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Foreword

It’s not every day you get asked to write the Foreword to a book that points out that you 

can occasionally be a bit of an asshole. Yet here we are. Life, sometimes, surprises us.

If you don’t know what I am talking about, please go read the “Acknowledgments” 

section. I encourage you to read the whole thing as it is genuine and heartfelt, but 

specifically the first part. I’ll wait.

Back? I don’t dispute his claims, but here’s my side of the story. When I heard there 

was going to be a magician at ÜberConf, my first thought was, “Oh, the balloon animal 

guy must have been busy.” Look, I know who I am. I own it. I made sure to go check out 

his show with the full expectation of Hate Watching it, but within minutes I realized that 

I was completely wrong. Not only was he a great showman, his magic was good. Really 

good. A perfect fit for the conference.

I didn’t go out of my way to track him down afterward. He walked by and I felt 

compelled to say what I said not to demean him, but to very modestly improve an 

otherwise exceptional show. To his credit, he listened patiently, accepted the ding, and 

absorbed the feedback into his performance.

The other reason I said what I said was because he was factually wrong, and I 

chafed at the idea that a room full of software people were given misinformation 

about password management. I couldn’t fix that, but I could try to stop it happening 

again. Because of Michael’s openness to feedback and thoughtful processing of what I 

said, we did.

Too much of what goes on in our industry involves people parroting what other 

people say without thinking about it (cf. current AI hype). This must change. Reality is 

often much more nuanced, contextual, and driven by forces that compel old ideas to fall 

by the wayside in time.

Our social, technical, commercial, geopolitical, and environmental contexts 

are rapidly changing how and where software is being used. This requires us to 

constantly evaluate what makes sense. The role of the architect is to make reality-based 

recommendations, to identify issues, correct for them, and to use their words to convey 

why certain decisions matter to both technical and nontechnical stakeholders.
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It’s a complex role that requires skills in multiple disciplines. It necessitates an 

openness to feedback and a willingness to change your mind when presented with 

new evidence. It requires honesty, rigor, and a compassion for your audience, whoever 

they may be. It also requires you to do the hard work. To think for yourself. You must 

listen to others, but you have to do research and understand history both within your 

organization and your industry. I don’t know many people who embody all of these 

characteristics as well as Michael does. This is why when he felt incapable of producing 

a book as broad and deep and well researched as this one has become, I knew he would 

and told him so.

Good authors need good audiences. If you are reading this, you are very likely a good 

audience and have attributes that already set you apart from your peers. Michael doesn’t 

tell you what to do in this book, he tells you how to think about what to do. Your work 

isn’t done when you finish it. In fact, it is just beginning.

I’m convinced you’ll be better prepared for having read this book.

Brian Sletten
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Preface: Holism in Software 
Architecture

You never change things by fighting the existing reality. To change some-
thing, build a new model that makes the existing model obsolete.

—R. Buckminster Fuller

An undergraduate course on applied mathematics will focus on general principles 

and concepts, simplifying the complex by reducing the dimensionality of the problem 

space. We simplify for the sake of theory, overlooking the true complexity of reality. A 

mass might be attached to a “light, inextensible string.” There are only perfect pulleys, 

frictionless planes, and systems always operating in a vacuum.

It has often been said that “software architecture cannot exist in a vacuum,” yet that 

vacuum remains one that is notoriously difficult to escape. This fact is compounded 

by the common approach of many works in this field, focusing only on one or a small 

number of aspects of the field in the abstract. In reality, architecture forms part of a 

living, breathing ecosystem of humans, technologies, networks, machines, customers, 

dreams, and aspirations. Applying architecture requires making the abstract concrete 

and designing models that integrate all the fragments of architecture theory as well as 

the messiness of the reality that architecture must exist within.

Historically, it has only been possible to connect these discrete pieces into a 

much larger understanding over the course of a lengthy career with a checkered 

record of successes and failures. A more comprehensive and holistic look at this field 

is long overdue, and this integrated view is the ambitious goal of Mastering Software 

Architecture.

Of all the various engineering disciplines that have emerged over the course 

of human history, software is arguably the youngest by a substantial margin. Civil, 

mechanical, and military engineering evolved over millennia. Chemical and electrical 

engineering span centuries. In contrast, software engineering has only been around for a 

handful of decades. We still have much to learn and discover.
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It was only as early as 1975 when the first notions of structured software1 began 

to enter the industry lexicon. At that point, proto-architecture began to emerge as a 

unification of software engineering and systems engineering. In 1976, a handful of 

forward-looking individuals saw a future marked by increasingly complex software 

systems composed of numerous components built and maintained by multiple teams.2 

These pioneers in the software development space began to explore ideas around system 

components, modularity, and higher-level conceptual descriptions of software systems. 

A changing world also required changing software, so increasing effort went into novel 

approaches to optimally structure code for understandability, maintainability, and 

evolvability. By 1990, the first books with an explicit focus on what we now call software 

architecture3 appeared, and the industry soon believed it had found its silver bullet.4 Yet 

we seem doomed to discover again and again that, as Fred Brooks asserted in 19865 and 

Roy Fielding reiterated in 2000,6 there are no silver bullets. Unfortunately, silver bullet 

thinking still permeates our industry.

In software architecture, there are no best practices; there are no universal and 

objective “right answers.” There are only trade-offs. The weight of this fact is so 

significant that Neal Ford and Mark Richards codified this as their First Law of Software 

Architecture.7

Designing systems today requires practitioners to evaluate many decisions, weigh 

many trade-offs, and arrive at a locally optimal design for a given project, system, 

subsystem, or component relative to the time of decision (although a system’s needs 

will change in the future). The decisions and trade-offs span many dimensions, from 

the technological to the human and from the environmental to the organizational. For 

the field of software architecture to continue to evolve, new models must be applied that 

1 Yourdon, E., Constantine, L. (1975). Structured Design: Fundamentals of a Discipline of 
Computer Program and System Design, Yourdon Press
2 De Remer, F., Kron, H. (1976). Programming in the Large Versus Programming in the Small. In: 
IEEE Transactions on Software Engineering, pp. 312–327
3 Best, L. Application Architecture: Modern Large-Scale Information Processing, John Wiley & 
Sons, 1990
4 Cox, B. (1990). There is a Silver Bullet. Byte; Vol. 15, No. 10:209–218
5 Brooks, F. (1986). No Silver Bullet—Essence and Accident in Software Engineering. Proceedings of 
the IFIP Tenth World Computing Conference: 1069–1076
6 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures. 
Doctoral dissertation, University of California, Irvine
7 Ford, N., Richards, M. (2020). Fundamentals of Software Architecture: An Engineering Approach 
O’Reilly
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take a more holistic perspective. The individual patterns, technologies, practices, and 

tools have value and continue to be necessary, but they have proven to be insufficient in 

isolation at making an architect effective.

Consider the headwinds today’s architects face. Since Brad Cox first suggested 

there might be a “silver bullet,” we have learned that many paths toward system design 

are available, and each path yields different outcomes. An outcome that is best for 

one project will be suboptimal for another. Different systems require different sets of 

architectural characteristics and inherent system capabilities. These capabilities must 

originate from business requirements and needs, which are never communicated in the 

domain-specific language and idiom of the architect or programmer. Moreover, where 

these capabilities are not expressed, they must be inferred. If we fail at this foundational 

task, it is impossible to be effective as an architect.

Even if an architect can correctly infer these architectural requirements, if the 

architect’s metaphorical quiver only contains a relatively small number of patterns and 

potential implementations while lacking a more sophisticated and nuanced set of tools 

and mental models to derive architectures rather than shoehorning existing patterns into 

the problem, their efficacy will be severely constrained.

Assuming the architect can perfectly design a target architecture, this, too, is not 

enough. Their vision and architecture must be communicated with high fidelity, such that 

implementation teams may understand and execute effectively. If the most vital details 

of the design are lost in translation, even an optimal architecture for a system will be moot.

Executing architecture within an organization provides yet another challenge. 

Virtually every decision an architect makes will be challenged. Many knowledgeable 

and experienced individuals are responsible for implementing any given project. 

These individuals may have different ideas around how the system should be built. The 

architecture may not be compatible with existing organizational biases, preferences, 

norms, and conventions; yet the macro system must be cohesive which requires 

adherence to architectural standards and conventions. To be effective, the architect must 

not only be skilled in the art of requirements analysis and system design but also be an 

equally skilled communicator and change agent. If we are not able to build consensus 

that spans project stakeholders and teams, much of the design work will be for naught.

Finally, the architect must be aware of messy realities that can be easily overlooked 

in theoretical discussions of architecture yet cannot be ignored in the practice of 

delivering software. These are external factors such as the nature, structure, and maturity 

of the organization; the skills, maturity, and practices of the teams; and the factors 

governing the environment within which the project exists.

Preface: Holism in Software Architecture
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Architecture is no longer as simple as a set of best practices to organize complex 

codebases or modeling tools to describe a system at a high level. It is not just about 

the newest patterns that have emerged over the past 20 years. There are many crucial 

aspects of software architecture beyond the “what” and “how” that require further 

exploration. In short, for our field to continue to evolve, we must embrace the idea of 

holism in our approach to architecture. The work that follows is an ambitious attempt to 

do exactly that.

Preface: Holism in Software Architecture
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Introduction

All models are wrong, but some models are useful.

—George Box

This book, and the Tailor-Made Architecture Model described within, is an attempt to 

address myriad challenges today’s architects face. Much of the body of literature in this 

space addresses these challenges in a piecemeal way or overlooks some of them entirely.

Mastery of software architecture requires an integrated approach that, historically, 

has required a great deal of experience, trial and error, and failures to grow into a truly 

effective architect. In other words, failure is an integral part of the learning process as 

we continue to grow and evolve. This book aims to accelerate your journey to mastery 

by providing a broad base of knowledge to build a career upon. Although many chapters 

could be expanded to fill an entire book, this work primarily aims to illuminate unknown 

unknowns to enable you to continue to pursue depth as needed in your future. This book 

is written to begin your learning journey rather than end it.

While many technical books are written as reference works, where individual 

chapters and subsections may be consulted in isolation in arbitrary order, as necessary, 

to fill specific knowledge or skill gaps, this work is designed to first be read sequentially. 

A holistic look at software architecture requires connecting many discrete and seemingly 

disjoint concepts. Each chapter introduces a number of these concepts and ideas, while 

each subsequent chapter builds upon the growing body of knowledge, connecting them 

in important ways. Furthermore, the structure of this work is designed to combat the 

effect of “semantic diffusion”1 in the tech industry.

1 Fowler, M. (2006). Semantic Diffusion, https://martinfowler.com/bliki/
SemanticDiffusion.html

https://martinfowler.com/bliki/SemanticDiffusion.html
https://martinfowler.com/bliki/SemanticDiffusion.html
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Semantic diffusion occurs when you have a word that is coined by a person 
or group, often with a pretty good definition, but then gets spread through 
the wider community in a way that weakens that definition. This weaken-
ing risks losing the definition entirely – and with it any usefulness to the term.

—Martin Fowler

In the technology space, a great many terms have succumbed to semantic diffusion. 

TDD, REST, agile, DevOps—even architecture patterns such as microservices—are 

examples of ideas that, today, have wildly differing definitions in practice. Semantics 

requires context; in addition to building upon and connecting concepts, the structure 

of this book is intended to set that context within the scope of the pages that follow. This 

is particularly true for the chapters in Section 1 and Section 2. The chapters in Section 1 

build an important foundation for the remainder of the work, even if it may be tempting 

to skim or skip topics that appear familiar; holism requires comprehensive context. 

Likewise, in the chapters in Section 2 where we re-derive the common/mainstream 

architectural patterns, the defining constraints that are shared across multiple patterns 

are only introduced once and simply referenced wherever they reappear. It is important 

to remember that the patterns described in Section 2 are necessary for common 

understanding and communication; however, these are introduced in support of a more 

nuanced approach to system design.

Finally, this book incrementally introduces the Tailor-Made Software Architecture 

Model and its constituent concepts, practices, ceremonies, and motivations. The model 

itself is an integrated approach to software architecture from gathering requirements, to 

design, evaluation, documentation, communication, enforcement, and evolution. Given 

this model is repeatedly referenced throughout the book while individual aspects are 

being described, an advanced summary may be helpful to you, the reader.

�The Tailor-Made Architecture Model in a Nutshell
This model consists of a number of ideas, some of which may be—or appear to be—

familiar to the reader while others may seem new. It must be stressed that none of the 

ideas are revolutionary. Instead, they are simply evolutionary (Figure 1). The heart of this 

model is architectural design by constraint. One of the earliest explorations of this idea 
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appeared in Fred Brooks’ 1975 work The Mythical Man-Month,2 while this same idea is 

central to Foundations for the Study of Software Architecture,3 Architectural Styles and the 

Design of Network Based Software Architectures,4 and Software Architecture Constraint 

Reuse-by-Composition.5

Figure 1.  Timeline of Architectural Design by Constraint

The Tailor-Made Architecture Model (TMAM) begins with the understanding that 

there are no best practices in software architecture as every nontrivial software system 

is unique in both its needs and their measure. Every architecturally significant decision 

carries with it both positive and negative consequences, and, to be effective as an architect, 

the business impact of each consequence must be understood and weighed. Throughout 

this book, you are provided tools and techniques to navigate this complex space.

TMAM deviates from conventional architectural design approaches to address 

their numerous shortcomings. Rather, it embraces the long-standing (but largely 

forgotten) idea of design by constraint. The model extends the 30+ years of work in this 

area by defining both the trade-offs inherent in each constraint, but also associated 

numeric weighting for each trade-off. This replaces much of the trial and error currently 

necessary in many architecture practices with rich, design-time feedback on candidate 

architectures. Additionally, this approach results in much more deterministic outcomes.

2 Fowler, M. (2006). Semantic Diffusion, https://martinfowler.com/bliki/SemanticDiffusion.html
3 Perry, D., Wolf, A. (1992). Foundations for the Study of Software Architecture, ACM SIGSOFT, 
pp. 40–52
4 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures. 
Doctoral dissertation, University of California, Irvine
5 Tibermacine, C., et al. (2016). Software Architecture Constraint Reuse-By-Composition. Future 
Generation Computer Systems, 61, pp. 37–53
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Design by constraint has the side effect of solving endemic problems in 

communicating architectures to the organization. A key concept in TMAM is that of an 

“architectural style” defined by Fielding as “a named, coordinated set of architectural 

constraints.” We will introduce (or, perhaps, reintroduce) the concept of an architectural 

style and show how it solves many architecture communication issues and addresses the 

inherent challenge of semantic diffusion within an organization.

While this work alone is valuable and has the potential to change the way many 

practitioners think about architecture and system design, architecture decisions must be 

made holistically. Beyond meeting the business and system needs, for an architecture to 

truly fit it must be compatible and within reach of the teams and organizations as well 

as the environments within which they operate. TMAM accepts that people are integral 

to the architect’s success or failure. Thus, people and the organizations within which 

they exist form critical components to the model. Therefore, TMAM connects these 

architecture decisions to architectural X factors, thereby providing another dimension of 

design-time feedback on architectures that might look good “on paper” but will likely fail 

in practice.

TMAM rejects the idea that architectures must be rigidly defined by isolated and 

largely incompatible patterns. Our exploration of design by constraint will prove that 

architecture exists as a continuum rather than a finite set of discrete patterns. This aspect 

of the model forms a foundation for building truly agile and evolvable architectures that 

need neither be over- or under-engineered up front. Section 2 explores the common 

architecture patterns and their defining architectural constraints and how these patterns 

are modified or evolved by adding/changing constraints at design time (or modernization 

time). Ultimately, this section demonstrates the power and flexibility of the model as well 

as providing you with additional tools to reduce risk, confusion, and missed expectations.

TMAM emphasizes the importance of holistic architectural fit. Fit requires tailoring, 

tweaking, and customization (both up front and over time), and this model produces 

designs which are highly customizable to achieve this ideal fit.

Finally, TMAM is not just about design, but execution. The model includes 

processes, practices, and ceremonies around documentation, communication, and 

effecting meaningful change across teams and organizations. Additionally, mastery 

of software architecture requires a spectrum of skills to build strategic relationships, 

engender buy-in, and support the organization toward the optimal system design.
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In short, TMAM is a total, integrated, holistic approach to software architecture that 

will provide you with many powerful tools and mental models to become more effective 

in your practice. A growing body of contributors are now expanding this model. If you 

would like to subscribe to updates or get hands-on training and experience for yourself 

or your teams, visit https://MasteringSoftwareArchitecture.com/.
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CHAPTER 1

The Scope and Role  
of Architecture

You don‘t drive the architecture, the requirements do. You do your best to 
serve their needs.

—Richard Monson-Haefel

Like so many words in software development today, the term “architect” has become 

vague and overloaded. A quick survey of open architect roles along with their 

requirements and job descriptions underscores the diversity (and often incompatibility) 

of existing definitions. For some, rightly or wrongly, an architect is primarily a kind 

of super-developer (a senior developer++, if you will) responsible for the patterns and 

conventions adopted by the rest of the team. For others, an architect is just a cloud 

platform expert. There are enterprise architects, solution architects, system architects, 

and application architects, to name but a few. Many more definitions and variations 

exist in the wild. Some define the scope of an individual’s contributions; others define 

the area of expertise within which the individual must specialize. This muddies the 

waters surrounding expectations of the role and may lead to impostor syndrome as it 

is easy to find a variety of “architect” jobs or positions that you or I am yet seemingly 

unqualified for.

Although many sub-specializations exist, leading to a variety of paths an architect 

may pursue over the course of their career, there remains an ongoing tension between 

the idea that an architect is yet another type of software development specialist and the 

idea that an architect is a type of “master generalist.” As will be explored further, this 

work asserts that an architect is not simply another species of subject matter expert 

(SME), but rather a “master generalist” who trades depth of knowledge in a small 

https://doi.org/10.1007/979-8-8688-0410-6_1#DOI
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number of areas for breadth of knowledge across a spectrum of areas while deploying 

diverse mental models. In this practice, the architect will collaborate with SMEs while 

bringing a higher-level perspective to the solution.

Likewise, the definition of “architecture” has evolved considerably since the term 

was first introduced into the technology industry lexicon in the late 1980s. Architecture 

can exist in various scopes within a project, system, or organization. For the context 

of this book, these terms must be defined generally by exploring their common 

and unifying themes and ideas. We can deduce that “architects,” at some level, are 

responsible for the decisions relating to “architecture,” so perhaps it would be wise to 

begin by defining “architecture.”

�What Exactly Is Architecture?
Many definitions have been put forward in answer to this question. For example, in 2007, 

the International Organization for Standardization (ISO) published ISO/IEC 42010:2007 

Systems and software engineering — Recommended practice for architectural description 

of software-intensive systems which defines software architecture as

The fundamental organization of a system, embodied in its components, 
their relationships to each other and the environment, and the principles 
governing its design and evolution.

We see similar definitions across a host of other sources, including Software Systems 

Architecture by Rozanski and Woods who put forward this definition:

Software architecture is the discipline concerned with model-based descrip-
tion and analysis of software systems, with a particular focus on the sys-
tem’s highest-level components and their interaction.

And in Software Architecture in Practice by Bass, Clements, and Kazman, we see 

software architecture defined as

…the set of structures needed to reason about the system, which comprise 
software elements, relations among them, and properties of both.

as well as many others. The common themes relate to the organization of the system, 

its major components or elements, their interactions, and the decisions that drive the 

design and evolution of the system.

Chapter 1  The Scope and Role of Architecture 
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While all these definitions address the “what” of software architecture, we must also 

consider the why.

�Why Architecture?
Why is more important than how-Second Law of Software Architecture1

“Why” is the operative word here. What value does architectural thinking contribute 

over that of a senior developer focused on building and delivering the features of the 

software system?

At its core, architecture is the set of high-level decisions driving the essence of the 

software, transcending functional requirements and defining everything it can do beyond 

providing the defined features and functions.

The ultimate success of a system is defined not only by delivering the right set of 

features, but those features must be implemented in such a way that crucial capabilities 

(e.g., scalability, elasticity, evolvability, agility, overall simplicity, etc.) are also present 

in the system. These capabilities (frequently referred to by many other names, including 

architectural characteristics, system quality attributes, nonfunctional requirements, or 

simply -ilities) are the heart of the “why” in software architecture. Architecture is much 

more than components and their interactions or a high-level description of the system; 

architecture must constrain the degrees of freedom in software development to ensure 

the macro system exhibits the necessary capabilities for the overall success of the system.

In pursuit of this goal, many approaches were developed, and, over time, architecture 

patterns began to emerge. A pattern is a general, reusable approach to solving common 

and recurring problems in system design or development. The common/recurring 

problems addressed in architecture patterns revolve around approaches to induce those 

crucial capabilities alongside delivery of desired features and functions. Architectural 

patterns describe the structure, components, and interactions of a software system, but, 

it must be reiterated, architecture is much more than components and their interactions, 

as will be seen in continued exploration of this topic.

1 Ford, N., & Richards, M. (2020). Fundamentals of software architecture: An engineering approach. 
O’Reilly Media

Chapter 1  The Scope and Role of Architecture 
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�Patterns
Early patterns simply focused on approaches to organizing code for maintainability, 

understandability, and reuse. As expectations of software evolved from monolithic 

desktop or mainframe applications, new problems arose that required innovative 

solutions. Both single-host and distributed client-server architectures emerged 

with the requirement to scale to support more users or decomposition to manage 

growing complexity (or both). This approach also provides independent evolvability 

by decoupling dependent components and allowing modifications to one component 

to take place without impacting others. These new capability requirements became 

particularly important as applications were increasingly deployed to the Internet. 

Architects discovered a new disparity between existing conventions, their relative 

strengths, and which capabilities the software had to support that, in turn, led to more 

patterns.

Patterns are often a product of their time and sometimes fall into disfavor as 

better alternatives appear. Consequently, some patterns may seldom be used for new 

development but remain relevant in architectural literature both for the legacy systems 

that still apply them and as teaching tools to learn lessons from both their successes and 

failures, thereby informing future architectural decisions.

At the time of this writing, most architecture literature focuses on one or more of 

several patterns prescribing a particular organization of the components to induce. 

These patterns promise expected strengths and weaknesses when it comes to desired 

system capabilities. An overview of these patterns can be seen in Figure 1-1 and will be 

explored in depth in Section 2 of this book.

Chapter 1  The Scope and Role of Architecture 
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At a high level, the architectural patterns in Figure 1-1 represent nine options for 

defining components, their boundaries, and their interactions. It is possible to build 

a software system with a given set of features/functions using any of the patterns. 

Remember, however, architecture transcends features and functions by providing a set of 

high-level design decisions that determine the overall capabilities of the system beyond 

the features.

If you do not have the right architecture in place—or you choose the wrong 
architecture for a given project—generally the functionality may work, but 
the application as a whole will not be a success.

—Mark Richards

This quote is exemplified by a study of the launch of Twitter in 2006/2007.2 

Twitter was launched on the hypothesis that people would find Twitter’s concept of 

“microblogging” compelling. A set of features was built and deployed that were a hit. 

Within a few months, however, users began to see the infamous fail whale (Figure 1-2) 

indicating that the system was overcapacity and thus currently unavailable.

Figure 1-2.  The Infamous Twitter Fail Whale

2 Hoff, T. (2009). Scaling Twitter: Making Twitter 10000 Percent Faster. High Scalability. https://
highscalability.com/scaling-twitter-making-twitter-10000-percent-faster/
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While the functionality of Twitter worked, the system, as a whole, struggled. It lacked 

important capabilities that originated not from features and functionality, but from 

architecturally significant decisions. It lacked key architectural capabilities. Over the 

next five to six years, Twitter evolved their architecture to elicit these crucial capabilities 

like scalability, elasticity, and reliability. Although the features remained largely static 

during the transition, the capabilities ensured the platform would continue to grow more 

successful over the next several years. Does that mean the architecture of 2006 Twitter 

was wrong? Not necessarily. The original architecture of Twitter likely fit in 2006, but it 

did not in 2008.

“Likely” is the operative word here. Based on the frequent, high-profile failures of 

early Twitter and the subsequent redesign, it would be natural for you or me to deduce 

that the architecture was a failure. Reality, as always, is far more nuanced. Architecture 

must be driven by business value, and the highest business value can—and will—change 

over time. This is exemplified in Eric Reis’ book, The Lean Startup, which emphasizes the 

value of a Minimum Viable Product (MVP).

An argument can be made that, despite the limitations and outages, the initial 

architecture of Twitter was the locally optimal choice in 2006. For a startup with limited 

runway and an unorthodox idea, there is value in getting software released quickly to 

resolve market uncertainty. In fact, as Joe Yoder, who popularized the term “Big Ball of 

Mud”3 to refer to a “haphazardly structured, sprawling, sloppy, duct-tape and bailing 

wire, spaghetti code jungle,” reminds us, there can even be value in a big ball of mud.

�It Depends
Designing for billions of monthly visits often makes little sense when the business does 

not yet know if there will be any interest in the project at all. That level of architecture 

and engineering leaves little room for pivoting and creates excessively long feedback 

cycles. At the same time, there is value in building something scalable out of the gate 

to avoid considerable growing pains. Each approach has pros and cons; each approach 

involves trade-offs. Which is best? As is so often the case in software architecture, the 

answer is it depends. There is no objective “right” answer; there are no “best practices,” 

only trade-offs. Tools and techniques to help you navigate this tension and move toward 

an optimal solution will be introduced later in the book.

3 Foote, B., & Yoder, J. (1997). Big Ball of Mud. Presented at the 4th Conference on Patterns, 
Languages of Programs (PLoP)
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This reality, however, makes our job challenging, but it also makes effective 

architects increasingly valuable. In late 2022, large language models (LLMs) rocketed 

into the collective consciousness with the introduction of ChatGPT. These models 

quickly began to demonstrate proficiency in generating code from natural language 

requirements which was previously the exclusive domain of humans. Largely through 

inductive learning, these models can connect the concepts expressed in a prompt with 

the syntax rules of a language to produce what is often working code and even evaluate 

different implementation options. At this level, however, generating code distills down to 

an admittedly complex set of best practices and rules to follow. Conversely, they tend to 

perform poorly in problem spaces that are not so cut and dried and often require explicit 

prompting from an experienced practitioner to account for security, performance, 

documentation, reuse, conventions, etc. In other words, they might be able to write 

code, but are a long way from being able to design systems as the decision contexts go 

well beyond what can be inferred and deduced from the training corpus. They lack the 

kind of thinking, reasoning, and navigation of nuance that we, as good architects, must 

exhibit. Currently, indications continue to suggest that level of reasoning remains a long 

way off. A further exploration of architectural reasoning is needed.

�Thinking, Reasoning, and Navigating Nuance
There is currently no direct, academic path to becoming an architect. Consequently, 

most architects grow into the role from an individual contributor (IC) developer role 

after a number of years.

Imagine, if you will, the hypothetical path of a self-taught developer entering 

the industry with the ability to cobble together some code to make the computer do 

something. Over time, this developer begins to see that their approach of hacking 

together code to ship features may be an expedient means to an end, but the resulting 

codebase is becoming unwieldy and difficult to maintain. Also, over time, they begin 

to adopt design patterns that make the code more maintainable and robust. This 

process continues over the years, and this developer gains increasingly more long-term 

perspective. Eventually, if they have had to live with—and learn from—their decisions, 

they develop a broad base of knowledge and a sense of what good code and good 

systems look like. It is this experience that yields fertile soil for becoming a burgeoning 

architect. The transformation, however, is not complete.

Chapter 1  The Scope and Role of Architecture 
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Since architecture is, at its core, grounded in decisions that elicit capabilities in a 

system—and given there are many different paths to achieve said capabilities—each 

fraught with trade-offs and pitfalls—architecture decisions should originate from 

thinking about capabilities, not code. This is not always easy. Take the ongoing debates 

about REST vs. graphQL vs. gRPC vs. whatever. The function of all these things might 

reductively look like different approaches to simply move data across the wire, yet 

the capabilities of each can be massively different. gRPC trades performance for tight 

coupling and highly constrained clients. graphQL brings speed to market, developer 

productivity, and some flexibility at the cost of long-term evolvability, scalability, 

performance, and security. “REST,” in the form of RPC over HTTP, provides common 

and well-supported protocols for integration along with the convenient mental model 

of exposing functionality over the wire. Conversely, “REST” that more closely aligns to 

the REST Architectural Style as defined by Fielding4 allows a system to be completely 

decoupled enabling significant long-term evolvability, abstraction, and longevity, but 

that trade is made in exchange for increased up-front design work and potentially 

reduced network efficiency. An average developer might argue that one of these options 

is objectively superior, but thinking like an architect means realizing that none of these 

are inherently good or bad, superior or inferior, nor necessarily an either/or proposition; 

they are different approaches that involve different trade-offs. The best choice is the 

one with the optimal set of trade-offs based on the needs of the business and the actual 

problems being solved.

There are no best practices, only trade-offs.

Every decision involves trade-offs. Every. Single. One.

True perfection is often far too elusive to be obtainable within reasonable time and 

budget constraints. Because there will always be trade-offs, it is frequently said architects 

do not aim to produce the “best” architecture, just the “least worst” architecture. This 

looks different for every project, every time. It will even look different for the same 

project over time (e.g., the earlier Twitter example). This is not an easy space to navigate. 

Effective architects aim to define an architecture that holistically aligns with the specific 

product needs and the nature of the business.

4 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures. 
Doctoral dissertation, University of California, Irvine
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�Understanding Business Drivers
Capabilities alone are not enough; they must be the subjectively “right” capabilities. 

Capabilities must be aligned with business drivers, and every architectural decision 

must be made in the context of the business value being provided (and, potentially, 

the business value being sacrificed). No capability comes for free, and every decision 

is a trade-off that must be made deliberately and mindfully. Far too many architecture 

decisions are made first based on preferences, biases, resume skill gaps, or the architect’s 

comfort zone. Ultimately, no matter how cool, how shiny, how trendy, how good 

technology X will look on the architect’s resume, if it does not directly solve a business 

problem and provide relative business value it has no place in their architecture. In 

short, architects cannot have a conversation about architecture until they have had the 

business/customer value conversation.

Beyond the current problem set, the architect brings a different and/or broader 

perspective. Interpreting business drivers requires a certain visionary quality, to look at 

the present with an eye toward the future (without overengineering the solution) and 

often reading between the lines. As the saying goes in jazz, “you’ve got to listen to the 

notes that aren’t being played.”

The typical business problem space is complex. There are often many competing 

priorities and several interrelated and cross-dependent problems to solve. It would 

be wonderful if the business spoke the language of developers and architects, but 

that fantasy has no basis in reality. The business is going to speak the language of the 

business. They will talk about things like feasibility, cost, compliance, user satisfaction, 

and domain challenges.

Communication failures often account for a significant portion of product failures. 

A core skill of an architect is to be able to speak the language of the business and 

translate business requirements, vision, marketing materials, and pitch decks into the 

language of the architect. Further, architects must communicate with the development 

teams (as well as other organizational areas) in their language. In short, as architect 

and speaker Nate Schutta often says, architects must become the Organizational 

Rosetta Stone (Figure 1-3).

Chapter 1  The Scope and Role of Architecture 
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Figure 1-3.  The Rosetta Stone5

This is all, of course, part of developing a new set of “soft skills” that do not always 

come naturally.

�Architects Bring Breadth of Knowledge
In addition to shifting focus from functions to capabilities, architects must possess 

vision, wisdom, and problem-solving skills. This shift represents a stark contrast 

between the role of developer and the role of an architect. The core value proposition 

of a developer is often largely a function of their technical depth. Developers must 

bring deep knowledge of the specific technologies they work with. Transitioning from 

developer to architect requires inverting focus to breadth rather than depth, which can 

5 Hillewaert, H. (November 21, 2007). The Rosetta Stone in the British Museum [Photograph]. 
Wikimedia Foundation. https://commons.wikimedia.org/wiki/File:Rosetta_Stone.
JPG. Licensed under CC BY-SA 4.0
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be a challenging shift. It often means letting go of a certain amount of depth to focus on 

a broader foundation of knowledge. This is necessary as architects must make room for 

additional tools in their professional toolbox.

At a minimum, architects must have a broad awareness of various technologies 

and ideas, including ones that do not seem relevant to any current project. This 

provides what author David Epstein calls “range.”6 The range concept champions 

breadth of knowledge to power our ability to connect diverse ideas in novel ways. This 

prevents practitioners from overreliance on a small number of solutions and opens our 

perspective to creative and innovative potential solutions. In short, range vastly expands 

the domain of potential options in various pursuits.

…breadth of training predicts breadth of transfer. That is, the more contexts 
in which something is learned, the more the learner creates abstract mod-
els, and the less they rely on any particular example. Learners become bet-
ter at applying their knowledge to a situation they’ve never seen before, 
which is the essence of creativity.

—David Epstein, Range

An architect’s technical (and nontechnical) breadth is the toolbox from which they 

work. If an architect only possesses depth in a handful of areas, they too easily fall into 

the trap of solution space thinking (e.g., this is what I know how to do, therefore this is 

what I will do). Depth still matters, but balancing depth in some areas vs. breadth in 

others is a tightrope that we architects must constantly walk. Naturally, this requires 

yet another mindset shift as well as letting go of some degree of depth (which has been 

many technologists’ core value proposition throughout most of their careers).

Therefore, we must also continuously refine our skills in broad learning and abstract 

thinking. This requires understanding the broader technology ecosystem, the available 

tools, the problems they solve, and their relative strengths and weaknesses.

6 Epstein, D. (2019). Range: How Generalists Triumph in a Specialized World. Macmillan
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�The Scope of Architecture
The scope of architecture varies by the role and the individual. An enterprise architect 

might drive organization-wide architecture constraints, but there is no one-size- 

fits-all blueprint at that level. The needs of individual subsystems, applications, and 

components might necessitate deviation from prescribed conventions. Solution or 

systems architects may need to work with an enterprise architect to negotiate variances, 

or they may have free reign over the system(s) they oversee. The same is often true of 

application architects working under solution architects. Typically, architects with 

more focused scopes will work more closely with the developers to assist in adhering to 

architectural guidelines and guardrails, while architects tasked with broader scopes will 

often work more closely with the business (Figure 1-4).

Figure 1-4.  Example Architecture Scopes

Although not all levels of architecture will require detailed interfacing with the 

business, the business drivers and business value must be understood at all levels.

�Summary
Architecture may be about components, their interactions, and the rules governing 

their interaction, but it is so much more. The architectural decisions must be driven, 

first and foremost, by business value. Business value is achieved by identifying the right 

capabilities for the system and making decisions that induce those capabilities.
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In addition to some level of technical prowess, architects must possess many “soft” 

skills. Communication, business domain knowledge, analyst skills, and a broader 

perspective are all crucial. While breadth resolves many cognitive biases, it introduces a 

new one; “the curse of knowledge,” a concept popularized by economists Colin Camerer, 

George Loewenstein, and Martin Weber.7 As we develop breadth and range, we risk a 

new cognitive bias where we assume other people know what we know.

For developers moving into an architect role, many shifts in how they work, think, 

and learn are necessary. Those transitioning are encouraged to enter the space with 

“the beginner’s mind” and the necessary willingness to be “new” at something again 

(which can be uncomfortable 10+ years into a career). It can be daunting, but it can 

also be rewarding. We must adopt and maintain a mindset of continuous learning with 

an emphasis on understanding to support application of what we learn. We must also 

be cautious of many marketers and industry pundits who peddle their wares as “silver 

bullets.”

Data is not information, information is not knowledge, knowledge is not 
understanding, and understanding is not wisdom.

—Cliff Stoll

Also, note that the role of “architect,” like “leader,” is not necessarily constrained to 

specific titles. Just as an individual can embody the virtues and attributes of a leader without 

a formal title, many thoughtful developers can perform the role of a great architect without 

ever possessing the formal title or occupying a specific box on the org chart.

7 Camerer, C., Loewenstein, G., Weber, M. (1989). The Curse of Knowledge in Economic Setting: An 
Experimental Analysis. Journal of Political Economy 97(5)
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CHAPTER 2

Breadth of Knowledge: 
The Architect’s 
Superpower

The ideal engineer is a composite … not a scientist, not a mathematician, 
not a sociologist, or a writer; but [one who] may use the knowledge and 
techniques of any or all of these disciplines in solving engineering problems.

—N. W. Dougherty

In 1932, a young Claude Shannon entered the University of Michigan with the intention 

of building depth in the fields of engineering and mathematics, but Shannon was a 

passionately curious individual who prized breadth as much as depth. Despite the 

considerable academic load of a dual major, Shannon made time to pursue many 

tangents. He participated in the Junior Math Club, the Radio Club, the gymnastics team; 

he taught himself to juggle and ride a unicycle. He would also take elective classes on 

subjects outside of his majors.1 Through the narrow lens of that time, it might appear 

that Shannon lacked focus and was squandering his chance at an academic career, but it 

was his breadth of knowledge and diversity of thought that paved the way for Shannon to 

fundamentally change the world.

The seemingly inconsequential decision that would define the course of much of 

Shannon’s life was to take Philosophy 33 as an elective. According to the University of 

Michigan General Register, Philosophy 33 taught students “the general principles of both 

inductive and deductive logic.”

1 Soni, J., & Goodman, R. (2017). A Mind at Play. Simon and Schuster

https://doi.org/10.1007/979-8-8688-0410-6_2#DOI
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It is important to note that, while mathematics and philosophy have a concept of 

logic, those concepts—and how they are applied—differ in key ways. Philosophy takes 

a broader view of logic, with a particular emphasis on rhetoric and syllogisms, what 

makes a valid argument, how arguments may be classified, and how arguments function 

in language. This education undoubtedly armed Shannon with new mental models 

to bring to his core academic focus, but, more importantly, it introduced Shannon to 

new ideas to which he might not have otherwise been exposed, including the work of a 

relatively obscure mid-19th-century philosopher, George Boole, who explored a unique 

approach to symbolic logic.

1st. To express the Proposition, “The proposition X is true.”

x = 1

2nd. To express the Proposition, “The proposition X is false.”

x = 0.

3rd. To express the disjunctive Proposition, “Either the proposition X is true 
or the proposition Y is true;” it being thereby implied that the said proposi-
tions are mutually exclusive, that is to say, that one only of them is true

x(1 − y) + y(1 − x) = 1

An Investigation of the Laws of Thought (1854)2

This idea of performing logic with ones and zeros found their way into Shannon’s 

postgraduate thesis on electronic switching circuits, and later his ideas grew and 

blossomed with the publication of his landmark paper “A Mathematical Theory of 

Communication”3 which paved the way for information theory and our modern digital 

age. With Shannon’s insight, entire classes of problems once thought intractable were 

solved. The linchpin originated from exposure to a broader set of ideas and mental 

models, including George Boole’s work from 1847 and 1854, then connecting them. This 

is an example of linchpin knowledge. Facts, ideas, or patterns that single-handedly bring 

the whole solution together; the one dot that connects all the dots.

2 Boole, G. (1854). An Investigation of the Laws of Thought
3 Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical 
Journal, 27(3)

Chapter 2  Breadth of Knowledge: The Architect’s Superpower



19

It just happened that no one else was familiar with both those fields at the 
same time

—Claude Shannon4

There is an ongoing debate in the technology world, whether a technologist should 

focus on depth and specialization or whether they should focus on breadth. Like so 

many such debates, this need not be—and is not—an either/or proposition.

Certainly, early in one’s career, depth in a particular skill is a key value proposition 

and often necessary for “breaking into” the industry. As one progresses in terms of 

seniority, often breadth—in addition to strategic depth—becomes increasingly valuable. 

Good, senior developers are often described as “T-Shaped” with depth in the small 

number of tools and technologies they work with on a day-to-day basis, but that depth 

is surrounded by shallow breadth. Different mental models, awareness of different 

technologies, etc.

At the level of architect, however, we are expected to have a much broader view of 

the world. Our metaphorical shape is often the “broken comb,” vast breadth and varying 

amounts of depth in many areas. The areas of breadth and (limited) depth encompass 

everything from various business domains, human relations, various coding skills, and 

the state of the current technology landscape. Our breadth, consequently, relies on many 

diverse mental models. In the world of the architect, deep/narrow knowledge becomes 

a liability as it hampers our ability to connect problems with solutions. The linchpin 

to whatever problem we may face likely resides outside of a single, narrow view. Like 

everything in the field of software architecture, breadth and depth are trade-offs. The 

key, as always, is finding the optimal balance.

�Balancing Depth vs. Breadth
Anything an individual knows (or does not know) will fall into one of four quadrants in 

the “Knowledge Matrix” (Figure 2-1).

4 Horgan, J. (1992). Claude Shannon: Tinkerer, prankster, and father of information theory. IEEE 
Spectrum, 29(4), 34–411
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Figure 2-1.  The Knowledge Matrix

The fundamental and inescapable truth is there will always be gaps in any 

technologist’s knowledge. Often, these gaps are merely tactical or syntactic: “How do I do 

X with framework Y?” or “How do I apply construct A in language B?” These are examples 

of known unknowns and are rarely linchpins. The unknown unknowns, however, are 

more insidious, and it is here that most linchpins lie. To become effective, architects 

must continually strive to move as much as possible from the unknown unknowns to the 

known unknowns.

The shift from depth toward breadth requires the architect to carefully choose which 

areas of depth should be allowed to atrophy to free up time and energy to build breadth 

and cognitive diversity. With this new capacity, the architect must spend more time 

exploring what Allen Newell and Herbert Simon referred to as the “problem space” and 

“solution space.”5

In software engineering, the solution space is the domain of all the interesting 

technologies, tools, patterns, frameworks, languages, and libraries, including those that 

typically appear in certain roles (e.g., operations, security, and QA). Although we may 

never develop mastery or even proficiency with most of these tools, we should possess 

sufficient awareness to be able to answer questions like: “What is this technology?” 

“What problem does this solve?” “What are its trade-offs?”

5 Newell, A., & Simon, H. A. (1972). Human Problem Solving. Prentice-Hall
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There are several strategies to accomplish this. Live technology conferences 

generally present a broad spectrum of timely content and provide value both from the 

lectures and the “hallway track” where ad hoc conversations between attendees take 

place between sessions, during meals, or after hours. These conversations not only 

reframe and add context to new knowledge but also allow us to escape the echo chamber 

of our own team and organization.

Attending conferences consistently proves to be a valuable learning environment. 

At a live conference, the ad hoc conversations arm us with multiple contexts, but, 

additionally, the immersive learning environment is conducive to long-term retention. 

This is exemplified by the “Learning Pyramid” (Figure 2-2) that originated at the National 

Training Laboratories Institute in the early 1960s.6 

Figure 2-2.  Learning Pyramid or Cone of Learning7

6 Letrud, Kåre (2012). A rebuttal of NTL Institute’s learning pyramid. Education (133): 117–124
7 Anderson, J. (2012). Learning Pyramid or Cone of Learning [Illustration]. Wikimedia Foundation. 
https://en.wikipedia.org/wiki/Learning_pyramid#/media/File:Edgar_Dale’s_cone_of_
learning.png.https://commons.wikimedia.org/wiki/File:Rosetta_Stone.JPG. Licensed under 
CC BY-SA 3.0
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Unfortunately, organizational responsibilities and realities often limit time for 

conferences. However, conference lectures are often published to video sharing sites. 

While the additional value of the immersive environment and hallway track may be 

absent, these videos provide valuable information and sufficient focus on new ideas and 

technologies to chip away at our unknown unknowns.

Another valuable source of diverse new ideas and technologies is the available 

collection of industry news aggregators on the Web. At the time of this writing, the 

technology consulting company Thoughtworks publishes a quarterly “Technology 

Radar” (https://www.thoughtworks.com/radar) and provides tools for practitioners to 

begin to create and cultivate your own technology radar.

In addition to Thoughtworks’ technology radar, the TIOBE Index (https://tiobe.
com/tiobe-index/) is also useful for navigating addition or inclusion of languages and/

or technologies to your architecture.

Finally, Tiago Forte’s Building a Second Brain methodology8 prescribes a high-level 

filing system for knowledge that might not yet need to be top of mind but can be easily 

located and retrieved at a later date for review or expansion.

By cultivating and maintaining breadth of knowledge of the technology and solution 

landscape, you are better positioned to select the right solution for a given problem or, 

at the very least, to know where to begin exploring to build sufficient depth to tackle the 

problem at hand.

�Discovering Linchpins
The solution space is interesting and valuable, but it does not provide enough to enable 

an architect to be effective. The solution space is the domain of answers. Perhaps, at one 

time, technology problems were so homogeneous that architects could leap directly 

into the solution space and enjoy a reasonable probability of success. Today, however, 

the problems we solve are much more complex. It is not enough for architects to simply 

understand the answers, they must also understand the questions.

The “problem space,” while typically less interesting from an engineering 

perspective, is where the questions reside. Only by exploring the problem space can 

architects begin to ask the right questions, and only by asking the right questions can 

they consistently map problems to solutions. Discovering linchpin knowledge begins 

8 Forte, T. (2022). Building a Second Brain. Atria Books
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with skillfully navigating the problem space. Understanding the problem, the business 

context, and asking the right questions at the outset of a project will often lead architects 

into surprising and unexpected places. Jumping directly to the solution space rarely 

yields new insights.

If I had only one hour to save the world, I would spend fifty-five minutes 
defining the problem, and only five minutes finding the solution.

—Albert Einstein

�“Soft” Skills
The final area where architects must expand their knowledge is in the realm of the so- 

called “soft” skills. Architecture is more than designing solutions; those solutions must 

eventually make it into production. Tools to communicate with the business, approaches 

to build consensus, the ability to be “wrong” and course correct, relationship building, 

and the ability to inspire teams are all important.

Arguably, the greatest work in this area remains the timeless How to Win Friends 

and Influence People by Dale Carnegie. This comprehensive work teaches empathy, 

relationship building, communication and collaboration skills, and negotiation. I believe 

this book should be required reading for all architects because so much of an architect’s 

role involves skillful communication, collaboration, negotiation, and building broad 

consensus across the organization.

Wisdom from Schusselig

Previously in my career I was on a team that was embracing Agile in the way 
programmers with limited experience do. We were accelerating our release 
schedule and feeling great. One release went out that resulted in an outage for 
several hours. The fix was not a rollback, but another release to fix the culprit bug. 
In the meantime, a manager of a certain ilk took the opportunity to convince the 
owners of the company to rein us in significantly. Granted, we eschewed things 
like comprehensive test suites, automated build and deploy, but worse we failed to 
honor the two “soft skill” values on the [agile] manifesto.
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Had someone on the team had the breadth to nurture the relationships with the 
business side of the company, we could have avoided going from “release features 
when they’re ready” to “once a month” releases (for bug fixes too—if the bug was 
big enough to warrant a release, then that meant rollback). Such a person could 
have proven the linchpin to get us to where we wanted to go (both the tech team 
and the business folks).

�The Essential Unity of All Knowledge
Filling in linchpin gaps also requires looking at problems from new and unique 

perspectives. We gain these perspectives when we deviate from the course of deep 

specialization and explore ideas from outside of our core domain.

Specialization tends to shut off the wide-band tuning searches and thus to 
preclude further discovery.

—R. Buckminster Fuller9

Richard Hamming, a renowned mathematician and computer scientist, worked 

to instill a sense of holism in his students’ approach to knowledge acquisition. He 

acknowledged that knowledge is taught as individual fragments but urged his students to 

embrace the connected nature of knowledge and value all knowledge equally.

In your future anything and everything you know might be useful, but if you 
believe the problem is in one area you are not apt to use information that is 
relevant, but which occurred [elsewhere]

—Richard Hamming10

Shannon could not have anticipated the impact of both taking the philosophy class 

and learning Boolean logic during his undergraduate program. Often, the value of some 

idea, fact, or mental model can only be realized in hindsight. Beyond the problem space 

and the solution space, an architect should possess a level of intellectual curiosity and be 

willing to let that curiosity and intuition drive continuous broader exploration.

9 Fuller, R. B. (1969). Operating Manual for Spaceship Earth. Simon & Schuster
10 Hamming, R. W. (2020). The Art of Doing Science and Engineering: Learning to Learn. 
Stripe Press
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�New Challenges
The landscape of software is changing. The development work of the coming decades 

will undoubtedly involve creating solutions to problems that currently seem impossible. 

There are almost certainly business problems one could begin to solve today with the 

help of a single linchpin fact, but the challenge is finding it. We are almost never aware 

of missing linchpin knowledge. These linchpins are particularly critical when tackling 

modern problems that reside in the complex Cynefin11 domain (Figure 2-3). 

Figure 2-3.  Visualization of the Cynefin Domains12

The Cynefin framework illustrates that a strategy or solution that works well in one 

domain is not necessarily transferable to another. Much of the low-hanging fruit in our field 

has been picked. We need to develop the skills and breadth necessary to operate effectively 

in the complex domain, as well as helping organizations escape the chaotic domain.

11 Snowden, David (1999). “Liberating Knowledge,” in Liberating Knowledge. CBI Business Guide. 
London: Caspian Publishing
12 Cox, T. (September 22, 2022). Cynefin framework 2022 [Digital image]. Wikimedia Foundation. 
https://commons.wikimedia.org/wiki/File:Cynefin_framework_2022.jpg. Licensed under 
CC BY-SA 4.0. Adapted from https://commons.wikimedia.org/wiki/File:Cynefin_as_of_1st_
June_2014.png

Chapter 2  Breadth of Knowledge: The Architect’s Superpower

https://commons.wikimedia.org/wiki/File:Cynefin_framework_2022.jpg
https://commons.wikimedia.org/wiki/File:Cynefin_as_of_1st_June_2014.png
https://commons.wikimedia.org/wiki/File:Cynefin_as_of_1st_June_2014.png


26

�Summary
Fundamentally, the transition from developer to architect requires a significant shift in 

focus and perspective. Perhaps architects could, at one time, coast on familiar patterns 

and tools, but today’s emerging needs require diverse thinking and ideas. Breadth 

and range are the architect’s superpowers. Illuminating unknown unknowns and 

transitioning them to known unknowns is ongoing work that builds a foundation for 

discovering future linchpin knowledge.

The real work of the modern architect takes place in the complicated and complex 

Cynefin domains. Navigating this space effectively is the value proposition of the 21st- 

century architect—how they think, how they solve problems, and how they connect 

diverse ideas into novel solutions. In short, the future of software development requires 

radically different thinking to that which is currently commonplace. The most valuable 

architects and engineers of the coming decades will be those who can discover the 

linchpins and translate these into a vision and a direction that teams and organizations 

can follow. Breadth and soft skills are the way.
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CHAPTER 3

Capabilities: The Language 
of the Architect

Everything is vague to a degree you do not realize ‘til you have tried to make 
it precise.

—Bertrand Russell

As you learned in Chapter 1, much of architecture is focused on design decisions that 

induce certain capabilities of a system that transcend its features and functions. If you 

were asked to name a few of these, capabilities like performance or scalability might 

immediately leap to mind. If you continued to think about it, many more would emerge. 

Eventually, you would run out of ideas. Have you missed any? How many are there?

At the time of this writing, Wikipedia lists 86 “System Quality Attributes”1 which 

could be considered capabilities, and that list is certainly incomplete. Capabilities are 

often self-describing; thus, should a new capability be introduced, you could probably 

infer its meaning quickly.

Although capabilities are easily understood, we are faced with two challenges:

	 1.	 When considering the capabilities for a candidate architecture, we 

must ensure we’re considering all relevant capabilities. It is easier 

to see what is unnecessary than to see what’s missing.

	 2.	 Even self-describing capabilities can become overloaded or fall 

victim to semantic diffusion if effort is not made to ensure that 

everyone is using the same definitions.

1 https://en.wikipedia.org/wiki/List_of_system_quality_attributes

https://doi.org/10.1007/979-8-8688-0410-6_3#DOI
https://en.wikipedia.org/wiki/List_of_system_quality_attributes
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While we cannot enumerate all possible capabilities in this chapter, we will focus on 

a subset that is most commonly top of mind for architects. By establishing a common 

context, we can ensure precise communication throughout the remainder of this book. 

This precision also enables a more mindful exploration of the trade-offs that permeate 

all of software architecture.

�Architectural Capabilities of Key Interest
After examining a broad sample of projects spanning multiple domains, many 

practitioners, and countless person-decades, numerous capabilities appear with a 

consistently high frequency. Conventional architectural thinking often universally 

connects capabilities to architectural patterns. This kind of thinking is, however, overly 

reductive. While some capabilities emerge as a consequence of a particular topology, 

pattern, or prescribed modularity, others emerge from architectural decisions or 

guidance that may be applied to any pattern or style. Therefore, for the purposes of our 

work, we will break them down into two groups.

The first group encompasses capabilities directly influenced by the general 

definition of a given pattern. These include

•	 Abstraction

•	 Affordability

•	 Agility

•	 Deployability

•	 Elasticity

•	 Evolvability

•	 Fault tolerance

•	 Integration

•	 Performance

•	 Scalability

•	 Simplicity

•	 Testability

•	 Workflow
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The capabilities above are among the primary attributes we will use to evaluate the 

relative strength of each pattern (style) in the abstract. This, however, only provides a 

partial view into the architectural process. Our work as architects requires our designs 

to holistically meet a broader set of needs that span the business, the customers, 

the users, the developers, and more. Consequently, operating effectively requires 

additional tailoring to induce the full set of capabilities needed for a given project. We 

must, therefore, consider this group of capabilities—induced by prescribing additional 

architectural constraints—in any of the abstract styles described in Section 2.

The second group of capabilities include, but are not limited to, the following:

•	 Availability

•	 Composability

•	 Customizability

•	 Feasibility

•	 Efficiency

•	 Interoperability

•	 Maintainability

•	 Multitenancy

•	 Observability

•	 Privacy

•	 Reliability

•	 Reusability

•	 Safety

•	 Security

•	 Visibility

Capabilities tend to fall into a natural taxonomy of closely adjacent and conceptually 

related attributes. The following sections will follow such a taxonomy, grouping 

capabilities into the higher-level categories: performance, agility, integration and 

interoperability, feasibility and manageability, and reliability.
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Being clear on what you’re trying to achieve through measurement is 100% 
essential and unavoidable. If you skip this crucial step, you only achieve 
your organizational objectives by accident.

—Bernie Smith2

�Category: Performance
“Performance” is often an extremely overloaded term, with wildly varying definitions 

and implications depending on the communication context. In our context, performance 

refers to the responsiveness and efficiency with which a software system operates. 

Specifically, it gauges the system's ability to handle its tasks within an acceptable time 

frame and with appropriate use of resources. In some projects, “performance” may be 

a key capability; however, there are many elements of performance, and, as such, they 

represent individual capabilities that may need to be fine-tuned.

�Network Efficiency/Network Performance

Network efficiency refers to how effectively a software system uses network resources to 

communicate and transfer data among various components or external entities. When 

evaluating or designing software architectures, ensuring efficient use of the network 

is often important, especially in distributed systems, cloud architectures, or any setup 

where components communicate over a network.

Network efficiency is largely driven by bandwidth usage, latency, protocol overhead, 

payload compression, connection management, and serialization efficiency. It is 

important to note that these factors often exist in tension with other capabilities.

�Compute Efficiency

At a high level, compute efficiency refers to the amount of CPU time or energy needed 

to produce a given result (and many optimizations may be either-or when it comes to 

CPU time efficiency vs. power efficiency). Traditionally, compute efficiency has been 

informed by code optimization which is usually outside the scope of architecture. Times 

have changed significantly.

2 Smith, B. (2013). KPI Checklists: Practical how to guide templates included. Metric Press
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Distributed architectures occupy a larger hardware footprint, and, without careful 

architectural consideration, this can lead to runaway cost and underutilized hardware.

Modern software increasingly requires specialized hardware for specific tasks and 

will continue for the foreseeable future. This trend is particularly pronounced as demand 

for artificial intelligence (AI) and machine learning (ML) solutions increases. GPUs, 

for example, will significantly outperform CPUs by orders of magnitude for the linear 

algebra workloads underpinning many of the algorithms utilized by AI and ML.

�Scalability

Scalability defines how easily resources can be allocated and put to use as those 

resources become needed. Once again, this requires careful architectural consideration 

and evaluation of the various dimensions.

How an architect might scale for total users might be different from concurrent users 

or even simply scaling for data/storage. Consequently, conversations around scalability 

should revolve around the idea of “what is enough” and which specific resources must be 

scalable.

Be aware that “scalability” has become overloaded. Some years ago, I was consulting 

on a project, and one of the stakeholders kept repeating that the system needed “to be 

scalable.” This confounded me somewhat as the anticipated limits of storage, compute, 

and total/concurrent users were relatively low. Following several probing questions, I 

understood that this stakeholder was using scalability as a synonym for extensibility. At 

the time, I felt that “scalability” had become yet another industry buzzword. I have since 

come to understand that there are many dimensions to scalability. One could argue this 

stakeholder was not referring to load scalability (the ability for a system to expand to 

accommodate increased amounts of processing, memory, traffic, storage, etc.) but rather 

functional scalability (the ability to enhance the system by adding new functionality 

without disrupting existing activities).

Other dimensions of scalability3 include geographic scalability (the ability 

to maintain effectiveness during expansion from a local area to a larger region), 

administrative scalability (the ability for an increasing number of organizations or users 

to access a system), generation scalability (the ability of a system to scale by adopting 

new generations of components), and heterogeneous scalability (the ability to adopt 

components from different vendors).

3 El-Rewini, H., Abd-El-Barr, M. (2005). Advanced Computer Architecture and Parallel Processing 
John Wiley & Sons
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Personally, I prefer the extensibility moniker over functional scalability, but, as you 

will see throughout this chapter, many terms overlap and there can be a great deal of 

nuance in their discussion. In the context of this book, we will use scalability primarily to 

refer to load scalability to avoid ambiguity.

�Elasticity

Elasticity is another dimension of scalability that is often conflated with load scalability 

and used interchangeably. Again, we will break apart these two capabilities within the 

context of this book. Elasticity, as the name implies, is not only about “stretching” to 

adapt to a higher workload but also an ability to contract as load decreases to return to 

baseline. Fellow architect and friend, Jerome Broekhuijsen likes to point out there is also 

a cost factor motivating elasticity. Without elastic resources, we tend to over- 

provision static resources to prepare for bursts of peak loads, and most of the time 

those over-provisioned resources are spinning their wheels wastefully, which manifests 

unnecessary costs in multiple ways: financial (e.g., server rental/usage fees), server 

space, cooling, maintenance, etc.

Notably, certain decisions can afford some degree of elasticity to almost any 

architectural pattern; the question always comes back to “what is enough” as well as how 

well any given architecture will fit the organization and the problem as a whole.

�User-Perceived Performance
Perception is reality to the one in the experience

—Toba Beta

While the raw metrics of performance have value, in some cases the perception of 

performance is enough. Architects can sometimes mitigate performance trade-offs 

with decisions that enhance perceived performance. Caching, asynchronous processing, 

careful user experience design, eager/speculative processing or prefetching, and more 

can dramatically improve the perception of performance to the end user, compensating 

for performance trade-offs elsewhere in the architecture.

It is also important to point out that it is not always about perception being “enough.” 

There are aspects of optimizing the things that make sense to optimize. An example 
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of this is when processing batches of data. If the user knows that it will take an hour 

to process the data, then they can go take lunch rather than sitting there watching the 

progress bar. They may not mind that some things take a while if they have control over 

when they take that one hour hit to their schedule and they understand what is being 

done is computationally or transactionally expensive. In this case, the perception is 

improved not because of caching or asynchronous processing but because the user is 

not actively waiting for a result (i.e., watching paint dry).

�Category: Agility
The trouble with programmers is that you can never tell what a program-
mer is doing until it’s too late.

—Seymour Cray

If scalability is approaching buzzword-level, “agility” has passed that point with such 

velocity that a sonic boom follows. Seemingly everyone wants to be “agile” (or, at least, 

everyone wants to be able to say they are agile).

What is “agility”? At its core, it refers to the ability of a system, process, or 

organization to quickly respond to change in an efficient and effective manner. Agility is 

defined by several enabling capabilities:

•	 Evolvability: The ability for a system to gracefully adopt and absorb 

both business and technical change. This is often accomplished 

through some combination of

•	 Extensibility: The ability for a system to be changed to support 

functionality or behavior for which it was not originally designed

•	 Composability: The ability for a system to induce new 

functionality in a system through the composition of components 

or modules with minimal additional code, adding new 

functionality or behavior in a system beyond what was originally 

designed

•	 Adaptability: The ability for a system to be used in novel ways to 

support functionality or behavior for which it was not originally 

designed
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•	 Testability: The ease, completeness, and confidence in an automated 

testing process.

•	 Deployability: The ease, completeness, and confidence in deploying 

changes to the system.

Let us examine these dimensions of agility in more detail.

�Evolvability

This is an attribute that rarely materializes by accident. Building most software systems is 

like working with concrete—easy to pour, mold, and shape in the beginning, but once it 

hardens changes require a jackhammer and can be very disruptive. It is no wonder that 

often organizations would prefer to rebuild a system from scratch rather than try to make 

significant changes (although this almost never makes economic sense4, 5).

“Agile” methodologies accept the inherent uncertainty of initial requirements and 

inevitable change once the system is deployed. Or “Schrödinger’s Spec,” as my friend, 

mentor, and former boss, Robert Harris, calls it:

Schrödinger’s Spec  – you can know what the client wants, or what they 
actually need, just not at the same time.6

Numerous decisions from the micro-architecture of code to the macro-architecture 

of a system can impact evolvability. A great case study on evolvability for architects is 

the World Wide Web. Some brilliant decisions were made that enabled the Web to grow 

and change radically from what was originally envisioned without ever stopping for 

a rewrite. Web resources were once simply coarse-grained hypertext documents and 

images forming an information-space that could be explored; today, the granularity 

has changed, enabling smooth, responsive document interactions enabling a new 

platform for application delivery and interaction with a rich set of first-class resources 

and bidirectional flows of data, audio, and video. I don’t know of a single system that can 

compare with the Web in terms of its evolvability. There are many architectural ideas 

4 Spolsky, J. (April 6, 2000). Things You Should Never Do, Part I. Joel on Software. https://www.
joelonsoftware.com/2000/04/things-you-should-never-do-part-i/
5 Martin, R. (January 9, 2009). The Big Redesign in the Sky. Object Mentor. https://www.
luckymethod.com/2013/03/the-big-redesign-in-the-sky/
6 Harris, R. (April 19, 2020). Simple rules for keeping dev teams out of trouble. https://
robertnharris.com/2020/04/19/simple-rules-for-keeping-your-development-team-and- 
project-out-of-the-ditch/
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and lessons that can be taken away from this example. Evolvability is therefore another 

area where architects often need a certain amount of vision to anticipate the potential 

rate of change of a system and make sure decisions accommodate this.

�Extensibility

Effectively, this describes how easy it is to extend the functionality of the system without 

breaking/disrupting what is already there. How architects think about modularity, 

interfaces, and abstraction at the system level is usually an important starting point. The 

microkernel architecture (Chapter 20) is an example of how to induce this capability 

architecturally. A common exemplar of this architecture at the time of this writing is 

Microsoft’s open source editor, VS Code. At its core, VS Code is a simple text editor that 

can be expanded through the inclusion of various plug-ins. Plug-ins offer language 

support, syntax checking, highlighting, build-tool integration, and more. In this case, 

extensibility is achieved through composability.

�Composability

Composability refers to the ability to create, adapt, and scale systems by combining 

existing, often reusable, components in various configurations to satisfy different 

requirements. Composability emphasizes the design of components in a way that they 

can be seamlessly and flexibly composed together to achieve desired functionality or 

behavior.

The centerpiece of UNIX is composability of simple tools through a uniform 

interface. This enables a wide array of small, self-contained, single-purpose tools that 

can be composed in any number of combinations and configurations to solve a wide 

variety of problems. This is exemplified by “The UNIX Philosophy” summarized as7

•	 Write programs that do one thing and do it well.

•	 Write programs to work together.

•	 Write programs to handle text streams, because that is a universal 

interface.

7 Salus, P. (1994). A Quarter-Century of Unix Addison-Wesley
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The Web adapted this idea for large, distributed systems, using the uniform interface 

constraint of the REST architectural style. The resource abstraction creates a flexible, 

stable mechanism to build highly composable systems.

Also notable are subsequent abilities to create a composable data fabric using ideas from 

the architecture of the Web and linked data. The core ideas and motivation are detailed in 

the data-centric manifesto.8 As always, there are significant trade-offs associated with these 

ideas, but if long-term agility (or any subcomponent) is highly aligned with the business 

drivers, these are ideas worth exploring and adding to your technical breadth.

�Adaptability

Best defined by asking the question: How easy is it to use a system in unanticipated 

ways without requiring code changes? Regardless of what we intentionally design into a 

system, there will always be users who will try to use a tool for a different purpose (think 

driving screws with a hammer). Sometimes, that is not a problem, but other times it can 

create unwanted side effects.

The popular spreadsheet application, Excel, offers a great deal of adaptability 

(whether or not any particular adaptations make the most sense). The tabular data 

structure and low-code mechanisms to define behavior cause many people to use Excel 

for database use cases, for displaying tabular data when tables in an application like 

Word might be more appropriate, or leveraging its VBA interpreter to use it in lieu of 

Matlab, Python, Mathematica, etc.

Contrast this with the text editor vim. Vim has been used for databases, 

programming, or its core use case of viewing and editing text. Vim is designed to be 

adapted to many use cases through robust configuration and extension mechanisms.

I think it is helpful at design time to imagine how a user may creatively apply the tool 

we are about to create and try to hem in the user to a safe range of purposes.

�Testability
It’s fragile because even the smallest of changes can break it down com-
pletely. Code doesn’t degrade slowly. It crashes.

—Lasse Koskela9

8 The Semantic Arts (n.d.). The Data Centric Manifesto. The Data Centric Manifesto. https://www.
datacentricmanifesto.org/
9 Koskela, L. (2013). Effective Unit Testing: A Guide for Java Developers. Manning
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Change does not exist in a vacuum, and change necessarily involves risk. If an organization 

wishes to be agile—if they operate in a problem space where the risk of stagnation is 

greater than the risk of change—the business must be able to make changes confidently. 

How easily can developers test and validate changes before they are released?

Any time a developer wants to refactor code (separate from making a functional 

change or fixing a bug), they want to have confidence that the refactoring does not 

inadvertently break relied-upon functionality. Having a bank of tests in place gives them 

confidence when doing a refactoring by providing a contract of expected behavior.

The granularity of tests is also influential here. This is where architecture can directly 

influence the testability of a system. One architecturally significant decision is how we 

prescribe module boundaries/seams in the system. Domain-driven module boundaries 

tightly constrain testing scope and blast radius. This is also improved by how we think 

about component abstraction and API interfaces.

Bringing this back to the points already made, having a bank of good/useful tests is 

only possible if you have testability baked into your system. Generally, more modular 

architectures with clear boundaries and contracts for interactions produce more testable 

systems. The surface area of the risk becomes smaller as does the blast radius of a defect. 

We recently encountered two Big Balls of Mud that were so intertwined that they were 

deemed “untestable”—certainly unit tests were not possible without a LOT of brittle 

mocking, and higher-order tests were too hard (and time-consuming) to write. TDD as a 

philosophy often becomes a forcing function to help to bake in testability.

TDD helps you pay attention to the right issues at the right time so you can 
make your designs cleaner, you can refine your designs as you learn.

—Kent Beck10

�Deployability
Releasing software is too often an art; it should be an engineering discipline.

Continuous Delivery: Reliable Software Releases  
through Build, Test, and Deployment Automation

10 Beck, K. (2003). Test-Driven Development by Example. Addison-Wesley
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Another component of agility is deployability—how quickly, easily, and confidently 

changes may be released. Generally, the more granular the architecture pattern, the 

easier it is to deploy changes, providing there exist clear module boundaries and well- 

defined interfaces. Patterns like microservices are considered to be more deployable due 

to their highly granular nature, strict module isolation, and resulting small deployment 

scope. It is worth emphasizing that this capability influences far more than initial 

releases but also changes, patches, upgrades, and other improvements.

This particular capability also influences horizontal scalability; if a component can 

be easily deployed, additional instances can be easily deployed. Notably, there are other 

implied decisions that are part of that pattern that are enablers for deployability.

�Category: Integration
Integration as a capability is determined by measuring the ability of merging distinct 

systems or components, allowing them to function as one. It is not just about connecting 

A to B; it is about ensuring that A and B communicate effectively, efficiently, and 

seamlessly.

There are several distributed architecture patterns, and they are generally popular 

(even when the promised benefits rarely materialize for reasons that will be explored 

in a later chapter). While most literature on distributed architectures focuses on 

taking systems apart, remember that it will be necessary to “put Humpty Dumpty 

together again.” Moreover, when building new systems, often they need to interact 

and interoperate with legacy and third-party systems. Finally, enterprises are not 

static entities. Mergers and acquisitions are often almost inevitable. Depending on the 

organization, it may be necessary to design systems that will be able to integrate with 

other, as-yet unknown systems in the future.

Integration can be a daunting task due to diverse technologies, but it can be valuable 

to foster a unified (or flexible) solution. Architecture decisions around tools, adherence 

to standards, and different approaches to APIs or messaging services can affect the 

amount of friction systems experience when cross-communicating. As always, there 

are many options, and each brings its own trade-offs. This can be an important area for 

architects to continue to build breadth of knowledge.

Like scalability and agility, this category of capabilities overlaps with several 

capabilities.
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�Interoperability

Interoperability goes deeper than just connectivity between systems—it is the ability of 

the systems to exchange, interpret, and cooperatively use information.

Often, we have many approaches to integration (e.g., the use of an application 

protocol such as FTP or SMTP to allow systems to seamlessly exchange data regardless 

of their implementation details); however, we often want to do more than simply 

connect these systems, we want them to work together without excessive intervention. 

The Microsoft Office suite consists of a number of independent applications focused 

on a particular set of functions, but the tools interoperate extremely well. A spreadsheet 

forms an effective data source for a mail-merge operation; shapes can be copied from a 

PowerPoint document and pasted into a Word document without loss of fidelity. They 

share a set of common standards.

As an alternative analogy, consider early trains and rail networks. Separate rail 

companies often operated independently, but at junctions, they rely on meticulously 

designed intersections to allow trains to switch tracks, combine routes, or operate side by 

side. Interoperability is achieved not through patterns or abstract architectural styles, but 

rather through the prescription of compliance with standards. In early, heterogeneous 

rail networks, the lack of standards (or the abundance of competing standards) made it 

enormously difficult to move rail cars from one rail network to another.

When designing a distributed, domain-partitioned system, architects quickly realize 

that, even in the same organization, different business units define terms and concepts 

in very different ways. One of the first and most important steps is to do the work to 

define each business domain’s ubiquitous language (to use the DDD parlance).

Architects can try to build consensus between upstream and downstream 

components using the conformist pattern; we can “agree to disagree” and build an anti- 

corruption layer to translate terms across domains, we can define a shared kernel,11 or we 

can think about the problem differently and exchange information (data with context) 

rather than mere data (e.g., JSON serialized decontextualized name/value pairs). Linked 

data, which was mentioned earlier, is perhaps one of the best options to achieve this. 

Linked data embraces the non-unique naming assumption and resolves the inherent 

conflicts and challenges surrounding global consensus. None of these approaches are 

easy, of course, and all of them involve trade-offs.

11 Evans, E. (2003). Domain Driven Design: Tackling complexity in the heart of software. 
Addison-Wesley
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�Abstraction

When considering how two software components might interact and interoperate, 

there is often an overemphasis on integration mechanisms. We must, however, pay 

attention not only to which components must interact but also how we insulate portions 

of the components to ensure implementation changes do not introduce breaking 

changes outside of those components. When a change to one component requires 

a compensatory change to another component in order to maintain the broader 

system’s correctness, these components are said to be connascent (a form of coupling). 

Abstraction is one of our primary tools to manage coupling.

There are many dimensions to coupling that are useful to understand. Equally, it is 

important to understand the concept of cohesion as well as the interplay between the two.

Finally, we suggest that the cost of modification of a system will be mini-
mized when its parts are:

–– Easily related to the problem

–– Modifiable Separately12

For coupling, two modules are considered completely independent if each can 

operate entirely without the other. This means there are no interconnections between 

the modules, whether they are direct or indirect, explicit or implicit, obvious or subtle. 

This establishes a baseline level of independence.

For cohesion, related things are kept “close” to one another, as was described in the 

1975 book Structured Design.

What we are considering is the cohesion of each module in isolation—how 
tightly bound or related its internal elements are to one another.

—Edward Yourdon and Larry Constantine

Microservices, as an architecture pattern, deeply embrace the idea of cohesion by 

creating independent, standalone services that encapsulate everything necessary to 

complete a particular domain behavior within a single piece of working software. It 

is also important to note that structuring software as a set of highly cohesive modules 

12 Yourdon, E., Constantine, L. (1975). Structured Design: Fundamentals of a Discipline of 
Computer Program and System Design. Yourdon Press
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with low coupling is not unique to fine-grained microservices but can also be achieved 

through medium-grained “mini” services or even monolithic component granularities.

�Workflow

The above idea of cohesion suggests “things that belong together are placed together.” 

There is, however, a practical limit to cohesion. Nontrivial software systems are 

constructed by many teams with differing organizational affinities. Therefore, they 

will tend to take different approaches to tackling their independent (but related) 

problems. Broader organizational business processes will often span multiple software 

components to cohesively execute a given domain workflow. The architecture of the 

system will influence how easily (or not) individual components can be composed into a 

broader business process or workflow.

In Ford and Richards’ 2020 book, Fundamentals of Software Architecture, they 

assign a number of high scores to several architectural capabilities promised by the 

microservices pattern. These scores are a product of the pattern’s topology of highly 

decoupled, independent components. The nature of this pattern also results in a 

very low score for the workflow capability. As soon as a domain workflow requires 

chaining together many microservices for a single domain behavior, we begin to erode 

those scores as the pattern’s high independence is undermined by reintroducing 

dependencies in a distributed system. Mark Richards has introduced a concept of 

“Domain to architecture isomorphism” which asks us to consider whether the “shape” of 

the architecture matches the “shape” of the problem.

Consequently, we must evaluate the need for composing software components in 

such a way that we may execute domain workflows in a way that does not compromise 

other system capabilities.

�Category: Feasibility and Manageability
Just as there exist many ways to write code to deliver a set of features, there exist many 

paths to design a system architecture. Thinking about system architecture is interesting 

and challenging in and of itself, but architects cannot escape two realities:

	 1.	 At some point, the software must be built and released.

	 2.	 Once the software is deployed, it must be able to be understood 

and maintained.
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As systems grow, complexity can become a significant problem. With a distributed 

system, developers cannot simply set a breakpoint or step through the code anymore. 

Additional capabilities are necessary.

�Visibility

Visibility refers to the ability to “see” into a system. It could be as simple as having an 

up-to-date map of microservices or what components are online/offline, healthy or 

not. Visibility focuses on what’s happening but may not explain the why of the current 

state. Thus, while visibility provides crucial insights, it may not offer the depth required 

to understand complex issues, especially in distributed systems where problems might 

arise due to intricate interactions. An architect might select tools or standards around 

how the components produce metrics and logs or standardize how health checks are 

performed.

�Observability

While closely related, visibility and observability differ in depth, scope, and application. 

Observability is a measure of how well you can understand the system’s internal state 

based on its external outputs. It not only lets you see what is happening but understand 

why it is happening.

Observability is particularly valuable in environments where the system is too 

complex to predict all potential problems beforehand. Instead of trying to foresee 

every possible issue, teams build systems that can be interrogated for insights when 

unexpected situations arise. If this is an important concern, an architect might prescribe 

distributed tracing tools or logging solutions that can correlate data from various sources 

to provide a more complete picture. For example, some teams will employ technologies 

like Splunk or LogRhythm to be able to unify log sources from many services to improve 

a team’s ability to debug complex issues that transcend a single service. Also, many cloud 

providers include tools like Datadog, Helios, Honeycomb, etc. for a similar ability to 

provide insight into the overall state of a system.

�Affordability

Affordability typically refers to the total cost of ownership (TCO) of the system. What will 

it cost to build the proposed system? What will it cost to run and maintain the system? 
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Given a fixed amount of money, an architect will inevitably need to make trade-off 

decisions to place an upper bound on cost. This is a constraining reality of every project.

You may encounter situations where there are different categories or “buckets” 

of money for activities like research and development, development, operations and 

maintenance, etc. The design and the implementation will have changes funded in 

any phase of the project, so it is important to satisfy the needs of the phase while also 

accounting for the larger goals of the product. Prototype code will not be as refined as 

code that has been fielded and has accumulated operations and maintenance changes. 

You must become good at determining which changes should be funded at what 

phase. Picking which battles are fought is an important skill for anyone who wishes to 

effect change.

�Maintainability

Nearly every system that is used will require patches for defect repairs, security 

vulnerabilities, performance enhancements, and new functionality. There are important 

decisions about architecture, data, and implementation that will influence how easy 

it will be to make changes, debug, upgrade, and alert users of issues. The overall 

architecture of the system will strongly influence maintainability.

We don’t create things we change them. Development is a nested set of 
change cycles. Stop thinking about outcomes.

—Dave Thomas

�Reusability

The software industrial revolution, as some call it, mirrors the previous industrial 

revolution in that much of what we build is composed of many reusable software 

components. The industrial revolution optimized the production of many instances of 

objects, whereas the software industrial revolution has all but eliminated any cost of 

the instances. This has led to interesting challenges with capitalization for businesses. A 

piece of software that is built once but can be used in many different contexts becomes 

an asset on the balance sheet and will be accounted for differently than a system with 

software that can only be purchased by one customer and cannot be adapted or resold 

to another. There is much more value in creating software that can service multiple 
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customers or multiple users within an organizational unit to a customer. When software 

is made available outside of an organizational unit, it opens up the potential for new 

revenue opportunities, especially when licensing includes a repeated collection of fees 

per use or fees per unit of time.

Licensing for software has evolved from

	 1)	 Companies building the computer and the software for a client: 

1940s–now

	 2)	 Shrink-wrapped software: 1980s–now

	 3)	 Shareware/Free and Open Source Software (FOSS): 1980s–now

	 4)	 Subscription-based software: 1990s–now

	 5)	 License server/shared licenses: 2000s–now

	 6)	 SaaS/PaaS/IaaS/FaaS: 2000s–now

No licensing scheme has ever fully displaced the other schemes. Different products 

will lend themselves to a particular scheme better than to others. The licensing will 

influence many of the software architect’s decisions.

�Multitenancy

When software is reusable, we must consider how it will be used. Particularly 

whether the instances will be shared or not. When shared, multitenancy provides a 

way for multiple users to concurrently access functionality within a single instance. 

Multitenancy leads to a series of trade-offs:

•	 Complexity added to handle the nature of having multiple users 

concurrently accessing the single software instance and the cost 

saving of not having multiple instances of the software (including the 

increased computing hardware)

•	 Decreased risk of loss of software IP against the ability for users to 

run offline

•	 Data isolation and security against cost

•	 Loss of control over the system or components of the system against 

lower total cost of ownership
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•	 Etc. (the considerations will vary widely across industries and even 

applications within industries)

It is an important consideration that, again, will influence many of the architect’s 

decisions.

�Simplicity

Ultimately, there is a point where the solution space of a project becomes too hard. 

Microservices, for example, are quite possibly one of the most difficult architecture 

patterns to execute well. Breaking apart teams is difficult, breaking apart data is difficult, 

Domain-Driven Design (DDD) is difficult, reorgs are difficult, building the infrastructure 

and tooling to support development, deployment, and management of microservices 

is difficult. Perhaps one of the reasons so many microservice implementations fail is 

that organizations massively underestimate the complexity inherent in this pattern. It 

is important to look at architecture holistically and determine what level of complexity 

and disruption the organization can withstand. This kind of architectural intuition tends 

to develop with time and experience. Getting the level of simplicity wrong can make or 

break a project. It is often advisable to err slightly on the side of simplicity, it is much 

easier to add complexity than remove it.

�Category: Reliability
�Fault Tolerance

At some point, things will fail. Ultimately, failure is the only option. Sometimes systems can 

withstand the occasional service disruptions; other times it can literally be the difference 

between life and death. Most systems, however, operate somewhere in the middle. 

Generally, it is desirable to avoid small failures cascading into larger failures; thinking about 

the characteristic of fault tolerance can be helpful. Architecture decisions, choice of pattern, 

how inter-component communication is implemented, and how we coordinate/manage 

distributed transactions all impact the system’s and component’s level of fault tolerance.

�Availability

Availability is a broader look at the concept of fault tolerance and is usually measured in 

uptime as a percentage of total time (e.g., 99.99% uptime). Generally, in discussion with 
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the business, architects will determine how much downtime is acceptable for a system 

or component and make decisions to maintain that service-level agreement (SLA). There 

are many paths to ensure a minimum level of uptime.

�Category: Safety and Security
One final category that must be explored is the capabilities that surround safety and 

security. These capabilities are rarely induced directly by a particular architectural 

topology, but rather stem from additional architectural constraints that define certain 

implementation details. These capabilities almost always have some baseline value, 

but we must determine the extent of these capabilities as well as whether a baseline 

achieved through adherence to a set of defined “best practices” is sufficient or whether 

additional architectural constraints must be prescribed to exceed the baseline.

�Safety

Safety refers to managing the system’s ability to cause harm to people, property, or the 

environment when the system is operating normally or under fault conditions. While 

commonly associated with industrial control systems, medical devices, weapon systems, 

or autonomous vehicles, safety is increasingly relevant to a broader range of software- 

driven contexts as systems integrate more deeply with the physical world. Safety 

considerations may span from ensuring that emergency shutdown procedures can 

execute reliably to guaranteeing that a data analysis error does not inadvertently mislead 

critical decision-making. Safety may be induced by architectural patterns that support 

isolation, redundancy, controlled failover mechanisms, and continuous monitoring of 

operational conditions.

Ultimately, safety is often achieved through a combination of deterministic system 

design, rigorous testing (including stress and chaos testing), formal verification of critical 

subsystems, and adherence to relevant industry regulations or standards.

Unfortunately, in this industry, unlike other engineering disciplines ethics 

considerations are not held in the same regard. Some of the trade-offs come in the form 

of increased complexity, higher development costs, earlier delivery, decreased quality, 

and potentially reduced performance. As always, we architects must work with the 

business and domain experts to determine what level of safety is “enough,” balancing 

the substantial costs of increased rigor against the practical risks inherent in the 

system’s domain.
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�Security

Security as a capability ensures that the system is protected from unauthorized access, 

tampering, data breaches as well as user data protections, and system monitoring or 

auditing.

A secure architecture typically includes multiple layers of defense—from network 

segmentation, encryption, and secure communication protocols to well-defined 

authentication and authorization mechanisms at the application level, static code 

analysis to decrease accidental introduction of security flaws, and penetration/

exploitation testing to prevent delivery of products with known issues.

After delivery, security often includes protective measures like anomaly detection, 

intrusion detection/prevention systems, and secure coding practices.

However, perfect security is an illusion; there is always a spectrum of potential 

threats, and attempting to defend against all possible exploits can rapidly inflate costs 

and complexity beyond any reasonable level of benefit. The challenge, therefore, is 

determining what is “enough” security for a given scenario. We must consider the value 

of the protected assets, compliance requirements, the system’s threat profile, and the 

organization’s risk tolerance.

In short, secure software that is “good enough” optimally aligns the system’s defense 

posture with business drivers, regulatory obligations, and practical limitations, without 

overengineering every software component and compromising business agility or 

affordability.

�Privacy

Privacy, as a capability, focuses on protecting the personal data and sensitive 

information entrusted to the system. This involves ensuring that data is collected 

and processed according to privacy regulations (such as GDPR, HIPAA, or CCPA), 

as well as meeting user expectations regarding data handling. Privacy-preserving 

architectures incorporate mechanisms like data minimization, anonymization, and 

pseudonymization; they also enforce strict governance over data storage, retention, and 

sharing. Determining how much personal information should be collected, retained, 

and exposed to various system components is a delicate balance. Overly permissive 

data handling can result in loss of user trust, regulatory penalties, and reputational 

harm. On the other hand, collecting no data at all may render some desirable features or 
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analytics impossible. Thus, privacy considerations must be thoughtfully integrated into 

the architectural design, often guided by legal counsel, compliance teams, and a clear 

understanding of user expectations.

�Auditability

Auditability refers to the ability to trace actions within the system, from user interactions 

to machine-level operations, enabling investigators to understand historical events, 

detect fraud, analyze user or system behavior, and validate compliance.

Systems that value auditability often employ immutable logs, event sourcing, or 

cryptographically verifiable ledgers to produce tamper-evident records. You might 

prescribe architectural decisions that support fine-grained event logging, secure log 

storage, and correlation mechanisms that can integrate with monitoring or observability 

tools. However, achieving strong auditability can be at odds with privacy. Detailed audit 

trails that record which user performed what actions can be immensely helpful for 

compliance, forensic investigations, and governance—but the same granular tracking 

can degrade user privacy and raise the risk of regulatory noncompliance if sensitive data 

inadvertently leaks into logs or metadata. This creates a tension between transparency 

and discretion.

While they might seem to always be at odds, often auditing can also help protect user 

data and therefore privacy.

In practice, you must work closely with legal, compliance, and privacy experts to 

determine the right balance. Perhaps only certain user actions are logged, or sensitive 

fields are masked or encrypted in audit records.

The guiding principle should be to log and store ‘just enough’ information 
to accomplish the auditability goals—detecting illicit activity, complying 
with industry regulations, or providing transparency for stakeholders—
without compromising user trust or violating privacy standards.

Balancing these considerations ensures the system can both demonstrate 

accountability and uphold the data protection principles crucial to user confidence.
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�Summary
This chapter provides a set of high-level definitions and offers a few potential decisions 

around these capabilities as well as broader considerations that will enable you to 

navigate future architecture decisions effectively. These capabilities are summarized as 

follows:

Category Capability Brief Definition

Performance Network Efficiency Efficient use of network resources (bandwidth, latency, 

protocols) to enable effective communication.

Compute Efficiency Optimal usage of computing resources (CPU, energy) to 

produce results with minimal overhead.

Scalability The ability to increase or scale resource capacity to 

handle varying workloads.

Elasticity The ability to dynamically expand and contract 

resources as load fluctuates.

User-Perceived 

Performance

Enhancing the end user’s sense of responsiveness, 

often through caching, asynchronous operations, or 

careful UX design.

Agility Evolvability The ease with which a system can accommodate and 

adapt to both business and technical changes.

Extensibility The ability to add new functionality without disrupting 

existing features.

Composability The ability to build new capabilities by reusing and 

combining existing components and modules.

Adaptability The ease of using the system in new, unanticipated 

ways without code changes.

Testability The ease and confidence with which changes can be 

verified and validated through testing.

Deployability The ease and confidence in rolling out software 

updates, patches, and new releases.

(continued)
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(continued)

Category Capability Brief Definition

Integration and 

Interoperability

Integration The capability to connect distinct systems or 

components so they function as a cohesive whole.

Interoperability The ability of separate systems to exchange, interpret, 

and cooperatively use shared information with limited 

intervention.

Abstraction Managing complexity and change by encapsulating 

details behind stable interfaces and contracts.

Workflow The ease of orchestrating and automating multi-step 

processes that span multiple components.

Feasibility and 

Manageability

Visibility The capability to “see” into the system’s state (e.g., 

health, status) at a basic level.

Observability The ability to understand the system’s internal behavior 

from its external outputs and telemetry.

Affordability The total cost of ownership, ensuring the solution fits 

within budget constraints.

Maintainability The ease with which the system can be updated, fixed, 

and improved over its lifetime.

Reusability The ability to leverage components or modules across 

multiple contexts or applications.

Multitenancy Supporting multiple, distinct users or organizations 

within a single, shared software instance.

Simplicity Ensuring the architecture and design remain as 

straightforward as possible, minimizing unnecessary 

complexity.

Customizability The ability to tailor or configure the system to meet 

specific needs without extensive redevelopment.

Feasibility Ensuring that the architectural approach can 

realistically be implemented with given constraints and 

resources.
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Category Capability Brief Definition

Reliability Fault Tolerance The ability to handle failures gracefully without causing 

systemic breakdowns.

Availability Ensuring the system (or components) remains 

accessible and operational within agreed-upon service 

levels.

Safety and 

Security

Safety Reducing or eliminating harm to users, property, or the 

environment under normal or fault conditions.

Security Protecting the system against unauthorized access, 

data breaches, and malicious activities.

Privacy Safeguarding personal or sensitive data in compliance 

with legal and user expectations.

Auditability The ability to trace and verify actions and changes, 

balancing the need for accountability with user privacy.
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CHAPTER 4

Aligning on Vision 
and Architectural  
Requirements

…the architect is the interface between the business and the technology 
team, the architect must understand every aspect of the technology to be 
able to represent the team to the business without having to constantly refer 
to others. Similarly, the architect must understand the business in order to 
drive the team toward their goal of serving the business.

—Richard Monson-Haefel

Architecture does not exist in a vacuum, and we must avoid projecting our own 

biases and preferences into this work. As architects, we cannot begin architecture 

conversations and planning without first having business conversations; we must 

approach architectural requirement analysis deliberately and with rigor. Anything less is 

putting the cart before the horse, which many describe as architecture anti-pattern.1

The Cart Before the Horse Anti-Pattern

The “cart before the horse” anti-pattern in software architecture refers to 
making architectural decisions without—or before—understanding the 
business needs. To avoid this anti-pattern, decisions should be based on 
business needs, system characteristics, and constraints.

1 Richards, M. (May 10, 2021). Cart Before the Horse Anti-Pattern. Developer to Architect.  
https://www.developertoarchitect.com/lessons/lesson113.html

https://doi.org/10.1007/979-8-8688-0410-6_4#DOI
https://www.developertoarchitect.com/lessons/lesson113.html
https://www.developertoarchitect.com/lessons/lesson113.html
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It is tempting to believe that simply providing “a lot” of architectural capabilities is an 

adequate approach to delivering business value. Too much, perhaps, is better than not 

enough. Unfortunately, this often leads to enormous complexity and excessive cost up 

front while delivering little net business value. Let us look for a moment at how this type 

of thinking can emerge by looking at the respective capabilities of various architecture 

component patterns without context.

In their 2020 book,2 Neal Ford and Mark Richards developed an architecture 

scorecard star-rating system, where a one-star rating indicates that particular 

capability is not well supported in the architecture, while a five-star rating denotes that 

characteristic is one of the strongest features in the pattern. The result of their work can 

be seen in Figure 4-1.

2 Ford, N., Richards, M. (2020). Fundamentals of Software Architecture: An Engineering Approach. 
O’Reilly

Chapter 4  Aligning on Vision and Architectural Requirements 



55

Fi
gu

re
 4

-1
. 

Fo
rd

/R
ic

ha
rd

s 
A

rc
hi

te
ct

u
re

 P
at

te
rn

 S
co

re
 M

at
ri

x

Chapter 4  Aligning on Vision and Architectural Requirements 



56

Reviewing these scores, it would be easy to proclaim microservices a “clear 

winner”—after all, it has the most five-star ratings of any of the patterns. In the absence 

of specific business requirements, selecting this pattern for its abundance of strong 

capabilities would be a meaningful potential hedge, right? As a hedge, never.  

The microservices architecture demands enormous technical and organizational 

complexity, as well as considerable cost. Consequently, adopting such a pattern must be 

a very deliberate decision in response to extremely specific business and system needs 

within a very mature development organization.

Assuming that the highest-scoring option must be the “best” option results in 

another anti-pattern known as the “Out-of-Context Scorecard Anti-pattern.”3 Anyone 

who has ever used an unpleasant piece of enterprise software will have experienced this. 

Regrettably, the customers of such software are rarely the users. Committees tasked with 

selecting and standardizing upon a piece of software or service will often decide based 

on a feature matrix, and whichever option has the most “check marks” will often win out. 

Users of the software would decide based on the context of the problems they are trying 

to solve, but committees often lack this context. More capabilities do not always equate to 

success—they must be the right capabilities.

The Out-of-Context Scorecard Anti-pattern

The “Out-of-Context Scorecard” anti-pattern occurs when architects or developers 
use scorecards or other matrices to compare options, like shared services 
vs. custom libraries, without considering the specific context of the system. 
While scorecards can be helpful for identifying trade-offs, they often lead to 
flawed conclusions if the context (such as operational or business needs) is not 
considered. The solution is to tailor the evaluation process to the specific needs 
and circumstances of the project or architectural decision.

An interesting example of how this anti-pattern manifests can be taken from a system 

developed in the 1970s that failed to be successful over lessor competitors in the following 

decades. Introduced in 1976, VHS won out over arguably superior alternatives and 

remained the dominant media format until the late 1990s, when it was supplanted by DVDs.

3 Richards, M. (Oct 10, 2022). The Out-of-Context Scorecard Antipattern. Developer to Architect. 
https://www.developertoarchitect.com/lessons/lesson146.html
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No, not Betamax.

Laserdisc was an optical media format patented in 1968 and brought to market in 

1978, just two years after VHS. As Figure 4-2 shows, Laserdisc checked a lot of boxes for 

desirable features. Many of the features that made Laserdisc stand out were identical to 

those which led to the rise of DVDs decades later.

Figure 4-2.  Capability Comparison of VHS and Laserdisc

By every metric above, Laserdisc was superior. Some still argue this fact should have 

led to Laserdisc supplanting VHS the same way DVD did two decades later. It was better, 

cheaper, and more capable than either VHS or Betamax. Yet we remember the Betamax 

vs. VHS war and not Laserdisc. This is because, at the height of their competition, one 

Laserdisc player sold for every 50 VCRs, but why was that?

�Laserdisc Solved the Wrong Problem
Consider the context at the time. Building an at-home library of videos was not yet in the 

consumer collective consciousness. In that era, video content was consumed primarily 

through broadcast television. This meant that, to watch any given program, a viewer had 

to be at home and tuned to the correct channel when the content was broadcast. If the 

viewer was away, or someone was already watching a different program on a different 

channel, the viewer simply missed out and that was it. Maybe they would get another 

chance when the program entered syndication in a year, but they would still need to be 

in the exact right place at the right time to view the rebroadcast. The market had spoken; 

consumers were primarily interested in time shifting—the ability to record one channel 
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at a given time for later viewing while they were away or while a different channel was 

being watched live. Although the cassettes were relatively expensive, they were highly 

reusable. Once a viewer had watched the program they did not want to miss, they were 

free to record over that content with a new program. It is right there in the name, Video 

Cassette Recorder (VCR). The idea of building a library of video content did not come 

until later, and by that time there was a large installed base of VCRs in the world. Despite 

its technical advantages, Laserdisc never stood a chance.

�Architecture Must Solve the “Right” Problem
In Chapter 3, various architecture capabilities were defined, but which of these matter—

and in what measure—must be inferred and derived from what the business needs 

(which is often distinct from what the business says they want).

Architecture patterns such as microservices currently remain very trendy. A highly 

evolved and advanced architecture is certainly something that can confer bragging 

rights as well as resume fodder, but if that architecture does not translate to real, tangible 

business value, it is moot. This is why architecture decisions must be made, not through 

bias or resume-driven design but based on the domain problems that need to be solved. 

While an architecture pattern such as microservices solves many problems (e.g., extreme 

scalability, elasticity, testability, deployability, agility, etc.), when the business truly only 

needs to solve a subset of those problems, the trade-offs are not warranted. Often, when 

clients inform me that they “want microservices,” I usually respond that what they really 

want is something they believe microservices will provide to them.

To design an architecture that is a better fit, seek to uncover the true needs and 

desires (as well as their extent) and design an architecture that does not overengineer 

where it is not currently needed.

Another common pitfall that architects sometimes fall prey to is “waiting” for the 

business to give them the “nonfunctional” requirements or capabilities of the system. 

Given these capabilities form part of the language of the architect and not the language 

of the business, the architect will be waiting a long time.

Moreover, even if the business did somehow communicate needs in the language 

of architecture, this is not their native tongue, and what the business says and what they 

mean will rarely align. This misalignment is exemplified in the earlier case where the 

business has expressed interest in adopting microservices when they really want certain 

anticipated capabilities.
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As the chapters that follow will show, there are many paths to various capabilities, 

each with radically different trade-offs. It is the responsibility of the architect to translate 

from the language of the business to concrete technical and architectural requirements, 

thereby teasing out which capabilities are actually needed.

In short, architecture is not just about building robust or scalable systems or “future- 

proofing” our designs—it is about aligning those systems with the business’s core 

objectives. Too often, the allure of technical perfection can overshadow the real-world 

problems architecture aims to solve. As with VHS vs. Laserdisc and the pitfalls of the 

“Out-of-Context Trap,” success does not always go to the technically superior. It goes to 

the solution that best addresses the underlying needs. Likewise, an optimal architecture 

is one that best addresses the business’s needs and goals; it must solve the “right” 

problems. Determining what the “right” problems are often requires both requirement 

analysis (below) and objective measurement (Chapter 5).

�The Tailor-Made Requirements Analysis Process
As you have read, architecture is as much about understanding the problem as it is about 

devising the solution—“Why is more important than how.” We must ensure that every 

architectural decision that is made serves the larger goals of the business and user. Deep 

exploration and understanding of the “problem space” is paramount. The Tailor-Made 

model offers a foundational analysis framework for arriving at such an understanding 

that may be followed, adapted, or expanded as needs dictate.

�Step 1: Preparing for the “Business Conversation”
The foundation of this process begins with exploring the domains of the business, 

customers, and users of the system. Identify the typical problems, pain points, and 

challenges they face on a daily basis. If available, a high-level business process flow or 

data flow diagram is also often useful.

Next, locate documents and decks detailing requirements, vision, existing 

contractual requirements or KPIs, as well as available marketing materials. It may 

require some search, but such artifacts frequently exist. Although some projects begin 

unexpectedly, in order for many planned projects to be greenlit, the business first had to 

outline a clear vision and make a compelling case to investors, leadership, customers,  

or budget committees. Notably, this will be true whether the project is a greenfield 
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(brand-new development) or a brownfield (an existing, legacy application that will 

undergo modernization). In fact, inferring capabilities is often easier in a brownfield as 

there will also exist well-known challenges, key performance indicator (KPI) thresholds 

to improve, and objectives and key results (OKR) that can be measured. Although KPIs 

will be explored in depth in the following chapter, as a brief heuristic consider KPIs 

as akin to goals that a businessperson might use, while OKRs are akin to goals that a 

product owner might have.

As you review these artifacts, you may notice they are often vague and laden with 

buzzwords. For clarity of your understanding, consider involving a domain expert to 

provide context as well as define any terms that have unique domain-specific meanings.

Aim to read each line from multiple perspectives while determining how the ideas 

being described bring new value to others. Typically, these perspectives include

•	 The target customer(s)

•	 The user(s)

•	 Business actors

Ultimately, you are creating a mental draft of a vision and understanding of the 

project. The first draft is exactly that, a first draft. There will remain knowledge gaps, 

misunderstandings, market changes, and implicit assumptions that require correction.

After consuming the available material, write a document articulating your 

understanding of the project and its goals. Include open questions, enumerated 

assumptions, and identify areas for further exploration. If candidate architectural 

capabilities emerge, you should note them here, but the focus at this stage is understanding.

Next, we must aim to validate and align their vision to that of the business.

�Step 2: Identifying Stakeholders
To validate and align your draft vision, key stakeholders must be directly involved in the 

process. To this end, stakeholders must first be identified. These will often include the 

authors of the documents studied, and these authors may be able to identify who else 

should be part of a conversation around the core goals of the project.

Since implementing architecture often requires technical and organizational change, 

those able to drive such change will also potentially be key stakeholders. Daniel Tippie, a 

seasoned software architect in Colorado and contributing author to this book, points to 

five components necessary to effect change in an organization. They are
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•	 Authority

•	 Accountability

•	 Responsibility

•	 Knowledge (know-how)

•	 Will

It is exceedingly rare to find an architect (or any single individual) who possesses all 

five; however, a good architect knows which they possess and will gather the actors with 

the other components.

That said, know-how may also be lacking at this stage—this is okay and is not a 

failing. Once the problem is well understood, it will often illuminate the path to know- 

how (the important part is to start with the context of the problem to solve).

Authority and responsibility vary within the scope of a project. Executive leadership 

or a budget committee may have responsibility over spending and authority for 

approvals. Authority to direct development teams toward certain technologies and 

practices may be culturally or organizationally under the purview of architecture or may 

be the responsibility of a software engineering manager.

For every element missing, you may find an individual, team, or committee that 

controls that element. These people form the foundation for a list of key stakeholders. 

Without consensus, alignment, and buy-in from them, the effort is likely doomed 

to fail. A useful tool for this process is shown in Figure 4-3. Utilize this table for each 

discrete problem within the project’s domain. As a tip, pay attention to overly complex 

or conjunctive problem statements as these may indicate composite problems that you 

must first break down into smaller, constituent problems.

Figure 4-3.  Stakeholder Identification Matrix
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Additional stakeholders may be individuals driving the project vision. Part of the 

process is to identify these people, along with who communicates the vision, either up 

or down the organization. Two common examples are the authors of the documents 

mentioned above and the lead product owner(s) who may already be at work translating 

the business vision to a road map of effort.

Some parsimony is important in compiling your list of stakeholders. While a broader 

hierarchy of stakeholders may be valuable, the meetings and discussions outlined in this 

requirements analysis process should be focused only on key stakeholders. For example, 

development team leads may possess some authority within the scope of their teams, 

but these leads may ultimately operate under the authority of the software engineering 

manager. The leads may be stakeholders, but the manager is the key stakeholder.

With this list of key stakeholders, the first discussion should be planned and 

scheduled. All key stakeholders should be invited and as many as possible should 

attend, or the meeting should be rescheduled to accommodate everyone’s availability.

�Step 3: The First Meeting
Agenda:

•	 Introductions and roles

•	 Align on project vision

•	 Questions and clarifications from architecture

�Introduction and Roles

The goal of the first meeting is to build trust and alignment between architecture and 

business while fostering an atmosphere of cooperation and collaboration. To cultivate 

such an atmosphere, you will begin by first asking everyone to introduce themselves and 

their role/background on the project.

Beyond setting the stage for collaboration, these introductions are often helpful for 

both architecture and other participants. Once all other parties have been introduced, 

the architect will introduce themselves. Although you are leading this meeting, all who 

are present should be able to contribute, and this process sets the stage for ongoing 

participation.
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It is important to limit everyone’s assumptions. Participants in this meeting may 

or may not have worked with an architect before, or they may have differing ideas on 

the role of architecture. In light of this inherent uncertainty, it is a good habit to always 

explain your goals and role as part of this introduction.

My name is Michael and I’m an architect on this project. We’ve got a clear 
backlog of features to deliver, and my job is to think about the best way to 
deliver these features to minimize risk and maximize our chance of success. 
There is a near-infinite number of ways to write software to deliver features 
and I want to ensure that we choose the optimum path for the present and 
future of this project.

This quick introduction accomplishes two key aims. First, it clearly outlines the role 

of architecture. Second, it reiterates that architecture and business are “on the same 

side.” It should be clear that you want what the business actors want. If successful, this 

will plant a seed of trust and orient the entire relationship to one of collaboration.

�Align on Project Vision

Following this introduction and framing, you will continue by detailing your business- 

level understanding of the project and its aims.

Before we get too far, I want to validate that our vision and understanding 
are aligned…

At this stage in the process, you are operating on a first draft understanding which 

will almost always be incomplete. This conversation is an opportunity to flesh it out 

and address misunderstandings early. As stakeholders weigh in to add depth, color, or 

corrections, pause to listen carefully and capture these insights in your notes for further 

review and eventual incorporation into subsequent effort.

�Questions and Clarifications from Architecture

After aligning on a shared vision and understanding, the next step is to probe deeper by 

exploring what has not yet been said and what remains architecturally ambiguous. We 

also seek to validate any identified assumptions on our part. Many of these questions 

and identified assumptions will originate from the list produced during step 1 that is 

based on your preliminary reading and research, but others may have emerged during 

the meeting. Others, still, may originate from your experience or architectural judgment.
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For example, business actors will rarely express the importance of testability. 

However, you may perceive testability to be a high priority capability due to the 

numerous failures of systems within your current or past organization(s) that can be 

traced back to a failure to adequately test prior to production deployment. This is one 

of many areas where we must be guided by business requirements but exercise good 

architectural judgment. This means both validating our assumptions and biases while 

guiding the business as much as they are guiding us.

Pay particular attention to things like budget, timeline, and hiring plans. Important 

details to account for at this stage are immediate scope and goals; is this project focused 

on building a minimum viable product (MVP) or a proof of concept (POC)? What does 

the business hope to achieve with the first release (of either the new or “modernized” 

system)?

When it comes to identifying architectural requirements that are not stated, it is often 

helpful to a list to act as a prompt to identify that which is missing. From experience, 

your authors have compiled a checklist of commonly overlooked requirements in these 

discussions, shown in Figure 4-4.
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When using the checklist, it can be helpful to know your audience. For a technically 

savvy participant in this meeting, you may be able to ask about some of these aspects 

directly. For others, it may be better to attempt to tease out some of these details 

indirectly, by asking about related pain points or business challenges.

Throughout this entire process, strive to understand each stakeholder’s friction and 

pain points. What “keeps them up at night?” Not only is this important in the context of 

the initial meeting, but continued exploration of friction and pain points will take place 

in many subsequent conversations. These conversations strengthen understanding, 

build trust and empathy, and enable better communication of decisions and proposals 

to these individuals in meaningful context. These conversations also arm you with the 

tools necessary to communicate more persuasively and contextually to stakeholders in 

subsequent interactions (i.e., “…and architecture arrived at this particular decision to 

make your pain point X go away”).

In addition to pain points, it can be equally important to begin to compile a “not” 

list—things the customer, user, and management do not care about. This is often more 

important than most people realize.

During this initial conversation and subsequent meetings, you may also pick up 

on various biases and idiosyncrasies that stakeholders have which better prepare you 

for future meetings and interactions. One example from a past project is the use of the 

term “nonfunctional requirements” to describe architectural capabilities. The project 

stakeholders were heavily oriented toward functional requirements—what the system 

would do—which caused them to immediately “tune out” at the mention of anything 

nonfunctional. I quickly adapted my language to refer to “capabilities.” In my case, I not 

only adapted my language in the context of that particular project, I continue to use this 

terminology to this day.

At this stage, resist the urge to jump into solutioning. This is not yet the time as this 

meeting is purely problem focused; here, we are focused on the “why” rather than the 

“how.” If potential solutions jump mind, capture these in notes in the moment for future 

review and analysis. These potential solutions are often important and typically driven 

by a combination of what is being heard and implicit assumptions.

Stakeholders may also begin solutioning at this point. In such a case, it often makes 

sense to challenge the assumptions that may have led those things to be defined by the 

non-architect because they may be due to buzzword affinity and not practicality.
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While solutioning is out of scope for this meeting, these sparks of ideas are often an 

opportunity to enumerate and validate assumptions. Ultimately, we should strive to ask 

questions centered around the problems being discussed, not any particular solution 

being imagined.

The only common exception to the “remain in the problem space” rule is identifying 

the boundaries of the solution space. Will this project run in the cloud or on premises (or 

both)? Are there restrictions on the use of open source software or libraries? Is there a 

target operating budget that architecture must remain within?

In architecture, the future is almost as important as the present. It is critical to 

consider solutions in a long-term context. To this end, close by asking the stakeholders 

how they imagine this system will look in five and ten years’ time (will it be largely static 

or radically different?). Although we do not want to architect for the millionth user 

before we have our first, having an idea of the anticipated direction of growth allows 

us to design an architecture that fits the present while leaving doors open for future 

evolution. Despite Grady Booch’s famous definition of architecture as “the stuff that’s 

hard to change,” the Tailor-Made model enables the design of highly evolvable and agile 

architectures (which we will explore in depth in Section 2).

As the meeting heads to a conclusion point, list the reading done to date and ask if 

there is anything else that should be reviewed. Depending on the scope of the project, 

this first meeting can take quite some time. Ensure adequate time is allotted for the 

conversation. Also, where possible, take copious notes as there is still much work to do, 

and the discussion will help identify what that work should focus on.

�Step 4: Identifying Architecture Capability Requirements
Following this meeting, you will now go back and review your notes and any other 

documents line by line and try to tease out architectural capabilities. These capabilities 

may be a subset of those defined in Chapter 3, or they may include capabilities from the 

broader set of system quality attributes currently defined or yet to be discovered.

Each capability must be directly tied back to pain points, customer needs, or 

some statement the business made (either in the meeting from step 3 or in existing 

documents). These capabilities need not be in any particular order, but your initial 

attempt at prioritization is useful. This candidate ranking of capabilities and relative 

priority can be a useful metric to gauge architecture and business alignment. In 

subsequent meetings, the business will provide input on the relative importance 
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of capabilities. If your hypothetical priorities are aligned with the business’ actual 

priorities, this is a strong signal that you are in good alignment with the business. If the 

priorities do not align, you will receive early feedback on additional implicit assumptions 

or underlying divergence in vision. This divergence is bidirectional, and it is equally 

probable that the architect might be operating under a faulty assumption or that you see 

something the business does not.

With this initial list of capability requirements, you are ready for the next round of 

meetings with the key stakeholders.

�Step 5: Qualifying and Quantifying Capabilities 
with Stakeholders
Agenda:

•	 Further alignment on business vision

•	 Review architectural requirements

•	 Prioritize “business-critical” system capability needs

Depending on the organizational dynamics and how aligned the key stakeholders 

are, this phase of the process may take the form of a single meeting with all key 

stakeholders. Alternatively, you may decompose this step into a series of meetings 

with one or more stakeholders in each. This alternative approach prevents any single 

stakeholder perspective from dominating the conversation. Should you decompose 

this step, it is good practice to conclude with a meeting among all stakeholders to 

communicate a synopsis of the decisions and conclusions.

�Further Alignment on Business Vision

You will kick off these meetings by restating your understanding of the business vision. 

This need not—and should not—be exhaustive; a high-level summary is sufficient, 

unless any new questions have emerged since the first meeting described in step 3. This, 

once again, sets a collaborative framing for ensuing discussion. This framing is further 

strengthened by making a concerted effort to speak to the various participants using 

their language and articulating your understanding of the vision.
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�Review Architectural Requirements

The next step is to begin to work through the prepared list of candidate architectural 

capabilities. While these capabilities might be prioritized from the perspective of 

architecture, care must be taken to ensure the conversation is not influenced unduly by 

your hypothetical prioritization.

Your first aim is to qualify each capability (i.e., do we truly need this?). For each 

capability on the list, verify if that capability needs to be expressed as part of the 

architecture requirements or if it can be eliminated from the architectural requirements. 

This is not to say a removed capability does not remain a notable nonfunctional 

requirement, but maybe it is out of scope of architecture, significantly less important 

compared to most others, or addressable elsewhere by hardware or developer guidance. 

Some capabilities are business-critical, some are important, some are nice-to-have, 

others the business could take-or-leave, the rest can be eliminated.

You also aim to quantify capabilities by determining an upper bound on a capability 

requirement. For each qualified capability, you need to determine how much of that 

capability is necessary to satisfy the current business needs. When quantifying, the range 

“how much” is defined as extremely low, very low, low, below average, average, above 

average, high, very high, and extremely high.

Quantification is a crucial process as some capabilities are seen by business actors 

as “universally critical” and, if left unquantified, may lead to significant overengineering. 

Examples of these are availability, security, and scalability. The question is not whether 

these capabilities are important, but instead determining the extent of architecture and 

engineering necessary to deliver enough of these capabilities. To objectively determine 

enough, ask qualifying business value–focused questions.

For example, when speaking about availability as a yet-unqualified capability, you 

probably should not frame the question as “Is high availability important?” as this will 

rarely result in a useful answer. Instead, ask questions like “How negatively would the 

business be impacted if we experienced six seconds of downtime per week? How about 60 

seconds?” and so on, until a target service-level agreement (SLA) is determined. This line 

of questioning allows you to both qualify and quantify availability into a percentage of 

uptime. As you will see in Figure 4-5, should you determine that a 99% SLA is adequate, 

the capability could be scored below average. Alternatively, if a 99.9999% SLA is 

necessary, this capability would be quantified as extremely high.
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Around security: “What would the impact of a data breach be to this project and 

organization? What are the most important assets?” This helps us determine if security 

should be an expressed, focused capability or an implied capability (in other words, is 

a baseline of security and best practices enough or are there particularly sensitive data 

assets that must be secured beyond best practices?).

Around scalability: “How many users (both total and concurrent) do we expect 

the system to support at launch, in a year, five years, and ten years? Do we have an 

anticipated rate of growth?”

As you ask further qualifying questions, record in your notes who answered each. 

When you document the resulting architectural decisions, these ensure each decision is 

backed by solid source citations. Then, when you communicate these decisions to the 

rest of the organization, they have organizational “weight.”

�Prioritize Business-Critical Capabilities

When you have a list of qualified and quantified architectural capabilities, you must 

finally work to prioritize them. While it can be tempting to seek to prioritize every 

qualified capability in the context of this meeting, this often results in the participants 

going in endless circles as different stakeholders will inevitably disagree on some of the 

minutia. The target of this phase of the meeting is to build consensus on what is business- 

critical.

The upper bound of business-critical capabilities is four. If more than four business- 

critical capabilities are identified, we must guide the stakeholders through a process 

of determining relative ranking of each. Not every capability can be business-critical. 

If everything is high priority, ipso facto everything is low priority; when everything 

becomes of equal importance, there is no basis for choosing what to do first or last or 

where to apply architectural trade-offs.

Crucial to the success of this process is leadership. Deadlocks may occur that must 

be resolved, and biases and fears will creep in that can derail constructing an accurate 

set of capabilities. Even when focusing only on what is business-critical, different 

business actors bring different perspectives and priorities. There are tools, such as the 

weighted decision matrix described in Chapter 26, which allow you to quantify the 

options and can help resolve conflicts amicably.

By the conclusion of this meeting, you and your architecture team will possess a 

qualified, quantified, and partially prioritized list of target capabilities, each linked to 

some written requirement or in-meeting discussion with named stakeholders.
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�Step 6: Documenting and Scoring Capabilities
Following the meeting in step 5, you will now begin formally documenting these 

capabilities and their score using the workbook and templates available at  

https://MasteringSoftwareArchitecture.com.

Documenting these capabilities begins by enumerating each constraint, its target 

quantity, trade-offs, and driving motivations. This will later inform the creation of an 

architectural style document. Although Chapter 24 describes this artifact (and other 

supporting artifacts) in detail, an architectural style document first outlines a summary 

of the vision and then identifies the business-critical capabilities the system must 

exhibit to enable that vision while linking to individual architectural decisions and 

supporting constraints. Your notes in this process are instrumental in providing context. 

Consequently, whenever you are documenting the architecture or its constituent 

decisions, quote and link sources wherever possible.

Scoring these capabilities takes place in the Tailor-Made Workbook. Within this 

workbook, the architect will list target capabilities and begin to assign scores to each 

capability on a nonlinear scale of –5 to 5 with each step broken into quarters.

Qualified Capability Score

Extremely Low –4 to –5

Very Low –3 to –3.75

Low –2 to –2.75

Below Average –1 to –1.75

Average –0.75 to 0.75

Above Average 1 to 1.75

High 2 to 2.75

Very High 3 to 3.75

Extremely High 4 to 5

It must be understood that these scores are absolute. The scores introduced by 

Ford/Richards (Figure 4-1) indicate, in a relative sense, how well a given architectural 

capability is supported within an architecture. A common mistake made by architects 

is conflating the business importance of a given capability with the strength of support 
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a candidate architecture is purported to offer. In other words, a score of 5 does not 

represent the relative importance of a capability, but rather the maximum extent 

possible this capability can exist in a system. Consider the capability of scalability. 

A score of 5 represents Netflix, Google, or Amazon levels of scalability. While many 

projects and applications may deem scalability to be business-critical, defining scalability 

by its maximum possible value (5) and deriving an architectural style targeting that value 

will often result in an overengineered and overly complex architecture with scalability 

capabilities far too high for most applications. A prototype tool for capturing these scores 

to evaluate candidate architectural styles is shown in Figure 4-6.

Figure 4-6.  The Tailor-Made Architecture Workbook

Notably, this scale places a large theoretical upper bound on the total number of 

architecture capability requirements, although the practical limit is closer to ten.4

Provided the key capabilities are quantified, it should be clear from the meeting in 

step 5 how to score the business-critical capabilities. There can—and should—be gaps 

between the scores of the half-dozen or so that remain.

4 Carducci, M. (2023), Tailor-Made Architecture Workbook,  
https://masteringsoftwarearchitecture.com

Chapter 4  Aligning on Vision and Architectural Requirements 

https://masteringsoftwarearchitecture.com


75

Although the ranking of the remaining capabilities did not take place in the meeting, 

you should possess a good, shared vision and a reasonable understanding of the 

problem space, the needs of the customer, and the goals of the project. As such, you 

should review the remaining capabilities and attempt to prioritize and score them.

While completing this exercise, remain cognizant of the answers received about the 

business’s vision and expectations for the future. Architecture is not just about V1.0 or 

V10.0 (and, of course, there must be a V1.0 before there can be a V10.0). The rankings 

produced by the architect are not set in stone. This is simply another tool to strengthen 

understanding and evaluate what exists with an eye toward the future.

In subsequent conversations, we should verify our rankings of important, notable, 

and nice-to-have capabilities. It can be more efficient and productive to introduce 

these in pairs rather than present the entire list to the business. The entire list can 

be potentially overwhelming (and lead to relitigating previous discussions and 

agreements). The goal is simply to gauge relative importance for capabilities that are not 

identified as business-critical.

Once this process is completed, you may choose to communicate the results of your 

analysis. It is important that all relevant parties feel they have been heard, even if not 

every decision went the way they may have hoped. Transparency is key in building and 

maintaining trust and an atmosphere of collaboration.

�Summary
At the conclusion of this process, architecture is no longer in a vacuum. Business needs 

are understood, vision is shared, and architecture has clear requirements to begin the 

design process. Along with the critical capabilities, the broader perspective provided by 

the scoring process reduces risk and assists architecture in solving the right problems 

and creating a highly tailored architecture that fits. This tailored “fit” is the result of the 

Tailor-Made Architecture Model’s capability for fine-grained control of architectural 

capabilities. The business-critical capabilities may drive major architectural decisions, 

but the important, notable, and nice-to-have will illuminate additional decisions in the 

design process. Consequently, each score becomes a target, and it is often possible to get 

remarkably close to each of those targets. It is simple, but it is not easy.
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CHAPTER 5

KPIs, Metrics, and  
Data-Driven Architecture 
Decisions

Without Data, you’re just another person with an opinion.

—W. Edwards Deming

In Chapter 4, we introduced the Tailor-Made Requirements Analysis Process. Although 

there is much that can be learned from the research, analysis, and discussions outlined 

in that chapter, quantifying capabilities (i.e., how much is enough) as well as identifying 

unspoken nonfunctional requirements often remains challenging. Furthermore, as you 

will see in Section 3, metrics are helpful for improving the overall observability of your 

design. Metrics provide important tools for monitoring and evolving your architecture 

over time as the variables driving design decisions inevitably change, and the system’s 

needs evolve. Consequently, business metrics often become extremely valuable for you 

as an architect.

Unlike the well-structured Tailor-Made Analysis Process, navigating business metrics 

often requires a more contextual approach. In this chapter, we will introduce various 

metrics, show how they might apply in various business contexts, and illustrate how we 

may utilize these to improve the design and evolution of the systems you will create.

https://doi.org/10.1007/979-8-8688-0410-6_5#DOI
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�What Is a KPI?
Key performance indicators, also known as KPIs, are quantifiable ways to gauge a 

company or project’s performance for the business actors. Businesspeople view KPIs as a 

means of measuring and tuning their business and products because KPIs often identify 

strengths and weaknesses in both. Businesses also use KPIs to decide what should and 

should not be funded. Management might also use them to justify the projects to the 

various entities and stakeholders. Since a central concern of architecture is connecting 

technology strategy with business strategy, KPIs provide us with valuable data to drive 

and justify architectural decisions.

�Good and Bad KPIs
Good KPIs will have several aspects that make them useful to collect. They will

•	 Quantitatively measure something in a more objective way

•	 Have a goal established by the leadership of the organization

•	 Have a data source where the KPI data may be collected consistently 

(preferably automatically)

•	 Be consistently collected at the same frequency (i.e., time interval or 

event frequency)

•	 Have a single individual responsible for collecting and reporting the 

KPI data regularly (there should be a backup assigned for when that 

individual is unavailable)

•	 Communicate how your business is succeeding or can improve

Unhealthy or bad KPIs will have one or more of the following traits:

•	 KPIs that are unclear on how they help the organization

•	 KPIs with difficult data collection mechanisms

•	 KPIs with thresholds that are not attainable without heavy reliance 

on external actors (e.g., not on your immediate team)

•	 KPIs that have no threshold indicating success or failure

•	 KPIs that are overly rigid such that collection frequency cannot be 

adjusted as business needs evolve
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Each KPI offers a sliver of information which could be viewed as a facet of a diamond 

that provides a different perspective on the performance of the business. No single KPI 
should be viewed in isolation, or it will likely be abused which leads to unhealthy 
outcomes for the business. Consequently, your analysis of KPIs must also account for 

the various ways a single KPI can be “gamed.”

When a metric becomes a target, it ceases to be a good metric.

—Charles Goodhart

LoC—A Terrible Metric for Developer Productivity

Some years ago, I was working for a company that sought to measure productivity. 
For many in the organization, there were reasonable metrics that could be 
collected; however, the business struggled with measuring developer productivity. 
Eventually, they settled on lines of code (LoC) as a suitable metric.

First, we in the development team were tasked with implementing this metric. 
Since some files used carriage returns for line endings and others used line feeds, 
we naturally counted each. Additionally, file minification skewed our metrics so we 
also counted semicolons. In most cases, each line was counted three times.

As the codebase evolved, optimization and refactoring would frequently reduce the 
LoC count which would negatively skew our metrics. The entire development team 
quickly adopted the convention of never deleting code. Instead, dead code was 
simply wrapped with

if(false) {
...
}

Although we found the local maxima for the metric, our codebase suffered 
immensely which adversely affected our long-term productivity. The moral of the 
story is, as Charles Goodhart famously said, when a metric becomes a target, it 
ceases to be a good metric.
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As is often the case in architecture, there are typically many competing 

considerations and drivers. With this reality in mind, it is important to identify 

approximately five (plus-or-minus two) KPIs which are the most important to the part 

of the organization with which you are working. You may be producing artifacts for, 

reporting on, and designing based on a couple dozen KPIs but only reporting a selected 

handful to any single department as the system progresses.

There are a couple of mechanisms to evaluate how well defined a KPI is. First, 

by using the same criteria used for metrics as defined in Beyond Requirements1—

“Comparative,” “Understandable,” “Is a Ratio or Rate,” and “Changes Behavior”—we 

can eliminate the temptation to add fuzzy or subjective metrics. Second, by using a 

subset of the criteria used for requirements as defined in NASA Systems Engineering 

Handbook2—“Clarity,” “Completeness,” “Compliance,” “Consistency,” “Traceability,” and 

“Correctness”—the KPI will provide additional informational value and not just be a low-

value data input for the user that requires additional knowledge to evaluate its meaning.

�What Motivates Organizations to Use KPIs?
Organizations have often realized that they needed information about their own 

products, processes, and people to make business decisions whether they were the 

producer or the consumer of the software products being measured. A great example 

is described in the book Software Metrics: Establishing a Company-Wide Program.3 

Hewlett-Packard invested significant resources to put together a “Software Metrics 

Council” and give the council the resources and the authority to specify what should be 

measured, how the data could be collected, and why it should be collected. The effort led 

to improved transparency, and the organization was influenced by both the process and 

the resulting metrics that were collected.

Another book that provides great insights into both the risks and potential benefits 

of applying metrics to software development is The Mythical Man Month.4 The book 

describes lessons learned from development efforts at IBM via a series of essays. If you 

1 McDonald, K. (2016). Beyond requirements: Analysis with an agile mindset. Addison-Wesley
2 Hershorn, S. NASA systems engineering handbook (SP-2016-6105 Rev2). NASA, 2016
3 Grady R., Caswell, D. Software metrics: Establishing a company-wide program. Prentice 
Hall, 1987
4 Brooks, F. The Mythical Man Month. Addison-Wesley, 1975, 1995
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look at both the essay Progress Tracking and the essay Communication, the spirit of KPIs 

is present, even though the terminology had not yet been coined.

It is important to note that both books were the product of their era. Many 

developers today might consider them the deep past with metrics they might view 

as quaint, naive, or invasive. In both cases, the use of KPIs was motivated by a set of 

common organizational desires:

•	 To connect product development to the organization’s success

•	 To detect and diagnose development issues as early as possible

•	 To make early, inexpensive changes rather than experience late, 

expensive changes or outright failure

There should be benefits that motivate the collection of the KPIs for the organization:

•	 Defining thresholds for taking business action

•	 Providing clear indications of how things are proceeding

•	 Providing a common understanding of what victory looks like to 

everyone in the organization

It is important to do things right. It is equally important to do the right 
things. We can be the best developers that money and technology allow, but 
if we are not meeting market demand, there is little hope for our survival as 
a business. We must be strategically aligned with the business objectives.

—Measuring the Software Process5

�Evaluating KPIs in Relation to Architecture
Each KPI represents one or more requirements that will impact—or be impacted by—

your project. Accounting for them can significantly influence the perception of your 

project and the success of your product by your own organization, customers, and users.

If you keep the KPIs in mind as you design your architecture, you may be able to 

identify services, tools, or artifacts that will help you report KPI findings to the business 

leadership, customer, and user. Each product is a revenue stream for the business, and 

5 Garmus, D., Herron, D. (1996). Measuring the Software Process. Yourdon
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your management will view it that way. Most engineers and architects have a hard time 

seeing how their work impacts the business or the customer, and they benefit from 

knowing that their work is making a difference.

Some service calls or application actions may be able to log metrics automatically in 

a way that can help your organization consistently collect the KPIs. For example, tools 

like Jenkins, GitLab, Sonargraph, ArchUnit, and SonarQube could automatically notify 

a user and/or log when some action has completed. This can be useful as an automated 

mechanism for collecting data, but it is important to account for situations where 

someone performs an undo. In those cases, the undo should not count or be subtracted 

from the count following the undone action.

When possible, automatic collection is ideal because it will provide an unbiased and 

low-cost mechanism for data collection. Moreover, automatic KPI collection enables 

continuous collection which enables you to surface negative trends earlier.

Not all KPIs will need input from a software architect. There are business-level KPIs 

that have more to do with the performance of departments like marketing or sales, 

and there is not much that you, as the architect, can influence. Conversely, some KPIs 

provide an opportunity for you to better tie your efforts to business goals.

Some architectures will lend themselves to better alignment with your organization’s 

business model than others. For example, if your business favors ongoing small 

payments over large single payout license sales, then a SaaS solution will be more 

successful than a shrink wrap monolith application.

As shown in the table below, we have broken down the KPIs into several business 

units: sales, marketing, finance, business management, and revenue stream. We have 

listed 23 sales KPIs, 34 marketing KPIs, 22 financial KPIs, 26 business management 

KPIs, and 121 revenue stream/product KPIs. Although this list is not comprehensive, it 

is a good starting point. To remain brief, later in this chapter, each section will have one 

or two examples of KPIs for different business units that you might directly influence 

through your work.
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�Identifying Requirements from KPIs
Most organizations already have KPIs, whether they call them KPIs or not. You may be 

able to just ask for the KPIs for each department or pay attention during staff meetings 

and take note of what the organization measures to evaluate success.

If the organization does not have any explicit KPIs, then you may be able to provide 

the KPIs of your choosing when you present status for your project. This will help to 

show management or the customer how your project is benefiting them. Remember, it 

is important to show the KPIs that are relevant to the parties to whom you present. We 

recommend those be restricted to only the KPIs that are relevant and permitted to be 

presented to those parties.

Once you identify the KPIs relevant to the various parties, your focus should shift to 

determining the best way to collect the related raw data. Automating the collection and 

processing of data will be useful in ensuring that the KPIs are available for reporting. This 

will also minimize the cost and effort of subsequent report generation.

Some KPIs may not have a direct tie to application or system architecture, but 

you may, regardless, be the ideal person to provide materials and/or assist the 

organization with those KPIs. Although not directly KPIs, providing artifacts that reflect 

KPIs such as feature internal comparison table (Figure 5-1) and external comparison 

tables (Figure 5-2), product descriptions and selling points (for brochures, websites, 

advertising materials, or RFIs/RFQs/RFPs) (Figure 5-3), or product bill of materials (list 

of subcomponents used) (Figure 5-4) is frequently valuable. All of these will be helpful 

in engendering further alignment between the architect and organization. Additionally, 

these artifacts can help the marketing team be more of an “inbound marketing”–

focused team (focused on high-fit customers) rather than trying to just be a general 

marketing team.

Chapter 5  KPIs, Metrics, and Data-Driven Architecture Decisions 



88

Product E  

 Feature A Feature B Feature C Feature D Feature E 

Product A  

Product B  

Product C  

Product D  

Figure 5-1.  Example Product Comparison Table

Product A

Feature A Feature B Feature C Feature D Feature E

Version 2.1.6 

Version 3.4.5  

Version 4.3.3 

Version 5.5.2 

Version 6.7.2 

Figure 5-2.  Example Version Comparison Table
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Figure 5-3.  Example Trifold Brochure

Figure 5-4.  Example Bill of Materials

�Connecting Architecture Capabilities to KPIs
Identifying which architectural aspects can be associated with a particular KPI is 

challenging. This is especially true when an architect has biases toward particular 

architectural patterns. To provide some examples, the following sections illustrate 

multiple KPI-to-architectural aspect mappings.
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�KPIs by Department
As a concrete example, we will define a hypothetical company that provides a product 

that comes in two licensed versions: a “community” edition that is free to use but limited 

in functionality and a “professional” edition that includes additional features for a 

monthly fee (e.g., the professional edition might integrate with other products that the 

company produces that increase team productivity).

�Business Management
We will begin with business management, with whom you will often frequently interact. 

To help facilitate your future interactions, we will start by exploring KPIs germane to this 

audience.

�Planned Work vs. Actual Work

Architectures that favor loose coupling and more fine-grained modularity (whether 

distributed or monolithic) are increasingly favored for three reasons: initial 

implementation effort, long-term maintainability, and cost predictability. While the 

initial implementation and maintainability are important, the cost predictability is more 

pertinent to the planned work vs. actual work KPI.

With highly modular architectures such as the Modular Monolith, Service Based, or 

Microservices—which we will explore in detail in Section 2—it will be easier to estimate 

effort for the individual services themselves, but keep in mind that there is also a cost 

associated with integrating those services.

Keep in mind that a very limited monolith may be easy to plan for; therefore, it is 

important that an architect constrains the scope to remain small. It is, however, easy for 

things to get out of hand whenever one requires developers to limit the scope of their 

own components. They will often feel that it is easier to just add a little more code than 

incur the cost and overhead required to create a whole new small module, but it is often 

worth it in the end. Human nature favors adding one more feature to an existing module 

when, in reality, it is often better to separate concerns and produce smaller modules that 

will be easier to maintain, test, and reuse.
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�Product
In addition to management, you will also frequently interact with the product 

development teams. Like business management, it is particularly important to measure 

architecture in alignment with the product’s subjective worldview.

�Service Stability

The development teams’ ability to decrease operations and maintenance costs by 

maximizing reliability is key to the success of the business and customer. The most 

common KPIs related to reliability are Mean Time Between Failure (MTBF) and Mean 

Time to Repair (MTTR). Common from a business perspective, MTBF shows how much 

time the system operates without issue, is easy to measure, and can be a straightforward 

metric for use as a contract requirement. Contrast this with MTTR, which measures the 

average time to resolve a defect once it has been discovered.

For most of the history of software, optimizing for MTBF was seen as highly desirable 

as the cost (both in terms of time and currency) of updating software was significant. In 

the modern, cloud-native era, designing software for high MTBF rarely makes the sense 

it once did. With good DevOps practices and automation, releasing patches is often 

quick and painless. It ultimately depends on the consequence of a failure and the cost of 

remediation.

While we often aim to design the objective “best” systems, overengineering for 

excessive reliability typically comes at a cost that may be difficult to recuperate. This 

practice often slows organizational agility as much more engineering effort is necessary 

prior to releasing a feature for the all-important user feedback. Sometimes the highest 

value we can deliver is a bulletproof system; sometimes the highest value we can 

deliver is the answer to a question: “Will this feature meaningfully improve the customer 

experience?” As always, there are no best practices, only trade-offs.

It is common to have one KPI composed of multiple nested KPIs as is described as a 

KPI tree in KPI Checklists.6 MTTR is really a composite of multiple KPIs which are Mean 

Time to Accept (MTTA) and Mean Time to Implement and Deploy (MTID) which are 

each composite KPIs as well. This is shown in both the KPI tree (Figure 5-5) and the KPI 

timeline (Figure 5-6).

6 Smith, B. (2018). KPI Checklists – Practical How To Guide. Metric Press
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Figure 5-5.  Mean Time to Repair KPI Tree
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Mean Time to Acknowledge (MTTA) occurs between the time that a failure actually 

happens and when the company acknowledges that there is an issue to be resolved 

for the customer and user. There are two KPIs that define MTTA. The first is the Mean 

Time to Detect and Communicate (MTTD&C). The second is the Found to Planned 

Work (FTPW).

Mean Time to Implement and Deploy (MTID) measures the time between when the 

issue has been added to the maintainers’ workload and when the fix is deployed in the 

production environment. It is composed of four components: Mean Time to Diagnose 

(MTTD), Mean Time to Implement (MTTI), Mean Time to Test (MTTT), and Mean Time 

to Deliver (MTTD). Each of these steps can represent a significant amount of time in the 

process of resolving the issue. If the time is tracked and managed for each step, then the 

time can be minimized significantly.

You can’t improve what you don’t measure

—Peter Drucker

An architect can do several things to decrease the cost of MTTR, and analyzing 

all the way down to the lowest phase of the repair process makes it easier. Building in 

observability and notification to detect failures and automatically notify the maintainers 

when failures occur—in addition to better system log aggregation and analysis that some 

Security Information and Event Management (SIEM) tools support—can dramatically 

decrease MTTA and help diagnose the issue. Additionally, having a high level of test 

coverage at unit, API/integration, and system levels decreases the time required for 

both diagnosis and testing while simultaneously decreasing the likelihood that a new fix 

causes some other regression in functionality. Finally, ensuring that all subcomponents 

can be patched by using either plug-in frameworks or container-based blue-green 

deployment strategies will drastically decrease the time spent delivering and deploying 

the patch to production.

The more modular your system, the harder it is to consolidate the logging; however, 

the easier it is to test and deploy fixes owing to the reduced regression surface area that 

such modularity introduces.
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�Sales
Although you will interact more frequently with business and product, it is helpful to 

expand the scope of audiences as project stakeholders often appear from all areas of the 

organization.

There are two KPIs that demonstrate how an architect can connect their work to 

business KPIs. The first is “Resources spent on a single Nonpaying Customer.” This KPI 

represents a feature that the customer either gets for free to help marketing and sales sell 

other products, is part of a package that sweetens the sale, or gets the customer to use 

your other products. The second KPI is “Resources spent on a Single Paying Customer” 

and identifies aspects of the product or service that are worth spending resources on that 

truly add value to the customer, user, and/or your business to produce what is known as 

a return on investment (ROI) for using your product or service.

�Resources Spent on Single Nonpaying Customer

Before continuing our exploration of this KPI, we will first define a few terms:

•	 A Potential Customer is someone who may be willing to buy in the 

future but has not yet.

•	 A Hooked Potential Customer is a customer who is spending—

or about to spend—money and may be willing to increase their 

expenditure.

•	 A Value-Added Customer is one who has spent money but is willing to 

make further investment.

•	 A Nonpaying Customer is a user of the free products or services that 

the company provides.

While it is important that any expenses related to Nonpaying Customers are 

minimized, the sales department focuses their attention on the product’s ability to add 

bonus features for the paying customers and to “hook” Potential Customers.

The sales department wants to see a low total Cost of Operations and Maintenance 

(COM) billed to their department but a high number of both Hooked Potential Customers 

and Value-Added Customers. This ratio is called Cost Efficiency.

Chapter 5  KPIs, Metrics, and Data-Driven Architecture Decisions 



96

Variables:

H = Hooked Potential Customers

VA = Value Added Customers

COM = Total Cost of Operations and Maintenance

CPC = Average Cost Per Customer

Functions:

COM = (H + VA) * CPC

CPC = (H + VA) / COM

The ideal is to identify aspects of the product or service that are so trivially 

inexpensive that there is effectively no cost to support/host a Nonpaying Customer, but 

sales may be willing to pay well above that if they see a high rate of conversion from 

Nonpaying to Paying Customer.

The easier that the product converts from the “community” edition to the 

“professional” edition, the better that conversion will be. In this scenario, we should 

design the architecture to make it easy for a user/customer to upgrade through the 

application itself (e.g., by adopting a plug-in architecture or prescribing feature toggling), 

contact the sales department via live chat, or support temporary licensing to get the user 

acclimated to the “professional” edition features.

�Resources Spent on Single Paying Customer

The business sales department will be even more interested in the resources spent on 

a single Paying Customer than they are on the resources spent on a single Nonpaying 

Customer that they view as a Potential Customer because the customer has already 

shown that they are willing to spend money on products. That said, the Nonpaying 

Customer is still considered important because there is already a relationship and 

product familiarity that can be leveraged to convert them to a Paying Customer.

The calculations are very similar, but, in the case of Nonpaying Customer products, 

the low-level sales personnel will be very interested in the free products because they 

help them to make a sale. In contrast, the paid-for product is of more interest to sales 

leadership, as long as the for-profit product adds enough value.
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It is less important that any expenses related to paying customers are minimized 

because the cost is absorbed by the licensing fees or monthly service fees. The sales 

department wants to see a low total COM billed to their department but a high number 

of both Hooked Potential Customers and Value-Added Customers. The ideal is to identify 

aspects of the product or service that are so valuable to the customer and user that they 

can easily see the ROI.

�Marketing
Although sales and marketing are often conflated, they represent two distinct 

perspectives on customer acquisition. Consequently, they are often focused on 

different KPIs.

�Prospect to Qualified Lead Conversion Rate

Before we begin this example, we will start with a couple definitions:

•	 A prospect is a potential candidate that seems to meet some criteria 

that the seller believes would make them a good customer.

•	 A qualified lead is a candidate that the marketing team has confirmed 

has met all the criteria to be a good customer.

There are a couple artifacts that an architect can provide to the marketing team 

to help them achieve their prospect-to-qualified-lead conversions. Providing a 

questionnaire or feature table to customers can help the marketing team tie the product 

features to the prospect. If the product features do not align completely with the 

prospect’s needs, but the software architecture is flexible enough to allow for additional 

features or for turning off unwanted features in short time spans, the software changes 

can be made to help establish a qualified lead.

Ultimately, the business often aims to attract customer and user attention by 

providing features that not only overlap with the competition but exceed what the 

competition includes within their product.

While architecture is generally not responsible for defining these tantalizing 

features, this can inform architecture capabilities around agility, customizability, and 

deployability. Another thing to keep in mind is that it will help if your product can 
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convert the data from competing products into your product’s preferred format as a 

function of interoperability. This kind of compatibility being built into a product can be 

in and of itself what is known in the business world as a “moat.”

The term ‘economic moat,’ popularized by Warren Buffet, refers to a busi-
ness’ ability to maintain competitive advantage over its competitors in 
order to protect its long-term profits and market share. Just like a medieval 
castle, the moat serves to protect those inside the fortress and their riches 
from the outsiders.

—Chris Gallant7

In short, being able to both completely overlap with the competition’s feature set and 

being able to ingest the competition’s data format will decrease the “barrier to entry” for 

your users transitioning to your product.

�Financial
Sales and marketing are both focused on revenue and growth. In contrast, the finance 

department focuses on minimizing cost and risk. Consequently, their subjective 

worldview changes.

�Vendor Expenses

Vendors supply parts, supporting products, and services that are used within a greater 

product offering or service offering that an organization can sell. This is a function of the 

affordability capability. As an architect, there are multiple things we can do to minimize 

the licensing costs and licensing risks associated with the use of third-party libraries and 

frameworks.

First, prescribing that third-party libraries are wrapped with suitable interfaces 

and abstractions can decrease overall financial risk. Such an abstraction will decrease 

the cost of swapping out libraries without impacting your own product’s functionality 

should a change become necessary.

7 Gallant, C. (2023). How an Economic Moat Provides a Competitive Advantage. Investopedia. 
Retrieved from https://www.investopedia.com/ask/answers/05/economicmoat.asp
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Second, primarily using products whose licensing costs are extremely low or free is 

an excellent way to decrease vendor expenses, thus further improving affordability.

It is important to note that not all open source licenses are created equally. Open 

source software often comes with licensing agreements that dictate how you may use 

and distribute the code. Permissive licenses are generally more flexible, but some 

copyleft licenses require you to make any derivative works available under the same 

terms, which can conflict with closed source objectives. Many organizations have 

policies on which open source licenses are permissible; you need to know what these are.

Sometimes, the benefits of using a paid-for vendor product that will decrease 

development time or risk may overpower the motivation to decrease the vendor expense 

KPI. However, it is important to document this trade-off when doing a trade study or 

presentation in anticipation of any questions that the financial team will have because 

they will primarily be interested in minimizing vendor expenses. Tools for documenting 

such decisions will be discussed in Chapter 24.

�Presenting KPIs to a Target Audience
When developing software, it is important to remember that there are multiple entities 

that will both influence and be influenced by the software being developed. The entities 

involved are the user, customer, business, development team(s), and the environment.

•	 The user is the actor who will directly interact with your product or 

service.

•	 The customer is the actor who will be writing the check to purchase 

your product or service. Notably, the customer and the user might 

not be the same individual or entity.

•	 The business is the organization that is paying the team(s) for 

their efforts and will collect the payments from the customer. It is 

important to remember that the business is made up of different 

internal organizations and that each one will have different KPIs.

•	 The development team(s) includes the initial developers and the 

maintainers of the product or service.

•	 The environment is anything else that will impact—or be impacted 

by—your architecture not covered by the previous four entities.
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It is important to identify to whom each KPI is intended to inform and influence. 

Most target audiences will not be comfortable looking at raw data, so it is critical to 

turn data into meaningful information by providing context. This helps uncover trends 

or where the current state is relative to the target thresholds. Many businesses will be 

content with a PowerPoint presentation or a report, but some may want more real-time 

information using things like dashboards or dynamically updated web reports.

It is also critical to use the correct visualization when creating simple dashboards and 

reports. If, for instance, one wants to demonstrate a KPI that has a couple regions specified 

by thresholds yet they only show the data at a single point in time, then a dial may make 

sense for both a report and for a dashboard. However, if they want to see the trend over 

time, a line graph with highlighted thresholds would be more appropriate. As described 

in the paper “Dashboard design and its relation to KPIs,”8 the process should follow the 

following phases: “define the objective of the dashboard,” “define metrics and identify the 

content (KPI),” “seek user input,” “create initial prototype,” and “launch and monitor.”

Make sure that the recipient knows how to interpret the information so that they do 

not over- or underreact to newly available information. It is very dangerous to assume 

that the other parties understand your metrics or the implications of the metrics that you 

present without first confirming that they are on the same page as you. It is advisable to 

set up a plan ahead of time for scenarios where KPI thresholds are not met and inform 

all relevant parties about these plans. Otherwise, they might attempt to “manage” the 

situation themselves, unaware that it is already being handled.

It is also important to define how often the KPI will be collected and how often it will 

be reported. For example, it does not make sense to report on the metric weekly when 

that metric is only updated quarterly. The additional output will just be noise. The rate 

of metric collection is more likely to be in the software architect’s hands, whereas the 

reporting rate will be defined by the other management, users, or customers. If there 

is no way to collect or update KPI data between reports, it is important to differentiate 

between a lack of data collection and a value that was collected and happens to match 

the value from a previous report.

8 Berglund, C. & Tenic. Dashboard design and its relation to KPIs: A qualitative case study on a 
software company. Linnaeus University Sweden. 2020
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�Summary
KPIs provide a valuable way to connect the management, customer, and user needs to 

the architectural decisions that must be made during the software development lifecycle. 

These KPIs can help you explicitly identify constraints that will influence future design 

decisions.

It is important to know which KPIs are of interest to the management, customer, and 

user. These should be the north star that guides decision-making rather than simply 

choosing KPIs based on how easy they are to measure or blindly selecting KPIs that 

are favored by the architect. The answer must not originate from the architect, but the 

architect must get the answer from the other parties.

You may have to produce artifacts that you are especially well placed to create 

but may not have been what you would typically consider a part of your traditional 

responsibilities. However, those artifacts will often give you even more insight into what 

is truly important to the business, development team(s), user, and customer.

While KPIs may feel onerous, in many cases knowing what they are will free you from 

having to guess what is important and needlessly overengineering or missing a crucial 

capability within your design.

This is a deep topic but valuable for our work as architects. Although it is not as 

exciting and creative as other aspects of our field, your knowledge in this area positions 

you to make better data-driven decisions and communicate more effectively to a wider 

audience. Your effort to make it this far will continue to pay dividends throughout your 

career. Kudos for making through what might be the least exciting chapter in this book!
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CHAPTER 6

Architectures Are Not 
“Chosen,” They Are 
Designed

Everything is designed. Few things are designed well.

—Brian Reed

Once a set of architectural requirements is identified, the natural and intuitive next 

step is to “choose” an architecture that best fits the requirements. This generally means 

selecting one of the nine or so common patterns. This conventional approach, however, 

may lead to disastrous consequences.

In the multifaceted world of software architecture, there is a tantalizing allure to 

architectural patterns promising a given set of capabilities. Architects often gravitate 

toward these seemingly well-structured models, expecting that by employing “Pattern X,” 

their deployed system will exhibit “Capabilities A, B, and C.” Others gravitate to a single 

pattern as their “golden hammer,” anticipating that past success is a guarantee of future 

results. In both cases, reality often paints a different picture.

Despite an architect’s sincerest intentions and methodical adherence to models, 

these expected capabilities can prove elusive, with few clues as to where and how the 

divergence occurred. This divergence is not just a hiccup in the grand scheme of system 

design, it is an essential reminder that patterns as architectural blueprints, foundational 

as they seem, often lack both context and completeness. This fundamental disconnect 

was one of the major drivers leading to formalization of the Tailor-Made Architecture 

https://doi.org/10.1007/979-8-8688-0410-6_6#DOI
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Model. Understanding why deterministic results from architectural patterns are so 

mercurial—and often more of a mirage than a milestone—requires a deeper exploration 

of this inconsistency.

�The Limitations of Pattern-Driven Architecture
Any given set of architectural requirements in the form of qualified, quantified, and 

prioritized target capabilities will provide an excellent starting point for the architectural 

design process. The requirements provide a clear idea of what characteristics the system 

must possess. At this point, the architect could elect to simply select the pattern that 

appears to be the closest match. The Ford/Richards scorecard1 introduced earlier in 

this book (Figure 6-1) provides a direct set of expectations for the capabilities of a given 

component pattern.

Figure 6-1.  Ford/Richards Architectural Capabilities Scorecard

1 Ford, N., & Richards, M. (2020). Fundamentals of Software Architecture: An Engineering 
Approach. O’Reilly Media
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For an architect adopting pattern-driven architecture, certain patterns that might 

otherwise be appropriate with tailoring will be immediately disqualified due to poor 

initial scoring in key areas. Of what remains, the architect will select the closest fit. The 

Tailor-Made Requirements Analysis Process detailed in Chapter 4 will provide a direct 

set of target capabilities which may be compared against these scores. Overlaying the 

capability scores of the closest pattern against the scored capability targets will, almost 

universally, show an imperfect fit. Figure 6-2 illustrates what this mismatch—of the 

closest fit—might look like at design time.

Figure 6-2.  Capability Targets vs. Pattern Capability Scores

This mismatch underscores the first of two particularly important truths in software 

architecture—that business and software challenges simply will not fit into just nine 
sizes. To lean into the tailoring metaphor for a moment, if this were a suit it would be a 

bit wide in the shoulders, tight in the body, long in the sleeves, and bunching in the back. 

As it is, this suit will not be a great fit without some alterations, some tailoring. The scope 

and the consequences of this poor fit will manifest in tangible ways once the system is 

released to production and the next few years will consist of design tweaks in the form 

of costly trial-and-error changes. If the project survives this phase, either the design will 

have evolved to a point that the architecture is an acceptable fit, or the problems will 

have compounded to the point that many in the organization will be calling for a rewrite, 

but, without new approaches, there is little reason to expect the outcome of the rewrite 

will result in anything beyond more of the same.
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You cannot solve a problem with the same thinking that created it.

—Albert Einstein

Assuming, for a moment, that the hypothetical system survives the period of growing 

pains and the implementation of that architecture pattern evolves to the point that 

it aligns much more closely to the desired characteristics, what might one now call 

this architecture? In all likelihood, those working on that project would still adopt the 

label of whichever pattern they started with or the one now most topologically similar. 

Alternatively, they may classify their architecture as a hybrid of two patterns.

Software architecture patterns exist in a regrettably flat taxonomy that has failed 

us for far too long. For any of the common architecture patterns, there are countless 

organizations who claim to have adopted that pattern, yet a closer look reveals almost 

as many variations on that pattern as there are adopters, and their ultimate experiences 

in production as well as macro system capabilities will vary wildly. Consequently, many 

will look at an architecture scorecard such as that introduced in the Ford/Richards book, 

proclaim “these scores don’t align with my reality,” and perhaps conclude incorrectly that 

software architecture is, and will always be, a crapshoot.

The flat classification scheme fuels this disconnect. With a vanishingly small number 

of classes to sort the near endless variety of pattern implementations that exist today, 

the definition of that class is reduced to the lowest common denominator of component 

topology, which leads to high imprecision in defining a concrete definition of any 

architecture pattern. While adept architects may take the time to deeply understand the 

details and nuances of any given pattern, communication becomes a major problem. 

Patterns are common in software engineering as a high-bandwidth mechanism to 

communicate shared ideas; however, the prevalence of innumerable variations of each 

pattern means, at any meaningful scale, there are no shared definitions of an architecture 

pattern.

The inescapable need for tailoring for any common pattern to fit, the untold number 

of variations that self-identify as an instance of a given pattern with widely differing 

capabilities, and the inevitable regression to the lowest common denominator definition 

result in the second important truth of software architecture: the capabilities that 
patterns promise are not absolute.

This is not to say that the Ford/Richards pattern scores are a fabrication; they are not. 

Instead, the takeaway is that architecture capabilities come from decisions, not patterns.
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�Summary
The lowest common denominator classification scheme that currently pervades software 

architecture, as we have seen, is deeply problematic; a new model is long overdue. The 

wealth of five-star ratings under the microservices pattern is a consequence of much 

more than the topology. Breaking an application into hundreds of tiny pieces will not 

magically make those capabilities appear, and, likewise, a monolithic build artifact does 

not automatically presage a big ball of mud.

The microservices pattern—like every architecture pattern—is, fundamentally, a set 

of design decisions. There are core design decisions that a practitioner should almost 

never deviate from, there are well-defined extension decisions that modify the pattern 

to better suit a given project, and there are optional decisions that might be outside the 

scope of any formal pattern but nevertheless modify the resultant system capabilities. 

Each individual decision is an atomic component of the architecture that modifies the 

capabilities of the system—with some capabilities strengthened and others weakened—

each decision is a trade-off. It is the decisions that matter; the patterns are a side effect.

This is not to say you should throw out all the patterns and completely reinvent the 

wheel for every project. Instead, the Tailor-Made approach advocates a more holistic 

design approach that centers on the decisions and directly connects decisions to 

outcomes at design time, regardless of whether the project is greenfield or a brownfield 

development. The patterns hold a valuable place in this model, not as an end but as a 

starting point. In Tailor-Made Software Architecture, an architecture pattern is simply a 

foundational set of decisions that may be modified or built upon. By assigning positive 

and negative numeric weights to the capabilities impacted by each constraint, the 

Tailor-Made Architecture Model provides design-time feedback on the side effects 

of each decision. The consequence, as you will see in the coming chapters, is an 

approach that

•	 Reduces risk

•	 Yields significantly more deterministic results

•	 Gives us tools to surgically tailor an architecture without costly trial 

and error
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•	 Eliminates ambiguity

•	 Clearly communicates architecture descriptions

The next chapter introduces this foundational approach to architectural design: 

design by composition of architectural constraints.
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CHAPTER 7

Architectural 
Constraints: Designing 
for Deterministic 
Capabilities

Constraints are not limitations; they are insight.

—Steve Sanderson

In the world of software architecture, very little is black and white; the answer to almost 

any question is, invariably, “it depends.” But “depends” on what?

The Tailor-Made Software Architecture Model champions a design/decision-driven 

approach to architecture. Chapter 6 introduces this concept, but more precision is 

required. “Decision” is far too broad. Some decisions absolutely do impact system 

capabilities, others do not. There exists a set of things called decisions, and within 

that set, there exists a subset of those decisions that modify system architectural 

characteristics. To identify that subset, the question of where capabilities ultimately 

come from must first be answered.

�The Origins of Architecture Capabilities
Counterintuitively, architectural capabilities are elicited through constraints. Constraints 

in this context are architecturally significant decisions that reduce the degrees of 

freedom of implementation, thus driving the attributes of the system toward a desirable 

https://doi.org/10.1007/979-8-8688-0410-6_7#DOI
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state. As a concrete example, take the infamous “Big Ball of Mud” pattern.1 The Big 

Ball of Mud emerges when unlimited degrees of freedom exist for implementation; 

UI concerns, business logic, and data access may be freely mixed. The resulting code 

is difficult to test, difficult to maintain, and difficult to understand. Constraining the 

degrees of freedom by prescribing separation of concerns and modularity materially 

impacts the resulting system capabilities.

The software industry at large may not typically think about their designs that way 

or use that precise terminology (constraints may, instead, be called design principles, 

“paved roads,” or simply “design decisions”), but they exist. One of the most explicit 

explorations of the direct relationship between constraints and capabilities was in the 

year 2000 by Roy Fielding.2 While this paper has been widely read, most readers skipped 

ahead to Chapter 5 where Fielding begins to talk about REST, which has historically 

received more attention than the core thesis of this paper. Fielding’s work was neither 

the first nor last to explore the relationship between constraints and architectural 

capabilities. Many scholars and practitioners in both software engineering, design, 

and architecture have touched upon this idea. Software Architecture: Perspectives on 

an Emerging Discipline3 also explores this idea of design by constraint and how these 

constraints influence architectural styles. In The Mythical Man-Month4 and other 

writings, Fred Brooks touches on the idea that constraints, both in terms of software and 

project management, influence the architecture and design of systems. More recently, 

the paper “Software Architecture Constraint Reuse-by-Composition”5 by Tibermacine 

et al. further explored how constraints are also useful for more precise definition 

and documentation of software architecture and how constraints are reusable and 

composable architectural design elements.

1 Foote, B., & Yoder, J. (1997). Big Ball of Mud. Presented at the 4th Conference on Patterns, 
Languages of Programs (PLoP)
2 Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures 
(Doctoral dissertation). University of California, Irvine
3 Shaw, M., & Garlan, D. (1996). Software architecture: Perspectives on an emerging discipline. 
Prentice Hall
4 Brooks Jr., F. P. (1975). The mythical man-month: Essays on software engineering. Addison-Wesley
5 Tibermacine, C., Sadou, S., Ton That, M. T., & Dony, C. (2016). Software architecture constraint 
reuse-by-composition. Future Generation Computer Systems, 61, 37–53
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Perhaps the most widely known and tangible example of how constraints may 

be applied to realize desirable system qualities are the SOLID principles introduced 

by Robert C. Martin6 (with the SOLID mnemonic coined by Michael Feathers7). The 

SOLID principles are widely considered to be a set of design principles or best practices 

for object-oriented software development. One could equally say they are design 

constraints, and, by adhering to those constraints, certain desirable characteristics 

emerge in the codebase. Although SOLID is code/language level, it provides a tangible 

microcosm that most developers and architects are already familiar with (but are briefly 

summarized below).

The Single Responsibility Principle introduces a constraint that, informally stated, 

constrains each class to have a single purpose. The consequence of adopting this 

constraint is code that is easier to reuse, understand, and reason about with a reduced 

test surface area, which also makes the code easier to maintain.

The Open/Closed Principle introduces a constraint that declares classes open for 

extension but closed for modification. One consequence of this constraint is that code 

becomes more extensible while remaining easy to maintain and test. Another is that, by 

making classes closed for modification, backward compatibility is maintained, resulting 

in both stability and evolvability.

The Liskov Substitution Principle is a constraint that formally describes the idea of 

“design by contract.” This constraint induces improvements in the code’s modularity and 

testability (among others).

The Interface Segregation Principle constrains code to prefer client-specific 

interfaces rather than general ones. Consequently, any concrete implementation only 

requires what is necessary without needing to implement every conceivable method. 

This results in code that is more modular, decoupled, and easier to refactor, change, and 

redeploy.

Finally, the Dependency Inversion Principle defines a set of constraints, namely:

•	 All member variables in a class must be interfaces or abstracts.

•	 All concrete class packages must connect only through interface or 

abstract class packages.

6 Martin, R. C. (2000). Design principles and design patterns. Objectmentor.com
7 Martin, R. (2017). Clean architecture: A craftsman’s guide to software structure and design. 
Prentice Hall
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•	 No class should derive from a concrete class.

•	 No method should override an implemented method.

•	 All variable instantiation requires the implementation of a creational 

pattern such as the factory method or the factory pattern8 or the use 

of a dependency-injection framework.

Most notably, this improves testability, extensibility, and adaptability.

By adopting these constraints in code, developers can deliver the same features 

with significantly improved adaptability, evolvability, extensibility, maintainability, 

simplicity, testability, and understandability. Each constraint moves the needle on these 

characteristics and others. Architectural constraints mirror this methodology. In fact, 

some SOLID constraints are frequently applied, albeit in varied forms, to distributed 

architectures. For example, in the microservices architecture, some champion IDEALS9 

defined as Interface segregation, Deployability (is on you), Event-driven, Availability 

over consistency, Loose coupling, and Single responsibility. Notably, while the 

SOLID constraints are considered a set of best practices for object-oriented software 

development, in architecture there are no best practices, only trade-offs; nothing comes 

for free. Every constraint that strengthens one architecture capability will weaken 

another.

Care must be taken to recognize when the effects of one constraint may 
counteract the benefits of some other constraint.

—Dr. Roy Fielding

Constraints provide a robust set of atomic architectural primitives that may be 

composed in numerous ways to design and define an architecture. It is through the 

careful and thoughtful composition of constraints that a target architecture may be 

derived or, through the addition and modification of constraints, that a pattern may be 

heavily tailored and fine-tuned at design time or redesign (modernization) time. This is a 

powerful idea that has been overlooked for far too long.

8 Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns: Elements of Reusable 
Object-Oriented Software. Addison-Wesley
9 Merson, P. (2021). Principles for microservice design: Think IDEALS, rather than SOLID. The 
InfoQ eMag, 91
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�Closing the Capability Gap
Historically, many architectural constraints are implicit. Neal Ford and Mark Richards 

are seasoned architects and have worked together collaboratively for close to two 

decades. They are undoubtedly very consistent with their various approaches in the 

projects on which they consult. The wider industry, however, is a different story. Books, 

videos, lectures, blog posts, and implementations of various architecture patterns 

fluctuate significantly. Likely every architect practicing today has been exposed to 

architecture descriptions from different sources that include implied constraints in 

their description and implementation. In working with architecture teams, a common 

exercise involves asking them to define the set of constraints inherent to a given pattern. 

At the outset, they believe they have an aligned and precise definition of the pattern, 

but upon completing the exercise, the team realizes their differing interpretations 

(Figure 7-1). No team has universally agreed on a full definition of an architecture 

pattern to date. 

Figure 7-1.  A Team of Architects or Developers with No Common Definitions of a 
Common Pattern10

It is no wonder practitioners seem to get varying results from architecture patterns. 

This underscores the problems with a flat taxonomy of architecture patterns and 

applying the same label to different collections of constraints that are only superficially 

or topologically similar.

10 Artwork inspired by Rasmusson, J. (2010). The agile samurai: How agile masters deliver great 
software. Pragmatic Bookshelf
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Through explicit specification of the underlying constraints of an otherwise 

overloaded and ambiguous label, we can now begin to see more deterministic and 

consistent results. Undoubtedly, given more time in sessions discussing capability 

discrepancies with architects between the Ford/Richards scores and their experiences, 

the group would identify the delta between the Ford/Richard scores and their observed 

results in the field. Additionally, almost every pattern includes core, nonnegotiable 

constraints, but without thinking explicitly in this way, it can be easy to miss them. 

Consider the case of any of the numerous microservice mega-disasters discussed in 

blog posts and at conferences. Many stem from absent core constraints (the absence of 

clearly defined bounded contexts, domains, and domain-aligned teams or violation of 

the independent deployability constraint appears quite often) while overfocusing on 

irrelevant metrics like lines of code. By evaluating these underperforming architectures 

through the lens of constraints, a better path forward is almost always obvious.

�Constraints for Deterministic Outcomes
Although Fielding’s work on layering constraints to induce a set of architectural 

capabilities was groundbreaking, metrics to precisely quantify the impact of each 

constraint on the architecture properties they affect were not available, leaving the 

architect to work by their intuition. Since then, Ford and Richards took important steps 

to remedy this by quantifying the relative strengths and weaknesses in each pattern 

when implemented as described in Fundamentals of Software Architecture. It is by 

building and extending upon their work that the trade-offs of each constraint may now 

be numerically weighted, providing architects with a new heuristic to visualize the 

result of each decision at design time, using a common scale, and ultimately fine-tune 

architecture to better fit the needs of the organization.

Another addition to this model of architectural constraints is formally expressing 

relationships between constraints. There are constraints that are dependent on each 

other, in that applying one constraint requires that its dependent constraint be applied. 

Other constraints are mutually exclusive, in that selecting “Constraint A” or “Constraint 

B” is a binary either/or proposition. A contribution of the Tailor-Made model is a formal, 

logical expression of each constraint, its description, and any axiomatic rules that 

govern it.
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The Tailor-Made model not only formalizes a process based on the work of Fielding 

and others but offers great power to simulate many candidate architectures at design 

time with relative accuracy while also receiving immediate feedback on logical model 

violations.

�Summary
As Tibermacine et al. show in their research, “constraints can serve as a documentation 

to better understand an existing architecture description, or can serve as invariants that 

can be checked after the application of an architecture change to see whether design rules 

still hold.” In Dr. Fielding’s dissertation, he shows, “Since properties are created by the 

application of architectural constraints, it is possible to evaluate and compare different 

architectural designs by identifying the constraints within each architecture, evaluating 

the set of properties induced by each constraint, and comparing the cumulative properties 

of the design to those properties required of the application.”

Ultimately, constraints form the foundation of an architectural model that allows for 

both precise definition of architectural design and fine-grained control of architectural 

capabilities with deterministic results. The model applies both at design time as well as 

throughout the life of the project.

As stated in Chapter 6, patterns are simply collections of design decisions in the form 

of architectural constraints that may be taken individually and applied to a candidate 

architecture or applied en masse.

For now, understand that there are many possible constraints and that ultimately, 

by getting through the remaining chapters, you will have a firm understanding of how 

to select and tune constraints to align with business requirements. Section 2 will define 

each of the nine common architectural patterns by the core constraints necessary to 

achieve rough parity with the Ford/Richards scorecard. Section 3 will expand on how 

to tweak the capabilities in the base pattern or in your custom, derived architecture 

as well as how to clearly document, communicate, and execute it. These sections will 

illustrate that many constraints are germane to several patterns. Within these sections, 

a catalog of reusable, composable constraints will emerge empowering you to fine-tune 

architectures for any set of capability targets. Equipped with this knowledge, you will be 

better positioned to implement the entirety of the Tailor-Made model and process.
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CHAPTER 8

Architectural Styles: 
The Tailor-Made Pattern 
Language

An architectural style is a named, coordinated set of architectural 
constraints.

—Roy Fielding

As noted in previous chapters, the business problems architects tackle seldom align 

perfectly with just nine sizes (the common/conventional architecture patterns). More 

often than not, any system’s architecture that adheres to a named pattern tweaks it 

significantly while leaving the label unchanged. This deviation brings forth two critical 

challenges that the Tailor-Made approach seeks to address.

Firstly, the prevalent tendency to oversimplify diverse and distinct systems filled 

with numerous modifications into a single pattern label leads to miscommunication and 

ambiguity in portraying the architecture’s intricacies (as illustrated in Figure 7-1 in the 

previous chapter). Secondly, as we also explored in the previous chapter, relying on a 

pattern-based language holds value only if there’s a unanimous consensus regarding the 

pattern’s definition.

In short, the “flat taxonomy” of architectural patterns is overdue for replacement 

with a new, more comprehensive model; that model is the architectural style. This 

concept is not new to the Tailor-Made model. Although architectural styles factored 

https://doi.org/10.1007/979-8-8688-0410-6_8#DOI
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heavily in Roy Fielding’s influential postgraduate work,1 architectural styles were first 

explored in 1992 by D. E. Perry and A. L. Wolf2 who defined an architectural style as an 

abstraction comprising element types and formal aspects from an assortment of specific 

architectures.

The significance of this concept lies in its ability to encapsulate key architectural 

decisions directly tied to the style’s label, rather than one of countless variations that 

share a common name. Such an adaptation ensures clearer definitions and more 

transparent architectural communication. Moreover, it unlocks a vast spectrum of 

architectural styles, moving beyond the confines of the common nine patterns.

An architectural style is a coordinated set of architectural constraints that 
restricts the roles/features of architectural elements and the allowed rela-
tionships among those elements within any architecture that conforms to 
that style.

—Dr. Roy Fielding

Architects adopting the Tailor-Made model are no longer “choosing” an architecture. 

Instead, starting with target capabilities, architects are composing architectural 

constraints (or abstract styles—more on that later!) to derive new, tailored architectural 

styles. The axioms, heuristics, and weighting introduced within the Tailor-Made model 

make this approach even more powerful.

�Architectural Styles and Architectural Patterns
The architectural patterns known today emerged as common solutions to recurring 

problems in business and system design, and, as such, they are known to have value. 

Architectural patterns represent hard-earned lessons in software architecture that 

should not be forgotten. Yet, with this focus on constraints and styles, where do patterns 

fit into this model?

1 Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures 
(Doctoral dissertation). University of California, Irvine
2 Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture. ACM 
SIGSOFT Software Engineering Notes, 17(4), 40–52
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An architectural style is simply a named composite of architectural constraints—

those key, architecturally significant decisions that act as the smallest atomic 

architectural primitive which act as building blocks of a given candidate or selected 

architectural design.

As a named, coordinated set of constraints, any architectural style may function 

as a more coarse-grained building block providing similar composability to individual 

constraints. Chapter 6 notes that a named architectural pattern is simply a set of 

implicit architectural constraints in the form of design decisions. If each pattern is 

explicitly described in terms of core constraints that are common across most mindful 

implementations, that pattern becomes a formal architectural style in its own right—at 

least in the abstract sense.

The key to using patterns as architectural styles lies in precise definition of the 

underlying constraints. In Section 2, the common patterns will each be defined by their 

core constraints in alignment with the decisions from which the scores were derived.

�Why “Style”
Although formally defining architecture patterns by their constraints brings much 

needed semantic clarity to the realm of architecture patterns, “style” has the potential to 

introduce new ambiguity. Before closing this chapter, it is worth addressing the potential 

confusion this term may introduce.

In the technology industry today, “style” tends to refer to an individual’s or 

community’s preferences, biases, or adopted conventions. Developers are often said to 

have a “coding style”; certain languages and frameworks will prescribe a style to provide 

consistency within a respective community. Based on common usage, the two usages 

are at odds. Although “style” in the context of architecture may share similar roots to 

“style” as it is used in most contexts, the two carry different meanings.

Fielding adopted the use of “architectural styles” as he was building on the work of 

Perry and Wolf, who first coined the term. In doing so, he scrutinized the term “style” 

noting that this term might insinuate that a particular style emanates from individualistic 

stylistic choices. However, a deeper understanding of “style” emerges when we delve 

into architectural usages from diverse eras and locales. Here, styles reflect design 

constraints—be it available resources, construction methodologies, societal norms, 

or even the specific requirements or whims of local leadership. In essence, in building 
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architecture, the emergent styles are the manifestation of design constraints. Numerous 

scholars have further accentuated this perspective, viewing this convention as a tool to 

interpret architectural descriptions and defining an architectural style.

Since referring to a named set of constraints as a style makes it easier to 
communicate the characteristics of common constraints, we use architec-
tural styles as a method of abstraction, rather than as an indicator of per-
sonalized design.

—Dr. Roy Fielding

�Summary
In the Tailor-Made context—as in Fielding’s—any distinct mix of constraints leads to the 

creation of a novel architectural style. Architects will be crafting novel architectural styles 

by blending constraints, other architectural styles, or even a mix of both. This new style 

would be christened and documented formally, enabling crystal-clear communication 

regarding its definition. Although “style” may be ambiguous to outsiders, your styles—

and the architectures you design that implement them—will not be.
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CHAPTER 9

Architectural X 
Factors: Environment, 
Organization, and Teams

When I write software, I know that it will fail, either due to my own mistake, 
or due to some other cause.

—Wietse Venema

Today, software projects continue to fail (or at least fail to live up to their potential) at 

alarming rates. Architectures regularly fall short of promised capabilities. The underlying 

causes of such failures are manifold. Certainly, some—if not many—failures in the 

architectural realm are due to a lack of constraints or the wrong constraints. Yet even 

the perfect set of constraints, the ideal architectural style provides vanishingly few 

guarantees of success. There exist X factors outside the intellectual space of architectural 

design that must be understood and addressed in order for an architect to become 

truly effective in their work. The Tailor-Made model emphasizes the concept of “fit” in 

architecture, but “fit” is a concept with a deceptively vast scope. At this stage, a deeper 

exploration of our couture metaphor is necessary.

�The Many Dimensions of “Fit”
A gentleman’s suit is a marvelous garment that offers incredible range and versatility to 

adapt to numerous body types. Short, tall, athletic, rotund, slim, or broad, a well-tailored 

suit will result in a dapper presentation and flattering silhouette. Shifting fashions 

notwithstanding, the core elements of a suit have remained relatively unchanged over 

https://doi.org/10.1007/979-8-8688-0410-6_9#DOI
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the past 150+ years due to this quality of versatility of fit. The tailor must balance many 

measurements, choices, and other variables to produce an optimum fit for the wearer. 

This is difficult but crucial work as an ill-fitting suit will never look good regardless of 

cost, material, label, or any other single detail. Fitting the body, however important, 

is but the first dimension of fit. Beyond sizing, the color and fabric of the suit must 

complement the skin tone and accessories of the wearer. The style of the suit must fit 

the environment in which it will be worn. The suit must fit within the wearer’s broader 

wardrobe. It must fit the style of the time. The overall cost must be within means. The 

relative value of purchasing a suit is a function of many other considerations, and “fit” 

when viewed holistically is so much more than just physical measurements.

Architectural fit, in many ways, is analogous. Thus far, the Tailor-Made model has 

examined only the first dimension of fit, aligning business needs with architectural 

capabilities. More precise measurements and tools have been introduced to reduce risk 

and uncertainty in this process, but architecture, like a suit, must fit holistically. Before 

we close this section, the nature of these additional dimensions must be examined along 

with how these might be integrated into the Tailor-Made model. Consider the frequent 

failures of the microservices architecture.

�X Factors and the Road to Microservices
The Ford/Richards architecture scorecard awards the microservices pattern extremely 

high marks across several capabilities. Based on these scores, an architect might expect 

their reality to mirror those scores (Figure 9-1), but anecdotally the reality often falls far 

short of these lofty expectations (Figure 9-2). Rarely are organizations able to manifest 

the full scope of the benefits this approach promises, and industry analyst Gartner once 

predicted 90% of the organizations who attempt to adopt microservices will struggle 

to such an extent that they pivot to a different architectural approach.1 One of the 

most high-profile shifts this prognostication predicted happened in 2023 when a team 

at Amazon announced they were pivoting from microservices back to a monolithic 

architecture.2

1 Cope, R. (July 3, 2019). Multigrain services: Micro vs. mini vs. macro. The Software Development 
Times. https://sdtimes.com/devops/multigrain-services-micro-vs-mini-vs-macro/
2 Jackson, J. (May 4, 2023). Return of the Monolith: Amazon Dumps Microservices for Video  
Monitoring. The New Stack. https://thenewstack.io/return-of-the-monolith-amazon-dumps- 
microservices-for-video-monitoring/
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Figure 9-1.  The Promised Capabilities of Microservices Architecture

Figure 9-2.  The Anecdotal Reality of Many Microservices Implementations

While it is true that many microservices architectures are prescribed without 

specifying many of the constraints that would otherwise elicit these capabilities, those 

constraints represent only part of the story; the challenges facing potential adopters 

extend far beyond the technical and design concerns.

The microservices pattern was not the result of a sudden flash of insight in the mind 

of some architect who realized that tiny, distributed components were a panacea for 

architecture problems. It was not simply an idea that was just waiting to be discovered. 

If an architect were to travel back in time a decade before the first microservices as 

we know them went into production to encourage early adoption of this pattern, they 

would be considered crazy. It is not that, at the time, the ideas were radical; they were 
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impossible. The pattern was not discovered, it emerged over time due to changing 

cultures, technologies, practices, and organizational theory; these are the X factors, the 

hidden variables necessary for success. The pattern itself, and its defining constraints, 

cannot operate effectively without the X factors instrumental in driving the development 

and success of this approach. What were some of these X factors?

The Agile Manifesto, signed in 2001,3 was more than just an acknowledgment that 

change is inevitable so it must be embraced; it was a call to the industry to work in new 

ways that facilitate change. Practices like Test-Driven Development (TDD) developed by 

Kent Beck,4 a signatory on the original Agile Manifesto, provided developers with new 

tools for fast feedback on the correctness of software and the relative safety of a given 

change. This enabled more widespread adoption of the ideas surrounding continuous 

integration, paved the way for continuous delivery, and ultimately the DevOps 

movement from which many operational automation capabilities were born.5

Continuous Integration, Continuous Delivery, and Continuous Deployment 

We see the effects of semantic diffusion in our industry surrounding these 
concepts and terms. Throughout this book, we will define these terms as defined 
by Jez Humble and David Farley in their 2010 book.

Continuous Integration

A team is practicing continuous integration (CI) only when the following statements 
are true:

–– Every team member commits to main/trunk at least once per day.

–– Each commit results in both a build and a full execution of all 
relevant test suites/quality gates.

–– If the build breaks, resolution is top priority (typically the build is 
fixed within 10–15 minutes).

3 Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., … 
& Thomas, D. (2001). Manifesto for Agile Software Development. Retrieved from http://
agilemanifesto.org/
4 Beck, K. (2003). Test-Driven Development: By Example. Addison-Wesley
5 Humble, J., Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test, 
and Deployment Automation. Addison-Wesley
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Although often considered to be an agile “best practice,” true CI is seldom 
practiced. More accessible practices like GitFlow and feature branches delay 
integration to later in the development lifecycle. One of the primary challenges is 
the commit cadence of work in progress. Practices like feature toggling (where 
features in progress can be disabled until the feature is fully ready) are often 
necessary, enabling practices for CI.

Continuous Delivery

Continuous delivery builds on the practice of continuous integration by prescribing 
that, at the end of the CI stage, an artifact is produced that is in a ready-to-deploy 
state. Notably, a team cannot practice continuous delivery unless they are already 
practicing continuous integration. The essence of continuous delivery is described 
by Martin Fowler6 as

–– Your software is deployable throughout its lifecycle.

–– Your team prioritizes keeping the software deployable over working 
on new features.

–– Anybody can get fast, automated feedback on the production readiness 
of their systems any time somebody makes changes to them.

–– You can perform push-button deployments of any version of the 
software to any environment on demand.

The key point of continuous delivery is your system is always in a ready-to-deploy 
state. This does not necessarily mean every build is deployed; rather, every build 
can be deployed.

Continuous Deployment

In highly agile environments where release velocity is considered a very high 
priority, continuous deployment dictates that every commit is released (once 
all tests and quality gates pass) automatically. In other words, your code’s main 
branch and the production environment are always in sync.

6 Fowler, M. (2013). Continuous Delivery. Retrieved from https://martinfowler.com/bliki/
ContinuousDelivery.html
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Other impediments to achieving the level of modularity prescribed by microservices 

are determining appropriate module boundaries and enabling teams to operate 

effectively within those boundaries. The influence of organizational communication 

structures on the systems those organizations produce (commonly known as Conway’s 

Law) has been known since the late 1960s,7 but it was not until 2003, when Eric Evans 

published Domain-Driven Design8 (DDD), that organizational structures could truly 

evolve to support such an architecture.

We can define the microservices architecture pattern by architectural constraints, 

but the X factors enumerated above form subtle dependencies necessary for success. 

These dependencies roughly fall into three categories: team constraints, organizational 

constraints, and environmental constraints.

�Team Constraints
These constraints will define skills, practices, behaviors, and habits the implementation 

teams must possess to effectively adhere to and implement the system’s architecture. 

Team constraints will also dictate how they balance short-term priorities against long-term 

vision and the teams’ incentives for each. The incentives and motives of the team must be 

aligned with those of architecture; otherwise, architecture will be seen as an impediment 

rather than an asset. One additional facet of some team constraints that blur the line 

between team and organizational constraints is the development teams’ hierarchy.

Architects may produce the blueprints, but it is the teams that perform the actual 

construction. Without consideration of this fact, the blueprints become little more than a 

suggestion.

�Organizational Constraints
These constraints will define the nature of the organization, process maturity, structure, 

and additional variables the architect must consider. While architecture and business 

may be aligned on vision, it is uncommon for alignment to extend beyond that. For 

example, organizations tend to be very risk-averse and will often equate change to risk. 

Consequently, architectural decisions that require sweeping organizational change 

7 Conway, M. E. (1968). How do Committees Invent? Datamation, 14(5), 28–31
8 Evans, E. (2003). Domain-driven design: Tackling complexity in the heart of software. 
Addison-Wesley
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(such as embracing DevOps or DDD) may be an uphill struggle to implement effectively. 

The initial delivery timeline and budget also represent organizational constraints that 

must be considered.

�Environmental Constraints
These constraints not only define the runtime and development environments of the 

system, infrastructure maturity, and deployment maturity but also encompass other 

factors. One notable factor is the complexity of the problem space. Another is the 

complexity of the solution space. The cognitive load of solving challenging domain 

problems may necessitate simplicity elsewhere. Likewise, operating at the bleeding edge 

of technology is unavoidable at times, but, as always in software architecture, trade-offs 

may be necessary. Finally, if the environment is not one of innovation but stagnation, 

architects may be limited in what architectural constraints may be available in their 

toolbox.

�Constraint Dependencies
A microservices implementation will consist of many constraints which will vary from 

project to project and implementation to implementation. The core constraints that 

nearly all will share may be summarized as “Highly decoupled, independently deployable, 

fine-grained components that each control their own independent database, and are 

grouped by domain and partitioned at the bounded context with communication 

facilitated by some kind of API interface and running in an environment with high 

operational automation.” In essence, seven architectural constraints. Although that is 

by no means a complete set of constraints for any implementation, it provides a solid 

foundation.

These architectural constraints have profound implications on the teams, 

organization, and operational environment. Decomposing a monolithic system 

into microservices calls for more than untangling code; it requires determining 

understanding domain boundaries which typically requires an investment into properly 

exploring, understanding, and defining the business domains by way of the practices 

prescribed in DDD. This effort, however, is insufficient. The organization’s structure 

and team focus must morph into a domain-aligned structure to better conform to 

these domains; otherwise, the design will fall victim to Conway’s Law. This type of 
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organizational structure is not typical in most software environments (“feature” teams 

and teams that are focused on a particular technology are more common) and generally 

only exists as a result of deliberate analysis and change. The Domain Partitioning 

constraint—where module boundaries are defined by domain boundaries, rather than 

technical boundaries—requires the organizational constraints of Well-Defined Domains 

(we must know the domains and their boundaries) and Domain-Aligned Teams (as 

“Organizations, who design systems, are constrained to produce designs which are copies 

of the communication structures of these organizations”).

To achieve a high degree of decoupling of components, many points of coupling 

are aggressively severed. Where many implementations might opt to reuse code 

where possible, following the adage of “Don’t Repeat Yourself” (DRY),9 microservices 

often favor the principle of “Please Repeat Yourself” (PRY) to decouple individual 

microservices from one another or shared libraries. This practice flies in the face 

of a career’s worth of “best practice” for many developers; consequently, there is a 

team constraint that development teams must operate at a level of sophistication to 

understand why the “rules” exist and when they should be broken.

Further constraints dictate that developers must not only produce functional code 

but must produce it in a manner aligned with the agile principles emphasizing mature 

testing strategies and a high degree of automation. Often, these are secondary skills in 

many developers, and adopting these practices will cause team friction. The up-front 

investment in testing and automation often feels like impediments slowing their “coding 

flow” or productivity. Without a strong team and organizational commitment to these 

values, the practices will be short-lived.

Teams must be able to work independent of each other, requiring yet another shift 

in how software is traditionally built. Teams must define and publish message schemas, 

API interfaces, and contracts early in the development lifecycle, so other teams focused 

on building neighboring services may code to that interface in parallel. In mainstream 

practice, it is much more common for these interfaces and contracts to emerge while the 

code is being written. However, this practice will introduce frequent blockers for teams 

that must wait for the other services to be fully developed.

Mature and sophisticated pipelines must be created and managed by development 

teams for whom such work might be outside of their current core skillset. In short, 

development teams must embrace the practices and philosophies of DevOps.  

9 Hunt, A. Thomas, D. (1999). The Pragmatic Programmer: From Journeyman to Master. 
Addison-Wesley
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Long-term delegation of this work to dedicated “DevOps” teams is a strong indication that 

the adoption of DevOps has failed and that the wall between “Dev” and “Ops” remains 

alive and well (except, in this case, “Ops” has been renamed “DevOps,” ensuring the 

organization remains buzzword compliant for a thin veneer of technical sophistication).

Finally, the environment must be one that supports a high degree of operational 

automation and flexibility. Although with great care such an environment may be 

constructed using on-prem hardware, cloud providers offer Infrastructure as a Service 

(IaaS) and Platform as a Service (PaaS) that generally provide better flexibility and 

capabilities. Again, embracing these necessitates additional skills and practices 

of developers as much operational automation support must be baked into the 

microservices themselves. The broader environment must also be one that supports 

independent, autonomous development by teams.

Architects cannot operate effectively in a vacuum, and, while the underlying 

business needs fill part of that vacuum, the reality of the teams, organization, and 

environment must also fill important parts of that void. These team, organizational, 

and environmental constraints are prerequisites for adopting many of the architectural 

constraints central to microservices. Because the non-architectural constraints are 

dependencies on their architectural constraint counterparts, ignoring these non- 

architectural constraints results in the architecture violating architectural constraints. 

The result is a loss of key capabilities and the emergence of undesirable system 

characteristics. Architectural styles are defined by their constraints; remove any 

constraint and the resulting system will have adopted a different architectural style 

and perhaps one better avoided if it becomes an anti-style. Just as removing some 

constraints from the Layered Monolith style results in an anti-style—the Big Ball of 

Mud—subtracting the independent deployability constraint of microservices also results 

in an anti-style—the distributed monolith. Remove more and the system becomes the 

Distributed Big Ball of Mud.

�Summary
Unlike architectural constraints, which constrain the degrees of freedom for 

implementation teams, team, organizational, and environmental constraints constrain 

the degrees of freedom for the architect. Any architectural constraint that carries 

dependent constraints of this type put the architect in a quandary. Ultimately, we must 

either perform the prerequisite work of driving organizational change up front, or they 

Chapter 9  Architectural X Factors: Environment, Organization, and Teams



130

must accept our current reality and derive what may be a suboptimal architectural style 

when viewed through the lens of a single dimension for the sake of broader fit. At design 

time, these are truly the only available options.

A suboptimal architecture is never the goal of an architect, but a given set of 

circumstances may dictate certain compromises. To reiterate what was said in Chapter 1, 

“Often it is said architects don’t aim to produce the best architecture, just the ‘least worst’ 

architecture,” or, as the saying goes, engineering is never about perfect solutions, but 

rather it involves doing the best with what is available at the time.

Although we often need to become comfortable with designing suboptimal 

architectures for the sake of holistic fit, it is also important to recognize these 

compromises need not be permanent. Perhaps the pain an architect might foresee is 

theoretically avoidable; however, change often only happens when the risk of inaction 

becomes greater than the risk of action. Ultimately, architectural change and evolution is 

inevitable—even for “optimal” architectures. Architects must put the project on the best 

available course and always keep an eye toward the future.

Fortunately, as we shall explore in Section 2, architectural evolution need not be 

nearly as challenging as conventional wisdom dictates.
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CHAPTER 10

Abstract Styles: A New 
Look at Patterns

The main lesson here is that not every problem can be solved at the level of 
abstraction where it manifests.

—Michael T. Nygard

We have established in this section that Architectures Aren’t Chosen, They’re Designed. 

On the surface, this statement might seem to suggest that patterns are irrelevant 

in this model; however, I do not advocate throwing away the established patterns 

and reinventing the wheel for many projects. There are many paths to a candidate 

architecture, and each has their trade-offs. Let us briefly return to the suit metaphor to 

provide context to how patterns can be selected, designed, and adapted.

First, it must be noted that “fit” (both in suits and architecture) is of the utmost 

importance. The extent of the fit is proportional to both the care of selection and the 

amount of tailoring or customization of the garment or its underlying measurements 

and design. When fit is a secondary concern to time or cost, the most expedient option 

is to purchase a “ready-to-wear” garment. This essentially means finding the closest fit 

and rolling with it, as is. We will start with why this is often a suboptimal approach and 

explore how various levels of tailoring or design can yield an increasingly optimal fit.
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�Ready-to-Wear
Ready-to-wear suits come in many sizes, all of which are denoted by just two 

components—a chest measurement and a height component of “short,” “regular,” 

or “long.” How do these height modifiers translate to body length, sleeve length, and 

inseam? It depends on the manufacturer and their base patterns, but these are based on 

an average of the measurements that fall into the short, regular, and long buckets.

In Todd Rose’s book, The End of Average,1 he recounts a story where an increasing 

number of noncombat aviation incidents and accidents were found to be caused by 

designing the cockpit of a complex aircraft to fit the “average pilot.” Even after putting a 

policy in place to only recruit pilots that, on paper, fit the average, accidents remained 

alarmingly high.

Using the size data he had gathered from 4,063 pilots, Daniels calculated 
the average of the ten physical dimensions believed to be most relevant for 
design, including height, chest circumference and sleeve length. These 
formed the dimensions of the “average pilot,” which Daniels generously 
defined as someone whose measurements were within the middle 30 per 
cent of the range of values for each dimension. So, for example, even though 
the precise average height from the data was five foot nine, he defined the 
height of the “average pilot” as ranging from five-seven to five-11. Next, 
Daniels compared each individual pilot, one by one, to the average pilot.

Before he crunched his numbers, the consensus among his fellow air force 
researchers was that the vast majority of pilots would be within the average 
range on most dimensions. After all, these pilots had already been pre- 
selected because they appeared to be average sized. (If you were, say, six 
foot seven, you would never have been recruited in the first place.) The sci-
entists also expected that a sizable number of pilots would be within the 
average range on all ten dimensions. But even Daniels was stunned when 
he tabulated the actual number.

Zero.

—Todd Rose, The End of Average

1 Rose, T. The end of average: Unlocking our potential by embracing what makes us different. 
HarperOne 2017
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Averages may provide ranges of measurements suggesting generalized fit, but, in 

any individual case, the probability of a good fit is close to zero. Consequently, if our 

notation of architecture is simply selecting a pattern, the results will not be great. This 

is the approach we continue to take with traditional pattern-driven architecture. When 

an architect looks at the relative capabilities of one pattern (such as the Ford/Richards 

scores), it is naturally assumed that those scores represent the best case for that pattern 

in practice. In reality, however, those scores simply communicate the base expectations 

of the pattern in the abstract.

Ultimately, the US Air Force discarded averages as their reference standard and 

embraced the new guiding principle of individual fit. At first blush, manufacturers 

proclaimed this new philosophy as wildly impractical, bordering on impossible. 

Eventually, manufacturers uncovered novel approaches that were both inexpensive and 

easy to implement; they designed cockpits that were easy to tailor to the individual from 

the baseline. They designed adjustable seats, adjustable foot pedals, adjustable helmet 

straps and flight suits, providing a foundational design that can be adjusted to optimize 

for individual fit. To quote Rose’s book:

Once these and other design solutions were put into place, pilot perfor-
mance soared, and the U.S. air force became the most dominant air force 
on the planet. Soon, every branch of the American military published 
guides decreeing that equipment should fit a wide range of body sizes, 
instead of standardized around the average.

—Todd Rose, The End of Average

Even ready-to-wear suits can—and should—be tailored (as illustrated in 

Figure 10-1). The same is true of any predefined architecture pattern. The Tailor-Made 

model provides practical guidance to architects to perform such tailoring based on the 

needs and realities of the project, the business, the teams, and the organization. The 

performance of a candidate architecture will similarly benefit from a philosophy of 

individual fit. This is accomplished by treating the mainstream architecture patterns 

as abstract architectural styles. In other words, an abstract style is one that is—like 

all architectural styles—defined by a common and well-defined set of architectural 

constraints. An abstract style, like an abstract class, cannot (or should not) be directly 

instantiated; rather, it is a blueprint from which the optimal implementation is derived 

and extended. In the Tailor-Made model, this is the place for patterns.
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Figure 10-1.  Tailored vs. Ready to Wear

�Tailored Off-the-Rack
A reasonable fit may be achieved by beginning with the closest fit and making some 

quantity of changes and adjustments to the garment to achieve improved individual 

fit at a low cost. Your author typically wears a tailored instance of a 42S suit. Most base 

patterns for a 42S suit make assumptions about how the “short” height is composed (legs 

vs. torso), overall body girth, and sleeve length. Consequently, my individual fit typically 

requires hemming trousers to an inseam length of 30”, taking in the waist to around 32” 

(a 10” drop) and taking in the body of the jacket. The result is an inexpensive path to an 

acceptable fit.

This is the de facto approach to architecture today, albeit with caveats. Architects or 

developers often begin with pattern selection and, upon deployment, begin to learn all 

the areas where the architecture is deficient and make multiple adjustments over time. 

Since these traditional approaches lack the granular controls and detailed design- 

time feedback of the Tailor-Made model, this process typically requires extensive (and 
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costly) trial and error. This is analogous to purchasing a ready-to-wear suit, wearing it to 

a function, then returning for tailoring after receiving comments that the suit does not 

fit very well. It is preferable to tailor the garment or the architecture in the beginning. A 

much better fit can be achieved at comparable cost by modifying the pattern at design 

time. This is known in the field as “made-to-measure.”

�Made-to-Measure
These days, most custom suits follow an approach that optimizes both cost and 

individual fit. In the same way we begin with a detailed requirements analysis process 

to identify target fit, the tailor will begin with a more robust consultation process that 

results in not only significantly improved fit on day one but also provides improved 

holistic fit.

Many measurements are taken, which are used to modify one of several generic 

patterns. Since the garment is made to order, a closer holistic fit may now be realized as 

the tailor will collaborate with the customer to select from a broader range of fabrics, 

styles, features, etc.

In most cases, this is the recommended path when following the Tailor-Made model. 

In essence

•	 Begin with a standard reference pattern.

•	 Modify the pattern at design time based on true requirements for fit.

•	 Work closely with implementation teams to apply further 

customizations, variances, or implementation guidance, as 

necessary.

•	 Build the software.

Made-to-measure architecture provides a much richer set of tools to achieve 

optimal fit right out of the gate. Of course, once the system is in production, changing 

and evolving needs will necessitate additional tweaks and tailoring; however, these are 

typically much smaller in scope and, consequently, typically lower in risk. Notably, while 

fit inevitably changes over time, a well-designed architecture or suit provides many 

opportunities and paths for ongoing tailoring which is key for long-term business-value 

capture.
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Made-to-measure architecture provides a balance between individual fit, cost, 

design effort, and time to production; however, this is not the only path to improved fit. 

The rarest, most expensive, but most comprehensive approach is bespoke tailoring.

�Bespoke Tailoring
There remain a handful of skilled craftspeople in the world who specialize in bespoke 

tailoring. Unlike made-to-measure, the bespoke process begins from scratch, providing 

the client with complete control over every detail. Suits made this way will not only 

fit every contour of the client’s body perfectly, but they will also equally fit the client’s 

personality, identity, and environment. This truly holistic fit is a result of the deep 

collaboration between the tailoring house and the client and the house’s precision and 

attention to detail. The cost of such a holistic fit is high; the process is labor-intensive 

and expensive.

Holistic fit always begins with understanding the client’s needs and requirements. 

Accordingly, bespoke tailoring begins with a salesperson who collaborates with the 

client to understand their unique needs and advise as appropriate. The cutter is the 

architect of the garment, collaborating with both the client and the salesperson to 

understand the vision and infer unstated requirements. The cutter takes the necessary 

measurements and, in concert with the requirements, constructs a unique pattern for 

the suit. The cutter then cuts the fabric according to the pattern. The tailor, who acts as 

the implementation team, then assembles the garment.

Early fittings are the feedback loops in the construction process. Following the 

first fitting of the work-in-progress suit, the cutter will disassemble the suit and recut 

the fabric to refine the fit during construction. These feedback loops are important to 

validate early assumptions and course correct along the way.

We should strive to approach architecture with the same rigor and utilize feedback 

loops to validate we are on the right path, even if our approach to architecture more 

closely resembles made-to-measure or tailored off-the-rack. As for determining when to 

take a bespoke approach, the answer, unsurprisingly, is “it depends.”

Architectural Styles and the Design of Network-Based Architectures2 introduces 

the reader to architecture design by constraint. In Chapter 5, Fielding describes and 

formalizes the REST Architectural Style, which is architecture of the World Wide Web. 

2 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures. 
Doctoral dissertation, University of California, Irvine
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In the early to mid-1990s, when the Web was still in its formative stages, there were no 

patterns or well-known solutions for such a system that could scale from one user to 

billions. There were no patterns that promised the kind of evolvability the Web required. 

The REST Architectural Style was, consequently, a bespoke architecture derived from 

scratch (or, as Fielding described it, the null architectural style) based on the domain 

problems and requirements of the World Wide Web, expressed in Chapter 4 of the 

dissertation.

While deriving truly bespoke architecture may be uniquely interesting and 

challenging, this is rarely necessary. The diversity of software systems running today has 

led to numerous common problems with known solutions from which we may profit.

�Summary
In Chapters 6, 7, and 8, we explored the problems surrounding the current “flat 

taxonomy of patterns” and how each pattern has devolved into vague umbrella terms 

that encompass many diverse implementations that share superficial topological 

similarities. In this section, we aim to remedy this disconnect between terminology 

and explicit meaning by redefining each of the nine common patterns by their core 

constraints. Remember that constraints, at their core, are named, codified, reusable, 

architecturally significant decisions capable of both effecting and affecting a system’s 

architecture capabilities. When precisely defined, each pattern becomes an abstract 

style, making explicit what is often implicit (and potentially overlooked) and providing 

a valuable starting place for our work. A derived architectural style will thus extend an 

abstract style with additional or modified constraints as necessary to achieve optimal fit.

As you will see in the upcoming section, not only does this approach reduce risk, 

improve fit, and ultimately result in true clarity of architectural communication, a 

constraint-driven (or decision-driven) approach unlocks an unprecedented path for 

architectural execution and evolution.

One final note, although the next section is ostensibly about patterns, it is really 

about the constraints that make up those patterns and elicit their capabilities. 

Remember, patterns are not architecture, they are a side effect of architecture. In the 

following chapters, as each architectural constraint is first introduced, we will discuss 
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considerations, trade-offs, and implementation details. The constraint descriptions, 

considerations, and implementation details will form the foundation of your work as 

you go from defining a style to designing an architecture (a blueprint for a concrete 

implementation of a style for a given system). As familiar constraints are subsequently 

referenced in additional styles, rather than repeat the trade-offs and implementation 

guidance, the chapter where that constraint is first introduced will be referenced.
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CHAPTER 11

Architecture As a 
Multifaceted Continuum

When you change the way you look at things, the things that you look 
at change.

—Eugene Burger

For too long, we have regarded architecture the same way Martin Fowler once observed: 

“…things that people perceive as hard to change…”1 which has resulted in a great deal of 

overengineering up front in countless projects, thus introducing significant risk. Mature 

and sophisticated architectures require equally mature and sophisticated development 

teams, environments, and organizations. Significant, rapid cultural change is extremely 

difficult to execute. That said, generally, practitioners see the risk of premature 

optimization as preferable to a downstream rewrite (where decomposing a monolithic 

system into a well-factored distributed system can take many years of effort). In truth, 

however, this is a false dichotomy.

As a practicing, independent software architect, my clients often express a desire 

to move in the direction of microservices. I am frequently known to respond to such 

statements with “No, you don’t want microservices, you want something that you 
believe microservices will give you. Why don’t we talk about what that is, then we can 
figure out the best way to get there.”

There are many architectural capabilities that microservices promise, all of which 

are a consequence of the style’s underlying constraints. If a system requires any subset 

of those capabilities, typically only a corresponding subset of the constraints is required. 

1 Fowler, M. (2003). Who Needs an Architect? IEEE Computer Society

https://doi.org/10.1007/979-8-8688-0410-6_11#DOI
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Looking at architecture as a multifaceted continuum will illuminate new evolutionary 

paths. Change becomes much less daunting, and a promise of increased architectural 

agility materializes as a result.

�Agile Architecture
Once you let go of the fantasy of software development as delivering what 
the customer wants, and embrace the reality of software development as 
helping them to figure that out, it gets a lot easier

—Jason Gorman

The Agile Manifesto grew from repeated confirmation that all software begins as 

a hypothesis. When we blindly accept a hypothesis as fact, we rob ourselves of the 

opportunity to confirm our assumptions. Teams invest significant effort in the direction 

of unquestioned assumptions and untested hypotheses. It is only when we begin to get 

real feedback on working software that we learn if our efforts produced value or waste. 

This late-stage feedback will often shatter our assumptions and incinerate development 

budgets. Agile approaches, in their purest form, center on setting up feedback loops 

to quickly determine what is value, what is waste, and how development should pivot 

based on feedback.

We tend to think about agility in terms of product evolution. However, if the product 

and market are evolving, so too are the necessary architectural capabilities. We tend to 

think about overall agility as a product of design. Martin Fowler expressed this very well 

in his Design Stamina Hypothesis2 illustrated in Figure 11-1.

2 Fowler, M. (2007). The Design Stamina Hypothesis. Retrieved from: https://martinfowler.com/
bliki/DesignStaminaHypothesis.html
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Figure 11-1.  The Design-Payoff Pseudo-Graph

Fowler’s pseudo-graph illustrates how “putting effort into the design of your software 

improves the stamina of your project, allowing you to go faster for longer”; however, this 

is only a high-level illustration, leaving the reader to determine what is “good design.” If 

Fowler’s hypothesis is correct, it would appear our choices are “no design” (such as the 

Big Ball of Mud Style described in Chapter 12) and “good design” which could arguably 

be any abstract or intermediary styles described later in this section. Moreover, like 

features in a software system, the definition of “good” changes over time. Ultimately, any 

notion of “good design” is elusive, subjective, and mercurial. As a result, architecture 

efforts either frequently fail or fail to reach their true potential.

Following a multi-year, root-cause analysis, I have uncovered common themes. 

In the order I have typed them, these partial or total failures are often caused by some 

combination of

•	 The wrong pattern

•	 The wrong capabilities

•	 The right capabilities, but in the wrong measure

•	 Architecture decisions incompatible with the realities of the 

organization

•	 Communication failures

•	 Leadership failures

•	 Premature optimization
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Notably, this list seems to parallel many of the problems the Agile Manifesto sought 

to address.

It is okay to outgrow architecture—As long as you know when and how to 
evolve it.

�When to Evolve Architecture
Architecture should evolve when you can show that the system no longer meets the 

needs of the business or that the change will otherwise materialize meaningful and 

concrete business value. The analysis tools introduced in Chapter 4 and the metrics 

introduced in Chapter 5 arm you with tools to make these determinations.

Most practitioners only acknowledge outgrown architecture after there has been 

a period of pain; this is human nature. Recognizing this early is key to a project's 

successful growth. As a system’s architecture becomes more sophisticated and capable, 

the underlying constraints make increasing demands on the environment, teams, 

and organizations. Some constraints, such as domain-driven module partitioning 

or switching from monolithic to distributed component granularity, can come with 

significant cost and/or organizational friction. It is important to undertake such 

efforts only when there is a clear, net-positive return on investment from the business 

perspective. This suggests that there is more than one “payoff line,” and, more 

importantly, not every project will reach every payoff line, nor will every project follow 

the same trajectory. An example of a possible trajectory and evolution can be seen in 

Figure 11-2.
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Figure 11-2.  Multiple Payoff Lines for Architecture Evolution

We can see that a more data-driven, agile approach will reduce risk, waste, and 

provide clarity around the subjective definition of “good” over time. Far too often, 

architectural evaluation only takes place up front and after the fact. This is insufficient; 

architecture is often as much about monitoring as it is about design.

Both architectural oversight of the system’s components’ alignment with the 
prescribed constraints and iteratively reviewing runtime feedback to ensure 
ongoing fit should be a near-constant activity.

�How to Evolve Architecture
The false dichotomy of overengineer now or rewrite later is a consequence of the 

prevailing pattern-based way of thinking. Pattern-driven architecture suggests the 

capabilities of each pattern are static, and changing capabilities will require changing 

patterns. Realizing the truth that patterns are not a set of discrete options but rather 

waypoints along a vast, multifaceted continuum of possibilities annihilates this notion. 

Constraints are atomic primitives that comprise architectural styles and induce 

architectural capabilities. If a monolithic system is insufficiently evolvable and agile, 
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in addition to wholesale pattern replacement, we can individually apply relevant 

constraints from a more agile style (e.g., microservices) to increase agility. Every addition 

or modification of constraints moves the system along the architecture continuum.

The architecture of a system is not, in and of itself, difficult to change. The evolution 

of one architecture style to another through mindful addition or modification of 

architectural constraints gives us powerful tools. However, all constraints are not created 

equal. Some architectural constraints are trivial to change and adapt to while others 

remain enormously difficult. One of the more difficult constraints to change is that of 

how module boundaries are defined. The Layered Monolith Abstract Style, described 

in the next chapter, prescribes module boundaries defined by a technical area (UI, API, 

business logic, persistence, etc.) producing large, horizontal slices of a system. Each 

layer encapsulates a technical concern, offering a measure of abstraction, yet coupling 

within a layer is typically out of scope from the standpoint of architecture. This coupling 

becomes enormously problematic when attempting to switch to a domain-based 

module partitioning strategy, which prescribes dividing the system into vertical slices 

that entirely encapsulate a subdomain, or bounded context (depending on prescribed 

granularity).

DDD Definitions 

Domain I n the realm of Domain-Driven Design (DDD) and software architecture, 
a domain refers to a core area of expertise or business activity that your software is 
designed to address. This provides a conceptual space where your software solutions 
are applied to solve specific problems. For example, in an ecommerce application, 
one domain encompasses everything related to online shopping, such as product 
listings, orders, payments, and customer interactions. Understanding each domain 
deeply is crucial because it guides how you design, build, and evolve your software.

Subdomain  Within a larger domain, subdomains are distinct areas of functionality 
or expertise that can be isolated and understood independently. They represent 
smaller, more manageable pieces of an overall domain. In our ecommerce example, 
subdomains might include inventory management, user authentication, and shipping 
logistics. Each subdomain has its own set of rules, logic, and complexities. Identifying 
subdomains helps in breaking down a problem space into more digestible parts, 
making it easier to design and implement solutions.
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Bounded Context A  bounded context is a crucial concept in DDD that defines 
boundaries within which a particular model is valid. It is a specific, well-delineated 
part of a domain where a certain set of concepts, rules, and relationships apply 
consistently. Each bounded context has its own ubiquitous language—a set 
of terms and definitions understood uniformly by all stakeholders within that 
context. For instance, the term “order” might mean different things in the context 
of inventory management vs. customer service. By clearly defining bounded 
contexts, you prevent the confusion and complexity that arises from overlapping or 
conflicting interpretations of the same terms and concepts.

These definitions help streamline communication and design processes, ensuring 
everyone on the team has a clear, shared understanding of each domain and 
its subdomains. Consequently, it can be helpful to build a dictionary/glossary of 
ubiquitous language terms within a bounded context.

Decomposing a technically partitioned system into subdomain modules or bounded 

contexts is a tedious and expensive process. As you shall soon see, however, this is not 

the only way to decompose a monolith. The path to low-friction architectural evolution 

involves introducing new architectural constraints or changing the constraints that are 

easier to change. With each change to the prescribed constraints, a new architectural 

style emerges. Once again, architecture is a multifaceted continuum and not a finite set 

of discrete choices that demand major rewrites or rework to switch from one to another.

Moving along your system’s continuum in small steps results in tractable 

architectural evolution. However, the next steps available to us—and their subsequent 

adoption effort magnitude—will depend on the system’s current position within the 

continuum, as defined by the current architectural style with its underlying constraints. 

This is true whether the design exists in production or on paper. Consequently, 

understanding both current and anticipated future needs, combined with the Tailor- 

Made model, will arm you with the ability to design for the optimum fit now while 

leaving the door open to ongoing architectural evolution.

In short, you will be able to clearly see multiple paths of evolution to align 

architecture to current or future needs. Moreover, this new perspective enables 

deliberate and mindful choices.
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�Summary
When we view architecture not as a finite set of discrete patterns but as inestimable 

possibilities within a continuum, the prospect of designing an architecture that is 

optimal for the current point in time with sufficient flexibility and evolvability for 

ongoing tailoring is now in reach. We no longer need to overengineer up front which 

often introduces significant risk and friction to a project. Additionally, this model 

enables us to practice architecture with a greater degree of precision and reliability, all 

while reducing risk.

In the subsequent chapters in this section, we will look at hypothetical systems 

and, through the introduction, addition, and modification of constraints, derive nine 

common patterns as new abstract styles while deriving “intermediary” styles that 

enhance each pattern along the way. You will understand the “how” and “why” behind 

each constraint along with its impact on capabilities and inherent trade-offs. Finally, you 

will see the Tailor-Made model in action.
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CHAPTER 12

The Layered Monolith 
Abstract Style

With the growing emphasis on microservices and other distributed archi-
tectures, there is this idea that monoliths are inherently bad. ‘Monolith’ is 
not a pejorative; there are many monoliths that are well designed. Moreover, 
not every system should be a distributed system.

—Jeff Scott Brown

The humble layered monolith, an architecture that has stood the test of time, remains 

relevant and popular to this day. Variations of this style are known by different names. 

The “Clean Architecture”1 describes a variant of this style that follows the structured, 

modular, testable, and maintainable approach to system design this style prescribes. 

The “Onion Architecture”2 is another variation, with its choice of name a reflection of 

the system’s composition of layers, with each layer depending only on the layers beneath 

it. Even the “Hexagonal Architecture”3 (alternatively named “Ports and Adapters”) can 

describe a variation of this style.

Many software projects, in the absence of a prescribed architecture, naturally gravitate 

to this style as a sensible starting point for modularizing and organizing the codebase. For 

this reason, architects might refer to this style as “the de facto architecture.”

In general, this style and its numerous variations are widely understood, inexpensive, 

easy to implement, easy to deploy, and offer reasonable testability and maintainability. 

Unlike many of the styles that will follow, this style (and certain other monolithic styles) 

1 Martin, R. (2017). Clean Architecture: A Craftsman’s Guide to Software Structure and 
Design. Pearson
2 Palermo, J. (2008). The Onion Architecture. Jeffreypalermo.com
3 Cockburn, A. (2005). Hexagonal Architecture. Alistair.cockburn.us

https://doi.org/10.1007/979-8-8688-0410-6_12#DOI
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lends itself well to offline operation which can be helpful for systems that must continue 

operation in environments with tenuous network availability. Examples of these types 

of environments include—but are not limited to—spacecraft (e.g., satellites, probes, 

and even manned spacecraft), commercial aircraft transport, remote field operations, 

military applications, cargo shipping, remote scientific infrastructure (e.g., weather 

stations in places like Antarctica or mid oceanic buoys), and disaster response where 

communications are likely to be intermittent at best.

Like all abstract styles, there exist countless minor—and major—variations in 

production today, with the monolithic component topology being the single unifying 

attribute. Consequently, developers and architects often erroneously conflate this style 

with the Big Ball of Mud. The flat taxonomy strikes again.

To draw a contrast between the titular abstract style of this chapter and the Big 

Ball of Mud Style, we will begin by defining the latter. From this foundation, we will 

incrementally derive abstract and intermediary styles through addition and modification 

of constraints over the chapters that follow in this section.

�The Big Ball of Mud Style
A BIG BALL OF MUD is haphazardly structured, sprawling, sloppy, duct- 
tape and bailing wire, spaghetti code jungle. We’ve all seen them. Their 
code shows unmistakable signs of unregulated growth, and repeated, expe-
dient repair. Information is shared promiscuously among distant elements 
of the system, often to the point where nearly all the important information 
becomes global or duplicated. The overall structure of the system may never 
have been well defined. If it was, it may have eroded beyond recognition. 
Programmers with a shred of architectural sensibility shun them. Only 
those who are unconcerned about architecture, and, perhaps, are comfort-
able with the inertia of the day-to-day chore of patching the holes in these 
failing dikes, are content to work on such systems.

—Brian Foote and Joseph Yoder

The Big Ball of Mud4 is an architectural style characterized by few architectural 

constraints. It is a free-for-all where anything goes. The absence of any prescribed 

architectural constraints results in a system that exhibits few architectural capabilities 
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(Figure 12-1). The Big Ball of Mud abstract style is defined by only two architectural 

constraints (both of which are implicit, not prescribed). They are

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

Breaking down this style by capabilities of key interest reveals the following.

�Abstraction
The lack of architectural constraints defining this abstract style results in zero 

abstraction. UI concerns, data access, and business logic may comingle. Abstraction is 

Extremely Low.

�Affordability
The initial cost of developing a Big Ball of Mud is low. Over time, however, the lack of 

structure, testability, maintainability, and scaling overhead will significantly increase 

total cost of ownership. These forces exist in tension with one another. The net result of 

these forces is an affordability quality that is Below Average.

�Agility
The lack of any kind of structure or any prescribed modularity results in a system that is 

enormously difficult and risky to change, let alone change quickly in response to market 

demands. It is often extremely challenging to locate all the areas in the code that must 

change, and, without clear interfaces and interaction contracts, it is even more difficult 

to predict where regression may occur. Agility is Extremely Low.

4 Foote, B., & Yoder, J. (1997). Big Ball of Mud. Presented at the 4th Conference on Patterns, 
Languages of Programs (PLoP)
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�Deployability
The monolithic component granularity results in a straightforward deployment process. 

Since the entire system is deployed all at once, in a single step, little—if any—additional 

work is necessary. The lack of constraints defining this style, however, introduces other 

challenges surrounding deployment confidence, patching, and deployability at scale. 

Deployability of such a system is Average.

�Elasticity
Although many modern hosting environments provide an auto-scaling option that will 

respond to bursts in demand, all monolithic architectures exhibit weaker-than-average 

elasticity. A sudden spike in demand that triggers auto-scaling will, ideally, allow 

requests to be load balanced to the new instance right away.

Large, monolithic codebases often exhibit a slower start time due to the overhead 

of loading the application, performing Just-In-Time (JIT) compilation, processing 

annotations at startup, and other startup/warm-up tasks. Start times are measured in 

seconds (often dozens of seconds), and, during this time, some number of requests will 

typically time out. Scaling an entire monolith in response to demand provides a very 

blunt tool; the entire system must be scaled even when the burst in demand is very 

tightly scoped to a smaller subset of functionality.

Finally, the lack of constraints will often result in a system that is highly stateful 

which results in additional complexity in load balancing requests. While a monolith can 

usually demonstrate a degree of elasticity, the overall elasticity of this style is Very Low.

�Evolvability
The lack of structure and abstraction results in a high degree of coupling across the 

entire codebase. The code is often highly connascent. Connascence is a software 

quality metric developed by Meilir Page-Jones5 that measures complexity caused by 

dependency relationships. Two components are connascent if a change in one would 

require the other to be modified to maintain the overall correctness of the system. 

5 Page-Jones, M. Comparing Techniques by Means of Encapsulation and Connascence, 
Communications of the ACM, Volume 35, Issue 9, 1992
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Changes become increasingly difficult and risky with this style. The overall evolvability of 

this style is Extremely Low.

�Fault Tolerance
Another aspect of monolithic architectures in general, and poorly factored monoliths 

specifically, is a low degree of fault tolerance. In most cases, the entire system is either up 

or down, with little room in between. The lack of modularity inherent to this style, which 

precludes any form of bulkheads which might arrest cascading failures, compounds 

this problem. Furthermore, as mentioned in the section on elasticity, stateful systems 

introduce complexity when attempting to fail traffic over to a healthy instance. The 

overall fault tolerance of this style is Very Low.

�Integration
The ad hoc and haphazard approach to building a Big Ball of Mud results in no well- 

defined interfaces necessary to improve the capability of integration. Integration might 

be possible, but APIs are typically inconsistent, incomplete, and the lack of strong 

interfaces and abstraction results in APIs that often introduce breaking changes. The 

overall integration of this style is Below Average.

�Performance
Monolithic architectures generally exhibit reasonable performance owing to code 

invocation taking place on the stack rather than over the network. Abstractions will often 

trade performance for structure and modularity; thus, removing these more generalized 

interfaces in favor of tight coupling may further modestly improve performance. The 

ceiling of performance will often be governed by the combination of resources on the 

host machine and the required resources for your application. The challenges with 

scaling will limit overall performance. The performance of this style is Above Average.

�Scalability
As we established in the section on elasticity, a monolith can scale. One way to 

accomplish this is by scaling up the hosting environment, a vertical scaling operation 
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to increase the total amount of resources available to an instance of the system. 

Additionally, a monolith may be scaled out, a horizontal scaling operation accomplished 

by spinning up additional instances of the system. As you have already seen, the 

mechanism for scaling—loading the entire system in a second instance—is blunt. 

Moreover, in the absence of other constraints, load balancing across instances can be 

challenging. The scalability of this style is Low.

�Simplicity
The initial development of a Big Ball of Mud asks little of a developer; write whatever 

code you want and put it wherever you feel like. The lack of governing constraints makes 

the act of writing code simple. However, the fact remains that any kind of maintenance 

and evolution will become increasingly challenging over time. This offsets overall 

simplicity. The complexity of this style has a nonlinear relationship with the code 

volume. Doubling the application’s codebase may increase the complexity by parabolic 

or hyperbolic rates. Consequently, the overall simplicity of this style is Below Average.

�Testability
The high degree of coupling, the lack of modularity, interfaces, and abstraction result 

in a system that is incredibly difficult to test. Little—if any—functionality can be tested 

in isolation. Typically, every change will require a comprehensive regression test, 

encompassing many potential code paths. Unstructured and ungoverned codebases 

often have exceedingly high cyclomatic complexity. Cyclomatic complexity is a metric 

that quantifies the number of linearly independent code paths through the source code.6 

Excessive use of branching statements will negatively impact cyclomatic complexity and 

will often increase the potential code paths beyond what can be manually tested (or even 

known). The testability of this style is Extremely Low.

�Workflow
While any system can model and implement business workflows, this style offers 

few paths to orchestrate such a workflow resulting in a preference for hardcoded 

6 McCabe, T. (1976). A Complexity Measure. IEEE Transactions on Software Engineering SE-2
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implementations that often lack observability and flexibility. The workflow capability of 

this style is Below Average.

BIG BALL OF MUD ABSTRACT STYLE

Abstraction Extremely Low

Affordability Below Average 

Agility Extremely Low

Deployability Average

Elasticity Very Low 

Evolvability Extremely Low 

Fault-Tolerance Very Low 

Integration Below Average 

Performance Above Average

Scalability Low

Simplicity Below Average

Testability Extremely Low

Workflow Below Average 

Figure 12-1.  Architectural Capabilities of the Big Ball of Mud
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�The Semi-structured Big Ball of Mud Style
The Big Ball of Mud Style has few strengths and many weaknesses. It may be suitable 

for a simple system that exhibits very low code volatility and runtime requirements. It 

may be equally suitable for a proof of concept, but be cautious of business pressure to 

quickly release a proof of concept as a production system. The capabilities of such an 

architecture begin to change when you define additional rules for the system in the form 

of additional architectural constraints.

We can derive a new architectural style by extending the defining constraints to 

include a degree of separation of concerns. For example, let us separate the UI from the 

rest of the application. Since the underlying constraints have changed, we now have a 

new architectural style, the Semi-structured Big Ball of Mud Style (Figure 12-2), defined 

by the following constraints:

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

•	 (Limited) Separation of Concerns

Figure 12-2.  The Semi-structured Big Ball of Mud Style

This additional constraint will modestly improve total cost of ownership, evolvability, 

simplicity, and testability. The only perceptible improvement on our scale of extremely 

low to extremely high occurs with testability (which now scores Low). If there is a 
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data storage component to this system, we might prescribe some form of shared data 

persistence such as a shared database.

�The Semi-structured, DB-Backed, Big Ball 
of Mud Style
By prescribing a shared, persistent storage mechanism such as a relational database, 

there is an additional separation of concerns that takes place further improving 

simplicity. The database exposes a standard interface and offers possibilities to 

perform certain tasks (such as joining records) closer to the data itself which will often 

reduce bandwidth, I/O, and computation cost (improving total cost of ownership and 

performance). Stored procedures can be defined independently of the application code 

which can improve maintainability, performance, and potentially testability. The Semi- 
structured, DB-Backed, Big Ball of Mud Style (Figure 12-3) is defined by the following 

constraints:

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

•	 Separation of Concerns

•	 Shared Database

A Word on Databases 

While virtually all databases provide similar functionality (the ability to store and 
retrieve data using a standardized query language and interface), they do not 
all offer similar architectural capabilities. NoSQL databases such as MongoDB 
are generally easier to scale out as structure naturally lends itself to sharding—
distributing data across multiple nodes—while this is generally more difficult with 
relational databases. NoSQL databases can also offer improved raw query speed 
as many queries do not require joins to retrieve a representation of a complete 
object. This does not mean that NoSQL databases are objectively superior to 
relational databases, only that the trade-offs are different. Relational databases 
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were not created to simply optimize storage cost (which was admittedly quite 
high when Ed Codd first created the relational paradigm7), but rather, they were 
designed to embrace the reality that many data entities are inherently related. By 
decoupling shared relations through the process of database normalization, the 
relational database provides better consistency with less overall overhead to keep 
state consistent.

The choice of database type will depend not only on the required architectural 
capabilities of the overall system or component but also on the shape of the data. 
Inherently relational entities will often benefit from a normalized, relational model, 
whereas entities that have few—if any—logical relations will perform better in 
document or object databases. Other systems will benefit from key-value stores.

The lines that separate these different database types have been steadily blurring. 
NoSQL databases increasingly offer join capabilities, and many modern relational 
databases can not only be denormalized as required but are also progressively 
becoming multi-model. A multi-model database can comprise of relational 
tables, JSON object stores, graphs, and more, all stored within a single Database 
Management System (DBMS). These discrete storage models will often interact 
seamlessly.

Choice of database technology depends on the shape of the data, storage and 
hosting costs, licensing costs, team or organizational skills, and the required 
degree of identified architectural capabilities. In short, it depends.

7 Codd, E. F. A Relational Model of Data for Large Shared Data Banks, IBM Research 
Laboratory, 1970
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Figure 12-3.  The Semi-structured, DB-Backed, Big Ball of Mud Style

The Semi-structured, DB-Backed, Big Ball of Mud Style offers Low testability (an 

improvement over the Very Low testability of the Big Ball of Mud), Average performance, 

Average affordability, and Above Average simplicity. The next phase of evolution of 

this style requires replacing the remaining ball of mud component with something a 

little more structured. By adding two additional constraints, we arrive at the Layered 
Monolith Abstract Style.

�The Layered Monolith Abstract Style
Escaping the Big Ball of Mud family of architectural styles begins by prescribing some 

form of modularity. The Layered Monolith Abstract Style (Figure 12-4) prescribes 

the layered system constraint. The layered system constraint dictates a hierarchical 

organization of the system, with each layer providing services to the layer above it 

and serving as a client to the layer below. The precise boundaries of these layers are 

controlled by the technical partitioning constraint which dictates that layer boundaries 

are defined by technical area. In total, the defining constraints of the Layered Monolith 
Abstract Style are

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity
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•	 Separation of Concerns

•	 Shared Database

•	 Layered System

•	 Technical Partitioning

It is through the composition of constraints that we move from the accidental 

architecture of the Big Ball of Mud Style to a deliberately designed abstract style that 

represents a formal, foundational definition of the Layered Monolith pattern. However, 

as we explore this abstract style, we will derive many concrete styles by exploring the 

impact of additional constraints.

Figure 12-4.  The Layered Monolith Abstract Style

This pattern, as an abstract style, acts as one of our primary starting points for a 

tailored or made-to-measure architectural style designed to fit the business, the project, 

the teams, the organization, and the environment holistically. Let us take a deeper look 

at this foundational, abstract style.
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�Inside the Monolith
In this style, the first layer of modularity occurs in the form of coarse-grained layers that 

provide both functional cohesion and clear roles and responsibility models (Figure 12-5). 

For example, a UI-focused team might own the presentation layer, while DBAs or DB 

developers might own the persistence and database layers. One or more backend teams 

might own the services or business logic layers. From an organizational standpoint, this 

structure aligns with many extant organizational structures. This is important as Conway’s 

Law dictates that “Organizations that produce systems, are constrained to produce designs 

which are copies of the communication structures of these organizations.”8 In other words, 

regardless of the architecture we design, we will ship the org chart. For organizations 

structured around technical teams or feature teams, we must either design architectures 

that mirror that structure or we need to change the structure of the organization to mirror 

the design. This is an example of a nonnegotiable organizational constraint.

Figure 12-5.  Example Layers Inside the Monolith

Inside this monolith, the number and nature of the layers is often an implementation 

detail which the architecture may, or may not, prescribe. Layers may be combined (e.g., 

business logic and persistence) or may be further decomposed in a manner consistent 

with additional architectural constraints (when prescribed) or by developer preference 

8 Conway, M. E. (1968). How do Committees Invent? Datamation, 14(5), 28–31.
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(when left as a decision for the implementation teams). For example, by including 

a Model-View-Controller (MVC) constraint, the presentation layer may look like 

Figure 12-6.

�The Presentation Layer

Figure 12-6.  Illustration of an MVC Presentation Layer

In the MVC-Layered-Monolith style, the presentation layer will contain controllers 

which marshal user requests and views that present responses. One key aspect of this 

style is the abstraction afforded by these layers; the controllers and views do not need to 

know anything about the database, just how to handle requests and format responses. 

This layered approach has the added benefit of decomposing a complex application into 

smaller, approachable components.

The addition of the MVC constraint prescribes additional modularity within the 

presentation layer which improves testability, agility, maintainability, abstraction, 

evolvability, and simplicity.

The MVC pattern and its descendants are not the only way to design the  

presentation layer. In a forms-style application, the UI layer is comprised of forms  

and the “code-behind” the forms (Figure 12-7).

Figure 12-7.  Illustration of a Forms-Style Presentation Layer
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The entire presentation layer can also be sliced off the monolith, which is 

accomplished by prescribing the Client/Server constraint in a concrete/derived style. In 

this tailored style, the exposed layer on the backend is typically some sort of API (which 

may be yet another prescribed architectural constraint) and a standalone client which 

might be in the form of a fat-client application, a native mobile app, or a web- 

based single-page application (SPA). These are all derived variations of the abstract 

style forming a new concrete style. While there is significant ambiguity attached to a 

generic pattern label, a defined architectural style is precise and leaves little room for 

misunderstanding.

�The Services Layer
The purpose of the services layer is to expose defined use cases to the presentation layer 

while providing an abstraction between the presentation and business logic layers. This 

layer may be a mini ball of mud, or it might be extremely well factored, with modular 

business services that are typically grouped by entity or domain workflow. An example 

depiction of this can be seen in Figure 12-8.

Figure 12-8.  Illustration of an Example Services Layer

The services layer typically provides specific domain or subdomain workflows 

through the composition of more general business logic components, which reside in 

the next layer, the business logic layer.

�The Business Logic Layer
As we traverse down the layers of the onion, we get closer to the application core, this 

time focusing on the business logic (Figure 12-9). Isolating the business logic from the 

services layer allows for better reuse of business logic modules. Once again, generally 

business logic components are broken up by business entity.
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In theory, as business logic components evolve, their module boundaries provide 

natural bulkheads to scope changes to a single component. They might be shared 

across other applications or exist as standalone modules within the system. There are 

trade-offs to both approaches. Reusable business logic components tend to require 

broad consensus and will often involve some amount of coupling with the consumers 

of these components. This will introduce challenges in attempting to evolve a single 

business logic component shared across multiple systems without introducing some 

kind of breaking change. Building truly general interfaces can often impact overall 

efficiency of the system since these core components are not optimized for any specific 

implementation. Notably, it is also possible to use a combination of custom components 

and shared components (Figure 12-9). Custom interfaces or optimized business logic 

components might simply extend generic, shared interfaces or components.

Figure 12-9.  Illustration of an Example Business Logic Layer with Shared 
Components

As a general guideline, business logic exists independent of data storage concerns, 

which suggests another layer, the persistence layer.

�The Persistence Layer
This layer is responsible for connecting the application to the underlying storage system. 

The classic depiction of the layered monolith architecture (Figure 12-5) suggests this is 

the innermost—or lowest—layer of the system. However, the mental model afforded by 

the hexagonal architecture suggests the core is the business entities, surrounded by the 

business logic, with the UI being a user-facing “port” (with controllers as the “adapters”) 

on the surface. Likewise, the persistence layer being a technology-facing “port” with the 

persistence layer being its respective “adapter” (Figure 12-10). In the depiction below, 

the left half represents user-facing ports, and the right half represents technology- 

facing ports.
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The key to the “ports and adapters” approach to modeling a system lies in dividing a 

system into several loosely coupled, interchangeable components. The ports represent 

where these components are “plugged in” to the system, and the adapters provide the 

standard interface, which powers the subsequent interchangeability. The Layered, 

Hexagonal, and Onion models are similar but different ways of describing, depicting, 

and reasoning about a system.

Figure 12-10.  Layered Architecture Described by Ports and Adapters

The Layered Monolith Abstract Style prescribes a single, shared database. 

Consequently, all transactions can be atomic, even when a specific domain workflow 

modifies multiple entities. Adapters often take the form of the repository pattern, where 

each component is responsible for a single business entity (which may occupy one or 

more tables in a relational database or an external service), orchestrated by a single Unit 

of Work (Figure 12-11).
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Figure 12-11.  Illustration of an Example Business Logic Layer

�Layer Encapsulation and Abstraction
Each layer in this family of styles provides some amount of abstraction, encapsulating a 

well-defined category of behavior. Lower layers do not have dependencies on any of the 

layers above them. In many cases, one layer cannot “see” beyond the next layer below it. 

When this is true, the immediate lower layer is said to be “closed.”

We can explore this concept using the metaphor of a restaurant. The customer 

represents the user interacting with the system, the waiter or waitress (a.k.a. server) 

is the presentation layer (taking orders and serving up the food as it’s ready), the 

restaurant point of sale (POS) is the services layer, the kitchen is the business logic 
layer, the walk-in fridge/freezer is the persistence layer.

In the normal flow of events, the customer interacts with the server, the server enters 

the orders into the POS, and the kitchen receives these orders and prepares the food, 

retrieving ingredients from the walk-in as needed. When the food is ready, the server 

takes the food from the kitchen and delivers it to the customer.

It would be highly unusual for the server to perform the actual cooking, and the 

customer should not be interacting with the restaurant’s POS. All these layers can be 

considered “closed” (Figure 12-12).
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Figure 12-12.  Closed Layer Request Flow

The ability for each actor in this system to specialize in a small number of scoped 

tasks will result in a smooth operational experience most of the time. A server does 

not need to know how to grill, sauté, prepare sauces, create desserts, etc. The kitchen 

can focus on this without the overhead and distractions that come with handling 

customer interactions. Having all kitchen requests flow through the POS streamlines 

communication between front-of-house and back-of-house following a first-in/first-out 

(FIFO) flow. Our software systems may benefit from similar encapsulation/abstraction.

What about exceptions? Imagine the server delivers the prepared food to the table 

but an item is missing or prepared incorrectly. Entering a correction into the POS, 

placing it in the back of a FIFO queue is a suboptimal action to take. In this scenario, 

it would be preferable if the server could bypass the POS and simply walk directly into 

the kitchen to request the missing item or the remake “on the fly.” To account for this 

scenario, the services layer might be defined as an “open” layer, a layer that should be 

used for the common case but may be bypassed when necessary (Figure 12-13).
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9 Ford, N., Richards, M. (2020). Fundamentals of Software Architecture: An Engineering Approach. 
O’Reilly

Figure 12-13.  Open Services Layer

While exceptions and deviations from the “happy path” are examples where an open 

layer can be useful, there are also often situations where intermediary layers add no 

value, they simply accept input and then turn around and directly forward that input to 

the next layer. In such cases, intermediary layers add zero value, just overhead. This is 

referred to as the Architectural Sinkhole Anti-pattern9 and is another case where open 

layers may be warranted to decrease accidental complexity.

�Summary
This is a relatively long chapter to describe such a simple architecture pattern, but 

remember, this chapter has covered not one but numerous architectural styles. The 

pattern-driven architect might see all these styles as identical, but the holistic architect 

sees each distinct architectural style as a unique architecture with various strengths and 

weaknesses.
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Beyond the core constraints that define the abstract style, we introduced the 

following additional, optional architectural constraints:

•	 Stateless constraint

•	 MVC

•	 Forms UI

•	 Fat client-server

•	 Web client-server

•	 API constraint

•	 Additional database constraints

•	 Constraints around code reuse

•	 Modularity within individual layers

•	 Open/closed layer constraints

We also discussed an organizational constraint that requires that system component 

boundaries align with organizational structure in the context of Conway’s Law.

Because none of these additional constraints define the core abstract style but rather 

exist as additional options available to us for tailoring or fine-tuning, we will not include 

them as part of our abstract style definition. Therefore, in aggregate, the abstract style 

will elicit the characteristics shown in Figure 12-14.
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THE LAYERED MONOLITH ABSTRACT STYLE

Affordability Extremely High 

Agility Below Average

Abstraction Average

Configurability Average

Deployability Average

Elasticity Average 

Evolvability Average 

Fault-Tolerance Low 

Integration Below Average 

Interoperability Below Average 

Performance Above Average

Scalability Low

Simplicity Extremely High

Testability Average

Workflow Below Average 

Figure 12-14.  Architectural Capabilities of the Layered Monolith Abstract Style
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CHAPTER 13

The Distributed N-Tier 
Architecture Abstract  
Style

Layered system constraints allow intermediaries—proxies, gateways, and 
firewalls—to be introduced at various points in the communication with-
out changing the interfaces between components, thus allowing them to 
assist in communication translation or improve performance via large- 
scale, shared caching.

—Roy Fielding

In the last 15 years or so, there has been a great deal of effort undertaken to decompose 

layered monoliths into microservices which is, as has already been noted in this section, 

incredibly difficult. In truth, the microservices architecture is not the only path to 

decomposing a layered monolith into standalone services. Prior to the introduction 

of that pattern (along with the various, enabling X factors), the next logical step in a 

growing system was the Distributed N-Tier Architecture. Let us explore this evolutionary 

path by continuing along the architecture continuum to our first distributed 

abstract style.

Imagine you are responsible for the architecture of a successful, growing software 

system. The MVP was built using a tailored version of the Layered Monolith Abstract 

Style; however, a consequence of the success of the system means it has outgrown its 

architecture.

https://doi.org/10.1007/979-8-8688-0410-6_13#DOI
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Following a detailed requirements analysis effort (based on the process described 

in Chapter 4), you determine the current architecture is underperforming in key areas. 

First, performance and scale are becoming problematic. The current architecture offers 

Low scalability, but current needs are closer to Above Average or High scalability. 

Likewise, the current system exhibits Above Average performance, but the business 

now requires High performance. Occasional downtime is also causing complaints; the 

system must evolve from Low fault tolerance to Above Average or High fault tolerance. 

Success has led to increased competition, and the business would like to remain 

competitive by getting new features to market faster. Agility must shift from Below 
Average to High. You have determined the improvement in agility will require enhanced 

testability and deployability. Ideally, both testability and deployability must go from 

Average to Above Average. Finally, although the current system is Extremely simple 

with high affordability with respect to the cost to maintain and run; both the business 

and implementation teams do not mind sacrificing cost and simplicity to achieve these 

new goals. In short, the architectural capabilities necessary for success have changed; 

consequently, the system’s architecture must change accordingly.

Conventional wisdom insists this will require either a complete rewrite or a very 

lengthy monolith-to-microservices refactor. In a competitive market, both options are 

risky, perhaps to the point of becoming an existential threat. If all resources are directed 

to reaching feature parity in a new architecture rather than keeping up with market 

demand, more agile competitors might seize the opportunity to overtake your system. 

That is not to say there is never a time for a rewrite or a monolith-to-microservices 

migration, but, for the sake of argument, assume this is not one of those times.

In contrast to conventional wisdom, we know that the system’s architecture simply 

needs ongoing tailoring to add additional room in the places we have outgrown. This 

tailoring is accomplished by adding or changing constraints. Let us look at one possible 

path available to us by evolving our Layered Monolith into a Distributed N-Tier system. 

Assume the existing system architecture is defined by the core constraints of the Layered 

Monolith Abstract style, namely:

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

•	 Separation of Concerns

•	 Shared Database
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•	 Layered System

•	 Technical Partitioning

�Adding Constraints
�The Client/Server Constraint
We can modestly improve evolvability, agility, deployability, elasticity, scalability, 

simplicity, and testability by adopting the Client/Server constraint. There are notable 

trade-offs to this approach. First, it may require a complete frontend rewrite to operate 

as a standalone client (which introduces time and cost overhead). Second, we are 

already entering the territory of distributed systems. Distributed systems introduce new 

complexity that, if not carefully considered and accounted for, can come back and bite 

you. In other words, team skills may constrain your options.

The Fallacies of Distributed Computing

In Everett Rogers’ landmark book, Diffusion of Innovations, he notes that 
“Individuals cannot deal with an innovation except on the basis of the familiar.”1 
This often manifests in applying an old mindset to a new situation, one where 
the old mindset may no longer apply. This phenomenon has been so pervasive 
in the realm of distributed computing that Peter Deutsch enumerated a list of 
false assumptions that virtually every developer makes when they first build a 
distributed application. The original list was compiled in 1994, when Deutsch was 
a Fellow at Sun Microsystems, and they are

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

1 Rogers, E. (2003). Diffusion of Innovations, 5th Edition, Free Press
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5. Topology doesn’t change.

6. There is one administrator.

7. Transport cost is zero.

In 1997, James Gosling, inventor of Java and another Sun Fellow, added an eighth:

8. The network is homogeneous.

What are the consequences of these fallacies?

Assuming the network is reliable will result in overlooking the numerous failure 
conditions that can occur during an operational request. During a network outage, 
an application may stall or enter an infinite retry loop or fail to restart when the 
network becomes reliable again.

Network latency and bandwidth limitations are another fact of life, both between 
client and server as well as within a cloud environment. Failure to account for this 
will result in unanticipated bottlenecks and performance potentially falling short of 
expectations.

Complacency regarding network security can have massive consequences. 
Notable incidents include authentication cookies sniffed and stolen on public 
Wi-Fi networks. Even within “private” networks, this is not a safe assumption. 
Should a threat actor gain entry to a private VLAN in your cloud environment, this 
assumption often enables unrestricted lateral movement within the network.

Network topology can—and often will—change. Ignoring this reality can have 
negative effects on both bandwidth and latency, causing similar problems.

Multiple administrators may implement conflicting traffic policies. Ignorance of 
these will often result in complications.

Transport costs will, almost universally, be nonzero. These can be quite significant, 
and failure to consider this reality will often result in budget overruns and revenue 
shortfalls.

Finally, if the network is erroneously believed to be homogeneous, the system can 
experience the same problems that manifest from the first three fallacies.
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Some would argue that High-Availability (HA) clusters have addressed this 
among the subcomponents of your architecture. Two aspects that have not been 
addressed are connectivity between the HA cluster and the client, and the clusters 
become a restriction on your architecture’s ability to scale.

Distributed systems incur what architects occasionally refer to as the distributed 

system tax—additional latency, overhead, complexity, additional failure conditions, 

and cost that are not present in nonnetwork-based architectures. In our hypothetical 

scenario, however, these costs are justified.

Given our system will soon be comprised of at least two discrete, networked 

components, they should have some mechanism to communicate. We must prescribe an 

API Constraint.

�API Constraints
At first glance, the specifics of an API strategy may seem like an implementation detail. 

After all, API strategies all appear functionally identical, but architecture transcends 

functionality. Architecture defines the essence of the software, everything it can 

do beyond providing the features and functions. Different API approaches bring 

consequences that significantly impact architectural capabilities and their measure.

When creating APIs, Kent Beck offers a philosophy defined by three rules for API 

design in his JUnit Pocket Guide:2

•	 “Frameworks should be intersections not unions”

•	 “Do your best”

•	 “Evolve slowly”

An explanation for the first rule is that it makes the API simple while maximizing the 

utility for the API’s target user base. The second recognizes that your API will have wide- 

reaching positive or negative impact. The third recognizes the frustration that the user 

community experiences when APIs frequently introduce breaking changes. Providing 

2 Beck, K. (2004). JUnit Pocket Guide. O’Reilly
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an API with good cohesion and low coupling will make it a pleasure to use your 

API. Notably, some API strategies address this philosophy better or worse than others. 

For completeness, we will compare and contrast different potential API constraints.

Formally Defining REST—Again

REST was first formally defined in Fielding’s 2000 doctoral dissertation, 
Architectural Styles and the Design of Network-Based Architectures.3 While 
the paper was largely about the design-by-constraint approach to software 
architecture, the REST Architectural Style was defined in Chapter 5 as an example 
of how the approach was used to design the architecture of the World Wide Web. 
Fielding gave us the tools to define our own architectural styles, but our industry 
collectively dismissed this and instead corrupted REST. Once the idea was out in 
the wild, REST became yet another victim of semantic diffusion. Like architecture 
patterns, so many different APIs have been described as “REST” that the word has 
lost all meaning and we revert to a lowest common denominator definition.

The common definition of REST is little more than HTTP+JSON, while, in reality, 
REST is an architectural style defined by six constraints. Virtually no REST APIs in 
production today adhere to all the defining constraints. Although we know that a 
different set of constraints begets a different architectural style with a different 
name, the broader industry historically did not, and the name stuck. In 2008, 
Leonard Richardson, in an effort to disambiguate all the competing definitions, 
introduced a maturity model4 for evaluating how close a “REST” API is to the formal 
definition.

Level Zero was originally defined as “One URI, one HTTP method” (think SOAP, 
XML-RPC, and graphQL where one endpoint serves all requests via HTTP POST 
operations) and has since come to encompass most RPC-over-HTTP APIs since 
they do not meet the criteria of a level one system.

3 Fielding, R. (2000). Architectural Styles and the Design of Network-based Software Architectures. 
Doctoral dissertation, University of California, Irvine
4 Richardson, L. (2008). Justice Will Take Us Millions of Intricate Moves – Act Three: The Maturity 
Heuristic, https://www.crummy.com/writing/speaking/2008-QCon/act3.html
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Level One is where we begin to decouple client and server. Rather than applying 
the old mental model of invoking methods and functions, the system defines 
information (or non-information) resources as a means of abstracting the 
implementation. URIs become stable (i.e., they do not change) identifiers for 
resources rather than function endpoints. A level one system does not properly 
utilize HTTP’s uniform interface.

Level Two requires use of the resource abstraction, stable URIs as identifiers, and 
correct use of the HTTP uniform interface.

Level Three is the only maturity level that fully adopts all REST’s defining 
constraints which includes Hypermedia As the Engine of Application State 
(HATEOAS), a key component of the REST Architectural Style’s Uniform Interface 
constraint. Each of REST’s constraints positively and/or negatively impact 
architectural capabilities; hence, API strategy is architecturally significant.

�GraphQL API Constraint

GraphQL is a popular API approach that does not require a client to invoke certain 

functions or prescribe any particular resource representation. Instead, graphQL exposes 

a query endpoint with which a client may invoke any arbitrary query to retrieve or 

modify data. It is exceedingly flexible and efficient from a client perspective as over- 

fetching/under-fetching (a common criticism of RESTful APIs) becomes a thing of the 

past. This consumer-driven approach significantly influences client agility and client 

portability. Initial implementation is also relatively fast.

There are significant trade-offs, however, chief among these being security. Without 

great care, exposing an out-of-the-box graphQL endpoint to a web client will expose far 

more data than business rules might permit. Securing a public-facing graphQL endpoint 

often requires evaluating permissions for every entity and field returned which can 

introduce significant performance overhead. Allowing a client to issue any arbitrary 

query can result in simple denial-of-service attack vectors by exploiting cycles in entity 

relationships. Rate limiting and metering are also challenging as there is no common 

unit of per-query cost.
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�Level 1 REST API

Abstracting identity and representation from implementation results in a significantly 

more evolvable system. The generality of even a level 1 REST interface improves client 

portability, reusability, and composability. This often improves overall agility. Securing 

a REST API does not typically need the kind of fine-grained controls and verification 

required by graphQL, allowing security to be managed at the resource or collection 

level. Request metering and throttling are also significantly easier. Finally, as REST is 

the architecture of the World Wide Web, it may be the only truly web-scale architecture 

out there.

Once again, the trade-offs are significant. It takes a great deal of effort to design a 

good API; the cost of longevity and evolvability must be paid up front. The generality 

of the REST interface also comes at a cost of network efficiency, with over-fetching/

over-posting common. Client-side resource composition might require several network 

requests vs. one graphQL query or a client-optimized remote-procedure call.

�Backend-for-Frontend (BFF) Constraint

It can be difficult to design an API that satisfies multiple clients, particularly when 

different clients have vastly dissimilar needs. As an alternative to designing an API that 

seeks to satisfy all clients, this approach prescribes client-specific APIs for the various 

supported frontends (e.g., SPA, mobile app, CLI, etc.). Each API is optimized for a 

specific client, improving speed to market, network efficiency, and design simplicity.

The trade-offs here include maintaining multiple APIs and tight coupling (although 

less significant since an organization typically controls the release cycles of both client 

and server).

�RPC API Constraint

Remote Procedure Call (RPC) is a style of API that exposes methods and functions to the 

network. RPC APIs are very quick and easy to build, relatively easy to understand, and 

can be useful when decomposing monolithic systems into distributed systems. Stack 

method invocation is replaced with network invocation (ideally while also accounting 

for the fallacies of distributed computing). They can also perform reasonably well given 

request and response payloads can both be optimized around the specific operation.
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On the other hand, exposing code in this way leads to tight coupling between API 

and implementation. This results in APIs that can be difficult to change and evolve and 

may not be suitable for a wide variety of clients.

Given the ubiquity and overall simplicity of RPC-style APIs, we will select this 

constraint for our abstract client-server style despite the numerous trade-offs. 

Remember, however, that you have options.

�Changing Constraints
So far, we have a Layered-Client Server RPC Monolith architectural style, derived 

by extending our layered monolith with the Client/Server constraint and an RPC 

API constraint. Although the addition of these constraints will improve the system’s 

architectural capabilities in the desired direction (with acceptable trade-offs), more work 

is required.

To continue to improve scalability, elasticity, deployability, and agility, we need to 

begin to decompose the system. Breaking apart the monolith will provide the system 

with smaller, standalone components that may be scaled independently both on 

demand and over time. The reduced binary sizes will also positively impact start time. 

Further, smaller components exposing well-defined API interfaces will provide improved 

deployability by reducing overall change risk surface area.

�Coarse-Grained Component Granularity Constraint
In the same manner that the Client/Server constraint sliced off the UI into a standalone 

component, we can carve out standalone services by extracting additional layers 

(Figure 13-1). This is accomplished by replacing the Monolithic Component Granularity 

Constraint with the Coarse-Grained Component Granularity Constraint which results in 

a new style, the Distributed Layered Client/Server RPC Style.
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Figure 13-1.  Slicing a Monolith Along the Seams

The key to the success of this approach for decomposing a layered monolith lies 

in the fact that we are not changing the module boundary constraint; this is still a 

technically partitioned architecture. As a natural consequence, we are decomposing the 
system along existing module boundaries, rather than redefining them across the 
codebase.

Although decomposing a system by following existing seams and boundaries 

is straightforward and will induce improvements in scalability, fault tolerance, and 

elasticity, this constraint brings trade-offs. Notably operational cost and complexity 

increases, as well as reduced performance due to the introduction of multiple network 

hops to satisfy requests.

Any change to the Component Granularity Constraint will require additional 

environmental constraints. For a monolith, a simple Platform as a Service (PaaS) is fine. 

However, when the monolith is decomposed, we must begin to think about how to put 

Humpty Dumpty together again.

Running a distributed system requires more than APIs to connect our components 

together; we must be able to monitor each service, aggregate logs, and trace requests 

across multiple distributed components or services. To properly orchestrate such 

a system, our environment needs a mechanism to add hosting resources to the 

environment as the system grows or changes, ideally through Infrastructure as Code 

(IaC) which implies the Simple Environment Automation Environmental Constraint. 

Additionally, request routing, service discovery, and authentication must be baked into 

the entire environment—a Distributed System Environmental Constraint.
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That being said, to achieve an improvement in overall agility, one more constraint is 

necessary, Independent Deployability.

�Independent Deployability
If we have decomposed our monolith into multiple standalone services but we continue 

to deploy it like a monolith, what have we really accomplished? Without changing the 

Monolithic Deployment Granularity Constraint, we simply end up with a different kind 

of monolith, a distributed monolith. In many ways, a distributed monolith offers the 

worst of both worlds—all the complexity and overhead of a distributed system with 

the constrained agility and deployability of a monolith. Deployments require high 

coordination costs, huge testing scopes, and increased risk. Consequently, releases 

become less frequent while productivity-diminishing code freezes become more 

frequent. For this reason, we must replace the Monolithic Deployability Granularity 

Constraint with the Independent Deployability Constraint. In essence, this constraint 

dictates that each component of the system must have independent development and 

release cycles. This constraint requires more than a simple dictate from on high; the 
teams, organization, and environment must evolve to enable this constraint.

�Team, Organizational, and Environmental Constraints

Virtually, all distributed systems will contain some amount of interservice dependency. 

Accordingly, achieving independent deployability requires significant changes to how 

teams have historically worked in monolithic environments, beginning with how APIs 

and public interfaces are defined.

The overwhelmingly common approach to API development today centers around 

emergent design; as code is written, the API emerges (in direct violation of Beck’s second 

rule—“Do your best”). As changes are made to the codebase, a new API emerges. Other 

teams who rely on this API can make little progress until a final API is published. A high- 

churn API results in a high-churn client, which will incur additional integration testing 

overhead (thus violating Beck’s third rule—“Evolve slowly”). Often, this integration 

testing happens in a shared development environment (which may reside in the cloud 

or locally using desktop container orchestration tools like Docker Compose). When the 

client is tested and validated in the shared environment, it might appear to be ready 

to deploy, but, with independent release cycles, there is no guarantee the version of 

the server in dev—and its API—will match what exists in production (which suggests 
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the need for a Development Environment Isolation Environmental Constraint). 

Ultimately, the development and release cycles of both the client and server are coupled, 

meaning releases must be coordinated. Scale this to multiple teams and services and the 

Independent Deployability Constraint goes out the window.

Alternatively, teams depending on an emerging API simply wait for the definitive 

version of the API to emerge and be released. The agility promised by the Independent 

Deployability Constraint evaporates as independent development and deployment 

cycles become sequential development and deployment cycles. In either case, as 

additional breaking changes emerge, additional coordinated releases must take place. 

Contrast this with an API-first or design-first approach to API development. In this 

scenario, the API is fully designed before writing a single line of code, and this design 

becomes a standalone artifact in the form of a well-defined interface that can be mocked 

or faked by implementation teams who depend on the API. Design first is also a path 

toward more stable APIs as the design phase requires deeper and more deliberate 

thought. This design must act as a contract which includes an implicit promise not to 

break it. Although defining abstractions is not always easy, and rarely a skill that comes 

naturally to developers, effort in this area will almost always yield benefits in terms of 

agility and loose coupling within the environment. In short, an API-first team constraint 

trades simplicity for long-term agility and deployability.

API first is generally easier with REST APIs than, say, RPC APIs as the resource 

abstraction naturally decouples the API from implementation. In contrast, RPC API 

styles depend, in part, on the code. To achieve independent deployability, the up-front 

design effort is equally important.

More frequent independent deployments also require the investment of effort 

into pipelines and automation. The production environment is not the ideal place to 

first discover integration failures; the feedback must be “shifted left” which requires 

additional testing, additional quality gates, and more sophisticated automation. To 

achieve the desired agility, teams can no longer delegate deployment to an operations 

team but instead must practice DevOps either on their own or in collaboration with 

operations.

The organization must also adjust how they organize backlogs. Features or stories 

that require changes to multiple services must be decomposed and sequenced. This is 

significantly more challenging in a technically partitioned system when compared with a 

domain-partitioned system (as you will see in subsequent chapters).
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In short, we cannot simply prescribe independent deployability or a distributed 

granularity as these constraints depend on team, organizational, and environmental 

constraints that must be in place, addressed, or you must select a different set of 

constraints with fewer dependent constraints. For an architecture to “fit,” your designs 
must be in reach of the teams and organizations.

�The Distributed N-Tier Abstract Style
Through composition of constraints, we have derived a new abstract style (Figure 13-2).

Figure 13-2.  The Distributed N-Tier Abstract Style

When adopting this style, many concepts from the Layered Monolith style are carried 

over since this style is an evolved variation of the foundational pattern. It should be 

noted that this style is not necessarily a layer-for-layer decomposition. Perhaps business 

logic and persistence make sense to be grouped, or API and business services. This 
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layered architecture also opens opportunities to not only abstract the database but also 

legacy and external systems, as well as shared caches. The possibility for broader reuse of 

business logic components is also now present.

A detailed breakdown of the capability ratings for this abstract style will appear in the 

summary at the end of this chapter, but, before we get there, we will explore additional 

potential concrete styles that bring us closer to the architectural requirements stated at 

the beginning of this chapter.

�Tailoring This Abstract Style
By decomposing the system into standalone services, the overall amount of available 

resources has increased. Each component may also be independently scaled, which 

further improves scalability, elasticity, and offers better overall resource utilization. Scale 

will influence overall performance, but gains will be slightly offset by network latency. 

This is why thinking carefully about service granularity is important, particularly for 

distributed technically partitioned styles where most requests will require coordination 

of multiple services.

As the system grows, the bottleneck will inevitably move to the database. As we 

explored in Chapter 12, NoSQL databases will often scale out easier than relational 

databases, although that is not to say that relational databases cannot scale. One 

approach is to apply the Command Query Responsibility Segregation (CQRS) 
Constraint.

�The CQRS Constraint

CQRS, at a high level, describes a strategy to route reads and writes to different servers 

which can have significant effects on the overall architectural capabilities. Many 

applications perform significantly more reads than writes, and, in such cases, it can be 

valuable to distribute read queries across multiple database replicas, routing only writes 

to the primary database (Figure 13-3). In essence, we are segregating the responsibility 

of commands and queries. Because of this constraint, scalability and performance will 

increase. Additionally, this approach retains the simplified integration and logic that is 

inherent to a monolithic database.

Chapter 13  The Distributed N-Tier Architecture Abstract Style 



185

Figure 13-3.  CQRS N-Tier Architectural Style

Like all constraints, the CQRS constraint will bring trade-offs. First, with more 

moving parts comes more complexity. Rolling out schema changes as part of a release 

can be challenging. Finally, CQRS introduces edge cases that teams and architecture 

must account for.

A single relational database offers ACID (Atomic, Consistent, Isolated, and Durable) 

properties; however, when writes are routed to the primary instance and reads to 

replicas, there will be cases where a read returns stale or missing data due to replication 

latency. Acceptance of this fact or more sophisticated routing logic is necessary in 

such cases.
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CQRS and Flexibility: Overcoming Write Saturation

Approximately 15 years ago, I was working as the chief architect at a social media 
startup. Prior to being recruited, the MVP was designed and built using a MySQL 
database. Over time, this database was beginning to struggle due to increased 
load. After building multiple read replicas, we implemented CQRS by way of 
MaxScale, a DB Proxy which acted as an intermediary, routing writes and certain 
read requests to the primary while load balancing read queries to the replicas. 
This approach opened up tremendous growth, but we did eventually reach a 
point of write-saturation on the primary. The long-term solution, of course, was to 
decompose the system but the economics of startups sometime require creative 
short-term solutions.

Ultimately, we discovered a handful of write “hotspots.” The worst offender was 
integrated telemetry and logging that was tightly coupled to both the database 
and the broader codebase. Knowing this would be difficult to untangle from the 
codebase given time and budget constraints, we turned to an axis of flexibility that 
CQRS offered by reconfiguring the primary DB along with most of the read replicas.

MySQL supports pluggable storage engines, with options well beyond the common 
InnoDB and MyISAM. To alleviate write pressure, we replaced the default storage 
engine with the very niche “blackhole” storage engine. Blackhole performs no 
I/O at all; writes are acknowledged, then discarded. These writes are, however, 
replicated. Most read replicas also utilized the blackhole storage engine, so the 
heavy write load only occurred on the one or two instances actually persisting the 
writes (and were not included in the load balancing rotation).

The flexibility offered by CQRS combined with the creativity of the team enabled 
rapid remediation of the performance problems, buying time for implementing 
longer-term solutions.
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�Mixed Component Granularity Constraint

In the abstract, the Distributed N-Tier Style prescribes coarse-grained components; 

however, there may be components that benefit from further decomposition 

(Figure 13-4). Business services are often a good candidate for this decomposition, 

particularly if they become shared across multiple applications. Doing so will generally 

improve agility, scalability, elasticity, and MTTR.

Figure 13-4.  Multigrain Proxy CQRS N-Tier Style

�Precision Tailoring for a Precision Fit

Based on the business requirement received at the beginning of this chapter, we 

decomposed our monolith and tailored the architecture in a straightforward manner 

that is largely compatible with the existing architecture, the teams, the environment, 

and the organization. The design-time feedback of the Tailor-Made model shows a near 

perfect alignment of architectural capabilities for this example derived style with the 

new requirement targets. This can be visualized and explored using the Tailor-Made 

Workbook (introduced in Section 1) which incorporates the model's capability trade-off 

weighting for rapid evaluation of candidate styles.
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�Summary
Although we have looked at some concrete variations of this abstract style, let us close 

this chapter by summarizing this abstract style’s defining constraints:

•	 Coarse Component Granularity

•	 Layered System

•	 Technical Partitioning

•	 Client/Server

•	 Independent Deployability

•	 Separation of Concerns

•	 Shared Database

•	 RPC API

This collection of constraints requires the following team, organization, and 

environmental constraints:

•	 ENV: Development environment isolation

•	 ENV: Simple environment automation

•	 ENV: Distributed system environment support

•	 ORG: Optimized backlog for independent development

•	 TEAM: API-first development

•	 TEAM: Pipeline development skills

•	 TEAM: Automation skills

The non-architectural constraints are necessary for the successful adoption of 

non-monolithic granularity and independent deployability. The base capabilities of this 

abstract style are shown in Figure 13-5.
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THE MODULAR MONOLITH ABSTRACT STYLE
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THE MODULAR MONOLITH ABSTRACT STYLE
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Figure 13-5.  Architectural Capabilities of the Distributed N-Tier Abstract Style
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CHAPTER 14

The Modular Monolith 
Abstract Style

Enter the ‘Goldilocks’ architecture: the Modular Monolith. This architec-
ture promises to strike a balance that is ‘just right’ for many applications, 
offering the simplicity of a monolith with the flexibility of microservices.

—Steve Smith

In Chapter 13, we explored one path to evolve the Layered Monolith style into a new, 

distributed style. Agility improved, but only modestly. Why? Because the challenge with 

technically partitioned layered architectures is that routine development often involves 

changes to most or all layers. These multilayer changes require a full regression test of 

the entire system, and, when these changes introduce breaking changes, releases require 

coordination. A large component of the agility the microservices architecture promises 

derives from defining module boundaries not by technical area, but by bounded 

context. This approach to granularity enables the overwhelming majority of changes 

to be confined to a single microservice. The trade-offs inherent to microservices, as 

you will see in the chapter on this style, are vast. Can a system exhibit comparable 

agility to microservices without the cost and complexity? The Tailor-Made model 

says “yes.” We start with just a subset of the constraints that define the microservices 

architecture to derive an abstract style that offers a compelling balance of flexibility and 

simplicity. Consequently, this style achieves a comparable level of decoupling seen in a 

microservices architecture within a monolith. This architectural style just might make 

architects love the monolith again.

Since architecture is a multifaceted continuum—and the tailoring process is how we 

move along said continuum—we will derive this abstract style by tailoring our Layered 

Monolith. As with the previous chapter, we will start with a hypothetical existing system 
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that is ready to move beyond the limitations of the layered architecture. As we continue 

this process through additional architectural styles in subsequent chapters, you will 

further see the power of this model and how an agile, evolvable architecture can remain 

reliably within reach.

Imagine our hypothetical system is an MVP that launched in the form of a layered 

monolith six months ago. The positive reception of the release has validated product 

fit and resolved any market uncertainty. On the strength of the MVP, the business has 

been able to raise significant capital and has now set a course for long-term growth and 

evolution.

Consequently, agility, deployability, and evolvability are high priorities with the 

requirements analysis process determining the needs for these capabilities are Above 
Average, Above Average, and High, respectively. The system has a good base of users, 

but not so many that scale and elasticity are becoming problematic yet; Average is 

fine for both. The business would prioritize a lower defect escape rate over scale and 

elasticity. You have quantified this as a requirement for Above Average testability. 

Integration plays a significant role in the future vision of the system, so integration 

and abstraction need to be Average to Above Average. That said, it is still a smallish 

organization so it would like to maintain a High level of simplicity but can certainly be 

flexible on affordability.

It is important to note that the abstract style described in this chapter will not 

perfectly align with these quantified needs. For example, integration and abstraction will 

score Below Average; however, this can be overcome either through the prescription 

of additional architectural constraints or additional human capital investment. Scale 

and elasticity also fall short of targets; however, this style will prove to be a useful 

intermediary style which enables further decomposition and architectural evolution 

over time. Sometimes, the best course of action for us is incremental improvement and 

evolvability rather than over fixating on the “perfect” architecture.

�Changing Constraints: Domain 
Partitioning Constraint
So far, we have only looked at module boundaries defined by technical concern, as 

defined by the Technical Partitioning Constraint. If we replace this constraint with the 

Domain Partitioning Constraint, it requires us to identify vertical slices of functionality 

(Figure 14-1). Each vertical slice captures a bounded context or subdomain. The result 
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of this approach to modularity is significantly improved agility as most changes will only 

touch a single slice. Typically, changes within a single slice will involve only a single 

team, and the testing scope and blast radius of the change will be well constrained.

Figure 14-1.  Taking Vertical Slices from a Layered Monolith

By applying the Domain Partitioning Constraint, we have a new style, the Domain 
Partitioned Monolith Style (Figure 14-2). In this style, each domain module is built as 

a separate, precompiled, package or assembly that is imported by the host application 

at startup by virtue of dynamic linking. To enforce modularity, everything in these 

packages is scoped as internal with the host application configured to be able to see 

and expose controllers or other relevant public interfaces. This enforced modularity 

approach is a form of architectural governance, making it difficult for a team to decide to 

take a shortcut and bypass another module’s API and directly access code methods. This 

can—and should—be part of a broader strategy of architectural governance (which will 

be discussed more in Chapter 25).
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Figure 14-2.  Domain Partitioned Monolith Style

When building a Domain Partitioned Monolith from scratch, typically development 

will begin with a host application that contains the bare minimum to bootstrap the 

application (API or MVC framework code, authentication, logging, and any other cross- 

cutting concerns). Likewise, when migrating from a layered monolith, the process is 

to extract individual domain modules into the separate packages/assemblies over 

time. Whether your long-term goal is a more agile and maintainable monolith or 

succeeding with microservices, this style offers a safe and pragmatic path for modular 

decomposition with a great deal of architectural flexibility and long-term agility.

The important question here is: “How do we determine module scope and module 

boundaries?” A common mistake is to simply design modules around entities; however, 

this approach is not only simplistic, but it will also undermine the goals of this level of 

modularity. Instead, this is where Domain-Driven Design (DDD) comes in.
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A Little More on DDD 

Domain-Driven Design is a strategic approach to software development that 
emphasizes the importance of understanding the business domain and using that 
knowledge to inform the design and architecture of a system. At its core, DDD 
is about creating a shared understanding of the domain among all stakeholders, 
which is facilitated through a set of collaborative practices and ceremonies.

The key ceremonies in DDD include1

Domain Modeling: Collaborative sessions where developers and domain experts 
create models that reflect the business processes and rules. These models help 
ensure everyone has a collective understanding of the domain.

Event Storming:2 A workshop-style technique used to explore complex domains 
by mapping out domain events. It helps identify key events, commands, and 
aggregates, fostering a deeper understanding of how the system should behave.

Ubiquitous Language: The practice of using a consistent vocabulary shared 
by both domain experts and developers. This language permeates the code, 
documentation, and discussions, reducing misunderstandings and ensuring 
alignment.

By engaging in these practices, teams can identify and define bounded contexts—
the specific boundaries within which a particular domain model is valid. Each 
bounded context is effectively a module, with clear boundaries and responsibilities, 
allowing teams to determine module boundaries in a system naturally. This 
alignment of module boundaries with business domains ensures that the system's 
architecture reflects the real-world processes it aims to support, leading to more 
maintainable and adaptable software.

1 Vernon, V. (2013). Implementing Domain-Driven Design. Addison-Wesley Professional
2 Brandolini, A. (2015–2021). Introducing EventStorming: An Act of Deliberate Collective Learning. 
LeanPub, https://www.eventstorming.com/book/
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Adopting the Domain Partitioning Constraint requires architecture to champion the 

idea and either arrange or facilitate one or more DDD ceremonies. These usually involve 

getting numerous business stakeholders and domain experts in the same room and 

working over a period of hours or days until the domains are well defined. The Well- 
Defined Domains Constraint is a necessary enabling organizational constraint and thus 

a prerequisite for adopting the Domain Partitioning Constraint.

In accordance with Conway’s Law, communication structures within the 

organization will dictate the ultimate module topology that emerges through the 

development process. For a clean, decoupled, standalone module to go from design to 

implementation, team/communication structures must be similarly modularized and 

decoupled. To achieve this, typically, teams will own either one or a small number of 

modules, and that team is responsible for the full stack within the module. This reality 

dictates that the Domain-Aligned Teams Constraint is a second necessary, enabling 

organizational constraint. As Conway’s Law has shown repeatedly, without these two 

organizational constraints, you are unlikely to succeed with the Domain Partitioning 

Constraint.

Ultimately, to succeed with the Domain Partitioning Constraint, the architecture 

and the org chart must align. When architecture precedes team formation, we have 

much more latitude to influence team topologies. When the inverse is true—the teams 

are already in place—we must either constrain our architecture decisions to reflect this 

reality or restructure the teams to align with architecture. The latter is known as “the 

inverse Conway maneuver” and requires considerable political capital.

Although the Domain Partitioning Constraint, in partnership with the necessary 

DDD work, will illuminate natural boundaries in the system needed to carve out 

modules, this effort will rarely inform module granularity.

�Module Granularity
With a technically partitioned architecture, the layer boundaries are usually quite clear. 

In contrast, domains are comprised of multiple subdomains, which typically contain 

multiple bounded contexts. The modules derived from domain analysis can range from 

coarse to extremely fine. Naturally, both “coarse” and “fine” are subjective and depend 

on the environment and context. How do we get granularity correct for a given project?
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First, consider purpose. Each domain module should be functionally cohesive, 

contributing one significant domain behavior on behalf of the overall system. Beyond 

domain modeling, event storming can be useful to model various business workflows 

or processes. Armed with this information, we can draw a candidate architecture and 

model various business processes to see how modules interact or depend on each 

other. Pay attention to how entities interact. Entities that consistently need to cooperate 

or form part of a common atomic database transaction are good indicators of shared 

module boundaries. Be aware that this can lead to tight coupling within modules if one 

is not careful. Coupling within a module is not always bad; however, coupling that spans 

multiple modules can prove to be problematic. During this modeling process, if you 

notice that a workflow involves orchestrating multiple modules, the odds are that those 

modules are too fine and may require consolidation prior to finalizing the architecture 

and design.

Use caution during this process as it is easy to overengineer modularity. Ultimately, 

determining optimal module boundaries is an iterative process. Performing as much 

iteration as possible at design time is optimal, but post-implementation revisions 

are often common. For this reason, it is important to favor an iterative process that 

begins with more coarse-grained modules (likely more coarse-grained than you might 

otherwise be comfortable with) and subsequently introducing further decomposition, as 

necessary. Splitting one module into two is typically easier as the domain behavior being 

extracted in the decomposition process has already been shown to stand alone. When 

module boundaries are very fine, the code required to manage these modules increases, 

leading to more work and higher risk when combining them at runtime.

Notably, this process is much easier within a Domain Partitioned Monolith. 

Consequently, the abstract style emerging in this chapter is a powerful starting point 

for microservices architectures as the modules can easily be extracted into standalone 

services as needed in the future. Beginning with coarse-grained modules decreases 

infrastructure requirements, provides a practical space for iterating on granularity, and 

reduces overall architectural risk.

�Organizing Code Within a Domain Module
Each domain module is, in essence, a micro-application (micro as in scope, not 

necessarily lines of code). The limited scope means that, if the behavior is correct and 

the interface stable, the contents do not particularly matter, and an individual module 
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could be quickly rewritten if necessary. That said, generally some structure is desirable. 

It is extremely common for the contents of a domain module to be organized in layers 

(Figure 14-3); this is particularly common when migrating from a layered monolith. 

Alternatively, a domain module may be a more coarse-grained module representing a 

portion of a subdomain and containing some number of more fine-grained mini- 

domain modules (Figure 14-4).

Figure 14-3.  A Layered Domain Module

Figure 14-4.  A Coarse-Grained Domain Module Containing Smaller Modules 
That Represent Individual Bounded Contexts

Chapter 14  The Modular Monolith Abstract Style



199

If you have experience with the microservices architecture, you will note that 

individual domain modules look remarkably like individual microservices, albeit 

without the complexity of a fine-grained distributed system. This is how we achieve, 

as Steve Smith describes it in this chapter’s introductory quote, “…the simplicity 

of a monolith with the flexibility of microservices…” In fact, this modular approach 

achieves much of the same decoupling and improved cohesion found in microservices 

architectures.

Like microservices, we must now consider how to handle shared or common code. 

Because this style prescribes a monolithic deployment granularity and a monolithic 

build artifact, we will receive build-time integration feedback, so a single “shared” 

module may be used to make shared utilities and interfaces available to the individual 

modules. That said, multiple strategies have been pioneered to address cross- 

cutting concerns, including Aspect-Oriented Programming (AOP), Object-Oriented 

Programming (OOP), dynamic module loading, and static module compilation. As the 

architect, you must determine both the boundaries of the shared code modules and 

which mechanism(s) should be deployed for a given project. This will ensure good 

encapsulation and independence of individual modules, keeping code changes tightly 

scoped and increasing agility while reducing risk.

In this style, code changes are almost always scoped to a single module, but what 

about code changes that require database schema changes? Microservices architectures 

tend to follow a principle which prescribes that each microservice owns its own data, 

but, in the absence of any additional constraints, coupling still exists in the database.  

A domain module might opt to join directly to a table that rightfully belongs to another 

module for the sake of expediency which will cause problems if/when that schema 

changes. To truly achieve the desired agility and change safety, we must not only 

decouple the code but also decouple the database.

�Partitioned Shared Database Constraint
A database-per-domain module is excessive at this point, given that much of the 

simplicity of this style is a function of the monolithic application and database. 

Remember, this style aims to achieve a comparable level of decoupling seen in a 

microservices architecture within a monolith. A simplified database decoupling can 

be accomplished by defining a distinct schema or catalog for each top-level domain 

module. The same way this style prescribes scoping all classes within a domain module 
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as internal to prevent code boundaries from “leaking,” this constraint applies additional 

enforcement of module boundaries within the database. It provides yet another 

feedback loop for determining optimal module granularity. If a single atomic business 

transaction requires crossing module boundaries to commit, it is an indicator that the 

modules may be too fine.

Breaking apart databases is often challenging. If you have ever looked at an entity 

relationship diagram (ERD), you have undoubtedly seen wide-reaching entities serve as 

the nexus for countless dependency relationship lines. Consequently, in any nontrivial 

system, there will be edge cases—scenarios where queries or transactions must span 

multiple data boundaries. The earlier we can address these in the design, the better. 

Module-crossing transactions might be painless now, but, as the system evolves, you 

may be baking complex, distributed transactions into the future architecture which can 

impede evolution or introduce other long-term challenges.

In both the Partitioned Shared Database Constraint that we have just introduced 

and its distributed sibling, the Isolated/Independent Database Constraint that we will 

discuss in later chapters, our primary options for each edge case are as follows:

•	 Accepting the boundary-crossing edge cases as is

•	 Consolidating the modules

•	 Replicating the data

•	 Using coarser “data domains”

Each of these options brings trade-offs that you must consider.

Accepting boundary-crossing edge cases as is will introduce additional complexity 

both short term and long term. For boundary-crossing write transactions (whether 

applied to a partitioned shared or discrete database), a single atomic commit is no 

longer available. New transactional failure conditions are introduced that must be 

accounted for. Partial failures require rollback or remediate/retry logic which introduces 

additional complexity that is only compounded when services and databases are 

distributed, and the Fallacies of Distributed Computing must be overcome. Boundary- 

crossing read transactions are inherently less complex but can be extremely expensive. 

Read queries that span two or more domain boundaries cannot perform traditional 

joins inside the database; instead, the join logic must take place on the application side. 

A database join can take advantage of indexes, reducing I/O by performing the join 

operation on a subset of the data, but an application-side join requires reading most or 

Chapter 14  The Modular Monolith Abstract Style



201

all the table, sending everything across the network, loading the full dataset in memory, 

then joining the datasets in code. Only if the edge cases are rare, and the risk/complexity 

can be adequately mitigated long term, does this become an acceptable option.

Consolidating the modules can often be a useful strategy if the edge cases are 

less “edgy” and more frequent than expected. In such a case, we may opt to simply 

consolidate the modules and their respective data partitions (or databases), effectively 

refactoring the domain model mapping within the architecture. This approach correlates 

positively with cohesion but negatively with agility. Changes that are small in scope 

and have a highly constrained blast radius are low risk and lend themselves to frequent 

releases. As domain modules become larger, the blast radius of each change increases 

along with testing/validation scope. Frequent and repeated consolidation of modules 

can become a slippery slope that leads back to the layered monolith.

Replicating the data is common in the microservices world for otherwise module- 

spanning read operations.

This approach is often the most expedient and effective solution. In a shared 

database, triggers, periodic batch jobs, or even views imbued with specific permissions 

to cross domain boundaries all function as simple mechanisms for replication. A shared 

database can also be denormalized. In a distributed system, strategies for replication 

include using event sourcing, linked tables, or periodic batch jobs.

In contrast with the inflated cost and overhead of application-side joins, replicated 

data takes advantage of database-level optimizations, but this frequently raises the 

issue of eventual consistency. Whether an event-sourcing approach is taken (where one 

service broadcasts state changes in the form of events that other services can consume 

as a source of truth), or some sort of ETL/batch job that is periodically invoked, there will 

be some delay before the replicated data is consistent across the system. Some domains 

can tolerate eventual consistency; others cannot. Within a partitioned shared database, 

this latency might be zero if triggers or views are used, but we have reintroduced 

coupling to the database layer. Which team should own the triggers or views? How will 

schema changes be coordinated to avoid difficult-to-detect regression outside the scope 

of the module boundaries? You must answer these questions, either at design time or in 

an incident postmortem. When the strategy of denormalization is deployed, there must 

be a mechanism in place to cascade updates to maintain logical consistency, which adds 

complexity and reintroduces challenges around eventual consistency.
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Finally, you must consider the long-term expectations of the system. If evolution into 

a distributed system is anticipated, it would be valuable to consider both short-term and 

long-term replication strategies when selecting this option.

Using coarser data domains is one more tool in our toolbox. There is no rule that 

states there must be a 1:1 relationship between code module boundaries and data 

boundaries. From a pure domain logic standpoint, we may end up with one model 

for the code and a separate model for the data. A data domain is a distinct set of 

logical boundaries within the database that might span multiple domain modules or 

microservices.

Note that this approach can quickly become a blunt instrument when not wielded 

carefully. A sufficiently large data domain will inevitably span multiple teams which 

reintroduces increased coordination cost that the modularity of this style aims to avoid. 

The value of the Partitioned Shared Database Constraint diminishes as the database 

becomes increasingly monolithic.

On paper, this constraint seems simple and logical. However, in practice you will 

uncover many such edge cases and learn that there is no best practice or one-size-fits- 

all solution. Consequently, you may find yourself applying any or all these options on a 

case-by-case basis.

�The Modular Monolith Abstract Style
As a result of changing the module partitioning constraint and the shared database 

constraint, we arrive at the next common pattern and another abstract style, the Modular 

Monolith Abstract Style (Figure 14-5).
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Figure 14-5.  The Modular Monolith Abstract Style

Monolithic applications have existed for as long as software has existed. The layered 

approach to organizing larger, monolithic codebases has remained largely unchanged 

for a period spanning decades; however, this style reimagines the structure of a monolith 

by applying the new techniques and lessons learned in the 21st century ranging from the 

problems identified in the Agile Manifesto and the software craftsmanship movement3 

to the techniques pioneered by Eric Evans4 and the early DDD community, as well as the 

success of microservices. This style embodies the Tailor-Made philosophy of borrowing 

just enough architecturally significant decisions from styles like microservices to induce 

necessary capabilities in a monolith. The Tailor-Made model’s emphasis on constraints 

makes this process explicit and better informs future evolution.

3 McBreen, P. (2001). Software Craftsmanship: The New Imperative. Addison-Wesley
4 Evans, E. (2003). Domain-Driven Design: Tackling complexity at the heart of software. 
Addison-Wesley
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The modular monolith is often a suitable place to start a greenfield project. Typically, 

proving your MVP and capturing market share are more immediate business concerns 

over massive scalability and elasticity at the project inception. With the foundation 

of a modular monolith, the initial time to value for the code is short, but architectural 

flexibility and long-term evolution is baked into its foundations.

The architectural flexibility of this style is an antidote to the trend of up-front 

overengineering and premature optimization. Rather than guess what the architectural 

requirements will be in 3–5 years, we can take a more agile approach. As metrics, KPIs, 

and telemetry begin to show that scale requirements have changed, we can scale the 

monolith or apply additional constraints such as the CQRS constraint or the Client/

Server constraint. If the nature of the domain requires any orchestration of multiple 

modules, it can be useful to consider prescribing the team constraint of API-first 
development to further reduce coordination costs, increase team independence, and 

drive more stable and well-thought-out public interfaces. Finally, if the data shows a 

need for decomposition into a distributed system, you will see in the next chapter that 

extracting a standalone service or microservice is trivial compared to decomposing a 

traditional monolith since the hard part—redefining module boundaries vertically—is 

already complete. A modular monolith is also already partway toward microservices. 

In fact, the modular monolith style is also a popular, pragmatic, and low-risk step in 

the process of decomposing an existing monolith into “miniservices” or microservices 

without requiring the recombination of components necessary when migrating from a 

distributed n-tier style.

�Summary
The modular monolith is a powerful way to balance cost and simplicity against 

architectural agility and long-term evolvability. If a monolith provides enough 

capabilities for the short term (whether it be an MVP or a system that is still ramping up 

users and market share), and the organizational constraints are within reach and can be 

applied, this style should be given thoughtful consideration.
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This abstract style is defined by the following architectural constraints:

•	 Monolithic Component Granularity

•	 Monolithic Deployment Granularity

•	 Domain Partitioning

•	 Partitioned Shared Database

This collection of architectural constraints requires the following organizational 

constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

By adopting the same constraints that drive modularity and encapsulation in the 

microservices architecture, this style offers significant advantages over its layered 

counterpart. The notable improvements over the Layered Monolith Abstract Style are 

shown in Figure 14-6.

Chapter 14  The Modular Monolith Abstract Style



206

THE MODULAR MONOLITH ABSTRACT STYLE

Abstraction Above Average

Affordability Very High 

Agility High

Deployability Above Average

Elasticity Low 

Evolvability High 

Fault-Tolerance Low 

Integration Below Average 

Performance Above Average

Scalability Low

Simplicity Very High

Testability High

Workflow Below Average 

Figure 14-6.  Architectural Capabilities of the Modular Monolith Abstract Style
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CHAPTER 15

The Service-Based 
Abstract Style

It’s exciting to see modular thinking—along with loose coupling and high 
cohesion—to reenter our software design. Microservices is an extreme that 
is a fit for a few. The lessons from it are a fit for many.

—James Higginbotham

In Chapter 14, we evolved a layered monolith into a modular monolith in response to 

changing architectural needs and a directive from the business to invest in long-term 

agility and evolvability. While many of the qualified and quantified requirements from 

that scenario have been satisfied by the Modular Monolith Abstract Style, elasticity, 

integration, and scalability are still falling below target. Additional tailoring, in the form 

of adding or changing constraints, will lead us further along the continuum toward an 

optimal fit. To achieve increased scale, we will decompose our monolith by changing the 

component granularity constraint and adding the Client/Server constraint (Chapter 13). 

To improve integration and interoperability, we will prescribe an API strategy.

�Changing Constraints: Medium 
Component Granularity
Improving scalability in line with the stated business requirements requires 

decomposing our monolith into smaller, standalone services. When we previously 

decomposed a monolith in Chapter 13, we took the simple approach of decomposing 

the system along the existing, horizontal module boundaries. Since each module was 

a broad, horizontal slice, our only practical option (barring significant refactoring and 

https://doi.org/10.1007/979-8-8688-0410-6_15#DOI
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rewrites) was Coarse Component Granularity. Following the effort to redefine module 

boundaries using domain-derived boundaries in Chapter 14, we have more options 

available to us.

Recall that the domain components inside the modular monolith are closely 

analogous to embedded microservices. At this point, there may be a temptation to jump 

directly to fine-grained microservices, extracting each domain module as a separate 

service. In this context, however, such a leap would be both premature and unwise. For 

our project, High scalability is sufficient, thus making the Extremely High scalability of 

microservices styles—along with the added expense and complexity—excessive.

The pragmatic solution in this case is to choose Medium Component Granularity. 

The goal is to design a topology that offers enough scalability, enough elasticity, and 

enough agility while keeping cost and complexity manageable. As we saw with our 

efforts to define new module boundaries in the previous chapter, we must take care 

when defining component/service boundaries. In fact, getting module granularity right 

matters more in a distributed topology, and the network introduces new complexity 

and operational challenges. Defining granularity as “monolithic” leaves little room 

for interpretation; everything is inside the monolith. However, “coarse,” “medium,” 

and “fine” granularities all leave room for interpretation with “medium” potentially 

being the vaguest of the three. For the purposes of this book, these terms are used in 

the relative sense. To continue our couture metaphor, they are analogous to small, 

medium, and large; none of which are likely to fit you perfectly without tailoring. 

Likewise, in architecture, optimal granularity within any such constraint will vary from 

system to system. Instead of grasping for absolutes, while we wait for someone to invent 

mechanism(s) or metric(s) to absolutely measure and define component granularities, 

we simply consider our goals within the scope of this book and the Tailor-Made model. 

Medium Component Granularity seeks to balance performance, cost, complexity, 

and scale.

One of the benefits of the Medium Component Granularity Constraint of this style 

over the Fine Component Granularity of microservices is increased cohesion and 

lower complexity. This cohesion manifests as reduced or eliminated cross-service 

coordination. Complexity is lower as this granularity prescribes fewer services to manage 

and fewer distributed transactions. Ford and Richards suggest that services of this 

granularity tend to range from four to twelve.

Chapter 15  The Service-Based Abstract Style



209

Because the services typically share a single monolithic database, the num-
ber of services within an application context generally range between 4 and 
12 services, with the average being about 7 services.1

This granularity also improves performance because, beyond communication 

between client and server, or component and database, there is little to no network I/O 

and associated latency.

Determining optimal granularity can seem arbitrary or driven by a judgment call; 

however, more mindful approaches are available to us. Defining services by domain 

or subdomain is usually a good starting point for a first draft design. Use this design to 

model domain behaviors and workflows. When two services must frequently cooperate, 

there is a good case for consolidation. When this process identifies groups of models 

within a single service that do not interact, they may benefit from being extracted into a 

separate service.

Beyond domain boundaries, data-driven approaches may also inform your topology. 

Telemetry data, for example, might highlight specific domain behaviors or workflows 

that have higher-than-average or bursty loads. In such a case, this may warrant further 

decomposition in support of improved elasticity and scalability.

In all cases, pay particular attention to distributed transactions. These are another 

signal that the granularity of a particular service is too fine. Getting granularity right is 

an iterative process. The more we iterate on service granularity at design time, the less 

disruptive rework will be necessary by the implementation teams.

�Interservice Communication
Although a single service designed according to this constraint will be able to single- 

handedly satisfy the domain behaviors and workflows within its scope, some amount 

of cross-service coordination may be unavoidable. When such cases emerge, we must 

consider how these services will communicate in different scenarios.

If services already expose an API, communication can take place in the form of 

synchronous API calls. The Fallacies of Distributed Computing caution us, however, 

against making assumptions about network performance and reliability. Response times 

will vary, and requests will occasionally time out. Consider the following scenarios that 

1 Richards, M., Ford, N. (2020). Fundamentals of Software Architecture: An Engineering Approach 
O’Reilly
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take place within a simple topology of a user, Service A and Service B, where the user 

is making a request to Service A, and Service A needs to call Service B to satisfy this 

request.

The most direct failure occurs when the request from Service A to Service B simply 

times out (Figure 15-1). Service A will have no visibility into why the request failed and 

where it failed. Did Service B receive the request? Did it process the request? Without a 

response, Service A simply cannot know the answer. Should Service A retry the request? 

It depends on the request.

Figure 15-1.  Failed Call to Service B from Service A

If the operation is safe (meaning the operation does not have side effects) or 

idempotent (meaning the operation will produce the same result regardless of the 

number of times it is performed), the retry option is available to us. If the operation is 

unsafe and not idempotent (e.g., Service B is a payment service attempting to charge the 

user’s credit card), the interaction may need to be refactored to allow retries without 

double-billing the user. A more robust design for such an interaction would require 

Service A to include a session ID, request token, or nonce (a single-use random or 

unique value) in the request to allow Service B to evaluate if it has already completed the 

work in a previous request.

A defensively designed or otherwise idempotent request enables Service A to retry 

the request; however, what if Service B is overloaded and unhealthy? Rapid, repeated 

retries will only compound the problem. The request from the user’s client to Service 

A is also a network interaction, with little visibility into failures. If the client’s request to 

Service A times out while it waits for a response from Service B, the client may also retry 

the request. Furthermore, if Service A is actively processing multiple similar requests 

that are all suffering the same failures in Service B, parallel retry loops may snowball 

into an accidental denial-of-service (DOS) attack on Service B. Service A might also start 

to experience issues, such as timeouts or slow responses. This can lead to a cascading 

failure, where the problem within one service spreads to others, potentially bringing 

down the entire system.
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Circuit breakers are a pattern that developers and architects put in place to prevent 

cascading failures. Put simply, the circuit breaker is normally in a “closed” state, meaning 

it allows requests from Service A to Service B to flow. When a circuit breaker detects the 

problem, however, it moves to an “open” state, which causes Service A to immediately 

fail any request to Service B, without even attempting it. This prevents further load in 

Service B and allows it time to recover. Service A must either defer to a fallback code path 

or a fallback response (e.g., “Please try again later”) instead of failing entirely.

A Cautionary Tale of Cascading Failures

On Monday, May 6, 2024, a SaaS-powered email client experienced an issue 
where its backend services were unable to communicate with their database. 
Clients depend on this service for synchronization and sending/receiving 
messages. When the client’s sync requests failed, the client would simply retry. 
With all running clients repeatedly retrying sync requests, the backend services 
went from unhealthy to completely offline.

According to public updates from the software vendor, developers had to update 
database client libraries in multiple places across the codebase. The remediation 
work was challenging as there was little abstraction in place. Developers had to 
implement fixes all over the codebase. In total, the fixes took four days, yet the 
downtime persisted.

For undisclosed reasons, the backend fix required client updates. Consequently, 
outdated clients were still DDOSing backend services. Additional effort was 
needed to mitigate the traffic and roll updates out to the software’s installation 
base. Even after hot fixing backend services and updating clients, the app was still 
nonfunctional, leaving users either frustrated or abandoning the product in droves 
as downtime rolled into a fifth day.

It turns out a backend agent responsible for synchronizing email between providers 
and their platform had been operating in an infinite retry loop for the duration of 
the downtime. These agents were responsible for a DOS attack on third-party 
email servers. This traffic pattern forced email providers to rate-limit or block 
traffic from this app. Both the company and their customers had no choice but 
continue to wait while access was restored.
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In total, this email app was unusable for seven days. There were clearly multiple 
contributing factors in this failure; among them is an illustration of the importance 
of planning for failure conditions. An exponential backoff (where retry attempts 
are increasingly delayed) on the synchronization agent could have avoided email 
providers rate-limiting or blocking their traffic. Additionally, circuit breakers 
elsewhere in the system would have arrested cascading failures. Finally, better 
abstraction of the database could have reduced the time to repair.

An alternative to synchronous communication is asynchronous communication. 

Does Service A truly need a synchronous acknowledgment or success confirmation from 

Service B? Or is a response from Service A that indicates the work performed by Service 

B is pending acceptable?

Consider again the case where Service B is the payment service. Service A could 

simply enqueue a request to process the payment, then immediately return a response 

to the user. User-perceived performance is significantly higher in this scenario. The 

system also becomes more fault tolerant as Service A can enqueue requests whether 

Service B is overloaded or idle, online or offline. A queued request will simply be 

processed as resources allow, and a separate asynchronous request can communicate 

state changes back to Service A. Service B is also better positioned to handle retries; 

however, architecture or development must define a strategy and a plan to handle 

persistent failures. This may be a “dead letter” queue, writing to a log, or simply an 

update to the caller indicating that the request failed.

The downside of the asynchronous approach is that queues and services can still 

fail which can result in dropped messages. More robust asynchronous communication 

mechanisms might promise at least once delivery instead of exactly once delivery which 

might result in the queue or topic consumer service double-processing a message if 

appropriate safeguards are not in place.

The third option is to bypass external services and perform coordination directly in 

the database. If Service A relies on Service B for additional data, and the two services 

share a single database, Service A can simply bypass the API altogether and reach 

directly into Service B’s tables. This approach is simple, fast, and cheap; however, 

these benefits come at a cost. Cross-service coordination via the database introduces 

additional coupling which will undermine agility and evolvability. Teams must 
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coordinate database changes across teams and services, resulting in more frequent 

coordinated releases. It is also important to note that this coupling is not always 

immediately visible, causing additional deployment risk.

�Shared Code Across Services

In a modular monolith (Chapter 14), many cross-cutting concerns are handled 

by the host application, breaking apart that monolith requires distributing those 

responsibilities. These typically include logging, authentication, and—if the Shared 

Database Constraint is present—the data model and persistence layer.

The conventional solution for sharing code is extracting that functionality into a 

series of versioned, shared libraries. This can be a good option if the shared libraries 

either exhibit low code volatility or can be versioned in such a way that each service can 

manage its own upgrade cycles. Be cautious, however, as external libraries introduce a new 

potential point of coupling. When a medium-to-high volatility library frequently introduces 

breaking changes, the system will inevitably violate the Independent Deployability 

Constraint. Designing a distributed system that lacks independent deployability will result 

in a distributed monolith, which is an anti-pattern which we must strive to avoid.

Another possibility is the creation of a shared service. Like the shared library 

approach, this creates a single source of truth with the added benefit of an independent 

release cycle that will not impact running services unless a breaking change is 

introduced. The downside, of course, is that calls to this service incur network overhead 

and latency. Either architects or development teams must determine a plan for request 

timeouts, retry logic, circuit breakers, and fallbacks for each service or prescribe some 

alternative approach.

The extreme and counterintuitive solution is to duplicate code in each service. This 

might appear to violate the best practice of “Don’t Repeat Yourself” (DRY); however, 

in architecture, there are no best practices, only trade-offs. There are advantages and 

disadvantages both to DRY and “Please Repeat Yourself” (PRY). The chief advantage of 

the latter approach is that it aggressively eliminates coupling and reduces coordination 

costs to achieve consensus on changes to the code. That said, such an approach 

introduces trade-offs and new challenges that might better be avoided, particularly in a 

medium-grained topology where the trade-offs might not make sense. This approach is 

often necessary in larger environments with many services that require extreme agility 

and extreme deployment velocity. We will undertake a detailed exploration of the trade- 

offs for this approach in the next chapter where it is more applicable.
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�Team, Environment, and Organizational Constraints

Like the Coarse-Grained Component Granularity Constraint introduced in Chapter 13, 

this constraint brings dependencies to induce the desired capabilities in the system. For 

reference, these are

•	 ARCH: Independent Deployability

•	 ORG: DevOps Commitment

•	 ENV: Loose Coupling Between Components

•	 ENV: Development Environment Isolation

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

�Independent Deployability
Our (now) distributed system will be a distributed monolith unless we replace the 

Monolithic Deployment Granularity Constraint with the Independent Deployability 

Constraint and its enabling team, organizational, and environmental constraints 

(described in Chapter 13).

�Implementation Guidance

Independent deployability always introduces risk. Even with good modularity and 

component isolation, it can be difficult to predict when a change might have knock- 

on effects that will require coordinated deployments. In general, an investment 

into DevOps, automation, a fairly representative test bed with similar hardware and 

configuration to the production environment, along with a decent worst-case scenario 

automated test data generator will help to identify issues before shipping/deploying 

the product. In other words, our build pipelines and quality gates must do more than 

build and test a single component; pipelines must also run integration tests against 

other services and, ideally, run all component integration tests prior to release (and 

continually after release). The goal is to detect integration failures with external 

dependencies before releasing to production as well as early detection of integration 

failures when other services are updated.

Chapter 15  The Service-Based Abstract Style



215

�Adding Constraints
As we decompose this system, we must also prescribe the Client/Server constraint 

(described in Chapter 13). Both improving integration and interoperability and enabling 

the Client/Server constraint will require, at a minimum, prescribing an API Constraint. 

Chapter 13 noted that API strategy is architecturally significant and explored the trade- 

offs between the available options. The emphasis in the requirements on integration and 

evolvability suggests a Level 1 or Level 2 REST API; however, for the sake of simplicity 

when defining this abstract style, we will select the RPC API Constraint.

�The Mature, Medium-Grained, Domain Partitioned 
RPC Client/Server Style
Through the composition of constraints, we have arrived at a concrete architectural style 

(Figure 15-2) that satisfies the business requirements outlined in the previous chapter 

while balancing cost and complexity.

Figure 15-2.  The Mature Medium-Grained, Domain Partitioned, RPC Client/
Server Style
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The following constraints define this style:

•	 Medium Component Granularity

•	 Independent Deployability

•	 Domain Partitioning

•	 Client/Server

•	 RPC API

•	 Partitioned Shared Database

This collection of constraints requires the following team, organization, and 

environmental constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: Loose Coupling Between Components

•	 ENV: Development Environment Isolation

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

Although we have arrived at this style through a process of evolution, this style is a 

slight variation on the Service-Based Abstract Style. The only difference between the set 

of constraints in this concrete style and the defining constraints of the Service-Based 

Abstract Style is the Partitioned Shared Database Constraint. The abstract style does 

not prescribe this constraint (but it can be added through the tailoring process—see the 

section “Tailoring This Abstract Style”).

�The Service-Based Abstract Style
This abstract style offers a highly pragmatic approach to building distributed systems. 

Components exhibit manageable granularity, ACID transactions remain the norm, it 

requires limited cross-service coordination, and the enabling practices are within reach 

of most teams.
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Because of the Domain Partitioning Constraint, the evolutionary path, both to 

and from this style, is low friction, low risk, and straightforward. Migration to this 

style involves breaking a modular monolith into multiple mini-modular monoliths 

(Figure 15-3). For projects that do not yet require the scale and complexity of a 

distributed system, the agile architecture approach is to begin with a modular monolith 

and let the business and metrics determine the decomposition decision. The modular 

nature of this style offers significant flexibility for tailoring or further decomposition, 

again, as metrics and business needs dictate. Microservice styles are always overkill, 

except when they are not. Up-front overengineering and premature optimization are not 

necessary when incremental, data-driven evolution is baked into the system’s design.
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�Tailoring This Abstract Style
Variations of this style replace the Domain Partitioning Constraint with the Technical 

Partitioning Constraint. This is often due to organizational incompatibility that 

cannot be easily or immediately overcome. Replacing this constraint brings additional 

simplicity, but that comes at a cost. The Domain Partitioning Constraint is the engine 

of both High evolvability and Very High agility. A Technically Partitioned Service-Based 

Style does not require the organizational constraints but will inherit the trade-offs 

inherent in all technically partitioned systems, and further decomposition will require 

significant work to carve out vertical slices.

Although this variation is not the goal or focus of this chapter, styles can be tailored 

to meet different needs and align with different organizational realities. In short, keep 

in mind that Layered Monolith and Distributed N-Tier styles are not the only options for 

technically partitioned systems.

�Partitioned Shared Database Constraint

This is another optional constraint that will improve both agility and evolvability. In 

essence, this constraint will move the style along the continuum toward microservices 

and the capabilities they bring without inheriting their complexity. Additionally, should 

future needs dictate further evolution toward microservices, the migration will be 

simplified as less effort will be necessary to break apart the database.

�CQRS Constraint

As described in Chapter 13, distributed systems are inherently more scalable; however, 

a single, shared, monolithic database will still introduce a bottleneck. This constraint 

allows reads to be load balanced across multiple database server instances.

�Coarse Federated Databases

If you already have a partitioned shared database, an option to achieve higher scale is to 

begin to split apart the database (Figure 15-4). If a logical data domain is already isolated 

in the form of a distinct schema or catalog with a unique connection string, it is trivial to 

simply move that schema to its own server. Agility and scale go up, but complexity does 

as well.
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Figure 15-4.  Federated DB Service-Based Style

�Summary
In Chapter 9, we referenced Gartner’s prediction that 90% of organizations who try 

microservices will find the paradigm too disruptive. In contrast, the Service-Based 

Abstract Style is a balanced and deeply pragmatic approach to distributed system design 

that will satisfy all but the most extreme requirements for agility and scale. However, like 

the modular monolith, this style leaves doors open for further architectural evolution.

The superficial topological similarity between this style and microservices leads 

many developers and architects to conflate this style with microservices; however, there 

are key differences in the underlying constraints as you will see in the next chapter.

The following architectural constraints define this abstract style:

•	 Medium Component Granularity

•	 Independent Deployability

•	 Domain Partitioning
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•	 Client/Server

•	 RPC API

•	 Shared Database

This collection of constraints requires the following team, organization, and 

environmental constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: Loose Coupling Between Components

•	 ENV: Development Environment Isolation

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

A concrete style derived from this abstract style may require additional architectural 

constraints or implementation guidance around interservice communication. Additional 

environmental constraints may also be necessary to support things like circuit breakers 

and self-healing services.

This style is a waypoint on the architectural continuum between the modular 

monolith and microservices offering numerous advantages over the former with what 

are often manageable trade-offs. The notable improvements over the Modular Monolith 
Abstract Style are shown in Figure 15-5.
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THE SERVICE-BASED ABSTRACT STYLE

Affordability High
Agility Very High
Abstraction Above Average
Deployability High
Elasticity Above Average 
Evolvability High 
Fault-Tolerance High 
Integration Above Average 
Performance Above Average
Scalability High
Simplicity Above Average
Testability High
Workflow Below Average 

Figure 15-5.  Architectural Capabilities of the Service-Based Abstract Style
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CHAPTER 16

The Microservices 
Abstract Style

A microservice is a single purpose, independently deployable unit of soft-
ware that does one thing well.

—Mark Richards

The Service-Based Abstract Style, introduced in the previous chapter, offers many 

Above Average and High capabilities balanced against manageable cost and complexity. 

The capabilities afforded by the defining constraints of that style will satisfy all but the 

most extreme demands. However, there do exist systems where anything less than 

extreme agility, extreme scalability, and extreme fault tolerance poses an existential 

threat. Achieving such extremes is not easy and requires a similarly demanding set of 

architectural constraints to maximize the capabilities of the system.

We will progress along the continuum by introducing and modifying constraints. 

Throughout this process, we will significantly enhance many of the capabilities provided 

by the Service-Based Abstract Style, elevating them to an extremely high level.

�Changing Constraints
�Fine Component Granularity
In the pursuit of the extremes the Microservices Abstract Style promises, the first 

change we must prescribe is a further reduction of individual component granularity. 

Microservices takes the approach of decomposing a software system into its smallest 

practical, irreducible components. Ideally, each medium-grained service component in 

the Service-Based style is already a mini-Modular Monolith, with standalone domain 

https://doi.org/10.1007/979-8-8688-0410-6_16#DOI
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components that are ready to be extracted into discrete microservices. In this case, 

changing granularity is, once again, straightforward. However, regardless of the level of 

difficulty you or your development teams will face during decomposition, the challenges 

this constraint introduces are only beginning.

First, this constraint offers little in the form of guidance on what this level of 

granularity looks like in practice. Good answers rarely materialize until we begin to ask 

the right questions. In accordance with the First Law of Software Architecture,1 “Why is 

more important than how,” let us first explore the “why.”

Fine component granularity drives the characteristic “micro” scope of the 

microservices architecture. In many ways, this constraint is analogous to the Single- 

Responsibility Principle (SRP) of object-oriented design. SRP states that only the 

necessary cohesive functionality needed for a single responsibility be present in each 

OO class. As developers introduce additional responsibilities into a single class, coupling 

increases and additional code paths emerge that developers and architects must identify 

and test. The code becomes harder to change as, often, the changes result in unexpected 

side effects. Adherence to the SRP favors composition of multiple single-purpose 

classes to achieve a single domain behavior, rather than inheritance to fully encapsulate 

the domain behavior in a single, concrete class. By way of the Fine Component 

Granularity Constraint, the microservices style advances this concept from code-level 

to architecture-level. A fine-grained microservice serves as a single-responsibility 

component that, through composition with other microservices, delivers more coarse- 

grained domain behaviors (with trade-offs, of course).

The parallels between SRP in OO and its microservices cousin are not exact.2 

Does single responsibility imply microservices scope should be as “micro” as a single 

function? Perhaps, but not necessarily. Generally, the distinction between the two SRP 

guidelines is that, in microservices, a single service should encapsulate a single domain 

responsibility (vs. a single code responsibility in OO). There are also times where 

separation of a single domain may be done because of constraints like cyber security 

(e.g., read being absolutely separated from create, update, and delete), data persistence 

(e.g., writes may be pushed through a different interface than reads for certain high- 

volume circumstances or in situations where a query interface may be available but 

1 Ford, N., & Richards, M. (2020). Fundamentals of software architecture: An engineering approach. 
O’Reilly Media
2 Merson, P. (2020). Principles for Microservice Design: Think IDEALS, Rather than SOLID.  
InfoQ. Retrieved from https://www.infoq.com/articles/microservices-design-ideals/

Chapter 16  The Microservices Abstract Style

https://www.infoq.com/articles/microservices-design-ideals/


225

a data stream is also available), or in situations where a domain service with certain 

options is provided to one group of consumers but a different set is made available to 

other users (paying vs. free service users). In such cases, you will need to decide whether 

these sorts of isolation occur at the service component level or whether a service will 

encapsulate these alternatives. Precision in domain modeling is especially important in 

getting granularity right at design time.

A well-designed, single-purpose, fine-grained service offers the possibility of 

significant gains in evolvability, enabling increased product or organizational agility. 

When interfaces are stable, and the service’s behavior well designed and scoped, 

development or implementation teams can implement, test, and deploy changes with 

great velocity. Not only does this constraint enable implementation teams to release 

individual changes as soon as they are ready, but a frequent release cadence of small 

changes will significantly reduce risk. In fact, should a team discover that the most 

recent change is somehow faulty, rolling back that deployment will only affect that single 

service, while other, successful changes continue to roll forward, leaving overall product 

and organizational agility extremely high. Good service boundaries form important 

bulkheads that both limit the testing surface while also isolating the impact of any 

individual change. However, when services have unstable interfaces and abstractions 

that multiple other microservices depend on, the resulting coupling can complicate this 

process, introducing unexpected side effects which are difficult to anticipate.

The bulkheads afforded by this constraint also offer the potential for massively 

improved fault tolerance. When a monolithic application is offline, all functionality is 

unavailable. Distributed architectures have the capability to remove single points of 

failure within a system, and a fine-grained distributed architecture further reduces the 

impact of a failure down to, potentially, a single domain behavior. You must exercise care 

when designing these fine-grained architectures to avoid the scenario where a whole 

group of interdependent services introduces a many single points of failure scenario. As 

a simple example of a many single points of failure scenario, consider cheap Christmas 

lights where every bulb forms an integral part of a single circuit. A single bulb coming 

lose or burning out will black out the entire string of lights and, perhaps, all subsequent 

daisy-chained strings. Finding the failed component is so difficult and time-consuming 

that many will simply opt to purchase an entirely new string of lights. We rarely have 

such luxuries in software (but customers often do—see “A Cautionary Tale of Cascading 

Failures” in Chapter 15).
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As we explored in the last chapter, cascading failures emerge as a new scenario 

that we must identify and mitigate. However, so long as architecture mitigates this risk 

through application of the required environmental constraint of bulkheads and circuit 

breakers to enable dependent services to gracefully indicate that a portion of their 

functionality is unavailable, overall fault tolerance will increase.

The single responsibility “micro” scope of microservices this constraint prescribes 

will correlate strongly with similarly “micro” binary artifact sizes. These artifacts will 

boast a significantly reduced cold start time. Consequently, a burst in demand can 

be met with additional capacity by dynamically scaling a single service horizontally 

(or vertically). As demand for that service subsides, the system can similarly react by 

reducing the number of available individual instances.

In addition to offering elastic response to demand, this granularity enables 

individual atomic domain behaviors to adapt to persistent load and demand. Overall 

compute and storage capacity can be applied where needed with extreme precision 

through horizontal and vertical scaling. This enables efficient resource allocation which 

offers levels of scale well beyond what coarse-grained architectures are capable of.

This constraint is clearly a crucial ingredient to achieving the highest possible levels 

of evolvability, agility, fault tolerance, scalability, and elasticity. These gains, however, 

come at a significant cost.

First, this architecture will test the mettle of any architect during the design stage. 

Getting granularity right requires detailed and sophisticated domain modeling and a 

deep alignment between the organizational structure and the domain model. Unlike 

other granularity constraints, the Fine Component Granularity Constraint requires 

domain partitioning which, consequently, requires well-defined domains and domain- 

aligned teams. One litmus test for microservice granularity is to attempt to specifically 

describe the service’s domain behavior. A typical microservice can be described in a 

single sentence, without the use of conjunctive words like and/or. This is not to say 

that service descriptions will never deploy a conjunctive word indicating multiple 

domain behaviors, but such cases will suggest additional scrutiny in the design. This is 

sometimes referred to as a “design smell.”

On paper, service boundaries may initially appear obvious, but lurking just beneath 

the surface are countless edge cases waiting to be discovered. Each edge case must 

be identified and compensated for. Sometimes, architecture can address an edge 

case through service consolidation, or a data replication strategy, or the creation of a 

shared service, a data domain, or through some other mechanism. You must evaluate 
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and address each edge case on a case-by-case basis; there are currently no broad best 

practices or objective test for optimal granularity that can be applied here.

Beyond boundary edge cases, you must also meter the amount of performance that 

this style exchanges for the other architectural capabilities. At this level of granularity, 

many domain workflows that rely on in-process function invocation in coarse-grained 

architectures become out-of-process network calls—network calls that necessarily incur 

bandwidth and latency overhead. Optimal granularity necessitates that performance 

does not fall below a threshold defined by the business or product.

Beyond reduced performance, a new challenge arises in the form of observability. 

When a process fails in a monolithic component, the application will dump the entire 

state and stack trace into a single log. Contrast this with a failure that spans several 

microservices. The logs from any single service only offer a piece of the puzzle which 

rarely tells the whole story. This constraint requires the Distributed Tracing and Logging 

Environmental Constraint.

Tracing is a technique to track and log the flow of requests across service boundaries 

to monitor, debug, and optimize distributed systems. Tracing enables the production of a 

distributed stack trace for analyzing and resolving problems and failures. For total visibility, 

an engineer investigating an issue will require more than the trace; they must also piece 

together the rest of the story from the logs of multiple services.3 To achieve this, we require 

some mechanism to collate related log entries (some common options are enumerated 

in Chapter 3 under “Observability”). Often a request will be assigned a unique request ID 

or correlation ID that is common across all service hops for the life of that single request. 

Through this unique identifier, multiple interservice requests can be tracked to form a 

single, end-to-end trace and the mechanism by which otherwise disparate logs can be 

combined to surface a complete picture of what happened. There are many tools and cloud 

services that will collate log entries and make them visible on a dashboard or through 

proactive notifications. The practices that enable this constraint—along with the prescribed 

tooling—must form part of the development process’ standard operating procedure.

Fine Component Granularity requires an environment that supports a high degree of 

operational automation. Beyond build, test, and deployment automation, development 

teams must define each service’s infrastructure requirements and conditions for scaling 

up and down. This will necessitate some knowledge of Kubernetes or another cloud 

orchestration system as well as Infrastructure as Code (IaC) skills.

3 Fowler, S. (2016). Production-Ready Microservices. O’Reilly
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In such an automated environment, where service instances are spinning up or 

down based on demand and where unhealthy instances are terminated and restarted, 

request routing must become dynamic. There must be a mechanism for each service 

instance to broadcast its availability, status, health, and location. Architecture must 

prescribe an environmental constraint of Service Discovery and Routing.

Finally, as with other non-monolithic granularity constraints, this constraint depends 

on Independent Development Cycles, Independent Deployability, and API-first development.

Getting granularity right under this constraint is more difficult than in medium or 

coarse-grained styles. The disadvantages and trade-offs of this constraint will provide 

feedback on when a service is “too micro.” Remember the advice in Chapter 14 on evaluating 

granularity and iterating where possible in the direction of coarser to finer. Use the presence 

of distributed transactions (discussed in the next constraint) as another “design smell” that 

granularity might be too fine-grained. Likewise, use the business metrics introduced in 

Chapter 5 as a signal for when further decomposition by architecture is required.

Scenario  Granularity

To illustrate the nuanced challenges inherent to this constraint, below is a 
hypothetical scenario where architecture must make a judgment call. In this (and 
subsequent) scenario, there is no objective “right answer.” These exercises are, 
instead, focused on providing practice for you to think through the options and 
their trade-offs.

Scenario E ach call to a microservice requires an authorization step (either from 
a client or between services). Your choices are to create a shared authorization 
service, a shared library, an authorization sidecar, or a shared/coupled API layer. 
Describe your choice and trade-off analysis.

Other Info:
110 Microservices
Low volatility
100ms latency between services
30 Requests/second
350ms AVG response time
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In total, this constraint depends on the following non-architectural constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: High Operational Automation

•	 ENV: Distributed Tracing and Logging

•	 ENV: Bulkheads and Circuit Breakers

•	 ENV: Service Discovery and Routing

•	 ENV: Development Environment Isolation

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

•	 TEAM: Cloud/Orchestration Skills

•	 TEAM: IaC Skills

�Isolated Databases
An additional ingredient to this style’s extreme agility, scalability, and fault tolerance 

is prescribing that each microservice owns its own database. As with the Partitioned 

Shared Database Constraint described in Chapter 14, this constraint precludes database 

coupling across components. When one microservice completely controls one database, 

the code and database changes can be released atomically and confidently. All changes 

are safely scoped, so long as the API contract of the service remains stable.

Unlike the case with the Partitioned Shared Database Constraint, this constraint 

eliminates the single monolithic database from the architecture. This removes both a 

scaling bottleneck and a single point of failure.

As previous chapters in this section (Chapters 14 and 15) have already noted, 

breaking apart data along clean boundaries is extremely difficult. The need for 

distributed transactions increases in proportion with service granularity; finer 

granularity results in more individual microservices that must communicate and 
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coordinate. Consistent with what this and previous chapters have stated, we should 

avoid distributed transactions; they are often a symptom of granularity problems. 

However, with more fine-grained styles, we cannot always avoid them. Where distributed 

transactions are inevitable, we must make a choice on how we will navigate the CAP 

theorem (Figure 16-1).

Figure 16-1.  CAP Theorem Diagram

CAP Theorem T he CAP theorem, or Brewer's theorem,4 is a fundamental 
concept in distributed systems that highlights the inherent trade-offs when 
designing such systems. It states that in the context of a distributed data store, you 
can only achieve up to two out of the following three guarantees at any given time: 
consistency, availability, and partition tolerance.

•	 Consistency means that every read request will receive the most 
recent write (or an error), ensuring all nodes see the same data 
simultaneously.

4 Gilbert, S., Lynch, N. (2002). “Brewer’s conjecture and the feasibility of consistent, available, 
partition-tolerant web services.” ACM SIGACT News. 33. Association for Computing Machinery 
(ACM): 51–59
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•	 Availability ensures that every request receives a response—
success or failure—without waiting indefinitely (although it may 
not reflect the latest state).

•	 Partition Tolerance is the ability of the system to continue 
operating despite an arbitrary number of messages being dropped 
(or delayed) between nodes or other network failures that divide 
the system into isolated segments.

The theorem forces us to make choices. For instance, if you prioritize consistency 
and availability, you might have to sacrifice partition tolerance, meaning the system 
could fail if network issues occur. On the other hand, if you opt for availability and 
partition tolerance, you might have to relax consistency rules, leading to scenarios 
where different nodes could see different data. Finally, choosing consistency and 
partition tolerance might mean the system is not always available, especially 
during network partitions.

The CAP theorem is a reminder that in distributed systems, perfection is not 
achievable. It is about understanding which trade-offs align with your system’s 
requirements and making informed decisions accordingly.

With the Isolated Database Constraint in effect, the traditional ACID guarantees 

offered by monolithic relational databases—Atomicity, Consistency, Isolation, and 

Durability—are no longer feasible across multiple services. This limitation poses a 

significant challenge in ensuring data consistency and reliability in complex, distributed 

architectures. However, we can address this challenge by adopting the Saga Pattern, 

a powerful mechanism for managing transactions in a distributed system. The Saga 

Pattern provides a way to maintain consistency by orchestrating a series of local 

transactions, each confined to a single service.

�The Saga Pattern

In the Saga Pattern, a transaction is broken down into a sequence of smaller, discrete 

steps, each of which can be handled independently by different services. If a step fails, 

the system attempts to undo the changes made by previous steps using compensating 
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transactions, ensuring that the system remains consistent. Notably, the approach of 

compensating transactions is not always possible, which further informs our approach 

to distributed transactions.

�Key Concepts in the Saga Pattern

Compensable Transactions: These are transactions that can be reversed by executing 

another transaction with the opposite effect. For instance, if a service successfully debits 

an account, but a subsequent service fails to complete the corresponding credit, a 

compensable transaction will credit the account to undo the debit. This compensating 

mechanism is crucial for maintaining consistency when parts of a distributed 

transaction fail.

Pivot Transaction: The pivot transaction is the critical decision point in a saga. 

It determines whether the saga will continue to completion or abort. Once the pivot 

transaction commits, the saga is committed to running to the end. Pivot transactions are 

typically non-compensable and non-retriable, thus serving as the go/no-go point in the 

saga. You can look at these transactions as the final checkpoint before the system fully 

commits to the transaction.

Retriable Transactions: After the pivot transaction, retriable transactions follow. 

These transactions are guaranteed to succeed eventually, even if temporary failures 

occur. They provide resilience to the saga, ensuring that once the system passes the pivot 

point, it can handle intermittent issues and still complete the process.

�Coordination in the Saga Pattern

Distributed transactions require coordination across multiple services, and the Saga 

Pattern offers two primary approaches for this: choreography and orchestration.

�Choreography

Choreography involves a decentralized approach to coordination. Each service involved 

in the saga listens for events from upstream services and reacts accordingly, executing 

its transaction and publishing events to signal the next step. This approach is akin to a 

dance where each participant knows its steps and responds to others.
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Advantages

•	 Ideal for simple workflows with few participants, where the logic is 

straightforward.

•	 There is no need for additional coordination services, reducing 

overhead and maintenance.

•	 Avoids creating a single point of failure, as responsibilities are 

distributed across the participants.

Drawbacks

•	 As a transaction workflow grows in complexity, choreography can 

become difficult to manage, with services becoming entangled in a 

web of dependencies.

•	 Adding new steps can be confusing, as it is hard to track which 

services are listening for which events.

•	 There is a risk of cyclic dependencies between services, complicating 

the system further.

•	 Integration testing is challenging, requiring all services to be 

operational to simulate a full transaction.

�Orchestration

Alternatively, orchestration centralizes the control of the saga in a single orchestrator 

service. The analogy here is that of an orchestra with many players who all take their 

respective queues from a central conductor. Each player knows their respective notes, 

but the conductor brings the whole symphony together.

In an orchestrated saga, the orchestrator issues commands to each participant 

service, dictating the global sequence of actions. This method provides more control 

over the flow and makes it easier to manage complex transactions involving many 

services.
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Advantages

•	 Well suited for complex workflows with many participants or 

scenarios where new services or behaviors may be added over time.

•	 Centralized control over the process flow and participants, reducing 

the risk of cyclic dependencies.

•	 Participants are isolated from each other’s commands, leading to a 

clear separation of concerns and simpler business logic.

Drawbacks

•	 Introduces additional design complexity, as the orchestrator needs to 

manage the entire workflow.

•	 The orchestrator becomes a potential point of failure, requiring 

robust failover strategies to ensure resilience.

�Challenges and Considerations in Implementing the Saga Pattern

Implementing the Saga Pattern requires a shift in mindset, especially when transitioning 

from monolithic systems to microservices. Some challenges to consider include

•	 Debugging Complexity: The distributed nature of sagas makes 

them hard to debug, particularly as the number of participants 

grows. Careful monitoring and logging are essential to trace issues 

effectively.

•	 Data Rollback Limitations: Unlike traditional transactions, data in 

a saga cannot be easily rolled back. Once a service commits its local 

transaction, that change is permanent unless explicitly reversed by a 

compensating transaction.

•	 Handling Transient Failures and Ensuring Idempotence: Services 

must be designed to handle transient failures gracefully. This often 

involves ensuring that operations are idempotent, meaning they can 

be repeated without causing unintended side effects. For instance, 

when processing messages, the system should be able to retry 

operations without altering the outcome, maintaining consistency 

even in the face of failures.

Chapter 16  The Microservices Abstract Style



235

•	 Observability: Given the complexity of sagas, it is crucial to 

implement observability tools to monitor and track the progress of 

transactions. This visibility is key to managing and debugging sagas 

effectively.

•	 Durability Challenges: The lack of isolation between participants 

poses durability challenges. Each participant commits changes to its 

local database at different stages, which can lead to inconsistencies 

if not properly managed. Implementing measures to minimize 

anomalies and ensure data durability is critical.

�Saga Forces

In Software Architecture: The Hard Parts,5 the authors identify three fundamental forces 

that influence the design and implementation of sagas:

•	 Communication: Whether to use synchronous or asynchronous 

communication between services. This choice affects the 

responsiveness and reliability of the saga.

•	 Consistency: The decision between requiring strict atomic 

consistency and allowing eventual consistency across the system.

•	 Coordination: The choice between orchestration and choreography, 

each with its trade-offs in terms of control, complexity, and resilience.

How these forces interact will determine other properties of the saga, such as 

coupling.

The Saga Pattern is a powerful tool for managing distributed transactions, but it 

comes with its own set of challenges and considerations. Understanding the trade-offs 

between choreography and orchestration, ensuring idempotence, and implementing 

robust observability are crucial for success. As with any architectural strategy, the key 

is to align the Saga Pattern with your system's specific needs and constraints, using it to 

achieve the desired balance between consistency, availability, and partition tolerance in 

your distributed microservices style architecture.

5 Ford, N., Richards, M., Sadalage, P., Dehghani, Z. (2021). Software Architecture: The Hard Parts: 
Modern Trade-Off Analyses for Distributed Architectures. O’Reilly Media
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�Sharing Data

In addition to coordinating database writes, we must also often coordinate reads. 

Unfortunately, tables and columns do not always file neatly into isolated data domains; 

there is inevitably some amount of overlap. For a concrete example, let us look at a 

hypothetical ecommerce system that has been decomposed according to the constraints 

prescribed in the Microservices Abstract Style.

Among various components, we find three that are germane to our data sharing 

scenario, the Product Catalog service, the Inventory service, and the Cart service.

The Product Catalog’s database contains entries for each product, including Stock 

Keeping Unit (SKU), images, name, description, and other properties. The Inventory 

service tracks the quantity and locations of each SKU in the warehouse, and the Cart 

service knows which SKUs are currently in the customer’s cart along with the desired 

quantity. Of course, a customer does not care about the SKU or other database keys; they 

care about the product’s name. Product also wants the cart UI to display a thumbnail 

image of the product. Finally, business rules dictate that out-of-stock items cannot 

remain in the cart. The Cart service, therefore, depends on data that is owned and 

controlled by at least two other services (Figure 16-2).

Figure 16-2.  Service Data Dependencies
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What are our options? One of the first approaches that will come to mind for 

developers is to simply perform one or more calls to the other service(s) API. This is 

commonly known as the aggregator pattern, where the service request will gather and 

aggregate all the necessary data to return the response. This is a useful pattern to have 

at your disposal. However, beware of chaining together too many microservices as 

interservice calls incur latency and bandwidth overhead. Additionally, these branching 

and chaining aggregates can quickly begin to involve ad hoc orchestration of several 

microservices. This undermines performance and fault tolerance while increasing 

coupling (thus lowering agility). There are other trade-offs as well. Let us look at 

different ways to implement the aggregation requests and close with a brief look at an 

asynchronous, event sourcing approach.

�Simple REST API

The simplest option is for the client to make a request to the Cart service which, in turn, 

makes synchronous REST requests to the dependent services.

GET /product/id/1234
Accept: application/json

200 OK
Content-Length: 247469
...
...

While this approach will certainly work, there are trade-offs. First, this decision has 

reduced user-perceived performance as a synchronous request to load the cart requires 

a chain of requests behind the scenes that must complete before a response is returned 

to the customer. If one or both requests fail, the Cart service must also implement 

fallback logic to gracefully degrade behavior and arrest cascading failures. Another issue 

is a REST API will typically return a full representation of the resource. Among other 

problems, we have now introduced bandwidth overhead.

Even if our service only needs the product name (~200 bytes), a REST API that 

serves a complete representation of the product will often be orders of magnitude larger. 

A 250kb response or larger is well within the realm of possibility. The unnecessary 

bandwidth overhead can really add up. At just 2000 requests/sec, our service is already 

consuming half a gigabyte of bandwidth.
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Our REST approach also introduces stamp coupling to our component. Stamp 

coupling, also known as data-structured coupling, occurs in software architecture 

when components or modules share a composite data structure, but only use a portion 

of it. This type of coupling is a form of interdependence where the modules rely on 

the structure of the data rather than just the specific data elements they need. Stamp 

coupling introduces a higher level of dependency between components, making the 

system more brittle and harder to modify or extend.

�Optimized REST API

REST does not dictate that representations are always one-size-fits-all. In fact, we can 

suggest or prescribe that the Catalog Service support content negotiation, where a client 

can request a custom representation of the resource that is optimized for this use case by 

supplying more precise Accept: headers in the request.

GET /product/id/1234
Accept: application/cart+json

200 OK
Content-Length: 548
...
...

This more refined approach will reduce bandwidth overhead but does not 

necessarily solve stamp coupling unless a custom representation is available for every 

common use case.

Alternatively, the REST API might offer some kind of custom field selector.

GET /product/id/1234?fields=name
Accept: application/json

200 OK
Content-Length: 281
...
...
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The optimized REST approaches also offer the benefit of the cacheability of GET 

requests. As a trade-off, the optimal implementation of the customized approaches will 

require further API standardization and likely some form of architectural governance to 

ensure conformance.

�GraphQL

GraphQL offers an out-of-the-box solution for consumer-driven contracts which 

introduces flexibility and optimization, but such requests are not cacheable and still 

potentially introduce data model coupling.

Synchronous approaches will guarantee consistency, but availability of the 

dependent services will impact the availability of the Cart service.

�Asynchronous Replication and Event Sourcing

As an alternative to synchronous approaches to response composition, asynchronous 

options are also available to us (Figure 16-3).

Figure 16-3.  Asynchronous Data Replication

In this arrangement, upstream services will asynchronously broadcast state changes 

as they happen. These might be in the form of a dedicated, point-to-point queue or 

as part of a fan-out, PubSub approach. Here, the Cart service (or a standalone agent 

that shares the database with the main microservice) will subscribe to updates via the 
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queue or PubSub topic and update a local copy of state as changes are consumed. Event 

Sourcing is an example of this approach, which we will explore in more detail in the next 

chapter when describing the PubSub Messaging Constraint.

The asynchronous solution to this problem eliminates stamp coupling, eliminates 

the interservice requests, caching necessary state locally and thus improving 

performance while making more efficient use of bandwidth. With a queue or a PubSub 

in between the services, we achieve a topology that provides independent availability 

of the Cart service, and asynchronous communication is inherently partition tolerant; 

however, this approach can only guarantee eventual consistency.

Once again, we must consider and handle these scenarios on a case-by-case basis. 

A concrete style derived from the Microservices Abstract Style must prescribe these 

additional constraints and specify their scope.

�Adding Constraints
In addition to changing the granularity and database constraints (with their dependent 

team, organizational, and environmental constraints), this abstract style requires the 

addition of the following architectural constraints.

�Highly Decoupled Components
The Microservices Abstract Style achieves agility and fault tolerance by, among 

other constraints, prescribing a shared-nothing approach to system design. Fine 

Component Granularity and Isolated Databases Constraint will eliminate much—but 

not all—coupling (specifically afferent coupling, which measures how many different 

classes call upon a particular class, and data coupling, respectively). This additional 

constraint continues to aggressively remove coupling (specifically efferent coupling, 

which measures the number of different classes a particular class calls upon) between 

components wherever practical.

One of the most common sources of efferent coupling is shared code. In the 

frictionless plane of theoretical architecture, each microservice will stand entirely on its 

own. However, in the real world, there inevitably exist many cross-cutting concerns and 

overlapping code implementations that span many or all services. How we handle this 

reality will depend on additional constraints prescribed in a concrete style.
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�Handling Shared Code

�Versioned Libraries

Sharing common code across multiple codebases is not a new requirement. Dedicated 

repositories and package managers exist to support this model for external dependencies. 

We can extend this model to manage our internal dependencies by publishing shared 

libraries to a private repository and managing these semantically versioned dependencies 

using the same tooling and process as our external dependencies.

The Open/Closed Principle (Chapter 7) offers a path to extend and customize these 

libraries; however, once again, we need to consider granularity. Large common libraries 

will exhibit increased code volatility and increase coupling across, potentially, hundreds 

of microservices. When a shared library has the potential to require an update and 

redeployment of any number of microservices, it is time to consider other strategies.

Advantages

•	 A simple and well-understood approach to code sharing.

•	 Offers the ability for library developers to make versioned changes.

•	 Shared libraries are easy to extend and expand.

•	 Provides a “single source of truth” for the implementation of 

common/shared behavior.

•	 Ideal for well-scoped, low-code volatility libraries.

Drawbacks

•	 Introduces an axis for coupling that this style aims to avoid

•	 Introduces complexity around version adoption and depreciation

•	 Poorly suited for polyglot and heterogenous code environments

�Shared Services

Another “single source of truth” approach to addressing the need for shared code is 

to encapsulate the code into a shared service. A shared service is a microservice that 

exposes the shared code via some kind of API. Using this approach, services that require 

the behavior or functionality exposed by one of these shared services perform a network 

call when needed.
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Extracting common functionality into a shared service completely decouples 

individual microservices from the common code. The shared service has its own 

independent lifecycle, and a single update to that service will immediately cascade 

the change to all dependent services without requiring a coordinated redeployment of 

running services, thus honoring the independent deployability constraint. We must, 

however, consider the performance and fault tolerance trade-offs inherent to this option. 

Network calls incur overhead and reduce performance. The unavailability of the shared 

service may also result in cascading failures across the system.

Advantages

•	 Maintains a “single source of truth” for implementation

•	 Particularly well suited to polyglot environments

•	 A useful option for shared code with high volatility

Drawbacks

•	 Versioning is more difficult. Breaking changes may still require 

coordinated redeployments.

•	 Network requests introduce a performance penalty.

•	 A shared service is a potential single point of failure and may 

introduce further availability or fault tolerance issues.

•	 A shared service may introduce a bottleneck that introduces 

scalability and throughput issues.

•	 There is a higher probability of releasing a breaking change that has 

broad impact within the system.

�Service Consolidation

Depending on the scope of the shared dependency, we may simply opt for service 

consolidation. For example, if a common code dependency spans only two or three 

microservices within the same subdomain, we can make the case that the most 

expedient and pragmatic solution is to merge these two or three services into a new, 

single service.
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Advantages

•	 No code sharing

•	 No network performance or bandwidth penalty

•	 No need for version management

Drawbacks

•	 Larger services bring a larger testing scope (reducing evolvability, 

deployability, and agility).

•	 Larger services are slower to start, reducing elasticity.

•	 Increased service scope correlates to increased deployment risk.

•	 This approach only works for some code-sharing scenarios.

•	 Coarser services reduce overall agility.

�The Sidecar Pattern

For some cross-cutting concerns, we can colocate the shared code with a service without 

directly coupling the two through the adoption of the sidecar pattern.

The sidecar pattern is a microservices design pattern that addresses the challenges 

of managing cross-cutting concerns in a distributed system. In this pattern, a sidecar 

is a companion service that runs alongside the primary service, typically in the same 

execution environment, such as a pod in Kubernetes. Incoming and outgoing requests 

for a microservice will typically flow through the sidecar, rather than the microservice 

directly invoking behavior in the sidecar. The sidecar handles auxiliary tasks that are not 

part of the core domain logic but are essential for the service's operation, such as tracing, 

logging, monitoring, configuration management, or network security.

By offloading these responsibilities to a sidecar, the primary service can remain 

focused on its core functionality, leading to a more modular and maintainable system. 

The sidecar pattern promotes separation of concerns, as the primary service does not 

need to be aware of the sidecar's existence or operations. This decoupling makes it easier 

to evolve and scale individual components without affecting the rest of the system. 

Additionally, because the sidecar and the primary service share the same lifecycle, they 

can communicate directly and efficiently, often over a loopback interface, minimizing 
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latency and overhead. The sidecar pattern is especially useful in environments like 

service meshes, where it can enforce consistent policies and behaviors across a fleet 

of microservices, ensuring that cross-cutting concerns are handled uniformly across 

the system.

Advantages

•	 Decouples cross-cutting concerns from the primary service, leading 

to cleaner and more maintainable codebases

•	 Enhances the modularity of the system, allowing the primary service 

to focus on its core logic without being burdened by auxiliary tasks

•	 Simplifies the evolution and scaling of individual components 

since the sidecar can be updated or replaced independently of the 

primary service

•	 Minimizes latency and overhead through direct communication 

between the sidecar and the primary service, often via a loopback 

interface

•	 Ensures uniform handling of cross-cutting concerns across multiple 

services, particularly in service mesh environments

•	 Reduces the blast radius of faults, as issues within the sidecar do not 

directly impact the primary service’s core functionality

•	 Supports polyglot environments, as the sidecar operates 

independently of the service’s implementation language

Drawbacks

•	 Introduces additional components that must be managed, 

monitored, and maintained, which can increase overall system 

complexity.

•	 Adds to the resource footprint, as each service must now allocate 

resources for both the primary service and its sidecar.

•	 While the sidecar and primary service are decoupled in functionality, 

they share the same lifecycle, which may complicate deployments 

and restarts.
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•	 The introduction of a sidecar can make debugging more complex, as 

issues may arise from the interaction between the primary service 

and the sidecar.

•	 A sidecar and a service mesh may take competing approaches to retry 

failed transactions which may cause conflicts or performance issues.

•	 Requires robust deployment and lifecycle orchestration as well as 

monitoring tools to manage the sidecar and ensure that it is correctly 

deployed and functioning as expected.

�Please Repeat Yourself

In addition to the options listed above, we may simply opt to duplicate the code in each 

microservice that is dependent on the code. Although this approach appears to violate 

an entire career’s worth of best practice, in an environment where we must apply 

extreme decoupling to achieve extreme scale, fault tolerance, and agility, this practice 

often makes sense. In contrast with environments and codebases where “Don’t Repeat 

Yourself” (DRY) is the law of the land, microservices environments are more apt to 

declare “reuse is abuse” and “please repeat yourself.”

The copy/paste approach to code sharing is yet another trade-off to evaluate. 

Prescribing this constraint in relevant scenarios requires teams that are mature with 

respect to trade-offs. Also, it can be valuable for teams to maintain a registry of where 

code is duplicated. This way, if a bug is found that affects one thing, the other places can 

be scrutinized. It mitigates some of the consequences of not using shared code while 

also allowing the similar code to diverge and specialize over time.

Advantages

•	 Simple approach to code sharing.

•	 Ideal for code with low volatility

•	 Offers maximum decoupling across services

Drawbacks

•	 It can be exceedingly difficult to coordinate the deployment of 

changes due to bugs or evolution in the shared code.

•	 Polyglot environments will require multiple implementations of the 

same code, which adds even more bug fix/evolution challenges.
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•	 Replicated code can be difficult to expand.

•	 When a development team tweaks their copy of the code to tailor 

behavior for a single microservice, coordinating updates becomes 

even more difficult.

•	 Teams new to this approach may reject this constraint.

Scenario  Code Sharing

Each call to a microservice requires an authorization step (either from a client or 
between services). Your choices are to create a shared authorization service, a 
shared library, an authorization sidecar, or a shared/coupled API layer. Describe 
your choice and trade-off analysis.

Other Info:
110 Microservices
Low volatility
100ms latency between services
30 Requests/second
350ms AVG response time
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�The Microservices Abstract Style

Figure 16-4.  The Microservices Abstract Style

Rice is great when you’re really hungry and want to eat 2,000 of something

—Mitch Hedberg

A visualization of the microservices abstract style can be seen in Figure 16-4. Forward-

leaning software engineer, thinker, speaker, and author Brian Sletten uses the above 

quote to illustrate the absurdity of quantity for quantity’s sake. We should not design 

a system composed of hundreds of microservices simply because we can; we should 

instead only prescribe such extreme constraints when they translate to tangible business 

value. The more I have learned about microservices over the past 15+ years, the more 

convinced I am that anyone who truly understands microservices would never adopt 

this style unless it was absolutely necessary, and no other option will suffice. Scenarios 

where this is the case are unusual yet ever-present in our industry.

The landscape of software has evolved considerably since the late 1980s and 

early 1990s, when software architecture began to arise as a formal discipline. The 

emergence—and subsequent popularity—of the Web has created new, global markets 

with vastly different dynamics and economics. The reach of software today is vast and no 
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longer constrained by requiring a particular operating system or processor architecture. 

Physical location, time zone, device hardware, or operating system are increasingly 

irrelevant. We are in an era where businesses can measure the total addressable market 

of a piece of software in the hundreds of millions—and occasionally billions—of users. 

Regardless of the depth and quality of a system’s functionality, if it cannot scale to meet 

genuine demand, the system will consistently fall short of its potential.

Beyond simply scaling to meet demands, global-scale software introduces a new 

challenge; when the entire world is a potential customer, the entire world is also a 

potential competitor. Disruption is rife, and a business running a system that cannot 

evolve quickly in response to changing market conditions will frequently be disrupted by 

one that can. Agility, in such markets, becomes yet another first-class concern.

Finally, at this scale, the potential impact of outages and failures grows alarmingly 

fast. In 2023, Amazon.com saw a total of $12.90 billion in revenue over their highest- 

grossing 48-hour period6 or $74,700 per second. With an average spend of $58.67 per 

customer, we can calculate a minimum of 1274 checkouts/second (if we generously 

assume each customer made all their purchases in a single transaction). A 99.9% 

availability SLA that might be more than adequate for a different system could 

potentially cost more than $15.7 million in lost revenue without violating the SLA. A 

major outage could cost billions in lost retail sales. In short, this style is extreme, but 

there is a time for extremes in software architecture.

�Summary
The Microservices Abstract Style is a successful and proven approach to achieve 

extremely high agility, deployability, elasticity, evolvability, scalability, and testability, 

but the trade-offs are legion. This is one of the most difficult architectures to execute 

well, and you should only adopt this after empirically proving that only extremely high 

quantification of key capabilities will suffice.

The following architectural constraints define this abstract style:

•	 Fine Component Granularity

•	 Highly Decoupled Components

6 Capital One Shopping Team (2024). “Global Impact of Amazon Prime Day 2023.” 
The Capital One Shopping website, https://capitaloneshopping.com/research/
amazon-prime-day-statistics/
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•	 Independent Deployability

•	 Domain Partitioning

•	 Client/Server

•	 RPC API

•	 Isolated Databases

This collection of constraints requires significant team, organization, and 

environmental constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: Development Environment Isolation

•	 ENV: High Operational Automation

•	 ENV: Service Discovery and Routing

•	 ENV: Bulkheads and Circuit Breakers

•	 ENV: Distributed Tracing and Logging

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

•	 TEAM: Maturity with Respect to Trade-Offs

•	 TEAM: IaC Skills

•	 TEAM: Independent Development Cycles

The composition of these constraints offers capability improvements over those 

offered by the Service-Based Abstract Style (see Figure 16-5).
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Affordability Extremely Low

Agility Extremely High

Abstraction Above Average

Deployability Extremely High

Elasticity Extremely High 

Evolvability Extremely High 

Fault-Tolerance Extremely High 

Integration Above Average 

Performance Average

Scalability Extremely High

Simplicity Extremely Low

Testability Extremely High

Workflow Extremely Low 

THE MICROSERVICES ABSTRACT STYLE 

Figure 16-5.  Architectural Capabilities of the Microservices Abstract Style
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CHAPTER 17

Choreographed Event- 
Driven Abstract Style

It’s really become clear to me in the last couple of years that we need a new 
building block and that is the domain events.

—Roy Schulte (2003)

In the last chapter, we explored the constraints that describe the Microservices Abstract 

Style. The conclusion of that chapter introduced the concept of “Domain to Architecture 

Isomorphism” and how microservices styles are generally not well suited to workflow-

driven workloads. The root of this weakness lies in the architectural topology of the 

microservices style, which first emerged in request-driven systems. In such systems, the 

overwhelming majority of functionality is designed to be invoked through some kind 

of request that initiates a defined behavior and then returns a response. For example, if 

we return to our ecommerce microservices example, clicking “add to cart” will initiate 

a request to the Cart service to perform that action. The Cart service will, in turn, 

update the state of the customer’s cart in the database before returning a response. In a 

microservices style, each service will handle a narrow set of requests.

Complications arise when we introduce workflows that require orchestrating 

requests across multiple microservices according to a set sequence of operations. 

This is particularly true when the workflow demands conditional logic to determine 

the next step based on information gained in the current step. This is not intended to 

imply that microservices styles cannot support such workloads—in fact, as we learned 

in the section on sagas (Chapter 16), workflows can be supported in those styles—

however, tying together request-driven microservices undermines the significant effort 

to decompose the system into isolated, standalone microservices and, consequently, 

degrades the overall architectural capabilities of the system.

https://doi.org/10.1007/979-8-8688-0410-6_17#DOI
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Contrast this with event-driven systems, where each component in the architecture 

does not listen for requests; instead, it reacts to domain events. Typically, once a reactive 

component performs some action in response to a domain event, it broadcasts a new 

event that another component might react to and further the processing of the workflow. 

A key distinction is that requests instruct the system to do something, while events, on 

the other hand, announce that something has happened.

Designing such a system begins with making a choice between orchestration and 

choreography. In this chapter and the next, we will look at two event-driven styles which 

offer exceptional workflow support beginning with the choreographed event- 

driven style.

A choreographed event-driven system consists of four main components 

(Figure 17-1). First, there is the initiating event which triggers the entire workflow. This 

event is published on an event channel on the event broker (which is usually federated, 

and divided into event channels or topics), our second component. An event processor 

asynchronously consumes events from the event channel and performs a specific task 

before it produces a processing event to a new event channel in the event broker to be 

consumed by the next event processor and the workflow continues. The event broker 

facilitates asynchronous communication and decouples producers and consumers.

Figure 17-1.  Components in Choreographed Event-Driven Systems
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On the architecture continuum, it is common for concrete implementations of 

the Microservices Abstract Style to apply constraints from event-driven styles such as 

asynchronous communication and utilizing the broker topology. Introducing such 

constraints into a microservices-derived concrete style forms a “reactive” or “hybrid” 

microservices style. However, consistent with the previous chapters, we will focus on the 

distinct constraints that define these “pure” event-driven abstract styles, arming you with 

additional tools to derive a tailored architecture capable of boasting a perfect fit.

�Changing Constraints
�Technical Partitioning
In its pure form, this style supports—but does not require—domain partitioning; in fact, 

technical partitioning is the norm and thus forms a defining constraint of this abstract 

style. This style continues the use of the Fine-Component Granularity Constraint; 

however, each component is not a domain service but rather an even finer-grained event 

processor. Event processors generally focus on a single technical behavior.

As a concrete example for this chapter, I was once an architect on a system that 

ingested and processed unstructured data to feed an AI-powered engineering platform 

(Figure 17-2). Whenever the system received a new file, the workflow published an 

initiating event. An event processor would consume the initiating event and classify the 

file type based on metadata in the event payload. Following the file classification step, 

the classifier component publishes the first processing event which various format- 

specific event processors would subsequently consume to continue the ingestion 

workflow.
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Figure 17-2.  File Processing Workflow

If the file triggering the event was a PDF, a PDF-specific event processor would 

attempt to extract the text. If the text extraction process was successful, the processor 

would publish another processing event to trigger text indexing and vectorization. If 

the PDF only contained images of text, the processor would produce a different event 

to extract text using Optical Character Recognition (OCR) before publishing another 

processing event to resume the workflow.

In the above example, event processors are defined by technical boundaries 

rather than by domain boundaries. These processors are either continuously running 

microservice-style components that poll or subscribe to an event channel or serverless 

functions invoked by new events.
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�Choreography-Driven Interactions
The second departure from the constraints that define the Microservices Abstract Style 

is how components communicate. The microservices style prescribed an RPC API, 

necessary for a request-based system. This style, however, is event based. This style 

replaces the RPC API Constraint with the Choreography-Driven Interactions Constraint.

Choreography requires only that each component understands its individual 

role while remaining agnostic of the rest of the workflow. Every event processor 

will publish a new processing event upon completion of its work, even if there is no 

component to consume the event. Events, in this context, are just that—things that have 

happened rather than requests to do something. Not all asynchronous communication 

between components in a distributed system necessarily need to operate this way, but 

communication via idempotent, post-processing notification events is central to the 

Choreography-Driven Interactions Constraint. To model events as requests requires 

foreknowledge of what component(s) will process the request which introduces coupling 

and violates a core tenant of choreographed event-driven architectures. Consumers do 
not know about producers and producers do not know about consumers, just where 

to listen for, and where to publish, relevant events.

�Architectural Extensibility

This constraint results in highly decoupled event processors, with the only coupling 

being the initiating event(s) an individual component listens for and the processing 

event(s) it produces.

The listen-process-publish flow of the Choreography-Driven Interactions affords 

a surprising amount of architectural flexibility and extensibility. If an event processor 

publishes a processing event, and there is no component to consume it, the event either 

remains in queue indefinitely or the event is removed after a defined retention period. 

At any point, development teams may deploy a new event processor to consume these 

events, and the processor instantly becomes part of the workflow with no additional 

coordination effort.

Consider an event-driven ecommerce system. Clicking the “add to cart” button fires 

an initiating event that the cart processor will consume. Once the cart processor updates 

the state of the cart, it, in turn, publishes a processing event. Each time an item is added 

or removed from the cart, the cart processor publishes an additional “cart changed” 

event. The state of the cart is finalized when an initiating “checkout” event is fired.

Chapter 17  Choreographed Event-Driven Abstract Style 



256

In this scenario, of what use are the “cart changed” events? If the state of the cart 

at checkout is one of Product A, one of Product B, and one of Product C, does it matter 

how we arrived at that state? Is there a difference between three “added to cart” events 

or two “added to cart” events, a “removed from cart” event, and two more “added to 

cart” events? It depends on your perspective. A developer or fulfillment employee 

might only care about the final state, but a data scientist might be deeply interested in 

events that led to that final state. If all the “cart changed” events accumulate in the event 

channel on the broker with an indefinite retention period, at any time a development 

team can deploy a new event processor to consume the accumulated events to tune 

recommendation and ranking models.

Beyond serving as an example of architectural extensibility, the ability to replay 

state changes that have taken place over time is an example of event sourcing which 

the previous chapter briefly introduced in the section on sharing data between 

microservices. Event sourcing is a powerful pattern within event-driven and hybrid 

architectures that focuses on capturing all changes to the state of a system as a sequence 

of immutable events. Rather than simply storing the current state of an entity, event 

sourcing records every state change as an event in an append-only log. This approach 

provides a complete audit trail, allowing the system to reconstruct any past state by 

replaying the events in sequence. It also enables advanced scenarios such as temporal 

queries, where you can see the state of the system at any point in time, and easy 

integration with other systems through event streams. By adopting event sourcing, 

you not only gain a robust method for maintaining eventual consistency in distributed 

systems but also unlock new possibilities for analytics and system evolution over time, as 

every decision and action in the system is transparently recorded.

�Performance and Scale

The broker does more than decouple components, it also absorbs bursts of events to 

prevent a processor from becoming overwhelmed. Each processor can also be scaled 

independently in response to broker backpressure. This constraint also results in 

workflows that parallelize particularly well, as multiple event processors can consume the 

same event if the broker supports fan-out communication. Consequently, this constraint 

results in high-performance systems, both in terms of absolute performance and user-

perceived performance (as a client does not have to wait for anything more than an 

acknowledgment that the initiating event has been published). This constraint can even 

enable real-time processing in styles such as the Kappa architecture (described below).
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The asynchronous nature of communication under this constraint favors availability 

and partition tolerance over consistency, which will significantly improve overall fault 

tolerance.

Kappa Architecture

Kappa architecture is a streamlined approach to real-time data processing,1 
often considered a special case of choreographed event-driven architectures. 
In both paradigms, events are the central unit of work, driving system behavior 
and enabling highly decoupled, scalable, and responsive systems. The Kappa 
architecture builds on this foundation by focusing exclusively on processing events 
as a continuous stream, eliminating the need for separate batch processing layers.

In choreographed event-driven architectures, services or components respond to 
events without a central orchestrator, leading to a more organic flow of information 
through the system. Each service reacts to relevant events, triggering other 
events in turn, creating a chain of reactions that drives the system forward. Kappa 
architecture can be seen as an application of this idea but with an emphasis 
on handling large volumes of data in real time. It uses event streams as the 
backbone of its processing pipeline, where each event triggers transformations, 
computations, or actions as soon as it arrives, aligning with the principles of event 
choreography.

By treating all data as part of an event stream, Kappa architecture naturally fits 
within the broader category of choreographed systems. It leverages the decoupling 
and reactivity inherent in event-driven designs to achieve high throughput and 
low-latency processing, making it an excellent choice for modern applications that 
require real-time insights and actions. The elimination of batch processing not 
only simplifies the architecture but also ensures that all components are aligned 
around the same flow of events, reinforcing the core principles of event-driven 
choreography.

1 Kreps, J. (2014). Questioning the Lambda Architecture. O’Reilly. https://www.oreilly.com/
radar/questioning-the-lambda-architecture/
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�Failures and Error Handling

When designing a choreographed workflow, we must think about more than the happy 

path and consider failure cases as well. What should happen if an event processor is 

unable to perform its task? Failure events are often equal in value to success events. At a 

minimum, an event processor should publish failure events to a “dead letter queue” for 

periodic human review. As these reviews unveil novel failure conditions, development 

teams can build new event processors that listen to the dead letter queue, resolve the 

issue, and republish the event to the upstream event channel for reprocessing.

We must also consider failures that do not produce a failure event. Consider a 

scenario where an event processor simply crashes. Choreography-driven systems 

do not involve an external mediator that is monitoring and controlling steps in the 

workflow. If a processor consumes an event but does not publish a processing event on 

the other side, the business process abruptly ends, potentially leaving the system in an 

inconsistent state. Because choreographed workflows are dynamic and evolving, there 

is rarely a clear “process completed” state or event which further obscures such failures. 

Recovering in such scenarios cannot be as simple as restarting the workflow either, as 

upstream components may have already performed some amount of work. There must 

also be automated and manual processes to handle silent failure scenarios.

Error handling becomes even more challenging as workflows grow more complex. 

Consider a “checkout” event on a cart that multiple processors (e.g., payment, inventory, 

fulfillment) consume. In this topology, a payment failure will not prevent the inventory 

service from decrementing available stock, nor will it prevent the fulfillment service from 

directing warehouse employees to pick and pack the order.

Beyond error handling, we must consider scenarios where event processor 

components process events in a sequence that is different from the order of events we 

might assume. Most asynchronous communication middleware will follow a first-in- 

first-out (FIFO) sequence; however, when there are delays or other workflow exceptions, 

we can no longer rely on any order of message processing. The workflow process must 

either be designed to be resilient to out-of-order messages or an orchestration-driven 

approach (Chapter 18) must be chosen.

In short, you must model choreographed systems extremely carefully. Ask as many 

“what if” questions as possible during the design process and ensure you have a plan to 

handle every edge case as well as for detecting unanticipated failures. Also, consider that 

any change to the event flow will require extensive regression and exploratory testing to 

uncover any surprise outcomes from the new changes.

Chapter 17  Choreographed Event-Driven Abstract Style 



259

�Modeling Choreographed Systems

Modeling choreographed event-driven systems can be complex due to the decentralized 

nature of the architecture. However, there are several tools, techniques, and processes 

that can help architects, business actors, and developers to design, visualize, and 

implement these systems effectively.

�Tools

EventStorming
EventStorming is a Domain-Driven Design technique created by Alberto Brandolini2 

in 2015 offering a lightweight way to explore and identify what is happening within 

the domain of a software program. Although we are introducing this constraint in the 

context of a technically partitioned system, domain modeling still holds immense value 

in building a shared understanding of the domain, its full behavior, and complexity 

that can be valuable in designing any system’s architecture. It is particularly germane 

to this constraint as EventStorming tackles domain modeling through business process 

modeling. Think of EventStorming as a form of event-first design that focuses first on 

the flow of information, rather than the Cart Before the Horse approach of service-

first design.

EventStorming involves architecture or development teams bringing key product 

stakeholders and domain experts together in the same room to visualize the domain by 

representing various domain concepts as sticky notes, laid out sequentially on a wall 

or large roll of paper, with different colored sticky notes denoting different classes of 

concepts. The basic process is as follows:

	 1.	 Identify various domain events, events that occur in the business 

or domain process. By convention, orange sticky notes are used 

for domain events and always written in the past tense.

	 2.	 Identify the command that caused each domain event. Commands 

may be user-initiated or process-initiated. By convention, 

commands are written on blue sticky notes and placed directly 

before each event.

2 Brandolini, A. (2015–2021). Introducing EventStorming: An Act of Deliberate Collective Learning. 
LeanPub, https://www.eventstorming.com/book/
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	 3.	 Where appropriate, identify the actor responsible for initiating 

a command. In the case of event-driven architectures, the actor 

is usually responsible for the command that generates the 

initiating event. By convention, actors are written on small, yellow 

sticky notes and are connected to the lower-left corner of the 

command sticky.

	 4.	 Where appropriate, identify aggregates. Aggregates are clusters of 

domain objects that can be conceptually treated as a single unit. 

By convention, these are larger yellow sticky notes placed above 

command and domain event pairs.

	 5.	 Identify business processes, the elements which process a 

command according to business rules or logic and create one or 

more domain events. Subsequent iterations in the EventStorming 

process should expand these processes out to visualize the 

sequence and rules. By convention, these are written on purple 

sticky notes.

	 6.	 Identify external systems on which a command or aggregate 

depends. By convention, external systems are represented with 

pink sticky notes.

	 7.	 Identify views, the interfaces through which users interact to carry 

out a task in the system. By convention, views are written on green 

sticky notes.

EventStorming produces a unified and shared understanding of the domain, 

processes, and domain events, as well as their relationships within the system. The 

resulting picture (Figure 17-3) will not only inform the design of an event-driven system 

but is also useful for identifying domain boundaries and aligning communication within 

domains and subdomains by surfacing each domain’s ubiquitous language. 

Chapter 17  Choreographed Event-Driven Abstract Style 



261

Figure 17-3.  An Example EventStorming Visualization3

�Activity Diagrams, State Machines, and Statecharts

Often, workflows can be modeled as state machines that aim to reach a desired end 

state. In this case, a chart of possible states and potential changes provides another 

mechanism for visualizing and understanding the workflow. Thinking about the process 

in this way can be useful to determine how each state change impacts the workflow, 

and services should respond to events. Statecharts, which extend state machines with 

hierarchical states and parallelism, can be particularly useful for complex event-driven 

workflows.

A comprehensive event-centric visualization of a domain is also a useful tool for 

exploring the various “what if” scenarios described in the “Failures and Error Handling” 

section above, guarding against errors of omission.

�Behavior-Driven Development (BDD)

Using BDD with a focus on event flows can help in defining and testing the expected 

behavior of the system in response to different events. BDD tool syntax can be extended 

to describe event interactions and outcomes, guiding both development and test. BDD 

scenarios are typically defined using a natural domain-specific language (DSL) to 

3 Chapuy, J. (2021). The Elements of Event Storming and Their Interactions. Retrieved from: 
https://jordanchapuy.com/posts/2021/11/les-ingredients-d-un-event-storming-et- 
leurs-interactions/ Image Licensed CC-BY 4.0
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formalize a shared understanding of how the system should behave. The DSLs typical to 

modern BDD tooling produce scenarios understandable to not only BDD testing tools 

but also developers and nontechnical business stakeholders.

�Adding Constraints
In addition to the modified constraints above, this style must prescribe a mechanism for 

asynchronous communication.

�PubSub Messaging
In their pure form, distributed event-driven systems do not communicate directly; 

instead, communication takes place via asynchronous messages passed between 

components which requires some form of message-oriented middleware (broker) 

to facilitate such communication. The dominant options in this category are queues 

and the Publish/Subscribe (PubSub) model. Although both offer asynchronous 

communication, offering an additional axis of elasticity by smoothing out workload 

spikes, each of these options will influence architecture capabilities in different ways. 

Consequently, the asynchronous communication paradigm is an architecturally 

significant decision.

In a PubSub model,4 we conceptually divide components into publishers and 

subscribers. Publishers emit events to a centralized broker, which then distributes these 

events to all interested subscribers. In a choreographed event-driven system, most 

subscribers are also publishers as each event processor will broadcast events following 

the completion of a task.

The superficial similarity of PubSub and queues will sometimes cause developers or 

architects to conflate the two (this is compounded by the fact that many commercial and 

open source queues can be configured to behave like a PubSub and vice versa); however, 

there are differences that you must understand.

Queues generally follow a push/pop flow, where producers push a message into 

a queue and consumers subsequently pop messages from the queue as they are read, 

resulting in exactly once delivery.

4 Berglund, T. (2020). Kafka as a Distributed System. InfoQ. https://www.infoq.com/
presentations/kafka-controller-zookeeper
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In contrast, PubSub producers place messages in a topic that is defined within a 

broker. Topics form an append-only log of activity, meaning that there are no direct side 

effects when consumers read messages from a topic to which they subscribe. The broker 

retains the messages (either indefinitely or for a defined period known as the retention 

period). Of course, this introduces a new wrinkle in event-driven system design; PubSub 

topics promise at least once delivery, meaning an event processor might react to the 

same event more than once. Processing the same message multiple times increases in 

likelihood as the number of running instances of an individual event processor increases. 

Each consumer of a PubSub topic must maintain some kind of state. Typically, each 

message in a topic is assigned an ever-increasing identifier known as an offset. Services 

must maintain some state with respect to the topic(s) to which it subscribes. This “last 

offset” state is typically shared across instances, allowing each service to receive and 

process only messages with an offset greater than what has been seen last. Even sharing 

this state, however, will not prevent every possible race condition or double read. We 

must keep this reality top of mind and design idempotence into each domain event or 

component.

Although the persistence of messages within PubSub topics introduces challenges in 

preventing duplication of work, the append-only nature of a topic also brings benefits. 

At least once delivery enables multiple distinct consumers to subscribe to the same topic 

in parallel, which is useful for more complex workflow scenarios. Additionally, this fact 

improves fault tolerance. If an event processor crashes while processing a message, once 

the processor restarts it can resume processing starting at the first unprocessed message. 

Let us look at how PubSub works under the hood.

�Inside a PubSub Broker

In its simplest form, a PubSub consists of a broker which hosts one or more topics. To 

support both high throughput and fault tolerance, brokers are often federated and topics 

partitioned (Figure 17-4). Each federated broker hosts distinct topic partitions as well 

as replicas of other topic partitions. Both reads and writes can be distributed across 

multiple broker instances, with writes distributed across topic partitions based on a 

defined partition key. When a message is sent to a broker, it will hash the partition key 

and use that hash to determine which partition the message should be appended to.
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Figure 17-4.  Partitioned Topics in a PubSub

Partition key selection can be important for two reasons. First, the partition key 

should be a property or value with a uniform distribution to prevent overutilizing a 

small number of partitions. Second, although writes to a topic follow a FIFO sequence, a 

precise order of message consumption can only be guaranteed within a single partition. 

Consider the following example of a stock trading platform.

Within a high-performance trading platform that handles highly variable volume, a 

choreographed event-driven architecture offers a reasonable architectural foundation. 

However, in our modern era of high-frequency trading, order of processing not only 

matters, but it is also essential to the success of this system.

Suppose a trader initiates a BUY order of 100 shares of AAPL, a second BUY order of 

50 shares of MSFT, then a SELL order of 50 shares of AAPL: all in rapid succession. We 

can guarantee FIFO order if we limit our topic to a single partition. However, a single 

topic partition will introduce a bottleneck that will unacceptably constrain throughput. 

If those trade events are distributed arbitrarily across multiple topic partitions, we 

eliminate a bottleneck and solve our throughput issues, but we have introduced the 

possibility that the AAPL SELL order is processed before the AAPL BUY order.

Partitioning is still an option, but we need to be mindful in our partition key 

selection. Of the three example trades, only the BUY and SELL orders on AAPL must 

happen in FIFO order. The MSFT trade, however, can happen in any sequence relative to 

trades on other securities. If we define the partition key by the ticker symbol on the trade 

order topic, all trades on a single ticker will always be written to the same topic partition 
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in FIFO order. Through careful selection of the partition key, we have eliminated 

bottlenecks in the broker while still guaranteeing processing order only where it matters.

Another consideration is topic retention. Storing every message indefinitely can 

grow costly over time, particularly when using commercial, managed PubSub offerings. 

You should consider what retention periods make sense for each subdomain, then 

fine-tune on a topic-by-topic basis. If there is not a clear answer, or you find that a small 

number of edge cases seem to be pushing you in the direction of indefinite retention, 

pick a retention period that will satisfy 90% of cases and build a small consumer that 

serializes aging messages and store them in a lower-cost blob storage service or a data 

lake. These archived messages can always be replayed through a topic, if necessary.

A widely used PubSub is Apache Kafka (https://kafka.apache.org/). Although 

Kafka began as a PubSub, it has grown into a framework with a vast ecosystem of tools to 

solve common problems.

A notable utility in the Kafka ecosystem is the schema registry, which is part of 

Kafka’s commercial offering, Confluent Cloud. The schema registry offers an additional 

layer of decoupling components. Because producers do not know about consumers and 

consumers do not know about producers, it can be difficult to determine the potential 

impact to consumers when evolving or changing a message schema. The schema registry 

further decouples producers and consumers by simultaneously supporting multiple 

versions of a message schema, similar in concept to content negotiation in REST. A 

V2 schema, for example, would include mapping information from the V1 schema. 

Consequently, the producer could switch to the new V2 schema without risk. Existing 

consumers simply specify the V1 schema as part of their consume operation, and Kafka 

automatically transforms the message.
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�The Choreographed Event-Driven Abstract Style

Figure 17-5.  Choreographed Event-Driven Abstract Style

A visualization of the choreographed event-driven abstract style can be seen in 

Figure 17-5. Although we changed only two constraints that define the Microservices 

Abstract Style, and added one, we arrive at a style that looks topologically similar but 

offers notably different capabilities. When workloads are naturally event driven, and 

the workflow is not too complex, variations of this style are worth exploring.

Often, event processors are exceedingly small with blazingly fast start times. Since 

their sole purpose is to react to events, rather than wait for requests, they only need to be 

running when an event occurs. This style is a good fit for serverless architecture.

Serverless Architecture

Serverless architecture is a cloud computing model where the cloud provider 
automatically manages the infrastructure, scaling, and provisioning of resources 
needed to run applications.5 In a serverless setup, developers write and deploy 
functions—small, stateless units of code—that are executed in response 

5 Sbarski, P., Cui, Y., Nair, A. (2020). Serverless Architecture on AWS. Manning
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to specific events or triggers. The serverless platform handles all aspects of 
infrastructure management, including scaling the application up or down based 
on demand and charging only for the compute time consumed. This model allows 
developers to focus on writing code rather than worrying about the underlying 
infrastructure, reducing the complexity of the High Operational Automation 
Constraint.

In the context of choreographed event-driven systems, serverless architecture 
offers a compelling approach to managing the execution of event-driven workflows 
with high efficiency, minimal operational overhead, and simplicity in deployment 
and maintenance. This aligns well with the principles of event-driven systems, 
where the logic is naturally broken down into discrete, independent components 
that react to events as they occur.

One of the key advantages of using serverless architecture in a choreographed 
event-driven system is its ability to automatically scale in response to varying 
workloads without additional development team effort. As events are published, 
serverless functions can be triggered in parallel, with the underlying platform 
handling the scaling to meet demand. This ensures that the system remains 
responsive even under heavy loads, without the need for pre-provisioning or 
managing servers. Additionally, because serverless platforms typically charge 
based on the actual execution time and resources consumed, this approach can be 
cost-effective, especially in systems with unpredictable or spiky traffic patterns.

However, it is important to be mindful of the limitations and challenges of 
serverless architecture. Cold start latency, for example, can introduce delays when 
functions are invoked after being idle, which might impact performance in time-
sensitive applications. Additionally, the stateless nature of serverless functions 
requires careful management of state and context between invocations, often 
necessitating the use of external storage or state management services.

Serverless architecture offers a highly compatible and scalable option for 
implementing choreographed event-driven systems, allowing for rapid 
development and deployment while aligning with the key principles of decoupling 
and flexibility inherent in such systems.
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One of the most notable downsides of this style is complexity in debugging, 

performance analysis, and monitoring. Since components do not directly interact, 

tracing the flow of an event through the system can be difficult, especially in complex 

architectures with multiple publishers and subscribers. This can lead to challenges in 

identifying the root cause of issues, as there is no direct linkage between the origin of an 

event and its consumers without the use of SIEM tools like LogRhythm or Splunk.

As workflows grow more complex, the suitability of this style falls. The 

understandability of implementations of this style falls exponentially over time, while the 

“what if” modeling of edge cases grows exponentially. Imperfect understanding of the 

system can cause issues such as cycles emerging in the workflow.

Finally, observability can be extremely challenging which makes it hard to know 

when many workflows are “done.” It requires careful consideration and management to 

mitigate complexities and potential pitfalls inherent to this style.

All that said, architecture is not an all or nothing proposition. Rarely will you see a 

“pure” event-driven system. Software often needs users, and users need interfaces, and 

interfaces need to make requests. Choreographed event-driven architectural styles may 

not be suitable for the entire system, but a subdomain may exist where this family of 

styles is a perfect fit. Architectural styles may be prescribed at the enterprise level, the 

system level, the subdomain level, or even the component level. It just depends.

Also, remember architectures are not chosen, they are designed. As you have seen in 

the preceding chapters, the capabilities are the product of the constraints. The defining 

constraint of this architectural style shows up in many hybrid applications.

Hybrid microservices and service-based architectures are increasingly common. 

Tailoring a distributed style by introducing the PubSub constraint will result in a style 

that offers both a request-based API and an event-based data backplane. When the 

Choreography-Driven Interactions Constraint is introduced to microservices, the 

workflow deficiencies quickly evaporate. Even in a monolithic system, there can be 

instances where it makes sense to extract a few services to handle higher-volume, simple 

workflows.

Finally, choreography is not our only option for event-driven styles. In the next 

chapter, we will explore the constraints that make up the Orchestrated Event-Driven 

Abstract Style.
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�Summary
The Choreographed Event-Driven Abstract Style is a powerful tool. Its defining 

constraints offer much in terms of scalability, elasticity, and fault tolerance. The 

broadcast nature of PubSub offers an extremely high degree of decoupling. Being 

asynchronous, the entire system is incredibly responsive. The PubSub broker will also 

buffer activity spikes without necessarily needing to scale compute resources. Workflows 

can evolve organically with little to no coordination cost, and the features in various 

PubSub ecosystems provide many useful tools and implementation options.

This style does bring challenges and trade-offs. Complex workflows are not well 

suited to this style as we must grapple with increased error handling complexity, silent 

failures, the potential for cycles, out-of-order processing, debugging, understandability, 

and observability/monitoring.

The following architectural constraints define this abstract style:

•	 Fine Component Granularity

•	 Technical Partitioning

•	 Highly Decoupled Components

•	 Independent Deployability

•	 Choreography-Driven Interactions

•	 PubSub Messaging

This collection of constraints requires the following team, organization, and 

environmental constraints:

•	 ORG: DevOps Commitment

•	 ENV: Development Environment Isolation

•	 ENV: High Operational Automation

•	 ENV: Distributed Tracing and Logging

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

•	 TEAM: Maturity with Respect to Trade-Offs

•	 TEAM: IaC Skills

•	 TEAM: Independent Development Cycles
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The composition of these constraints offers capability improvements over those 

offered by the Microservices Abstract Style (see Figure 17-6).

THE CHOREOGRAPHED EVENT-DRIVEN ABSTRACT STYLE

Affordability Above Average 

Agility High

Abstraction Very High

Deployability High

Elasticity Extremely High 

Evolvability Extremely High 

Fault-Tolerance Extremely High 

Integration Above Average 

Performance Very High

Scalability Extremely High

Simplicity Extremely Low

Testability Low

Workflow High 

Figure 17-6.  The Choreographed Event-Driven Abstract Style
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CHAPTER 18

Orchestrated Event-Driven 
Abstract Style

Four years from now, ‘mere mortals’ will begin to adopt an event-driven 
architecture (EDA) for the sort of complex event process that has been 
attempted only by software gurus…

—Roy Schulte (2003)

Event-driven styles are, undoubtedly, well suited for workflow-driven workloads, but 

the nature and complexity of the processing will influence your choice of underlying 

constraints. The Choreographed Event-Driven Abstract Style introduced in the last 

chapter offers a very high degree of agility and architectural extensibility, but this 

approach brings certain limitations. In this chapter, we will look at another event- 

driven abstract style that changes two defining constraints to address some of those 

limitations. Every architectural style introduces a different set of trade-offs. It is up to you 

to determine which set of trade-offs make the most sense in the context of a project or to 

derive a tailored style that provides the right capabilities where they are needed most.

�Changing Constraints
�Orchestration-Driven Interactions
The first constraint we change is how components interact. In contrast with the 

Choreography-Driven Interactions Constraint, where each component only knows its 

individual role, orchestration introduces a central mediator (or orchestrator) which 

controls the workflow from start to finish through direct interaction with each of the 

required processing components in sequence (Figure 18-1).

https://doi.org/10.1007/979-8-8688-0410-6_18#DOI
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Figure 18-1.  Depiction of a Mediator-Orchestrated Workflow

With a central mediator orchestrating the workflow, we eliminate the need for 

detailed choreography of every exception and edge case. The mediator has visibility into 

errors and can manage these to either roll back or restart/recover. This makes it much 

more difficult to lose messages or get into an inconsistent state. The Orchestration- 

Driven Interactions Constraint also guards against accidental cycles in the workflow 

process and other potential negative emergent behaviors.

This constraint enables the modeling and implementation of both simple and 

complex workflows with less complication and risk. The mediator is inherently coupled 

with the workflow and the processing components as this style requires that the mediator 

has knowledge of each component with which it must interact as well as how to interact 

with them. The mediator must also know each step of the workflow and how to handle 

exception conditions.

The coupling of mediator and processing components results in a workflow that is 

more difficult to evolve. Coordinated deployments are often inevitable, meaning our 

testing scope increases and our deployability decreases. Agility is also constrained.

�Mediator Topology

This abstract style is a variation of choreographed style described in the previous 

chapter. As such, this style describes a technically partitioned, distributed system. 

Consequently, in many cases, we do not want a single, monolithic mediator. Often 

multiple mediators will be associated with each domain, and a single mediator will exist 

for each domain workflow or for each subcomponent of a domain workflow where a 
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mediator is warranted. This opens some useful topological possibilities in our design. 

In an orchestrated event-driven style, a single mediator will listen for an initiating event 

on the relevant event channel; however, this does not imply that a single mediator must 

orchestrate every step or every possible permutation of a single domain workflow.

When designing a system to support an orchestrated workflow, begin by categorizing 

the overall workflow as simple, hard, or complex. Simple workflows can easily be 

handled by a single simple, lightweight mediator (like the example in Figure 18-1). In 

the case of hard or complex workflows, we have a choice to either expand the scope and 

complexity of a single mediator or utilize multiple mediators in a hierarchical topology to 

isolate and contain the overall complexity.

To determine whether to expand the mediator or expand the topology, first take a 

critical look at the problem to ensure you are dealing with essential complexity and not 

compounding accidental complexity.1 In the latter case, I would recommend taking 

a step back to the drawing board and evaluating the architectural requirements. It is 

always important to check our assumptions and, in this case, ensure such a topology is 

truly necessary.

Assuming the complexity is essential, next break down the business process to 

determine if the entire workflow is complex or if there merely exist pockets of complexity 

in the overall flow. Even in complex workflows, there is often a mix of simple and 

complex stages (hence, pockets of complexity). Often these pockets of complexity take 

two distinct forms that each will inform the overall workflow topology:

	 1.	 An inherently complex subset of steps in the overall workflow

	 2.	 An inherently complex edge case

In the case of the first form, it can be useful to bundle the subset of individual, atomic 

steps into a single, molecular delivery. In such a topology, all requests flow through a 

common, lightweight mediator that will orchestrate both the processing components 

responsible for performing simple tasks as well as child or delegate mediators which 

control the more complex sequences.

In the case of the second form, where complexity emerges from certain edge cases, 

once again all requests flow through a common, lightweight mediator acting as the entry 

point for the workflow, and this mediator will make the determination of whether a given 

instance of the workflow triggered by the initiating event can follow the comparatively 

1 Brooks, F. (1986). No Silver Bullet—Essence and Accident in Software Engineering. Proceedings of 
the IFIP Tenth World Computing Conference
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simple “happy path” or if the workflow instance will require a more powerful mediator. 

In the latter case, the simple mediator will hand off the work to a more specialized and 

complex delegate mediator.

In both scenarios, you are decomposing the problem to isolate complexity and limit 

testing scope, which will marginally improve testability, deployability, and overall agility.

�Building/Implementing Mediators

Orchestration is a common need in many distributed environments. Consequently, 

we have many implementation options available to us, with each option capable of 

supporting different levels of complexity. Depending on the system’s environment, 

existing tools may already be in place and ready to utilize. When considering various 

possibilities, consider the following features which are useful in an event-driven 

architecture:

•	 Routing: Determine how messages are passed from one component 

to another.

•	 Transformation: Convert message formats as they move between 

services.

•	 Mediation: Act upon the message content or headers to make 

decisions about business logic.

•	 Adapters/Connectors: Connect to various systems and protocols.

There is no one-size-fits-all solution, and you will need to consider ecosystem and 

language compatibility, complexity, performance, community, and support. Let us look 

at a few common options along with their advantages and trade-offs.

�Custom Component

The first option is building a custom orchestration service component that listens to 

events and triggers other services via APIs or events. For simple workflows, this may be 

more than adequate.

This option allows developers to utilize existing software development skillsets 

to develop a mediator component. Teams have full control over the domain-specific 

orchestration logic, allowing them to implement complex workflows, customize error 

handling, and adjust the behavior as their needs evolve. With a custom solution, teams 
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can implement detailed logging, monitoring, and tracing specifically designed for their 

workflows, making it easier to identify and resolve issues.

Developing and maintaining a custom orchestration service can be complex, 

especially as workflows evolve. This approach often requires a significant investment 

of time and resources, both during development and ongoing maintenance. Over time, 

the service may become difficult to manage, requiring significant effort to maintain 

and extend. As workflows change, the custom service might accumulate technical debt, 

particularly if not carefully managed. This can lead to increased maintenance burdens 

and potentially limit agility in adapting to new requirements. There is also a risk of 

overengineering the solution, adding unnecessary complexity that might not be needed 

immediately or at all. This can make the service harder to understand and maintain.

Additionally, custom solutions may rely heavily on the knowledge of the developers 

who built it. If those developers leave the organization, it could be challenging to 

maintain or extend the service. Consequently, maintaining good documentation in 

such cases is a necessary countermeasure that trades incremental cost for improved 

maintainability.

Finally, in many cases, we are reinventing the wheel. As you will see below, there 

are many existing orchestration frameworks, platforms, and tools that provide robust 

workflow orchestration capabilities. Building a custom solution might mean duplicating 

functionality that already exists, diverting resources from differentiating efforts that 

provide concrete user value.

�Cloud Services

AWS Step Functions, Azure Logic Apps, and Google Cloud Workflows are all tools 

to build powerful integration solutions and orchestrate data and services. When 

considering cloud-based orchestration solutions such as these, the inherent advantages 

include rapid deployment and scalability, allowing you to leverage the vast infrastructure 

and reliability of these platforms. These services are designed to integrate seamlessly 

with other cloud services, providing out-of-the-box connectors and simplifying 

the orchestration of complex workflows without the need to manage underlying 

infrastructure. However, the trade-offs include additional cost and potential vendor lock- 

in, which might limit your flexibility if you need to switch platforms later. Additionally, 

while these services reduce the need for custom code, they might also impose 

constraints on your workflows, limiting customization to what the platform supports, 

which could be a significant drawback for highly specialized or complex processes.
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�Service Mesh

If available, using a service mesh like Istio or Linkerd combined with custom controllers 

offers a powerful and flexible approach to managing microservices communication and 

orchestration. The inherent advantages of this solution include fine-grained control over 

service-to-service interactions, enhanced security with features like mutual transport 

layer security (TLS), and advanced observability through metrics, logging, and tracing. 

By integrating custom controllers, you can automate and extend the orchestration 

capabilities to fit your specific needs, providing a tailored solution that leverages 

the robust features of the service mesh. However, the trade-offs include increased 

complexity in managing the service mesh itself, which can be resource-intensive and 

require a steep learning curve. Additionally, the overhead of maintaining both the mesh 

and custom controllers can lead to higher operational costs and potential performance 

implications, especially as your system grows in complexity.

�RabbitMQ with Workflow Plug-ins

Leveraging RabbitMQ in conjunction with workflow plug-ins provides a message-driven 

approach to orchestrating workflows, offering robust, asynchronous communication 

between services. The inherent advantages of this option include high reliability and 

fault tolerance, as RabbitMQ ensures messages are delivered even in the face of service 

failures. Workflow plug-ins can add orchestrated control flows, making it easier to 

manage complex sequences of tasks across distributed systems. However, the trade-offs 

include potential latency due to message queuing, the added complexity of managing 

message brokers, and the challenge of ensuring the system remains performant as the 

number of messages and services scales. Additionally, while RabbitMQ provides strong 

guarantees for message delivery, the orchestration logic might become more challenging 

to maintain and debug as workflows grow more intricate.

�Apache Camel

Apache Camel offers a highly flexible and lightweight approach to integrating and 

orchestrating workflows across diverse systems. As an integration framework, it allows 

you to route and transform data between various protocols and technologies using a 

wide array of predefined enterprise integration patterns (EIPs). The inherent advantages 

of Apache Camel include its ease of integration, extensive library of connectors, and 

the ability to create complex routing and mediation rules with minimal overhead. 
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This makes it particularly well suited for environments where agility and lightweight 

integration are key. However, the trade-offs include its focus on integration rather 

than full-featured process management, which may limit its utility for comprehensive 

workflow orchestration, and the potential complexity in managing and debugging 

intricate routing logic as your system scales.

�Business Process Management (BPM) Tools

Commercial and open source BPM tools offer powerful orchestration capabilities in 

distributed systems. A few examples that are relevant at the time of this writing are as 

follows.

Camunda BPM is a highly flexible BPM tool designed to model, automate, and 

monitor business processes. It integrates seamlessly with Java applications and provides 

a comprehensive suite of tools for defining workflows using business process model and 

notation (BPMN), case management model and notation (CMMN), and decision model 

and notation (DMN) standards. The main advantages of Camunda BPM are its rich 

feature set, strong community support, and ease of integration into existing enterprise 

systems. However, it can introduce complexity in terms of setup and maintenance, 

particularly in large-scale distributed systems, and may require considerable resources 

to manage effectively.

Zeebe is a cloud-native workflow engine designed by Camunda specifically 

for orchestrating microservices in distributed systems. It offers scalable workflow 

orchestration using BPMN 2.0, making it ideal for high-throughput environments 

where traditional BPM solutions might struggle. Zeebe’s strengths lie in its scalability, 

fault tolerance, and seamless integration with distributed architectures. However, as 

a relatively newer solution, it may not have as extensive a feature set or community 

support as more established BPM tools, and its focus on cloud-native environments may 

limit its applicability in certain on-premise scenarios.

Cadence and Temporal are open source workflow orchestration engines that 

provide strong guarantees for the execution of complex, long-running business 

processes. Developed by Uber (Cadence) and later forked into Temporal, these tools 

offer rich features like fault tolerance, state management, and seamless integration with 

microservices. The primary advantage is their ability to handle workflows that require 

consistency, retries, and time-based triggers, making them highly reliable. However, 

these tools come with a steep learning curve and can introduce significant operational 

overhead due to the complexity of their infrastructure.
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The main advantages of BPM tools include the ability to model, automate, and 

monitor complex workflows with strong guarantees for reliability and scalability. 

These tools excel at managing long-running processes and integrating diverse systems. 

However, the trade-offs often involve increased complexity, both in terms of learning 

curve and operational overhead, and, in some cases, limitations in feature sets or 

community support. BPM-driven engines are overkill for simple flows, but powerful for 

complex flows. Choosing the right BPM tool—or a non-BPM alternative—depends on 

the specific requirements of your distributed system and the balance you seek between 

flexibility, scalability, and ease of management.

�Mediator Communication

In contrast to choreographed styles, mediators communicate with processing services or 

components in a direct, point-to-point manner and rely on a request/response pattern 

of interaction. Consequently, processors do not typically broadcast results. Although 

this constraint is presented in the context of an event-driven style, mediators may 

communicate synchronously or asynchronously with processing services.

When an individual workflow step can take place within a reasonable timeout 

period, the mediator can adopt synchronous communication (Figure 18-2) utilizing 

existing APIs to perform workflow steps. This approach has the advantage of simplicity 

and the ability to reuse existing APIs. Synchronous communication also makes it 

easier to manage dependencies between tasks since the orchestrator can wait for a 

response before moving on to the next step, ensuring that tasks are completed in a 

specific sequence. However, synchronous calls can limit the scalability of the system. 

If the orchestrator must wait for each task to complete, it can become a bottleneck, 

particularly under high load or if there are multiple long-running tasks. Synchronous 

communication will also lead to tighter coupling between the orchestrator and 

processing components, making the system less flexible and harder to evolve over 

time. A final downside of this approach is the inherent stateful nature of the mediator. 

Additional design and effort must be put in place to handle long-running workflows and 

restart logic should the mediator crash.
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Figure 18-2.  Synchronous Communication Between Mediator and Processor

Alternatively, communication can take place asynchronously. In this configuration, 

two mediator/component-specific point-to-point messaging channels are utilized. The 

first channel is reserved for requests; the second is reserved for responses. Since the 

request and response will always occur in separate execution contexts, a correlation ID 

is used to connect initial requests to their asynchronous responses (Figure 18-3). Unlike 

choreography, where messages represent events that have happened and are modeled in 

the past tense, asynchronous requests in this style are typically request driven, meaning 

messages are requests for the processor to perform some action.
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Figure 18-3.  Asynchronous Event/Workflow Request Orchestration

Asynchronous communication allows the orchestrator to send a task to a processing 

component and immediately move on to other tasks. This decouples the orchestrator 

from the processing speed of individual components, enabling better scalability 

and throughput, especially in distributed systems. The orchestrator also does not 

need to wait for a response, reducing latency in the workflow, particularly when 

tasks can be processed in parallel or when the orchestrator can continue with other 

independent tasks.

As we learned in the previous chapter, asynchronous systems are typically more 

resilient to failures. If a processing component is temporarily unavailable, the message 

remains in the queue to be consumed when the service is available, ensuring that 

tasks are eventually processed without blocking the entire workflow. Asynchronous 

communication encourages loose coupling between components, making the system 
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more modular and easier to maintain and extend. It also allows for greater flexibility in 

replacing or scaling individual components.

Unlike the fire-and-forget asynchronous communication approach common in 

choreographed styles, the mediator will require some notification mechanism when 

the processing step has completed. The biggest challenge can be determining how 

long to wait for a response. Synchronous communication enables the mediator to catch 

and handle errors in real time, simplifying the process of managing exceptions and 

ensuring that the workflow can respond to failures as they occur. When communication 

is asynchronous, the mediator must wait an unspecified amount of time for a response. 

Consequently, errors are not immediately apparent to the orchestrator, which may only 

learn about failures after a significant delay. This can complicate error handling and 

recovery, particularly in workflows where timely responses are critical.

The choice between synchronous and asynchronous communication in 

an orchestrated event-driven architecture hinges on the specific needs of your 

workflow. Synchronous communication offers simplicity and immediate feedback, 

but can introduce latency, scalability issues, and tighter coupling. Asynchronous 

communication, on the other hand, provides greater scalability, resilience, and flexibility 

but at the cost of increased complexity in managing workflows and handling delayed 

error responses.

As this is an abstract style to be tailored, we will prescribe the common case of 

asynchronous communication.

�Persistent Queue Messaging
The Choreographed Event-Driven Abstract Style utilizes PubSub semantics for 

communication. The inherent broadcast capabilities and at least once delivery behavior 

are very useful in a choreographed context. Orchestrated event-driven architectures 

typically use queue semantics rather than PubSub for several key reasons:

	 1.	 Message Ordering and Delivery Guarantees
Queues are designed to ensure that messages are delivered in a 

specific order (typically FIFO—first in, first out) and are processed 

exactly once by a single consumer. This is crucial in orchestrated 

workflows where the sequence of events and tasks must be strictly 

controlled to maintain the integrity of the process.
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PubSub, on the other hand, typically delivers messages to 

multiple subscribers, and the order of message processing may 

vary depending on the subscriber's processing capabilities and 

the underlying infrastructure. This can lead to inconsistencies in 

workflow execution if strict ordering is required.

	 2.	 Task Coordination and State Management

In an orchestrated architecture, the mediator needs to coordinate 

tasks across various services. Queues allow the orchestrator 

to assign tasks to specific services, ensuring that each task is 

processed once and in the correct sequence. This is critical for 

managing the state and ensuring that each step in the workflow is 

completed before moving to the next.

PubSub systems broadcast messages to all subscribers, which is 

ideal for services and multiple consumers to react to the same 

event independently. However, in orchestrated workflows, this can 

lead to challenges in managing state and coordinating tasks, as the 

orchestrator needs to have tight control over the execution flow, 

particularly as workflows grow more complex.

	 3.	 Scalability and Load Management

Queues allow for effective load balancing by distributing messages 

to consumers based on their availability and capacity. This 

ensures that tasks are processed efficiently without overwhelming 

any single service. The orchestrator or environment can scale 

consumers up or down as needed, which is vital in maintaining 

performance in large-scale systems.

While PubSub also supports scalability, it is more suited to 

scenarios where multiple independent services need to be notified 

of the same event rather than coordinating the execution of a 

series of dependent tasks.
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	 4.	 Reliability and Fault Tolerance

Queues typically offer stronger reliability guarantees, such as 

ensuring that messages are persisted until they are successfully 

processed by a consumer. This is crucial in orchestrated workflows 

where failure to process a message could disrupt the entire 

workflow. Queues often support features like message retries and 

dead-letter queues, which help in handling failures gracefully.

PubSub systems can also offer reliability, but the focus is more 

on delivering messages to multiple subscribers rather than 

ensuring that each message is processed exactly once in a 

controlled manner.

�Preventing Data Loss
In the past, queues have struggled with issues surrounding data loss as the contents 

of the queue is frequently held in volatile memory; however, this constraint prescribes 

the use of a persistent queue, namely, one that offers data retention, even if the queue 

crashes and requires a restart. When avoiding data loss is important, it is necessary 

to wait for a full write acknowledgment when pushing a message into a queue and 

potentially configuring a queue to hold a pending message until the consumer 

fully acknowledges the read. These guarantees might be off by default in pursuit of 

favorable throughput benchmarks, but we must ensure these guarantees are in place 

when needed.
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�Orchestration-Driven Event-Driven Abstract Style

Figure 18-4.  Orchestrated Event-Driven Abstract Style

Orchestrated event-driven architecture (Figure 18-4) is all about managing complex 

workflows by coordinating the interactions between various services, or processing 

components, through central orchestrators. These orchestrators act as mediators, 

directing the flow of tasks, ensuring that each step in the process is executed in the 

correct order, and handling any errors or exceptions that arise. The beauty of this 

architecture lies in its ability to decouple services, allowing each component to focus on 

its specific task while the orchestrator manages the overall process.

Orchestration-Driven Service-Oriented Architecture 

One of the earliest distributed architectures to leverage orchestration was 
Service-Oriented Architecture (SOA), which emerged in the 1990s. By then, many 
organizations had already made significant strides in their digital transformation 
efforts, implementing numerous business systems. However, the cost of 
developing these systems was steep, and computing resources were both scarce 
and expensive. This context pushed architects toward distributed architectures 
that prioritized reuse as a fundamental principle, thereby reducing costs and 
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improving efficiency. This strategy led to the creation of a service taxonomy, with 
distinct layers of business, enterprise, application, and infrastructure services, all 
coordinated by a central orchestration engine (Figure 18-5).

Figure 18-5.  Orchestration-Driven Service-Oriented Architecture

In this architecture, Business Services often served as the entry point for defined 
behaviors. These were not typically code modules but rather definitions of inputs, 
outputs, and sometimes schema, usually shaped by business users. Below this, 
Enterprise Services were fine-grained, shared implementations—think of operations 
like calculateTax or createCustomer—that served as the building blocks for 
the more coarse-grained business services, all tied together by the orchestration 
engine. Application Services, on the other hand, were typically one-off utilities, 
such as geolocation services, designed for specific needs without the intention of 
broad reuse. Infrastructure Services handled cross-cutting concerns like logging, 
monitoring, and authentication, providing the necessary operational backbone.

At the heart of this architecture was the orchestration engine, typically in the form 
of an Enterprise Service Bus (ESB), which connected and coordinated everything. 
The orchestration engine played a crucial role in integrating business services and 
managing transactional behavior across the system. However, while SOA aimed to 
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provide flexibility and promote reuse, it quickly became evident that this approach 
introduced significant challenges. The heavy emphasis on reuse led to substantial 
coupling between services, making incremental changes risky and complex. The 
necessity for coordinated deployments and extensive testing further complicated 
the development process, often stalling progress and leading to inefficiencies.

Moreover, the architecture's focus on technical partitioning turned out to be a 
practical nightmare. Domain concepts became so fragmented across the architecture 
that even simple tasks required changes to multiple services and database schemas, 
undermining the original goals of reuse and efficiency. This fragmentation also 
resulted in significant coupling within the architecture, particularly around the 
orchestration engine, which became a bottleneck and a single point of failure.

While this architectural style did achieve some success in areas like scalability 
and elasticity, its poor performance, deployability, and testability, coupled with high 
complexity and cost, ultimately led to its downfall. The lessons learned from this 
era underscored the value of standardized service interfaces, the challenges of 
managing distributed transactions, and the practical limits of technical partitioning, 
paving the way for more modern, adaptable architectural styles that could better 
meet the evolving needs of the industry.

The Orchestrated Event-Driven Abstract Style is comprised of a unique set of 

constraints that offer very strong workflow capabilities. Like this style’s choreographed 

counterpart, defining constraints of this style often show up in other tailored and hybrid 

styles. For example, orchestration is common when implementing the Saga Pattern in 

microservices styles.

�Summary
Orchestrated event-driven architecture offers several key architectural capabilities. It 

provides centralized control, where the orchestrator manages and coordinates the execution 

of workflows, ensuring tasks are completed in the correct sequence and handling exceptions 

gracefully. This architecture supports decoupled processing services, allowing each service to 

focus on its specific tasks while the orchestrator manages the overall process flow, improving 

maintainability and enabling services to evolve independently. Additionally, it excels in 

scalability, especially with asynchronous communication, allowing the orchestrator to 
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handle multiple tasks concurrently and distribute workloads without the need for immediate 

responses. This architecture also offers flexibility in process management, enabling the 

modeling and management of complex workflows with branching logic, conditional tasks, 

and long-running processes to suit a wide range of business scenarios.

However, these strengths come with trade-offs. This architecture introduces 

additional complexity, particularly in managing workflow states, handling asynchronous 

communication, and ensuring message ordering and delivery, which can make 

development, debugging, and maintenance more challenging. Synchronous 

communication, while offering immediate feedback, can reduce system performance 

due to tight coupling between services, while asynchronous communication, despite 

improving scalability, increases the complexity of task coordination. There is also an 

operational overhead in managing the orchestrator and the supporting infrastructure, 

as ensuring the high availability and reliability of the orchestrator is crucial due to its 

central role. Finally, the orchestrator can become a potential bottleneck or single point of 

failure, which, if not properly designed for scalability and fault tolerance, can disrupt the 

entire workflow execution and impact the overall system.

The following architectural constraints define this abstract style:

•	 Fine Component Granularity

•	 Technical Partitioning

•	 Independent Deployability

•	 Orchestration-Driven Interactions

•	 Persistent Queue Messaging

This collection of constraints requires the following team, organization, and 

environmental constraints:

•	 ORG: DevOps Commitment

•	 ENV: Development Environment Isolation

•	 ENV: High Operational Automation

•	 ENV: Distributed Tracing and Logging

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills

•	 TEAM: IaC Skills

•	 TEAM: Independent Development Cycles
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When compared with the Choreographed Event-Driven Abstract Style, the following 

capabilities are improved by the two changed defining constraints (Orchestration- 

Driven Interactions and Persistent Queue Messaging). See Figure 18-6.

THE ORCHESTRATED EVENT-DRIVEN ABSTRACT STYLE

Abstraction Above Average

Affordability Low

Agility Average

Deployability Below Average

Elasticity Above Average 

Evolvability Below Average 

Fault-Tolerance Above Average 

Integration Above Average 

Performance Average

Scalability High

Simplicity Very Low

Testability Very Low

Workflow Extremely High 

Figure 18-6.  The Orchestrated Event-Driven Abstract Style
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CHAPTER 19

The Space-Based Abstract 
Style

Any optimization that is not about the bottleneck is an illusion of 
improvement.

—Federico Toledo

Despite the advantages of architecture design by constraint and the Tailor-Made 

Software Architecture Model, achieving holistic fit in software architecture is not 

easy. As you know, every architectural constraint will strengthen some capabilities 

while weakening others. Moreover, the benefits of different capabilities do not always 

materialize immediately, providing uneven visibility of architectural value which can 

undermine your efforts.

Take, for example, the capability of evolvability. Many factors influence the overall 

evolvability of a system; however, while those factors are often measurable, true visibility 

into a system’s overall evolvability only emerges as the system repeatedly demonstrates 

an ability to gracefully adopt and absorb both business and technical change. Notably, 

it is also significantly easier to notice the presence of a problem than to notice the 

absence of a problem. Without careful communication with development teams, 

architectural constraints that induce long-term benefits might be rejected or abandoned 

by development teams in favor of more directly visible capabilities.

One such directly visible capability is that of performance. When some aspect of 

the system’s runtime-based behavior is optimized, in contrast with evolvability, the 

performance improvement is immediately visible. Software engineers often desire to 

produce elegant and efficient code, with performance as a key measure. This fact often 

puts architecture and engineering teams in tension.

https://doi.org/10.1007/979-8-8688-0410-6_19#DOI
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Many architectural styles strive to balance performance with other capabilities based 

on relative business value. As such, we have not yet seen an architectural style that offers 

extremely high performance. That changes in this chapter as we introduce an abstract 

style that is laser focused on delivering the highest possible performance, the Space- 

Based Abstract Style.

When compared with the other abstract styles introduced in this section, this style’s 

closest sibling is the Service-Based Abstract Style. Both styles utilize a distributed 

topology with medium-grained domain components, both styles utilize a shared 

database, and both prescribe an API (RPC style, in the abstract). In addition to the 

common constraints, this style prescribes three additional constraints to massively boost 

performance (at the expense of reduced agility, affordability, deployability, simplicity, 

and testability.

�Adding Constraints
�Transactional Data Stored In-Memory
Systems responsible for online transaction processing (OLTP) typically make heavy use 

of databases in every request, potentially introducing a bottleneck that places a ceiling 

on the maximum performance at scale. The simple act of retrieving state requires a 

network call to the database server, which must parse and compile each query it receives 

before execution. Execution may require physical I/O if the necessary data is not already 

in memory on the database. Finally, the response is transmitted back over the network 

to the calling service. In extremely performance-sensitive environments, these factors all 

add up to potentially unacceptable latency.

Developers and architects have long known that an in-memory cache can 

outperform even the most powerful databases. Conventionally, these caches are 

standalone services although it is common for some services to cache certain data 

locally for simplicity or to avoid the network overhead of an external cache.

This constraint takes the idea of a local cache to its logical extreme by dictating 

that all necessary data is preloaded in memory, eliminating all physical and network 

I/O when handling requests. When a service receives a request to get state, the service 

simply fetches the data from RAM, and when the service receives a request to modify 

state, it makes the modification in memory before returning a response. Depending on 

the nature and the structure of the data, the in-memory dataset may exist in the service’s 
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heap memory, may utilize an embedded in-memory database, or it may be handled by a 

private, colocated in-memory DBMS.

Such an extreme constraint will naturally raise questions like

•	 What happens if the service crashes?

•	 What happens if we dynamically add new processing nodes?

•	 How do we handle data drift between service instances?

•	 What if the full dataset does not fit in memory?

The next two constraints will address the first three questions; however, the final 

question must still be addressed in the context of this constraint.

�Granularity and Near Cache

The service modeling process for this style is similar to that of the Service-Based Abstract 

Style. Individual modules need to be highly cohesive and able to stand alone when 

handling requests. Through this process, we once again must identify data domains that 

can be isolated from other components; however, unlike microservices styles, this style 

prescribes a shared database, meaning the data domains represented in the various 

space-based domain service components can easily overlap. Under this constraint, a 

new variable of dataset size is introduced and must be considered. Ideally, we aim to 

achieve a highly cohesive, standalone service with the smallest practical dataset.

Today, cloud services offer options for high-memory instances within their compute 

platforms. These instances are often purpose-built for the task of running large, in- 

memory databases, and an individual instance can currently scale to tens of terabytes 

of memory per instance.1 With these high-memory instances, cost can quickly become 

a limiting factor especially since processor core count typically increases proportionally 

with memory allocation.

It can be tempting to adopt a distributed caching strategy known as near cache. A 

near cache is a hybrid caching model that combines in-memory data grids (the front 

cache) with a distributed cache (the full backing cache). The front cache holds a smaller 

subset of data from the full backing cache, using an eviction policy—such as Most 

1 AWS (2024). Amazon EC2 High Memory (U-1) Instances. https://aws.amazon.com/ec2/
instance-types/high-memory
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Recently Used (MRU),2 Most Frequently Used (MFU),3 Least Frequently Used (LFU),4 

or Random Replacement (RR)5—to manage space. While front caches are synchronized 

with the full backing cache, they are not synchronized across different service instances, 

leading to potential inconsistencies in performance and responsiveness. This lack of 

synchronization makes the near-cache model unsuitable for space-based style.

�Replicated Shared Data Grid

The previous constraint asked two important questions, namely:

•	 What happens if we dynamically add new processing nodes?

•	 How do we handle data drift between service instances?

This constraint prescribes that styles lean on a replicated cache model, where each 

processing unit maintains its own in-memory data grid. These grids are synchronized 

across all units sharing the same cache, ensuring that updates in one unit are quickly 

propagated to the others. This approach offers exceptional speed and fault tolerance, 

with no single point of failure since there is no central cache server. However, replicated 

caches can face challenges with large data volumes or high update rates. When the 

internal cache grows beyond certain limits or the update frequency becomes too intense, 

the synchronization process might lag, impacting performance and scalability. In these 

scenarios, a tailored style might prescribe a distributed cache—centralized and accessed 

by processing services via a common protocol—that might be more appropriate, though 

it sacrifices some performance and fault tolerance for improved consistency. The 

choice between replicated and distributed caching hinges on the specific needs of the 

system, such as the type of data being cached, the required consistency, and the balance 

between performance and fault tolerance.

2 GeeksForGeeks (2022). Program for K Most Recently Used (MRU) Apps. https://www.
geeksforgeeks.org/program-for-k-most-recently-used-mru-apps/
3 GeeksForGeeks (2023). Most Frequently Used (MFU) Algorithm in Operating System. https://
www.geeksforgeeks.org/most-frequently-used-mfu-algorithm-in-operating-system/
4 GeeksForGeeks (2024). LRU Cache – Complete Tutorial. https://www.geeksforgeeks.org/
lru-cache-implementation/
5 Luu, D. (2014). Caches: LRU v. random. https://danluu.com/2choices-eviction/
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�Decoupled Database
The final challenge we must address is data volatility. Although, under normal 

circumstances, data in this style is held in-memory and replicated to other instances, 

a complete failure of all instances or a global restart of all instances of a given service 

(perhaps due to deployment of a new version) will lose data not backed on disk 

somewhere. Direct communication with the database introduces a bottleneck this style 

seeks to eliminate; consequently, this constraint prescribes the database is entirely 

decoupled from the services. In other words, a service will never perform direct database 

I/O. Instead, the asynchronous replication of data between service instances will also 

asynchronously write data to the database. In the case of a cold start, the entire dataset 

needed by a service will be asynchronously published to one or more service instances 

or directly introduced into the data replication fabric. Specialized components referred 

to as data pumps handle asynchronous database I/O. We will describe data pumps in the 

next section.
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�The Space-Based Abstract Style

Figure 19-1.  Space-Based Abstract Style

The composition of constraints yields a very high-performance style known as the 

Space-Based Abstract Style. This style takes its name from the concept of tuple space, 

an implementation of a shared memory space for parallel/distributed computing. It 

provides a repository of tuples that can be addressed and manipulated concurrently.

In this style, the defining constraints aggressively eliminate potential performance 

bottlenecks which results in a high performance and massively scalable architecture. 

The database is decoupled from the application by choosing to have each processing 

unit store the entire dataset in memory in the form of replicated data grids and 
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eliminating all direct database reads and writes. Writes to the in-memory dataset are 

synchronized between worker nodes through some form of middleware which also 

asynchronously reads and writes to the underlying database. A separate component 

monitors overall load and scales the number of available workers up or down based 

on demand.

Although not easy (nor cheap), this abstract style forms the foundation of a 

highly performant, highly scalable, and highly elastic system architecture which 

offers a meaningful alternative to attempting to scale a database or adding in caching 

technologies to a less scalable architecture. Let us explore what this model looks like in 

practice.

�The Processing Unit
The processing unit is the component of the system that contains the application logic 

and performs the business functions (whatever they may be). For practical reasons, 

the processing unit is generally a medium-grained component with carefully scoped 

data and optimal cold start times. In other words, there may be multiple tuple spaces 

depending on the size and scope of the overall system. Tuple space boundaries are often 

most easily identified through domain modeling and system modeling. In addition 

to the application logic, the processing unit contains the in-memory data grid and 

replication engine.

�The Data Grid
The data grid6, 7, 8 is the replicated in-memory state of the processing units and is a 

central concern of this architecture. It is essential that each processing unit always 

contains an identical state. The data grid may reside entirely within the processing 

unit with replication happening asynchronously between processing units, but, in 

some implementations, an external controller is necessary in which case the controller 

element of the data grid would form part of the virtualized middleware layer.

6 Apache Ignite, https://ignite.apache.org/use-cases/in-memory-data-grid.html
7 GridGain, https://www.gridgain.com/
8 Hazelcast, https://hazelcast.com/
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�The Virtualized Middleware Layer
This layer contains components that handle infrastructure concerns that might control 

some aspects of the data synchronization and request handling and might take the form 

of off-the-shelf products or custom code.

�The Message Grid
The messaging grid is a load balancer in this style. The messaging grid manages requests 

and session state and will determine which processing units are available and distribute 

requests appropriately.

�The Processing Grid
This is an optional component that handles request orchestration, should multiple 

processing units be required to satisfy a given request.

�The Deployment Manager
The deployment manager acts as the supervisor in this style, observing load and capacity 

and either adding or removing processing units to/from the pool as required.

�Data Pumps
Although, in theory, this architecture could indefinitely hold all critical data in volatile 

memory, we must plan for inevitable cold start/cold restart scenarios. Data pumps 

provide eventual consistency between the in-memory datasets and the persistent 

storage with the database.

Data pumps come in two forms, the data reader and the data writer. Data readers 

subscribe to the state changes asynchronously broadcast by processing units and then 

synchronously write state changes to disk. A data reader is a separate pump responsible 

for providing initializing state to the processing units in the event of a cold start scenario. 

With both this component and the data grid, remember the CAP theorem and the 

challenges inherent to eventual consistency introduced in Chapter 16.
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I feel the need—the need for speed!

Years ago, I was the chief architect on a project to build a highly extensible knowledge 
platform. At the heart of this platform was an enterprise knowledge graph built from 
data gathered from dozens or hundreds of systems of record. Although the knowledge 
graph offered a comprehensive and highly connected view of the entirety of the 
organization’s knowledge, access to—and visibility of—any individual node in the 
graph was dependent on the end user’s access privileges within the source system. 
As new source systems became integrated and existing systems were updated, our 
policy graph was also frequently changing.

In addition to the core knowledge graph, many microservices hosted aggregates 
and subgraphs, optimized for particular domain functions. Consequently, every user 
interaction within this system required both early and late authorization to take place. 
The former would verify the user was authorized to request a specific resource, and 
the latter would filter the response to ensure that it only contains graph nodes the 
user has explicit permission to access. A single user request could potentially require 
hundreds or even thousands of authorizations to take place in real time. Access 
control introduced a significant bottleneck into normal operations of this system.

The architecture team made the decision to implement the policy system as a space-
based style since extremely high performance and throughput were business-critical 
capabilities.

In our implementation, we utilized our existing Kafka infrastructure to handle 
replication across the shared data grid. This enabled individual processing units to 
broadcast state changes to other instances as well as the data writer. The data reader 
initially populated this topic, and because our topology used a variation of event 
sourcing, once this initial load took place the reader was largely idle/unnecessary. 
Should a cold start become necessary, a processing unit could read the entire state 
from the Kafka topic.

The result was an extremely high-performance policy system that met our high 
service–level objectives and did not degrade as load and scale increased.
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Although this abstract style is nominally a domain-partitioned architecture, there 

are also elements of technical partitioning to be found in the data pumps and virtualized 

middleware.

�Summary
Typical OLTP systems involve requests that flow from a user’s client to a server, then to 

a database server. This setup works fine with a small user base but quickly encounters 

bottlenecks as user load increases, particularly at the database layer, which can be the 

hardest and most expensive to scale. This style addresses these scalability challenges by 

eliminating the database as a real-time constraint and instead using replicated in- 

memory data grids, removing the bottleneck associated with database scaling, allowing 

the system to handle high user loads and variable concurrency with near-infinite 

scalability. As load increases, additional processing units can be dynamically deployed, 

and when the load decreases, they can be shut down, ensuring efficient resource usage. 

This architecture style is particularly suited for applications with unpredictable and 

extreme spikes in demand, such as online ticketing or auction systems, where rapid 

scalability and elasticity are critical. While space-based architecture offers significant 

performance and scalability benefits, it introduces complexity in terms of data 

consistency and testing, requiring careful management to avoid data loss and ensure 

reliability.

The following architectural constraints define this abstract style:

•	 Medium Component Granularity

•	 Technical Partitioning

•	 Domain Partitioning

•	 Decoupled Database

•	 Transactional Data Stored In-Memory
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•	 Replicated Shared Data Grid

•	 Shared Database

•	 RPC API

This collection of constraints requires the following team, organization, and 

environmental constraints:

•	 ORG: Well-Defined Domains

•	 ORG: Domain-Aligned Teams

•	 ORG: DevOps Commitment

•	 ENV: Loose Coupling Between Components

•	 ENV: Development Environment Isolation

•	 ENV: High Operational Automation

•	 ENV: Service Discovery and Routing

•	 TEAM: API First

•	 TEAM: Automation Skills

•	 TEAM: Pipeline Development Skills
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THE SPACE-BASED ABSTRACT STYLE

Abstraction Above Average

Affordability Below Average

Agility Above Average

Deployability Above Average

Elasticity Extremely High

Evolvability High 

Fault-Tolerance High

Integration Above Average 

Performance Extremely High

Scalability Extremely High

Simplicity Low

Testability Low

Workflow Below Average

Figure 19-2.  The Space-Based Abstract Style
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CHAPTER 20

The Microkernel Abstract 
Style

A system is never the sum of its parts; it is the product of their interaction.

—Russell Ackoff

Some time ago, I was in a meeting with a development team at a client site when the vice 

president of IT made an unscheduled visit to say hello and meet new team members. 

Apropos of nothing, he announced, “I like modularity! Software that can be assembled 

like Lego bricks.” Composable software is, indeed, an attractive vision—a vision shared by 

Brad Cox, an early and influential exponent of the Object-Oriented Programming (OOP) 

movement. OOP offered Cox a glimpse at the future potential for composable software 

architectures that would usher in “A software industrial revolution based on reusable and 

interchangeable parts…” that would, he promised, “…alter the software universe.1”

Composition has always been at the heart of engineering, and everything in our 

modern world exists as a composite of basic elements. The architectural styles we have 

examined in this section are no different; every architectural style is simply a composite 

of different architecturally significant decisions. In both architecture and engineering, 

as we create various composites new properties frequently emerge. For example, the 

basic elements of iron and carbon have known properties. When we create a composite 

of the two, we get something new; we get steel. Steel has unique properties that neither 

iron nor carbon possess. When we create a composite of calcium carbonate, silica and 

alumina, iron ore, and calcium sulfate, we get cement (which, again, yields useful new 

properties). A composite of cement, water, sand, and gravel, we get concrete, and when 

we combine concrete and steel, we get reinforced concrete. Nearly every new composite 

1 Cox B. There is a Silver Bullet. Byte 1990; Vol. 15, No. 10:209–218

https://doi.org/10.1007/979-8-8688-0410-6_20#DOI
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opens the door to possibilities that were previously out of reach. The prospect of creating 

arbitrary software composites on demand continues to tease our industry with powerful 

potential.

Since 1990, when Cox penned his influential essay, software development has 

gradually shifted in this direction. Most modern software involves both creation and 

composition with reusable and interchangeable parts taking the form of libraries hosted 

in various package repositories. Design-time composition has dramatically increased 

developer productivity; however, the full flexibility of this vision often remains elusive. 

In this chapter, we will explore an architectural style that offers unique, runtime 

composability.

This style can be seen as an extension of the Modular Monolith Abstract Style 

(Chapter 14), so we will derive this abstract style by first beginning with that style’s 

defining constraints and adding additional architectural constraints to create a new 

composite with novel properties.

�Changing Constraints
This style does not prescribe a partitioning model, as the composition of a microkernel 

architecture might include domain modules, technical modules, or both. Consequently, 

the domain partitioning constraint is not prescribed and is removed from this style 

in the abstract. Additionally, the abstract style this chapter describes assumes a 

shared database (Chapter 12) but does not prescribe a partitioned shared database 

(Chapter 14).

�Adding Constraints
�Uniform Interface
Contrary to that VP’s assertion, modularity alone does not beget truly composable 

systems. As an analogy, modularity produces simple bricks, and simple bricks require 

cement to assemble. Once the cement dries, however, those bricks are no longer 

interchangeable and rearrangeable. What makes Lego bricks distinct from other types 

of bricks is the presence of studs and anti-studs which enable the bricks to be easily 

connected, disconnected, and rearranged without cement or mortar. Studs in Lego are 

the distinctive cylindrical bumps or knobs on the surface of the brick that universally 
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measure 1.6mm in height and 4.8mm in diameter. Anti-studs are the 4.8mm wide 

indentations in the bottom of Lego bricks and plates that serve as a stud receptacle.2 It is 

the standardization and uniformity of the stud/anti-stud interface that gives Lego bricks 

their unique property of composability and interchangeability. In other words, every 

Lego brick ever created conforms to a common uniform interface.

Although Cox’s idea of interchangeable, composable software modules was novel 

when it was first published, the idea was not entirely new. In fact, we first saw this 

approach to software take shape in the 1960s, and it strongly influenced the design and 

philosophy of UNIX.

We should have some ways of [connecting] programs like garden hose  – 
screw in another segment when it becomes necessary to massage data in 
another way.

—Doug McIlroy, Internal Bell Labs Memo 19643

The key to adopting this constraint lies in creating our own system of studs and anti- 

studs, a common interface with which all modules must conform. The most successful 

uniform interfaces are usually quite simple. Designing such an interface, however, is 

not easy.

I think most people just make the mistake that it should be simple to design 
simple things. In reality, the effort required to design something is inversely 
proportional to the simplicity of the result.

—Roy Fielding

�Interface Constraints
In order to obtain a uniform interface, multiple architectural constraints 
are needed to guide the behavior of components.

—Roy Fielding

2 Bartneck, C. (2019). LEGO Brick Dimensions and Measurements. https://www.bartneck.
de/2019/04/21/lego-brick-dimensions-and-measurements/
3 Kernighan, B. (2020). UNIX: A History and a Memoir. Kindle Direct Publishing
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A uniform interface must be defined by interface constraints, the rules that all 

components must follow. The first notable example of these interface constraints 

appeared a decade after Doug McIlroy’s ideas were circulated around Bell Labs, when 

Ken Thompson found a practical solution and implemented it into the third edition of 

UNIX. The core interface constraints are as follows:

•	 Every program shall interact with text streams: stdin, stdout, and 

stderror.

•	 “Expect the output of every program to become the input to another, 

as yet unknown, program. Don’t clutter output with extraneous 

information. Avoid stringently columnal or binary input formats. 

Don’t insist on interactive input.”4

By adopting these interface constraints, the output of one program could become the 

input of another using the vertical bar character | which is now commonly referred to as 

the “pipe” character. When Thompson first tried this technique, he called the result “mind 

blowing,” and this set of interface constraints remains relevant and valuable 50+ years later.

The addition of pipes led to a frenzy of invention that I remember viv-
idly…Everyone in the Unix room had a bright idea for combining programs 
to do some task with existing programs rather than by writing a new 
program.

—Brian Kernighan, UNIX: A History and a Memoir

Another notable example is the REST architectural style. A uniform interface is one 

of the six constraints that define the style; however, the description of this constraint 

includes the following interface constraints:5

•	 Identification of resources (URIs)

•	 Manipulation of resources through representations of state

•	 Self-descriptive messages

•	 Hypermedia as the engine of application state

4 McIlroy, D. The Bell Labs Technical Journal on UNIX. July 1978
5 Fielding, R. Architectural Styles and the Design of Network-based Software Architectures. Doctoral 
dissertation, University of California, Irvine, 2000
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Once again, although remarkably simple, the value and utility of this uniform 

interface continues to power the evolution of the Web more than three decades later.

The longevity of both uniform interfaces is a function of their generality. Both REST 

and UNIX pipes take a very generalized approach to component interaction and do not 

presume to know how any individual component will interact with another in the future. 

The trade-off, however, is a degradation of efficiency as information must be transferred 

in a standardized form rather than one that is specifically designed for an application or 

use case’s needs.

Adopting the uniform interface constraint will typically require additional interface 

constraints.

�Designing an Interface

Interfaces must be general and stable. Therefore, designing a uniform interface requires 

abstracting as much component implementation detail as possible. Two common 

approaches to expose a uniform interface are APIs and hooks.

REST adopts an API approach. The common case of REST is HTTP interactions. 

The request methods of HTTP (GET, PUT, POST, DELETE, PATCH, etc.) form one half 

of the “self-descriptive messages,” and the standardized response codes, headers, 

and semantics embedded in hypermedia form the other. You may notice that these 

additional interface details are absent from the interface constraints enumerated above. 

This is because REST does not explicitly prescribe HTTP. Instead, the first interface 

constraint “Identification of Resources” explicitly prescribes URIs as identifiers. A URI is 

composed of multiple components, including

•	 A scheme—for example, https://, or urn://

•	 An authority (host name + port for http, or a namespace for URNs)—

for example, example.com

•	 An optional path—for example, /books/mastering-software- 
architecture

Depending on the scheme, a client will use the appropriate communication protocol 

and context-specific data elements to interact with the authority and request the 

resource by its path.
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When designing a uniform API interface, consider a wide variety of use cases. Look 

for ways to generalize interactions such that new use cases do not continuously need the 

addition of new API endpoints.

Hooks offer a different mechanism for implementing a uniform interface. Hooks 

are publicly exposed functions or mechanisms that allow a component to “hook into” a 

system or framework to extend its functionality or modify its behavior without changing 

its original code. They provide a way to interact with the system in a consistent and 

standardized manner. Hooks form the anti-studs, and tapping into a hook from another 

component will form the studs. This allows for a modular and flexible design where 

developers can add or override certain functionalities as needed while still adhering to a 

consistent interface provided by the framework or system.

Beyond hooks, APIs, and streams (UNIX pipes and filters), asynchronous events 

(Chapter 17) can form the basis of a uniform interface when the self-descriptive 

messages interface constraint is added. Whether you intend to use hooks, streams, 

messages, APIs, or some other approach, the ultimate implementation of your uniform 

interface will likely depend on how your architecture implements the next constraint.

�Plug-In Architecture
The uniform interface constraint prescribes standardized, interchangeable components. 

Our system also needs the ability to perform dynamic, runtime composition of these 

uniform components. UNIX and its derivatives adopt a Pipeline Architecture, a style 

where components are connected in series, and the output of one component is 

the input of the next one. In the case of this style, we aim to build a cohesive set of 

functionalities available through a single interface that is customized and configured by 

adding discrete plug-in components. We induce this capability by adopting the Plug-In 

Architecture Constraint.

This constraint prescribes some mechanism for plug-ins to be introduced into 

the system, and there are many options. Adopting a plug-in architecture is a common 

requirement for creating extensible and modular applications.6 In most technology 

ecosystems, a variety of options are available, ranging from open source libraries to 

commercial products and custom-built solutions.

6 Acher, M., Cleve, A., Collet, P. et al. (2013). Extraction and evolution of architectural variability 
models in plugin-based systems. https://doi.org/10.1007/s10270-013-0364-2
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�Roll-Your-Own

When implementing this approach, a bespoke option may be suitable for simple use 

cases. An example of a simple approach can be found in OhMyZsh, a framework for 

managing Zsh that enables users to customize their shell through the addition of 

hundreds of available plug-ins. Plug-ins are installed in a directory (~/.oh-my-zsh/
plugins/) and enabled by enumerating desired plug-ins in the ~/.zshrc configuration 

file. The configuration file is loaded and processed implicitly when the shell session 

begins, dynamically modifying the features of the shell at runtime. The configuration file 

can also be reloaded after a shell session begins and a .zshrc file has been modified by 

using the source command.

Depending on the system and the profile of the end user (who might not be a 

Linux power user comfortable editing configuration files), you may want to provide a 

user interface for managing plug-ins. When rolling your own implementation of this 

constraint, you may need to dynamically load compiled code modules. Most common 

languages, frameworks, and runtimes support dynamic loading of modules.

In the .NET ecosystem, you can manually load assemblies using Assembly.Load 

and dynamically discover types using reflection.7 This approach provides maximum 

flexibility but requires significant effort to manage dependencies, versioning, and 

security. It is ideal for scenarios where existing frameworks are too restrictive or when 

custom features are needed.

In the Java ecosystem, you can create custom ClassLoader implementations to load 

plug-ins dynamically at runtime.8 Like .NET’s custom assembly loading, this approach 

offers flexibility but at the cost of increased complexity. In both cases, you need to 

handle classpath management, potential compatibility issues, and isolation of plug-ins. 

Additionally, you must consider and mitigate both runtime performance penalties as 

well as potential security issues.

7 Pine, D., Wagner, B., Dykstra, T., Schonning, Nick., Sherer, T., Peterson, T. (2021). How to: Load 
and unload assemblies. https://learn.microsoft.com/en-us/dotnet/standard/assembly/
load-unload
8 Baeldung (2024). Class Loaders in Java. https://www.baeldung.com/java-classloaders
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�Open Source Options

In the .NET ecosystem, one popular option is the Managed Extensibility Framework 

(MEF).9 MEF is a built-in library in .NET that facilitates the creation of extensible 

applications by allowing the discovery and composition of parts (plug-ins) at runtime. 

Although MEF is mature and integrates seamlessly with .NET applications, it can 

become complex when dealing with nontrivial dependencies between plug-ins or when 

plug-ins need to be loaded/unloaded dynamically. Unfortunately, at the time of writing, 

MEF targets the older .NET Framework and may not be compatible with the latest, cross- 

platform .NET versions.

In the Java/JVM ecosystem, Open Service Gateway Initiative (OSGi) is a popular 

and robust framework for building modular Java applications.10 It supports dynamic 

discovery, installation, and updating of components (bundles) at runtime. OSGi is 

powerful but comes with a steep learning curve. The complexity of managing OSGi's 

lifecycle and dependencies can be overwhelming for smaller projects.

Another option is the Plug-in Framework for Java (PF4J). PF4J is a simple and 

extensible plug-in framework for Java, focusing on ease of use. It supports dynamic 

loading of plug-ins and integrates well with existing Java applications. PF4J is less 

complex than OSGi but also less feature rich. It is an excellent choice for applications 

where ease of use is a priority over advanced features.

�Commercial Options

In the Java/JVM ecosystem, Eclipse Rich Client Platform (RCP) might be worth 

exploring. Eclipse RCP is a commercial framework based on OSGi that provides tools for 

building rich client applications with a plug-in architecture. While powerful and backed 

by the Eclipse Foundation, it is complex and can be overkill for smaller projects. It is best 

suited for large-scale enterprise applications.

Choosing the right approach depends on your project’s specific requirements:

•	 Use open source frameworks (MEF, OSGi, PF4J) if you need a balance 

of features and community support without licensing costs.

9 Mak (2024). C# – How to load assemblies at runtime using Microsoft Extensibility Framework 
(MEF). https://makolyte.com/csharp-how-to-load-assemblies-at-runtime-using- 
microsoft-extensibility-framework-mef/
10 Baeldung (2024). Introduction to OSGi. https://www.baeldung.com/osgi
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•	 Consider commercial options if your project requires enterprise-level 

features, support, and you have the budget for licensing.

•	 Roll your own if you need maximum flexibility or if existing 

frameworks do not fit your unique requirements, but be prepared to 

handle the additional complexity.

Each option has its trade-offs, so the choice should align with your project’s scale, 

complexity, and long-term maintenance needs. In other words, you are looking for a 

holistic fit.

�Fine Component Granularity
This style is unique in that the core system is a monolith; however, the plug-in 

components are typically fine-grained. Because granularity is mixed, some of the 

benefits of Fine Component Granularity (e.g., agility, deployability, testability, etc.) are 

present but without introducing the complexity and demanding team, organizational, 

and environmental constraints of a fine-grained distributed system.

�The Microkernel Abstract Style

Figure 20-1.  The Microkernel Abstract Style
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The microkernel abstract style (shown in Figure 20-1), sometimes referred to as 

the “plug-in” architecture, applies constraints affecting the overall modularity of the 

application and builds on the concept of a microkernel from computer science. At the 

center of the pattern is the core system. In both computer science and in this pattern, the 

core system microkernel is the near-minimum amount of code necessary to implement 

the system. External plug-ins provide additional functionality. This approach isolates a 

codebase with low code volatility from plug-in modules that typically have much higher 

volatility. Users can add, remove, and swap plug-ins at runtime without requiring a 

redeployment of the core system, and the nature of this architecture dramatically reduces 

impact from changes in plug-in modules. Therefore, plug-in modules can be quickly 

developed that extend the core system, and, at runtime, plug-in modules can be added in 

various combinations and configurations to build arbitrary collections of functionalities.

To see this pattern in action, one need only look as far as the popular editor, Visual 

Studio Code. The core system provides basic functionality (primarily a text editor), and 

the functionality is extended by installing plug-ins. As an authoring tool, the core system 

is not especially powerful. With the addition of plug-ins that introduce spell-checking 

capabilities, markdown support, git support, and terminal support (among others), VS 

Code quickly becomes a powerful authoring environment with all necessary tools and 

capabilities. Likewise, when performing software development, data modeling, and even 

personal knowledge management11 using this tool, additional plug-ins will enable all 

these features. Syntax support for a new language is as simple as another plug-in. As you 

see, the Microkernel Architecture Pattern is highly configurable. Any instance of the core 

system is free to select the set of plug-ins optimal for the given use case. The instance 

also typically controls its update frequency improving overall configurability.

If a given concrete implementation of this style utilizes storage, plug-ins often share 

access to a single shared data store. A good practice to consider when plug-in components 

have access to a shared database is to enforce some mechanism to namespace tables 

to avoid object naming collisions. VS Code utilizes the file system for persistence, but 

another example of this style is WordPress which allows plug-ins to not only create 

database objects (tables, indexes, views, etc.) in a single shared database, but the shared 

nature of that resource also means a plug-in has access to other tables in the system. If 

there are potential security or privacy considerations, a concrete implementation of this 

style should prescribe the Partitioned Shared Database Constraint.

11 Eväkallio, J. “Foam PKM Project.” https://foambubble.github.io/foam/
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Although the Abstract Microkernel Style prescribes a Monolithic Deployment 

Granularity, the fine granularity of plug-ins overcomes the traditional limitations of this 

component granularity. Users of the system can easily extend it in unforeseen ways, 

improving agility, adaptability, extensibility, and evolvability. To achieve this, the core 

system exposes a uniform interface that defines both plug-in entry points and an API or 

other mechanisms for plug-ins to interact with the core system (and, potentially, each 

other). Given the uniform interface constraint will constrain the interaction of plug-ins 

with the core system, the system becomes slightly more fault tolerant. A malfunctioning 

plug-in rarely takes down the entire system (often the core system will simply disable a 

problematic plug-in).

On the surface, it may appear that this style is best suited for software products that 

are stored and run locally (e.g., VS Code); however, the broader applications of this style 

should not be overlooked. Many web-based and SaaS applications use this approach to 

make their platform configurable and extensible (both by the vendor and third parties). 

The abstract style is monolithic; however, it is possible to scale the ideas to allow 

dynamic runtime composition of external services in a distributed system.

NetKernel: A Distributed Microkernel Architecture

NetKernel is an innovative software system that extends the microkernel 
architecture to distributed computing, applying the principles of Resource- 
Oriented Computing (ROC) and the REST architectural style representing a 
significant evolution in how we think about and design distributed systems.

In traditional microkernel architectures, a minimal core (the microkernel) provides 
basic services, such as low-level hardware communication, while higher-level 
services run in user space, independent of each other. This separation promotes 
modularity, fault isolation, and ease of extension. NetKernel takes these principles 
and applies them to a distributed system, effectively creating a microkernel for 
the Web.

NetKernel abstracts all system resources—data, services, or even code—as 
addressable resources that adopt a uniform interface, much like the REST 
approach to web services. This generalization of the microkernel idea to a 
distributed environment allows components to communicate over a network with 
the same simplicity and consistency as they would within a single system. The 
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abstractions provided by NetKernel result in a system whose design does not 
care if it is monolithic or distributed; those details are completely transparent to 
the system.

One of NetKernel’s most brilliant innovations is its application of the REST 
architectural style, originally designed for the Web, to distributed computing. 
NetKernel treats everything as a resource, accessible via uniform resource 
identifiers (URIs). Resources can be dynamically composed, cached, or 
transformed, allowing for an incredibly flexible system where the boundaries 
between local and remote, static and dynamic, data and services blur. This 
extended approach to REST is the enabler for ROC.

ROC, the paradigm on which NetKernel is built, treats all software components—
whether data, processes, or services—as resources that can be composed and 
interacted with dynamically. ROC provides a high degree of abstraction, where 
resources are not merely passive entities but can represent complex computations 
or data transformations.

This approach enables loose coupling between components, which is essential 
for building scalable and resilient distributed systems. Since resources are 
addressable through URIs and interact via standard protocols, the system can scale 
horizontally, distribute workloads efficiently, and maintain considerable flexibility in 
how components are assembled and reused.

NetKernel represents a significant advancement in distributed computing by 
extending the microkernel architecture into the realm of distributed systems. It 
provides a powerful, scalable, and flexible platform that simplifies the development 
and maintenance of complex distributed systems. This approach not only leverages 
the strengths of the microkernel design but also opens new possibilities in 
how distributed systems can be architected, operated, and even rearchitected 
dynamically at runtime.

NetKernel is a significant shift to how we currently design, build, and run 
distributed systems, and the mental model is foreign to many but has shown 
far-reaching benefits in many cases. We may well see this idea come into the 
mainstream in the future.
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�Summary
The Microkernel Abstract Style is a minimalist approach to software design, where the 

core system only handles essential functions and most functionality is extended through 

the addition of plug-ins. This separation enhances modularity and fault isolation, as 

plug-in failures do not typically crash the entire system, making it easier to update or 

replace individual components without affecting others. Although not suitable for every 

system, this style comes close to delivering the vision of “Software that can be assembled 

like Lego bricks.”

When adopting this style, care and forethought must go into the design and 

specification of the uniform interface. The interface must be stable (or backward 

compatible) as combinations of plug-ins and versions cannot be known at design time. 

Testability can be challenging as any number of plug-ins and configurations may exist at 

runtime. There typically must also be some kind of discoverability of available plug-ins. 

Consequently, in addition to developing the core system, development teams may need 

to invest time and effort into the creation of a plug-in registry.

The following architectural constraints define this abstract style:

•	 Monolithic Component Granularity

•	 Separation of Concerns

•	 Shared Database

•	 Plug-In Architecture

•	 Uniform Interface

•	 Fine Component Granularity

This collection of constraints requires only few additional team and environmental 

constraints:

•	 TEAM: Interface First

•	 ENV: Plug-in Registry (optional)
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When compared with the Modular Monolith (Chapter 14) upon which this abstract 

style has been derived, the capability improvements provided in Figure 20-2 are seen.

THE MICROKERNEL ABSTRACT STYLE

Abstraction High
Affordability Extremely High 
Agility High
Deployability High
Elasticity Low 
Evolvability High 
Fault-Tolerance Low 
Integration High 
Performance Above Average
Scalability Low
Simplicity Very High
Testability High
Workflow Below Average 

Figure 20-2.  The Microkernel Abstract Style
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CHAPTER 21

Summary of Constraints 
and Abstract Styles

Software architecture is the set of design decisions which, if made incor-
rectly, may cause your project to be cancelled.

—Eoin Woods

Throughout this section, we have seen the power of architectural design by constraint. 

Beginning with the Big Ball of Mud style in Chapter 12, we navigated the architectural 

continuum by adding and changing constraints until we have derived the nine abstract 

styles that align with their corresponding established mainstream architecture patterns. 

This underexplored approach to software architecture yields many novel insights.

Let us visualize these insights in the form of a new taxonomy of architectural styles.

�A Taxonomy of Architectural Styles
Historically, most software architecture literature has focused on monolithic and 

distributed styles; however, this mental model obscures many nuances of architectural 

evolution. Take, for example, the relative ease with which we may decompose a 

monolithic system into discrete services or components. In both Chapters 13 and 15, we 

accomplished this by changing the granularity constraint. In both cases, the necessary 

effort was straightforward, and we can typically measure the overall effort in weeks, 

rather than a period of years that conventional thinking would suggest. The disconnect 

between expectations and reality is a product of pattern-based thinking and a historical 

overemphasis on the transition between layered monolithic styles and microservices 

styles. You now know the true complexity lies in changing the module partitioning 

https://doi.org/10.1007/979-8-8688-0410-6_21#DOI
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constraint. In fact, many popular approaches to this migration involve first carving 

out vertical slices of functionality—evolving the layered style into a modular monolith 

style—before beginning the decomposition process. As we build a new taxonomy of 

architectural styles, we must recognize that the effort of changing constraints is not 

uniform. The hierarchy of our taxonomy, therefore, will reflect the relative difficulty 

of changing a given constraint. As this is, potentially, the most difficult constraint to 

change, we will define this as the top level of our taxonomy of styles.

�Level 1: Module Partitioning
Moving beyond the Big Ball of Mud style, we must introduce some kind of separation of 

concerns and model for modularity which requires constraining the degrees of freedom 

surrounding the definition of module boundaries. The determination of module 

boundaries is one of the most foundational architectural constraints and thus form the 

first level of our architectural styles taxonomy tree as shown in Figure 21-1.

Figure 21-1.  Taxonomy Level 1

The ubiquity of the Layered Monolith style is a consequence of Conway’s Law1 

which states “Organizations, who design systems, are constrained to produce designs 

which are copies of the communication structures of these organizations.” The natural 

and default organizational structure will delineate responsibilities across teams by 

their technical focus, skillset, and clear responsibility models. Often, organizational will 

have frontend teams (or subteams) and backend teams. Depending on the scale and 

complexity of the system, the organizational structure will define backend teams focused 

on a subset of functionality such as API development, database development, business 

logic development, etc. Under this organizational structure, it does not matter what 

type of architecture we design; the structure of the system will mirror the organizational 

1 Conway, M. E. (1968). “How do Committees Invent?” Datamation, 14(5), 28–31
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structure. Our options, as architects, are to either ignore the realities of Conway’s Law 

(to our peril), accept the realities of Conway’s Law (constrain our architecture designs 

to match the existing structure of the organization), or first change the communication 

structure of the organization (known as the Inverse-Conway Maneuver2).

Adopting the Domain Partitioning Constraint (described in Chapter 14) first 

requires we champion the effort to satisfy the Well-Defined Domains organizational 

constraint. This means either leading the effort to perform a detailed domain analysis 

with business stakeholders and domain experts or bringing in an expert to lead this 

effort. As architects, leading such an effort requires sufficient knowledge of Domain- 

Driven Design (DDD). The definitive work on this subject remains Eric Evans’ 2003 book 

Domain-Driven Design.3 If you choose to read that book (which dwarfs the book you are 

currently holding), follow the advice your author wishes he had when he first read it; 

read section 1, then section 4, followed by section 3, and finally section 2. Alternatively, 

there have been several books that followed Evans’ seminal work on the subject. 

Vaughn Vernon’s Implementing Domain-Driven Design4 is a practical and accessible 

resource written to prepare developers and architects to apply the important concepts 

of DDD. For a more lightweight introduction, I recommend Vernon’s comparatively light 

volume, DDD Distilled.5 One other valuable resource is Alberto Brandolini’s important 

work on event storming.6

Understanding the nuances of the domain is the first step. We can design a domain- 

partitioned system based on the structure and boundaries within a domain; however, 

we remain constrained by the organizational structure. Our design will require 

Domain-Aligned Teams which may require deploying the Inverse-Conway Maneuver 

to restructure the organization. This process is both expensive and difficult, but many 

organizations have successfully made the transition. By building on the wisdom and 

experience of the authors listed above—as well as the advice on effecting meaningful 

change in the next section—you will be better positioned to make this change.

2 Leroy, J. (2010). “Dealing with Creaky Legacy Platforms.” Cutter IT Journal
3 Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison- 
Wesley Professional
4 Vernon, V. (2013). Implementing Domain-Driven Design. Addison-Wesley Professional
5 Vernon, V. (2016). Domain-Driven Design Distilled. Addison-Wesley Professional
6 Brandolini, A. (2015–2021). Introducing EventStorming: An Act of Deliberate Collective Learning. 
LeanPub, https://www.eventstorming.com/book/
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�Level 2: Persistence Options
In Chapter 14, we got our first glimpse of the effort needed to break relational databases 

along domain lines as well as how those lines begin to blur as we find multiple bounded 

contexts that need to share some amount of data. You will notice that it is the domain- 

partitioned parent constraint that enables the Partitioned Shared Database and Isolated 

Database Constraint (Chapter 16). The addition of this level to our taxonomy tree is 

shown in Figure 21-2.
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The taxonomy tree focuses on architectural constraints and styles introduced in this 

section but is not exhaustive. Additional persistence constraints, such as a multitenant 

shared database, or database-per-tenant constraints, for example, can be applied to 

evolve/extend a style but are not represented in this conceptual taxonomic tree. Moving 

forward, where the branches from a node in the tree are substantially similar to its 

neighbors, a dotted arrow will be used as an abbreviation.

�Level 3: Granularity
Component granularity is a straightforward change when decomposing along existing 

module boundaries and comparatively easier than changing any of the parent 

constraints. Our updated taxonomy tree is shown in Figure 21-3.
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When an architectural style crosses into the realm of distributed systems, you 

must prescribe additional constraints. The most important of these is the Independent 

Deployability Constraint (Chapter 13). Without this constraint, the promised benefits 

surrounding agility, testability, deployability, and evolvability all suffer. In short, a 

distributed style without this constraint will produce a distributed monolith which is an 

anti-pattern (or anti-style).

Independent deployability is enabled by the following non-architectural 

constraints, namely:

•	 TEAM: Pipeline Development Skills (Chapter 13)

•	 TEAM: IaC Skills (Chapter 13)

•	 TEAM: Automation Skills (Chapter 13)

•	 TEAM: API-First Development (Chapter 13)

•	 TEAM: Independent Development Cycles (Chapter 13)

•	 ENV: Development Environment Isolation (Chapter 13)

•	 ORG: DevOps Commitment (Chapter 13)

Fine Component Granularity requires additional non-architectural 

constraints, namely:

•	 ENV: High Operational Automation (Chapter 16)

•	 ENV: Service Discovery and Routing (Chapter 16)

•	 ENV: Bulkheads and Circuit Breakers (Chapter 16)

•	 ENV: Distributed Tracing and Logging (Chapter 16)

•	 TEAM: Maturity with Respect to Trade-Offs (Chapter 16)

•	 TEAM: IaC Skills (Chapter 16)

�Level 4: Component Communication
When we add this final level to our basic taxonomy, you begin to see how the abstract 

styles defined in this section find their way into this model. Of course, Figure 21-4 shows 

only a subset of the abstract styles and offers only a partial representation of all possible 

architectural styles.
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The Modular Monolith Abstract Style and Space-Based Abstract Style either do not 

prescribe module partitioning or span both module partitioning schemes. These are also 

not absolutes, and the diagram excludes hybrid styles and derived variations.

The intent of Figure 21-4 is to demonstrate the directions we have thus far derived 

abstract styles. This taxonomy also demonstrates the relative effort to evolve one 

style into another (as well as potential intermediary waypoints on the continuum 

for incremental evolution). Notably, the Layered Monolith Abstract Style and the 

Microservices Abstract Style are on extreme ends of the tree, indicating a considerable 

amount of effort to make the necessary architectural modifications to realize the final 

style. In contrast, the Service-Based Abstract Style and Microservices Abstract Style are 

adjacent to each other, indicating a lower amount of effort to evolve the system between 

those two styles.

When considering multiple potential architectural styles for a given problem, 

creating a similar diagram can be useful to visualize the available paths for architectural 

evolution over time. This will allow you to provide an architectural style that meets 

immediate needs with confidence that the long-term evolution in an anticipated future 

direction remains possible and practical.

�Summary of Abstract Styles
This section has derived and described nine abstract styles, as well as several 

intermediary and tailored styles. Each chapter introduced new architectural constraints, 

which are combined in different ways to derive a diverse set of abstract styles. Because 

constraints are reusable and composable architecture primitives, each chapter provides 

details and implementation guidance as it introduces each new constraint, rather 

than giving implementation guidance at the style level. Below is a summary of the 

defining constraints of each abstract style, along with a reference to the chapter that 

first introduces and describes the constraint. Finally, we break down the dependent 

non-architectural constraints necessary to achieve the architectural capabilities 

induced by each constraint. This review will provide you with a quick reference for each 

abstract style along with a visualization of the body of architectural knowledge you have 

developed after reading this section.
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Layered Monolith Abstract Style (Chapter 12)

Abstract Style Defining Constraints Constraint 
Dependencies

The Layered Monolith Abstract Style

Monolithic Component 
Granularity

(Chapter 12)
N/A

(Chapter 12) N/A

Monolithic Deployment 
Granularity 

(Chapter 12)
N/A

(Chapter 12) N/A

Shared Database
(Chapter 12) N/A

Layered System
(Chapter 12) N/A

Figure 21-5.  Summary of the Layered Monolith Abstract Style

Chapter 21  Summary of Constraints and Abstract Styles



326

Distributed N-Tier Abstract Style (Chapter 13)

Abstract Style Defining Constraints Constraint Dependencies

The Distributed N-Tier Abstract
Style

Coarse Component 
Granularity

(Chapter 13)

ENV: Simple environment 

ENV: Distributed system environment 
support

(Chapter 12) N/A

Independent 
Deployability
(Chapter 13)

ENV: Development environment 

ORG: DevOps Commitment (Chapter 
13)

TEAM: Pipeline development skills 
(Chapter 13)

TEAM: API first Development (Chapter
13)

(Chapter 12) N/A

Layered System
(Chapter 12) N/A

Client/Server (Chapter 
13) N/A

Shared Database
(Chapter 12) N/A

Figure 21-6.  Summary of the Distributed N-Tier Abstract Style
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Modular Monolith Abstract Style (Chapter 14)

Abstract Style Defining Constraints Constraint 
Dependencies

The Modular Monolith Abstract 
Style

Monolithic Component 
Granularity

(Chapter 12)
N/A

Monolithic Deployment 
Granularity 

(Chapter 12)
N/A

(Chapter 14)

ORG: Well-Defined 
Domains (Chapter 14)

ORG: Domain-Aligned 
Teams (Chapter 14)

Database
(Chapter 14)

(Chapter 14)

Data-Domain
(Chapter 14)

Data-Sharing Strategy 
(Chapter 14)

Figure 21-7.  Summary of the Modular Monolith Abstract Style
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Service-Based Abstract Style (Chapter 15)

Abstract Style Defining Constraints Constraint 
Dependencies

The Service-Based
Abstract Style

Medium Component 
Granularity

(Chapter 15)

ENV: Simple environment 

(Chapter 13)

ENV: Distributed system
environment support

(Chapter 13)

Independent 
Deployability
(Chapter 13)

ENV: Development 

(Chapter 13)

ORG: DevOps 
Commitment 
(Chapter 13)

TEAM: Pipeline 
development skills

(Chapter 13)

(Chapter 13)

TEAM: API first 
Development 
(Chapter 13)

(Chapter 14)

ORG: Well-Defined 
Domains (Chapter 14)

ORG: Domain-Aligned 
Teams (Chapter 14)

(Chapter 12) N/A

Shared Database
(Chapter 12) N/A

RPC API (Chapter 13) N/A

Figure 21-8.  Summary of the Service-Based Abstract Style
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Microservices Abstract Style (Chapter 16)

Abstract Style Defining 
Constraints Constraint Dependencies

The Microservices
Abstract Style

Fine 
Component
Granularity

(Chapter 16)

(Chapter 16)

(Chapter 16)
ENV: Bulkheads & Circuit Breakers 

(Chapter 16)
ENV: Distributed Tracing & Logging

(Chapter 16)
TEAM: IaC skills (Chapter 16)

Independent 
Deployability
(Chapter 13)

ENV: Development environment 

ORG: DevOps Commitment 
(Chapter 13)

TEAM: Pipeline development skills
(Chapter 13)

13)
TEAM: API first Development 

(Chapter 13)

Domain 

(Chapter 14)

ORG: Well-Defined Domains 
(Chapter 14)

ORG: Domain-Aligned Teams 
(Chapter 14)

Highly
Decoupled 

Components
(Chapter 16)

TEAM: Maturity w/r/t Trade-offs 
(Chapter 16)

Isolated 
Databases

(Chapter 16)

Data-
14)

Data-Sharing Strategy (Chapter 14)
RPC API

(Chapter 13) N/A

Figure 21-9.  Summary of the Microservices Abstract Style
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Choreographed Event-Driven Abstract Style (Chapter 17)

Abstract Style Defining 
Constraints Constraint Dependencies

The Choreographed 
Event-Driven Abstract Style

Fine Component 
Granularity

(Chapter 16)

(Chapter 16)
ENV: Distributed Tracing & Logging

(Chapter 16)
TEAM: IaC skills (Chapter 16)

Independent 
Deployability
(Chapter 13)

ENV: Development environment 

ORG: DevOps Commitment 
(Chapter 13)

TEAM: Pipeline development skills
(Chapter 13)

TEAM:
13)

TEAM: API first Development 
(Chapter 13)

Technical 

(Chapter 12)
N/A

Highly
Decoupled 

Components
(Chapter 16)

TEAM: Maturity w/r/t Trade-offs 
(Chapter 16)

Choreography-
Driven 

(Chapter 17)

Workflow Modeling (Chapter 17)

PubSub 
Messaging

(Chapter 17)

ENV: PubSub Broker 
(Chapter 17)

Figure 21-10.  Summary of the Choreographed Event-Driven Abstract Style
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Orchestrated Event-Driven Abstract Style (Chapter 18)

Abstract Style Defining 
Constraints Constraint Dependencies

The Orchestrated 
Event-Driven Abstract Style

Fine Component 
Granularity

(Chapter 16)

(Chapter 16)
ENV: Distributed Tracing & Logging

(Chapter 16)
TEAM: IaC skills (Chapter 16)

Independent 
Deployability
(Chapter 13)

ENV: Development environment 

ORG: DevOps Commitment 
(Chapter 13)

TEAM: Pipeline development skills
(Chapter 13)

13)
TEAM: API first Development 

(Chapter 13)
Technical 

(Chapter 12)
N/A

-
Driven 

(Chapter 18)

Data-
14)

Data-Sharing Strategy (Chapter 14)
Persistent 

Queue 
Messaging

(Chapter 18)

ENV: Queue 
(Chapter 18)

Figure 21-11.  Summary of the Orchestrated Event-Driven Abstract Style
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Space-Based Abstract Style (Chapter 19)

Abstract Style Defining Constraints Constraint 
Dependencies

The Space-Based
Abstract Style

Medium Component 
Granularity

(Chapter 15)

ENV: Simple environment 

(Chapter 13)

ENV: Distributed system
environment support

(Chapter 13)

(Chapter 14 & 12)

ORG: Well-Defined 
Domains (Chapter 14)

ORG: Domain-Aligned 
Teams (Chapter 14)

Shared Database
(Chapter 12) N/A

Decoupled Database
(Chapter 19)

ENV: Data Reader (Chapter 
19)

ENV: Data Writer (Chapter 
19)

In-Memory
(Chapter 19)

ENV: High-Memory
Compute Instances 

(Chapter 19)

Replicated Shared Data
Grid

(Chapter 19)
N/A

RPC API (Chapter 13) N/A

Figure 21-12.  Summary of the Space-Based Abstract Style
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Microkernel Abstract Style (Chapter 20)

Abstract Style Defining Constraints Constraint 
Dependencies

The Microkernel Abstract Style

Monolithic + Fine
Component Granularity
(Chapter 12 + Chapter 

16)

N/A

Independent 
Deployability
(Chapter 12)

N/A

(Chapter 12) N/A

Shared Database
(Chapter 12) N/A

Uniform Interface
(Chapter 20)

ARCH: Interface 
Constraints (Chapter 20)

Team: Interface First 
(Chapter 20)

Plug-in Architecture
(Chapter 20)

ENV: Plug-in Framework
(Chapter 20)

ENV: Plug-in Registry
(Chapter 20)

Figure 21-13.  Summary of the Microkernel Abstract Style

�Summary of Constraints
We will close this chapter and this section with an overview of all the architectural 

constraints introduced. This list is not exhaustive, as you may identify various additional 

architectural constraints as you progress through your career, designing and evolving 

the architecture of various systems. Figure 21-14 will, however, be instructive when 

introducing new architectural constraints into this model. Each constraint introduces a 

relative influence on the overall capabilities of a style, which we will indicate as follows.
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A minus (–) symbol indicates the constraint will negatively impact a particular 

architectural capability, a (+) indicates a positive influence on a capability, and the 

plus-minus (±) indicates a mixed influence that may depend on additional constraints 

or domain details to resolve. Although the Tailor-Made model aims to be more precise 

by including weighted values for each of the trade-offs, this generalization will provide 

a rough overview appropriate for this book. The weights and calculation model will be 

available in the tools introduced in the next section.
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Figure 21-14.  Summary of Constraints
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Persistent-Queue Messaging + ± + + + + + - +

Pub-Sub Messaging + ± ± + + + + + + - +

Queue Messaging + ± + ± + + + - +

Replicated Shared Data Grid - - ± + ± - -

Co
m

po
ne

nt
 

Co
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nt

All Data stored in-memory - - - + ± -

Highly Decoupled Components - + + + + + - + -

+ + + + +

De
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t 

Co
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ai

nt

Independent Deployability + + + + + ±

Monolithic Deployment Granularity - - - - +

En
vi

ro
nm

en
t

+ + + + +

Gr
an

ul
ar

ity

Coarse Component Granularity - + + + + + + + - + +
Fine Component Granularity - + + + + + - ± + - + -

Medium Component Granularity + + + + + - + + ± ± -

Monolithic Component Granularity - + - - - - - + - + -
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graphQL API + + + ± + ± + ± -

gRPC API ± + - - - + + + -

Level 1 REST API + - + + + + + - + ± + -

Level 2 REST API ± + + + + + + - + ± + -

RPC API + - + - - + ± + ± -

In
t

er
a + + ± ± + - + + - +

- - ± - ± - ± + ± - - +

In
te

rfa
ce

Plug-in Architecture + + + + + + + + - +

Uniform Interface + + + + - ± +

M
od

ul
e 

+ ± + + + + ± +

- + ± - - + ±

Pe
rs

ist
en

ce

Decoupled Database + + ± ± + + -

Isolated Databases - + + + + - + + - + -

+ + + - ± - -

Shared Database - + - - - - ± - +

Figure 21-14.  (continued)
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Figure 21-14.  (continued)

CQRS - - + + + + + -

Event-sourcing - + + + + - + ±

To
po

lo
gy Client-Server

Layered System + ± + ± + - + -

Chapter 21  Summary of Constraints and Abstract Styles



SECTION 3

Executing Architecture 
Effectively



341
© Michael Carducci 2025 
M. Carducci, Mastering Software Architecture, https://doi.org/10.1007/979-8-8688-0410-6_22

CHAPTER 22

Deriving a Tailor-Made 
Architecture

Software and cathedrals are much the same; first we build them, then 
we pray.

—Samuel T. Redwine Jr.

The aim of the Tailor-Made Software Architecture model is achieving holistic fit. Your 

reading to this point will prepare you to execute on this mission in a manner that exceeds 

many established practitioners in this space. The first and most obvious dimension of 

fit is aligning the capabilities of the system with the business needs. The requirements 

analysis process introduced in Chapter 4 produces a prioritized set of capabilities along 

with target scores that range from –5 (Extremely Low) to +5 (Extremely High) with 

several steps in between.

In your conversations with business stakeholders, it is rare that the business will 

assert that architecture should score “extremely low” or even negatively on any given 

capability. This is why the effort associated with ranking and prioritizing capabilities is 

so important. Styles that offer high scores in one capability often display the inherent 

trade-offs in other capabilities which score either average or in the negative range. The 

ranking of each individual capability is instructive of the direction that trade-offs must 

take place. An important or business-critical capability can come at the cost of degrading 

a lower priority capability, but not a higher priority capability. Negative scores (–1/below 

average or lower) do not reflect a business requirement but rather an organizational 

tolerance. For example, affordability and simplicity of microservices styles typically score 

Extremely Low; when the relative business value of the system’s agility, fault tolerance, 

scalability, and elasticity is sufficiently high, this factor will influence the business’s 

https://doi.org/10.1007/979-8-8688-0410-6_22#DOI
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overall tolerance for extremely low simplicity and affordability qualities. In short, 

balancing the highs and lows of any candidate style requires careful calculus on the part 

of the architect.

The Mad Potter on the Value of Enough

Many years ago, I was driving across the state of Wyoming on a long and desolate 
highway. I eventually passed through a small town that was entirely devoid of life 
save for a former automotive service station with the hand-painted words “Monk 
King Bird Pottery” emblazoned across the exterior. It was the studio of independent 
potter, Byron Seeley, established in a ghost town that had been abandoned 
decades ago. Curiosity got the better of me, and I pulled over to view his wares.

Byron greeted me and gave me a tour of his live-in studio and retail space. I was 
impressed with his creations but baffled by the choice of location. At one point, I 
asked him “Do you get a lot of business?” which seemed a fair question given the 
lack of traffic or local population.

He looked at me and asked, “What’s ‘a lot?’”

It was a question I was unprepared for, so I blurted out “I don’t know.” And his 
response has stuck with me to this day.

“Neither do I,” he replied. “But I know what enough is. I get enough business.”

Since then, I tend to favor the quantifiable concept of enough over the vague 
notion of a lot. Our architectures should do the same, offering enough of important 
capabilities as a lot can easily turn into too much and come at unexpected cost.

�Tailoring Existing Architectures
When approaching an existing system that requires enhancement or evolution, first 

strive to understand the current set of constraints. This may require examining the 

codebase, reviewing current and target metrics and KPIs, and several conversations with 
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developers and stakeholders. During this process, you are both documenting the existing 

architecture and performing a modified version of the requirements analysis process 

described in Chapter 4.

Once you understand where the system is, you must tailor this architecture to arrive 

at where the business needs the system to be. From here, you can begin the made- 

to-measure design process with one small modification. Rather than starting with an 

abstract style or style(s), you will be starting with the current architectural style as you 

have now defined it.

�Made-to-Measure Architecture
When approaching a greenfield project, the most pragmatic approach is often to follow 

the Made-to-Measure approach (Chapter 10).

�Phase I: Identifying Abstract Styles
We begin this process by looking at the qualified and quantified capabilities you 

enumerated during the requirements analysis process (Chapter 4) and evaluating them 

against the capability scores of the abstract styles in Section 2. Although you may have 

identified several valuable capabilities for the prospective system, it is exceedingly 

unlikely that any abstract style will align perfectly with the business’s requirements. You 

should be focusing primarily on alignment with only the business-critical capabilities at 

this stage as other capabilities can later be modified through addition and modification 

of architectural constraints.

The Tailor-Made Architecture Model introduces a tool to support this process,1 

where you can define target capabilities and visualize these target scores against the base 

scores of each abstract style.

It is possible you will identify multiple abstract styles that are potential candidates. 

This is a good thing and highlights the fact that there is more than one path to a solution 

in software architecture. For each abstract style, add or modify the constraints inside the 

worksheet with the goal of approximating alignment with the various target scores you 

defined in the analysis process. Figure 21-14 in Chapter 21 is a helpful reference for this 

1 https://masteringsoftwarearchitecture.com
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process, as it highlights the capabilities each constraint influences. In the worksheet, the 

constraints introduced in this book are present and pre-weighted to provide design-time 

feedback on the relative influence of each constraint.

It is important to note that your goal is not simply to find a collection of 

constraints that will make the targets line up as this will generally result in a 

nonsensical architectural style that looks good in the worksheet but offers little value 

in practice. Instead, this process must be guided first by your architectural intuition 

and understanding of how constraints operate and interact with your design and, 

secondarily, on how those constraints influence the scores of your candidate derived 

architecture. The worksheet is a tool, and, like any tool, its utility is a function of the skill 

of the person who wields it. The worksheet is useful for rapid design efforts and early 

feedback but cannot replace the unique skill of a thoughtful architect.

At the conclusion of this process, you will have one or more candidate architectural 

styles for consideration and evaluation.

�Phase II: Evaluating for Temporal Fit
Often, the business documents that will influence your efforts will communicate a grand 

vision of the future, painting a picture of what long-term success looks like. While this is 

useful, it will often lead to overengineering. Let us look at a concrete example.

Ted Neward, a software architect, has adapted Dave Thomas’ concept of “Code 

Katas” for software architects.2 One such architectural kata that Ted has made available 

to the community is called “Going Green.” A description of this hypothetical project 

is below:

Going Green

A large electronics store wants to get into the electronics recycling business and 
needs a new system to support it. Customers can send in their small personal 
electronic equipment (or use local kiosks at the mall) and possibly get money for 
their used equipment if it is in working condition.

Users: Hundreds, hopefully thousands to millions

2 Neward, T. (2012). Architecture Katas: Practicing Architecture. https://www.architecturekatas.com
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Requirements

Customers can get a quote for used personal electronic equipment (phones, 
cameras, etc.) either through the Web or a kiosk at a mall. Customers will receive 
a box in the mail, send in their electronic, and if it is in good working order receive 
a check. Once the equipment is received, it is assessed (inspected) to determine 
if it can be either recycled (destroyed safely) or sold (eBay, etc.). The company 
anticipates adding five to ten new types of electronic that they will accept each 
month. Each type of electronic has its own set of rules for quoting and assessment.

Additional Context

This is a highly competitive business and is a new line of business for us. If we 
haven’t received a type of electronic equipment in a year, we will remove it from 
our system. We need to maintain a list of electronic equipment we are willing to 
accept as it changes often.

Each piece of equipment has its own assessment (inspection) rules. We have 
the right to change the original quote to the customer if the product isn’t in the 
condition they said it was.

When approaching this system, the forward-looking nature of this project brief 

might lead one to designing a complex and high-scale architecture with advanced 

workflow capabilities. However, by reading between the lines, it becomes clear that 

the most immediate value is releasing a Minimum Viable Product (MVP) and quickly 

iterating on it.

Optimally, you would design the anticipated end-state architecture (what the 

system will look like if/when the system is rolled out nationwide) and then determine 

what constitutes enough of the architectural capabilities for the initial MVP. Chapter 21 

introduced a taxonomy of constraints that define our abstract styles in a structure that 

indicates their relative evolvability. If you believe a tailored version of the Service-Based 

Abstract Style is the ideal end state, a tailored Modular Monolith might form an ideal 

style for the MVP. In this case, you will have a concrete style that is practical for temporal 

fit, with an idea of how the architecture can evolve over time.

Chapter 22  Deriving a Tailor-Made Architecture



346

�Phase III: Evaluating for Team, Organizational, 
and Environmental Fit
When evaluating an abstract style, you must consider the feasibility of a given style. As 

you learned in the previous section, many architectural constraints carry dependencies 

that must be satisfied for the capabilities they promise to materialize. One or more 

constraints that make significant demands will require either driving significant 

change in the organization or compromising the architecture to better fit the teams, 

environment, and organization. Both options carry risk, and there is no clear answer 

to which option is better in any given scenario. You will need to rely on your judgment, 

objectivity, and candid conversations with business stakeholders.

In the case of our architectural kata, this is a new business line, so it may be possible 

to influence the communication structure of this new division, thus opening the 

possibility of domain-partitioned styles. In other cases, it may not be cut and dried.

�Phase IV: Reviewing Candidate Styles
Before you are ready to receive feedback on one or more candidate styles, you must first 

step back to take a critical look at the constraints the styles prescribe. It is important to 

take a balanced approach when prescribing architecture. When you are too prescriptive, 

you risk micromanaging the architecture. Likewise, when you under-support constraints, 

you risk becoming an ivory tower architect, leaving teams to fend for themselves when 

challenges arrive. In both cases, teams may ultimately reject parts or all of the prescribed 

architecture.

Review each constraint that defines the proposed style(s). You should be able to 

succinctly articulate the why behind each constraint. Next, objectively assess if the 

constraint is truly architecturally significant. Could the project be sufficiently successful if 

this constraint were omitted? Is this a decision that can be left to implementation teams? 

Architecture necessarily constrains the degrees of freedom available to developers, but, 

when we constrain freedom too much, we end up micromanaging teams in a way that 

robs them of the joy of software engineering. Follow the philosophy of the judiciary and 

“do not decide that which need not be decided.”

When examining each constraint, determine the extent to which each constraint 

deviates from established practices and norms within development teams. Some 

constraints will simply formalize the requirement to continue standard operating 
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procedures, while others will represent a significant shift. In the latter case, you must 

begin to think about how you will support such a change. Will the teams accept such 

a change? Must the change happen all at once, or is there a path toward incremental 

maturity? In either case, we must also ask if the shift in behavior the constraint requires 

is well described by any existing source. Are there books, training, tutorials, examples, 

reference implementations, or tools available? If such resources exist, begin to 

enumerate these in your notes. If not, you need a plan to create these resources.

Every constraint requires team and organizational buy-in which may be challenging 

when it represents a significant change. That said, resist the temptation to prematurely 

optimize a style for organizational compatibility. Too often, when making any kind of 

request, we censor ourselves. We assume “they will never go for that” and present the 

diluted option without ever giving them an opportunity to say “yes” to the original/

ideal option. Instead, we should keep our simplified or phased approach to constraint 

adoption in our metaphorical back pocket. When you present the proposed architecture 

(as described in the next section in this chapter), begin by presenting your full vision 

of the new architecture and the process to get there. Only when a constraint is rejected 

outright by the teams should you retreat to the compromise option—and be prepared 

to do this right away, in the current conversational context. It is not what we typically 

do, but it is the optimal approach. In a study cited by Dr. Robert Cialdini, he found this 

approach can triple the number of “yes” responses to the exact same question.3

Keep in mind that an architectural style is not your system’s architecture. The 

architecture is the blueprints for the system. The style represents the constraints 

governing decisions within the blueprint.

�Phase V: Presenting Candidate Architectures for Review
It is at this point that the candidate style(s) should be presented to representatives of the 

various development teams. Your goal is to show one or more architectural blueprints 

for each candidate style and get feedback on the feasibility. These can be fairly high level 

at this stage but provide sufficient detail to show what the concrete implementation of 

the system will look like when following the various architectural styles. You will also 

communicate what it will take for the organization to get there.

3 Cialdini, R. (1993). Influence: The Psychology of Persuasion. Quill
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Invite team leads and the executive stakeholders that the team lead(s) report to. First, 

articulate the business context and your understanding of the immediate and long- 

term requirements. This represents the why of the architecture you are about to present. 

Answer any questions as they arise. Once you have reached consensus on the problem, 

present the candidate architecture(s).

Your goals in this meeting are as follows:

•	 Achieve alignment on the problem context and the desired outcomes

•	 Identify potential implementation challenges that must be addressed 

to move forward

•	 Foster a sense of cooperation and collaboration between the 

business, development teams, and architecture

The teams may have other ideas about how this system should be designed. Although 

you should be prepared to articulate why you are prescribing an alternative direction, 

the goal is not to railroad the teams but rather to collaborate. Rather than simply shutting 

down an idea, take time to understand the drivers behind these counterproposals. Strive 

to understand why the team representative feels their suggestion has merit. If you have 

already evaluated this option and rejected it for cause, communicate your evaluation and 

how you arrived at this conclusion. Ask if you have overlooked any key aspects and be 

open to the possibility that you have. Being honest and open-minded is crucial to building 

a collaborative relationship between architecture and teams and mirrors an approach 

championed in Dale Carnegie’s timeless book, How to Win Friends and Influence People, 

where he advises that “If you want to gather honey, don’t kick over the beehive.” Consider 

borrowing this turn of phrase from this work to diffuse potential conflict:

I may be wrong, I frequently am, let’s examine the facts

—Dale Carnegie4

As in the process detailed in Chapter 4, listen carefully to the various viewpoints 

expressed in this meeting and take detailed notes. Remember, this may be your final 

opportunity to course correct in the event of an error or omission. As such, approach 

these conversations with an open mind. Ultimately, what matters most is what is right, 

rather than who is right.

4 Carnegie, D. (1936). How to Win Friends and Influence People. Simon & Schuster
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Another, asynchronous approach to getting feedback on a candidate architecture, 

constraint, or project standard is to publish a Request for Comments (RFC) document.

An RFC is a formal document used in the technical community, most commonly 

seen in use by the Internet Engineering Task Force (IETF), to propose new standards, 

protocols, procedures, or revise on existing ones. These documents serve as the primary 

means by which protocols and standards are developed and disseminated across a 

community or organization.

Key Points About RFCs

	 1.	 Purpose: RFCs are used to propose and discuss new ideas or 

modifications to existing protocols and standards. They document 

the technical details and provide a basis for consensus building 

among experts.

	 2.	 Process: The process starts with the creation of an RFC draft, 

which is then reviewed and commented on by the community. 

After sufficient discussion and revision, it may be published as an 

official standard.

	 3.	 Numbering: RFCs are sequentially numbered, and once 

published, they are never revised or updated beyond notating 

errata or referencing superseding RFC. If changes are needed, a 

new RFC is created to supersede the old one.

	 4.	 Categories: RFCs can be informational, experimental, best 

current practice (BCP), or standards track documents. Standards 

track RFCs, in particular, can eventually become standards after 

going through a rigorous review process.

	 5.	 Historical Significance: The first RFC was published in 1969, 

and since then, they have become the cornerstone of Internet 

standards development, including foundational protocols 

like TCP/IP.

In essence, an RFC is a collaborative way for a technology community to develop 

and agree on the protocols and standards that underpin their work while providing 

transparency about decisions as well as the process leading up to them.
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If the RFC approach is new to an organization, you may face challenges with 

engagement as reviewing and commenting on RFC is not yet standard operating 

procedure. In such cases, a combination of publishing RFCs for asynchronous review, 

then hosting the real-time meeting described above will offer a suitable level of 

engagement for these discussions.

Each constraint that defines your architectural style will carry risk. Following the 

meeting or RFC process (or both), you will be poised to evaluate the risk associated with 

each candidate style and mitigate it. One useful tool for this approach is the constraint 

risk matrix (Figure 22-1).

Figure 22-1.  Constraint Risk Matrix

The risk associated with a constraint may be mitigated through offering various 

support resources to implementation teams. These might take the form of training, 

reference implementations, developer tooling, or some other mechanism depending on 

the unique situation of the teams and the constraints.

Although many of these support resources will land in the backlog of the architecture 

team to prepare, it is worth asking the lead of the team or teams who raised a concern 

if there are members of that team who may be interested in exploring the solution. 

Ideal candidates for such collaboration are developers who are naturally curious, 

enjoy exploring new ideas, and perhaps those interested in a future career in software 

architecture. Your collaborators in the various development teams will also be useful as 

reference points and champions of the architecture during implementation. Finally, this 

approach furthers a collaborative relationship between development and architecture.
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�Phase VI: Design and Document the Architecture
Once you have arrived at one or more styles that align with the current needs of the 

business (with a path to future evolution), a final architecture style must be selected and 

formally documented. Chapter 24 provides tools to document your architectural style as 

well as subsequent architecturally significant decisions.

Your work as an architect is not complete with the derivation or selection of an 

architectural style. From here, you will begin to describe the specific implementation 

of the systems. What are the components, where are their boundaries, how do they 

communicate? Which teams are responsible for which components? What does the 

runtime environment look like?

It is here your architecture goes from high-level architectural style to concrete and 

actionable blueprints. Again, Chapter 24 provides detailed guidance for documenting 

and diagramming architecture. Describing what your system will look like after adopting 

your chosen architectural style(s) forms the final, crucial steps that must take place 

before your initial design work is completed.

�Summary
The Tailor-Made Software Architecture Model is your tool for achieving a holistic fit 

between business needs and system capabilities. This chapter has guided you through 

the nuanced process of aligning architectural decisions with business priorities, 

emphasizing the importance of balancing trade-offs to achieve enough rather than 

an excess of certain capabilities. Whether you are tailoring an existing architecture or 

designing a new system, the key lies in thoughtful, measured adjustments that respect 

both the current organizational context and future evolution. By meticulously evaluating 

and adjusting architectural styles, considering temporal fit, organizational readiness, 

and fostering collaboration through tools like RFCs, you are positioned to design 

architectures that are not only technically sound but also pragmatically aligned with 

business goals and organizational reality. Your success as an architect hinges on this 

delicate balance—where every decision is justified, every constraint purposeful, and 

every system fit for its unique environment and future evolution.
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CHAPTER 23

Paved Roads 
and Variances

How can organizations streamline their development processes and ensure 
that their teams are productive and aligned? The solution lies in adopting 
the ‘paved road’ approach.

—Joshua Morris

To be effective as a software architect, there are many core truths we must accept. 

Among these

•	 There are no one-size-fits-all solutions in software architecture.

•	 There are multiple paths to achieve an end.

•	 Architectural constraints are only part of the answer.

The precision of fit offered by an architectural style is inversely proportional to 

the scope of the architecture. A large and complex system that is comprised of many 

subdomains with different architectural requirements cannot be effectively served by a 

single style.

Some architectural styles are often portrayed as ‘silver bullet’ solutions for 
all forms of software. However, a good designer should select a style that 
matches the needs of the particular problem being solved.

—Roy Fielding

https://doi.org/10.1007/979-8-8688-0410-6_23#DOI
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Fielding’s words ring true a quarter century after they were written1 and will continue 

to resonate for the foreseeable future. Does this mean we should treat each subdomain 

as discrete and disjoint entities, requiring a distinct architectural style for each? Not 

necessarily. This approach will often result in a fragmented ecosystem of tools, practices, 

conflicting architectural constraints, increased cognitive load, and an inconsistent 

level of knowledge and expertise. Instead, seek to define a top-level architectural style 

from which other styles in the system are derived. Remember, an architectural style is 

simply a named, coordinated set of architectural constraints. Styles may be composed 

of individual, atomic constraints, or they may be comprised of a combination of other 

styles and individual constraints.

A top-level style specifies the core, guiding principles that govern all development 

within the system. You, or architects closer to the various problem domains, will 

then define new styles, derived from the top-level style that will apply to individual 

subdomains or subsets of the system’s components.

If, over the course of your career, you find yourself in an Enterprise Architect role, you 

may adopt this same approach to define a shared foundation for architecture within the 

enterprise or technical ecosystem. In this role, your primary responsibility is to ensure 

that the IT infrastructure and software systems are not only effective and efficient but 

also flexible enough to adapt to the organization’s evolving needs. By defining high-level, 

enterprise-wide governing principles, you can ensure the enterprise’s entire hierarchy of 

architects is aligned in both mission and approach. As the architecture roles get closer to 

implementation teams, the precision of the styles increases while adhering to common 

constraints and tooling. An example of such a hierarchy is depicted in Figure 23-1.

1 Fielding, R. Architectural Styles and the Design of Network-based Software Architectures. Doctoral 
dissertation, University of California, Irvine, 2000
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Figure 23-1.  Hierarchy of Architecture Roles

The top-level architectural style that cascades down throughout the organization is 

an example of a paved road.

�Paved Roads
In software development and architecture, the concept of paved roads refers to a set of 

common architectural constraints, preferred practices, tools, languages, and frameworks 

that are officially endorsed, supported, or prescribed within an organization. These 

are the paths that have been tested, optimized, evaluated for holistic fit, and deemed 

the most efficient and reliable for developers to follow. Think of it as a well-maintained 

highway, where everything is smooth, predictable, and designed to get you to your 

destination with minimal friction.
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The idea is to reduce cognitive load and decision fatigue by providing developers 

with a clear, standardized way of building, deploying, and maintaining software. When 

you follow the "paved road," you are leveraging prebuilt infrastructure, battle-tested 

libraries, and standardized processes that have been refined over time. This does not 

just make individual development tasks easier—it also aligns the entire team's efforts, 

ensuring consistency and reducing the risk of costly mistakes.

However, the paved road concept is not about stifling creativity or innovation. It is 

about providing a reliable, well-lit path that allows teams to move quickly and efficiently 

while reserving the off-roading for when it is truly necessary. When a team chooses to 

deviate from this path, it should be a deliberate decision, made collaboratively with 

architecture while maintaining full awareness of the trade-offs and potential challenges.

Some paved roads are highly prescriptive. For example, the Choreographed 

Event-Driven Abstract Style (Chapter 17) includes a constraint that prescribes PubSub 

messaging but does not explicitly name a particular PubSub. The cohesiveness of the 

system will quickly fall apart if some teams adopt Kafka while others adopt a fan-out 

configuration of RabbitMQ, while others adopt yet another approach. A paved road, in 

this case, would define a single common messaging platform. This also points to a key 

distinction between an architectural style and any particular implementation. As Fielding 

points out, both architectures and architectural styles are abstractions that allow us to 

design and reason about concrete systems.

Architecture is therefore an abstraction of implementation, and styles are 
the named patterns by which we can understand architectures and archi-
tectural design.

—Roy Fielding2

Other paved roads offer implementation teams limited degrees of freedom. For 

example, based on the skills and expertise within the organization, you may define 

three options for the choice of a database (e.g., “you can use PostgreSQL, DynamoDB, 

or Redis”). You may also leave the choice of architectural style for a given subdomain or 

component to development teams (e.g., “you can follow architectural style A, B, or C”); 

however, as an exercise in architectural thinking, the team should provide a justification, 

perhaps in the form of an Architectural Decision Record (introduced in the next 

2 Fielding, R. (2008). On Software Architecture. Untangled. https://roy.gbiv.com/
untangled/2008/on-software-architecture
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chapter). This gives some autonomy back to implementation teams without completely 

compromising the architecture of the system. It also frees teams from the paradox of 

choice3 where an overabundance of options induces anxiety in individuals and leads to 

general unhappiness with any chosen outcome.

As you continue through your career as an architect, you will inevitably find unique 

scenarios where none of the paved roads are suitable for a particular system component 

or edge case. In this case, you must determine if any of the supported options will be 

good enough or if architecture must issue a variance.

�Variances
A variance refers to an approved deviation from the established architectural standards 

or guidelines within an organization. It is akin to offering a different route than the one 

mapped out by your paved roads. Variances are intentional choices to diverge from the 

norm, often driven by specific project needs, environmental limitations, or innovative 

approaches that do not quite fit within the predefined framework.

In an ideal world, every project would neatly follow the architectural blueprint 

laid out by the architect. However, neither of us lives in “ideal worlds,” and real-world 

scenarios often require flexibility. A variance might be necessary when a particular 

technology, pattern, or approach offers significant advantages for a specific use case 

that the standard architecture does not fully accommodate. For example, a team might 

opt to use a different database technology because it better supports the performance 

requirements of a new application, even if it is not the standard choice for the 

organization.

�The Role of Variances in Software Architecture
Variances serve as a safety valve in the rigid structure of architectural governance. They 

allow for innovation and adaptability while ensuring that these deviations are carefully 

considered and managed. When a variance is requested, it typically goes through a 

3 Schwartz, B. (2004). The Paradox of Choice: Why More Is Less. Harper Perennial
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review process where its merits, risks, and long-term implications are evaluated. This 

helps balance the need for consistency across the organization with the flexibility to 

meet unique project demands.

Variances are a necessary part of navigating the complex landscape of technology 

decisions. They provide the flexibility to address unique challenges while ensuring that 

these decisions are made with full awareness of their implications. When managed 

correctly, variances can contribute to innovation and agility without compromising the 

cohesion and reliability of the organization’s architectural framework.

�Managing Variances
Effective management of variances is crucial. Each variance should be documented 

as a formal architectural decision with a corresponding architecture decision record 

(Chapter 24). This documentation must communicate a clear rationale for why the 

deviation is necessary and how it aligns with the project’s goals as well as defining a 

specific and narrow scope for this variance. It is also essential to assess the potential 

impact on the broader architecture, such as integration challenges, increased 

maintenance costs, or potential technical debt. By keeping a close eye on variances, an 

organization can ensure that these deviations remain the exception rather than the rule, 

preserving the integrity of the overall architecture.

�Summary
In the evolving landscape of software architecture, balancing standardization with 

flexibility is paramount. The concepts of paved roads and variances offer a framework for 

achieving this balance. Paved roads provide a solid, reliable foundation for development, 

ensuring consistency and efficiency across the organization. They reduce cognitive load, 

minimize risks, and streamline the development process, allowing teams to focus on 

delivering value.

At the same time, variances acknowledge the reality that one size does not fit all. 

They offer the flexibility to innovate and adapt to unique challenges when the paved 

road is not sufficient. However, these deviations must be carefully managed to prevent 

fragmentation and maintain the integrity of the overall architecture.
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As an architect, your role is to guide the organization through these decisions, 

ensuring that paved roads are followed where possible and that variances are well 

justified and thoughtfully implemented. This balance of consistency and adaptability 

is what allows an organization to build robust, resilient systems that can evolve with its 

needs, driving long-term success.
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CHAPTER 24

Documenting Architecture
An architecture that is not documented, and not communicated, may still 
be a good architecture, but the risks surrounding it are enormous.

—Len Bass

As you have seen throughout this book, the architectural capabilities of a system are the 

product of architecturally significant decisions. Unfortunately, it is not always clear to 

all involved which decisions are architecturally significant, the broader scope of these 

decisions, the “why” behind them, and how they interact to form a cohesive system.

For an architecture to be successful, it must be understood. For example, when the 

importance of a given decision is not widely understood, the development teams may 

overlook these decisions when they are not clearly communicated or simply ignore them 

if the teams lack consensus on the decision drivers. Likewise, both the parts and the whole 

must be understood. Effective architects are effective communicators, and this chapter focuses 

on several documentation and diagramming tools to support your efforts. The artifacts 

you create can then be document controlled, versioned, cross-linked, and searchable. 

Publication in this manner will scale your communication across the organization.

To begin, we will look at an essential artifact for architects everywhere, the 

Architectural Decision Record.

�Architectural Decision Records (ADRs)
An ADR is simply a document that captures when, why, and how every architecturally 

significant decision was made. Documentation is, undoubtedly, one of the least exciting 

or popular aspects of software engineering and architecture. I have a uniquely strong 

aversion to writing documentation. However, I have learned through bitter experience 

to never “pencil whip” an ADR; instead, I approach every ADR with focus, precision, and 

attention to detail. Why are ADRs so important?

https://doi.org/10.1007/979-8-8688-0410-6_24#DOI
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�ADRs Serve You
First, ADRs offer an environment to ruthlessly evaluate a decision. Neither you nor I 

am immune to biases and blind spots. In other words, we might naturally gravitate to a 

familiar or favorite approach or technology even when it is not the optimum solution 

to a given problem. We may also easily overlook an option that is not top of mind when 

we are making an architectural decision. The ADR is the first environment where we 

prove the merit of our ideas. The ADR serves as a fast feedback loop on the validity of our 

decisions.

An ADR with a clear problem context and decision drivers, which weighs the 

pros and cons of all relevant options, will sometimes surprise us by illuminating an 

overlooked blind spot that leads us to pivot to a different decision.

�ADRs Serve Future You
As a project grows and evolves over time, it becomes increasingly difficult to keep the 

entire architectural design and context in your head. At many points in your career, 

you—or a new architect on the team—will find certain decisions mystifying. The 

question in this moment will be “why are we doing this thing that way?” The ADR that 

captured that decision would provide a detailed answer to that question.

An ADR that captures a past decision will necessarily include the context and drivers 

behind that decision. This is crucial as the decision context might change over time. 

Capturing both the decision and the underlying drivers that led to that decision will 

provide tools to reevaluate the decision over time and determine when that decision is 

no longer relevant. In this case, you will document a new decision based on the present 

problem and business context. This new ADR will supersede the existing ADR.

You may find yourself in an organization where the creation and publication of 

ADRs has not, historically, been standard operating procedure. In such cases, both 

architecture and implementation teams will typically continue to follow established 

conventions without understanding their original purpose and motivation. Retroactively 

creating ADRs will aid in understanding the historical decisions and enable change and 

innovation where appropriate.

Every Architecture Decision Will Be Challenged.
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Additionally, well-crafted ADRs potentially free future you from relitigating every 

decision over and over again. The recommended structure for ADRs below not only 

communicates why a particular option was chosen, but why competing options were 

not. As such, we can avoid lengthy arguments with implementation teams who may 

prefer other approaches that are more familiar, productive, or performant. Instead, we 

simply point to the ADR that captures the what and the why of the decision.

This assumes that the alternative idea—and its trade-offs—is present in the ADR. If 

the existing ADR did not evaluate that alternative, it may indicate you have overlooked a 

viable alternative option. In this case, take this as constructive feedback to increase your 

diligence in future ADRs. To settle the dispute, either you or the developer(s) should 

submit a superseding ADR that includes this additional option for review and approval.

�ADRs Serve Teams
Teams that are committed to excellence still require a concrete definition of what 

“good” looks like. ADRs are part of this definition and form the basis of a permanent 

and ongoing point of reference. Moreover, ADRs offer an efficient communication 

mechanism that aids in the dissemination of key decisions to teams.

Additionally, ADRs are a tool to foster better relationships with development and 

implementation teams. Architecture often has a reputation for operating from an “Ivory 

Tower” that is disconnected from the reality of teams. Architecture decisions can often 

seem arbitrary or excessive. An ADR that effectively captures the what, the how, and the 

why will challenge this misconception.

�ADRs Serve Future Teams
ADRs offer an asynchronous mechanism for communicating and cascading architectural 

decisions across the organization to both existing and new team members over time. 

ADRs enable efficient onboarding for new teams without the need for architecture 

to “hop on a call” to onboard each new team or teammate on a per-architectural 

decision basis.
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�The Anatomy of an ADR
Each ADR captures and documents a single, granular, decision that is germane to 

the architecture of the project or system. This section describes an ADR’s constituent 

components.

�Title and Metadata
The first part of an ADR will include a title that captures the solved problem and 

solution. Each ADR will have a status (e.g., proposed, rejected, accepted, deprecated, or 

superseded) along with the names of the individual(s) responsible for the decision. The 

metadata will also include the date of the decision and optionally link to a work item 

related to this decision. Figure 24-1 shows an example of this section of an ADR.

Figure 24-1.  ADR Title and Metadata Template

�Context and Problem Statement
The next section of an ADR communicates the problem context. You will typically 

articulate this context as either a statement of fact or in the form of a question. 

Figure 24-2 shows a template for this section of an ADR.

Figure 24-2.  ADR Context and Problem Statement Template
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�Decision Drivers
In this section, you will communicate the internal and external factors that must be 

satisfied by the final decision. As you may recall, the requirements analysis process 

detailed in Chapter 4 recommended making notes of key statements from business 

stakeholders. This is a good place to reference both the statements and the individual(s) 

who made the statements. In addition to backing up the statements in this section, these 

references allow you to borrow authority from business stakeholders. Figure 24-3 shows 

an example of this section in an ADR.

Figure 24-3.  ADR Decision Drivers

�Considered Options
This is the section of the ADR where your up-front effort will first pay dividends in 

the communication process. Here, you list all the options you have considered when 

making the decision. When considering options, you want to look at the options that 

make sense in the context of architecture as well as attempting to anticipate alternatives 

that development teams may request or counter with. It is important to understand 

that the latter options are not simply straw men to knock down; instead, you must 

treat each option with equal rigor; otherwise, you risk undermining the credibility 

of the architecture team. At this point of the document, you are merely enumerating 

possibilities. A more detailed analysis will come later. Figure 24-4 shows an example of 

this section in an ADR.
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Figure 24-4.  Considered Options Section of an ADR

�Decision Outcome
Next, you will communicate the chosen option, the decision outcome. This section 

communicates not only the decision but also a summary that communicates the why 

behind that decision. Figure 24-5 shows an example of this section.

Figure 24-5.  Decision Outcome Section of an ADR

These four sections provide the minimum necessary information for the reader 

to understand the decision. This structure essentially offers a tl;dr that shows respect 

for the reader’s time, allowing them to get to the meat of the decision quickly, offering 

an efficient way for the reader to navigate information effectively, and this removes a 

common barrier to entry present in most documentation. However, this is not the end of 

the document.
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�Positive and Negative Consequences
Here, we communicate both the good and the bad of the decision. Remember the first 

law of software architecture,1 every decision is a trade-off. In this section, the author 

provides full transparency of both the good and the bad outcomes that emerge from 

this decision. This is also a test of your understanding of the decision. If you have not 

identified any negative consequences of the decision, the odds are you have simply 

overlooked the trade-off. The corollary to the first law of software architecture states that, 

if you believe you have identified an architecture decision that is not a trade-off, it is; you 

just have not identified the trade-off yet.

This section will also head off many debates with implementation teams. For 

example, if a developer prefers a different option or approach than the decision 

outcome, they will likely seize upon a negative consequence of the decision to challenge 

the ADR. If you have done your due diligence when authoring this document, the ADR 

will express that negative consequence and will show both how and why the positive 

consequences outweigh the negatives in this context. Conversely, if you have not 

performed sufficient due diligence, you have left the architecture decision open to being 

attacked or ignored. Figure 24-6 shows an example of this section.

Figure 24-6.  Positive and Negative Consequences of the Decision

1 Ford, N., & Richards, M. (2020). Fundamentals of software architecture: An engineering approach. 
O’Reilly Media
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�Pros and Cons of the Options
This section is where you demonstrate that you have done your due diligence and 

carefully considered each option. This is also the section where you prove to yourself that 

this is the optimum decision in the current problem context. Again, it is important not to 

leave the decision open to attack by omitting key factors that might have led to a different 

decision outcome. The more effort you put into this section, the stronger the ADR will be 

when it faces inevitable scrutiny. Figure 24-7 shows an example of this section in an ADR 

template.

Figure 24-7.  Pros and Cons of Each Option

�Links
An ADR is a lightweight document, and its length should not exceed a couple of pages. This 

closing section is where an interested reader who has made it to the end of the document 

can go to learn more. This section might include links to implementation guidance, 

tutorials, further reading, or other related documents that support the ADR or those 

intending to follow the ADR. Figure 24-8 shows an example of this section of an ADR.
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Figure 24-8.  Links Section in an ADR

�The Constraint Document
Architectural constraints are a special class of architectural decisions. Although the structure 

of an ADR will adequately capture any given architectural constraint, I recommend using a 

slightly different format to capture and communicate architectural constraints.

In this book, we have adopted the established convention of defining architectural 

constraints; however, you may not wish to frame them this way for communication with 

non-architectural audiences. Depending on the project and organization, you may want 

to choose a less restrictive sounding moniker such as “Governing Principles.”

�Title and Metadata
Like ADRs, a constraint document begins with Title and Metadata (Figure 24-9).

Figure 24-9.  Constraint Decision Record Title and Metadata

�Motivation
The second law of software architecture states that “Why is more important than how.”2 

This section outlines the why behind the constraint the document describes. This is, 

again, where you return to your efforts from the requirements analysis process described 

2 Ford, N., Richards, M. (2020). Fundamentals of Software Architecture: An Engineering Approach. 
O’Reilly
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in Chapter 4. You want to be clear when constraining implementation teams’ degrees 

of freedom and communicate that this is not an arbitrary decision. Cite or link to 

authoritative statements, people, and documents. See Figure 24-10 for an example of this 

section.

Figure 24-10.  Constraint Motivation

�Description
It is here you describe the constraint. A good description section communicates not 

only the constraint but also what it means to implementation teams. Where appropriate, 

provide diagrams or high-level implementation details (more detailed guidance will be 

linked later in the document). Figure 24-11 shows this section of the constraint document.

Figure 24-11.  Constraint Description

�Considered Alternatives
The table at the end of Chapter 21 listed various constraints and their influence on 

the architectural capabilities of key interest discussed in this book. Look at any single 

column, and you will see numerous constraints that will positively influence that 

capability. There is almost always more than one option. The effort to enumerate these 

options will benefit both you and your reader. You will be in a position to release this 

document and decision with much more confidence as this effort should force you to 

perform necessary due diligence, and it will benefit your reader by communicating the 

level of care and consideration that went into the decision. As such, you want to express 

succinctly in this document why the other options were not selected. Figure 24-12 shows 

an example of this section.
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Figure 24-12.  Considered Alternative Constraints

�Risks
An architecture only has value if implementation teams adopt and follow its core, 

guiding principles. Building on Chapter 22, we must be continuously mindful of the 

various risks associated with a given architecture. Performing this analysis at the 

constraint level is a useful tool to help ensure you do not overlook potential risks. We 

must ask ourselves the question “How might this constraint fail? What would be the 

outcome?” and express these risks in this document. Figure 24-13 shows this section of 

the constraint document.

Figure 24-13.  Constraint Document Risks Section

�Support
Unfortunately, we cannot be consistently effective if we design an architecture and 

simply “throw it over the wall” to the implementation teams. We are not operating 

from the architectural “ivory tower”; instead, we aim to align technology strategy with 

business strategy. Because architecture necessarily constrains developer’s degrees of 

freedom, every constraint must come with support. Support can come in many forms, 

including tutorials, training, reference implementations, and tooling. In this section, 
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you will enumerate the support resources available to implementation teams. The more 

care and detail you put into this section, the more sustainable the constraint’s adoption. 

Figure 24-14 shows an example of this section.

Figure 24-14.  Constraint Document Support Section

�Implementation Guidance
The next section of the constraint document will detail any necessary implementation 

guidance and often forms part of the “paved roads” referred to in the previous chapter. 

These are typically additional, external links to keep this document lightweight which 

might include, but not limited to

•	 Diagrams

•	 Reference implementations

•	 Standards

•	 Tooling

•	 Recommended frameworks/infrastructure

When linking to external references, it is often helpful to link to both normative and 

non-normative documents.

Normative documents formally describe a standard and represent the “letter of 

the law” as it were. Normative documents are written with the rigor of a legal contract 

and are the definitive source of truth. Non-normative documents are more informal 

in writing style and are usually friendlier to the reader. However, when a document is 

non-normative, it means any error or omission in the document cannot be construed 

as overriding the standard. As an example, a blog post describing how to implement 
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the Internet calendar specification is non-normative, while RFC 2445 provides a more 

detailed and precise, normative, description of the standard. The blog post would be a 

friendlier read, but RFC 2445 is the authoritative source of truth on the topic (and should 

probably be linked or referenced in the blog post from this example).

�Governance
As part of our due diligence as architects, we must also think about how a given 

architecture constraint will be enforced. For this chapter, we will briefly mention this 

section of a constraint document and its role in capturing and communicating the 

governance and enforcement mechanisms for a given constraint; however, Chapter 

25 goes into architectural governance in more detail. Your aim here is to capture 

and communicate how adherence to a constraint is measured by architecture, by 

implementation teams, and how compliance is enforced. Figure 24-15 shows an example 

of this section.

Figure 24-15.  Governance Section of a Constraint Document

�Resources
We close our constraint document with any additional resources that might be 

valuable for the reader or implementation teams. These resources might include ADRs, 

other constraint documents, or further reading that does not fit in any other section. 

Figure 24-16 shows an example of this section.

Figure 24-16.  Other Resources
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�The Architectural Style Document
Although it is the atomic constraints that define the architectures you produce, an 

architectural style is the molecular delivery that describes the style. One more important 

document in your arsenal is, therefore, the architectural style document. This document 

is a high-level document that defines the style, links to the style’s defining constraints, 

other relevant ADRs, and justifies this style’s existence in the current context. As such, 

an architectural style document may be general and potentially reusable; however, the 

production on an architectural style should communicate the motivation of the style 

in the project’s context. The architectural style document consists of the following six 

sections.

�Title and Introduction
This section includes your architectural style’s name and a brief introduction of the 

style. In contrast with ADRs, this document does not include status, date, or author 

information as an architectural style document simply communicates the style’s defining 

constraints and scope. The decision to adopt or deprecate a style and migrate to a new 

style will be communicated in an ADR. In other words, the system evolves, not the 

style (since a different set of constraints begets a different style). Figure 24-17 shows an 

example of this section.

Figure 24-17.  Architectural Style Title and Introduction
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�Motivation
This section briefly summarizes why this style was created and why it matters. 

Remember, every decision that originates from architecture will be challenged. We must 

justify our decisions.

This section will be strongly informed by the notes you took in the requirements 

analysis process in Chapter 4. Your document will carry more weight if you rigorously 

cite your sources. Figure 24-18 shows an example of this section.

Figure 24-18.  Architectural Style Motivations

�Summary of Constraints
This section simply lists the style’s defining architectural constraints, with links to each 

constraint’s defining document, the Constraint Definition Record (CDR). Figure 24-19 

shows an example of this section.
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Figure 24-19.  Summary of Constraints Section

�Scope
As we have established throughout this book, architecture is not about one-size-fits- 

all solutions. In a single, nontrivial system, there may be multiple architectural styles 

that apply to different subdomains or portions of the system. Some styles may exist as 

a tightly scoped variance or apply to a subset of system components. Here, you will 

explicitly define where the style applies and where it does not, linking to individual ADRs 

as appropriate. Figure 24-20 shows an example of this section.

Figure 24-20.  Architectural Style Scope Section

�High-Level Overview
Here, you will provide a high-level description of the architectural style. It can sometimes 

be helpful to include architectural diagrams (see below) or link to ADRs, requirements, 

and other resources as needed. When providing diagrams, highlight how the various 

constraints factor in. Figure 24-21 shows an example of this section.

Figure 24-21.  Architectural Style Overview Section
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�Links
The final section of this document is a links section to provide helpful resources for 

implementation teams. These may be training, tutorials, reference implementations, or 

other relevant documents not previously linked. Figure 24-22 shows an example of this 

section.

Figure 24-22.  Example Links Section

�Diagramming and Visualizing Architecture
Although the documents described above will capture much of the essence of the 

architecture you have created, diagrams help bring the gap between architectural style 

and implementation. Here, you are no longer simply enumerating the architectural 

constraints that define the style but also what the system that should adopt this style will 

look like.

You have, no doubt, heard the adage “a picture is worth 1000 words.” A picture 

of the architecture alongside your architecture documentation will save readers the 

effort of trying to visualize the architecture based on hundreds of thousands of words 

of documentation. A diagram will also reduce the risk of conflicting interpretations 

as, between documents and diagrams, little is left to the imagination. This assumes, 

of course, that the architect responsible for producing the diagram is a skilled visual 

communicator.

Ask somebody in the building industry to visually communicate the archi-
tecture of a building and you'll be presented with site plans, floor plans, 
elevation views, cross-section views and detail drawings. In contrast, ask a 
software developer to communicate the software architecture of a software 
system using diagrams and you'll likely get a confused mess of boxes and 
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lines … inconsistent notation (color coding, shapes, line styles, etc.), ambig-
uous naming, unlabeled relationships, generic terminology, missing tech-
nology choices, mixed abstractions, etc.

—Simon Brown3

The challenges in effectively visualizing a system’s architecture and the diversity 

of notational systems and tools led to the creation of the Unified Modeling Language 

(UML) by Rational Software in 19944 to facilitate a shared understanding of a system 

(not necessarily a software system), which was later adopted by the Object Management 

Group (OMG) as a formal standard in 1997. As UML grew in scope, complexity in its use 

grew in proportion. In the early 2000s, SysML was created as a lighter weight dialect of 

UML, led in part by OMG, to define and extend a subset of UML 2.0 that is purely focused 

on system design and engineering. In 2006, software architect Simon Brown began 

work on the C4 model as an alternative lightweight modeling technique for software 

architecture that, like SysML, has roots in UML. Although not yet a formal standard, C4 

(the focus of this section) is gaining traction in the architecture community.

Many architects eschew formal modeling techniques and proscriptive notation in 

favor of the friendlier and flexible drag-and-drop diagramming tools (e.g., LucidChart, 

OmniGraffle, Microsoft Visio, and others). Although these tools do not share the learning 

curve of formal modeling notations, there is value in the clear, unambiguous semantics 

of the latter. Tools like LucidChart offer a large library of existing shapes to satisfy various 

scenarios. However, those shapes do not share the precise semantics of UML (and its 

derivatives) which can lead to miscommunication. It is always important to include a 

legend of symbols in your diagrams, even when using formal graphical notations like C4. 

This can aid the reader in correctly interpreting the diagrams you produce.

The formal modeling notations are also more prescriptive than their “blank canvas” 

counterparts as to how to create various views of a system. Whether you use formal or 

informal visual notations, the guidance from the C4 model can be helpful. The entire C4 

model is Creative Commons licensed, and a helpful portion is reproduced below.

3 Brown, S. The C4 model for visualizing software architecture. Retrieved from https://c4model.
com. Licensed under CC BY 4.0.
4 Booch, G., Rumbaugh, J., Jacobson, I. (2005). The Unified Modeling Language User Guide 2nd 
Edition. Addison-Wesley Professional
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�C4 Abstractions
In order to create these maps of your code, we first need a common set of abstractions 

to create a ubiquitous language that we can use to describe the static structure of a 

software system. A software system is made up of one or more containers (applications 

and data stores), each of which contains one or more components, which in turn are 

implemented by one or more code elements (classes, interfaces, objects, functions, 

etc.). And people may use the software systems that we build. The people interacting 

with the software system forms the context. An example visualization of C4 abstractions 

is shown in Figure 24-23.
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�Person

A person represents one of the human users of your software system (e.g., actors, roles, 

personas, etc.).

�Software System

A software system is the highest level of abstraction and describes something that 

delivers value to its users, whether they are human or not. This includes the software 

system you are modeling, and the other software systems upon which your software 

system depends (or vice versa).

Unfortunately, the term “software system” is the hardest of the C4 model abstractions 

to define, and this is not helped by the fact that each organization will also have 

their own terminology for describing the same thing, typically using terms such as 

“application,” “product,” “service,” etc. One way to think about it is that a software system 

is something a single software development team is building, owns, has responsibility 

for, and can see the internal implementation details of. Perhaps the code for that 

software system resides in a single source code repository, and anybody on the team is 

entitled to modify it. In many cases, the boundary of a software system will correspond 

to the boundary of a single team. It may also be the case that everything inside the 

boundary of a software system is deployed at the same time.

�Container

Not Docker! In the C4 model, a container represents an application or a data store.  

A container is something that needs to be running in order for the overall software 

system to work. In real terms, a container is something like

•	 Server-Side Web Application: A Java EE web application running on 

Apache Tomcat, an ASP.NET MVC application running on Microsoft 

IIS, a Ruby on Rails application running on WEBrick, a Node.js 

application, etc.

•	 Client-Side Web Application: A JavaScript application running in a 

web browser using Angular, Backbone.js, jQuery, etc.
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•	 Client-Side Desktop Application: A Windows desktop application 

written using WPF, an OS X desktop application written using Swift 

or Objective-C, a cross-platform desktop application written using 

JavaFX, etc.

•	 Mobile App: An Apple iOS app, an Android app, a Microsoft 

Windows Phone app, etc.

•	 Server-Side Console Application: A standalone (e.g., “public static 

void main”) application, a batch process, etc.

•	 Serverless Function: A single serverless function (e.g., Amazon 

Lambda, Azure Function, etc.)

•	 Database: A schema or database in a relational database 

management system, document store, graph database, etc., such as 

MySQL, Microsoft SQL Server, Oracle Database, MongoDB, Riak, 

Cassandra, Neo4j, etc.

•	 Blob or Content Store: A blob store (e.g., Amazon S3, Microsoft 

Azure Blob Storage, etc.) or content delivery network (e.g., Akamai, 

Amazon CloudFront, etc.)

•	 File System: A full local file system or a portion of a larger networked 

file system (e.g., SAN, NAS, etc.)

•	 Shell Script: A single shell script written in Bash, etc.

•	 Etc.

�Component

The word “component” is a hugely overloaded term in the software development 

industry, but in this context a component is a grouping of related functionality 

encapsulated behind a well-defined interface. If you are using a language like Java or 

C#, the simplest way to think of a component is that it is a collection of implementation 

classes behind an interface. Aspects such as how those components are packaged (e.g., 

one component vs. many components per JAR file, DLL, shared library, etc.) are separate 

and orthogonal concerns.
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An important point to note here is that all components inside a container typically 

execute in the same process space. In the C4 model, components are not separately 
deployable units.

�C4 Diagrams
The C4 model prescribes different diagrams for different purposes. This guidance is 

helpful regardless of whether C4 is formally used. Each diagram provides a different 

perspective on the system that will be useful to different audiences.

�System Context Diagram

A System Context diagram is a good starting point for diagramming and documenting 

a software system, allowing you to step back and see the big picture. Draw a diagram 

showing your system as a box in the center, surrounded by its users and the other 

systems that it interacts with.

Detail is not important here as this is your zoomed out view showing a big picture of 

the system landscape. The focus should be on people (actors, roles, personas, etc.) and 

software systems rather than technologies, protocols, and other low-level details. It is 

the sort of diagram that you could show to nontechnical people. An example C4 system 

context diagram is shown in Figure 24-24.
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Figure 24-24.  A C4 System Context Diagram
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Scope: A single software system.

Primary elements: The software system in scope.Supporting elements: People 

(e.g., users, actors, roles, or personas) and software systems (external dependencies) that 

are directly connected to the software system in scope. Typically, these other software 

systems sit outside the scope or boundary of your own software system, and you do not 

have responsibility or ownership of them.

Intended audience: Everybody, both technical and nontechnical people, inside and 

outside of the software development team.

Recommended for most teams: Yes.

�Container Diagram

Once you understand how your system fits into the overall IT environment, a really 

useful next step is to zoom in to the system boundary with a Container diagram. A 

“container” is something like a server-side web application, single-page application, 

desktop application, mobile app, database schema, file system, etc. Essentially, a 

container is a separately runnable/deployable unit (e.g., a separate process space) that 

executes code or stores data.

The Container diagram shows the high-level shape of the software architecture 

and how responsibilities are distributed across it. It also shows the major technological 

choices and how the containers communicate with one another. It is a simple, high- 

level technology-focused diagram that is useful for software developers and support/

operations staff alike. An example C4 Container diagram is shown in Figure 24-25.
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Scope: A single software system.

Primary elements: Containers within the software system in scope.Supporting 
elements: People and software systems directly connected to the containers.

Intended audience: Technical people inside and outside of the software 

development team, including software architects, developers, and operations/

support staff.

Recommended for most teams: Yes.

Notes: This diagram says nothing about clustering, load balancers, replication, 

failover, etc. because it will likely vary across different environments (e.g., production, 

staging, development, etc.). This information is better captured via one or more 

deployment diagrams.

�Component Diagram

Next, you can zoom in and decompose each container further to identify the major 

structural building blocks and their interactions.

The Component diagram shows how a container is made up of a number of 

“components,” what each of those components are, their responsibilities, and the 

technology/implementation details. An example C4 Component diagram is shown in 

Figure 24-26.
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Scope: A single container.

Primary elements: Components within the container in scope.Supporting 
elements: Containers (within the software system in scope) plus people and software 

systems directly connected to the components.

Intended audience: Software architects and developers.

Recommended for most teams: No, only create component diagrams if you feel 

they add value and consider automating their creation for long-lived documentation.

�Code Diagram

Finally, you can zoom in to each component to show how it is implemented as code, 

using UML class diagrams, entity relationship diagrams, or similar.

This is an optional level of detail and is often available on demand from tooling such 

as IDEs. Ideally, this diagram would be automatically generated using tooling (e.g., an 

IDE or UML modeling tool), and you should consider showing only those attributes 

and methods that allow you to tell the story that you want to tell. This level of detail is 

not recommended for anything but the most important or complex components. An 

example code diagram is shown in Figure 24-27.
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Scope: A single component.

Primary elements: Code elements (e.g., classes, interfaces, objects, functions, 

database tables, etc.) within the component in scope.

Intended audience: Software architects and developers.

Recommended for most teams: No, particularly for long-lived documentation 

because most IDEs can generate this level of detail on demand.

�System Landscape Diagram

The C4 model provides a static view of a single software system, but, in the real world, 

software systems never live in isolation. For this reason, and particularly if you are 

responsible for a collection/portfolio of software systems, it is often useful to understand 

how all of these software systems fit together within a given enterprise, organization, 

department, etc. Essentially, this is a map of the software systems within the chosen 

scope, with a C4 drill-down for each software system of interest.

From a practical perspective, a system landscape diagram is really just a system 

context diagram without a specific focus on a particular software system. An example C4 

system landscape diagram is shown in Figure 24-28.
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Scope: An enterprise/organization/department/etc.

Primary elements: People and software systems related to the chosen scope.

Intended audience: Technical and nontechnical people, inside and outside of the 

software development team.

�Dynamic Diagram

A dynamic diagram can be useful when you want to show how elements in the static 

model collaborate at runtime to implement a user story, use case, feature, etc. This 

dynamic diagram is based upon a UML communication diagram (previously known 

as a “UML collaboration diagram”). It is similar to a UML sequence diagram although 

it allows a free-form arrangement of diagram elements with numbered interactions to 

indicate ordering. An example dynamic diagram is shown in Figure 24-29.
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Scope: A particular feature, story, use case, etc.

Primary and supporting elements: Your choice—you can show software systems, 

containers, or components interacting at runtime.

Intended audience: Technical and nontechnical people, inside and outside of the 

software development team.

Notes: Feel free to use a UML sequence diagram if you prefer that visual style.

�Deployment Diagram

A deployment diagram allows you to illustrate how instances of software systems and/

or containers in the static model are deployed on to the infrastructure within a given 

deployment environment (e.g., production, staging, development, etc.). It is based 

upon a UML deployment diagram.

A deployment node represents where an instance of a software system/container 

is running; perhaps physical infrastructure (e.g., a physical server or device), virtualized 

infrastructure (e.g., IaaS, PaaS, a virtual machine), containerized infrastructure (e.g., 

a Docker container), an execution environment (e.g., a database server, Java EE web/

application server, Microsoft IIS), etc. Deployment nodes can be nested.

You may also want to include infrastructure nodes such as DNS services, load 

balancers, firewalls, etc.

Feel free to use icons provided by Amazon Web Services, Azure, etc. to complement 

your deployment diagrams … just make sure any icons you use are included in your 

diagram key/legend. An example deployment diagram is show in Figure 24-30.
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Scope: One or more software systems within a single deployment environment (e.g., 

production, staging, development, etc.).

Primary elements: Deployment nodes, software system instances, and container 

instances.

Supporting elements: Infrastructure nodes used in the deployment of the 

software system.

Intended audience: Technical people inside and outside of the software 

development team, including software architects, developers, infrastructure architects, 

and operations/support staff.

�General Diagram Advice
To close this section, one final excerpt from the official C4 web page is reproduced for 

general advice that applies to any good software architecture diagram to ensure your 

diagram makes sense to the reader and can stand alone without you or another architect 

providing an external narrative. The C4 model makes the following recommendations:

Diagrams

•	 Every diagram should have a title describing the diagram type and 

scope (e.g., “System Context diagram for My Software System”).

•	 Every diagram should have a key/legend explaining the notation 

being used (e.g., shapes, colors, border styles, line types, 

arrowheads, etc.).

•	 Acronyms and abbreviations (business/domain or technology) 

should be understandable by all audiences or explained in the 

diagram key/legend.

Elements

•	 The type of every element should be explicitly specified (e.g., Person, 

Software System, Container, or Component).

•	 Every element should have a short description, to provide an “at a 

glance” view of key responsibilities.

•	 Every container and component should have a technology explicitly 

specified.
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Relationships

•	 Every line should represent a unidirectional relationship.

•	 Every line should be labeled, the label being consistent with the 

direction and intent of the relationship (e.g., dependency or data 

flow). Try to be as specific as possible with the label, ideally avoiding 

single words like “Uses.”

•	 Relationships between containers (typically these represent inter- 

process communication) should have a technology/protocol 

explicitly labeled.

�Summary
Effective documentation and communication are the bedrock of successful software 

architecture. As you have seen, capturing both the what and the why behind 

architectural decisions is not just a formality—it is a critical practice that ensures clarity, 

alignment, and continuity across teams and time. ADRs serve as the living memory of 

your project, providing a rigorous framework for decision-making, defending choices, 

and guiding future actions. By investing in meticulous documentation, you safeguard 

your architecture from misinterpretation and erosion, empowering both current and 

future teams to maintain, adapt, and evolve the system with confidence. The discipline 

of documenting and communicating your architecture is not merely about preserving 

the past; it is about securing the future of your project, your team, and your role as a 

software architect.
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CHAPTER 25

Architectural Enforcement 
and Governance

Even systems with well-defined architectures are prone to structural ero-
sion. The relentless onslaught of changing requirements that any successful 
system attracts can gradually undermine its structure. Systems that were 
once tidy become overgrown as PIECEMEAL GROWTH gradually allows 
elements of the system to sprawl in an uncontrolled fashion.

—Joseph Yoder and Brian Foote

Many well-designed architectures have failed to withstand the test of time. As the 

quote above notes, “Even systems with well-defined architectures are prone to structural 

erosion.”1

I want to stress that rarely is this the direct fault of developers. Should this type 

of decay occur over the course of your career, resist the temptation to assign blame. 

Llewellyn Falco, creator of strong-style pair programming and a leading exponent of the 

mob programming/teeming movement, advises teams to “treat everyone with kindness, 

consideration, and respect.” In his book on mob programming,2 he continues with a 

valuable maxim:

We always assume that the person who wrote the code before us did the best 
they could with the knowledge and circumstances they were in at the time 
they wrote it.

1 Foote, B., & Yoder, J. (1997). Big Ball of Mud. Presented at the 4th Conference on Patterns, 
Languages of Programs (PLoP)
2 Pyhäjärvi, M., Falco, L. (2015–2018). Mob Programming Guidebook. LeanPub. https://www.
mobprogrammingguidebook.com/

https://doi.org/10.1007/979-8-8688-0410-6_25#DOI
https://www.mobprogrammingguidebook.com/
https://www.mobprogrammingguidebook.com/
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This underscores a valuable truth that rarely (if ever) do the problems prevalent 

in decaying software system originate from maliciousness or a general disregard for 

architectural efforts; rather, these problems are a result of circumstances that are often 

outside the control of any single individual. This also means that such circumstances 

are also outside of our control. Our primary tool to combat structural erosion in a 

software system is to implement guardrails in the form of architectural governance and 

enforcement.

Architectural governance and enforcement are critical components of ensuring that 

an organization's software architecture aligns with its strategic goals, delivers value, and 

remains both aligned and sustainable over time. Proper governance helps to maintain 

the integrity of the architecture, while enforcement ensures adherence to standards, 

guidelines, and best practices.

�Define Clear and Comprehensive 
Architectural Principles
As you have seen throughout this work, the prevalence of pattern-driven architecture 

often leads to misunderstanding and misalignment of vision when the architecture 

is defined by a broad pattern label. The Tailor-Made approach of deriving a unique 

architectural style that does not suffer from an overloaded label and is instead defined 

by architectural constraints will do much to reduce the risk of such misunderstandings. 

Broad understanding of an architectural style is, instead, limited by your documentation 

and communication efforts. The previous chapter offered extensive guidance on 

valuable practices that foster alignment and clear, unambiguous communication of both 

the what and the why of your architectural style.

In documenting your architectural style, its defining constraints, and other relevant 

paved roads and variances, you establish a set of clear, well-documented architectural 

principles that reflect the project or organization’s strategic objectives, technical goals, 

and cultural values. Effort in capturing problem context, motivation, and decision 

drivers ensures that the architecture directly supports the organization’s mission, vision, 

and operational goals.

Your documentation efforts should also comprehensively communicate well- 

defined architectural standards and guidelines that cover key aspects of software 

development, including technology selection, system design, data management, 

security, and deployment. Architecture diagrams also provide a living reference through 
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which architecture and implementation teams may validate their work against to 

ensure ongoing alignment. Living is the operative word in this sentence. Regularly 

review and update these standards, diagrams, and architecture decisions to reflect new 

technological advancements, lessons learned from past projects, and changes in the 

business environment or underlying requirements.

It is critical that these resources are easily available to all concerned and should be 

published and updated in a specific location that is within convenient reach of teams. 

Beyond simply publishing documents, hosting regular tech talks, workshops, trainings, 

or architecture update meetings with development teams are effective ways to cascade 

and ensure everyone both understands the architectural standards and can apply 

them effectively. These efforts form part of the ongoing support that is crucial to avoid 

becoming an ivory tower architect.

Beyond communication with implementation teams, it is important that business 

stakeholders also understand the value of architecture. Often, structural decay is a 

consequence of shortsighted business decisions that put pressure on teams to cut 

corners and undermine the long-term viability of the overall architecture. Your detailed 

notes from the requirements analysis process (Chapter 4) will provide the business 

language to articulate to key stakeholders the long-term consequences of violating an 

important architectural principle for the sake of expediency. Do not expect this advice to 

be consistently dispositive and strive to trust that well-informed stakeholders are doing 

their best to balance short- and long-term needs.

�Establishing a Governance Framework
The ADR template described in Chapter 24 includes the “deciders” in the Title and 

Metadata section. In the beginning, this might just be you or the architecture team. A 

more sustainable, long-term approach is to formalize the “deciders” by creating a formal 

governance structure that includes an architecture review board (ARB) or equivalent 

body. The ARB should be composed of senior architects, technical leads, and key 

stakeholders from across the organization.

Beyond sustainability, an ARB increases transparency and helps to further 

foster a culture of collaboration and shared ownership. For your ARB or other 

governance frameworks to operate smoothly, it is important to clearly define roles and 

responsibilities. This includes who is responsible for approving architectural decisions, 

managing variances, and enforcing standards.
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This process democratizes decision-making. However, you should implement 

structured processes for decision-making, including the approval of architectural 

designs, technology stacks, and variances. Ensure that these processes are transparent, 

consistent, and efficient.

Within your governance framework, you must also establish a formal process 

for requesting and approving variances from architectural standards. This process 

should include a thorough evaluation of the proposed variance’s impact on the overall 

architecture, including risks, benefits, and trade-offs/negative consequences. Ensure 

that every approved variance is documented in detail, including the rationale, scope, 

and conditions under which it was granted. This documentation should be easily 

accessible for future reference. You, or the governance body, should regularly review 

the implementation of variances to ensure teams applied these as intended. Conduct 

periodic reviews to assess whether variances are still necessary or if they should be 

phased out.

Design your governance framework to scale as the organization grows. This 

includes planning for the addition of new teams, technologies, and business units while 

maintaining architectural coherence. Also, ensure that your governance framework 

can adapt to new innovations and changes in the technology landscape. This might 

involve setting up innovation labs or “skunkworks” teams that can experiment with novel 

approaches outside the constraints of the standard governance model.

�Architectural Enforcement Mechanisms
There are many avenues available for architectural enforcement. The most basic 

option is to perform periodic architecture or code reviews. This is especially important 

for critical projects or those involving complex or novel technologies. These reviews 

should assess compliance with established standards and identify any potential risks or 

deviations. Although simple, the primary challenge with this approach is one of scale. 

As the organization grows, this process can quickly place an untenable burden on the 

architecture team or otherwise cause architecture to become a bottleneck, undermining 

the value of your contributions to the project and the organization. This approach can 

also only identify deviations after they have happened. If the architecture is frequently 

ordering rework, this can foster an adversarial relationship between development and 

architecture.
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As an alternative, consider that the easiest problem to fix is the one that 

never happened. W. Edwards Deming pioneered important improvements in the 

manufacturing sector with his Total Quality Management (TQM) strategy,3 and his work 

continues to influence our modern DevOps movement. One of his famous 14 Points for 

Management states the following:

Cease dependence on inspection to achieve quality. Eliminate the need for 
inspection on a mass basis by building quality into the product in the 
first place.

A key component of Deming’s theories around quality is to empower every 

individual on the factory floor to stop the entire line at any time as soon as they discover 

a problem. The modern equivalent of this is a continuous delivery pipeline that contains 

quality gates.

When we think about quality gates in software delivery, the emphasis is usually on 

automated testing and static analysis. Although these tools have immense value, code 

that is behaviorally correct is not necessarily architecturally correct.

In Chapter 14, you learned about the Modular Monolith Abstract Style. In this 

style, each domain module is implemented as a separate package or assembly, and 

all classes are scoped internal to enforce and maintain modularity and decoupling 

across components. When developers follow this practice, the structure of the system 

is maintained, even in a shared codebase. When the time comes to decompose that 

monolith into a Service-Based style, the process is trivial if no developer ever decides to 

cut corners. Consider the scenario where a team is coding down to the wire to prepare for 

that Friday night deployment that we prefer not to talk about. In the moment, it would 

seem to be such a trivial sin to, just this one time, couple two modules by violating the 

architecture’s modularity constraints. This is where our CI/CD pipelines must “halt the 

assembly line” because it has detected a quality violation.

You can accomplish this by introducing automated architectural enforcement. My 

go-to tool for this purpose is Sonargraph (https://www.hello2morrow.com/products/
sonargraph). Sonargraph is a powerful static code analyzer that allows you to monitor a 

software system for technical quality and enforce rules regarding software architecture, 

metrics, and other aspects in all stages of the development process. One aspect of 

Sonargraph is a DSL to describe software architecture, and, through this, we can define 

3 Deming, W. E. (1986). Out of the Crisis. MIT
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rules that define permitted and prohibited interactions between modules. Integrated 

into a CI pipeline, Sonargraph will immediately detect a violation as soon as the build is 

triggered, halting the process and informing the developer of the violation.

Other tools in this vein include ArchUnit (https://www.archunit.org/), a free, 

simple, and extensible library for checking the architecture of your Java code using any 

plain Java unit test framework. ArchUnit’s .NET counterpart is the C# fork of ArchUnit, 

ArchUnitNet, a free, simple library for checking the architecture of C# code. Another 

.NET alternative inspired by ArchUnit is NetArchTest (https://github.com/BenMorris/
NetArchTest), which offers a fluent API for .NET Standard that can enforce architectural 

rules in unit tests. At the time of this writing, ArchUnitNet seems to be more active than 

NetArchTest.

When designing APIs that must conform to a standard, Spectral (https://
stoplight.io/open-source/spectral) offers an open source API style guide enforcer 

and linter.

These tools and others aid in integrating architectural governance with DevOps 

practices to ensure that architecture standards are enforced throughout the software 

delivery lifecycle.

�Empower Teams to Succeed
Invest in continuous education and training for architects and development teams 

to keep them updated on the latest architectural practices, tools, and technologies. 

Encourage open communication and collaboration between architects, developers, 

and other stakeholders. This can be facilitated through regular meetings, architecture 

workshops, and collaborative tools.

Also, consider creating communities of practice or guilds, where architects and 

developers can share knowledge, discuss challenges, and collaboratively solve problems. 

This fosters a sense of ownership and collective responsibility for architectural integrity.

Deming consistently focused on creating a culture of continuous improvement; 

I encourage all architects to do the same in collaboration with software development 

leadership. You should regularly hold retrospectives on architectural governance 

processes to identify what’s working and what needs improvement. Involve a broad 

range of stakeholders in these discussions to get diverse perspectives.
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Architectural governance can be disruptive initially. It is helpful to use pilot 

programs to test new approaches or tools before rolling them out across the 

organization. This allows you to identify potential issues and refine your approach based 

on real-world experience.

Finally, recognize that architectural governance is not static. Be willing to evolve your 

governance processes as the organization’s needs change, technology advances, and 

new preferred practices emerge.

�Summary
Architectural governance and enforcement are vital for ensuring that an organization’s 

software architecture is aligned with its business goals, remains robust, and can adapt 

to changing needs. By defining clear principles, establishing a strong governance 

framework, and implementing both automated and manual enforcement mechanisms, 

you can maintain the integrity of your architecture while allowing for necessary 

flexibility. Managing variances, fostering a culture of excellence, and ensuring alignment 

with agile and DevOps practices are also crucial components of effective governance.

Moreover, by continuously measuring effectiveness, planning for evolution, and 

encouraging ongoing improvement, you can create a governance model that not only 

supports current operations but also positions the teams or organization for future 

success. In essence, effective architectural governance is about balancing control 

with flexibility, ensuring that innovation thrives within a well-defined and sustainable 

framework.
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CHAPTER 26

The Art of Being 
an Architect

We are called to be architects of the future, not its victims.

—R. Buckminster Fuller

At this point, we have covered much of what it takes to master software architecture. 

You now have the broad foundation of knowledge necessary to design an architecture 

that is a holistic fit. Unfortunately, after analyzing requirements, deriving one or more 

candidate tailor-made architectures, evaluating said architectures, collaboratively 

selecting a single style, documenting it, designing a software system that adheres to 

the style, and communicating the design to the implementation teams, your work is 

just beginning. Architecture is more than simply solving problems, deriving styles, 

or designing systems; it is ultimately about stepping into a role of visionary technical 

leadership and effecting meaningful change within an organization. This is arguably the 

single most difficult aspect of software architecture. Your skills in effecting change will be 

the ultimate measure of success over the course of your career.

The Tailor-Made Architecture Model focuses on architecture design by constraint, 

and you have seen that several architectural styles presented in the previous section 

often require substantial change in technologies used, practices and behavior of teams, 

and even the entire organizational structure. Every organization has a finite tolerance for 

change that will necessarily temper our efforts. Although you may have a grand vision for 

the future of any given system or organization, it is important to remain pragmatic and 

balanced in your approach to change. This may require you to take a phased approach 

to architecture, where you limit your efforts to only a limited number of changes at a 

time. In truth, this is one of the most difficult realities to accept as an effective software 

architect.

https://doi.org/10.1007/979-8-8688-0410-6_26#DOI
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There have been many attempts to systematize this process like the Architecture 

Tradeoff Analysis Method (ATAM)1 process described in the book Evaluating Software 

Architectures, the techniques described in the book Discussing Design,2 and the approach 

provided in the book Articulating Design Decisions;3 however, many of them share 

certain elements. These were analyzed and combined with personal experience to 

provide an approach that will apply to most situations.

To systematize the process, you can break it down into the following stages:

	 1.	 Identify the problems that require change

	 2.	 Identify potential changes

	 3.	 Identify resources necessary to make the change

	 4.	 Plan to orchestrate the change

	 5.	 Execute the plan

This chapter will describe how to be effective in all those phases of effecting change.

�Identify the Problems That Require Change
Before attempting to define the problem, you must understand both the problem and 

the environment surrounding the problem. The requirements analysis process described 

in Chapter 4 provides a useful starting point for identifying problems within the business 

domain. In this process, you should identify and define all the problems and then 

investigate potential solutions, keeping in mind that those solutions may impact the 

other problems and solutions for the project, company, customer, or user. Documenting 

the problems and solutions forces you to think through problems and solutions before 

presenting them to others. The more thought you and your team put into both the 

problems and solutions before communicating them, the more competent you will 

appear. One useful approach is to start by writing down each problem, without solutions, 

and break them down in the following way:

1 Clements, P., Kazman, R., Klein, M (2012). Evaluating Software Architectures: Methods and Case 
Studies, Addison-Wesley
2 Connor, A., Irizarry, A. (2015). Discussing Design: Improving Communication and Collaboration 
Through Critique, O’Reilly Media
3 Greever, T. (2020). Articulating Design Decisions: Communicate with Stakeholders, Keep Your 
Sanity, and Deliver the Best User Experience, O’Reilly Media
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	 1.	 State each of the problems, remembering to avoid specifying 

a solution, emotional or personal biases, or accusations. Also, 

remember to minimize the scope to only cover a single problem.

	 2.	 State the implications and impacts of the problem. Remember to 

document identifying measures or thresholds if possible.

	 3.	 State the best possible outcome that any solution to the problem 

could reasonably achieve.

Keep in mind that identifying and defining many problems like this will take time. 

If you are new to the team, you should spend a few months doing this process as you 

work on the project itself. For a new project (since there is no knowledge of what the 

existing problems are yet), it might make sense to use a predefined architectural style for 

a couple of months before making changes from prior experience.

�Identify Potential Changes
Key factors for any proposed change are the costs and benefits to others as well as 

how others may respond to the potential solution, the relative advantage of your 

proposed change. There are a couple approaches to evaluating viable solutions and the 

approaches to apply those changes.

�The Four-Way Test
When defining the problems and the solutions, evaluate how ethical or fair your 

evaluation of the problem is and, more importantly, how ethical or fair each alternative 

solution is. Instead of creating a mechanism from scratch, it is wise to draw from existing 

sources.

Rotary, an organization that helps business owners and operators, has created 

a simple rubric for making business decisions4 which you may apply when defining 

alternative solutions. Rotary calls this rubric the “Four-Way Test” and defines it as 

follows:

… a nonpartisan and nonsectarian ethical guide for Rotarians to use for 
their personal and professional relationships.

4 Rotary.org. Guiding Principles. Retrieved from https://my.rotary.org/en/guiding-principles
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The four questions to ask regarding these decisions are

	 1.	 Is it the TRUTH?

	 2.	 Is it FAIR to all concerned?

	 3.	 Will it build GOODWILL and BETTER FRIENDSHIPS?

	 4.	 Will it be BENEFICIAL to all concerned?

These rules are an excellent starting point when deciding if you should pursue the 

identified change.

�Assertiveness vs. Cooperativeness

Cooperation is always more powerful than competition.

—Bob Proctor

Assessing how to achieve agreement on solutions and, occasionally, even on problem 

definitions is crucial. Some may not even view the identified problems as problems. This 

is particularly true for preventative solutions, speculative solutions, or technological 

and process improvements that bring gradual benefit over time. These can be a tough 

sell, particularly in the absence of a perceived need. Regrettably, sometimes the relative 

value of a potential solution can be difficult for others to see until the pain of the need is 

first felt.

There also exist many cases where one person’s problem is viewed by others as a 

feature. For example, if it takes four months to bring someone up to speed on how the 

code works on a system because there is no documentation, no automated tests, and the 

code is not structured very well, some teammates might view the situation as beneficial 

for job security, and they may not want to fix the problems. However, another teammate 

may point out that the employee cannot go on a long vacation or may have to work 

long hours because they are the only person who can do the job, making the situation 

a problem rather than a benefit. From the project manager’s perspective, code that 

many of the developers can maintain rather than only one or two is more valuable code 

because there is less inherent risk associated with that code.
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One method for establishing a strategy for building consensus is known as the 

Assertiveness vs. Cooperativeness diagram, based on the Thomas-Kilmann conflict 

mode instrument5 as shown in Figure 26-1.

Figure 26-1.  The Assertiveness vs. Cooperativeness Diagram

An architect’s goal should be to work to present changes or solutions in such a 

way that one is as far to the upper right as is possible. Avoidance is bad. Competition, 

compromise, or accommodation is a little better, but collaboration is the ultimate goal. 

Not every situation will allow you to get the other parties all the way to the collaboration 

level. Your aim should be to prevent both avoidance for yourself and others while 

working collaboratively.

5 Thomas, K., Kilmann, R. (1978). Comparison of Four Instruments Measuring Conflict Behavior. 
Psychological Reports, 42
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�The Weighted Decision Matrix
Once all the problems have been defined and all of the other parties’ positions have been 

considered, it is time to identify solutions. Beware to avoid blanket solutions without 

defining alternatives such as “this team should use scrum and all of their productivity 

problems would be solved” or “this team should use microservices because all their design 

problems would be solved.”

As a rough target and an exercise in comprehensive thinking, aim to produce and 

document at least two or three alternative solutions for each identified problem. As you 

saw in Chapter 24, the architecture documentation process is a tool for both evaluation 

and communication. You may solicit solutions from others (e.g., the process in Chapter 

22), but you should be careful to emphasize that architecture will consider multiple 

approaches, including, potentially, not making a change. Once you or your team have 

defined at least two solutions, it is time to evaluate each solution. Some use a weighted 

decision matrix (also known as Pugh matrix,6 decision grid, solution matrix, criteria 

rating form, or criteria-based matrix). To create a decision matrix, start by identifying the 

criteria for evaluating the solutions on one side, and then list the different alternatives 

across the top. In any problem domain or context, each criterion will possess a different 

level of relative importance. Consequently, the weighted decision matrix approach 

prescribes assigning a relative weight to each criterion. The weights for the various 

criteria should add up to 100 as this forces you to rate them relative to one another. It 

is usually a bad sign if any two criteria possess the same weight. Most importantly, to 

maintain objectivity in this process, you should define these weights before evaluating 

any of the solution alternatives.

Once you have defined all the weights of the criteria, you are ready to take an 

impartial look at each of the alternatives and determine how well each addresses the 

various evaluation criteria. During this process, rank each solution using a value one to 

n where n is the number of alternatives. Higher values indicate how well the solution 

addresses a given criterion. It is important that none of them tie in any single criterion. 

Should this occur, it will take time to mindfully break ties if the two are extremely close.

During this process, a good test of objectivity is consistently scoring both the positive 

and the negatives that a potential solution brings for each criterion. Everything is a 

trade-off, and failure to identify trade-offs (e.g., one option is consistently positive, or one 

6 Pugh, S. (1981). Concept selection: a method that works. Proceedings International Conference 
on Engineering Design
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option is consistently negative) is a sure sign of either bias or an error of omission. An 

example is shown in Figure 26-2.

Solution Alternative 1 Solution Alternative 2 Solution Alternative 3

Criteria 1 (30) 1 3 2

Criteria 2 (25) 2 1 3

Criteria 3 (10) 2 1 3

Criteria 4 (15) 3 2 1

Criteria 5 (20) 1 2 3

Totals: 165 195 240

Figure 26-2.  A Completed Weighted Decision Matrix

Some will make two passes through this process. The two-pass approach first focuses 

on considering the relative cost, and the second pass focuses on considering the relative 

benefit for each potential solution. While the two-pass approach takes longer, the 

additional exercise will lead you toward richer decisions.

This process is helpful to arriving at objective solutions; however, this is not 

merely an academic exercise, it is the first step toward leading change in the project or 

organization.

Another benefit of this process is its ability to help overcome a pro-innovation bias 

common in many software architects. Our breadth of knowledge and the diversity of 

contexts within which we tend to work commonly correlate with a trait of techno- 

optimism. The key to success (and building credibility over time) lies in the ability to 

connect a potential innovation to a genuine need within an organization. Change and 

innovation purely for change’s sake is rarely a path to success and adoption. There 

must be a broad perception of value across both those individuals who have authority 

and influence to drive change and those who adopt it. The operative word here being 

perception. If we see value that others do not, we will not be successful; shaping 

perceptions is key.

Organizationally speaking, change equates to risk. Driving change requires clearly 

communicating that the risk of inaction outweighs the risk of action.
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�Understanding the Attributes of an Innovation
Another approach to evaluating potential solutions is to examine them through the 

lens of the core attributes of an innovation or solution. Everett Rogers’ Diffusion of 

Innovations7 formally defines the five key attributes of an innovation (Figure 26-3).

Attribute Definition

Relative Advantage The degree to which an innovation is perceived as better 
than the idea it supersedes.

Compatibility
The degree to which an innovation is perceived as being 
consistent with the existing values, past experience, and 
needs of potential adopters.

Complexity The extent of the difficulty or friction adopters experience 
in attempting to adopt an innovation

Trialability The degree to which an innovation may be experimented 
with on a limited basis.

Observability The degree to which the results of an innovation are visible 
to others.

Figure 26-3.  Everett Rogers’ Innovation Attributes

Each of these attributes correlates either positively or negatively to the overall 

probability of success for a given solution and is common to virtually every innovation. 

Looking at any innovation through the lens of these variables can prove illuminating. 

Sometimes, the solution is not perceived as advantageous; sometimes, the advantages 

are clear, but teams are too set in their ways or can’t make time for change. Sometimes, 

the change is simply too complex.

Use any or all the above tools to evaluate potential solutions and understand that the 

more effort you put into evaluating potential solutions, the better positioned you will be 

to effect meaningful change.

7 Rogers, E. (2003). Diffusion of Innovations, 5th Edition, Free Press
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�Identify Resources Necessary to Make the Change
An architect position is a technical leadership position. Your efficacy in such a role 

depends on your ability to

•	 Communicate, guide, influence, and improve the outcome for others 

on the development teams, the management, the customer, and 

the user

•	 Identify things that you can, cannot, or should not influence

•	 Analyze your own influence, the influence of others within your 

organization, and your organization itself on the problem and the 

potential solutions

These factors are the measure that sets good and great architects apart from people 

who just have the title.

�Some Terminology
Before moving forward, it is important to define several key terms: processes, products, 

services, decisions, and evaluation.

�Processes

A process is a collection of planned tasks, events, and activities, usually arranged in 

a sequence, which allows the organization to meet their goals and objectives. Many 

organizational processes are informal, lacking documentation or strict enforcement. It 

is important to recognize that even informal processes may be just as important—and 

sometimes as hard—to effect change in as more well-documented processes that the 

organization enforces with rigor.

�Products

A tangible or intangible item that the organization produces using labor. Sometimes, 

different departments will refer to company offerings as products, while another part 

of the organization will refer to them as services. Many accounting, marketing, or 

salespeople will refer to anything that the organization sells as a product. Others may 
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define products as objects the organization sells, licenses, leases, or gives to another 

party. This semantic ambiguity underscores the value of tools like DDD that explicitly 

define domain vocabulary in the form of the ubiquitous language.

Notably, very few products exist in isolation and instead are often accompanied by 

services to either add value to the product, maintain the product, enhance the benefits of 

the product, or decrease the ongoing costs of the product.

�Services

A business service is often an intangible asset that the organization provides for a fee, 

given as an incentive, or included as part of a broader offering. Services are sometimes 

tangible, or involve tangible assets, leading to challenges in differentiating services from 

products. Services provide a measurable, tangible, real-world change that may not reside 

on the customer or users’ hardware.

�Decisions

A conclusion or definition of action used in future activities. These may take the form 

of which product to pursue, what order to produce products, hiring, firing, technology 

usage, and many other actions that an organization makes. Whether you are making 

decisions such as picking technologies, architectural styles, or design processes or other 

collaborators (managers, users, customers, or developers) making decisions such as 

financial, acceptance of the product, implementation, or any one of many business 

decisions, the success or failure of an organization is influenced by many daily decisions 

made by you and your collaborators.

�Evaluation

Any effort to analyze a situation or state concluding with an appraisal or assessment. 

You must learn to evaluate all the aspects of the situation to know what can be done and, 

more importantly, what cannot or should not be done. Some inputs for evaluation are

•	 The costs (financial costs, time costs, opportunity costs, etc.) and 

benefits for each evaluated option

•	 The organization, yourself, and the others involved before deciding 

to attempt to effect change
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Formal evaluations may feel onerous at first, but after performing them a few times 

or over a certain period, you will become comfortable with all aspects of evaluating 

and find yourself immediately performing the analysis informally while in meetings or 

when reading emails. This process forms an integral part of your overall architectural 

awareness and is a key skill you will continue to utilize throughout your entire career.

�Identify the Resources Necessary to Make 
the Change
�Know the Entanglement, Environment, and Endurance 
of Change
There are three things to consider about any process, product, service, or decision that 

you must consider:

•	 How entangled is it with other aspects of the project?

•	 How embedded in the environment is it?

•	 How much endurance does the solution (and the organization) have? 

This is especially important in the case of solutions where the benefit 

of payoff of the effort comes later.

�Entanglement

The decision of whether to pursue a change must include how entangled that change 

is with other aspects of the project. These entanglements may have direct or indirect 

impacts on the architecture and software development teams.

An example that has both direct and indirect entanglement is a decision to refactor a 

legacy project from using SOAP to RESTful interfaces.

Direct

•	 Communication efforts and meetings to convince both the customer 

and management that the change is justified

•	 Effort on the part of the team(s) necessary to create the new service 

interfaces
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•	 Effort on the part of the team(s) to deprecate and later remove the 

legacy SOAP interfaces

•	 The effort involved in rigorous testing of the new interfaces as any 

failures will be far more politically damaging than defects introduced 

from new functionality

Indirect

•	 The consumers of the services will have to rewrite portions of 

their code.

•	 The schedule will be impacted by a delay in delivery of user 

functionality.

•	 The customers will have to pay for the changes both in development 

costs and in decreased value in the short term from pending user 

functionality.

�Environment

The decision of whether to pursue a change must also include why that aspect originally 

occurred in the project, business, or customer that established the original process, 

product, service, or decision. When evaluating the environment within which you intend 

to make a change, a few questions should be asked:

•	 Why was the decision originally made the way that it was (are there 

existing ADRs or other decision documentation)?

•	 Would the same decision be made now as was made originally (has 

the problem context changed)?

•	 What has changed that should convince others to change it now?

•	 How will this impact all parties?

•	 How will all parties perceive this change?

•	 Is there a plan to phase in the new change?

•	 Is there a way to determine if it is working (or working better) or not?
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�Endurance

Finally, you should approach the decision of whether to pursue a change with more 

care and consideration than is typical among architects today. Consider how much 

effort is necessary to complete the change, including non-optimal paths to success, time 

impacts to the delivery schedule, risk of reputation damage if failure occurs, and risk of 

impact to the existing project’s progress. Also, consider the ongoing costs post change 

and compare them to the costs of leaving things the same. Based on these factors, make 

a calculated choice to determine if you are willing to take on the change. Picking your 

battles is critical.

�Know the Organization
�Systematic Analysis

It is important for you to truly set aside any biases you may have when evaluating an 

organization. This part of the analysis may be best performed the first few times with a 

group of coworkers who possess both good judgment and good insight into the broader 

organization. You must strive to create an environment of candor, where participants 

feel comfortable being very honest about the organization, and it may need to be at least 

partially anonymous to encourage such candor. There are five categories that this group 

should evaluate.

�Rigid/Flexible

Analyze how rigid the organizational structure is.

�Alignment

Recognize whether your position lines up with the change that needs to occur and 

evaluate if the organization will allow one to effect change even if it pushes boundaries 

for an architect’s typical job description.

�Resources

Check to see if the change you want to make will be affordable both in the short and long 

term and/or if going without the change is affordable if the change is a potential cost 

savings.
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�Time

Evaluate if there is enough schedule to make changes and still meet deadlines.

�Relationships

Determine how strong the relationship is between

•	 Business management and the customer

•	 The architect and the user

•	 Management and the team

•	 The architect and management

•	 Owners/stockholders and the management

�Know Yourself and Your Place in the World
�Systematic Analysis

Objective self-evaluation is rarely a skill that comes naturally. Consequently, you should 

initially perform this part of the analysis with the aid of a trustworthy and motivated 

colleague. Again, fostering an environment of trust and candor is essential; your 

colleague will need to feel comfortable being very honest.

This may be an uncomfortable experience at first. However, the good news is that 

your self-evaluation regarding various changes you hope to initiate will become easier 

to evaluate over time. It is also important to keep in mind that the answer will often be 

that you should not try to effect a given change for one or more of many reasons that will 

emerge during this analysis. Chapter 4 introduced five components that are necessary to 

effect change, namely:

•	 Authority

•	 Accountability

•	 Responsibility

•	 Knowledge

•	 Will
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It is necessary to evaluate your position and role with respect to these five 

components.

�Authority

Has anyone in the organization granted you authorization or authority over the problem 

or the solution? If so, is this authority recognized by others involved in the change effort?

�Accountability

Are the outcomes, both positive and negative, directly impacting you, personally? Can 

you afford the consequences of a worst-case failure scenario?

�Responsibility

Do you have an obligation to influence the thing you wish to change? Is this within the 

scope of your job description?

�Knowledge (Know-How)

Do you know about the thing that you wish to change? Do you know what all the 

available alternatives are? Do you know what the result of an evaluation of the 

alternatives is? Do you know what the best and worst outcomes could be?

�Will

Do you have the desire to overcome the challenges related to making the change you are 

proposing? In other words, are you prepared for the emotional, intellectual, and political 

investment required? Moreover, do you genuinely want to engage in leading the change?

There are tools later in this chapter that will take the results of this analysis and 

predict issues as well as identify remediation actions to help prevent the worst negative 

outcomes.

Also, it is unlikely that you will possess all five components necessary for change. 

Where gaps exist, you must identify your counterparts able to fill those gaps.
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�Truly Know Your Counterparts
�Systematic Analysis

Consistent with the previous areas of analysis, to achieve objectivity this part of the 

analysis may be best performed the first few times with a colleague you trust to deliver 

an unvarnished perspective rather than simply agreeing with your assessment of the 

problem or a particular solution out of misplaced loyalty or friendship. As always, an 

environment of trust and candor is necessary as they need to feel comfortable being 

very honest about others. Likewise, you need to be in an environment where you can 

be honest about how you feel toward others while guarding against preconceptions 

that may cloud the evaluation of others. It is particularly important not to get into any 

gossiping or bad mouthing but instead be as factual, detached, and unbiased as possible 

to perform a proper evaluation.

Once again, it is important to keep in mind that the answer will often be that one 

should not try to effect the change for one or more of many reasons that will emerge in 

this analysis. We must evaluate our counterparts using the same five components to fill 

necessary gaps.

�Authority

Do they possess authorization or authority over the problem or the solution? If so, is this 

authority recognized by others involved in the change effort?

�Accountability

Are the outcomes, both positive and negative, directly impacting them, personally? Can 

they afford the consequences of a worst-case failure scenario?

�Responsibility

Do they have an obligation to influence the thing you wish to change? Is this within the 

scope of their job description?
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�Knowledge

Do they know about the thing that you wish to change? Do they know what all the 

available alternatives are? Do they know what the result of an evaluation of the 

alternatives is? Do they know what the best and worst outcomes could be?

�Will

Do they have the desire to overcome the challenges related to making the change you are 

proposing? Are they prepared for the emotional, intellectual, and political investment 

required? Moreover, do they genuinely want to engage in leading the change?

�The Diagnostic Matrix
The following diagnostic matrix identifies the potential outcomes of pursuing a change. 

It specifies the worst-case outcome, but remember that the reality will probably be 

less absolute. When reviewing this matrix, do not become discouraged; instead, treat 

this as a tool to aid in identifying potential paths and outcomes you wish to avoid. The 

Diagnostic Matrix will help you predict or understand where things are going wrong, 
while the Approach Matrix in the next section will help identify paths to success.

To use the tool for predictions of possible negative outcomes, first evaluate yourself 

regarding the change you wish to make in the categories on the left side and then 

second evaluate your organization using the criteria across the top. Alternatively, it can 

be used to help identify the potential missing attributes for actors by reading the cells 

and seeing which scenarios apply to your situation and then see which organizational 

and individual attributes may be causing the issue. The diagnostic matrix is shown in 

Figure 26-4.
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�The Approach Matrix
Addressing what is learned from the Diagnostic Matrix is the hard part, but at least 

you now recognize the challenges ahead. Below is another tool that helps to identify 

what you need to add to the plan. To use the tool, identify the cells of the previous 

diagnostic matrix that apply to the situation and then find the corresponding cells on 

the approach matrix. Once you have located the cells where you are seeing issues in 

the previous diagnostic matrix, write them down the issue from the previous tool and 

the corresponding steps to help resolve the issue from the approach matrix below as 

inputs for the plan. Each generic procedure or alternative is just a starting point, and it 

is important to take each generic procedure and tailor it to your unique situation. The 

approach matrix is shown in Figure 26-5.
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Organization/Project

Project Flexibility
(Organization does 
not change with the 

requirements)

Structure Mismatch 
(project or company 

structure)

Funding 
(Tight or 

insufficient 
funding)

Schedule 
(Tight or 

insufficient time 
available)

Relationship Strength 
(Management to 

Customer, 
User, Team, and 

Owners) 

Authority 
(recognized as a 
person to make 
the final 
decision)

1. Identify and write 
down the 
person(s) who 
have the 
authority.

2. Find out what it 
would take to 
motivate them to 
collaborate.

3. Find out what 
processes all 
parties will need 
to execute.

4. Build the 
relationship.

1. Update your resume to 
reflect a position that 
would have that 
authority and look for a 
position on your team 
with those 
responsibilities.

5. Approach management 
about changing 
position/ 
responsibilities.

1. Find out who 
has the ability 
to approve the 
financial 
aspects and 
establish a 
relationship.

6. Then 
communicate 
the needed 
changes.

1. Find out who 
has the 
authority to 
approve 
updates to the 
schedule and 
establish a 
relationship.

7. Then 
communicate 
the needed 
changes.

1. Determine which 
relationships are 
the least well 
developed, most 
confrontational, or 
most 
counterproductive.

8. Work to develop 
your relationships 
with all of the 
parties 
(management, 
users, customers, 
teammates, and 
company 
ownership).

Accountability 
(One will get in 
trouble if it 
fails)

1. Identify and write 
down the 
person(s) who are 
impacted by both 
the problem and 
the change.

2. Find out what it 
would take to 
motivate them to 
collaborate.

3. Build the 
relationship.

1. Update your resume to 
reflect a position that 
would have that 
authority and look for a 
position on your team 
with those 
responsibilities.

4. Approach management 
about changing 
position/ 
responsibilities.

5. Establish consequences 
for oneself (set a 
threshold that you will 
take actions on like 
leaving the program or 
restructuring the team 
if you have the 
authority).

1. Establish 
some 
thresholds for 
Return On 
Investment 
for your 
customer or 
businesses 
investments 
and use self-
discipline to 
adhere to that 
threshold.

1. Establish what 
the task 
dependencies 
are.

6. Establish what 
the critical path 
is.

7. Establish some 
thresholds for 
late deliveries 
along the 
critical path 
items.

1. Establish better 
relationships so 
that they care 
about your success, 
and you care about 
their success.

2. Establish a more 
team focused 
environment.

Responsibility 
(Part of job 
description and 
recognized by 
others)

1. Identify and write 
down the 
person(s) who 
usually would 

be involved 
in doing the work.

2. Find out what it 
would take to 
motivate them to 
collaborate with 
you.

3. Build the 
relationship.

1. Update your resume to 
reflect a position that 
would have that 
authority and look for a 
position on your team 
with those 
responsibilities.

4. Approach management 
about changing 
position/ 
responsibilities.

5. Establish consequences 
for oneself (set a 
threshold that you will 
take actions on like 
leaving the program or 
restructuring the team 

1. Find out who 
knows how to 
have the funds 
allocated.

2. Work with 
those 
individuals to 
get it done.

1. Find out who 
knows how to 
adjust the 
schedule.

2. Work with 
those 
individuals to 
make the 
schedule 
changes

1. Show that you care 
about the outcome 
of the thing that 
you are changing.

2. Communicate how 
it impacts you and 
why you are taking 
the tasking on.

In
d
iv

id
u
al

Figure 26-5.  The Approach Matrix
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Figure 26-5.  (continued)

if you have the 
authority)

Knowledge 1. Identify what 
needs to be 
learned or ask 
others what needs 
to be learned.

2a. Request 
resources                 
to address the lack 
of knowledge. 

2b. If there are 
no resources, you 
may be able to take 
it on yourself.

1. Find out what you need 
to know and learn it.

2. Work on your 
communication skills 
(both written and 
verbal).

1. View it as an 
investment in 
your own 
career and 
buy books or 
pay for 
education on 
project cost 
estimation or 
accounting.

1. View it as an 
investment in 
your career as 
an architect 
and learn to 
use tools like 
Gantt charts, 
Work 
Breakdown 
Structures 
(WBS), Earned 
Value 
Management, 
etc. to help you 
interface with 
the rest of the 
organization.

1. Improve your 
communication 
skills.

2. Demonstrate that 
you can analyze 
the situation and 
the possible 
solutions.

Will 1. Evaluate what is 
causing your lack 
of will.

2. Find a mentor or 
collaborator with 
experience with 
some aspect of 
the problem

3. Break problem 
down into 
manageable parts 
or steps if you are 
overwhelmed.

1. Motivate yourself to 
move into a position 
where you will be more 
engaged.

2. If you realize that you 
do not have the 
required will then it is 
important to either find 
someone else who does 
or evaluate if issue is 
actually the problem or 
if is just a nuisance that 
can be disregarded.

1. Determine 
why you are 
not motivated 
to allocate the 
resources 
using a cost 
benefit 
analysis or a 
product cost 
comparison. 

1. Determine why 
you are not 
motivated to 
move the 
schedule to the 
right or 
reallocate 
resources to 
make it 
possible to 
work tasking in 
parallel.

1. Determine why you 
do not care about 
other people 
(personal apathy, 
no team spirit, or 
toxic team 
situation).
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�Plan to Orchestrate the Change

An hour of planning can save ten hours of doing

—Dale Carnegie

After following this framework for identifying the problem, identifying the solution, 

identifying the path to success, identifying any barriers to that success, and committing 

yourself to the task, it is important to plan. One thing to remember is that your change 

effort might be more likely to succeed if you first pave the road to success before 

proceeding. This is accomplished by laying out how to address any potential issues 

before even advertising what the plan is. Most likely, the things you must do to be 

successful in this pursuit will be necessary for other pursuits, so it may make sense to 

invest in those actions or activities on their own. For example, you may discover that 

there is someone who needs to take a certain action to ensure the change is a success. 

That same individual will often be important to other future efforts. Building a solid 

relationship with them may be more rewarding in the long term than creating a shallow 

relationship that only satisfies the immediate need.

�Packaging Your Solution
Often you will have a solution to a problem; however, even if your solution is well 

defined, the potential benefits are understood, and the formalized solution optimized for 

the organization, more work is necessary. Typically, some amount of effort is necessary 

to “package” the solution into a form that is ready for adoption. Often architects can 

be overly excited, with a fervent desire to unleash the solution on the world, but it is 

important to proceed carefully here. Every change invites some disruption, exemplified 

by the “J curve”8 (Figure 26-6).

8 Jellison, J. (2006). Managing the Dynamics of Change. McGraw-Hill
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Figure 26-6.  The “J” Curve

There is often an expectation and implicit assumption (by both architects and 

members of the organization) that the solution will trace a steady improvement over 

time, but, almost universally, changes introduce a striking initial disruption that must 

be overcome. Many promising solutions and architectural innovations are abandoned 

during the j-curve dip. Proper packaging of an innovation is a crucial step in reducing 

the potential disruption of a change. The less potential adopters must learn and the 

fewer ingrained behaviors/habits they need to change, the better the odds of success for 

the innovation.

Packaging is the process of removing as much initial adoption friction as possible. 

Packaging may involve building a POC, reference implementation, or tooling. It may 

involve training or coaching/mentoring. There is no one-size-fits-all approach.

Chapter 26  The Art of Being an Architect



431

�Optimize Your Proposed Solution
If you examined your solution through the lens of Rogers’ Innovation Attributes, the 

following would aid you in optimizing those variables.

�Optimizing Relative Advantage

Obviously, the higher the perceived relative advantage of the innovation, the higher the 

likelihood of adoption. The degree of relative advantage may be measured in economic 

terms, but social prestige factors, convenience, and satisfaction are also important 

factors. Relative advantage, however, is always in the eye of the beholder. Savvy and 

adroit architects and change agents will look at relative advantage from multiple angles. 

When presenting the innovation to potential early adopters and champions, you must 

be able to succinctly communicate both what the innovation is and why they should 

care. The precise framing of this message will vary depending on the audience, and you 

should be able to articulate the value proposition of your solution to a wide variety of 

potential audiences.

�Optimizing Compatibility

A strong belief in the benefits of a solution often leads us to assume that the practices our 

solution seeks to replace are so inferior they can be completely dismissed, yet history 

repeatedly shows the folly in this thinking. Adopters of your solution can only deal 

with a new idea within the context and basis of what is already familiar. You must ask 

yourself how compatible your solution is with the existing ways of working and existing 

mental models.

The truly revolutionary ideas and solutions simply cannot be introduced all at once. 

As Nikola Tesla’s character in the 2006 film, The Prestige, says:

The world only tolerates one change at a time.

—The Prestige

Personally speaking, one of the hardest realities I have had to accept in my career is 

meaningful change often must take place in stages. On a case-by-case basis, the solution 

must be evaluated to determine if the big innovation can be broken down into smaller, 

more compatible changes that pave the way toward the final innovation.
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Your solution must be ruthlessly examined to identify potential areas of flex or 

deferral. Perfection is the enemy of progress.

�Optimizing Complexity
New ideas that are simpler to understand are adopted more rapidly than solutions that 

require potential adopters to develop new skills and understandings. Similar to how we 

must approach compatibility, ruthless examination must take place to identify where 

ideas can be simplified in the short term. We must look for every opportunity to reduce 

adoption complexity.

Taking time to create learning guilds, book clubs, or regular lunch-and-learn 

sessions are an ideal forum to gradually introduce ideas into the organization well before 

pitching them as solutions. This creates a foundation of fertile soil for future learning on 

a topic to take root and blossom.

It is also important to have “skin in the game.” Taking the time to build POCs, tooling, 

reference implementations can aid greatly. Automation is another avenue to reduce 

friction points. Finally, consider a training strategy. You may possess the skill of building 

effective and engaging training, but also consider delegating so you may scale yourself.

�Optimizing Trialability
To many stakeholders, change almost universally equates to risk. A solution that 

individuals can evaluate on a trial basis is one that carries significantly lower risk. The 

value of presenting a trial should not be underestimated.

Think carefully about the opportunities to trial your solution within a subset of 

the organization. First, the limited perceived scope of the risk will win over some who 

are skeptical, but also consider the trial as part of building your growing body of early 

adopters. Relatively earlier adopters of an innovation or solution perceive trialability 

as more important than do later adopters since we can see others’ success later in the 

adoption process. For those later adopters, peers who perform early exploration of your 

solution amount to a vicarious trial.
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�Optimizing Observability

You can’t improve what you don’t measure.

—Peter Drucker

Think about ways to measure and demonstrate growing success over time. Your plan 

should consider how you might increasingly demonstrate that

•	 The innovation is successful.

•	 The problem is tractable.

•	 The benefits are materializing.

•	 This is better than the status quo.

The challenge for you lies in making this data visible. Based on what you have 

learned in Chapter 5, find metrics germane to various groups you wish to influence in 

the organization. The key is to figure out what you can measure and show to reduce 

uncertainty and then communicate this.

�Write Down the Plan
Writing down your plan brings multiple benefits. First, the process will illuminate 

potential gaps and risks in strategy. Additionally, your plan will help you stay on track 

when things get tough.

As time goes by, it may be hard to stay motivated. Periodically looking back on what 

has been successful can aid in maintaining motivation and will. Each new problematic 

barrier or detour that occurs will seem easier to overcome when you shift your 

perspective by looking back on the series of successes that may have been hard fought 

or more circuitous than originally planned. Also, you will find that it is harder to give up 

when reflecting on what has already been invested and accomplished.

The plan should outline steps broken down into smaller tasks whenever possible, 

but the key is to determine the sequence and dependencies. The plan needs to remain 

adaptable, acknowledging that real-world events will not perfectly align with the 

planned activities.
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The “happy path” your plan creates is only a starting point. Each step along the 

way should have an alternate route in case things do not work out as anticipated. Know 

that you cannot plan for every contingency. Invest more thought into the primary path 

to success, but do not neglect some amount of investment into alternative paths to 

success. Also, define points along the way where one can evaluate the cost of completion 

and sunk cost and decide if continuing the pursuit is worth it. The world is constantly 

changing, and you do not want to pursue something to completion if it will no longer 

bring material value.

Make sure to fully plan rigorously. If you only provide a simple road map without 

analyzing thoroughly and things go wrong that should have been easy to identify in 

advance, then you will lose credibility in your technical knowledge and leadership 

abilities.

Once you have written down the plan, it is time to begin communicating the idea for 

the change and even the plan to accomplish the change with the individuals that will be 

involved in and/or impacted by the change.

�Execute the Plan
It is important to account for all the barriers and opportunities that have been identified 

and utilize these opportunities once execution of the plan begins.

�Prepare for Change
Once an architect has identified a process, product, service, or decision that they wish 

to see changed and analyzed their influence, their counterparts’ influence, and their 

organizational situation relative to the change that they wish to make, they can proceed 

to take action.

�Prepare for Success
There will be a significantly higher likelihood of success once you grow accustomed 

to performing the analysis and using the resultant knowledge to help the organization 

effect change.
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�Summary
The Tailor-Made Architecture Model aims to bring the practice of designing systems 

closer to a science, but the soul of the role of architect may always be an art that develops 

over time with practice and patience. While mastering the technical aspects of software 

architecture provides the necessary foundation, your true value emerges in your 

ability to execute architecture and drive meaningful change within an organization. 

This chapter has equipped you with a systematic approach to identify, evaluate, and 

implement solutions. The lessons and guidance in this chapter are hard won that 

emerged out of many failures and frustration. I encourage you to profit from our past 

failures. Remember, it is not enough to design an elegant architecture; you must also 

skillfully navigate the complexities of organizational dynamics and change management. 

The ability to influence and lead others toward a shared vision is what will ultimately 

distinguish you as a truly effective software architect.

It has been a pleasure and an honor to join you on this phase of your journey. 

Although there is much more to learn and discover, this completes the book and what’s 

next is up to you. How exciting!

I will bid you farewell for now, but you can contact me anytime at michael@

magician.codes or view my travel schedule, speaking dates, and training classes at 

https://magician.codes/. I am grateful for our time together through these pages, and 

I hope our paths cross again in the future. I wish you joy, growth, and enlightenment for 

the many years and adventures to come.
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