles, 400, 401
Architectural sinkhole anti-pattern, 168
Architectural style document, 73

definition, 374
high-level description, 376
links, 377
motivation, 375
scope, 376
summary of constraints, 375, 376
title and introduction, 374

Architectural styles, 192, 290, 301, 353,
354, 400, 407

component communication, 322, 324
granularity, 320–322
module partitioning, 316, 317
persistence options, 318, 320
tailor-made model, 118, 119

Architectural X factors
constraint dependencies, 127–129
dimensions of fit, 121, 122
microservices, 122–127

Architecture
anti-pattern, 53
approaches, 5
capabilities, 5
constraints (see Constraint document)
definition, 4, 68
designing, 9
diagramming and visualizing, 377–397
elicit capabilities, 11
hierarchy, 355
knowledge, 13, 14

patterns, 6–9, 58
pattern score matrix, 55
questions and clarifications, 63–68
scopes, 15
scorecard star-rating system, 54
solving problem, 58, 59
system architects, 3
themes, 4
trade-offs, 11

Architecture review board (ARB), 401
Architecture tradeoff analysis method

(ATAM), 408
ArchUnit, 82, 404
Assertiveness vs. cooperativeness,

410, 411
Asynchronous communication, 212, 255,

258, 262, 280, 281
Asynchronous replication, 239, 240, 293
Atomic, Consistent, Isolated and Durable

(ACID), 185, 216, 231
Atomic constraints, 354, 374
Auditability, 48
Automated architectural enforcement, 403
Availability, 45–46, 70, 231, 282

B
Backend-for-frontend (BFF), 178
Balancing depth vs. breadth, 19–22
Behavior-driven development (BDD),

261, 262
Bespoke tailoring, 136, 137
Big Ball of Mud style, 37, 150, 151, 155, 160

DB-backed, 157, 159
semi-structured, 156, 157, 159

Bounded context, 114, 147, 192, 198
Breadth of knowledge

vs. balancing depth, 19–22

INDEX

439

challenges, 25
and diversity, 17
essential unity of, 24
linchpin, 18, 19, 22, 23
logic approach, 18
soft skills, 23

Brewer’s theorem, 230
Budget committee, 59, 61
Bulletproof system, 91
Business conversation, 59, 60
Business-critical capabilities, 72, 74, 297,

341, 343
Business/customer value

conversation, 12, 13
Business drivers, 12, 13, 36, 47
Business logic, 146, 163, 164, 166, 234, 316
Business management, 82, 83, 90, 420
Business metrics, 77, 228
Business process management (BPM)

tools, 277, 278
Business process model and notation

(BPMN), 277
Business services, 163, 187, 285, 416
Business vision, 62, 69

C
C4 abstractions, 380

component, 382
container, 381, 382
person, 381
software system, 381

Cadence, 83, 125, 225, 277
Camunda BPM, 277
Candidate review architecture, 347–350
Capabilities, 67

agility, 33–38
auditability, 48

challenges, 27
documenting and scoring, 73–75
feasibility and manageability

affordability, 42, 43
maintainability, 43
multitenancy, 44, 45
observability, 42
reusability, 43, 44
simplicity, 45
visibility, 42

group of, 28, 29
integration, 38–41
performance

compute efficiency, 30
elasticity, 32
network efficiency, 30
scalability, 31, 32
user-perceived, 32, 33

privacy, 47, 48
qualifying and quantifying

architectural requirements, 70–72
business vision, 69
organizational dynamics, 69
prioritize business-critical

capabilities, 72
and relative priority, 68
reliability

availability, 45
fault tolerance, 45

safety, 46
security, 47
system quality attributes, 68

Capability gap, 113, 114
Capability targets vs. pattern capability

scores, 105
CAP theorem, 230, 231, 296
Cart service, 236, 237, 239, 251
Cascading failures, 153, 210–212, 226, 242

INDEX

440

Case management model and notation
(CMMN), 277

C4 diagrams
code diagram, 389–391
component diagram, 387–389
container diagram, 385–387
deployment diagram, 395, 396
dynamic diagram, 393–395
system context diagram, 383–385
system landscape diagram, 391–393

Change orchestration
compatibility, 431
complexity, 432
execute the plan, 434
observability, 433
packaging your solution, 429, 430
prepare for change, 434
prepare for success, 434
relative advantage, 431
trialability, 432
writing your plan, 433, 434

Choreographed event-driven abstract
style, 266, 268, 270, 271, 281,
330, 356

adding constraints
PubSub broker, 263–265
PubSub messaging, 262, 263

changing constraints
choreography-driven

interactions, 255–262
technical partitioning, 253, 254

Choreographed event-driven system, 252,
259, 262, 267

Choreography, 232–233, 255, 268
Choreography-driven interactions

activity diagrams, state machines and
statecharts, 261

architectural extensibility, 255, 256

BDD, 261, 262
event-based style, 255
failures and error handling, 258
performance and scale, 256
post-processing notification

events, 255
tools, EventStorming, 259–261

Circuit breakers, 211–213, 226
Clean architecture, 149
Client/server constraint, 173–175
Cloud services, 227, 275, 291
Coarse federated databases, 219
Coarse-Grained component granularity

constraint, 179–181, 214
Code diagram, 389–391
Code Katas, 344
Code sharing, 241, 243, 245, 246
Coding flow, 128
Cohesion, 40, 161, 176, 208, 358
Command query responsibility

segregation (CQRS), 184–186, 219
Communities of practice, 404
Compensable transactions, 232
Complacency, 174
Component diagram, 387–389
Composability, 33, 35–36, 119, 302
Composition, 33, 110, 215, 301, 311
Compute efficiency, 30–31, 49
Connascence, 152
Constraint definition record (CDR), 375
Constraint dependencies, 127–129
Constraint document

considered alternatives, 370, 371
description, 370
governance, 373
implementation guidance, 372, 373
motivation, 369, 370
resources, 373

INDEX

441

risks, 371
support, 371, 372
title and metadata, 369

Constraints
adding, 173, 215, 240, 262, 290, 302
API, 175–177
architectural, 151, 169, 185, 287,

298, 313
atomic primitives, 145
changing constraints, 179, 192, 207,

223, 253, 302
composition of, 112, 160, 183, 215, 294
considered alternatives, 370–371
core constraints, 115, 119, 127, 169, 172
deterministic outcomes, 114–115
dependencies, 127–129
document, 369–373
domain partitioning, 192–196
environmental, 127, 181–183, 188,

214, 221
interface, 303–305
lack of, 121, 152, 154
layered system, 159, 171
medium component

granularity, 207–209
non-architectural constraints, 129, 188,

229, 322, 324
organizational, 126–127, 181–183, 188,

205, 214, 221
persistence constraints, 320
risk matrix, 350
summary of, 333–337, 375–376
team, 126, 181–183, 188, 214, 221
time/budget, 11, 186

Container
C4 abstractions, 381, 382
diagram, 385–387

Continuous delivery, 37, 124, 125, 403

Continuous deployment, 124–126
Continuous integration (CI), 124, 125
Conway’s Law, 126, 127, 161, 196, 316, 317
Cost efficiency, 95
Cost of operations and maintenance

(COM), 95
Cultural change, 141
Custom component, 164, 274, 275
Custom interfaces, 164
Custom orchestration service, 274, 275
Cyclomatic complexity, 154
Cynefin domains, 25, 26

D
Dashboard design, 100
Database management system (DBMS),

158, 291
Database-per-tenant constraints, 320
Data grid, 292, 295–298
Data pumps, 293, 296, 298
Data reader, 296, 297
Data replication strategy, 226
Data-structured coupling, see Stamp

coupling
Data synchronization, 296
Data writer, 296, 297
Decision drivers, 362, 365, 400
Decision-making process, 402
Decision model and notation (DMN), 277
Decision outcome, 366–368
Decisions, 109, 416
Decoupled database, 293, 298
De facto architecture, 149
Deming’s theories, 403
Denial-of-service (DOS), 177, 210
Denormalization, 201
Dependency inversion principle, 111

INDEX

442

Deployability, 34, 37–38, 152, 181, 213, 314
Deployment diagram, 387, 395, 396
Deployment environment, 395, 396
Deployment manager, 296
Deployment node, 395, 396
Design-payoff pseudo-graph, 143
Design smell, 226, 228
Design stamina hypothesis, 142
Design-time composition, 302
Development environment isolation

environmental constraint, 182
DevOps movement, 124, 129, 403
Diagnostic matrix, 423–425
Diffuse potential conflict, 348
Disruption, 45, 248, 429, 430
Distributed architectures, 31, 38, 112,

225, 284
Distributed caching strategy, 291
Distributed computing, 173–175, 178, 200,

294, 311
Distributed layered client/server RPC

style, 179
Distributed monolith, 129, 181, 213, 322
Distributed N-tier abstract style,

183–184, 326
Distributed N-tier architecture abstract

style, 183
adding constraints

API, 175–179
client/server, 173–175

architectural capabilities, 189
business logic and persistence, 183
capability ratings, 184
changing constraints, 179
Coarse-Grained component

granularity constraint, 179, 181
conventional wisdom, 172
CQRS, 184, 185

definition, 172
growing system, 171
independent deployability, 181
Mixed Component Granularity

Constraint, 187
performance and scale, 172
precision fit, 187
team, organizational and

environmental constraints,
181, 183

Distributed system environmental
constraint, 180

Distributed systems, 30, 42, 173, 181,
280, 312

Distributed system tax, 175
Domain-aligned teams, 114, 128, 196, 317
Domain-aligned teams constraint, 196
Domain-driven design (DDD), 45, 126,

146, 147, 194, 195, 317
Domain-driven module, 37, 144
Domain modeling, 195, 197, 225, 259, 295
Domain module, 193, 197–199, 208, 403
Domain partitioned monolith style,

193, 194
Domain-partitioned system, 39, 182, 317
Domain partitioning constraint, 128,

192–196, 317
Domain-specific language (DSL), 261,

262, 403
Domain to architecture

isomorphism, 41, 251
Dynamic diagram, 393–395

E
Eclipse rich client platform (RCP), 308
Ecommerce microservices, 251
Economic moat, 98

INDEX

443

Efferent coupling, 240
Elasticity, 32, 152, 189, 206, 314
Encapsulation, 166–168, 199, 205
Endurance, 417, 419
Entanglement, 417, 418
Enterprise integration patterns (EIPs), 276
Enterprise service bus (ESB), 285
Enterprise services, 285
Enterprise/technical ecosystem, 354
Entity relationship diagram (ERD),

200, 389
Environment, 182, 214, 417, 418
Environmental constraints, 127, 129,

181–183, 216, 221, 313
Error handling, 258, 261, 274
Essential complexity, 273
Event-based data backplane, 268
Event broker, 252
Event-driven ecommerce system, 255
Event-driven styles, 252, 253, 268, 271, 278
Event-driven systems, 252, 259, 262, 267, 268
Event processor, 252–256, 262, 266
Event sourcing, 48, 201, 239, 240, 256, 297
EventStorming, 195, 259–261
Eventual consistency, 201, 235, 240,

256, 296
Evolvability, 33–35, 152, 170, 206, 250
Executive leadership, 61
Extensibility, 31–33, 35, 112, 255–256, 311
External comparison table, 87

F
Failure events, 258
Fault tolerance, 45, 153, 180, 226, 283,

314, 341
Federated DB service-based style, 220
File processing workflow, 253, 254

Fine component granularity, 223–229,
309, 322

Fine-grained mini-domain modules, 198
First-in-first-out (FIFO), 167, 258
Ford/Richards scorecard, 104
Formal modeling, 378
Forms-style presentation layer, 162
Found to Planned Work (FTPW), 94
Four-Way Test, 409, 410
Friction systems, 38
Functional requirements, 5, 67
Functional scalability, 31, 32

G
General diagram advice, 396, 397
Generation scalability, 31
Geographic scalability, 31
GitLab, 82
Going Green, 344
Governance, 47, 193, 239, 373, 402, 405
Governance framework, 401, 402, 405
Granularity, 37, 191, 208, 224, 228, 320–322

and near cache, 291, 292
GraphQL, 11, 176, 177, 239

H
Heterogeneous scalability, 31
Hexagonal architecture, 149, 164
High-availability (HA) clusters, 175
Highly decoupled components

handling shared code
Please Repeat Yourself, 245, 246
service consolidation, 242, 243
shared services, 241, 242
sidecar pattern, 243–245
versioned libraries, 241

INDEX

444

Holistic fit, 135, 136, 289, 309, 355, 407
Hooks, 305, 306
Hypermedia as the engine of application

state (HATEOAS), 177, 304

I
IDEALS, 112
Independent deployability constraint,

114, 181–183, 214, 228, 322
Individual contributor (IC) developer, 10
Individual fit principle, 133
Inductive learning, 10
Industrial revolution, 43
Information theory, 18
Infrastructure as a Service (IaaS), 129, 395
Infrastructure as Code (IaC), 180, 227, 229,

322, 331
Infrastructure management, 267
Infrastructure nodes, 395, 396
Infrastructure services, 285
Innovation attributes, 414, 431
Integration, 192

abstraction, 40
distributed architecture patterns, 38
interoperability, 39
Layered Monolith Abstract Style, 153
workflow, 41

Interface constraints, 36, 303–306, 311
Interface segregation principle, 111
Internal comparison table, 87
International Standards Organization

(ISO), 4
Internet Engineering Task Force

(IETF), 349
Interoperability, 39, 50, 98, 170, 215
Interservice communication

circuit breakers, 211

direct failure, 210
network performance and

reliability, 209
payment service, 212
sharing code, 213
team, environment and organizational

constraints, 214
Inventory service, 236, 258
Isolated databases, 229–231
Isolated/Independent Database

Constraint, 200

J
J curve, 429, 430
Jenkins, 82

K
Kappa architecture, 256, 257
Key performance indicators (KPIs), 59

advantages, 78
analysis, 79
architecture capabilities, 89
bill of materials, 89
business management, 90
definition, 78
disadvantages, 78
evaluation, 81, 82
financial, 98, 99
marketing, 97–98
metrics, 80
organizations, 80, 81
product, 91–94
product comparison table, 88
requirements, 87
sales, 95–97
target audience, 99–100

INDEX

445

trifold brochure, 89
version comparison table, 88

Knowledge matrix, 19, 20

L
Large language models (LLMs), 10
Laserdisc

features, 57
vs. VHS, 57
solving problem, 57–58

Layered-client server RPC monolith, 179
Layered monolith, 149, 191, 193, 207
Layered monolith abstract style, 146, 160,

324, 325
abstraction, 151
affordability, 151
agility, 151
architectural capabilities, 170
Big Ball of Mud style, 150, 151, 155–159
business logic layer, 163, 164, 166
closed layer request flow, 167
constraints, 159
deployability, 152
elasticity, 152
encapsulation and

abstraction, 166–168
environments, 150
evolvability, 152
fault tolerance, 153
inside the monolith, 161
integration, 153
minor and major variations, 150
MVC presentation layer, 162, 163
open services layer, 168
performance, 153
persistence layer, 164, 165
ports and adapter, 165

scalability, 153
services layer, 163
simplicity, 154
testability, 154
workflow, 154

Leadership, 59, 61, 72, 119, 404, 407
Learning Pyramid, 21
Least frequently used (LFU), 292
Linchpin knowledge, 18, 19, 22, 23, 25
Lines of code (LoC), 79, 114, 197
Liskov substitution principle, 111
Listen-process-publish, 255
Load scalability, 31, 32
Logic approach, 18

M
Made-to-measure architecture, 135, 136

candidate review, 347–350
design and document, 351
identifying abstract styles, 343, 344
reviewing candidate styles, 346, 347
team, organizational and environment

fit, 346
temporal fit, 344, 345

Maintainability, 6, 43, 50, 112, 151, 275
Managed Extensibility Framework

(MEF), 308
Mean Time Between Failure (MTBF), 91
Mean Time to Accept (MTTA), 91
Mean Time to Acknowledge (MTTA), 94
Mean Time to Deliver (MTTD), 94
Mean Time to Detect and Communicate

(MTTD&C), 94
Mean Time to Diagnose (MTTD), 94
Mean Time to Implement and Deploy

(MTID), 91, 94
Mean Time to Implement (MTTI), 94

INDEX

446

Mean Time to Repair (MTTR), 91, 94
Mean Time to Test (MTTT), 97
Mediator communication, 278–281
Mediator-orchestrated workflow, 272
Mediator topology, 272–274
Medium component granularity, 207–209,

216, 220
Messaging channels, 279
Messaging grid, 296
Microblogging, 8
Microkernel Abstract Style, 309, 314, 333

adding constraints
commercial options, 308, 309
fine component granularity, 309
open source options, 308
plug-in architecture, 306
roll-your-own, 307
uniform interface, 302–306

changing constraints, 302
concept, 310, 311

Microservices, 40, 90, 122–127, 141, 236
Microservices abstract style, 247, 248, 253,

255, 324, 329
adding constraints

highly decoupled
components, 240–246

architectural capabilities, 250
changing constraints

fine component
granularity, 223–229

isolated databases, 229–231
Saga Pattern, 231–235
sharing data, 236–240

Microservices architectures, 56, 112, 122,
199, 224

Microservices styles, 208, 224, 251,
286, 341

Mind blowing, 304

Minimum viable product (MVP), 9, 64,
192, 345

Miniservices, 204
Mixed component granularity

constraint, 187
Mob programming, 399
Model-view-controller (MVC), 162
Modularity, 28, 90, 151, 193, 302, 311, 316
Modular monolith abstract style, 202–204,

302, 324, 327, 403
architectural capabilities, 206
changing constraints

domain module, 197–199
domain partitioning

constraint, 192–196
module granularity, 196, 197
partitioned shared database

constraint, 199–202
Module-crossing transactions, 200
Module granularity, 196, 197, 200, 208
Module partitioning, 144, 146,

315–317, 324
Monolithic deployment granularity, 151,

159, 181, 205, 214, 311
Monolithic system, 141, 145, 178, 234,

268, 315
Most frequently used (MFU), 292
Most recently used (MRU), 291–292
Motivation, 36, 73, 99, 369, 370, 375
Multigrain proxy CQRS N-tier style, 187
Multitenancy, 44, 45, 50
Multitenant shared database, 320

N
Near cache, 291, 292
Negative consequences, 367, 402
NetKernel, 311, 312

INDEX

447

Network efficiency, 11, 30, 178
Network latency, 184
Network performance, 30, 209
Network topology, 174
Non-architectural constraints, 129, 229,

322, 324
Nonfunctional requirements, 5, 58, 67
Non-normative documents, 372
Nontrivial software systems, 41
Normative documents, 372
NoSQL databases, 157, 158, 184

O
Objectives and key results (OKR), 60
Object management group (OMG), 378
Object-oriented programming (OOP),

199, 301
Observability, 42, 77, 94, 155, 227, 235, 276
Offset, 154, 184, 263
Onion architecture, 149
Online transaction processing (OLTP), 290
Open/closed principle, 111, 241
Open service gateway initiative

(OSGi), 308
Open source software, 44, 68, 99
Orchestrated event-driven abstract style,

284, 288, 331
changing constraints

orchestration-driven
interactions, 271–281

persistent queue messaging, 281–283
preventing data loss, 283, 286

Orchestration, 233, 234, 274, 280
Orchestration-driven interactions

building/implementing mediators
Apache Camel, 276
BPM tools, 277, 278

cloud services, 275
custom component, 274, 275
event-driven architecture, 274
RabbitMQ with workflow

plugins, 276
service mesh, 276

mediator, 272
mediator communication, 278–281
mediator topology, 272, 274
processing components, 271, 272

Orchestration-driven service-oriented
architecture, 284–286

Organizational constraints, 126–128, 196,
214, 219

Organizational tolerance, 341
Out-of-context scorecard anti-pattern, 56

P
Paid-for vendor product, 99
Parsimony, 62
Partitioned shared database constraint,

199–202, 216, 229, 310
Partition key, 263–265
Pattern-based thinking, 315
Pattern-driven architecture, 145, 400

limitations, 104–106
Patterns, 6–9, 38, 133
Paved roads, 355–357, 372, 400
Payoff line, 144, 145
Persistence constraints, 320
Persistent queue messaging

message ordering and delivery
guarantees, 281, 282

reliability and fault tolerance, 283
scalability and load management, 282
task coordination and state

management, 282

INDEX

448

Pipe character, 304
Pivot transaction, 232
Planned vs. actual work, 90
Platform as a Service (PaaS), 129, 180
Plugin architecture, 306, 310
Plug-in architecture constraint, 306
Plugin Framework for Java (PF4J), 308
Point of sale (POS), 166, 167
Positive consequences, 367
Privacy, 47–48
Privacy-preserving architectures, 47
Problem identification, 408, 409
Problem space, 20, 22–24, 59,

75, 127, 146
Processing grid, 296
Product Catalog service, 236
Project vision, 62, 63
Proof of concept (POC), 64, 156
Prospect to qualified lead

conversions, 97–98
Publish/Subscribe (PubSub) model, 262
PubSub, 239, 240, 262–265, 268, 281–283
PubSub broker, 263–265
PubSub messaging, 262–265
Pugh matrix, see Weighted decision matrix

Q
Quantification, 70

R
RabbitMQ, 276, 356
Random replacement (RR), 292
Range, 14
Ready-to-wear suits, 132–133
Relational databases, 157, 158, 165, 184,

185, 231, 318

Remote procedure call (RPC), 178, 179,
182, 215–216

Replicated shared data grid, 292
Request-based API, 268
Request-driven systems, 251
Request for comments (RFC), 349–351
Resource-oriented computing (ROC),

311, 312
Resources, 30, 95–97, 312, 373, 415, 419
REST, 176, 177
REST API, 178

optimized, 238, 239
simplest option, 237, 238

REST architectural style, 11, 36, 136, 304
Resume-driven design, 58
Retention period, 255, 263
Retriable transactions, 232
Return on investment (ROI), 95, 144
Reusability, 43–44
Root-cause analysis, 143
Rosetta Stone, 12

S
Safety, 29, 46, 51
Saga Pattern

challenges and considerations, 234, 235
choreography, 232
compensable transactions, 232
coordination, 232
forces, 235
orchestration, 233, 234
pivot transaction, 232
retriable transactions, 232

Scalability, 31–32, 38, 49, 70, 72,
153–154, 208

Schema registry, 265
Scope of architecture, 15

INDEX

449

Security, 47, 70
Security information and event

management (SIEM), 94, 268
Self-descriptive messages, 305, 306
Self-evaluation, 420, 421
Serverless architecture, 266, 267
Service-Based Abstract Style, 223, 290,

291, 328
adding constraints, 215
architectural capabilities, 215
changing constraints

independent deployability, 214
interservice

communication, 209–214
medium component

granularity, 207–209
coarse federated databases, 219
CQRS constraint, 219
inside service-based

components, 218
mature, medium-grained, domain

partitioned RPC client/server
style, 215, 216

migration, 217
partitioned shared database

constraint, 219
Service-based style, 403
Service consolidation, 226, 242–243
Service data dependencies, 236
Service-level agreement (SLA), 46, 70, 248
Service mesh, 244, 245, 276
Service-oriented architecture (SOA),

284, 285
Service stability, 91–94
Shared kernel, 39
Shared library approach, 213
Shared services, 206, 213, 241–242
Sidecar pattern, 243–245

Simple environment automation
environmental constraint, 180

Simplicity, 45, 154, 159
Single nonpaying customer, 95–96
Single-page application (SPA), 163, 385
Single paying customer, 95–97
Single responsibility principle

(SRP), 111, 224
Single software system, 385, 387, 391
Soft skills, 13, 16, 23–24
Software architecture, 4, 5, 9, 19, 28, 53,

97, 105, 106, 357–358, 367, 369
Software craftsmanship

movement, 203
Software development, 80, 142, 302, 400
Software Metrics Council, 80
Software system, 377–379, 381, 383,

391, 393
SOLID principles, 111
Solution space, 20, 22–24
Sonargraph, 82, 403
SonarQube, 82
Space-based abstract style, 294–299,

324, 332
adding constraints

decoupled database, 293
transactional data stored

in-memory, 290–292
data grid, 295
data pumps, 296, 298
definition, 294
deployment manager, 296
evolvability, 289
messaging grid, 296
performance, 289
processing grid, 296
processing unit, 295
virtualized middleware layer, 296

INDEX

450

Stack method invocation, 178
Stakeholders, 60–62, 67, 69–72
Stamp coupling, 238
Statecharts, 261
State machines, 261
Structural decay, 401
Studs, 302
Subdomains, 146
Subject matter expert (SME), 3
Synchronous communication, 278, 279, 281
SysML, 378
Systematic analysis

counterparts, 422, 423
organization, 419, 420
self-evaluation, 420, 421

System context diagram, 383–385, 391
System landscape diagram, 391–393

T
Tailored off-the-rack, 134, 135
Tailored vs. ready to wear, 134
Tailor-made approach, 400
Tailor-made architecture model, 407
Tailor-made model, 104, 115, 118, 191

architectural capabilities, 68, 70
architectural patterns, 118, 119
architectural styles, 118, 119
architecture workbook, 74
business conversation, 59–60
challenges, 117
documenting and scoring

capabilities, 73–75
first meeting

introduction and roles, 62–63
project vision, 63
questions and clarifications, 63–68
requirements checklist, 65

flat taxonomy, 117
qualifying and quantifying

capabilities, 69–72
reasons for style, 119, 120
stakeholders identification, 60–62

Tailor-made software architecture model
aim of, 341
business stakeholders, 341
existing system, 342, 343
made-to-measure approach, 343–351

Target audience, 99–100
Team empowerment, 404, 405
Technical partitioning, 253, 254
Technical Partitioning Constraint, 192
Technology radar, 22
Techno-optimism, 413
Temporal, 277
Terminology

decisions, 416
evaluation, 416
process, 415
products, 415
services, 416

Testability, 34, 36, 37, 64, 154
Test-driven development (TDD), 124
Third-party libraries, 98
TIOBE Index, 22
Top-level architectural style, 354, 355
Total cost of ownership (TCO), 42
Total quality management (TQM)

strategy, 403
Tracing, 227
Transactional data stored in-memory

extreme constraint, 291
granularity and near cache, 291, 292
performance-sensitive

environments, 290
replicated shared data grid, 292

INDEX

451

Transport costs, 174
Transport layer security (TLS), 276
Twitter, 8, 9
Two-pass approach, 413

U
Ubiquitous language, 195
UML communication/collaboration

diagram, 393
Unified modeling language (UML), 378
Uniform interface

designing, 305, 306
interface constraints, 304, 305
studs/anti-studs, 303

Uniform resource identifiers (URIs), 312
User-perceived performance, 32, 33

V
Variances

definition, 357
management, 358

software architecture, 357, 358
Vendor expenses, 98
Versioned libraries, 241
Video cassette recorder (VCR), 58
Virtualized middleware

layer, 296, 298
Visibility, 42
Visual Studio Code, 310

W, X, Y
Weighted decision matrix, 412, 413
Well-defined domains, 317
Well-defined domains

constraint, 196
Workflow, 41, 154
Workflow-driven workloads, 251
Workflow request orchestration, 280
Workflow topology, 273

Z
Zeebe, 277

INDEX

	Table of Contents
	About the Author
	About the Contributing Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Preface: Holism in Software Architecture
	Introduction
	The Tailor-Made Architecture Model in a Nutshell

	Section 1: Foundations
	Chapter 1: The Scope and Role of Architecture
	What Exactly Is Architecture?
	Why Architecture?
	Patterns
	It Depends

	Thinking, Reasoning, and Navigating Nuance
	Understanding Business Drivers
	Architects Bring Breadth of Knowledge
	The Scope of Architecture
	Summary

	Chapter 2: Breadth of Knowledge: The Architect’s Superpower
	Balancing Depth vs. Breadth
	Discovering Linchpins
	“Soft” Skills
	The Essential Unity of All Knowledge
	New Challenges
	Summary

	Chapter 3: Capabilities: The Language of the Architect
	Architectural Capabilities of Key Interest
	Category: Performance
	Network Efficiency/Network Performance
	Compute Efficiency
	Scalability
	Elasticity
	User-Perceived Performance

	Category: Agility
	Evolvability
	Extensibility
	Composability
	Adaptability

	Testability
	Deployability

	Category: Integration
	Interoperability
	Abstraction
	Workflow

	Category: Feasibility and Manageability
	Visibility
	Observability
	Affordability
	Maintainability
	Reusability
	Multitenancy
	Simplicity

	Category: Reliability
	Fault Tolerance
	Availability

	Category: Safety and Security
	Safety
	Security
	Privacy
	Auditability

	Summary

	Chapter 4: Aligning on Vision and Architectural Requirements
	Laserdisc Solved the Wrong Problem
	Architecture Must Solve the “Right” Problem
	The Tailor-Made Requirements Analysis Process
	Step 1: Preparing for the “Business Conversation”
	Step 2: Identifying Stakeholders
	Step 3: The First Meeting
	Introduction and Roles
	Align on Project Vision
	Questions and Clarifications from Architecture

	Step 4: Identifying Architecture Capability Requirements
	Step 5: Qualifying and Quantifying Capabilities with Stakeholders
	Further Alignment on Business Vision
	Review Architectural Requirements
	Prioritize Business-Critical Capabilities

	Step 6: Documenting and Scoring Capabilities

	Summary

	Chapter 5: KPIs, Metrics, and Data-Driven Architecture Decisions
	What Is a KPI?
	Good and Bad KPIs

	What Motivates Organizations to Use KPIs?
	Evaluating KPIs in Relation to Architecture
	Identifying Requirements from KPIs
	Connecting Architecture Capabilities to KPIs

	KPIs by Department
	Business Management
	Planned Work vs. Actual Work

	Product
	Service Stability

	Sales
	Resources Spent on Single Nonpaying Customer
	Resources Spent on Single Paying Customer

	Marketing
	Prospect to Qualified Lead Conversion Rate

	Financial
	Vendor Expenses

	Presenting KPIs to a Target Audience
	Summary

	Chapter 6: Architectures Are Not “Chosen,” They Are Designed
	The Limitations of Pattern-Driven Architecture
	Summary

	Chapter 7: Architectural Constraints: Designing for Deterministic Capabilities
	The Origins of Architecture Capabilities
	Closing the Capability Gap
	Constraints for Deterministic Outcomes
	Summary

	Chapter 8: Architectural Styles: The Tailor-Made Pattern Language
	Architectural Styles and Architectural Patterns
	Why “Style”
	Summary

	Chapter 9: Architectural X Factors: Environment, Organization, and Teams
	The Many Dimensions of “Fit”
	X Factors and the Road to Microservices
	Team Constraints
	Organizational Constraints
	Environmental Constraints

	Constraint Dependencies
	Summary

	Chapter 10: Abstract Styles: A New Look at Patterns
	Ready-to-Wear
	Tailored Off-the-Rack
	Made-to-Measure
	Bespoke Tailoring

	Summary

	Section 2: Patterns, Abstract Styles, and Architecture As a Continuum
	Chapter 11: Architecture As a Multifaceted Continuum
	Agile Architecture
	When to Evolve Architecture
	How to Evolve Architecture
	Summary

	Chapter 12: The Layered Monolith Abstract Style
	The Big Ball of Mud Style
	Abstraction
	Affordability
	Agility
	Deployability
	Elasticity
	Evolvability
	Fault Tolerance
	Integration
	Performance
	Scalability
	Simplicity
	Testability
	Workflow

	The Semi-structured Big Ball of Mud Style
	The Semi-structured, DB-Backed, Big Ball of Mud Style
	The Layered Monolith Abstract Style
	Inside the Monolith
	The Presentation Layer
	The Services Layer
	The Business Logic Layer
	The Persistence Layer

	Layer Encapsulation and Abstraction
	Summary

	Chapter 13: The Distributed N-Tier Architecture Abstract Style
	Adding Constraints
	The Client/Server Constraint
	API Constraints
	GraphQL API Constraint
	Level 1 REST API
	Backend-for-Frontend (BFF) Constraint
	RPC API Constraint

	Changing Constraints
	Coarse-Grained Component Granularity Constraint
	Independent Deployability
	Team, Organizational, and Environmental Constraints

	The Distributed N-Tier Abstract Style
	Tailoring This Abstract Style
	The CQRS Constraint
	Mixed Component Granularity Constraint
	Precision Tailoring for a Precision Fit

	Summary

	Chapter 14: The Modular Monolith Abstract Style
	Changing Constraints: Domain Partitioning Constraint
	Module Granularity
	Organizing Code Within a Domain Module
	Partitioned Shared Database Constraint
	The Modular Monolith Abstract Style
	Summary

	Chapter 15: The Service-Based Abstract Style
	Changing Constraints: Medium Component Granularity
	Interservice Communication
	Shared Code Across Services
	Team, Environment, and Organizational Constraints

	Independent Deployability
	Implementation Guidance

	Adding Constraints
	The Mature, Medium-Grained, Domain Partitioned RPC Client/Server Style
	The Service-Based Abstract Style
	Tailoring This Abstract Style
	Partitioned Shared Database Constraint
	CQRS Constraint
	Coarse Federated Databases

	Summary

	Chapter 16: The Microservices Abstract Style
	Changing Constraints
	Fine Component Granularity
	Isolated Databases
	The Saga Pattern
	Key Concepts in the Saga Pattern
	Coordination in the Saga Pattern
	Choreography
	Orchestration
	Challenges and Considerations in Implementing the Saga Pattern
	Saga Forces

	Sharing Data
	Simple REST API
	Optimized REST API
	GraphQL
	Asynchronous Replication and Event Sourcing

	Adding Constraints
	Highly Decoupled Components
	Handling Shared Code
	Versioned Libraries
	Shared Services
	Service Consolidation
	The Sidecar Pattern
	Please Repeat Yourself

	The Microservices Abstract Style
	Summary

	Chapter 17: Choreographed Event- Driven Abstract Style
	Changing Constraints
	Technical Partitioning
	Choreography-Driven Interactions
	Architectural Extensibility
	Performance and Scale
	Failures and Error Handling
	Modeling Choreographed Systems
	Tools

	Activity Diagrams, State Machines, and Statecharts
	Behavior-Driven Development (BDD)

	Adding Constraints
	PubSub Messaging
	Inside a PubSub Broker

	The Choreographed Event-Driven Abstract Style
	Summary

	Chapter 18: Orchestrated Event-Driven Abstract Style
	Changing Constraints
	Orchestration-Driven Interactions
	Mediator Topology
	Building/Implementing Mediators
	Custom Component
	Cloud Services
	Service Mesh
	RabbitMQ with Workflow Plug-ins
	Apache Camel
	Business Process Management (BPM) Tools

	Mediator Communication

	Persistent Queue Messaging
	Preventing Data Loss

	Orchestration-Driven Event-Driven Abstract Style
	Summary

	Chapter 19: The Space-Based Abstract Style
	Adding Constraints
	Transactional Data Stored In-Memory
	Granularity and Near Cache
	Replicated Shared Data Grid

	Decoupled Database

	The Space-Based Abstract Style
	The Processing Unit
	The Data Grid
	The Virtualized Middleware Layer
	The Message Grid
	The Processing Grid
	The Deployment Manager
	Data Pumps

	Summary

	Chapter 20: The Microkernel Abstract Style
	Changing Constraints
	Adding Constraints
	Uniform Interface
	Interface Constraints
	Designing an Interface

	Plug-In Architecture
	Roll-Your-Own
	Open Source Options
	Commercial Options

	Fine Component Granularity

	The Microkernel Abstract Style
	Summary

	Chapter 21: Summary of Constraints and Abstract Styles
	A Taxonomy of Architectural Styles
	Level 1: Module Partitioning
	Level 2: Persistence Options
	Level 3: Granularity
	Level 4: Component Communication

	Summary of Abstract Styles
	Summary of Constraints

	Section 3: Executing Architecture Effectively
	Chapter 22: Deriving a Tailor-Made Architecture
	Tailoring Existing Architectures
	Made-to-Measure Architecture
	Phase I: Identifying Abstract Styles
	Phase II: Evaluating for Temporal Fit
	Phase III: Evaluating for Team, Organizational, and Environmental Fit
	Phase IV: Reviewing Candidate Styles
	Phase V: Presenting Candidate Architectures for Review
	Phase VI: Design and Document the Architecture

	Summary

	Chapter 23: Paved Roads and Variances
	Paved Roads
	Variances
	The Role of Variances in Software Architecture
	Managing Variances
	Summary

	Chapter 24: Documenting Architecture
	Architectural Decision Records (ADRs)
	ADRs Serve You
	ADRs Serve Future You
	ADRs Serve Teams
	ADRs Serve Future Teams

	The Anatomy of an ADR
	Title and Metadata
	Context and Problem Statement
	Decision Drivers
	Considered Options
	Decision Outcome
	Positive and Negative Consequences
	Pros and Cons of the Options
	Links

	The Constraint Document
	Title and Metadata
	Motivation
	Description
	Considered Alternatives
	Risks
	Support
	Implementation Guidance
	Governance
	Resources

	The Architectural Style Document
	Title and Introduction
	Motivation
	Summary of Constraints
	Scope
	High-Level Overview
	Links

	Diagramming and Visualizing Architecture
	C4 Abstractions
	Person
	Software System
	Container
	Component

	C4 Diagrams
	System Context Diagram
	Container Diagram
	Component Diagram
	Code Diagram
	System Landscape Diagram
	Dynamic Diagram
	Deployment Diagram

	General Diagram Advice

	Summary

	Chapter 25: Architectural Enforcement and Governance
	Define Clear and Comprehensive Architectural Principles
	Establishing a Governance Framework
	Architectural Enforcement Mechanisms
	Empower Teams to Succeed
	Summary

	Chapter 26: The Art of Being an Architect
	Identify the Problems That Require Change
	Identify Potential Changes
	The Four-Way Test
	Assertiveness vs. Cooperativeness
	The Weighted Decision Matrix
	Understanding the Attributes of an Innovation

	Identify Resources Necessary to Make the Change
	Some Terminology
	Processes
	Products
	Services
	Decisions
	Evaluation

	Identify the Resources Necessary to Make the Change
	Know the Entanglement, Environment, and Endurance of Change
	Entanglement
	Environment
	Endurance

	Know the Organization
	Systematic Analysis
	Rigid/Flexible
	Alignment
	Resources
	Time
	Relationships

	Know Yourself and Your Place in the World
	Systematic Analysis
	Authority
	Accountability
	Responsibility
	Knowledge (Know-How)
	Will

	Truly Know Your Counterparts
	Systematic Analysis
	Authority
	Accountability
	Responsibility
	Knowledge
	Will

	The Diagnostic Matrix
	The Approach Matrix

	Plan to Orchestrate the Change
	Packaging Your Solution
	Optimize Your Proposed Solution
	Optimizing Relative Advantage
	Optimizing Compatibility

	Optimizing Complexity
	Optimizing Trialability
	Optimizing Observability
	Write Down the Plan

	Execute the Plan
	Prepare for Change
	Prepare for Success

	Summary

	Index

