

Programming Ruby 3.3

The Pragmatic Programmers’ Guide

by Noel Rappin, with Dave Thomas

Version: P1.0 (January 2024)

Copyright © 2024 The Pragmatic Programmers, LLC. This book is licensed to the individual who
purchased it. We don't copy-protect it because that would limit your ability to use it for your own
purposes. Please don't break this trust—you can use this across all of your devices but please do not
share this copy with other members of your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.
The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to improve the
lives of developers. We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us
at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it’s still being written,
and provide feedback to the author to help make a better book for everyone. Free resources for all
purchasers include source code downloads (if applicable), errata and discussion forums, all available on
the book's home page at pragprog.com. We’re here to make your life easier.

New Book Announcements

Want to keep up on our latest titles and announcements, and occasional special offers? Just create an
account on pragprog.com (an email address and a password is all it takes) and select the checkbox to
receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via
Dropbox. You get free updates for the life of the edition. And, of course, you can always come back and
re-download your books when needed. Ebooks bought from the Amazon Kindle store are subject to
Amazon's polices. Limitations in Amazon's file format may cause ebooks to display differently on
different devices. For more information, please see our FAQ at pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to https://pragprog.com/book/ruby5, the book's
homepage.

Thanks for your continued support,

The Pragmatic Bookshelf

The team that produced this book includes: Dave Thomas (Publisher), Janet Furlow (COO),
Tammy Coron (Managing Editor), Katharine Dvorak (Development Editor),
Corina Lebegioara (Copy Editor), Potomac Indexing, LLC (Indexing), Gilson Graphics (Layout)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/ruby5
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

 Preface
Why Ruby?
A Word about Ruby Versions
Notation Conventions
Road Map
Resources

 Acknowledgments

Part I. Facets of Ruby

1. Getting Started
Installing Ruby
Installing Ruby for Windows
Running Ruby
Creating Ruby Programs
Getting More Information about Ruby
What’s Next

2. Ruby.new
Ruby Is an Object-Oriented Language
Some Basic Ruby

Arrays and Hashes
Symbols
Control Structures
Regular Expressions
Blocks
Reading and ‘Riting
Command-Line Arguments
Commenting Ruby
What’s Next

3. Classes, Objects, and Variables
Defining Classes
Objects and Attributes
Classes Working with Other Classes
Specifying Access Control
Variables
Reopening Classes
What’s Next

4. Collections, Blocks, and Iterators
Arrays
Hashes
Digging
Word Frequency: Using Hashes and Arrays
Blocks and Enumeration
What’s Next

5. More about Methods
Defining a Method

Calling a Method
What’s Next

6. Sharing Functionality: Inheritance, Modules, and Mixins
Inheritance and Messages
Modules
Inheritance, Mixins, and Design
What’s Next

7. Basic Types: Numbers, Strings, and Ranges
Numbers
Strings
Ranges
What’s Next

8. Regular Expressions
What Regular Expressions Let You Do
Creating and Using Regular Expressions
Regular Expression Patterns
Regular Expression Syntax
What’s Next

9. Expressions
Operator Expressions
Command Expressions
Assignment
Conditional Execution
Loops and Iterators
Pattern Matching

What’s Next

10. Exceptions
The Exception Class
Handling Exceptions
Raising Exceptions
Using Catch and Throw
What’s Next

11. Basic Input and Output
What Is an I/O Object?
Opening and Closing Files
Reading and Writing Files
Talking to Networks
What’s Next

12. Threads, Fibers, and Ractors
Multithreading with Threads
Running Multiple External Processes
Creating Fibers
Understanding Ractors
What’s Next

13. Testing Ruby Code
Why Unit Test?
Testing with Minitest
Structuring Tests
Creating Mock Objects in Minitest
Organizing and Running Tests

Testing with RSpec
What’s Next

Part II. Ruby in Its Setting

14. Ruby from the Command Line
Calling the Ruby Command
Ruby Command-Line Options
Making Your Code an Executable Program
Processing Command-Line Arguments to Your Code
Accessing Environment Variables
Where Ruby Finds Its Libraries
Using the Rake Build Tool
The Build Environment
What’s Next

15. Ruby Gems
Installing and Managing Gems
Using Bundler to Manage Groups of Gems
Writing and Packaging Your Own Code into Gems
Organizing Your Source Code
Distributing and Installing Your Code
What’s Next

16. Interactive Ruby
Using irb
Navigating irb
Configuring irb

What’s Next

17. Debugging Ruby
Printing Things
The Ruby Debugger
Pry
Debugging Performance Issues with Benchmark
What’s Next

18. Typed Ruby
What’s a Type?
Official Ruby Typing with RBS
Ruby Typing with Sorbet
What’s Next

19. Documenting Ruby
Documenting with RDoc
Adding RDoc to Ruby Code
Running RDoc
Documenting with YARD
What’s Next

Part III. Ruby Crystallized

20. Ruby and the Web
Ruby’s Web Utilities
Templating with ERB
Serving Ruby Code to the Web

Ruby in the Browser with Web Assembly
What’s Next

21. Ruby Style
Written Ruby Style
Using RuboCop
Using Standard
Ruby Style in the Large
Duck Typing
What’s Next

22. The Ruby Object Model and Metaprogramming
Understanding Objects and Classes
Defining Singleton Methods
Inheritance and Visibility
Modules and Mixins
Metaprogramming Class-Level Macros
Using instance_eval and class_eval
Using Hook Methods
A Metaprogramming Example
Top-Level Execution Environment
What’s Next

23. Reflection and Object Space
Looking at Objects
Looking at Classes
Calling Methods Dynamically
System Hooks
Tracing Your Program’s Execution

Behind the Curtain: The Ruby VM
Marshaling and Distributed Ruby
What’s Next

Part IV. Ruby Language Reference

24. Language Reference: Literal Types and Expressions
Source Layout
Ruby Literals
Regular Expressions
Names
Values, Variables, and Constants
Expressions, Conditionals, and Loops

25. Language Reference: Objects and Classes
Method Definition
Invoking a Method
Aliasing
Defining Classes
Defining Modules
Access Control
Blocks, Closures, and Proc Objects
Exceptions
Catch and Throw
Typed Ruby

Part V. Ruby Library Reference

26. Library Reference: Core Data Types
Dates and Times
Math
Numbers
Random and SecureRandom
Regexp
Strings
Symbols

27. Library Reference: Ruby’s Object Model
BasicObject
Class
Comparable
Kernel
Method
Module
Object

28. Library Reference: Enumerators and Containers
Array
Enumerable
Enumerator
Hash
Set

29. Library Reference: Input, Output, Files, and Formats
CSV
Dir
File
FileUtils
IO
JSON
Pathname
StringIO
Tempfile
URI
YAML

30. Library Reference: Ruby on Ruby
Benchmark
Data
Delegator and SimpleDelegator
Logger
ObjectSpace
Observable
OpenStruct
PP
Prism
Ripper
Singleton
Struct
Unbound Method

Part VI. Appendixes

A1. Troubleshooting Ruby
Common Issues
Debugging Tips

A2. I Can’t Look It Up!

A3. Command-Line Basics
The Command Prompt
Folders, Directories, and Navigation

A4. Ruby Runtimes
Just-in-Time Compilers
TruffleRuby
JRuby
mRuby
Other Runtimes

A5. Ruby Changes
Version 2.0
Version 2.1
Version 2.2
Version 2.3
Version 2.4
Version 2.5
Version 2.6

Version 2.7
Version 3.0
Version 3.1
Version 3.2
Version 3.3

Copyright © 2024, The Pragmatic Bookshelf.

Early Praise for Programming Ruby
3.3: The Pragmatic Programmers’
Guide

The book has such breadth and depth, making it a useful long-term
companion. I’d say this is a big win for the Ruby community.

→ Stefan Magnuson
Software Developer

Programming Ruby 3.3: The Pragmatic Programmers’ Guide is a
valuable resource to anyone looking to get started with developing
software tools and systems in Ruby. Thanks to thorough technical
explanations accompanied by demonstrative code examples, this book
will equip you with a mastery of all the building blocks of Ruby and
help you unlock its full power.

→ Nishant Roy
Engineering Manager

I’m ecstatic to see the book that inspired an entire generation of
Rubyists revived. I’m excited to see—and use—what the next
generation of readers builds thanks to this.

→ Kevin Murphy
Software Developer

Preface

This is the fifth edition of Programming Ruby, which many Ruby
developers call “The Pickaxe Book.” It covers Ruby up to and including
Ruby 3.3.

Since the previous edition of this book, Ruby has continued to grow and
evolve. New syntax has been added; old syntax has been refined. Major
new features, such as pattern matching and type signatures, are now part of
the language. Tools that didn’t exist or were in their early stages of
development then are now in constant use by Ruby developers around the
world. The entire ecosystem is thriving.

The Pickaxe Book continues to be your guide to learning Ruby the
language and understanding how Ruby’s parts work together and how you
can use the most popular and important Ruby tools.

Why Ruby?
When Dave Thomas and Andy Hunt wrote the first edition, they explained
the appeal of Ruby. Among other things, they wrote, “When we discovered
Ruby, we realized that we’d found what we’d been looking for. More than
any other language with which we have worked, Ruby stays out of your
way. You can concentrate on solving the problem at hand, instead of
struggling with compiler and language issues. That’s how it can help you
become a better programmer: by giving you the chance to spend your time
creating solutions for your users, not for the compiler.”

That belief is even stronger today. More than thirty years after Ruby’s first
release on February 24, 1993, Ruby still enables developers to focus on
their solutions—from the smallest utility script to the services of companies
with billions of dollars in revenue. Ruby can support it all.

A Word about Ruby Versions
This edition of The Pickaxe Book documents Ruby up to and including
Ruby 3.3. New Ruby version releases come out annually on December 25.
The book’s code was developed against Ruby 3.3, preview 2, but we don’t
expect substantial changes in the released version of Ruby 3.3.

In this book, we don’t typically note what version of Ruby introduced a new
feature, but you can find a brief list of the largest changes in Appendix 5, ​
Ruby Changes​. We recommend referring to the Ruby Evolution page by
Victor Shepelev at
https://rubyreferences.github.io/rubychanges/evolution.xhtml for a full
listing of the changes implemented since Ruby 2.0.

Exactly what version of Ruby did we use to write this book? Let’s ask
Ruby:

​ ​$ ​​ruby​​ ​​-v​

​ ruby 3.3.0dev (2023-11-01T17:47:26Z master 909afcb4fc) [arm64-darwin23]

This illustrates an important point. Most of the code samples you see in this
book are executed each time we format the book. When you see output
from a program, that output was produced by running the code and inserting
the results into the book.

https://rubyreferences.github.io/rubychanges/evolution.xhtml

Notation Conventions
Literal code examples are shown using a sans-serif font:

​ ​class​ SampleCode

​ ​def​ ​run​

​ ​#...​

​ ​end​

​ ​end​

In this book, a class name followed by a hash followed by a method name,
as in Fred#do_something, is a reference to an instance method (in this case,
the method do_something of class Fred). Class methods are written with a dot
as in Fred.new, and Fred.EOF is a class constant. In other Ruby
documentation, you may see class methods written as Fred::new. This is
perfectly valid Ruby syntax; we just happen to think that Fred.new is less
distracting to read and is much more common to see in practice.

The decision to use a hash character to indicate instance methods was a
tough one. It isn’t valid Ruby syntax, but we thought that it was important
to differentiate between the instance and class methods of a particular class.
When you see us use File.read, you know we’re talking about the class
method read. When, instead, we use File#read, we’re referring to the instance
method read. This convention is standard in most Ruby discussions and
documentation.

When discussing various commands or Ruby snippets, we’ll refer to
variable parts of the commands by including them in angle brackets. So, if
we say rbenv global <VERSION>, that means the section in the brackets is not a
literal part of the command, and you’d replace it with the actual value you
wanted to use, for example, rbenv global 3.3.0.

This book contains many snippets of Ruby code. Where possible, we’ve
tried to show what happens when they run. In some cases, we show the

value of expressions on the same line as the expression. Here’s an example:

​ a = 1

​ b = 2

​ a + b ​# => 3​

Here, you can see that the result of evaluating a + b is the value 3, shown in
a comment at the end of the line, # => 3. If you typed this fragment of code
into a file and executed it using Ruby, you wouldn’t see the value 3 output
—you’d need to use a method such as puts to have the values written to the
program’s output.

​ a = 1 ​# => 1​

​ a + 2 ​# => 3​

If the program produces more complex output, we show it after the program
code:

​ 3.​times​ { puts ​"Hello!"​ }

Produces:

​ Hello!

​ Hello!

​ Hello!

In some of the library documentation, we wanted to show where spaces
appear in the output. You’ll see these spaces as ␣ characters.

Unless we’re trying to make a point or highlight a specific language feature,
Ruby code examples have been formatted to match the rules of the Standard
gem[1].

Command-line invocations are shown with literal text in a regular font, and
the parameters you supply are shown in an italic font. Optional elements are
shown in brackets.

ruby <flags>*
 progname <arguments>*

In keeping with the style of previous editions of the book, we use the word
we when referring to the authors collectively in the body of the book. Many
of the words come from the first four editions, and I (Noel) don’t want to
claim any credit for Dave Thomas’s, Andy Hunt’s, and Chad Fowler’s
previous work. That said, opinions on recent Ruby features, even when
prefaced by “we,” are just my (Noel’s) opinions and are not an attempt to
put words in the mouths of the previous authors.

Road Map
The main text of this book is divided into five parts, each with its own
personality and each addressing different aspects of the Ruby language.

Part I, Facets of Ruby, is a Ruby tutorial. It starts with notes on getting
Ruby running on your system followed by a short chapter on the
terminology and concepts that are unique to Ruby. The initial chapter also
includes enough basic syntax so that the other chapters will make sense.
The rest of the tutorial is a top-down look at Ruby. There we talk about
classes and objects, types, expressions, and all the other things that make up
the language. We end with a chapter on unit testing.

Part II, Ruby in Its Setting, investigates one of the great things about Ruby,
which is how well it integrates with its environment. Here you’ll find
practical information on using Ruby: using the interpreter options, working
with irb, documenting your Ruby code, type checking, and packaging your
Ruby gems so that others can enjoy them.

Part III, Ruby Crystallized, contains more advanced material. Here you’ll
find all the details about using Ruby for the web, Ruby style, the concept of
duck typing, the object model, metaprogramming, reflection, and object
space. You could probably speed-read this the first time through, but we
think you’ll come back to it as you start to use Ruby in earnest.

Part IV, Ruby Language Reference, includes more complete notes on syntax
and fuller documentation of language features discussed in the first three
parts.

Part V, Ruby Library Reference, isn’t a complete reference of the entire
Ruby library—that’s much more readily available at https://docs.ruby-
lang.org/en—but it’s a map to the most commonly used and most useful
features of the library.

https://docs.ruby-lang.org/en
https://docs.ruby-lang.org/en

How should you read this book? Well, depending on your level of expertise
with programming in general and object-oriented programming in
particular, you may initially want to read just a few portions of the book.
Here are our recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part
I. Keep the library reference close at hand as you start to write programs.
Get familiar with the basic classes such as Array, Hash, and String. As you
become more comfortable in the environment, you may want to investigate
some of the more advanced topics in Part III.

If you’re already comfortable with JavaScript, Python, or Java, then we
suggest reading Chapter 1, ​Getting Started​, which talks about installing and
running Ruby, followed by the introduction in Chapter 2, ​Ruby.new​. From
there, you may want to take the slower approach and keep going with the
tutorial that follows, or you can skip ahead to the details starting in Part III,
followed by the language reference in Part IV and the library reference in
Part V.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive
straight into the language reference in Chapter 24, ​Language Reference:
Literal Types and Expressions​, skim through the library reference, and then
use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with starting at the beginning and working your
way through page by page.

And don’t forget: if you run into a problem that you can’t figure out, help is
available. For more information, see Appendix 1, ​Troubleshooting Ruby​.

[1]

Resources
Visit the Ruby website at http://www.ruby-lang.org to see what’s new. You
can find a list of community resources, including the official mailing list
and Discord server, at https://www.ruby-lang.org/en/community.

And we’d certainly appreciate hearing from you. Comments, suggestions,
errors in the text, and problems in the examples are all welcome. Email us
at rubybook@pragprog.com.

If you find errors in the book, you can add them to the errata page at
https://devtalk.com/books/programming-ruby-3-2-5th-edition/errata. If
you’re reading the PDF version of the book, you can also report an erratum
by clicking the link in the page footers.

You’ll find links to the source code for almost all of the book’s code
examples at https://www.pragprog.com/titles/ruby5.

With all that out of the way, let’s start learning about Ruby.

Footnotes

https://github.com/testdouble/standard

Copyright © 2024, The Pragmatic Bookshelf.

http://www.ruby-lang.org/
https://www.ruby-lang.org/en/community
https://devtalk.com/books/programming-ruby-3-2-5th-edition/errata
https://www.pragprog.com/titles/ruby5
https://github.com/testdouble/standard

Acknowledgments

In January 2001, I bought myself a programming book as a birthday
present. It had a pickaxe on the cover, and it was written by the two people
who wrote The Pragmatic Programmer. It was about this new
programming language from Japan that I had heard about on the Extreme
Programming mailing list, and which sounded very interesting.

I can’t thank Dave Thomas and Andy Hunt enough. It’s hard to even begin
to list what I’ve gained from purchasing that initial book and from my
association with The Pragmatic Bookshelf. Thanks also to Chad Fowler for
his work on subsequent versions of the book. I inherited a great book from
the three of you, and I hope this version will continue to bring people into
the Ruby language and the Ruby community.

The path from buying a book on a whim to being the person updating that
book more than 20 years later doesn’t happen without a lot of help.

As much as I love Ruby the language, I also love Ruby the community and
the many, many people who I’ve come to know through Ruby. The risk of
starting to list people is that I’m sure I will inadvertently leave somebody
out, but I want to particularly thank Gregg Pollack, Jason Seifer, Avdi
Grimm, James Edward Gray II, Betsy Haibel, Justin Searls, Marty Haught,
Kerri Miller, Brian Hogan, Ray Hightower, Fable Tales, Matt Polito, Even
Light, Allison McMillan, and Jim Remsik. There are many more I could list
—thank you to all of you.

Mark Guzdial was my graduate advisor and the person who encouraged me
to write about programming and teach programming.

This is somehow the seventh title I’ve worked on with Katharine Dvorak as
the editor. As always, she makes working on the book easier and helps
structure the book into its most coherent form. Dave Rankin at The
Pragmatic Bookshelf was the person who agreed to let me work on this
book. Thanks so much for the opportunity and the vote of confidence.

The following people reviewed all or part of the book, and their feedback
and knowledge have made this a better and more accurate book: Jean
Boussier, Avdi Grimm, Chris Houhoulis, Gabi Jack, Bernard Kaiflin, Brian
Lesperance, Stefan Magnuson, Kevin Murphy, Ryan Prinz, Nishant Roy,
Victor Shepelev, and Brandon Weaver.

Everything in my life is better because of my family. Thanks to my
children, Amit and Elliot, who have enriched my life in so many ways. And
something beyond thanks to my wife Erin, these small sentences can’t
express how much I love you and how much your love and support mean to
me.

Copyright © 2024, The Pragmatic Bookshelf.

Part 1
Facets of Ruby

Welcome to Ruby! Part I is a tutorial covering all the Ruby
you’ll need to be able to understand a good-sized Ruby
application. We’ll explore the most important parts of the
syntax and the standard library, and go beyond the basics in
a couple of places where Ruby has a particularly interesting
or powerful tool at hand.

Chapter 1

Getting Started

We’re going to spend a lot of time in this book talking about the Ruby
language. Before we do, we want to make sure you can get Ruby installed
and running on your computer. That way, you can try the sample code and
experiment on your own as you read along. If you want to learn Ruby you
should get into the habit of writing code as you’re reading.

If you aren’t comfortable with using a command line, we can help. Please
turn to Appendix 3, ​Command-Line Basics​, and we’ll give you all the
information you need to get started.

Installing Ruby
There is a good chance your operating system already has Ruby installed.
Try typing ruby --version at a command prompt—you may be pleasantly
surprised. But you’re likely to find that the Ruby version is out of date. For
example, at the time of this writing, MacOS ships with Ruby 2.6.10, which
is multiple versions behind the current Ruby.

The examples in this book are written against Ruby 3.3. While most of the
code will work in older versions of Ruby, for performance and security
reasons you should try to get on the most current version. Refer to
Appendix 5, ​Ruby Changes​, for a listing of the features added and changes
made to Ruby at each iteration.

You can install Ruby in a variety of different ways, so providing general
installation instructions becomes a little bit of a choose-your-own-adventure
story. Most of the examples in this book assume you’re using a Linux- or
Unix-style system that responds to Linux-style commands. This includes all
Linux distributions, macOS, Windows systems running Windows
Subsystem for Linux (WSL),[2] and most Docker[3] containers as well as
cloud-based development environments such as Replit.[4]

That said, Ruby does run on Windows. The process for managing a Ruby
installation on Windows is different, and we’ll cover it in full detail later in
this chapter.

Please note that the tooling for Ruby’s installation does change frequently,
and some of the specific instructions might be out of date or replaced by
newer tools.

Opting Out of Installation

If you don’t want to install anything on your computer for some
reason, you can take advantage of cloud-based development
environments such as Replit or GitHub Codespaces. These
environments enable you to write your code in a browser and
run it against a cloud-based virtual machine.

Installing Ruby with the rbenv Version Manager
To facilitate our installation of Ruby, we’ll use a version manager, which is
a tool that allows you to install and switch between multiple Ruby versions
on the same machine. There are many reasons to use a version manager to
handle your Ruby installation. Being able to easily switch between multiple
versions of Ruby gives you the flexibility to work with multiple projects
that might have been written at different times. In addition, the version
managers have been created for easy installation, so installing multiple
Ruby versions with a version manager is easier than installing a single
version by itself. More powerful and easier to use is a hard combination to
beat. If you’re interested in downloading only one version of Ruby, you can
find system-by-system instructions at https://www.ruby-
lang.org/en/documentation/installation.

The tool we’ll use in this book is called rbenv.[5] Rbenv isn’t the only Ruby
version manager, but it’s probably the most commonly used these days.
Other commonly used version managers are RVM[6] and chruby.[7] (And yes,
having competing tools named “RVM” and “rbenv” is confusing.) If you’re
using version management for multiple languages, you might want to look
at a project called asdf, which unifies different languages’ version
managers,[8] and is rapidly becoming more popular within Ruby.

https://www.ruby-lang.org/en/documentation/installation
https://www.ruby-lang.org/en/documentation/installation

We’ll install rbenv through the conveniently provided rbenv-installer
program. If executing somebody else’s shell script makes you nervous, you
can inspect the script at https://github.com/rbenv/rbenv-
installer/blob/main/bin/rbenv-installer before you run it.

From a command terminal, enter this command all on one line (the line is
split here for page-width reasons):

​ ​$ ​​curl​​ ​​-fsSL​

​ https://github.com/rbenv/rbenv-installer/raw/HEAD/bin/rbenv-installer |
bash

Curl is a command-line tool for accessing URLs and doing something
useful with the return value—in this case, retrieving a shell script from the
rbenv GitHub repo and passing it along to a bash shell to be executed.

This script will install rbenv using the appropriate package manager for
your system, and will also install a helper program called ruby-build that
will manage the download and installation of different Ruby versions.

The installation command might produce a lot of output—especially if
you’re on a MacOS system that uses the Homebrew package manager. On a
Mac, it should end with the following (a Windows user under WSL might
see something different):

All done! Note that this installer does NOT edit your shell configuration files: 1. Run

‘rbenv init’ to view instructions on how to configure rbenv for your shell. 2. Launch a

new terminal window after editing shell configuration files.

Following instructions, run rbenv init. This is the output on a Mac running
zshell (your instructions may be different):

​ ​$ ​​rbenv​​ ​​init​

​ ​# Load rbenv automatically by appending​

​ ​# the following to ~/.zshrc:​

​

https://github.com/rbenv/rbenv-installer/blob/main/bin/rbenv-installer
https://github.com/rbenv/rbenv-installer/blob/main/bin/rbenv-installer

​ eval "$(rbenv init - zsh)"

No matter what your setup is, what you should get in this instruction is:

The file that contains the shell configuration you need to update
The text you need to put at the end of the file

You need to put the suggested line of text at the end of your configuration
file and open a new terminal window. The change only takes effect when a
window is loaded, so the easiest way to get rbenv started is to open a new
terminal window. If you have any questions about how to use the terminal,
see Appendix 3, ​Command-Line Basics​.

Now, let’s install a specific Ruby version.

Installing Rubies with rbenv
Rbenv allows you to see a list of the Ruby versions you’ll most likely want
to install with the command rbenv install -l. Here’s the current list (as I write
this, 3.3.0 is not fully released):

​ ​$ ​​rbenv​​ ​​install​​ ​​-l​

​ 2.7.8

​ 3.0.6

​ 3.1.4

​ 3.2.2

​ jruby-9.4.2.0

​ mruby-3.2.0

​ picoruby-3.0.0

​ truffleruby-22.3.1

​ truffleruby+graalvm-22.3.1

​

​ Only latest stable releases for each Ruby implementation are shown.

​ Use 'rbenv install --list-all / -L' to show all local versions.

This list has the most up-to-date patch versions of various Ruby
implementations. You can see the current minor versions for the major
Ruby versions 2.7, 3.0, 3.1, 3.2, and 3.3. (When talking about different
Ruby implementations, the main one is sometimes called CRuby and other

times called MRI, for “Matz’s Ruby Interpreter.”) There are also other
versions we’re not going to talk about much here. JRuby[9] is a Ruby
version that runs on the Java Virtual Machine. Mruby is a special limited
build of Ruby for running on embedded hardware. TruffleRuby[10] is an
implementation of the language that is focused on high performance.

Our interest right now is Ruby 3.3.0, which we can install with the
command rbenv install 3.3.0. (If Ruby 3.3.0 isn’t out as you read this, you can
use 3.2.2 or 3.3.0-dev.) If you don’t see the most current version of Ruby on
the list, and you’ve installed rbenv previously, you may get instructions on
how to update ruby-build to get newer Ruby versions in your list. Note that
none of the rbenv commands require us to have superuser access or to use
sudo. One of the joys of the Ruby version managers, including rbenv, is that
they do everything inside your home directory—you don’t have any special
system privileges to install or use new Ruby versions.

​ ​$ ​​rbenv​​ ​​install​​ ​​3.3.0​

​ To follow progress, use

​ 'tail -f <REDACTED>'

​ or pass --verbose

​ Installing openssl-3.1.0...

​ Installed openssl-3.1.0 to /Users/noel/.rbenv/versions/3.3.0

​

​ Installing ruby-3.3.0...

​ ruby-build: using readline from homebrew

​ ruby-build: using gmp from homebrew

​ Installed ruby-3.3.0 to /Users/noel/.rbenv/versions/3.3.0

Your output may be slightly different, depending on the exact version
number and whether you’re re-installing the Ruby version.

We can verify that the Ruby version has been installed with rbenv versions,
for example:

​ ​$ ​​rbenv​​ ​​versions​

​ * system

​ 3.3.0

The system here is the pre-defined Ruby for the operating system if such a
thing exists, and the asterisk shows which version is currently active.

Right now, the system Ruby is still active. Let’s change that.

Switching Rubies with rbenv
This is where we start to see the payoff. Once different Ruby versions are
installed, rbenv allows us multiple ways to switch the Ruby version we’re
using.

The command rbenv local <version> changes the Ruby version for the
directory you’re in:

​ ​$ ​​ruby​​ ​​--version​

​ ruby 2.6.10p210 (2022-04-12 revision 67958) [universal.arm64e-darwin22]

​

​ ​$ ​​rbenv​​ ​​local​​ ​​3.3.0​

​

​ ​$ ​​ruby​​ ​​--version​

​ ruby 3.3.0 (2023-11-02T22:34:58Z master ac8ec004e5) [arm64-darwin23]

If the new Ruby you think you’ve installed doesn’t seem to be available,
you may need to run the command rbenv rehash. This command produces no
output, but it does enable rbenv to use the newly installed Ruby.

This setting for the directory persists even if you leave the directory and
come back. (If you don’t want the change to persist beyond the current
session, you can use rbenv shell <VERSION> instead of rbenv local.)

​ ​$ ​​cd​​ ​​..​

​

​ ​$ ​​cd​​ ​​test​

​

​ ​$ ​​ruby​​ ​​--version​

​ ruby 3.3.0 (2023-11-02T22:34:58Z master ac8ec004e5) [arm64-darwin23]

Rbenv accomplishes this by putting a file in the directory called .ruby-

version, which only contains the version number of the Ruby you’ve set for
that directory.

​ % cat .ruby-version

​ 3.3.0

This file also works in reverse. If you have rbenv installed and you change
to a directory that contains a .ruby-version file, one of two things will happen.
Rbenv will either automatically change to that Ruby version if it’s installed
or warn you that the directory expects an uninstalled Ruby if it isn’t. Many
Ruby projects use a .ruby-version file to specify their Ruby version, and it’s
respected by all the Ruby version managers.

If you want to set a default Ruby version for directories that don’t specify
their own, you can do so with rbenv global <version>.

This may be more work than you were expecting to install Ruby. If all you
ever wanted to do was use a single version of Ruby, we’d agree. But what
you’ve done here is give yourself an incredible amount of flexibility.
Maybe in the future, a project comes along that uses Ruby 2.7.5, per its
.ruby-version file. That’s not a problem—use rbenv install 2.7.5, and rbenv will
automatically pick up the version from the .ruby-version file.

What Is rbenv Actually Doing?
Rbenv attempts to provide its dynamic behavior with as little change to your regular
terminal environment as possible.

A Unix terminal uses a global environment variable called PATH to determine what
directories it looks in for executable programs when you type a command. If you look
in your configuration file for your terminal, you’ll likely see the PATH variable being
modified.

When the rbenv init command is executed as part of your terminal setup, it inserts a
directory at the front of your PATH, so that your operating system will look in the rbenv
directory before looking anyplace else. That directory has a set of what rbenv calls
shims—small programs that match all the executable commands in all your Ruby

versions. (The reason why you may need to run rbenv rehash after installing a new
Ruby is to refresh this directory.) When you call a Ruby command like ruby or (as
you’ll see in a minute) irb, the rbenv shim is encountered first, and it dynamically
chooses which Ruby is active, usually based on the presence of a .ruby-version file.
Then the command is handed off to the actual executable program in that current
version. You can see these actual versions, they live in your home directory at
~/.rbenv/versions.

Installing Ruby for Windows
Ruby isn’t available as a default option in Windows the way it’s in Unix
distributions or MacOS, but it can be installed and used and can interact
with the underlying environment to automate Windows-specific resources.

We’re going to focus on two ways to install Ruby on Windows: using the
Windows Subsystem for Linux (WSL)[11], which allows you to run a Linux
command-line terminal in your Windows system, and using
RubyInstaller[12] to install a Windows application that lets you execute Ruby
programs.

The two different kinds of Ruby can both be installed on the same machine
and have different purposes. Using WSL gives you a command shell that’s
effectively a Linux distribution, allowing you to seamlessly use any of the
other Ruby tooling in this book. Using RubyInstaller gives you access to
Ruby from within a regular Windows PowerShell prompt, allowing you to
execute Ruby programs from File Explorer, and giving you access to
Windows-specific libraries.

No matter which way you want to run Ruby, you should also install
Windows Terminal so that you have a fully-featured terminal program
available. You can download Windows Terminal at
https://docs.microsoft.com/en-us/windows/terminal/install, where you’ll
also find instructions on how to make it your default terminal program.
From Windows Terminal, you can set up new command-line sessions using
either Microsoft’s PowerShell or the WSL shell. (You can also use Visual
Studio Code’s terminal to run either kind of command line.)

Also, if you need a brief tutorial on how Unix command lines work, see
Appendix 3, ​Command-Line Basics​.

Using Windows Subsystem for Linux

https://docs.microsoft.com/en-us/windows/terminal/install

Windows Subsystem for Linux (WSL) allows you to run a Linux
distribution binary inside your Windows setup without incurring the
performance penalty of using a virtual machine or Docker container. WSL
defines the wiring between the Linux OS commands and the Windows OS,
allowing you to run your favorite Linux distribution from a command line
transparently without having to deal with the Windows part at all. You can
also have editing tools like Visual Studio Code or RubyMine interact with
WSL as they run your Ruby code.

We’re going to cover the basics of how to use WSL here, but if you need
more information, the official documentation is available from Microsoft.[13]

Installing WSL
The first step in using Ruby with WSL is installing WSL itself. According
to the WSL website, you need to be running Windows 10 version 2004 and
higher (Build 19041 and higher) or Windows 11 for this to work. We’re
installing WSL version 2 here.

You need to open an administrator Windows command terminal—it doesn’t
matter whether it’s PowerShell or the regular terminal, but it does have to
be an administrator shell. In Windows 11, the easiest way to get an admin
shell is to right-click on the start menu and select the “Windows Terminal
(Administrator)” option, which will open Windows Terminal in an admin
shell. Depending on your Windows version, you may get prompted to say
whether you’ll allow the program to make changes to your system. Say yes.

From the admin shell, type the command wsl --install. This will give us the
default Linux installation, which is Ubuntu. The session looks like this
when it’s through, but it may take a little time to get through the download
and installation process.

​ PS C: \Users\noelr> wsl --install

​ Installing: Virtual Machine Platform

​ Virtual Machine Platform has been installed.

​ Installing: Windows Subsystem for Linux

​ Windows Subsystem for Linux has been installed.

​ Downloading: WSL Kernel

​ Installing: WSL Kernel

​ WSL Kernel has been installed.

​ Downloading: GUI App Support

​ Installing: GUI App Support

​ GUI App Support has been installed.

​ Downloading: Ubuntu

​ The requested operation is successful.

​ Changes will not be effective until the system is rebooted

Reboot the system. This may take some time.

When the system comes back up, open Windows Terminal. The pull-down
menu in the tab bar should now give you the option of an Ubuntu prompt.
You may get prompted to do a sudo apt-get update to update programs in the
Ubuntu distribution.

You’ll then get prompted to create a Unix account for WSL:

​ Installing, this may take a few minutes.

​ Please create a default UNIX user account.

​ The username does not need to match your Windows username

​ For more information visit: httos://aka.ms/wslusers

​ Enter new UNIX username:

The username isn’t in any way connected to your Windows account—it’s a
brand-new account for the Linux distribution you’ve installed using WSL.
After you enter the username, you’ll be prompted for the password. You
won’t get challenged for the password every time you open a WSL
terminal, but you should write it down just in case because someday you
may want to sudo something, and you’ll get asked for your password before
getting superuser rights. (Ask us how we know.) That said, don’t depend on
this password being super-secure by default; the root WSL user has no
password.

At this point, you can use Windows Terminal to open a WSL terminal by
clicking the downward arrow next to the + in the tab bar and selecting

Ubuntu from the menu.

Installing Ruby under WSL
We’re partway there, but the default Ubuntu installation doesn’t include
Ruby or a version manager. These instructions are adapted from
https://gorails.com/setup/windows/10#linux-subsystem.

The Ubuntu distribution uses a package manager called apt-get to distribute
its applications. We need to install some dependencies:

​ ​$ ​​sudo​​ ​​apt-get​​ ​​update​

​ ​$ ​​sudo​​ ​​apt-get​​ ​​install​​ ​​git-core​​ ​​curl​

​ ​$ ​​sudo​​ ​​apt-get​​ ​​install​​ ​​zlib1g-dev​​ ​​build-essential​​ ​​libssl-dev​

​ ​$ ​​sudo​​ ​​apt-get​​ ​​install​​ ​​libreadline-dev​​ ​​libyaml-dev​​ ​​libsqlite3-dev​​ ​​sqlite3​

​ ​$ ​​sudo​​ ​​apt-get​​ ​​install​​ ​​libxml2-dev​​ ​​libxslt1-dev​​ ​​libcurl4-openssl-dev​

​ ​$ ​​sudo​​ ​​apt-get​​ ​​install​​ ​​software-properties-common​​ ​​libffi-dev​

The first line updates apt-get itself so you can get the most current version
of everything, and the following lines install the packages that Ruby will
need. Note that you can do all those installs on a single line (we’re splitting
it up here for page-width purposes).

At this point, you should be able to install the rbenv version manager using
the instructions in ​Installing Ruby with the rbenv Version Manager​. The
GoRails site mentioned before has slightly different rbenv instructions, they
should both work.

Using WSL and Ruby
You should be good to go, as you can confirm by opening up a new WSL
terminal and typing irb. Within WSL, you can use any of the Unix tools that
we’ve described elsewhere in this book.

Ruby programs can be invoked using ruby from the WSL command line as
we’ll discuss in Chapter 14, ​Ruby from the Command Line​. Where it gets a
little bit tricky is in sharing files. WSL sets up what is, in effect, its own file

https://gorails.com/setup/windows/10#linux-subsystem

system. For performance reasons, you’re encouraged to keep all the files
you use in WSL code in the WSL file system (as apparently file read and
write between the two systems is expensive).

That said, it is possible to share files. Windows files are set up in WSL
under the mnt directory (short for “mount point”). Your C: drive is /mnt/c.
You can access Windows files using that path as a prefix. Other drives, like
network drives, can also be connected to a mount point, but it doesn’t
happen by default.

From the Windows side, WSL files show up in File Explorer under their
own “Linux” heading. You can right-click those files and open them in a
Windows editor, but you can’t directly invoke them in WSL from the
Windows file system. (You could, in theory, create a shortcut that invokes a
terminal and a single bash command to run a WSL file.)

Visual Studio Code has a WSL extension that you can install that allows
you to load a WSL directory from the regular Windows version of Visual
Studio Code. Run that directory using the WSL ruby, and use the WSL
terminal as a prompt. Similarly, RubyMine allows you to connect to WSL
as a remote interpreter, open a WSL project, and run it using the WSL Ruby.

Using RubyInstaller
Although WSL is nice, and it’s great to be able to seamlessly integrate with
existing Ruby tooling, from the point of view of a Windows user, it does
have some drawbacks. WSL has some performance overhead, including
taking up a lot of memory. It also doesn’t integrate with the Windows
system directly, meaning that you can’t do Windows-specific things.

A native Ruby installation is available for Windows, and it’s simply called
RubyInstaller.[14] RubyInstaller is a regular Windows installer that gives you
a regular Windows executable Ruby interpreter that you can use to run
Ruby code.

Installing Ruby with RubyInstaller
You can download RubyInstaller from https://rubyinstaller.org, where you
can find versions corresponding to each Ruby patch version for both x64
and x86 machines. There are versions both with and without Devkit, which
is an add-on that allows Ruby gems that have native C-language extensions
to be compiled. A couple of prominent Ruby gems have extensions, so we
recommend the Devkit version.

Once the installer has downloaded, run it and you’ll get a standard
Windows installer. You’ll have options to “Add Ruby executables to your
PATH” and “Associate .rb and .rbw files with this Ruby installation,” both
of which we recommend. You’ll then have the option to install “Ruby RI
and HTML documentation” and the “MSYS2 development toolchain,”
which again, we recommend. At the end, you’ll be asked to run “ridk
install” to set up the development toolchain. Doing so will give you a pop-
up window that will ask you which MSYS2 components to install and to
confirm the defaults are what you want (which they are, so keep them).
Press ENTER to start the MSYS2 installation. After the installation finishes
that phase, it’ll prompt you again. If the brackets in the prompt are empty,
pressing ENTER will finish the installation.

Using Ruby with RubyInstaller
At this point, from a regular Windows terminal, you can run ruby and irb

with the same options as we’ll discuss in Chapter 14, ​Ruby from the
Command Line​, and Chapter 16, ​Interactive Ruby​.

You’ll find two versions of the Ruby interpreter in the RubyInstaller
distribution. The ruby version is meant to be used at a command prompt
(DOS shell or PowerShell), as in the Unix version. For applications that
read and write to the standard input and output, this is fine. This means that
any time you run ruby, you’ll get a DOS shell even if you don’t want one—
Windows will create a new command prompt window and display it while
Ruby is running.

https://rubyinstaller.org/

This may not be appropriate behavior if, for example, you double-click a
Ruby script that uses a graphical interface or if you’re running a Ruby script
as a background task or from inside another program. In these cases, you’ll
want to use rubyw. This is the same as ruby except that it doesn’t provide
standard in, standard out, or standard error and doesn’t launch a DOS shell
when run.

On Windows 11, you can also run Ruby code by right-clicking Ruby files in
File Explorer.

Running Ruby
Now that Ruby is installed, you’d probably like to run some programs.
Unlike compiled languages, you have two ways to run Ruby: you can type
in code interactively, or you can create program files and run them. Typing
in code interactively is a great way to experiment with the language, but for
code that’s more complex or code that you’ll want to run more than once,
you’ll need to create program files and run them. But, before we go any
further, let’s test to see whether Ruby is installed. Bring up a fresh
command prompt, and type this:

​ ​$ ​​ruby​​ ​​--version​

​ ruby 3.3.0dev (2023-11-01T17:47:26Z master 909afcb4fc) [arm64-darwin23]

Technically, you can run Ruby interactively by typing ruby at the shell
prompt. You’ll get a blank line in response, and you can type your Ruby
code there.

​ ​$ ​​ruby​

​ puts "Hello, world!"

​ ^D

​ Hello, world!

In this example, we typed in a single line of Ruby. That line consists of two
parts. The first part, puts, is the name of a method. A method is a pre-
defined chunk of code. In this case, the puts method is one of several
methods defined for us by Ruby. The second part, "Hello, world!", is text
surrounded by double quotes, which is called a string. Combining the two,
the Ruby code puts "Hello, world!" calls the method puts with the argument
"Hello, world!". The puts method then outputs that argument back to the
terminal—puts is short for “outPUT String”.

On the next line, we typed an end-of-file character (Ctrl+D on our system),
which exited the program and caused what we typed to be evaluated. Using

Ruby like this works, but it only shows responses if you explicitly print
them out. Also, it’s painful if you make a typo, and you can’t see what’s
going on as you type.

Happily, there’s a better way to interact with Ruby.

Interactive Ruby, or irb, is the tool of choice for executing Ruby
interactively. Irb is a complete Ruby shell, with command-line history, line-
editing capabilities, and job control. (In fact, it has its own chapter in this
book: Chapter 16, ​Interactive Ruby​.) You run irb from the command line.
Once it starts, type in Ruby code. It will show you the value of each
expression as it evaluates it. Exit an irb session by typing exit or Ctrl+D.

Here’s a sample session:

​ ​$ ​​irb​

​ irb(main):001:1* def sum(n1, n2)

​ irb(main):002:1* n1 + n2

​ irb(main):003:0> end

​ => :sum

​ irb(main):004:0> sum(3, 4)

​ => 7

​ irb(main):005:0> sum("cat", "dog")

​ => "catdog"

​ irb(main):006:0> exit

In the first three lines of this session, we’re defining a method called sum.
The act of defining that method returns a value called :sum, which is a Ruby
symbol matching the name of the method. We’ll talk more about symbols
and method names later. In line 4 of the input, we’re calling the method,
first with arguments 3 and 4, returning 7, then in line 5 with arguments "cat"

and "dog”. In Ruby, adding strings concatenates them, so the line returns the
string "catdog". Then we exit on line 6.

If you try this in Ruby 3.1 or higher, you’ll notice that irb attempts to offer
autocompletion of variable names or commands, and also color codes,

neither of which is easy to show in a book.

We recommend that you get familiar with irb—it’s a great way to explore
Ruby concepts and debug your code, and it’ll make your experience with
Ruby more fun.

What about Docker?
If you’re using Ruby on a larger project or with a larger team, there’s a good chance
that Docker is part of your development environment. Docker is a tool that allows you
to define and run containers. A container is a way to package all the dependencies
needed to run code—it’s a virtual operating system inside your computer. Using
Docker, you can simulate a Linux environment no matter what operating system you’re
running.

A full description of Docker is out of this book’s scope. But, if you’re already familiar
with Docker in general, it’s worth mentioning that Docker maintains images with
different Ruby versions pre-installed. You can always get to the latest released version
with ruby:latest, and you can go straight to a Dockerized irb prompt with docker run -
it ruby irb. Running external Ruby files in the Docker container is doable as well but
requires a little more Docker knowledge.

Creating Ruby Programs
The most common way to write Ruby programs is to put the Ruby code in one
or more text files. You’ll use a text editor or an Integrated Development
Environment (IDE) to create and maintain these files—many popular editors,
including Visual Studio Code, vim, Sublime Text, and RubyMine, feature
Ruby support. You’ll then run the files either from within the editor or from
the command line. Both techniques are useful. You might run single-file
programs from within the editor and more complex programs from the
command line.

Let’s create a short Ruby program and run it. Open a terminal window and
create an empty directory somewhere, perhaps you could call it pickaxe.

Then, using your editor of choice, create the file myprog.rb, containing the
following text:

pickaxe/myprog.rb

​ puts ​"Hello, Ruby Programmer"​

​ puts ​"It is now ​​#{​Time.​now​​}​​"​

Note that the second string contains the text Time.now between curly braces,
not parentheses.

You can run a Ruby program from a file as you would any other shell script or
program in another scripting language like Python. Run the Ruby interpreter,
giving it the script name as an argument:

​ ​$ ​​ruby​​ ​​myprog.rb​

​ Hello, Ruby Programmer

​ It is now 2023-11-02 17:15:44 -0500

On Unix systems, you can use the “shebang” notation as the first line of the
program file. If your system supports it, you can avoid hard-coding the path to

http://media.pragprog.com/titles/ruby5/code/pickaxe/myprog.rb

Ruby in the “shebang” line by using #!/usr/bin/env ruby, which will search your
path for ruby and then execute it.

​ ​#!/usr/bin/env ruby​

​ puts ​"Hello, Ruby Programmer"​

​ puts ​"It is now ​​#{​Time.​now​​}​​"​

If you make this source file executable (using, for instance, chmod +x

myprog.rb), Unix lets you run the file as a program:

​ ​$ ​​./myprog.rb​

​ Hello, Ruby Programmer

​ It is now 2023-11-02 17:15:44 -0500

You can do something similar under Microsoft Windows using file
associations, and you can run Ruby GUI applications by double-clicking their
names in Windows Explorer.

Getting More Information about Ruby
As the volume of the Ruby libraries has grown, it has become impossible to
document them all in one book; the standard library that comes with Ruby
now contains more than 9,000 methods. The official Ruby documentation is
at https://docs.ruby-lang.org, with official pages for the different versions of
the core and standard library located there. irb will also give you
documentation of standard method names as you type.

Much of this documentation is generated from comments in the source code
using a tool called RubyDoc, which we’ll look at in Chapter 19, ​
Documenting Ruby​. The RubyDoc site at https://www.rubydoc.info contains
documentation for Ruby projects that use RubyDoc. Third-party libraries in
the Ruby world are called gems, and the official listing of Ruby gems is at
https://rubygems.org. We’ll talk lots more about gems in Chapter 15, ​Ruby
Gems​.

There is also a command-line tool for the Ruby core documentation called
ri. To find the documentation for a class, type ri <classname>. For example,
the following is the beginning of the summary information for the String

class. If you type ri with no arguments, you get a prompt asking you for a
class.

​ = String < Object

​

​ --

​ = Includes:

​ Comparable (from ruby core)

​

​ (from ruby core)

​ --

​

​ A String object has an arbitrary sequence of bytes, typically

​ representing text or binary data. A String object may be created using

​ String::new or as literals.

https://docs.ruby-lang.org/
https://www.rubydoc.info/
https://rubygems.org/

​

​ String objects differ from Symbol objects in that Symbol objects are

​ designed to be used as identifiers, instead of text or data.

It goes on to list all the methods of String.

You can also try a method name:

​ ​$ ​​ri​​ ​​strip​

​

​ = .strip

​

​ (from ruby core)

​ === Implementation from String

​ --

​ str.strip -> new_str

​

​ --

​

​ Returns a copy of the receiver with leading and trailing whitespace

​ removed.

​ Whitespace is defined as any of the following characters: null,

​ horizontal tab, line feed, vertical tab, form feed, carriage return,

​ space.

​

​ " hello ".strip ​#=> "hello"​

​ "\tgoodbye\r\n".strip ​#=> "goodbye"​

​ "\x00\t\n\v\f\r ".strip ​#=> ""​

​ "hello".strip ​#=> "hello"​

You can then exit the listing by typing q.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

What’s Next
Now that you’re up and running, it’s time to learn how Ruby works. First,
we’ll do a quick overview of the main features of the language.

Footnotes

https://docs.microsoft.com/en-us/windows/wsl/install

https://www.docker.com

https://replit.com

https://github.com/rbenv/rbenv

https://rvm.io

https://github.com/postmodern/chruby

https://asdf-vm.com

https://www.jruby.org

https://github.com/oracle/truffleruby

https://docs.microsoft.com/en-us/windows/wsl

https://rubyinstaller.org

https://docs.microsoft.com/en-us/windows/wsl

https://rubyinstaller.org

Copyright © 2024, The Pragmatic Bookshelf.

https://docs.microsoft.com/en-us/windows/wsl/install
https://www.docker.com/
https://replit.com/
https://github.com/rbenv/rbenv
https://rvm.io/
https://github.com/postmodern/chruby
https://asdf-vm.com/
https://www.jruby.org/
https://github.com/oracle/truffleruby
https://docs.microsoft.com/en-us/windows/wsl
https://rubyinstaller.org/
https://docs.microsoft.com/en-us/windows/wsl
https://rubyinstaller.org/

Chapter 2

Ruby.new

Many books on programming languages look about the same. They start
with chapters on basic types: integers, strings, and so on. Then they look at
expressions like 2 + 3 before moving on to if and while statements and loops.
Then, perhaps around Chapter 7 or 8, they’ll start mentioning classes. We
find that somewhat tedious.

Instead, when we designed this book, we had a grand plan. We wanted to
document the language from the top down, starting with classes and objects
and ending with the nitty-gritty syntax details. It seemed like a good idea at
the time. After all, most everything in Ruby is an object, so it made sense to
talk about objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language top-down. If
you haven’t covered strings, if statements, assignments, and other details,
it’s difficult to write examples of classes. Throughout our top-down
description, we kept coming across low-level details we needed to cover so
that the example code would make sense.

So we came up with another grand plan (they don’t call us pragmatic for
nothing). We’d still describe Ruby starting at the top. But before we did
that, we’d add a short chapter that described all the common language
features used in the examples along with the special vocabulary used in

Ruby—a mini-tutorial to bootstrap us into the rest of the book. And that
mini-tutorial is this chapter.

Ruby Is an Object-Oriented Language
Let’s say it again. Ruby is an object-oriented language. In programming terms,
an object is a thing that combines data with the logic that manipulates that
data, and a language is “object-oriented” if it provides language constructs that
make it easy to create objects. Typically, object-oriented languages allow their
objects to define what their data is, define their functionality, and provide a
common syntax to allow other objects to access that functionality.

Many languages claim to be object-oriented, and those languages often have a
different interpretation of what object-oriented means and a different
terminology for the concepts they employ. Unlike other object-oriented
languages such as Java, JavaScript, and Python, all Ruby types are objects,
and there are no non-object basic types that behave differently.

Before we get too far into the details, let’s briefly look at the terms and
notations that we’ll be using to talk about Ruby.

When you write object-oriented programs, you’re looking to model concepts
from the outside world or from your logical domain. During this modeling
process, you’ll discover categories of related data and behavior that need to be
represented in code. In a system representing a jukebox, the concept of a
“song” could be such a category. A song might combine state (for example, the
name of the song) and methods that use that state (perhaps a method to play
the song). In Ruby, you’d define a class called Song to represent the general
case of what songs do.

Once you have these classes, you’ll typically want to create a number of
separate instances of each. For the jukebox system containing a class called
Song, you’d have separate instances for popular hits with different names such
as “Ruby Tuesday,” “Enveloped in Python,” “String of Pearls,” “Small Talk,”
and so on. Each of these instances has its own state but shares the common
behavior of the class. The word object is often used interchangeably with
instance.

In Ruby, instances are created by calling a constructor, which is a special
method associated with a class. The standard constructor is called new. As
we’ll see later in Chapter 3, ​Classes, Objects, and Variables​, the new method is
defined for you by Ruby, and you don’t need to define it on your own. You
might create instances like this:

​ song1 = Song.​new​(​"Ruby Tuesday"​)

​ song2 = Song.​new​(​"Enveloped in Python"​)

​ ​# and so on​

These instances are both derived from the same class, but they each have
unique characteristics. Every object has a unique object identifier (abbreviated
as object id), accessible via the property object_id. In this example, if you were
to check song1.object_id and song2.object_id, you’d find they have different
values.

For each instance, you can define instance variables, variables with values
that are unique to that instance. These instance variables hold an object’s state.
Each of our songs, for example, will have an instance variable that holds that
song’s title.

Within each class, you can define instance methods. Each method is a chunk
of functionality that may be called in the context of the class and usually from
outside the class, although you can set constraints on what methods can be
used externally. These instance methods have access to the object’s instance
variables and hence to the object’s state. A Song class, for example, might
define an instance method called play. If a variable referenced a particular Song

instance, you’d be able to call that instance’s play method and play that song.

Syntactically, a method is invoked using dot syntax, here are some examples:

intro/puts_examples.rb

​ ​"gin joint"​.​length​ ​# => 9​

​ ​"Rick"​.​index​(​"c"​) ​# => 2​

​ 42.​even?​ ​# => true​

​ sam.​play​(song) ​# => "duh dum, da dum de dum ..."​

http://media.pragprog.com/titles/ruby5/code/intro/puts_examples.rb

Each line shows a method being called. The item before the dot is called the
receiver of the method, and what comes after the period is the name of the
method to be invoked. The first example asks the string "gin joint" for its
length. The second asks a different string to find the index within it of the
letter c. The third line asks the number 42 if it’s even (the question mark is part
of the method name even?). Finally, we ask an object called sam to play us a
song (assuming there’s an existing variable called sam that references an
appropriate object which we’ve defined elsewhere).

When we talk about methods being sent, we often say that we send a message
to the object. The message contains the method’s name along with any
arguments the method may expect. The object responds to the message by
invoking the method with that name. This idea of expressing method calls in
the form of messages to objects comes from the programming language
Smalltalk. When an object receives a message, it looks into its own class for a
corresponding method. If found, that method is executed. If the method isn’t
found, Ruby goes off to look for it—we’ll get to that in ​Method Lookup​.

It’s worth noting here a major difference between Ruby and other object-
oriented languages. In Java, for example, you’d find the absolute value of
some number by calling a separate function and passing in that number. You
could write this:

​ num = Math.abs(num); ​// Java code​

In Ruby, the ability to determine an absolute value is built into the numbers
class which takes care of the details internally. You send the message abs to a
number object and let it do the work:

​ num = -1234 ​# => -1234​

​ positive = num.​abs​ ​# => 1234​

The same applies to all Ruby objects. In Python, you’d write len(name), but in
Ruby, it would be name.length, and so on. This consistency of behavior is what
we mean when we say that Ruby is a pure object-oriented language with no
basic types.

Some Basic Ruby
Not everybody likes to read heaps of boring syntax rules when they’re picking
up a new language, so we’re going to cheat. In this section, we’ll hit the
highlights—the stuff you’ll need to know if you’re going to write Ruby
programs. Later, in Part 4, ​Ruby Language Reference​, we’ll go into all the
gory details.

Let’s start with a short Ruby program. We’ll write a method that returns a
personalized greeting. We’ll then invoke that method a couple of times:

intro/hello1.rb

​ ​def​ ​say_hello_goodbye​(name)

​ result = ​"I don't know why you say goodbye, "​ + name + ​", I say hello"​

​ ​return​ result

​ ​end​

​

​ ​# call the method​

​ puts say_hello_goodbye(​"John"​)

​ puts say_hello_goodbye(​"Paul"​)

Produces:

​ I don't know why you say goodbye, John, I say hello

​ I don't know why you say goodbye, Paul, I say hello

As the example shows, Ruby syntax is uncluttered. You don’t need semicolons
at the ends of statements as long as you put each statement on a separate line.
Ruby comments start with a # character and run to the end of the line. Code
layout is up to you; indentation isn’t significant. That said, two-character
indentation—spaces, not tabs—is the overwhelming choice of the Ruby
community.

Methods are defined with the keyword def, followed by the method name—in
this case, the name is say_hello_goodbye—and then the method’s parameters
between parentheses. (In fact, the parentheses are optional, but we recommend

http://media.pragprog.com/titles/ruby5/code/intro/hello1.rb

you use them.) Ruby doesn’t use braces to delimit the bodies of compound
statements and definitions. Instead, you finish the body with the keyword end.
Our method’s body is pretty short. The first line concatenates the literal string
"I don’t know why you say goodbye, " and the parameter name and the literal string
", I say hello" and assigns the result to the local variable result. The next line
returns that result to the caller. Note that we didn’t have to declare the variable
result; it sprang into existence when we assigned a value to it.

Having defined the method, we invoke it twice. In both cases, we pass the
result to the method puts, which simply outputs its argument followed by a
newline (moving on to the next line of output):

​ I don't know why you say goodbye, John, I say hello

​ I don't know why you say goodbye, Paul, I say hello

The line puts say_hello_goodbye("John") actually contains two method calls: one
to the method say_hello_goodbye with the argument “John” and the other to the
method puts whose argument is the result of the call to say_hello_goodbye . Why
does one call have its arguments in parentheses while the other doesn’t? In this
case, it’s purely a matter of taste—the puts method is available to all objects
and is often written without parentheses around its argument. Ruby doesn’t
require parentheses unless they are directly needed for the interpreter to parse
the statement the way you want. The following lines are equivalent:

​ puts say_hello_goodbye(​"John"​)

​ puts(say_hello_goodbye(​"John"​))

Life isn’t always simple, and precedence rules can make it difficult to know
which argument goes with which method invocation. So, we recommend
using parentheses in all but the simplest cases. You’ll see that Ruby programs
often omit the parentheses when the method doesn’t have an explicit receiver
and only has one argument.

This example also shows Ruby string objects. Ruby has many ways to create a
string object, but the most common is to use string literals, which are
sequences of characters between single or double quotation marks. The two

forms differ in the amount of processing Ruby does on the string while
constructing the literal. In the single-quoted case, Ruby does very little. With a
few exceptions, what you enter in the string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for
substitution sequences that start with a backslash character and replaces them
with some binary value. The most common of these substitutions is \n, which
is replaced with a newline character. When a string containing a newline is
output, that newline becomes a line break:

​ puts ​"Hello and goodbye to you,​​\n​​George"​

Produces:

​ Hello and goodbye to you,

​ George

The second thing that Ruby does with double-quoted strings is expression
interpolation. Within the string, the sequence #{EXPRESSION} is replaced by the
value of EXPRESSION. We could use this to rewrite our previous method:

​ ​def​ ​say_hello_goodbye​(name)

​ result = ​"I don't know why you say goodbye, ​​#{​name​}​​, I say hello"​

​ ​return​ result

​ ​end​

​ puts say_hello_goodbye(​"Ringo"​)

Produces:

​ I don't know why you say goodbye, Ringo, I say hello

When Ruby constructs this string object, it looks at the current value of name

and substitutes it into the string. Arbitrarily complex expressions are allowed
in the #{...} construct. In the following example, we invoke the capitalize

method, defined for all strings, to output our parameter with a leading
uppercase letter:

​ ​def​ ​say_hello_goodbye​(name)

​ result = ​"I don't know why you say goodbye, ​​#{​name.​capitalize​​}​​, I say hello"​

​ ​return​ result

​ ​end​

​ puts say_hello_goodbye(​"john"​)

Produces:

​ I don't know why you say goodbye, John, I say hello

For more information on strings and the other Ruby standard types, see
Chapter 7, ​Basic Types: Numbers, Strings, and Ranges​.

We could simplify our say_hello_goodbye method some more. In the absence of
an explicit return statement, the value returned by a Ruby method is the value
of the last expression evaluated, so we can get rid of the temporary variable
and the return statement altogether.

​ ​def​ ​say_hello_goodbye​(name)

​ ​"I don't know why you say goodbye, ​​#{​name​}​​, I say hello"​

​ ​end​

​ puts say_hello_goodbye(​"Paul"​)

Produces:

​ I don't know why you say goodbye, Paul, I say hello

This version is considered more idiomatic, by which we mean that it’s more in
line with how expert Ruby programmers have chosen to write Ruby programs.
Idiomatic Ruby tends to lean into Ruby’s shortcuts and specific syntax. A good
clearinghouse for the guidelines for idiomatic Ruby style can be found in the
documentation for the Standard gem at https://github.com/testdouble/standard,
which has been used for the code in this book (except where we deliberately
break its rules to make a point).

We promised that this section would be brief. We have one more topic to
cover: Ruby names. For brevity, we’ll be using some terms (such as class
variable) that we aren’t going to define here. But, by talking about the rules
now, you’ll be ahead of the game when we actually come to discuss class
variables and the like later.

https://github.com/testdouble/standard

Ruby uses a convention that may seem strange at first: the first characters of a
name indicate how broadly the variable is visible. Local variables, method
parameters, and method names should all start with a lowercase letter or an
underscore (Ruby itself has a couple of methods that start with a capital letter,
but in general this isn’t something to do in your own code).

Global variables are prefixed with a dollar sign, $, and instance variables begin
with an “at” sign, @. Class variables start with two “at” signs, @@. Although
we talk about global and class variables here for completeness, you’ll find
they are rarely used in Ruby programs. There’s a lot of evidence that global
variables make programs harder to maintain. Class variables aren’t as
dangerous as global variables, but they are still tricky to use safely—people
tend not to use them much because they often use easier ways to get similar
functionality. Finally, class names, module names, and other constants must
start with an uppercase letter. Samples of different names are given in Table 1, ​
Example variable, class, and constant names​.

Table 1. Example variable, class, and constant names

Local Variable: name fish_and_chips x_axis thx1138 _x _26

Instance
Variable:

@name @point_1 @X @_ @plan9

Class Variable: @@total @@symtab @@N @@x_pos
@@SINGLE

Global Variable: $debug $CUSTOMER $_ $plan9 $Global

Class Name: String ActiveRecord MyClass

Constant Name: FEET_PER_MILE DEBUG

Following this initial character, a name can contain any combination of letters,
digits, and underscores, with the exception that the character following an @
sign may not be a digit. But, by convention, multiword instance variables are
written with underscores between the words, like first_name or zip_code, and
multiword class names are written in MixedCase (sometimes called
CamelCase) with each word capitalized, like FirstName or ZipCode. Constant
names are written in all caps, with words separated by underscores, like
FIRST_NAME or ZIP_CODE. Method names may end with the characters ?, !, and =.

Arrays and Hashes
Ruby provides a few different ways to combine objects into collections.
Most of the time, you’ll use two of them: Arrays and Hashes. An Array is a
linear list of objects, you retrieve them via their index, which is the number
of their place in the array, starting at zero for the first slot. A Hash is an
association, meaning it’s a key/value store where each value has an
arbitrary key, and you retrieve the value via that key. Both arrays and
hashes grow as needed to hold new elements. Any particular array or hash
can hold objects of differing types; you can have an array containing an
integer, then a string, then a floating-point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set
of elements between square brackets. Given an array object, you can access
individual elements by supplying an index between square brackets, as the
next example shows. Note that Ruby array indices start at zero.

​ a = [1, ​'cat'​, 3.14] ​# array with three elements​

​ puts ​"The first element is ​​#{​a[0]​}​​"​

​ ​# set the third element​

​ a[2] = ​nil​

​ puts ​"The array is now ​​#{​a.​inspect​​}​​"​

Produces:

​ The first element is 1

​ The array is now [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In
many languages, the concept of nil (or null) means “no object.” In Ruby,
that’s not the case; nil is an object, just like any other. It’s an object that
represents the concept of nothing. Anyway, let’s get back to arrays and
hashes.

Ruby hash syntax is similar to array syntax. A hash literal uses braces rather
than square brackets. The literal must supply two objects for every entry:
one for the key and the other for the value. Most generically, the key and
value are separated by =>, but we’ll see that a shortcut syntax is commonly
used.

For example, you could use a hash to map musical instruments to their
orchestral sections.

​ instrument_section = {

​ ​"cello"​ => ​"string"​,

​ ​"clarinet"​ => ​"woodwind"​,

​ ​"drum"​ => ​"percussion"​,

​ ​"oboe"​ => ​"woodwind"​,

​ ​"trumpet"​ => ​"brass"​,

​ ​"violin"​ => ​"string"​

​ }

The thing to the left of the => is the key, and the thing to the right is the
corresponding value. Keys in a particular hash must be unique; you can’t
have two entries for “drum.” The keys and values in a hash can be arbitrary
objects. You can have hashes where the values are arrays, other hashes, and
so on. The order of the keys in the hash is stable and will always match the
order in which the keys were added to the hash. If you assign a new value to
a key, the old value is erased.

Hashes are indexed using the same square bracket notation as arrays.

​ instrument_section[​"oboe"​] ​# => "woodwind"​

​ instrument_section[​"cello"​] ​# => "string"​

​ instrument_section[​"bassoon"​] ​# => nil​

The default behavior of a hash when indexed by a key it doesn’t contain is
to return nil, representing the absence of a value.

Sometimes you’ll want to change this default behavior. For example, if
you’re using a hash to count the number of times each different word occurs

in a file, it’s convenient to have the default value be zero. Then you can use
the word as the key and increment the corresponding hash value without
worrying about whether you’ve seen that word before. This can be done by
specifying a default value when you create a new, empty hash:

​ histogram = Hash.​new​(0) ​# The default value is zero​

​ histogram[​"ruby"​] ​# => 0​

​ histogram[​"ruby"​] = histogram[​"ruby"​] + 1

​ histogram[​"ruby"​] ​# => 1​

Symbols
Often, when programming, you need to use the same string over and over.
Perhaps the string is a key in a Hash, or maybe the string is the name of a
method. In that case, you’d probably want the access to that string to be
immutable so its value can’t change, and you’d also want accessing the string
to be as fast and use as little memory as possible.

This brings us to Ruby’s symbols. Symbols aren’t exactly optimized strings,
but for most purposes, you can think of them as special strings that are
immutable, are only created once, and are fast to look up. Symbols are meant
to be used as keys and identifiers, while strings are meant to be used for data.

A symbol literal starts with a colon and is followed by some kind of name:

​ walk(​:north​)

​ look(​:east​)

In this example, we’re using the symbols :north and :east to represent constant
values in the code. We don’t need to declare the symbols or assign them a
value—Ruby takes care of that for you. The value of a symbol is equivalent to
its name.

Ruby also guarantees that no matter where they appear in your program,
symbols with the same name will have the same value—indeed, they’ll be the
same internal object. As a result, you can safely write the following:

​ ​def​ ​walk​(direction)

​ ​if​ direction == ​:north​

​ ​# ...​

​ ​end​

​ ​end​

Because their values don’t change, symbols are frequently used as keys in
hashes. We could write our previous hash example using symbols as keys:

intro/hash_with_symbol_keys.rb

http://media.pragprog.com/titles/ruby5/code/intro/hash_with_symbol_keys.rb

​ instrument_section = {

​ ​:cello​ => ​"string"​,

​ ​:clarinet​ => ​"woodwind"​,

​ ​:drum​ => ​"percussion"​,

​ ​:oboe​ => ​"woodwind"​,

​ ​:trumpet​ => ​"brass"​,

​ ​:violin​ => ​"string"​

​ }

​ instrument_section[​:oboe​] ​# => "woodwind"​

​ instrument_section[​:cello​] ​# => "string"​

​ ​# Note that strings aren"t the same as symbols...​

​ instrument_section[​"cello"​] ​# => nil​

Note from the last line that a symbol key is different from a string key, and
access via one won’t result in a value associated with the other.

Symbols are so frequently used as hash keys that Ruby has a shortcut syntax.
You can use name: value pairs to create a hash instead of name => value if the key
is a symbol:

intro/hash_with_symbol_keys_19.rb

​ instrument_section = {

​ ​cello: ​​"string"​,

​ ​clarinet: ​​"woodwind"​,

​ ​drum: ​​"percussion"​,

​ ​oboe: ​​"woodwind"​,

​ ​trumpet: ​​"brass"​,

​ ​violin: ​​"string"​

​ }

​ puts ​"An oboe is a ​​#{​instrument_section[​:oboe​]​}​​ instrument"​

Produces:

​ An oboe is a woodwind instrument

This syntax was added, in part, for programmers familiar with JavaScript and
Python, both of which use a colon as a separator in key/value pairs.

http://media.pragprog.com/titles/ruby5/code/intro/hash_with_symbol_keys_19.rb

Control Structures
Ruby has all the usual control structures, such as if statements and while loops.
Java or JavaScript programmers may be surprised by the lack of braces around
the bodies of these statements. Instead, Ruby uses the keyword end to signify
the end of a body of a control structure:

intro/weekdays.rb

​ today = Time.​now​

​

​ ​if​ today.​saturday?​

​ puts ​"Do chores around the house"​

​ ​elsif​ today.​sunday?​

​ puts ​"Relax"​

​ ​else​

​ puts ​"Go to work"​

​ ​end​

Produces:

​ Go to work

One thing you might find unusual is that in the second clause Ruby uses the
keyword elsif—one word, missing an “e”—to indicate “else if”. Breaking that
keyword up into else if would be a syntax error.

Similarly, while statements are terminated with end and loop as long as the
condition on the line with the while is true:

​ num_pallets = 0

​ weight = 0

​ ​while​ weight < 100 && num_pallets <= 5

​ pallet = next_pallet()

​ weight += pallet.​weight​

​ num_pallets += 1

​ ​end​

http://media.pragprog.com/titles/ruby5/code/intro/weekdays.rb

Most lines that look like statements in Ruby are actually expressions that
return a value, which means you can use those expressions as conditions. For
example, the Kernel method gets returns the next line from the standard input
stream or nil when the end of the file is reached. Because Ruby treats nil as a
false value in conditions, you could write the following to process the lines in
a file:

​ ​while​ (line = gets)

​ puts line.​downcase​

​ ​end​

The assignment statement sets the variable line to the result of calling gets,
which will either be the next line of text or nil. Then the while statement tests
the value returned by the assignment statement, which is the value assigned.
When the value is nil, that means the output has no further lines and the while

loop terminates.

Ruby statement modifiers are a useful shortcut if the body of an if or while

statement is a single expression. Write the expression, followed by if or while

and the condition. For example, here’s a single-line if statement:

​ ​if​ radiation > 3000

​ puts ​"Danger, Will Robinson"​

​ ​end​

Here it is again, rewritten using a statement modifier:

​ puts ​"Danger, Will Robinson"​ ​if​ radiation > 3000

Similarly, this while loop:

​ square = 4

​ ​while​ square < 1000

​ square = square * square

​ ​end​

becomes this more concise version:

​ square = 4

​ square = square * square ​while​ square < 1000

The if version of these modifiers is perhaps most commonly used as a guard
clause at the beginning of a method, as in return nil if user.nil?. The while version
is much less commonly used.

Regular Expressions
Most of Ruby’s built-in types will be familiar to all programmers. A
majority of languages have strings, integers, floats, arrays, and so on. But
not all languages have built-in support for regular expressions the way that
Ruby or JavaScript do. This is a shame because regular expressions,
although cryptic, are a powerful tool for working with text. And having
them built in rather than tacked on through a library interface, makes a big
difference.

Entire books have been written about regular expressions (for example,
Mastering Regular Expressions by Jeffrey Friedl), so we won’t try to cover
everything in this short section. Instead, we’ll look at a few examples of
regular expressions in action. You’ll find more coverage of regular
expressions in Chapter 8, ​Regular Expressions​.

A regular expression is a way of specifying a pattern of characters to be
matched in a string. In Ruby, you typically create a regular expression by
writing a pattern between slash characters (/pattern/). And, Ruby being
Ruby, regular expressions are objects and can be manipulated as such.

For example, you could write a pattern that matches a string containing the
text Ruby or the text Rust using the following regular expression:

​ ​/Ruby|Rust/​

The forward slashes delimit the pattern, which consists of the two things
we’re matching, separated by a pipe character (|). In regular expressions,
the pipe character means “either the thing on the right or the thing on the
left,” in this case either Ruby or Rust. You can use parentheses within
patterns, just as you can in arithmetic expressions, so this pattern matches
the same set of strings:

​ ​/Ru(by|st)/​

You can also specify repetition within patterns. /ab+c/ matches a string
containing an a followed by one or more b_s, followed by a _c. Change the
plus to an asterisk, and /ab*c/ creates a regular expression that matches one
a, zero or more b_s, and one _c.

You can also match one of a group of characters within a pattern. Some
common examples are character classes such as \s, which matches a
whitespace character (space, tab, newline, and so on); \d, which matches
any digit; and \w, which matches any character that may appear in a typical
word. A dot (.) matches (almost) any character. A table of these character
classes appears in Table 2, ​Character class abbreviations​.

We can put all this together to produce some useful regular expressions:

​ ​/\d\d:\d\d:\d\d/​ ​# a time such as 12:34:56​

​ ​/Ruby.*Rust/​ ​# Ruby, zero or more other chars, then Rust​

​ ​/Ruby Rust/​ ​# Ruby, exactly one space, and Rust​

​ ​/Ruby *Rust/​ ​# Ruby, zero or more spaces, and Rust​

​ ​/Ruby +Rust/​ ​# Ruby, one or more spaces, and Rust​

​ ​/Ruby\s+Rust/​ ​# Ruby, one or more whitespace characters, then Rust​

​ ​/Java (Ruby|Rust)/​ ​# Java, a space, and either Ruby or Rust​

Once you’ve created a pattern, it seems a shame not to use it. The match
operator =~ can be used to match a string against a regular expression. If the
pattern is found in the string, =~ returns its starting position; otherwise, it
returns nil. This means you can use regular expressions as conditions in if
and while statements. For example, the following code fragment writes a
message if a string contains the text Ruby or Rust:

​ line = gets

​ ​if​ line =~ ​/Ruby|Rust/​

​ puts ​"Programming language mentioned: ​​#{​line​}​​"​

​ ​end​

Both strings and regular expressions have a match? method which is
synonymous with the =~ operator:

​ line = gets

​ ​if​ line.​match?​(​/Ruby|Rust/​)

​ puts ​"Scripting language mentioned: ​​#{​line​}​​"​

​ ​end​

The match? form is probably more common in modern Ruby.

The part of a string matched by a regular expression can be replaced with
different text using one of Ruby’s substitution methods:

​ line = gets

​ newline = line.​sub​(​/Python/​, ​'Ruby'​) ​# replace first 'Python' with
'Ruby'​

​ newerline = line.​gsub​(​/Python/​, ​'Ruby'​) ​# replace every 'Python' with 'Ruby'​

You can replace every occurrence of JavaScript and Python with Ruby
using this:

​ line = gets

​ newline = line.​gsub​(​/JavaScript|Python/​, ​'Ruby'​)

We’ll have a lot more to say about regular expressions as we go through the
book.

Blocks
This section briefly describes one of Ruby’s particular strengths—blocks. A
code block is a chunk of code you can pass to a method, as if the block were
another parameter. This is an incredibly powerful feature, allowing Ruby
methods to be extremely flexible. One of this book’s early reviewers
commented at this point: “This is pretty interesting and important, so if you
weren’t paying attention before, you should probably start now.” We still
agree.

Syntactically, code blocks are chunks of code that can be delimited one of two
ways: between braces or between do and end. This is a code block at the end of
a message call:

​ foo.​each​ { puts ​"Hello"​ }

This is also a code block at the end of a message call:

​ foo.​each​ ​do​

​ club.​enroll​(person)

​ person.​socialize​

​ ​end​

The two kinds of block delimiters have different precedence: the braces bind
more tightly than the do/end pairs, a fact that will almost never make a
difference in your code. In practice, the standard you’ll most often see is
braces used for single-line blocks and do/end used for multiline blocks.

You can pass a block as an argument to any method call even if the method
doesn’t do anything with the block. You do this by starting the block at the end
of the method call, after any other parameters. For example, in the following
code, the block containing puts "Hi" is associated with the call to the method
greet (which we don’t show here):

​ greet { puts ​"Hi"​ }

If the method has parameters, they appear before the block, and you can only
pass one block per method call. In ​Blocks and Enumeration​, we’ll see other
ways to manage blocks and arbitrary chunks of code.

​ verbose_greet(​"Dave"​, ​"loyal customer"​) { puts ​"Hi"​ }

A method can then invoke an associated block one or more times using the
Ruby yield statement. The yield statement invokes the block that was passed to
the method, passing control to the code inside the block.

The following example shows a block call in action. We define a method that
calls yield twice. We then call this method, putting a block on the same line
after the call, and after any arguments to the method. You can think of the
association of a block with a method as a kind of argument passing. This
works on one level, but it isn’t really the whole story. The block is effectively
an entire other method that can be invoked or passed forward as an argument
to another method. For example:

intro/block_example.rb

​ ​def​ ​call_block​

​ puts ​"Start of method"​

​ ​yield​

​ ​yield​

​ puts ​"End of method"​

​ ​end​

​

​ call_block { puts ​"In the block"​ }

Produces:

​ Start of method

​ In the block

​ In the block

​ End of method

In this example, the code in the block (puts "In the block") is executed twice,
once for each call to yield passing control to the block.

http://media.pragprog.com/titles/ruby5/code/intro/block_example.rb

You can provide arguments to yield, and they’ll be passed to the block. Within
the block, you list the names of the parameters to receive these arguments
between vertical bars (|params...|). The following example shows a method
calling its associated block twice, passing the block two arguments each time:

intro/block_example2.rb

​ ​def​ ​who_says_what​

​ ​yield​(​"Dave"​, ​"hello"​)

​ ​yield​(​"Andy"​, ​"goodbye"​)

​ ​end​

​

​ who_says_what { |person, phrase| puts ​"​​#{​person​}​​ says ​​#{​phrase​}​​"​ }

Produces:

​ Dave says hello

​ Andy says goodbye

You can use code blocks to package code to implement a later callback. Code
blocks can be used to pass around chunks of code. They are used throughout
the Ruby standard library to allow methods to perform an action on successive
elements from a collection such as an array. The act of doing something
similar to all objects in a collection is called enumeration in Ruby; other
languages call this iteration.

​ animals = [​"ant"​, ​"bee"​, ​"cat"​, ​"dog"​] ​# create an array​

​ animals.​each​ { |animal| puts animal } ​# iterate over the contents​

Produces:

​ ant

​ bee

​ cat

​ dog

Many of the looping constructs that are built into languages such as Java and
JavaScript are method calls in Ruby, with the methods invoking an associated
block zero or more times:

http://media.pragprog.com/titles/ruby5/code/intro/block_example2.rb

​ [​"cat"​, ​"dog"​, ​"horse"​].​each​ { |name| print name, ​" "​ }

​ 5.​times​ { print ​"*"​ }

​ 3.​upto​(6) { |i| print i }

​ (​"a"​..​"e"​).​each​ { |char| print char }

​ (​"a"​..​"e"​).​each​ { print _1 }

Produces:

​ cat dog horse *****3456abcdeabcde

In the first line, we ask an array to call the block once for each of its elements.
Next, the object 5 calls a block five times, printing * each time. Rather than
use for loops, the third example shows that in Ruby we can ask the number 3
to call a block, passing in successive values until it reaches 6. Finally, we use
Ruby’s literal syntax for ranges of values to have the range of characters from
a to e invoke a block using the method each. We show that example twice:
once using Ruby’s normal block parameter syntax and once using Ruby’s
shortcut for block parameters, which we’ll see in ​Blocks​.

Reading and ‘Riting
Ruby comes with a comprehensive library to manage input and output
(I/O). But, in most of the examples in this book, we’ll stick to a few simple
methods. We’ve already come across methods that write output: puts writes
its arguments with a newline after each; p also writes its arguments but will
produce more debuggable output. Both can be used to write to any I/O
object, but, by default, they write to the standard output stream.

You can read input into your program in many ways. Probably the most
traditional one is to use the method gets—short for “get string”—which
returns the next line from your program’s standard input stream:

​ line = gets

​ print line

Because gets returns nil when it reaches the end of input, you can use its
return value in a loop condition. Notice that in the following code the
condition to the while is an assignment. We store whatever gets returns into
the variable line and then test to see whether that returned value was nil or
false before continuing:

​ ​while​ (line = gets)

​ print line

​ ​end​

In Chapter 11, ​Basic Input and Output​, we’ll talk more about how to read
and write from a file or other data source.

Command-Line Arguments
When you run a Ruby program from the command line, you can pass in
arguments. These are accessible from your Ruby code in two different
ways.

First, the global array ARGV contains each of the arguments passed to the
running program. Create a file called cmd_line.rb that contains the following:

​ puts ​"You gave ​​#{​ARGV.​size​​}​​ arguments"​

​ p ARGV

When we run it with arguments, we can see that they get passed in:

​ ​$ ​​ruby​​ ​​cmd_line.rb​​ ​​ant​​ ​​bee​​ ​​cat​​ ​​dog​

​ You gave 4 arguments

​ ["ant", "bee", "cat", "dog"]

Often, the arguments to a program are the names of files that you want to
process. In this case, you can use a second technique: the variable ARGF is a
special kind of I/O object that acts like all the contents of all the files whose
names are passed on the command line (or standard input if you don’t pass
any filenames). We’ll look at that some more in ​ARGF​.

Commenting Ruby
Ruby has two ways of adding comments to source code, one of which
you’ll use, and the other you’ll almost certainly not use. The common one is
the # symbol—anything after that symbol until the end of the line is a
comment and is ignored by the interpreter. If the next line continues the
comment, it needs its own # symbol.

Ruby also has a rarely used multiline comment, where the first line starts
with =begin and everything is a comment until the code reaches =end. Both
the =begin and =end must be at the very beginning of the line, they cannot be
indented.

While we did just say that Ruby ignores comments, Ruby uses a small
number of “magic comments” for configuration options on a per-file basis.
These comments have the form of # directive: value and must appear in the
file before the first line of the actual Ruby code.

The most commonly used magic comment is # frozen_string_literal: true. If
this directive is true, then every string literal that doesn’t have an
interpolation inside it’ll automatically be frozen, as though freeze was called
on it.

You might also see an # encoding: VALUE directive, which specifies the
encoding for string and regular expression literals inside that particular file.
Ruby also has a # warn_indent: BOOLEAN flag that will throw code warnings if
a file’s indentation is mismatched. There’s an experimental directive called
sharable_constant_value: which affects how values are shared using the
Ractor multithreading tools.

What’s Next
We finished our lightning-fast tour of some of the basic features of Ruby.
We took a look at objects, methods, strings, containers, and regular
expressions. We saw some simple control structures and looked at some
rather nifty iterators. We hope this chapter has given you enough
ammunition to be able to attack the rest of this book.

It’s time to move on and move up—up to a higher level. Next, we’ll be
looking at classes and objects, things that are at the same time both the
highest-level constructs in Ruby and the essential underpinnings of the
entire language.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 3

Classes, Objects, and Variables

From the examples we’ve shown so far, you may be wondering about our
earlier assertion that Ruby is an object-oriented language. Well, here is
where we justify that claim. We’re going to be looking at how you create
classes and objects in Ruby and at some of the ways that Ruby is more
flexible than other object-oriented languages.

In ​Ruby Is an Object-Oriented Language​, we state that everything we
manipulate in Ruby is an object. And every object in Ruby was instantiated
either directly or indirectly from a class. In this chapter, we’ll look in more
depth at creating and manipulating those classes.

Defining Classes
Let’s give ourselves a simple problem to solve. Suppose we’re running a
secondhand bookstore. Every week, we do stock control. A gang of clerks uses
portable bar-code scanners to record every book on our shelves. Each scanner
generates a comma-separated value (CSV) file containing one row for each
book scanned. The row contains (among other things) the book’s ISBN and
price. An extract from one of these files looks something like this:

tut_classes/stock_stats/data.csv

​ "Date","ISBN","Price"

​ "2013-04-12","978-1-9343561-0-4",39.45

​ "2013-04-13","978-1-9343561-6-6",45.67

​ "2013-04-14","978-1-9343560-7-4",36.95

Our job is to take all the CSV files and work out how many of each title we
have, as well as the total list price of the books in stock.

Whenever you’re designing an Object-Oriented system, a good first step is to
identify the domain concepts you’re dealing with. Typically the domain
concepts—which could represent a physical object, a process, or some other
kind of entity—become classes in your final program, and then individual
examples of those concepts are instances of these classes.

It seems pretty clear that we’ll need something to represent each data reading
captured by the scanners. Each instance of this class will represent a particular
row of data, and the collection of all of these objects will represent all the data
we’ve captured.

Let’s call this class BookInStock. (Remember, class names start with an
uppercase letter, and method names normally start with a lowercase letter.)
Here’s how we declare that class in Ruby using the keyword class:

​ ​class​ BookInStock

​ ​end​

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/data.csv

As we saw in the previous chapter, we can create new instances of this class
using the method ‘new‘:

​ a_book = BookInStock.​new​

​ another_book = BookInStock.​new​

After this code runs, we’d have two distinct objects, both instances of class
BookInStock. But there’s nothing to distinguish one instance from the other,
aside from the fact that they have different internal object IDs. Worse, these
objects don’t yet hold any of the information we need them to hold.

The best way to fix this is to provide the class with an initialize method. This
method lets us set the state of each object as it’s constructed. We store this
state in instance variables inside the object. (Remember instance variables?
They’re the ones that start with an @ sign.) Because each object in Ruby has
its own distinct set of instance variables, each object can have its own unique
state.

Here’s our updated class definition:

​ ​class​ BookInStock

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​ ​end​

The initialize method is special in Ruby programs. When you call
BookInStock.new to create a new object, Ruby allocates some memory to hold
an uninitialized object and then calls that object’s initialize method, passing
through all arguments that were passed to new. This gives you a chance to
write code that sets up your object’s state.

For class BookInStock, the initialize method takes two parameters. These
parameters act like local variables within the method, so they follow the local
variable naming convention of starting with a lowercase letter. But, as local
variables, they’d just evaporate once the initialize method returns, so we need to

transfer them into instance variables. This is common behavior in an initialize

method—the intent is to have our object set up and usable by the time initialize

returns.

This method also illustrates something that often trips up newcomers to Ruby.
Notice how we say @isbn = isbn. It’s easy to imagine that the two variables
here, @isbn and isbn, are somehow related. It looks like they have the same
name, but they don’t. The former is an instance variable, and the “at” sign is
actually part of its name.

Finally, this code illustrates a basic piece of validation. The Float method takes
its argument and converts it to a floating-point number, terminating the
program with an error if that conversion fails. Later in the book, we’ll see
other, more resilient, ways to handle these exceptional situations. (We know
that we shouldn’t be holding prices in inexact old floats. Ruby has classes that
hold fixed-point values exactly, but we want to look at classes, not arithmetic,
in this section.)

What we’re doing here is saying that we want to accept any object for the price

parameter as long as that parameter can be converted to a float. We can pass in
a float, an integer, or even a string containing the representation of a float, and
it’ll work. Let’s try this now. We’ll create three objects, each with a different
initial state. The p method prints out an internal representation of an object.
Using it, we can see that in each case our parameters got transferred into the
object’s state, ending up as instance variables:

tut_classes/stock_stats/book_in_stock_1.rb

​ ​class​ BookInStock

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​ ​end​

​

​ b1 = BookInStock.​new​(​"isbn1"​, 3)

​ p b1

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_1.rb

​

​ b2 = BookInStock.​new​(​"isbn2"​, 3.14)

​ p b2

​

​ b3 = BookInStock.​new​(​"isbn3"​, ​"5.67"​)

​ p b3

Produces:

​ #<BookInStock:0x0000000102f99720 @isbn="isbn1", @price=3.0>

​ #<BookInStock:0x0000000102f99180 @isbn="isbn2", @price=3.14>

​ #<BookInStock:0x0000000102f98fa0 @isbn="isbn3", @price=5.67>

Why did we use the p method to write out our objects, rather than puts? Well,
let’s repeat the code using puts:

tut_classes/stock_stats/book_in_stock_1a.rb

​ ​class​ BookInStock

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​ ​end​

​

​ b1 = BookInStock.​new​(​"isbn1"​, 3)

​ puts b1

​

​ b2 = BookInStock.​new​(​"isbn2"​, 3.14)

​ puts b2

​

​ b3 = BookInStock.​new​(​"isbn3"​, ​"5.67"​)

​ puts b3

Produces:

​ #<BookInStock:0x0000000104739628>

​ #<BookInStock:0x0000000104739150>

​ #<BookInStock:0x0000000104738fe8>

Remember, puts writes strings to your program’s standard output. When you
pass it an object based on a class you wrote, it doesn’t know what to do with
the object yet, so it uses a simple expedient: it writes the name of the object’s

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_1a.rb

class, followed by a colon and the object’s unique object identifier, which is a
hexadecimal number. It puts the whole lot inside #<...>.

Our experience tells us that during development we’ll be printing out the
contents of a BookInStock object many times, and the default formatting leaves
something to be desired. Fortunately, Ruby has a standard message, to_s, that it
sends to any object it wants to render as a string. The default behavior of to_s,
defined in the Object class, is the ClassName, then the colon, and then the
object ID behavior we just described. So, when we pass one of our BookInStock

objects to puts, the puts method calls to_s in that object to get its string
representation.

If we want a different behavior, we can override the default implementation of
to_s to give us a better rendering of our objects (we’ll talk more about how this
works in Chapter 6, ​Sharing Functionality: Inheritance, Modules, and Mixins​
):

tut_classes/stock_stats/book_in_stock_2.rb

​ ​class​ BookInStock

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​

​ ​def​ ​to_s​

​ ​"ISBN: ​​#{​@isbn​}​​, price: ​​#{​@price​}​​"​

​ ​end​

​ ​end​

​

​ b1 = BookInStock.​new​(​"isbn1"​, 3)

​ puts b1

​ b2 = BookInStock.​new​(​"isbn2"​, 3.14)

​ puts b2

​ b3 = BookInStock.​new​(​"isbn3"​, ​"5.67"​)

​ puts b3

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_2.rb

​ ISBN: isbn1, price: 3.0

​ ISBN: isbn2, price: 3.14

​ ISBN: isbn3, price: 5.67

The p method actually has a different method it calls on objects, and that
method is named inspect. The difference is that inspect is designed to produce a
representation that’s useful to a developer when debugging, and to_s is
supposed to produce a human-readable one for more general output.

Something’s going on here that’s both trivial and profound. See how the
values we set into the instance variables @isbn and @price in the initialize

method are subsequently available in the to_s method? That shows how
instance variables work—they’re stored with each object and available to all
the instance methods of those objects.

Objects and Attributes
The BookInStock objects we’ve created so far have an internal state (the ISBN
and price). That state is private to those objects—no other object can access an
object’s instance variables. In general, this is a Good Thing. It means that the
object is solely responsible for maintaining its own consistency. (We feel
obligated to note here that there’s no such thing as perfect privacy in Ruby,
and you shouldn’t depend on Ruby’s language privacy for security purposes.)

A totally secretive object is pretty useless—you can create it, but then you
can’t do anything with it. You’ll normally define methods that let you access
and manipulate the state of an object, allowing the outside world to interact
with the object. These externally visible facets of an object are called its
attributes.

For our BookInStock objects, the first thing we may need is the ability to find
out the ISBN and price (so we can count each distinct book and perform price
calculations). One way of doing that is to write accessor methods:

tut_classes/stock_stats/book_in_stock_3.rb

​ ​class​ BookInStock

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​

​ ​def​ ​isbn​

​ @isbn

​ ​end​

​

​ ​def​ ​price​

​ @price

​ ​end​

​ ​# ..​

​ ​end​

​

​ book = BookInStock.​new​(​"isbn1"​, 12.34)

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_3.rb

​ puts ​"ISBN = ​​#{​book.​isbn​​}​​"​

​ puts ​"Price = ​​#{​book.​price​​}​​"​

Produces:

​ ISBN = isbn1

​ Price = 12.34

Here we’ve defined two accessor methods to return the values of the two
instance variables. The method isbn, for example, returns the value of the
instance variable @isbn because the last (and only) thing executed in the
method is the expression that evaluates the @isbn variable. Later, in ​Method
Bodies​, we’ll look at a shorter syntax for declaring one-line methods.

As far as other objects are concerned, there’s no difference between calling
these attribute accessor methods or calling any other method. This is great
because it means that the internal implementation of the object can change
without the other objects needing to be aware of the change.

Because writing accessor methods is such a common idiom, Ruby provides
convenient shortcuts.

The method attr_reader creates these attribute reader methods for you:

tut_classes/stock_stats/book_in_stock_4.rb

​ ​class​ BookInStock

​ attr_reader ​:isbn​, ​:price​

​

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​

​ ​# ..​

​ ​end​

​

​ book = BookInStock.​new​(​"isbn1"​, 12.34)

​ puts ​"ISBN = ​​#{​book.​isbn​​}​​"​

​ puts ​"Price = ​​#{​book.​price​​}​​"​

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_4.rb

Produces:

​ ISBN = isbn1

​ Price = 12.34

This is the first time we’ve used symbols in this chapter. As we discussed in ​
Symbols​, symbols are a convenient way of referencing a name. In this code,
you can think of :isbn as meaning the name isbn and of plain isbn as meaning
the value of the variable. In this example, we named the accessor methods isbn

and price. The corresponding instance variables are @isbn and @price. These
accessor methods are identical to the ones we wrote by hand earlier—they’ll
return the value of the instance variable whose name matches the name of the
accessor method. These methods only allow you to read the attribute, but not
to change it.

There’s a common misconception that the attr_reader declaration actually
declares instance variables. It doesn’t. It creates the accessor methods, but the
variables themselves don’t need to be declared. An instance variable pops into
existence when you assign a value to it, and any instance value that hasn’t
been assigned a value returns nil when accessed. Ruby completely decouples
instance variables and accessor methods, as we’ll see in ​Attributes Are Just
Methods without Arguments​.

Writing to Attributes
Sometimes you need to be able to set an attribute from outside the object. For
example, let’s assume that we have to discount the price of some titles after
reading in the raw scan data.

In other languages like C# and Java that restrict access to instance variables,
you’d do this with setter functions:

​ ​// Java code​

​ ​class​ JavaBookInStock {

​ ​private​ ​double​ _price;

​ ​public​ ​double​ ​getPrice​() {

​ ​return​ _price;

​ }

​ ​public​ ​void​ ​setPrice​(​double​ newPrice) {

​ _price = newPrice;

​ }

​ }

​ b = ​new​ JavaBookInStock(....);

​ b.setPrice(calculate_discount(b.getPrice()));

In Ruby, the attributes of an object can be accessed via the getter method, and
that access looks the same as any other method. We saw this earlier with
phrases such as book.isbn. So, it seems natural that setting an attribute’s value
looks like a normal variable assignment such as book.isbn = "new isbn". You
enable that assignment by creating a Ruby method whose name ends with an
equals sign. A method so named can be used as the target of assignments:

tut_classes/stock_stats/book_in_stock_5.rb

​ ​class​ BookInStock

​ attr_reader ​:isbn​, ​:price​

​

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​

​ ​def​ ​price​=(new_price)

​ @price = new_price

​ ​end​

​

​ ​# ...​

​ ​end​

​

​ book = BookInStock.​new​(​"isbn1"​, 33.80)

​ puts ​"ISBN = ​​#{​book.​isbn​​}​​"​

​ puts ​"Price = ​​#{​book.​price​​}​​"​

​ book.​price​ = book.​price​ * 0.75 ​# discount price​

​ puts ​"New price = ​​#{​book.​price​​}​​"​

Produces:

​ ISBN = isbn1

​ Price = 33.8

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_5.rb

​ New price = 25.349999999999998

The assignment book.price = book.price * 0.75 invokes the method price= in the
book object, passing it the discounted price as an argument. If you create a
method whose name ends with an equals sign, that name can appear on the left
side of an assignment. (The Ruby parser will ignore whitespace between the
end of the name and the equals sign, which is how book.price = gets parsed to
the method named price=.) You can even treat the setter method like a regular
method invocation if you want—book.price = 1.50 is identical to the somewhat
odder-looking book.price=(1.50).

Again, Ruby provides a shortcut for creating these simple attribute-setting
methods. If you want a write-only accessor, you can use the form attr_writer,
but that’s fairly rare. You’re far more likely to want both a reader and a writer
for a given attribute, so you’ll use the handy-dandy attr_accessor method:

tut_classes/stock_stats/book_in_stock_6.rb

​ ​class​ BookInStock

​ attr_reader ​:isbn​

​ attr_accessor ​:price​

​

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​ ​# ...​

​ ​end​

​

​ book = BookInStock.​new​(​"isbn1"​, 33.80)

​ puts ​"ISBN = ​​#{​book.​isbn​​}​​"​

​ puts ​"Price = ​​#{​book.​price​​}​​"​

​ book.​price​ = book.​price​ * 0.75 ​# discount price​

​ puts ​"New price = ​​#{​book.​price​​}​​"​

Produces:

​ ISBN = isbn1

​ Price = 33.8

​ New price = 25.349999999999998

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_6.rb

In this example, the line attr_accessor :price creates both the getter method that
allows you to write puts book.price and the setter method that allows you to
write book.price = book.price * 0.75

Attributes Are Just Methods without Arguments
These attribute-accessing methods don’t have to be just mere wrappers around
an object’s instance variables. For example, you may want to access the price
as an exact number of cents rather than as a floating-point number of dollars.

tut_classes/stock_stats/book_in_stock_7.rb

​ ​class​ BookInStock

​ attr_reader ​:isbn​

​ attr_accessor ​:price​

​

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​

​ ​def​ ​price_in_cents​

​ (price * 100).​round​

​ ​end​

​ ​# ...​

​ ​end​

​

​ book = BookInStock.​new​(​"isbn1"​, 33.80)

​ puts ​"Price = ​​#{​book.​price​​}​​"​

​ puts ​"Price in cents = ​​#{​book.​price_in_cents​​}​​"​

Produces:

​ Price = 33.8

​ Price in cents = 3380

We multiply the floating-point price by 100 to get the price in cents and then
use the round method to convert it to an integer. Why? Because floating-point
numbers don’t always have an exact internal representation. When we
multiply 33.8 by 100, we get 3379.99999999999954525265. The Integer

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_7.rb

method would truncate this to 3379. Calling round ensures we get the best
integer representation. This is a good example of why you want to use
BigDecimal, not Float, in financial calculations. See Chapter 26, ​Library
Reference: Core Data Types​, for more on BigDecimal.

We can take this even further and create a writing method parallel to the reader
method, mapping the value to the instance variable internally:

tut_classes/stock_stats/book_in_stock_8.rb

​ ​class​ BookInStock

​ attr_reader ​:isbn​

​ attr_accessor ​:price​

​

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​

​ ​def​ ​price_in_cents​

​ (price * 100).​round​

​ ​end​

​

​ ​def​ ​price_in_cents​=(cents)

​ @price = cents / 100.0

​ ​end​

​ ​# ...​

​ ​end​

​

​ book = BookInStock.​new​(​"isbn1"​, 33.80)

​ puts ​"Price = ​​#{​book.​price​​}​​"​

​ puts ​"Price in cents = ​​#{​book.​price_in_cents​​}​​"​

​ book.​price_in_cents​ = 1234

​ puts ​"Price = ​​#{​book.​price​​}​​"​

​ puts ​"Price in cents = ​​#{​book.​price_in_cents​​}​​"​

Produces:

​ Price = 33.8

​ Price in cents = 3380

​ Price = 12.34

​ Price in cents = 1234

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_8.rb

Here we’ve used attribute methods to create a virtual instance variable. To the
outside world, price_in_cents seems to be an attribute like any other. Internally,
though, it has no corresponding instance variable.

This is more than a curiosity. In his landmark book, Object-Oriented Software
Construction, Bertrand Meyer calls this the Uniform Access Principle. By
hiding the difference between instance variables and calculated values, you’re
shielding the rest of the world from the implementation of your class. You’re
free to change how things work in the future without impacting the millions of
lines of code that use your class—for example, you could switch from a float
to a BigDecimal and the users of this class would never need to know. This is a
big win.

Attributes, Instance Variables, and Methods
The previous section’s description of attributes may leave you thinking that
they’re nothing more than methods—why’d we need to invent a fancy name
for them? In a way, that’s absolutely right. An attribute is just a method.
Sometimes an attribute simply returns the value of an instance variable.
Sometimes an attribute returns the result of a calculation. And sometimes
those funky methods with equals signs at the end of their names are used to
update the state of an object. So, the question is, where do attributes stop and
regular methods begin? What makes something an attribute and not just a
plain old method? Ultimately, that’s one of those “how many angels can fit on
the head of a pin” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also how
that state is to appear on the outside to users of your class. The internal state is
held in instance variables. The external state is exposed through methods
we’re calling attributes. And the other actions your class can perform are just
regular methods. It isn’t a crucially important distinction, but by calling the
external state of an object its attributes, you’re helping clue people in on how
they should view the class you’ve written.

Classes Working with Other Classes
Our original challenge was to read in data from multiple CSV files and
produce various simple reports. So far, all we have is BookInStock, a class that
represents the data for one book.

During object-oriented design, you identify external things and make them
classes in your code. But there’s another source of classes in your designs—
the classes that correspond to things inside your code itself. For example, we
know that the program we’re writing will need to consolidate and summarize
CSV data feeds. But that’s a passive statement. Let’s turn it into a design by
asking ourselves what does the summarizing and consolidating. And the
answer (in our case) is a CSV reader. Let’s make it into a class as follows:

​ ​class​ CsvReader

​ ​def​ ​initialize​

​ ​# ...​

​ ​end​

​

​ ​def​ ​read_in_csv_data​(csv_file_name)

​ ​# ...​

​ ​end​

​

​ ​def​ ​total_value_in_stock​

​ ​# ...​

​ ​end​

​

​ ​def​ ​number_of_each_isbn​

​ ​# ...​

​ ​end​

​ ​end​

We’d call it using something like this:

​ reader = CsvReader.​new​

​ reader.​read_in_csv_data​(​"file1.csv"​)

​ reader.​read_in_csv_data​(​"file2.csv"​)

​ : : :

​ puts ​"Total value in stock = ​​#{​reader.​total_value_in_stock​​}​​"​

We need to be able to handle multiple CSV files, so our reader object needs to
accumulate the values from each CSV file it is fed. We’ll do that by keeping
an array of values in an instance variable. And how shall we represent each
book’s data? Well, we just finished writing the BookInStock class, so that
problem is solved. The only other question is how we parse data in a CSV file.
Fortunately, Ruby comes with a good CSV library, which we’ll cover in detail
in Chapter 29, ​Library Reference: Input, Output, Files, and Formats​. Given a
CSV file with a header line, we can iterate over the remaining rows and
extract values by name:

tut_classes/stock_stats/csv_reader.rb

​ ​class​ CsvReader

​ ​def​ ​initialize​

​ @books_in_stock = []

​ ​end​

​

​ ​def​ ​read_in_csv_data​(csv_file_name)

​ CSV.​foreach​(csv_file_name, ​headers: ​​true​) ​do​ |row|

​ @books_in_stock << BookInStock.​new​(row[​"ISBN"​], row[​"Price"​])

​ ​end​

​ ​end​

​ ​end​

Because you’re probably wondering what’s going on, let’s dissect that
read_in_csv_data method. On the first line, we tell the CSV library to open the
file with the given name. The headers: true option tells the library to do two
things. One is to parse the first line of the file as the names of the columns.
The other is to parse each row into a hash with the column names as the keys
and the row values as the values.

The library then reads the rest of the file, passing each row in turn to the block
(the code between do and end). Inside the block, we extract the data from the
ISBN and Price columns and use that data to create a new BookInStock object.
We then append that object to an instance variable called @books_in_stock (the
<< operator does different things in Ruby, in this case, it means “append to an

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/csv_reader.rb

array”). And where does that variable come from? It’s an array that we created
in the initialize method.

Again, this is the pattern you want to aim for. Your initialize method sets up an
environment for your object, leaving it in a usable state. Other methods then
use that state.

If you encounter an error along the lines of “‘Float’: can’t convert nil into
Float (TypeError)” when you run this code, you likely have extra spaces at the
end of the header line in your CSV data file. The CSV library is pretty strict
about the formats it accepts.

Let’s turn this from a code fragment into a working program. We’re going to
organize our source into three files. The first, book_in_stock.rb, will contain the
definition of the class BookInStock. The second, csv_reader.rb, is the source for
the CsvReader class. Finally, a third file, stock_stats.rb, is the main driver
program. We’ll start with book_in_stock.rb:

tut_classes/stock_stats/book_in_stock.rb

​ ​class​ BookInStock

​ attr_reader ​:isbn​, ​:price​

​

​ ​def​ ​initialize​(isbn, price)

​ @isbn = isbn

​ @price = Float(price)

​ ​end​

​

​ ​def​ ​price_in_cents​

​ (price * 100).​round​

​ ​end​

​ ​end​

We’re keeping the price_in_cents method so we can do money arithmetic
without accumulating floating-point errors.

Here’s the csv_reader.rb file. The CsvReader class has two external dependencies,
which are the standard CSV library and the BookInStock class that’s in the file

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock.rb

book_in_stock.rb. Ruby has a couple of helper methods that let us load external
files.

tut_classes/stock_stats/csv_reader.rb

​ require ​"csv"​

​ require_relative ​"book_in_stock"​

​

​ ​class​ CsvReader

​ ​def​ ​initialize​

​ @books_in_stock = []

​ ​end​

​

​ ​def​ ​read_in_csv_data​(csv_file_name)

​ CSV.​foreach​(csv_file_name, ​headers: ​​true​) ​do​ |row|

​ @books_in_stock << BookInStock.​new​(row[​"ISBN"​], row[​"Price"​])

​ ​end​

​ ​end​

​

​ ​def​ ​total_value_in_stock​

​ ​# later we'll see easier ways to sum a collection​

​ sum = 0.0

​ @books_in_stock.​each​ { |book| sum += book.​price_in_cents​ }

​ sum / 100.0

​ ​end​

​

​ ​def​ ​number_of_each_isbn​

​ ​# ...​

​ ​end​

​ ​end​

In this file, we use the require method to load in the Ruby CSV library from the
Ruby standard library. We also use require_relative to load in the book_in_stock

file we wrote. We use require_relative for this because the location of the file
we’re loading is easiest to define relative to the file we’re loading it from—
they’re both in the same directory.

We’re using price_in_cents to compute the total value.

And finally, here’s our main program, in the file stock_stats.rb:

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/csv_reader.rb

tut_classes/stock_stats/stock_stats.rb

​ require_relative ​"csv_reader"​

​

​ reader = CsvReader.​new​

​

​ ARGV.​each​ ​do​ |csv_file_name|

​ $stderr.​puts​ ​"Processing ​​#{​csv_file_name​}​​"​

​ reader.​read_in_csv_data​(csv_file_name)

​ ​end​

​

​ puts ​"Total value = ​​#{​reader.​total_value_in_stock​​}​​"​

Again, this file uses require_relative to bring in the library it needs (in this case,
the csv_reader.rb file). It uses the ARGV variable to access the program’s
command-line arguments, loading CSV data for each file specified on the
command line.

We can run this program using the CSV data that we used in the ​code​​​:

​ ​$ ​​ruby​​ ​​stock_stats.rb​​ ​​data.csv​

​ Processing data.csv

​ Total value = 122.07

Do we need three source files for this? Not necessarily. But as your programs
grow (and almost all programs grow over time), you’ll find that large files
start to get cumbersome. You’ll also find it harder to write automated tests
against the code if it’s in a monolithic chunk. Finally, you won’t be able to
reuse classes if they’re all bundled into the final program. As a result, it’s
fairly common to only have one Ruby class per individual file.

Let’s get back to our discussion of classes.

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/stock_stats.rb

Specifying Access Control
When designing the interface for a class, it’s important to consider how
much of your class you’ll expose to the outside world. Allow too much
access into your class, and you risk increasing the amount that different
classes depend on each other’s internal implementation, which is called
coupling. Users of your class will be tempted to rely on details of your
class’s implementation rather than on its logical interface. The good news is
that the only easy way to change an object’s state in Ruby is by calling one
of its methods. If you control access to the methods, you control access to
the object. A good rule of thumb is never to expose methods that could
leave an object in an invalid state.

Ruby gives you three levels of access control:

Public methods can be called by anyone—no access control is
enforced. Methods are public by default (except for initialize, which is
always private).

Protected methods can be invoked only by objects of the defining class
and its subclasses. Access is kept within the family. We’ll talk more
about subclasses in Chapter 6, ​Sharing Functionality: Inheritance,
Modules, and Mixins​.

Private methods cannot be called with an explicit receiver—the
receiver is always the current object, also known as self. This means
that private methods can be called only in the context of the current
object, and with self as the explicit receiver or with the implicit
receiver. You can’t invoke another object’s private methods with
normal dot syntax. (But there are ways around this using
metaprogramming tools that we’ll discuss in Chapter 22, ​The Ruby
Object Model and Metaprogramming​)

The difference between “protected” and “private” is fairly subtle and is
different in Ruby than in other common object-oriented languages. If a
method is protected, it may be called by any instance of the defining class
or its subclasses. If a method is private, it may be called only within the
context of the calling object—it’s never possible to access another object’s
private methods directly, even if the object is of the same class as the caller.
In practice, it’s somewhat rare to see “protected” in use.

Access control in Ruby is determined dynamically, as the program runs, not
statically when the program is compiled or interpreted. You’ll get an access
violation only when the code attempts to execute the restricted method.

You specify access levels to methods within the class or module definitions
using one or more of the three access methods: public, protected, and private.
You can use each function in three different ways.

If called with no arguments, the three functions set the default access
control of subsequently defined methods. This is probably familiar behavior
if you’re a C# or Java programmer, where you’d use keywords such as
public to achieve the same effect. Although this usage looks like a keyword,
in Ruby, the access control is actually a method.

​ ​class​ MyClass

​ ​# default is "public"​

​ ​def​ ​method1​

​ ​# This method is public​

​ ​end​

​

​ ​protected​

​ ​# subsequent methods will be "protected"​

​ ​def​ ​method2​

​ ​# This method is protected​

​ ​end​

​

​ ​private​

​ ​# subsequent methods will be private"​

​ ​def​ ​method3​

​ ​# This method is private​

​ ​end​

​

​ ​public​

​ ​# subsequent methods will be "public"​

​ ​def​ ​method4​

​ ​# this method is public​

​ ​end​

​ ​end​

Since the default access for methods is public, it’s rare to use public explicitly
to denote access control.

As a matter of style, the methods after the call to an access method like
public are typically not indented—you aren’t defining a block, only the
access status of subsequent methods.

Alternatively, you can set access levels of named methods by listing them
as arguments to the access control functions:

​ ​class​ MyClass

​ ​def​ ​method1​

​ ​end​

​

​ ​def​ ​method2​

​ ​end​

​ ​# ... and so on​

​

​ ​public​ ​:method1​, ​:method4​

​ ​protected​ ​:method2​

​ ​private​ ​:method3​

​ ​end​

This mechanism is somewhat rare in practice, but it does enable the third
way to declare access in Ruby.

We’ve mentioned that most statements in Ruby return a value. In particular,
defining a method with def returns a value—the name of the new method as

a symbol. As a result, you can declare access directly preceding a method
definition.

​ ​class​ MyClass

​ ​def​ ​method1​

​ ​# This method is public​

​ ​end​

​

​ ​protected​ ​def​ ​method2​

​ ​# This method is protected​

​ ​end​

​ ​private​ ​def​ ​method3​

​ ​# This method is private​

​ ​end​

​

​ ​public​ ​def​ ​method4​

​ ​# This method is public​

​ ​end​

​ ​end​

What’s happening here is that the def method2 statement is returning the
value :method2, which is immediately passed as an argument to protected,
resulting in protected :method2, and making that method, and only that
method, protected. Access declared this way doesn’t propagate down the
file, it only applies to the method that the access modifier directly precedes.

We prefer this last form because it’s much more explicit about the access
level of each method. That said, the first form is older, and currently more
common in code you’re likely to see.

It’s time for some examples. Perhaps we’re modeling an accounting system
where every debit has a corresponding credit. Because we want to ensure
that no one can break this rule, we’ll make the methods that do the debits
and credits private, and we’ll define our external interface in terms of
transactions.

​ ​class​ Account

​ attr_accessor ​:balance​

​

​ ​def​ ​initialize​(balance)

​ @balance = balance

​ ​end​

​ ​end​

​

​ ​class​ Transaction

​ ​def​ ​initialize​(account_a, account_b)

​ @account_a = account_a

​ @account_b = account_b

​ ​end​

​

​ ​def​ ​transfer​(amount)

​ debit(@account_a, amount)

​ credit(@account_b, amount)

​ ​end​

​

​ ​private​ ​def​ ​debit​(account, amount)

​ account.​balance​ -= amount

​ ​end​

​

​ ​private​ ​def​ ​credit​(account, amount)

​ account.​balance​ += amount

​ ​end​

​ ​end​

​

​ savings = Account.​new​(100)

​ checking = Account.​new​(200)

​

​ transaction = Transaction.​new​(checking, savings)

​ transaction.​transfer​(50)

Protected access is used when objects need to access the internal state of
other objects of the same class. For example, we may want to allow two
individual Account objects to compare their balances directly but to hide
those balances from the rest of the world (perhaps because we present them
in a different form):

​ ​class​ Account

​ ​protected​ attr_reader ​:balance​ ​# accessor method 'balance' but make it
protected​

​

​ ​def​ ​greater_balance_than?​(other)

​ @balance > other.​balance​

​ ​end​

​ ​end​

Because balance is protected, it’s available only within Account objects.

Variables
Now that we’ve gone through the trouble of creating all these objects, let’s
make sure we don’t lose them. Variables are used to keep track of objects;
each variable holds a reference to an object. Let’s confirm this with some
code:

​ person = ​"Tim"​

​ puts ​"The object in 'person' is a ​​#{​person.​class​​}​​"​

​ puts ​"The object has an id of ​​#{​person.​object_id​​}​​"​

​ puts ​"and a value of '​​#{​person​}​​'"​

Produces:

​ The object in 'person' is a String

​ The object has an id of 60

​ and a value of 'Tim'

On the first line, Ruby creates a new string object with the value Tim. A
reference to this object is placed in the local variable person. A quick check
shows that the variable has indeed taken on the personality of a string, with
a class, an object ID, and a value.

So, is a variable an object? In Ruby, the answer is “no.” A variable is simply
a reference to an object. Objects float around in a big pool somewhere (the
operating system’s heap, most of the time) and are pointed to by variables.
Let’s make the example slightly more complicated:

​ person1 = ​"Tim"​

​ person2 = person1

​ person1[0] = ​'J'​

​

​ puts ​"person1 is ​​#{​person1​}​​"​

​ puts ​"person2 is ​​#{​person2​}​​"​

Produces:

​ person1 is Jim

​ person2 is Jim

What happened here? We changed the first character of person1 (Ruby
strings are mutable, unlike Java’s), but both person1 and person2 changed
from Tim to Jim.

It all comes back to the fact that variables hold references to objects, not the
objects themselves. Assigning person1 to person2 doesn’t create any new
objects; it simply copies person1’s object reference to person2 so that both
person1 and person2 refer to the same object, as shown in the illustration.

Assignment aliases objects, potentially giving you multiple variables that
reference the same object.

Can’t this cause problems in your code? It can, but not as often as you’d
think (objects in Java, for example, work exactly the same way). In the
previous example, for instance, you could avoid aliasing by using the dup
method of String, which creates a new string object with identical contents:

​ person1 = ​"Tim"​

​ person2 = person1.​dup​

​ person1[0] = ​"J"​

​ puts ​"person1 is ​​#{​person1​}​​"​

​ puts ​"person2 is ​​#{​person2​}​​"​

Produces:

​ person1 is Jim

​ person2 is Tim

You can also prevent anyone from changing a particular object by freezing
it. Attempt to alter a frozen object, and Ruby will raise a RuntimeError

exception:

​ person1 = ​"Tim"​

​ person2 = person1

​ person1.​freeze​ ​# prevent modifications to the object​

​ person2[0] = ​"J"​

Produces:

​ from prog.rb:4:in `<main>'

​ prog.rb:4:in `[]=': can't modify frozen String: "Tim" (FrozenError)

Numbers and symbols are always frozen in Ruby, so those values are
always immutable.

Reopening Classes
While we’re talking about classes in Ruby, we feel like we should at least
mention one of the most unique features of Ruby’s class structure: the
ability to reopen a class definition and add new methods or variables to it at
any time, even classes that are part of the third-party tools or the standard
library.

In other words, if you have something like this in Ruby:

​ ​class​ Book

​ attr_accessor ​:title​

​

​ ​# and a bunch of other stuff​

​ ​end​

Later, you can do this:

​ ​class​ Book

​ ​def​ ​uppercase_title​

​ title.​upcase​

​ ​end​

​ ​end​

If you declare class Book and a Book class already exists, Ruby won’t give an
error, and the new definitions in the second declaration will be added to the
existing class. This is true even if the existing class is part of Ruby itself.
This process of reopening classes to add or change methods is colloquially
known as monkey-patching.

Typically, you’d only extend a class like this if the original class isn’t part
of your code, but it’s reasonably common in Ruby to use this method to add
utility functions to core classes or the standard library. Ruby on Rails, for
example, does this a lot.

To give an example, Ruby on Rails defines a method called squish, which
clears excessive whitespace in a string, so if you have this:

​ ​"This string has whitespace"​

It becomes "This string has whitespace." By monkey-patching, Rails can define
the method like this:

​ ​class​ String

​ ​def​ ​squish​

​ ​# implementation​

​ ​end​

​ ​end​

And then call it using str.squish like any other method.

The alternative, which many other languages use, is to define a utility class
or classes and define a class method on them, which looks like this:

​ ​class​ StringUtilities

​ ​def​ self.​squish​(str)

​ ​# implementation​

​ ​end​

​ ​end​

Which you would then call with StringUtilities.squish(str).

This example shows the advantage of allowing classes to reopen—the
ability to add and easily use utility methods is convenient. It’s nice to not
have to know which methods are defined by Rails and which of the many
possible utility classes a method might be in.

That said, this is something to be done with caution—many teams don’t
allow it in their own code without a clear reason. And you should be wary
of using monkey-patching to change the behavior of existing methods,
rather than adding new methods as we did here. Monkey-patching can make
the behavior of code unpredictable. It can be hard to tell where behavior is
defined, and these changes are global, meaning that if two files define the

same method, the last defined one will win, leading to potentially hard-to-
find bugs.

Later in Chapter 22, ​The Ruby Object Model and Metaprogramming​, we’ll
talk about refinements, a Ruby feature that gives you the benefit of
reopening classes, but also limits the scope of your changes.

What’s Next
There’s more to say about classes and objects in Ruby. We still have to look
at class methods and concepts such as mixins and inheritance. We’ll do that
in Chapter 6, ​Sharing Functionality: Inheritance, Modules, and Mixins​.
But, for now, know that everything you manipulate in Ruby is an object and
that objects start their lives as instances of classes. And one of the most
common things we do with objects is to create collections of them. But
that’s the subject of our next chapter.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 4

Collections, Blocks, and Iterators

Most real programs have to manage collections of data: the people in a
course, the songs in your playlist, the books in the store, and so on. Ruby
comes with two classes that are commonly used to handle these collections:
arrays and hashes. A Ruby array is an ordered collection of data. A Ruby
hash is a key/value pair, equivalent to a Python dictionary, a Java Map, or a
JavaScript object. Mastery of these two classes, and their large interfaces, is
an important part of being an effective Ruby programmer.

But it isn’t only these two classes that give Ruby its power when dealing
with collections. Ruby also has a block syntax that lets you encapsulate
chunks of code. When paired with collections, these blocks can build
powerful iterator constructs. In this chapter, we’ll look at the two collection
classes as well as the blocks and iterators.

Arrays
The class Array holds a collection of object references. Each object reference
occupies a position in the array, identified by an integer index. You can
create arrays by using literals or by explicitly creating an Array object. A
literal array is a comma-delimited list of objects between square brackets:

​ a = [3.14159, ​"pie"​, 99]

​ a.​class​ ​# => Array​

​ a.​length​ ​# => 3​

​ a[0] ​# => 3.14159​

​ a[1] ​# => "pie"​

​ a[2] ​# => 99​

​ a[3] ​# => nil​

You can create an empty array with either [] or by directly calling Array.new:

​ b = Array.​new​

​ b.​class​ ​# => Array​

​ b.​length​ ​# => 0​

​ b[0] = ​"second"​

​ b[1] = ​"array"​

​ b ​# => ["second", "array"]​

As the example shows, array indices start at zero. Index an array with a
non-negative integer, and it returns the object at that position, or it returns
nil if nothing is there. Index an array with a negative integer, and it counts
from the end, with -1 being the last element of the array.

​ a = [1, 3, 5, 7, 9]

​ a[-1] ​# => 9​

​ a[-2] ​# => 7​

​ a[-99] ​# => nil​

The following diagram shows array access in a different way:

Arrays are accessed using the [] operator. As with most Ruby operators, this
operator is implemented as a method, specifically, an instance method of
class Array. The last two lines of this example are equivalent:

​ a = [3.14159, ​"pie"​, 99]

​ a[0] ​# => 3.14159​

​ a.​[​](0) ​# => 3.14159​

The last line of code treats [] as a normal method. In practice, you wouldn’t
write code like the last line, we just wanted to show how flexible Ruby is.

You can index arrays with a pair of numbers, [start, count]. This returns a
new array consisting of references to count the number of objects starting at
position start:

​ a = [1, 3, 5, 7, 9]

​ a[1, 3] ​# => [3, 5, 7]​

​ a[3, 1] ​# => [7]​

​ a[-3, 2] ​# => [5, 7]​

You can also index arrays using ranges, in which the start and end positions
are separated by two or three dots. The two-dot form includes the end
position; the three-dot form doesn’t. We’ll talk more about ranges in
Chapter 7, ​Basic Types: Numbers, Strings, and Ranges​.

​ a = [1, 3, 5, 7, 9]

​ a[1..3] ​# => [3, 5, 7]​

​ a[1...3] ​# => [3, 5]​

​ a[3..3] ​# => [7]​

​ a[-3..-1] ​# => [5, 7, 9]​

The [] operator has a corresponding []= operator, which lets you set elements
in the array. If used with a single integer index, the element at that position
is replaced by whatever is on the right side of the assignment. Any gaps that
result will be filled with nil:

​ a = [1, 3, 5, 7, 9] ​#=> [1, 3, 5, 7, 9]​

​ a[1] = ​'bat'​ ​#=> [1, "bat", 5, 7, 9]​

​ a[-3] = ​'cat'​ ​#=> [1, "bat", "cat", 7, 9]​

​ a[3] = [9, 8] ​#=> [1, "bat", "cat", [9, 8], 9]​

​ a[6] = 99 ​#=> [1, "bat", "cat", [9, 8], 9, nil, 99]​

Again, []= is a regular method, and you could write it as a.[]=(index,

new_value).

If the index to []= is two numbers (a start and a length) or a range, then
those elements in the original array are replaced by whatever is on the right
side of the assignment. If the length of the selected elements on the left is
zero, the right side is inserted into the array before the start position; no
elements are removed. If the right side is itself an array, its elements are
used in the replacement. The array size is automatically adjusted if the
index selects a different number of elements than are available on the right
side of the assignment.

​ a = [1, 3, 5, 7, 9] ​#=> [1, 3, 5, 7, 9]​

​ a[2, 2] = ​"cat"​ ​#=> [1, 3, "cat", 9]​

​ a[2, 0] = ​"dog"​ ​#=> [1, 3, "dog", "cat", 9]​

​ a[1, 1] = [9, 8, 7] ​#=> [1, 9, 8, 7, "dog", "cat", 9]​

​ a[0..3] = [] ​#=> ["dog", "cat", 9]​

​ a[5..6] = 99, 98 ​#=> ["dog", "cat", 9, nil, nil, 99, 98]​

In the line a[2, 2] = "cat", the subarray starting at index 2 and of length 2,
which is [5, 7], is replaced by cat. In the next line, the subarray [2, 0] is of
length 0, so dog is inserted at index 2. Then the subarray represented by [1,

1], which is [3], is replaced by [9, 8, 7] being inserted in the array. Notice that
the entire right-side array isn’t inserted as one element, rather each element
in the right-hand side is inserted individually. The last two lines are similar,
but they use ranges instead of a start and a length.

It’s common to create arrays of short words, but that can be a pain, what
with all the quotes and commas. Fortunately, Ruby has a shortcut, %w,
which does just what we want:

Instead of this:

​ a = [​"ant"​, ​"bee"​, ​"cat"​, ​"dog"​, ​"elk"​]

​ a[0] ​# => "ant"​

​ a[3] ​# => "dog"​

You can use %w followed by a delimiter and then by space-separated
individual words.

​ a = ​%w[ant bee cat dog elk]​

​ a[0] ​# => "ant"​

​ a[3] ​# => "dog"​

You can use any character after %w as the delimiter. If it’s something with a
pair, like a bracket or parenthesis, then the array will continue until the
other side of the pair. If you don’t use a pair, the array will continue until it
reaches the same character again.

If you want an array of symbols instead of strings, Ruby has a similar %i

shortcut:

​ a = ​%i[ant bee cat dog elk]​

​ a[0] ​# => :ant​

​ a[3] ​# => :dog​

Arrays have a large number of other useful methods. Using them, you can
treat arrays as stacks, sets, queues, dequeues, and first-in-first-out (FIFO)

queues. (Ruby also has a dedicated Set class, which we’ll cover in Chapter
28, ​Library Reference: Enumerators and Containers​.)

For example, push and pop add and remove elements from the end of an
array, so you can use the array as a stack:

​ stack = []

​ stack.​push​ ​"red"​

​ stack.​push​ ​"green"​

​ stack.​push​ ​"blue"​

​ stack ​# => ["red", "green", "blue"]​

​

​ stack.​pop​ ​# => "blue"​

​ stack.​pop​ ​# => "green"​

​ stack.​pop​ ​# => "red"​

​ stack ​# => []​

Similarly, unshift and shift add and remove elements from the beginning of
an array. Combine shift and push, and you have a first-in-first-out (FIFO)
queue.

​ queue = []

​ queue.​push​ ​"red"​

​ queue.​push​ ​"green"​

​ queue.​shift​ ​# => "red"​

​ queue.​shift​ ​# => "green"​

The first and last methods return (but don’t remove) the n entries at the head
or end of an array. If you don’t pass an argument, the default number is one.

​ array = [1, 2, 3, 4, 5, 6, 7]

​ array.​first​ ​# => 1​

​ array.​first​(4) ​# => [1, 2, 3, 4]​

​ array.​last​ ​# => 7​

​ array.​last​(4) ​# => [4, 5, 6, 7]​

We’ll look at more array methods later on in ​Array​.

Hashes
Hashes (sometimes known as associative arrays, maps, or dictionaries) are
similar to arrays in that they are indexed collections of object references.
But, while you index arrays with integers, you index a hash with objects of
any type, most often symbols and strings but also regular expressions or
anything else in Ruby. When you store a value in a hash, you actually
supply two objects: the index, which is called the key, and the value, or
entry, to be stored with that key. You can subsequently retrieve the entry by
indexing the hash with the same key value that you used to store it.

Why Are They Called Hashes?

The data structure that Ruby calls a Hash—where an arbitrary
key is an index to an arbitrary value—has different names in
different programming languages. The most generic term is
probably key-value store. You’ll also see them called
dictionaries (because the values are looked up based on the
keys), maps (because the individual keys are mapped to
individual values), or associative arrays (because they associate
keys with values).

The name “Hash” (or the related Java term “HashMap”) is
named after an implementation detail. The keys are stored in
memory based on a function that returns a (hopefully) unique
value for each object. Because the location of each key can be
found without referring to the entire object, lookup is fast. The
function that returns the unique value is called a hashing
function and so the data structure is called a Hash.

The example that follows uses hash literals (a list of key/value pairs
between braces), and then it uses square bracket syntax to access the value
at each key for both retrieving and setting the value:

​ h = {​"dog"​ => ​"canine"​, ​"cat"​ => ​"feline"​, ​"bear"​ => ​"ursine"​}

​

​ h.​length​ ​# => 3​

​ h[​"dog"​] ​# => "canine"​

​ h[​"cow"​] = ​"bovine"​

​ h[12] = ​"dodecine"​

​ h[​"cat"​] = 99

​ h ​# => {"dog"=>"canine", "cat"=>99, "bear"=>"ursine",
"cow"=>"bovine",​

​ ​# .. 12=>"dodecine"}​

In the previous example, the hash keys were strings, and the hash literal
used => to separate the keys from the values. (The => is sometimes called a
hashrocket.) If the keys are symbols, then you can use a shortcut. You can
still use => to separate symbol keys from values:

​ h = {​:dog​ => ​"canine"​, ​:cat​ => ​"feline"​, ​:bear​ => ​"ursine"​}

You can also write the literal by moving the colon to the end of the symbol
and dropping the =>.

​ h = { ​dog: ​​"canine"​, ​cat: ​​"feline"​, ​bear: ​​"ursine"​}

Because the value of a symbol doesn’t change, symbols are often used as
hash keys, and so this shortcut is very common.

You can use an even shorter shortcut. Often when creating a new hash,
you’re using existing data stored in variables that share the same name as
the key that the variable will be indexed under in the hash. Something like
this:

​ firstname = ​"Fred"​

​ lastname = ​"Flintstone"​

​ user = {​firstname: ​firstname, ​lastname: ​lastname}

​ puts user

Produces:

​ {:firstname=>"Fred", :lastname=>"Flintstone"}

You don’t need to duplicate the key and the value if they have the same
name:

​ firstname = ​"Fred"​

​ lastname = ​"Flintstone"​

​ user = {firstname:, lastname:}

​ puts user

Produces:

​ {:firstname=>"Fred", :lastname=>"Flintstone"}

Ruby will infer that the value should come from a variable with the same
name as the key. If you try to use a key shortcut and no such local variable
exists, Ruby will throw an error.

Compared with arrays, hashes have one significant advantage: they can use
any object as an index. And you’ll find something that might be surprising:
Ruby remembers the order in which you add items to a hash. When you
subsequently iterate over the entries, Ruby will return them in that order.

You’ll find that hashes are one of the most commonly used data structures
in Ruby. Later, Chapter 5, ​More about Methods​, lists more of the methods
implemented by class Hash.

Digging
Often data isn’t simply a single hash or array but comes in a complex
package that combines hashes and arrays. Accessing data in a complicated
structure can be a pain, but Ruby provides a shortcut with the dig method.

The dig method, which is defined for Array, Hash, and Struct, allows you to
“dig” through a complicated data structure in a single command.

​ data = {

​ ​mcu: ​[

​ {​name: ​​"Iron Man"​, ​year: ​2010, ​actors: ​[​"Robert Downey Jr."​, ​"Gwyneth
Paltrow"​]}

​],

​ ​starwars: ​[

​ {​name: ​​"A New Hope"​, ​year: ​1977, ​actors: ​[​"Mark Hamill"​, ​"Carrie Fisher"​
]}

​]

​ }

​ data[​:mcu​][0][​:actors​][1] ​# => "Gwyneth Paltrow"​

​ data.​dig​(​:mcu​, 0, ​:actors​, 1) ​# => "Gwyneth Paltrow"​

The biggest advantage of using dig is that if an element isn’t in the data
structure, the method returns nil and doesn’t raise an exception.

Word Frequency: Using Hashes and Arrays
Let’s round out this discussion of hashes and arrays with a program that
calculates the number of times each word occurs in some text. (So, for
example, in this sentence, the word the occurs two times.)

The problem breaks down into two parts. First, given some text as a string,
return a list of words. That sounds like an array. Then, build a count for each
distinct word. That sounds like a use for a hash—we can index it with the
word and use the corresponding entry to keep a count.

Let’s start with the method that splits a string into words:

tut_containers/word_freq/words_from_string.rb

​ ​def​ ​words_from_string​(string)

​ string.​downcase​.​scan​(​/[\w']+/​)

​ ​end​

This method uses two useful string methods: downcase, which returns a
lowercase version of a string, and scan, which returns an array of substrings
that match a given pattern. In this case, the pattern is [\w’]+, which matches
sequences containing “word characters” and single quotes.

We can play with this method. Notice how the result is an array, and notice
that the words are in lowercase and the punctuation is gone:

​ p words_from_string(​"I like Ruby, it is (usually) optimized for programmer
happiness"​)

Produces:

​ ["i", "like", "ruby", "it", "is", "usually", "optimized", "for", "programmer",

​ "happiness"]

Our next task is to calculate word frequencies. To do this, we’ll create a hash
object indexed by the words in our list. Each entry in this hash stores the

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/words_from_string.rb

number of times that word occurred. Let’s say we’ve already read part of the
list, and we’ve seen the word the already. Then we’d have a hash that
contained this data:

​ {..., ​"the"​ => 1, ...}

If the variable next_word contains the word the, then incrementing the count is
as simple as setting the hash to increment the value at that key:

​ counts[next_word] += 1

We’d then end up with a hash containing the following:

​ {..., ​"the"​ => 2, ...}

Our only problem is what to do when we encounter a word for the first time. If
we try to increment the entry for that word, there won’t be one, so our
program will fail. This problem has several solutions. One is to check whether
the entry exists before doing the increment:

​ ​if​ counts.​key?​(next_word)

​ counts[next_word] += 1

​ ​else​

​ counts[next_word] = 1

​ ​end​

But there’s a tidier way. If we create a hash object using Hash.new(0), the
parameter, 0 in this case, will be used as the hash’s default value—it’ll be the
value returned if you look up a key that isn’t yet in the hash. Using that, we
can write our count_frequency method:

tut_containers/word_freq/count_frequency.rb

​ ​def​ ​count_frequency​(word_list)

​ counts = Hash.​new​(0)

​ word_list.​each​ ​do​ |word|

​ counts[word] += 1

​ ​end​

​ counts

​ ​end​

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/count_frequency.rb

​ p count_frequency([​"sparky"​, ​"the"​, ​"cat"​, ​"sat"​, ​"on"​, ​"the"​, ​"mat"​])

Produces:

​ {"sparky"=>1, "the"=>2, "cat"=>1, "sat"=>1, "on"=>1, "mat"=>1}

We haven’t talked about loops or blocks yet, but each takes a block argument
and executes the code inside the block once for each element in the array, in
this case, checking the hash for each word and incrementing the count
associated with that word.

We have one little job left. The hash containing the word frequencies is
ordered based on the first time it sees each word. It would be better to display
the results based on the frequencies of the words. We can do that using the
hash’s sort_by method. When you use sort_by, you give it a block that tells the
sort what to use when making comparisons. In our case, we’ll use the count.
The result of the sort is an array containing a set of two-element arrays, with
each subarray corresponding to a key/entry pair in the original hash. This
makes our whole program look like this:

tut_containers/word_freq/ugly_word_count.rb

​ require_relative ​"words_from_string"​

​ require_relative ​"count_frequency"​

​

​ raw_text = ​"The problem breaks down into two parts. First, given some text​

​ ​as a string, return a list of words. That sounds like an array. Then, build​

​ ​a count for each distinct word. That sounds like a use for a hash---we can​

​ ​index it with the word and use the corresponding entry to keep a count."​

​

​ word_list = words_from_string(raw_text)

​ counts = count_frequency(word_list)

​ sorted = counts.​sort_by​ { |word, count| count }

​ top_five = sorted.​last​(5)

​

​ top_five.​reverse_each​ ​do​ |word, count|

​ puts ​"​​#{​word​}​​: ​​#{​count​}​​"​

​ ​end​

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/ugly_word_count.rb

​ a: 6

​ the: 3

​ that: 2

​ sounds: 2

​ like: 2

Note that the sorted array is low to high, so we use last to take the last five
elements of the array, meaning the one with the highest count, and then we use
reverse_each to iterate them highest to lowest.

At this point, a quick test may be in order to validate our code. These tests are
going to be valuable in a moment because we’re going to change that code
into a more commonly used Ruby and we want to make sure the behavior
doesn’t change.

To do this, we’re going to use a testing framework called Minitest that comes
with the standard Ruby distributions. We won’t describe it fully yet (we’ll do
that in Chapter 13, ​Testing Ruby Code​). For now, we’ll say that the class
MiniTest::Test brings in testing functionality, including the method assert_equal,
which checks that its two parameters are equal and complains bitterly if they
aren’t. We’ll use assertions to test our two methods, one method at a time.
(That’s one reason why we wrote them as separate methods—it makes them
testable in isolation.)

Here are some tests for the word_from_string method:

tut_containers/word_freq/test_words_from_string.rb

​ require_relative ​"words_from_string"​

​ require ​"minitest/autorun"​

​

​ ​class​ TestWordsFromString < Minitest::Test

​ ​def​ ​test_empty_string​

​ assert_equal([], words_from_string(​""​))

​ assert_equal([], words_from_string(​" "​))

​ ​end​

​

​ ​def​ ​test_single_word​

​ assert_equal([​"cat"​], words_from_string(​"cat"​))

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/test_words_from_string.rb

​ assert_equal([​"cat"​], words_from_string(​" cat "​))

​ ​end​

​

​ ​def​ ​test_many_words​

​ assert_equal(

​ [​"the"​, ​"cat"​, ​"sat"​, ​"on"​, ​"the"​, ​"mat"​],

​ words_from_string(​"the cat sat on the mat"​)

​)

​ ​end​

​

​ ​def​ ​test_ignores_punctuation​

​ assert_equal(

​ [​"the"​, ​"cat's"​, ​"mat"​],

​ words_from_string(​"<the!> cat's, -mat-"​)

​)

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 39197

​ # Running:

​

​

​ Finished in 0.000420s, 9523.8109 runs/s, 14285.7164 assertions/s.

​

​ 4 runs, 6 assertions, 0 failures, 0 errors, 0 skips

The test starts by requiring the source file containing our words_from_string

method, along with the unit test framework itself. It then defines a test class.
Within that class, any methods whose names start with test are automatically
run by the testing framework. The results show that four test methods ran,
successfully executing six assertions.

We can also test that our count of word frequency works:

tut_containers/word_freq/test_count_frequency.rb

​ require_relative ​"count_frequency"​

​ require ​"minitest/autorun"​

​

​ ​class​ TestCountFrequency < Minitest::Test

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/test_count_frequency.rb

​ ​def​ ​test_empty_list​

​ assert_equal({}, count_frequency([]))

​ ​end​

​

​ ​def​ ​test_single_word​

​ assert_equal({​"cat"​ => 1}, count_frequency([​"cat"​]))

​ ​end​

​

​ ​def​ ​test_two_different_words​

​ assert_equal({​"cat"​ => 1, ​"sat"​ => 1}, count_frequency([​"cat"​, ​"sat"​]))

​ ​end​

​

​ ​def​ ​test_two_words_with_adjacent_repeat​

​ assert_equal({​"cat"​ => 2, ​"sat"​ => 1}, count_frequency([​"cat"​, ​"cat"​, ​"sat"​
]))

​ ​end​

​

​ ​def​ ​test_two_words_with_non_adjacent_repeat​

​ assert_equal({​"cat"​ => 2, ​"sat"​ => 1}, count_frequency([​"cat"​, ​"sat"​, ​"cat"​
]))

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 56174

​ # Running:

​

​

​ Finished in 0.000503s, 9940.3581 runs/s, 9940.3581 assertions/s.

​

​ 5 runs, 5 assertions, 0 failures, 0 errors, 0 skips

In previous editions of the book, we stopped here. But, since then, the Ruby
Standard Library has evolved, and the Array class now has a tally method that
does exactly what our count_frequency method does. We can use tally instead:

tut_containers/word_freq/better_word_count.rb

​ require_relative ​"words_from_string"​

​

​ raw_text = ​"The problem breaks down into two parts. First, given some text​

​ ​as a string, return a list of words. That sounds like an array. Then, build​

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/better_word_count.rb

​ ​a count for each distinct word. That sounds like a use for a hash---we can​

​ ​index it with the word and use the corresponding entry to keep a count."​

​

​ word_list = words_from_string(raw_text)

» counts = word_list.​tally​

​ sorted = counts.​sort_by​ { |word, count| count }

​ top_five = sorted.​last​(5)

​

​ top_five.​reverse_each​ ​do​ |word, count|

​ puts ​"​​#{​word​}​​: ​​#{​count​}​​"​

​ ​end​

Produces:

​ a: 6

​ the: 3

​ that: 2

​ sounds: 2

​ like: 2

And we get the same answer.

Blocks and Enumeration
In our program that wrote out the results of our word frequency analysis, we
had the following loop:

​ top_five.​reverse_each​ ​do​ |word, count|

​ puts ​"​​#{​word​}​​: ​​#{​count​}​​"​

​ ​end​

The method reverse_each is an example of an iterator—a general term for a
method that invokes a block of code repeatedly. Ruby also uses the term
enumerator for such a method.

The most general iterator in Ruby is each, which takes a block and invokes the
block once for each element in the collection. In this case, we’re using
reverse_each, a shortcut method that invokes the block once for each element of
the list, but in reverse order.

Enumerator methods can have different behaviors beyond just executing the
block of code. A Ruby programmer might use a different enumerator method
called map to write the code more compactly. For example:

​ puts top_five.​reverse​.​map​ { |word, count| ​"​​#{​word​}​​: ​​#{​count​}​​"​ }

The map applies its block to each element of the array in turn, returning a new
array made up of the result of each invocation of the block.

Now the whole example looks like this:

tut_containers/word_freq/best_word_count.rb

​ require_relative ​"words_from_string"​

​

​ raw_text = ​"The problem breaks down into two parts. First, given some text​

​ ​as a string, return a list of words. That sounds like an array. Then, build​

​ ​a count for each distinct word. That sounds like a use for a hash---we can​

​ ​index it with the word and use the corresponding entry to keep a count."​

​

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/best_word_count.rb

​ word_list = words_from_string(raw_text)

​ counts = word_list.​tally​

​ sorted = counts.​sort_by​ { |word, count| count }

​ top_five = sorted.​last​(5)

​ puts top_five.​reverse​.​map​ { |word, count| ​"​​#{​word​}​​: ​​#{​count​}​​"​ }

Produces:

​ a: 6

​ the: 3

​ that: 2

​ sounds: 2

​ like: 2

The map method is now taking each element of our top_five array and
converting it to a new array made of the strings that come as the result of
executing the block.

Because each local variable is only used as the receiver of the next message,
you could chain all the values together and get something like this:

tut_containers/word_freq/bester_word_count.rb

​ require_relative ​"words_from_string"​

​

​ raw_text = ​"The problem breaks down into two parts. First, given some text​

​ ​as a string, return a list of words. That sounds like an array. Then, build​

​ ​a count for each distinct word. That sounds like a use for a hash---we can​

​ ​index it with the word and use the corresponding entry to keep a count."​

​

​ puts words_from_string(raw_text)

​ .​tally​

​ .​sort_by​ { |word, count| count }

​ .​last​(5)

​ .​reverse​

​ .​map​ { |word, count| ​"​​#{​word​}​​: ​​#{​count​}​​"​ }

Produces:

​ a: 6

​ the: 3

​ that: 2

​ sounds: 2

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/bester_word_count.rb

​ like: 2

In this example, each message returns a new collection of data that’s processed
by the next message until we finally return the list of strings that’s sent to puts.

You may wonder how to debug that long chain of methods if something isn’t
working and you want to determine what each individual step is. Ruby
provides a method called tap that’s designed to allow you to “tap into” this
kind of method pipeline. All tap does is take a block, pass the receiver into the
block, and then return the original receiver of the method. (From the
perspective of the method pipeline, this does nothing—the receiver calls tap,
and then the same object is returned to receive the next method in the chain.)
So tap is a no-op, except that it does invoke a block.

That block could have a side effect, such as printing a value to the console for
debugging purposes:

tut_containers/word_freq/bester_word_count_with_tap.rb

​ require_relative ​"words_from_string"​

​

​ raw_text = ​"The problem breaks down into two parts. First, given some text​

​ ​as a string, return a list of words. That sounds like an array. Then, build​

​ ​a count for each distinct word. That sounds like a use for a hash---we can​

​ ​index it with the word and use the corresponding entry to keep a count."​

​

​ puts words_from_string(raw_text)

​ .​tally​

​ .​sort_by​ { |word, count| count }

​ .​tap​ { |result| puts ​"sorted tally: ​​#{​result​}​​\n\n​​"​ }

​ .​last​(5)

​ .​tap​ { |result| puts ​"only the last five: ​​#{​result​}​​\n\n​​"​ }

​ .​reverse​

​ .​tap​ { |result| puts ​"reversed: ​​#{​result​}​​\n\n​​"​ }

​ .​map​ { |word, count| ​"​​#{​word​}​​: ​​#{​count​}​​"​ }

Produces:

​ sorted tally: [["words", 1], ["an", 1], ["array", 1], ["then", 1], ["build",
1],

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/bester_word_count_with_tap.rb

​ ["each", 1], ["distinct", 1], ["hash", 1], ["we", 1], ["can", 1], ["index", 1],

​ ["it", 1], ["with", 1], ["and", 1], ["corresponding", 1], ["entry", 1], ["to",

​ 1], ["keep", 1], ["problem", 1], ["breaks", 1], ["down", 1], ["of", 1],
["list",

​ 1], ["return", 1], ["string", 1], ["into", 1], ["two", 1], ["parts", 1], ["as",

​ 1], ["first", 1], ["given", 1], ["text", 1], ["some", 1], ["use", 2], ["word",

​ 2], ["for", 2], ["count", 2], ["like", 2], ["sounds", 2], ["that", 2], ["the",

​ 3], ["a", 6]]

​

​ only the last five: [["like", 2], ["sounds", 2], ["that", 2], ["the", 3], ["a",

​ 6]]

​

​ reversed: [["a", 6], ["the", 3], ["that", 2], ["sounds", 2], ["like", 2]]

​

​ a: 6

​ the: 3

​ that: 2

​ sounds: 2

​ like: 2

It’s worth briefly mentioning that Ruby does have traditional for loops, and
you could start the code with something like for i in 0...5. But the for loop is too
knowledgeable about the array; it magically knows that we’re iterating over
five elements, and it retrieves values in turn from the array. To do this, it has to
know that the structure it’s working with is an array of two-element subarrays.
All that knowledge makes the code brittle—subject to breaking if the
underlying data changes. The enumeration construction is more robust and
flexible.

However you use them, enumeration and code blocks are among the more
interesting features of Ruby, so let’s spend a while looking into them.

Blocks
A block is a chunk of code enclosed either between braces or between the
keywords do and end. The two forms are identical except for precedence,
which is rarely an issue in practice. Ruby style favors using braces for blocks
that fit on one line and do/end when a block spans multiple lines. Ruby style

also has spaces between the brace and the code to distinguish a block from a
Hash literal.

​ some_array.​each​ { |value| puts value * 3 }

​

​ sum = 0

​ other_array.​each​ ​do​ |value|

​ sum += value

​ puts value / sum

​ ​end​

You can think of a block as being somewhat like the body of an anonymous
method. Like a method, the block can take parameters (but, unlike a method,
those parameters appear at the start of the block between vertical bars). Both
blocks in the preceding example take a single parameter, value. And, like a
method, the body of a block isn’t executed when Ruby first sees it. Instead, the
block is saved away to be called later.

Blocks can appear in Ruby source code only immediately after the invocation
of a method. If the method takes parameters, the block appears after these
parameters. You can think of the block as being an extra parameter passed to
that method. Let’s look at an example that sums the squares of the numbers in
an array:

​ sum = 0

​ [1, 2, 3, 4].​each​ ​do​ |value|

​ square = value * value

​ sum += square

​ ​end​

​ puts sum

Produces:

​ 30

The block is called by the each method once for each element in the array, with
each element passed to the block as the value parameter in turn. But there’s
something else going on. Take a look at the sum variable. It’s declared outside

the block, updated inside the block, and then passed to puts after the each

method returns.

This example illustrates an important rule: the block has access to the variable
scope outside the block, and doesn’t, by default, create new variables with
existing names. There’s only one variable sum in the preceding program. (You
can override this behavior, as we’ll see later.)

If a variable appears only inside a block, then that variable is local to the
block. In the preceding program, we couldn’t have written the value of square

in the puts statement at the end of the code because square is no longer defined
at that point. It’s defined only inside the block itself.

This scoping behavior can lead to unexpected problems. For example, say our
program was dealing with drawing different shapes. We might have this:

​ ​# assume Shape is defined elsewhere​

​ square = Shape.​new​(​sides: ​4)

​ ​# .. lots of code​

​ sum = 0

​

​ [1, 2, 3, 4].​each​ ​do​ |value|

​ square = value * value

​ sum += square

​ ​end​

​ puts sum

​

​ square.​draw​ ​# Error! Square is a number now...​

This code will fail because the variable square, which originally held a Shape

object, will have been overwritten inside the block and will hold a number by
the time the each method returns. This problem doesn’t happen often, but when
it does, it can be confusing.

Fortunately, Ruby has a couple of answers.

Parameters to a block are always local to that block, even if they have the
same name as variables in the surrounding scope. (You’ll get a warning

message when you do this if you run Ruby with the -w option.)

In this example, declaring thing as a parameter of the block means that the
block gets its own version of thing and the value outside the block is
undisturbed by the rest of the block:

​ thing = ​"some shape"​

​ [1, 2].​each​ { |thing| puts thing }

​ puts thing

Produces:

​ 1

​ 2

​ some shape

Second, you can define block-local variables by putting them after a
semicolon in the block’s parameter list. So, in our sum-of-squares example,
we should have indicated that the square variable was block-local by writing it
as follows:

​ square = ​"some shape"​

​

​ sum = 0

​ [1, 2, 3, 4].​each​ ​do​ |value; square|

​ square = value * value ​# this is a different variable​

​ sum += square

​ ​end​

​ puts sum

​ puts square

Produces:

​ 30

​ some shape

To be fair, this syntax is pretty rare in actual Ruby code.

By making square block-local, values assigned inside the block won’t affect
the value of the variable with the same name in the outer scope.

Ruby also offers a shortcut way to access the arguments to a block based on
their numerical position. Before we wrote our block like this:

​ [1, 2].​each​ { |thing| puts thing }

You can instead use the special variable _1 to indicate the first positional
argument to the block, meaning you can write this as:

​ [1, 2].​each​ { puts _1 }

If the block had more arguments, you could reference them as _2, _3, and so
on. We think that if this goes past _1, you’re probably better off giving the
block variables their own names.

This version is shorter but can be harder to read if the name of the argument
was conveying important information. Later, we’ll see another common
shortcut for simple block invocations.

Iterators
A method that can invoke a block of code repeatedly for one or more elements
is sometimes called an iterator or an enumerator. We said earlier that a block
may appear only in the source adjacent to a method call and that the code in
the block isn’t executed at the time it’s encountered. Instead, Ruby remembers
the context in which the block appears (the local variables, the current object,
and so on—Ruby refers to all of this information as a binding) and then enters
the method that was called. This is where the magic starts.

Within the method, the block may be invoked, almost as if it were a method
itself, using the yield statement. Whenever a yield is executed, it invokes the
code in the block passed to the method. If there is no block, Ruby throws an
error. When the block exits, control picks back up immediately after the yield.
Let’s start with a trivial example:

Why "yield"?

Programming-language buffs will be pleased to know that the
keyword yield was chosen to echo the yield function in Liskov’s
language CLU, a language that’s more than forty years old and yet
contains features that still haven’t been widely exploited by the
CLU-less.

​ ​def​ ​two_times​

​ ​yield​

​ ​yield​

​ ​end​

​ two_times { puts ​"Hello"​ }

Produces:

​ Hello

​ Hello

The block (the code between the braces) is part of the call to the two_times

method. Within this method, yield is called two times. Each time, it invokes the
code in the block, and a cheery greeting is printed.

What makes blocks interesting is that you can pass parameters to them and
receive values from them. For example, we could write a simple function that
calculates members of the Fibonacci series up to a certain value. (The basic
Fibonacci series is a sequence of integers, starting with two 1s, in which each
subsequent term is the sum of the two preceding terms. The series is
sometimes used in sorting algorithms and in analyzing natural phenomena.)

Continuing the example, let’s say we want the method to be able to do
something arbitrary with each new Fibonacci number. We can allow that by
passing a block to the method and then yielding to the block each time we
identify a new Fibonacci number.

tut_containers/fibonacci_up_to.rb

​ ​def​ ​fibonacci_up_to​(max)

​ ​# parallel assignment (i1 = 1 and i2 = 1)​

​ i1, i2 = 1, 1

​ ​while​ i1 <= max

​ ​yield​ i1

​ i1, i2 = i2, i1 + i2

​ ​end​

​ ​end​

​

​ fibonacci_up_to(1000) { |f| print f, ​" "​ }

​ puts

Produces:

​ 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

In this example, the yield statement has an argument. This value is passed to
the associated block, which tells the method what to do with each successive
element.

In the definition of the block, the parameter list appears between vertical bars.
In this instance, the variable f receives the value passed to yield in the
statement yield i1 and then passed from the yield statement to the block, so the
block prints successive members of the series. (This example also shows
parallel assignment in action. We’ll come back to this later in ​Parallel
Assignment​.) Using the shortcut syntax we saw earlier, this block could also
have been written as { print _1, " " }.

Although it’s common to pass only one value to a block, this isn’t a
requirement; a block may have any number of arguments. Blocks can use any
of the argument patterns that methods use, including keyword arguments, *
and ** splats, and & arguments. These patterns are discussed further in Chapter
5, ​More about Methods​.

Ruby provides many iterators that are available to all Ruby collections. Let’s
look at three: each, find, and map.

http://media.pragprog.com/titles/ruby5/code/tut_containers/fibonacci_up_to.rb

The each method is probably the simplest iterator—all it does is yield
successive elements of its collection:

​ [1, 3, 5, 7, 9].​each​ { |i| puts i }

Produces:

​ 1

​ 3

​ 5

​ 7

​ 9

The each iterator has a special place in Ruby. We’ll describe how it’s used as
the basis of the language’s for loop in ​for … in​, and we’ll see how all the other
enumerable methods are defined in terms of each in ​Iterators and the
Enumerable Module​. Just defining an each method can add a whole lot more
functionality to your classes.

A block returns a value to the method that yields to it. The value of the last
expression evaluated in the block is passed back to the method as the value of
the yield expression. This is how the find method used by class Array works.
(The find method is actually defined in module Enumerable, which is mixed into
class Array.) Its implementation would look something like the following:

​ ​class​ Array

​ ​def​ ​find​

​ each ​do​ |value|

​ ​return​ value ​if​ ​yield​(value)

​ ​end​

​ ​nil​

​ ​end​

​ ​end​

​

​ [1, 3, 5, 7, 9].​find​ { |number| number * number > 30 } ​# => 7​

Let’s break this down. The find method is defined here as an instance method
of Array. The last line of code creates a literal array, [1, 3, 5, 7, 9], and sends it the
find method.

The find method uses each to pass successive elements of the array to the
associated block. You can assume that the each method here is being called as
if on the same array instance (as if it was [1, 3, 5, 7, 9].each). We’ll talk about
why that’s so in ​Method Receiver​.

So, each takes its own block and passes values to that block in succession. On
the first iteration, that’ll be the first element of the array, or 1. We then get to
the line return value if yield(value). The first part evaluated is yield(value), which
passes control of the block argument to find, namely { |number| number * number >

30 }. With 1 as the argument, that’s 1 * 1 > 30, which is false. Because the if
clause value is false, the return value part of that line isn’t evaluated, and the
each method goes on to the next value in the array, which in this case is 3.

If the block returns true (that is, a value other than nil or false), the method
exits, returning the corresponding element, which is the return value part. In
this case, that return will happen when the block gets to the element 7. If the
method goes through the entire array and no element matches, the method
goes to the expression after the each and returns nil—methods and blocks both
return the value of their last expression.

There’s a not-so-obvious piece of control flow here: when you return from
inside a block, the return also acts as a return on the associated method. So
when the return value finally does execute inside the each block, that value is
also returned from the entire find method.

The example shows the benefit of Ruby’s approach to iterators. The Array class
does what it does best, accessing array elements, and leaves the application
code to concentrate on its particular requirement (in this case, finding an entry
that meets some criteria).

Another common iterator is map (also sometimes known as collect), which
takes each element from the collection and passes it to the block. The results

returned by the block are used to construct a new array. The following
example uses the String#succ method, which increments a string value:

​ [​"H"​, ​"A"​, ​"L"​].​map​ { |x| x.​succ​ } ​# => ["I", "B", "M"]​

The implementation of map looks something like this:

​ ​class​ Array

​ ​def​ ​map​

​ result = []

​ each ​do​ |value|

​ result << ​yield​(value)

​ ​end​

​ result

​ ​end​

​ ​end​

We start off with an empty result array. For each element in the array, yield is
invoked on the block, and the resulting value is appended to the array. At the
end of the method, the result, now containing all the individual values that
have been returned by blocks, is itself returned.

Iterators aren’t limited to accessing existing data in arrays and hashes. As we
saw in the Fibonacci example, an iterator can return derived values. This
capability is used by Ruby’s input and output classes, which implement an
iterator interface that returns successive lines (or bytes) in an I/O stream. In
other words, they implement an each method that invokes its block once for
each line in the file, so you can iterate through a file like so:

​ f = File.​open​(​"testfile"​)

​ f.​each​ ​do​ |line|

​ puts ​"The line is: ​​#{​line​}​​"​

​ ​end​

​ f.​close​

Produces:

​ The line is: This is line one

​ The line is: This is line two

​ The line is: This is line three

​ The line is: And so on...

Sometimes you want to keep track of how many times you’ve been through
the block. The with_index method is your friend. You can use with_index as a
method call after an iterator, it adds a sequence number to each value returned
by that iterator. The original value and that sequence number are then passed
to the block:

​ f = File.​open​(​"testfile"​)

​ f.​each​.​with_index​ ​do​ |line, index|

​ puts ​"Line ​​#{​index​}​​ is: ​​#{​line​}​​"​

​ ​end​

​ f.​close​

Produces:

​ Line 0 is: This is line one

​ Line 1 is: This is line two

​ Line 2 is: This is line three

​ Line 3 is: And so on...

The cool thing about with_index is that if the receiving object properly defines
each, then with_index can be chained to any iterator method, you can do
map.with_index or find.with_index or whatever.

Let’s look at one more useful iterator. The reduce method (which can also be
referred to as inject for historical reasons) lets you accumulate a value across
the members of a collection. It lets you reduce an array to a single scalar
value. For example, you can sum all the elements in an array or find their
product using code such as this:

​ [1,3,5,7].​reduce​(0) { |sum, element| sum + element } ​# => 16​

​ [1,3,5,7].​reduce​(1) { |product, element| product * element } ​# => 105​

Here’s how reduce works: the first time the associated block is called, the first
argument to the block is set to the first argument passed to reduce and the
second argument to the block is set to the first element in the collection. In this
case, for sum, the first time through the block, sum is 0 (the argument) and

element is 1 (from the collection). The block performs sum + element, returning
1.

The second and subsequent times the block is called, the first block argument
is set to the value returned by the block on the previous call, while the second
argument continues to be passed successive items from the collection. So, the
next time through the block, sum is 1 and the element is 3, so the block returns
4. The next time, sum is 4 and the element is 5, which returns 9, and the next
time, 9 and 7 returns 16. The final value of reduce is the value returned by the
block the last time it was called.

If reduce is called with no parameter, it uses the first element of the collection
as the initial value and starts the iteration with the second value. This means
that we could’ve written the previous examples like this:

​ [1,3,5,7].​reduce​ { |sum, element| sum + element } ​# => 16​

​ [1,3,5,7].​reduce​ { |product, element| product * element } ​# => 105​

To make things shorter, instead of a block, you can pass it the name of the
method you want to apply to successive elements of the collection. These
examples work because, in Ruby, addition and multiplication are simply
methods defined on the classes that represent numbers, and :+ is the symbol
corresponding to the method +:

​ [1,3,5,7].​reduce​(:+) ​# => 16​

​ [1,3,5,7].​reduce​(:*) ​# => 105​

But for one of these examples, there’s a shortcut:

​ [1,3,5,7].​sum​ ​# => 16​

(Array#product is also a method, but it does something different, it returns the
cross-product of two arrays…)

​ [1,3,5,7].​product​([2, 4, 6]) ​# => [[1, 2], [1, 4], [1, 6], [3, 2], [3, 4], [3,​

​ ​# .. 6], [5, 2], [5, 4], [5, 6], [7, 2], [7, 4],
[7,​

​ ​# .. 6]]​

Using Blocks for Transactions
Although blocks are often used as the target of an iterator, they have other
uses. Let’s look at a few.

You can use blocks to define a chunk of code that must be run as part of some
kind of transaction. For example, you’ll often open a file, do something with
its contents, and then need to ensure that the file is closed when you finish.
Opening and closing the file is a transaction that you want to happen together
regardless of what you do with the contents. Although you can manage a
transaction using conventional linear code, a version using blocks is simpler
and turns out to be less error-prone. A naive implementation (ignoring error
handling) could look something like the following:

​ ​class​ File

​ ​def​ self.​open_and_process​(*args)

​ f = File.​open​(*args)

​ ​yield​ f

​ f.​close​()

​ ​end​

​ ​end​

​

​ File.​open_and_process​(​"testfile"​, ​"r"​) ​do​ |file|

​ ​while​ line = file.​gets​

​ puts line

​ ​end​

​ ​end​

Produces:

​ This is line one

​ This is line two

​ This is line three

​ And so on...

The method open_and_process is a class method—its receiver is the class itself,
and it may be called independently of any particular file object. We’ll discuss
class methods more in Chapter 5, ​More about Methods​. We want
open_and_process to take the same arguments as the conventional File.open

method, but we want to pass them through no matter what the arguments are.

So, we’ve specified the parameter list as *args meaning “collect the positional
parameters passed to the method into an array named args”. We then call
File.open, passing it *args as an argument. This expands the array back into
individual parameters. The net result is that open_and_process transparently
passes its non-block arguments to File.open.

Once the file has been opened, open_and_process calls yield, passing the open
file object to the block. When the block returns, the file is closed. In this way,
the responsibility for closing an open file has been shifted from the users of
file objects to the file objects themselves.

The technique of having files manage their own life cycle is so useful that the
class File supplied with Ruby supports it directly. If File.open has an associated
block, then that block will be invoked with a file object, and the file will be
closed when the block terminates. This is interesting because it means that
File.open has two different behaviors. When called with a block, it executes the
block and closes the file. When called without a block, it just returns the file
object. This is made possible by the method block_given?, which returns true if a
block is associated with the current method. Using this method, you could
implement something similar to the standard File.open (again, ignoring error
handling) using the following:

​ ​class​ File

​ ​def​ self.​my_open​(*args)

​ file = File.​new​(*args)

​ ​return​ file ​unless​ block_given?

​ result = ​yield​ file

​ file.​close​

​ result

​ ​end​

​ ​end​

In this version, we use the guard clause return file unless block_given? to exit the
method early if block_given? is false. Otherwise, we proceed with the same yield

and then close as in our previous code.

This code has one last missing piece: in the previous examples of using blocks
to control resources, we didn’t address error handling. If we wanted to
implement these methods properly, we’d need to ensure that we closed a file
even if the code processing that file somehow aborted. We do this using
exception handling, which we’ll talk about later in Chapter 10, ​Exceptions​.

Using Blocks as Objects
Blocks are like anonymous methods, but there’s more to them than that. You
can also store a block in a variable, pass it as an argument to a function, and
then invoke its code later.

Remember we said that you can think of blocks as an extra implicit argument
that’s passed to a method? Well, you can make that argument explicit. If the
last parameter in a method definition is prefixed with an ampersand (such as
&action), Ruby looks for a code block whenever that method is called. That
code block is converted to an object of class Proc and assigned to the
parameter. You can then treat the parameter as any other variable.

Here’s an example where we create a Proc object in one instance method and
store it in an instance variable. We then invoke the proc from a second
instance method.

​ ​class​ ProcExample

​ ​def​ ​pass_in_block​(&action)

​ @stored_proc = action

​ ​end​

​

​ ​def​ ​use_proc​(parameter)

​ @stored_proc.​call​(parameter)

​ ​end​

​ ​end​

​

​ eg = ProcExample.​new​

​ eg.​pass_in_block​ { |param| puts ​"The parameter is ​​#{​param​}​​"​ }

​ eg.​use_proc​(99)

Produces:

​ The parameter is 99

Do you see how the call method on a proc object invokes the code in the
original block?

Many Ruby programs store and later call blocks in this way—it’s a great way
of implementing callbacks, dispatch tables, and so on. But you can go one step
further. If a block can be turned into an object by adding an ampersand
parameter to a method, what happens if that method then returns the Proc

object to the caller? What can you do with that Proc object?

Well, you can call it, for one thing…

​ ​def​ ​create_block_object​(&block)

​ block

​ ​end​

​

​ bo = create_block_object { |param| puts ​"You called me with ​​#{​param​}​​"​ }

​

​ bo.​call​(99)

​ bo.​call​(​"cat"​)

Produces:

​ You called me with 99

​ You called me with cat

The create_block_object method converts its block argument to the variable
named block and then returns it. The returned value is a Proc object and can be
called with the call method.

Creating a variable with a block value is so useful that Ruby provides multiple
ways to do so. The one you might see the most in newer code is the “stabby
lambda” syntax, where the -> operator declares that a block is coming:

​ bo = ->(param) { puts ​"You called me with ​​#{​param​}​​"​ }

​ bo.​call​(99)

​ bo.​call​(​"cat"​)

Produces:

​ You called me with 99

​ You called me with cat

The stabby lambda is a shortcut for the Ruby Kernel method lambda:

​ bo = lambda { |param| puts ​"You called me with ​​#{​param​}​​"​ }

​ bo.​call​ 99

​ bo.​call​ ​"cat"​

Produces:

​ You called me with 99

​ You called me with cat

There’s a related Kernel method called proc:

​ bo = proc { |param| puts ​"You called me with ​​#{​param​}​​"​ }

​ bo.​call​ 99

​ bo.​call​ ​"cat"​

Produces:

​ You called me with 99

​ You called me with cat

Both proc and lambda invoke the new method of the Proc class, although the
current style prefers using one of the previous mechanisms to using Proc.new

directly:

​ bo = Proc.​new​ { |param| puts ​"You called me with ​​#{​param​}​​"​ }

​ bo.​call​ 99

​ bo.​call​ ​"cat"​

Produces:

​ You called me with 99

​ You called me with cat

There are slight differences between the behavior of the resulting object based
on the lambda calls versus the proc calls. Specifically, the lambda values return

an error if called with the wrong number of arguments, while proc will allow
the call, and either truncate extra arguments or assign nil to unspecified
arguments. Also, using return inside a proc will return from the method the
proc is inside, whereas using return inside a lambda will not.

Blocks Are Closures
We said earlier that a block can use local variables from the surrounding
scope. Let’s look at a slightly different example of a block doing simply that:

​ ​def​ ​n_times​(thing)

​ ->(n) { thing * n }

​ ​end​

​

​ p1 = n_times(23)

​ p1.​call​(3) ​# => 69​

​ p1.​call​(4) ​# => 92​

​ p2 = n_times(​"Hello "​)

​ p2.​call​(3) ​# => "Hello Hello Hello "​

The method n_times uses stabby lambda syntax to return a Proc object that
references the method’s parameter, thing. Even though that parameter is out of
scope by the time the block is called outside the method, the parameter
remains accessible to the block. This is called a closure—variables in the
surrounding scope that are referenced in a block remain accessible for the life
of that block and the life of any Proc object created from that block.

Here’s another example—a method that returns a Proc object that returns
successive powers of 2 when called:

​ ​def​ ​power_proc_generator​

​ value = 1

​ -> { value += value }

​ ​end​

​

​ power_proc = power_proc_generator

​

​ puts power_proc.​call​

​ puts power_proc.​call​

​ puts power_proc.​call​

Produces:

​ 2

​ 4

​ 8

Stabby Lambdas
Let’s look at that lambda syntax a little more. You can write the following:

​ -> (params) { ... }

As a shortcut to:

​ lambda { |params| ... }

Why ->?

Let’s start by getting something out of the way. Why ->? For
compatibility across all the different source file encodings, Matz
is restricted to using pure 7-bit ASCII for Ruby operators, and the
choice of available characters is severely limited by the
ambiguities inherent in the Ruby syntax. He felt that -> was (kind
of) reminiscent of a Greek lambda character λ.

The parentheses around the parameters are optional. Here are some examples:

​ proc1 = -> arg { puts ​"In proc1 with ​​#{​arg​}​​"​ }

​ proc2 = -> arg1, arg2 { puts ​"In proc2 with ​​#{​arg1​}​​ and ​​#{​arg2​}​​"​ }

​ proc3 = ->(arg1, arg2) { puts ​"In proc3 with ​​#{​arg1​}​​ and ​​#{​arg2​}​​"​ }

​

​ proc1.​call​ ​"ant"​

​ proc2.​call​ ​"bee"​, ​"cat"​

​ proc3.​call​ ​"dog"​, ​"elk"​

Produces:

​ In proc1 with ant

​ In proc2 with bee and cat

​ In proc3 with dog and elk

The -> form is more compact than using lambda and is especially useful when
you want to pass one or more Proc objects to a method:

​ ​def​ ​my_if​(condition, then_clause, else_clause)

​ ​if​ condition

​ then_clause.​call​

​ ​else​

​ else_clause.​call​

​ ​end​

​ ​end​

​

​ 5.​times​ ​do​ |val|

​ my_if(

​ val < 2,

​ -> { puts ​"​​#{​val​}​​ is small"​ },

​ -> { puts ​"​​#{​val​}​​ is big"​ }

​)

​ ​end​

Produces:

​ 0 is small

​ 1 is small

​ 2 is big

​ 3 is big

​ 4 is big

One good reason to pass blocks to methods is that you can reevaluate the code
in those blocks at any time.

Here’s an example of reimplementing a while loop using a method. Because
the condition is passed as a block, it can be evaluated each time around the
loop:

​ ​def​ ​my_while​(cond, &body)

​ ​while​ cond.​call​

​ body.​call​

​ ​end​

​ ​end​

​

​ a = 0

​ my_while(-> { a < 3 }) ​do​

​ puts a

​ a += 1

​ ​end​

Produces:

​ 0

​ 1

​ 2

Block Parameter Lists
When you’re using the -> syntax, you declare the parameters in a separate list
before the block body, similar to a method definition. Blocks written using the
other syntax forms declare their parameter lists between vertical bars. In both
cases, the parameter list looks like the list you can give to methods. It can take
default values, splat arguments (described later in ​Variable-Length Parameter
Lists​), keyword arguments, and its own block parameter (a trailing argument
starting with an ampersand). You can write blocks that are as versatile as
methods. Actually, they are more versatile because these blocks are also
closures, while methods are not. Here’s a block using the lambda notation:

​ proc1 = lambda ​do​ |a, *b, &block|

​ puts ​"a = ​​#{​a.​inspect​​}​​"​

​ puts ​"b = ​​#{​b.​inspect​​}​​"​

​ block.​call​

​ ​end​

​

​ proc1.​call​(1, 2, 3, 4) { puts ​"in block1"​ }

Produces:

​ a = 1

​ b = [2, 3, 4]

​ in block1

And here’s one using the -> notation:

​ proc2 = -> (a, *b, &block) ​do​

​ puts ​"a = ​​#{​a.​inspect​​}​​"​

​ puts ​"b = ​​#{​b.​inspect​​}​​"​

​ block.​call​

​ ​end​

​

​ proc2.​call​(1, 2, 3, 4) { puts ​"in block2"​ }

Produces:

​ a = 1

​ b = [2, 3, 4]

​ in block2

Enumerators
As powerful and flexible as the Ruby enumeration methods are, the ones
we’ve seen all have the same structure. A block is passed to an object, and that
object controls how it interacts with the block and traverses the collection.

As useful as that structure is, it doesn’t cover all the cases where iteration is
useful. Sometimes, you want an external object or method to control how the
collection is traversed. You may need a more complicated kind of access to the
block methods. For example, you might want to iterate over two collections in
parallel, which is difficult using Ruby’s internal iterator scheme.

Fortunately, Ruby comes with a built-in Enumerator class, which implements
external iterators in Ruby for just such occasions. An external iterator is an
iterator where you control the iteration behavior outside the iterator itself,
meaning we have a specific way of explicitly triggering when the iterator
should move to the next element in its collection.

The Enumerator class is not to be confused with the Enumerable module, which
we’ll discuss in Chapter 6, ​Sharing Functionality: Inheritance, Modules, and
Mixins​. The Enumerable module is a mixin that provides functionality to a
variety of classes. The Enumerator class is a class that allows for external
iterators.

You can create an Enumerator object by calling the to_enum method (or its
synonym, enum_for) on a collection such as an array or a hash. Once you have
an Enumerator, you can access the next element in the collection with the
method next:

​ a = [1, 3, ​"cat"​]

​ enum_a = a.​to_enum​

​ enum_a.​next​ ​# => 1​

​ enum_a.​next​ ​# => 3​

​

​ h = {​dog: ​​"canine"​, ​fox: ​​"vulpine"​}

​ enum_h = h.​to_enum​

​ enum_h.​next​ ​# => [:dog, "canine"]​

​ enum_h.​next​ ​# => [:fox, "vulpine"]​

By default, the new enumerator uses the each method as the way it walks
through the underlying enumeration, but you can use any method that
successively yields values to a block:

​ a = [1, 3, ​"cat"​]

​ enum_a = a.​to_enum​(​:reverse_each​)

​ enum_a.​next​ ​# => "cat"​

​ enum_a.​next​ ​# => 3​

Most of Ruby’s internal iterator methods—the ones that normally yield
successive values to a block—will return an Enumerator object if called without
a block:

​ a = [1, 3, ​"cat"​]

​

​ enum_a = a.​each​

​

​ enum_a.​next​ ​# => 1​

​ enum_a.​next​ ​# => 3​

Ruby’s Kernel module has a method called loop that does nothing but
repeatedly invoke its block. Typically, your code in the block will look for an
ending condition and break out of the loop when that condition occurs. But

loop is also smart when you use an Enumerator—when an enumerator object
runs out of values inside a loop, the loop will terminate cleanly.

The following example shows this in action—the loop iterates both arrays in
parallel and ends when the three-element enumerator runs out of values. You
can also handle this in your own iterator methods by rescuing the StopIteration

exception, but, because we haven’t talked about exceptions yet, we won’t go
into details here.

​ short_enum = [1, 2, 3].​to_enum​

​ long_enum = (​'a'​..​'z'​).​to_enum​

​

​ ​loop​ ​do​

​ puts ​"​​#{​short_enum.​next​​}​​ - ​​#{​long_enum.​next​​}​​"​

​ ​end​

Produces:

​ 1 - a

​ 2 - b

​ 3 - c

Enumerators Are Objects
Enumerators take something that’s normally executable code (the act of
iterating—by default, calling each) and turn it into an object. This means you
can do things programmatically with enumerators that aren’t easily done with
regular loops.

For example, the Enumerable module defines the method each_with_index. This
invokes its host class’s each method, returning successive values along with an
index:

​ result = []

​ [​'a'​, ​'b'​, ​'c'​].​each_with_index​ { |item, index| result << [item, index] }

​ result ​# => [["a", 0], ["b", 1], ["c", 2]]​

What if you wanted to iterate and receive an index but use a different method
than each to control that iteration? For example, you might want to iterate over

the characters in a string. There’s no method called each_char_with_index built
into the String class.

Enumerators to the rescue. The each_char method of strings will return an
enumerator if you don’t give it a block, and you can then call each_with_index

on that enumerator:

​ result = []

​ ​"cat"​.​each_char​.​each_with_index​ { |item, index| result << [item, index] }

​ result ​# => [["c", 0], ["a", 1], ["t", 2]]​

In fact, this is such a common use of enumerators that Matz has given us
with_index, which makes the code read better:

​ result = []

​ ​"cat"​.​each_char​.​with_index​ { |item, index| result << [item, index] }

​ result ​# => [["c", 0], ["a", 1], ["t", 2]]​

By separating the with_index from the each_char, we can even chain in a map call
and simplify the code even further:

​ ​"cat"​.​each_char​.​with_index​.​map​ { |item, index| [item, index] }

You can also create the Enumerator object explicitly—in this case, we’ll create
one that calls our string’s each_char method. We can call to_a on that
enumerator to iterate over it:

​ enum = ​"cat"​.​each_char​

​ enum.​to_a​ ​# => ["c", "a", "t"]​

If the method we’re using as the basis of our enumerator takes parameters, we
can pass them to enum_for:

​ enum_in_threes = (1..10).​enum_for​(​:each_slice​, 3)

​ enum_in_threes.​to_a​ ​# => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]​

Enumerators Used as Generators and Filters
In addition to creating enumerators from existing collections, you can create
an enumerator explicitly with Enumerator.new, passing it a block that takes a

single argument. The code in the block will be used when next is called on the
enumerator object, and it needs to supply a fresh value to your program. But
the block isn’t simply executed from top to bottom. When first called,
execution starts at the top of the block and pauses when the block calls yield on
its argument, which yields a value to the calling code. When next is called
again, execution resumes at the statement following the yield.

Among other things, this lets you write enumerators that generate infinite
sequences:

​ triangular_numbers = Enumerator.​new​ ​do​ |yielder|

​ number = 0

​ count = 1

​ ​loop​ ​do​

​ number += count

​ count += 1

​ yielder.​yield​(number)

​ ​end​

​ ​end​

​

​ 5.​times​ { print triangular_numbers.​next​, ​" "​ }

​ puts

Produces:

​ 1 3 6 10 15

We start by creating an iterator using Enumerator.new and assigning that value
to the variable triangular_numbers. After that, we loop 5.times, each time calling
triangular_numbers.next. The first time next is called, we start at the top of the
block, setting number and count before entering the loop. In the loop, number is
set to 1, count is incremented to 2, and then yielder.yield is called, passing number

back to the caller.

The following time that next is called, we continue at the point of yield

meaning that we stay in the loop rather than start at the beginning again. The
code updates number to 3, increments count to three, and yields. And so on…

That syntax for infinite sequences is confusing, though. So, a simpler
mechanism was added for creating infinite sequences. The produce method
takes an initial value and a block. Every time the block is invoked via next, the
resulting value is stored and used as the input to the next call. This means all
you need to do is define the succession function, and you don’t need to worry
about managing yielders and whatnot:

​ triangular_numbers = Enumerator.​produce​([1, 2]) ​do​ |number, count|

​ [number + count, count + 1]

​ ​end​

​

​ 5.​times​ { print triangular_numbers.​next​.​first​, ​" "​ }

​ puts

Produces:

​ 1 3 6 10 15

Note that we’re returning a two-element array to keep both values, so we need
to call first on the result to get the actual number. We’ll see a workaround in a
second.

Enumerator objects are also enumerable (that is to say, the methods available
to enumerable objects are also available to them). So we can use Enumerable’s
methods (such as first) on them:

​ triangular_numbers = Enumerator.​produce​([1, 2]) ​do​ |number, count|

​ [number + count, count + 1]

​ ​end​

​

​ p triangular_numbers.​first​(5).​map​ { _1.​first​ }

Produces:

​ [1, 3, 6, 10, 15]

You have to be careful with enumerators that can generate infinite sequences.
Some of the regular Enumerable methods, such as count and select, will happily
try to read the whole enumeration before returning a result. If you want a

version of select that works with infinite sequences, you need to use the lazy

method of Enumerable.

If you call lazy on any Ruby enumerable, you get back an instance of class
Enumerator::Lazy. This enumerator acts like the original, but it reimplements
methods such as select and map so that they can work with infinite sequences.
Putting it another way, none of the lazy versions of the methods actually
consume any data from the collection until that data is requested, and then
they only consume enough to satisfy that request. In other words, they are
“lazy”.

To work this magic, the lazy versions of the various methods don’t return
arrays of data. Instead, each returns a new enumerator that includes its own
special processing—the select method returns an enumerator that knows how
to apply the select logic to its input collection, the map enumerator knows how
to handle the map logic, and so on. The result is that if you chain a bunch of
lazy enumerator methods, what you end up with is a chain of enumerators—
the last one in the chain takes values from the one before it, and so on.

Let’s play with this a little. To start, let’s create a class that generates a stream
of integers…

​ ​class​ InfiniteStream

​ ​def​ ​all​

​ Enumerator.​produce​(0) ​do​ |number|

​ number += 1

​ ​end​.​lazy​

​ ​end​

​ ​end​

​

​ p InfiniteStream.​new​.​all​.​first​(10)

Produces:

​ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

See how we convert the basic generator into a lazy enumerator with the call to
lazy after the end of the block.

Calling the first method on this with the argument 10 returns the numbers 1
through 10, but this doesn’t exercise the method’s lazy characteristics. Let’s
instead get the first 10 multiples of three.

​ p InfiniteStream.​new​.​all​

​ .​select​ { (_1 % 3).​zero?​ }

​ .​first​(10)

Produces:

​ [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

Without the lazy enumerator, the call to select would effectively never return,
as select would try to read all the values from the generator. But the lazy
version of select only consumes values on demand, and in this case the
subsequent call to first only asks for 10 values.

Let’s make this a little more complex—how about multiples of 3 whose string
representations are palindromes?

​ ​def​ ​palindrome?​(n)

​ n = n.​to_s​

​ n == n.​reverse​

​ ​end​

​

​ p InfiniteStream.​new​.​all​

​ .​select​ { (_1 % 3).​zero?​ }

​ .​select​ { palindrome?(_1) }

​ .​first​(10)

Produces:

​ [0, 3, 6, 9, 33, 66, 99, 111, 141, 171]

Remember that our lazy filter methods simply return new Enumerator objects?
That means we can split up the previous code:

​ multiple_of_three = InfiniteStream.​new​.​all​.​select​ { (_1 % 3).​zero?​ }

​

​ p multiple_of_three.​first​(10)

​

​ m3_palindrome = multiple_of_three.​select​ { palindrome?(_1) }

​

​ p m3_palindrome.​first​(10)

Produces:

​ [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

​ [0, 3, 6, 9, 33, 66, 99, 111, 141, 171]

You could also code up the various predicates as free-standing procs if you
feel it aids readability or reusability.

​ multiple_of_three = -> n { (n % 3).​zero?​ }

​ palindrome = -> n { n = n.​to_s​; n == n.​reverse​ }

​

​

​ p InfiniteStream.​new​

​ .​all​

​ .​select​(&multiple_of_three)

​ .​select​(&palindrome)

​ .​first​(10)

Produces:

​ [0, 3, 6, 9, 33, 66, 99, 111, 141, 171]

This also gives us a way to fix our definition of triangular numbers so that the
user of that method doesn’t have to know about the two-element array, we use
lazy and map to return only the number we care about:

​ triangular_numbers = Enumerator.​produce​([1, 2]) ​do​ |number, count|

​ [number + count, count + 1]

​ ​end​.​lazy​.​map​ { _1.​first​ }

​

​ p triangular_numbers.​first​(5)

Produces:

​ [1, 3, 6, 10, 15]

What’s Next
Collections, blocks, and iterators are core concepts in Ruby. The more you
write in Ruby, the more you’ll find yourself moving away from
conventional looping constructs. Instead, you’ll write classes that support
iteration over their contents. And you’ll find that this code is compact, easy
to read, and a joy to maintain. If this all seems too weird, don’t worry. After
a while, it’ll start to come naturally. And you’ll have plenty of time to
practice as you use Ruby libraries and frameworks. Now, let’s talk more
about how Ruby lets you define and call methods.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 5

More about Methods

So far in this book, we’ve been defining and using methods without much
thought. Now it’s time to get into the details.

Defining a Method
As we’ve seen, a method is defined using the keyword def.

The keyword def creates a method and returns the name of the method as a
symbol, which, as we saw in ​Specifying Access Control​, allows us to put
decorator methods like private before the declaration.

The body of a method contains normal Ruby expressions. The return value of
a method is the value of the last expression executed or the argument of an
explicit return expression.

An important fact about def is that if you define a method a second time, Ruby
won’t raise an error, it’ll print a warning, and then it’ll redefine the method
using the second definition:

​ ​class​ Batman

​ ​def​ ​who_is_robin​

​ puts ​"Dick Grayson"​

​ ​end​

​

​ ​def​ ​who_is_robin​

​ puts ​"Damian Wayne"​

​ ​end​

​ ​end​

​

​ Batman.​new​.​who_is_robin​

Produces:

​ Damian Wayne

When combined with the ability to reopen classes that we saw in ​Reopening
Classes​, the ability to redefine methods is an important, but potentially
dangerous, feature of how classes work.

Method Bodies

In a “regular” method definition, the method body starts on the line after the
method declaration and continues until a matching end. Ruby doesn’t require
the method body to be indented, but standard code style does indent method
bodies by two characters:

​ ​def​ ​a_method_name​(arg)

​ puts arg

​ ​end​

Starting in Ruby 3.0, you can create one-line methods with a different syntax,
sometimes called an “endless method,” because you don’t need the end

statement.

It’s the method name, any arguments, an optional space, an =, and the method
body:

​ ​def​ ​a_method_name​(arg) = puts arg

The right side of the equal sign is a single expression. If the method takes
arguments, the argument list must be surrounded by parentheses (which are
optional in a regular definition). There must be either a parenthesis or a space
between the method name and the equals sign, or else the parser will consider
the equals sign to be part of the method name.

Sometimes you’ll want to define a method with no body, often because it’s a
method that will be fully defined by subclasses. While you can do that in two
lines, you’ll sometimes see this idiom:

​ ​def​ ​a_method_name​; ​end​

The semicolon, which is rare in Ruby code, is used here as a separator
between multiple expressions on the same line. If the method is called, it
returns nil.

Method Names
Method names should begin with a lowercase letter or underscore followed by
a combination of letters, digits, and underscores. You won’t get an error if you

start a method name with an uppercase letter, but when Ruby sees you calling
the method, it might guess that’s a constant, not a method invocation, and, as a
result, it may parse the call incorrectly. By convention, method names starting
with an uppercase letter are in the Kernel module and are used for type
conversion. The Integer method, for example, converts its parameter to an
integer.

In addition to letters, digits, and underscores, a method name may end with ?,
!, or =.

Methods that return a boolean result (so-called predicate methods) are often
named with a trailing ?:

​ 1.​even?​ ​# => false​

​ 2.​even?​ ​# => true​

​ 1.​instance_of?​(Integer) ​# => true​

Methods that are “dangerous” or that modify their receiver, may be named
with a trailing exclamation point, !. These are sometimes called bang methods
and are often paired with a “safe” version that doesn’t end in an exclamation
point. For instance, class String provides both chop and chop! methods. The first
returns a modified string; the second modifies the receiver in place.

​ sample = ​"this is my code"​

​ sample.​chop​ ​# => "this is my cod"​

​ sample ​# => "this is my code"​

​

​ sample.​chop!​ ​# => "this is my cod"​

​ sample ​# => "this is my cod"​

Methods that can appear on the left side of an assignment (a feature we
discussed back in ​Writing to Attributes​) end with an equal sign (=).

?, !, and = are the only weird characters allowed as method name suffixes.
These characters are only allowed at the end of a method name.

In addition, you can override a limited set of operators by defining them as
methods. For example:

​ ​class​ Matrix

​ attr_reader ​:x​, ​:y​

​

​ ​def​ ​initialize​(x, y)

​ @x = x

​ @y = y

​ ​end​

​

​ ​def​ ​to_s​ = ​"(​​#{​x​}​​, ​​#{​y​}​​)"​

​

​ ​def​ ​+​(other)

​ Matrix.​new​(x + other.​x​, y + other.​y​)

​ ​end​

​ ​end​

​

​ first = Matrix.​new​(1, 2)

​ second = Matrix.​new​(3, 4)

​ puts first + second

Produces:

​ (4, 6)

Here we’re defining the + operator to implement a matrix addition and return a
new matrix object. Even though the + is defined as a method, it’s still written
as a binary operator. You can find the full list of operator names that you can
define as methods in Chapter 25, ​Language Reference: Objects and Classes​.

Method Receiver
An instance method definition, like the ones we just saw, adds the method to
the class it’s defined within and makes the method available to instances of
that class. (In Chapter 25, ​Language Reference: Objects and Classes​, we’ll
talk about what Ruby does for method definitions that aren’t inside a class.)

Ruby also allows you to define a method for one specific object rather than the
current class. The most common use of this feature is to assign methods to the

class itself rather than to instances of the class.

The syntax is to put the object name, followed by a dot, before the method
name:

​ ​class​ Computer

​ ​def​ self.​function​

​ ​"I'm afraid I can't do that"​

​ ​end​

​ ​end​

​

​ puts Computer.​function​

Produces:

​ I'm afraid I can't do that

In this example, the object name is self, and at the point of the method
declaration, self means “The class this method is being declared inside,” in this
case Computer, so the method is accessible as Computer.function. (You could
actually define the method as def Computer.function, and you might see older
Ruby code that uses that syntax.) We’ll talk more about self in Chapter 22, ​The
Ruby Object Model and Metaprogramming​.

Although class methods are the most common use of this feature, methods can
be attached to any object:

​ ​class​ Computer

​ ​end​

​

​ mac = Computer.​new​

​ pc = Computer.​new​

​

​ ​def​ mac.​introduction​ = ​"I'm a Mac"​

​

​ ​def​ pc.​introduction​ = ​"I'm a PC"​

​

​ puts mac.​introduction​

​ puts pc.​introduction​

Produces:

​ I'm a Mac

​ I'm a PC

In this case, we’ve attached separate methods to each of the two instances, so
calling introduction on each instance behaves differently.

You’ll see this syntax for class methods frequently, and the individual object
version of it quite rarely. We’ll talk more in Chapter 25, ​Language Reference:
Objects and Classes​, about why this works and how class methods behave in
Ruby.

Method Parameters
Now that we’ve defined our new method, we may need to declare some
parameters to the method. Parameters are defined using a list of local variable
names. Using parentheses around a method’s parameters in the definition is
optional. The standard convention is to use them when a method has
parameters and omit them when it doesn’t. Note that if the method is defined
using the “endless method” syntax, the parameter list must be surrounded by
parentheses, but you don’t need to include empty parentheses.

​ ​def​ ​my_new_method​(arg1, arg2, arg3) ​# 3 parameters​

​ ​# Code for the method would go here​

​ ​end​

​

​ ​def​ ​my_other_new_method​ ​# No parameters​

​ ​# Code for the method would go here​

​ ​end​

Ruby lets you specify default values for a method’s parameters—values that
will be used if the caller doesn’t pass them explicitly. You do this using an
equal sign (=) followed by a Ruby expression. That expression can include
references to previous parameters in the list:

​ ​def​ ​cool_dude​(arg1=​"Miles"​, arg2=​"Coltrane"​, arg3=​"Roach"​)

​ ​"​​#{​arg1​}​​, ​​#{​arg2​}​​, ​​#{​arg3​}​​."​

​ ​end​

​

​ cool_dude ​# => "Miles, Coltrane, Roach."​

​ cool_dude(​"Bart"​) ​# => "Bart, Coltrane, Roach."​

​ cool_dude(​"Bart"​, ​"Elwood"​) ​# => "Bart, Elwood, Roach."​

​ cool_dude(​"Bart"​, ​"Elwood"​, ​"Linus"​) ​# => "Bart, Elwood, Linus."​

Here’s an example where the default parameter references a previous
parameter:

​ ​def​ ​surround​(word, pad_width=word.​length​/2)

​ ​"["​ * pad_width + word + ​"]"​ * pad_width

​ ​end​

​

​ surround(​"elephant"​) ​# => "[[[[elephant]]]]"​

​ surround(​"fox"​) ​# => "[fox]"​

​ surround(​"fox"​, 10) ​# => "[[[[[[[[[[fox]]]]]]]]]]"​

The default parameter value is re-evaluated every time the method is called,
and any variable that would be visible inside the method itself is available for
the default value expression.

Variable-Length Parameter Lists
But what if you want to pass in a variable number of parameters or want to
capture multiple arguments into a single parameter? Placing an asterisk before
the name of the parameter lets you do just that. This is sometimes called a
splat (presumably because the asterisk looks somewhat like a bug after hitting
the windscreen of a fast-moving car).

​ ​def​ ​variable_args​(arg1, *rest)

​ ​"arg1=​​#{​arg1​}​​ -- rest=​​#{​rest.​inspect​​}​​"​

​ ​end​

​

​ variable_args(​"one"​) ​# => arg1=one -- rest=[]​

​ variable_args(​"one"​, ​"two"​) ​# => arg1=one -- rest=["two"]​

​ variable_args(​"one"​, ​"two"​, ​"three"​) ​# => arg1=one -- rest=["two", "three"]​

In this example, the first argument is assigned to the first method parameter as
usual. But the next parameter is prefixed with an asterisk, so all the remaining
arguments are bundled into a new Array, which is then assigned to that
parameter.

Folks sometimes use a splat to specify parameters that aren’t used by the
method but that are perhaps used by the corresponding method in a superclass.
(Note that in this example we call super with no parameters. This is a special
case that means “invoke this method in the superclass, passing it all the
parameters that were given to the original method.” More about this is found
in ​Super Lookup​.)

​ ​class​ Child < Parent

​ ​def​ ​do_something​(*not_used)

​ ​# our processing​

​ ​super​

​ ​end​

​ ​end​

If the parameter isn’t used, you can also leave off the name of the parameter
and just write an asterisk:

​ ​class​ Child < Parent

​ ​def​ ​do_something​(*)

​ ​# our processing​

​ ​super​

​ ​end​

​ ​end​

And you can pass the anonymous splat parameter to another method without
giving it a name.

​ ​class​ Example

​ ​def​ ​method_1​(*)

​ method_2(*)

​ ​end​

​

​ ​def​ ​method_2​(*array_args)

​ puts array_args.​join​(​", "​)

​ ​end​

​ ​end​

​

​ puts Example.​new​.​method_1​(​"a"​, ​"b"​, ​"c"​)

Produces:

​ a, b, c

You do have to give the splat a name if you want to use it, though, so you
can’t write *.join or something like that.

You can put the splat parameter anywhere in a method’s parameter list,
allowing you to write this:

​ ​def​ ​split_apart​(first, *splat, last)

​ puts ​"First: ​​#{​first.​inspect​​}​​, splat: ​​#{​splat.​inspect​​}​​, "​ +

​ ​"last: ​​#{​last.​inspect​​}​​"​

​ ​end​

​

​ split_apart(1,2)

​ split_apart(1,2,3)

​ split_apart(1,2,3,4)

Produces:

​ First: 1, splat: [], last: 2

​ First: 1, splat: [2], last: 3

​ First: 1, splat: [2, 3], last: 4

In practice, many developers will find this confusing.

If you cared only about the first and last parameters, you could define this
method using the bare asterisk syntax:

​ ​def​ ​split_apart​(first, *, last)

You can have only one array splat parameter in a method—if you had two,
parameter assignment would be ambiguous. You also can’t put parameters
with default values after the splat parameter. In all cases the splat argument
receives any values left over after the positional variables have been assigned.

Hash and Keyword Parameters
Ruby allows you to define parameters to methods using keywords, with the
requirement that the arguments will also be passed using the same keyword. In
​Calling a Method​, we’ll talk more about how those arguments are passed.

The difference between a positional and keyword parameter in the method
definition is that a keyword parameter name is followed by a colon:

​ ​def​ ​method_with_keywords​(city:, state:, zip:)

​ ​end​

​

​ method_with_keywords(​city: ​​"Chicago"​, ​state: ​​"IL"​, ​zip: ​​"60606"​)

As with positional parameters, you can specify a default value for a keyword
parameter that’s not called. For keyword parameters, this involves placing the
default value after the colon. Keyword parameters with default values don’t
need to be included in each call:

​ ​def​ ​method_with_keywords​(city:, ​state: ​​"IL"​, zip:)

​ ​end​

​

​ method_with_keywords(​city: ​​"Chicago"​, ​zip: ​​"60606"​)

When a method with keywords is called, each keyword parameter must either
be part of the call or have a default value, otherwise Ruby raises an
ArgumentError.

If a method has both positional and keyword parameters, the keyword
parameters must come after the positional parameters.

You can collect arbitrary keyword arguments into a Hash with the double-splat,
or **:

​ ​def​ ​varargs​(arg1, **rest)

​ ​"arg1=​​#{​arg1​}​​. rest=​​#{​rest.​inspect​​}​​"​

​ ​end​

​

​ varargs(​"one"​) ​# => arg1=one. rest={}​

​ varargs(​"one"​, ​color: ​​"red"​) ​# => arg1=one. rest=
{:color=>"red"}​

​ varargs ​"one"​, ​color: ​​"red"​, ​size: ​​"xl"​ ​# => arg1=one. rest=
{:color=>"red",​

​ ​# .. :size=>"xl"}​

As with the single splat, you can use the bare double splat (**) to ignore
keyword parameters or to pass the entire hash on to another method. A bare
single splat will catch positional arguments, a bare double splat will catch
keyword arguments.

​ ​class​ Child < Parent

​ ​def​ ​do_something​(**)

​ do_something_else(**)

​ ​end​

​ ​end​

Ruby also allows you to use **nil to explicitly indicate that the method doesn’t
accept any keyword arguments. Otherwise, a method definition that uses a
single splat will pull in keyword arguments as a hash. If you don’t want that
behavior, **nil will raise an exception.

Ruby Keywords Pre 3.0
We don’t normally mention deprecated or removed Ruby features in this book, but this is
a pattern you’re extremely likely to see in older Ruby code.

Before Ruby had true keyword parameters, it had a syntax that simulated them. Any
arbitrary key/value pair passed after the positional parameters to a method were
automatically rolled up and converted to a Hash. In other words, you could do this:

​ ​class​ SongList

​ ​def​ ​search​(field, options = {})

​ ​# implementation​

​ ​end​

​ ​end​

​

​ Songlist.​new​.​search​(​:titles​, ​genre: ​​"jazz"​, ​duration_less_than: ​270)

Here, the genre and duration_less_than parameters would be rolled together and placed
in the last parameter of the method. In this case, options (the default empty hash is there
in case no extra parameters are passed). It was then the responsibility of the method to
determine if the list of key/value pairs in the hash were valid.

Ruby added true keyword parameters in version 2.0, and the true keyword parameters
and hash parameters lived awkwardly together until Ruby 3.0, which removed the

arbitrary hash parameters, fully replacing them with keyword arguments and the double
splat.

Methods and Block Parameters
As we discussed in ​Blocks and Enumeration​, when a method is called, it may
be associated with a block. Normally, you call the block from within the
method using yield:

​ ​def​ ​double​(p1)

​ ​yield​(p1 * 2)

​ ​end​

​

​ double(3) { |val| ​"I got ​​#{​val​}​​"​ } ​# => "I got 6"​

​ double(​"tom"​) { |val| ​"Then I got ​​#{​val​}​​"​ } ​# => "Then I got tomtom"​

But, if the last parameter in a method definition list is prefixed with an
ampersand, any associated block is converted to a Proc object, and that object
is assigned to the parameter. This allows you to store the block for use later.

tut_methods/tax_calculator.rb

​ ​class​ TaxCalculator

​ ​def​ ​initialize​(name, &block)

​ @name, @block = name, block

​ ​end​

​

​ ​def​ ​get_tax​(amount)

​ ​"​​#{​@name​}​​ on ​​#{​amount​}​​ = ​​#{​@block.​call​(amount)​}​​"​

​ ​end​

​ ​end​

​

​ tc = TaxCalculator.​new​(​"Sales tax"​) { |amt| amt * 0.075 }

​

​ tc.​get_tax​(100) ​# => "Sales tax on 100 = 7.5"​

​ tc.​get_tax​(250) ​# => "Sales tax on 250 = 18.75"​

You don’t have to give the block parameter a name if you’re only going to
pass it along, you can just use a bare & character.

​ ​class​ Child < Parent

http://media.pragprog.com/titles/ruby5/code/tut_methods/tax_calculator.rb

​ ​def​ ​do_something​(&)

​ do_something_else(&)

​ ​end​

​ ​end​

Combining all these mechanisms, if you want to roll all the arguments of a
method along to a different method, then def(*args, **kwargs, &block) is an
awkward way to gather all the arguments. Ruby has a simpler way:

​ ​class​ Thing

​ ​def​ ​do_something​(...)

​ do_something_else(...)

​ ​end​

​ ​end​

The triple dot syntax is an anonymous way to pass all arguments to one
method onward to a different method.

Calling a Method
You call a method by optionally specifying a receiver, giving the name of
the method, and optionally passing some arguments and an optional block.
Here’s a code fragment that shows us calling a method with a receiver, a
positional argument, a keyword argument, and a block:

​ connection.​download_mp3​(​"jitterbug"​, ​speed: :slow​) { |p| show_progress(p) }

In this example, the object connection is the receiver, download_mp3 is the
name of the method, the string "jitterbug" is the positional parameter, the
key/value pair speed: :slow is a keyword parameter, and the code between the
braces is the associated block argument. When the method is called, Ruby
invokes the method in that object, and inside that method, self is set to that
receiver object. For class and module methods, the receiver will be the class
or module object.

​ File.​size​(​"testfile"​) ​# => 66​

​ Math.​sin​(Math::PI/4) ​# => 0.7071067811865475​

Ruby allows you to omit the receiver, in which case the default receiver is
self, the current object. In this example, all the methods in write_on are
called with the current object as the implicit receiver.

​ ​class​ InvoiceWriter

​ ​def​ ​initialize​(order)

​ @order = order

​ ​end​

​

​ ​def​ ​write_on​(output)

​ ​# called on current object, as there is no receiver​

​ write_header_on(output)

​ write_body_on(output)

​ write_totals_on(output)

​ ​end​

​

​ ​def​ ​write_header_on​(output)

​ ​# ...​

​ ​end​

​

​ ​def​ ​write_body_on​(output)

​ ​# ...​

​ ​end​

​

​ ​def​ ​write_totals_on​(output)

​ ​# ...​

​ ​end​

​ ​end​

This defaulting mechanism is how Ruby handles private methods. Private
methods may not be called with a receiver other than self, so they must be
methods available in the current object. In the previous example, we might
want to make the helper methods private because they shouldn’t be called
from outside the InvoiceWriter class:

​ ​class​ InvoiceWriter

​ ​def​ ​initialize​(order)

​ @order = order

​ ​end​

​

​ ​def​ ​write_on​(output)

​ write_header_on(output)

​ write_body_on(output)

​ write_totals_on(output)

​ ​end​

​

​ ​private​ ​def​ ​write_header_on​(output)

​ ​# ...​

​ ​end​

​

​ ​private​ ​def​ ​write_body_on​(output)

​ ​# ...​

​ ​end​

​

​ ​private​ ​def​ ​write_totals_on​(output)

​ ​# ...​

​ ​end​

​ ​end​

If the method name ends in =, and only if the method name ends in =, Ruby
allows you to call the method as the left side of an assignment statement.
Ruby allows you to place whitespace between the rest of the method name
and the closing =. The last two lines of this example are equivalent:

​ ​class​ Person

​ ​def​ ​name​=(new_name)

​ @name = new_name

​ ​end​

​ ​end​

​

​ p = Person.​new​

​ p.​name​ = ​"Brandi Carlile"​

​ p.​name​=(​"Elton John"​)

This use of methods on the left side of an assignment leads to a potential
ambiguity between a local variable assignment and a method call:

​ ​class​ Person

​ ​def​ ​name​=(new_name)

​ @name = new_name

​ ​end​

​

​ ​def​ ​change_things​(new_name, address)

» name = new_name

​ ​end​

​ ​end​

In this example, it’s potentially ambiguous whether the line name = new_name

creates a local variable called name and assigns new_name to it or whether it
uses the implicit receiver syntax to call the method self.name= with new_name

as an argument.

Ruby handles this potential issue consistently and is always in favor of
creating the local variable. When calling a method on the left side of an
assignment, you must specify the receiver explicitly. In this case, the
highlighted line must be changed to self.name = new_name. Not doing so can
lead to some hard-to-track-down bugs. (Ask us how we know.)

Passing Arguments to a Method
Any arguments follow the method name. If no ambiguity exists, you can
omit the parentheses around the argument list when calling a method. Ruby
documentation sometimes describes method calls without parentheses as
commands. As you’ve seen, method calls that look like commands or
macros, such as puts, are often written without parentheses. A lot of Ruby
tools, like RSpec, skip parentheses to make their domain-specific languages
flow more naturally.

But, except in the simplest cases, we don’t recommend skipping
parentheses—some subtle problems can trip you up. In particular, you must
use parentheses on a method call that is itself an argument to another
method call (unless it’s the last parameter). Our rule is simple: if you have
any doubt, use parentheses.

​ ​# for some suitable value in obj:​

​ a = obj.​hash​ ​# Same as​

​ a = obj.​hash​() ​# this.​

​

​ obj.​some_method​ ​"Arg1"​, arg2, arg3 ​# Same thing as​

​ obj.​some_method​(​"Arg1"​, arg2, arg3) ​# with parentheses.​

Positional arguments are passed to the method based on their position, but
keyword arguments are passed based on the keyword and can be listed in
any order:

​ ​def​ ​method_with_keywords​(city:, state:, zip:)

​ ​"I live in ​​#{​city​}​​, ​​#{​state​}​​ ​​#{​zip​}​​"​

​ ​end​

​

​ puts method_with_keywords(​city: ​​"Chicago"​, ​state: ​​"IL"​, ​zip: ​​"60606"​)

​ puts method_with_keywords(​zip: ​​"02134"​, ​city: ​​"Boston"​, ​state: ​​"MA"​)

Produces:

​ I live in Chicago, IL 60606

​ I live in Boston, MA 02134

Method Return Values
Every method you call returns a value (although no rule says that you have
to use that value). The value of a method is the value of the last expression
executed by the method:

​ ​def​ ​method_one​

​ ​"one"​

​ ​end​

​

​ method_one ​# => "one"​

​

​ ​def​ ​method_two​(arg)

​ ​case​

​ ​when​ arg > 0 ​then​ ​"positive"​

​ ​when​ arg < 0 ​then​ ​"negative"​

​ ​else​

​ ​"zero"​

​ ​end​

​ ​end​

​ method_two(23) ​# => "positive"​

​ method_two(0) ​# => "zero"​

Ruby has a return statement, which exits from the currently executing
method. The value of a return is the value of its argument(s). An idiomatic
Ruby practice is to omit the return in the last expression of a method since
it’s redundant, as shown by the previous two examples.

This next example uses return to exit from a loop inside the method:

​ ​def​ ​method_three​

​ 100.​times​ ​do​ |num|

​ square = num * num

​ ​return​ num, square ​if​ square > 1000

​ ​end​

​ ​end​

​ method_three ​# => [32, 1024]​

As this case illustrates, if you give return multiple parameters, the method
returns them in an array. You can use parallel assignment to collect this

return value:

​ num, square = method_three

​ num ​# => 32​

​ square ​# => 1024​

Splat! Expanding Collections in Method Calls
We’ve seen that if you prefix the name of a method argument with an
asterisk, multiple arguments in the call to the method will be passed as an
array. Well, the same thing works in reverse.

When you call a method, you can convert any collection, enumerable
object, or object that implements to_a into its constituent elements and pass
those elements as individual arguments to the method. Do this by prefixing
array arguments with an asterisk:

​ ​def​ ​five​(a, b, c, d, e)

​ ​"I was passed ​​#{​a​}​​ ​​#{​b​}​​ ​​#{​c​}​​ ​​#{​d​}​​ ​​#{​e​}​​"​

​ ​end​

​

​

​ five(1, 2, 3, 4, 5) ​# => "I was passed 1 2 3 4 5"​

​ five(1, 2, 3, *[​'a'​, ​'b'​]) ​# => "I was passed 1 2 3 a b"​

​ five(*[​'a'​, ​'b'​], 1, 2, 3) ​# => "I was passed a b 1 2 3"​

​ five(*(10..14)) ​# => "I was passed 10 11 12 13 14"​

​ five(*[1,2], 3, *(4..5)) ​# => "I was passed 1 2 3 4 5"​

Splat arguments can appear anywhere in the argument list, and you can
intermix splat and regular arguments.

Similarly, you can expand hashes, or anything that implements to_h, into
keyword arguments by prefixing the argument with a double-splat:

​ ​def​ ​method_with_keywords​(city:, state:, zip:)

​ ​"I live in ​​#{​city​}​​, ​​#{​state​}​​ ​​#{​zip​}​​"​

​ ​end​

​

​ data = {​city: ​​"Chicago"​, ​state: ​​"IL"​, ​zip: ​​"60606"​}

​ puts method_with_keywords(**data)

Produces:

​ I live in Chicago, IL 60606

You can also use the shortcut access syntax if the name of the keyword and
the name of the variable in the local context are the same, similar to the
hash shortcut we saw in ​Hashes​.

​ ​def​ ​method_with_keywords​(city:, state:, zip:)

​ ​"I live in ​​#{​city​}​​, ​​#{​state​}​​ ​​#{​zip​}​​"​

​ ​end​

​

​ city = ​"Chicago"​

​ state = ​"IL"​

​ zip = ​"60606"​

​ puts method_with_keywords(city:, state:, zip:)

Produces:

​ I live in Chicago, IL 60606

Passing Block Arguments

Earlier we saw how an & in a parameter list converted a block argument to a
Proc object. You can also do this in reverse by passing a Proc object, or
anything that implements the method to_proc, and prefixing it with an & to
convert it to a block argument.

A common example of the use of objects that implement to_proc is Symbol.
The following two lines of code behave identically:

​ [​"a"​, ​"b"​, ​"c"​].​map​ { |s| s.​upcase​ } ​# => ["A", "B", "C"]​

​ [​"a"​, ​"b"​, ​"c"​].​map​(&​:upcase​) ​# => ["A", "B", "C"]​

The reason why this works is that the class Symbol implements the to_proc

method, returning a Proc object that says “take the argument to this proc,

and call the method whose name matches this symbol”. The returned Proc

object gets used as the block argument and behaves the same as the explicit
block in the first line. You’ll frequently see this syntax as a shortcut for
methods that take simple blocks like map or sort_by.

We’ve already seen how to associate a block with a method call:

​ collection.​each​ ​do​ |member|

​ ​# ...​

​ ​end​

Usually, this is perfectly good enough—you associate a fixed block of code
with a method in the same way you’d have a chunk of code after an if or
while statement.

But sometimes you’d like to be more flexible. In this example, we’re
teaching math skills. The student could ask for an n-plus table or an n-times
table. If the student asked for a 2-times table, we’d output 2, 4, 6, 8, and so
on. (This code doesn’t check its inputs for errors.)

​ print ​"(t)imes or (p)lus: "​

​ operator = gets

​ print ​"number: "​

​ number = Integer(gets)

​

​ ​if​ operator.​start_with?​(​"t"​)

​ puts((1..10).​collect​ { |n| n*number }.​join​(​", "​))

​ ​else​

​ puts((1..10).​collect​ { |n| n+number }.​join​(​", "​))

​ ​end​

Produces:

​ (t)imes or (p)lus: t

​ number: 2

​ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the
if statement. It would be nice if we could factor out the block that does the
calculation:

​ print ​"(t)imes or (p)lus: "​

​ operator = gets

​ print ​"number: "​

​ number = Integer(gets)

​ ​if​ operator.​start_with?​(​"t"​)

​ calc = -> (n) { n * number }

​ ​else​

​ calc = -> (n) { n + number }

​ ​end​

» puts((1..10).​map​(&calc).​join​(​", "​))

Produces:

​ (t)imes or (p)lus: t

​ number: 2

​ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

In this version, we assign the correct block to a variable named calc, and
then in the highlighted line, we pass calc to the standard method map,
prefixing it with an &, (&calc).

If the last argument to a method is preceded by an ampersand, Ruby calls
to_proc on the object. It removes it from the argument list, converts the Proc

object into a block, and associates it with the method. In this case, the
object is already a Proc, so that means that map is called with the lambda as
its block argument and uses that block to convert the elements of the
method receiver.

There’s a shorter way to write this code. Ruby objects have a method
named method, which takes a symbol and returns the object’s method of the
same name. We can use the same to_proc feature that symbols have:

​ print ​"(t)imes or (p)lus: "​

​ operator = gets

​ print ​"number: "​

​ number = Integer(gets)

​ method = number.​method​(operator.​start_with?​(​"t"​) ? :* : :+)

» puts((1..10).​map​(&method).​join​(​", "​))

Produces:

​ (t)imes or (p)lus: t

​ number: 2

​ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

In this case, we’re using method to grab the method named :+ or :* based on
the input and using the ampersand’s to_proc powers to create a proc that
calls that method.

What’s Next
A well-written Ruby program will typically contain many methods, each
quite small, so it’s worth getting familiar with the options available when
defining and using them. At some point, you’ll probably want to read
Chapter 25, ​Language Reference: Objects and Classes​, to see exactly how
arguments in a method call get mapped to the method’s formal parameters
when you have combinations of default parameters and splat parameters.

Now that we have methods, we need to talk about how different classes can
share functionality defined by their methods, so it’s time to talk about
inheritance and modules.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 6

Sharing Functionality: Inheritance,
Modules, and Mixins

One of the principles of good software design is the elimination of
unnecessary duplication. We work hard to make sure that each concept in
our application is expressed only once in our code. Why? Because the
world changes. And when you adapt your application to each change, you
want to know that you’ve changed exactly the code you need to change. If
each real-world concept is implemented at a single point in the code, this
becomes vastly easier.

We’ve already seen how classes help reduce duplication. All the methods in
a class are automatically accessible to instances of that class. But we want
to do other, more general types of sharing. Maybe we’re dealing with an
application that ships goods. Many forms of shipping are available, but all
forms share some basic functionality, perhaps weight calculation. We don’t
want to duplicate the code that implements this functionality across the
implementation of each shipping type.

Or maybe we have a more generic capability that we want to inject into a
number of different classes. For example, an online store may need the
ability to calculate sales tax for carts, orders, quotes, and so on. Again, we
don’t want to duplicate the sales tax code in each of these places.

In this chapter, we’ll look at two different but related mechanisms for this
kind of sharing in Ruby. The first, class-level inheritance, is common in
object-oriented languages. We’ll then look at mixins, a technique that’s
often preferable to inheritance. We’ll wind up with a discussion of when to
use each.

Inheritance and Messages
In a previous chapter, we saw that when the puts method needs to convert an
object to a string, it calls that object’s to_s method. But we’ve also written our
own classes that don’t explicitly implement to_s. Despite this, instances of
these classes respond successfully when we call to_s on them. How this works
has to do with inheritance and how Ruby uses it to determine what method to
run when you send a message to an object.

Inheritance allows you to create a class that’s a specialization of another class.
This specialized class is called a subclass of the original, and the original is a
superclass of the subclass. People also refer to this relationship as child and
parent classes.

The basic mechanism of subclassing is that the child inherits all of the
capabilities of its parent class. All the parent’s instance methods are available
to instances of the child.

Let’s look at a minimal example and then later build on it. Here’s a definition
of a parent class and a child class that inherits from it:

​ ​class​ Parent

​ ​def​ ​say_hello​

​ puts ​"Hello from ​​#{​self​}​​"​

​ ​end​

​ ​end​

​

​ p = Parent.​new​

​ p.​say_hello​

​

​ ​class​ Child < Parent

​ ​end​

​

​ c = Child.​new​

​ c.​say_hello​

Produces:

​ Hello from #<Parent:0x0000000100937780>

​ Hello from #<Child:0x0000000100936f60>

The parent class defines a single instance method, say_hello. We call that
method by creating a new instance of the class, storing a reference to that
instance in the variable p, and then using dot syntax, p.say_hello.

We then create a subclass using class Child < Parent. The < notation means we’re
creating a subclass of the thing on the right. The fact that we use the less-than
sign is meant to signal that the child class is supposed to be a specialization of
the parent.

Note that the child class defines no methods, but when we create an instance
of it, we can call say_hello. That’s because the child inherits all the methods of
its parent. Also note that when we output the value of self—the current object
—it shows that we’re in an instance of class Child, even though the method
we’re running is defined in the parent.

The superclass method returns the parent of a particular class:

​ ​class​ Parent

​ ​end​

​

​ ​class​ Child < Parent

​ ​end​

​

​ Child.​superclass​ ​# => Parent​

But what’s the superclass of Parent?

​ ​class​ Parent

​ ​end​

​ Parent.​superclass​ ​# => Object​

If you don’t define an explicit superclass when defining a class, Ruby
automatically uses the built-in class Object as the class’s parent. Let’s go
further:

​ Object.​superclass​ ​# => BasicObject​

Class BasicObject is a very, very minimal object that’s used in certain kinds of
metaprogramming, acting as a blank canvas. What’s its parent?

​ BasicObject.​superclass​ ​# => nil​

So, we’ve finally reached the end. BasicObject is the root class of our hierarchy
of classes. Given any class in any Ruby application, you can ask for its
superclass, then the superclass of that class, and so on, and you’ll eventually
get back to BasicObject.

We’ve seen that if you call a method in an instance of class Child and that
method isn’t in Child’s class definition, Ruby will look in the parent class. It
goes deeper than that because if the method isn’t defined in the parent class,
Ruby continues looking in the parent’s parent, the parent’s parent’s parent, and
so on, through the ancestors until it runs out of classes. Method lookup in
Ruby is actually a little bit more complex, we’ll talk more about it in ​Method
Lookup​.

And this explains our original question about to_s. We can work out why to_s

is available in just about every Ruby object. to_s, it turns out, is defined in
class Object. Because Object is an ancestor of every Ruby class except
BasicObject, instances of every Ruby class have a to_s method defined:

​ ​class​ Person

​ ​def​ ​initialize​(name)

​ @name = name

​ ​end​

​ ​end​

​

​ p = Person.​new​(​"Michael"​)

​ puts p

Produces:

​ #<Person:0x0000000100e781b8>

We saw in the previous chapter that we can override the to_s method:

​ ​class​ Person

​ ​def​ ​initialize​(name)

​ @name = name

​ ​end​

​

​ ​def​ ​to_s​

​ ​"Person named ​​#{​@name​}​​"​

​ ​end​

​ ​end​

​

​ p = Person.​new​(​"Michael"​)

​ puts p

Produces:

​ Person named Michael

Armed with our knowledge of subclassing, we now know there’s nothing
special about this code. The puts method calls to_s on its arguments. In this
case, the argument is a Person object. Because class Person defines a to_s

method, that method is called. If it doesn’t define a to_s method, then Ruby
looks for (and finds) to_s in Person’s parent class, Object.

It’s common to use subclassing to add application-specific behavior to a
standard library or framework class. If you’ve used Ruby on Rails,[15] you’ll
have subclassed ActionController::Base when writing your own controller
classes. Your controllers get all the behavior of the base controller and add
their own specific handlers to individual user actions.

Let’s look at an example where inheritance can spare us a significant amount
of duplication. Imagine you’re working on a task-tracker application. A task
might be in one of several states—it might be done, it might be started but
incomplete, or it might be defined but not started. There may be other statuses,
but just those three are probably enough to make the point.

If you’re writing code that interacts with the tasks in this system, you’ll likely
have to take a task’s status into account in your code. In other words, you’ll
likely be forever writing code like this:

​ ​def​ ​chatty_string​(task)

​ ​case​ task.​status​

​ ​when​ ​"done"​ ​then​ ​"I'm done"​

​ ​when​ ​"started"​ ​then​ ​"I'm not done"​

​ ​when​ ​"unstarted"​ ​then​ ​"I haven't even started"​

​ ​end​

​ ​end​

You’ll be continually switching on the status of a task. This is a form of
duplication. If the list of statuses changes, every one of these if statements or
case statements would need to be updated. So it seems worth trying to reduce
the number of times we use that switching logic.

We can use inheritance to create a hierarchy of status classes, and then only do
our switching logic once:

tut_modules/status.rb

​ ​class​ Status

​ ​def​ self.​for​(status_string)

​ ​case​ status_string

​ ​when​ ​"done"​ ​then​ DoneStatus.​new​

​ ​when​ ​"started"​ ​then​ StartedStatus.​new​

​ ​when​ ​"defined"​ ​then​ DefinedStatus.​new​

​ ​end​

​ ​end​

​

​ ​def​ ​done?​ = ​false​

​

​ ​def​ ​chatty_string​ = ​raise​ NotImplementedError

​ ​end​

​

​ ​class​ DoneStatus < Status

​ ​def​ ​to_s​ = ​"done"​

​

​ ​def​ ​done?​ = ​true​

​

​ ​def​ ​chatty_string​ = ​"I'm done"​

​ ​end​

​ ​class​ StartedStatus < Status

​ ​def​ ​to_s​ = ​"started"​

​

http://media.pragprog.com/titles/ruby5/code/tut_modules/status.rb

​ ​def​ ​chatty_string​ = ​"I'm not done"​

​ ​end​

​

​ ​class​ DefinedStatus < Status

​ ​def​ ​to_s​ = ​"defined"​

​

​ ​def​ ​chatty_string​ = ​"I'm not even started"​

​ ​end​

Now, if we want to get at that particular chatty string, rather than having to do
the case expression explicitly, we can write something like this:

​ Status.​for​(task.​status​).​chatty_string​

The case logic is now behind the scenes, in our Status.for method. Once we call
it, we know what kind of status we have, and each kind of status knows its
own behavior, so we can now call chatty_string directly on the status. More to
the point, once we call Status.for, we don’t need to have that case logic again;
we’ve removed the potential duplication.

The done? method is defined in the parent class as being false, which is fine for
the StartedStatus and DefinedStatus classes, but incorrect for the DoneStatus class,
which therefore overrides done? to the correct value—true—for that class.
There is no default for the chatty_string method though, so the parent class
throws an exception if it’s somehow called. This is a signal that all the
subclasses must define this method.

This is a common idiom when using subclassing. A parent class assumes that
it’ll be subclassed and calls a method that it expects its children to implement.
The parent takes on the brunt of the processing but also invokes what are
effectively hook methods in subclasses to add application-level functionality.
As we’ll see at the end of this chapter, just because this idiom is common
doesn’t always make it a good design.

Instead, let’s look at mixins, a different way of sharing functionality in Ruby
code. But, before we look at mixins, we’ll need to get familiar with Ruby
modules.

In Ruby, a module can do everything that a class can do, except create
instances. It turns out, that even without creating instances, it still can be
useful to group related methods and data together. Let’s explore how.

Modules
Modules are a way of grouping together methods, classes, and constants.
Modules give you two major benefits:

Modules provide a namespace and prevent name clashes.
Modules can be included in other classes, a facility known as a mixin.

Namespaces
As you start to write bigger Ruby programs, you’ll find yourself producing
chunks of reusable code—libraries of related routines that are applicable in
many different contexts. You’ll want to break this code into separate files so
the contents can be shared among different Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class
into each file. But sometimes you want to group things together that don’t
naturally form a class—for example, the methods that you want to group
together may be utility methods that don’t manage their own state.

An initial approach may be to put all these things into a file and simply load
that file into any program that needs it. This is the way the C language works.
But this approach has a potential problem—name collisions. To give an
admittedly contrived example, say you write a set of trigonometry functions,
sin, cos, and so on. You stuff them all into a file, trig.rb, for future generations
to enjoy. Meanwhile, another developer is working on a role-playing game
where characters might choose to be good or evil and codes a set of her own
useful routines, including be_good and sin, and sticks them into a file called
morality.rb. Now you want to add some physics calculations to this game and
so you need to load both trig.rb and morality.rb into your program. But both
define a method called sin. Bad news.

The answer is the module mechanism. Modules define a namespace, a
sandbox in which your methods and constants can play without having to

worry about being stepped on by other methods and constants. The trig
functions can go into one module:

tut_modules/trig.rb

​ ​module​ ​Trig​

​ PI = 3.141592654

​ ​def​ self.​sin​(x)

​ ​# ..​

​ ​end​

​

​ ​def​ self.​cos​(x)

​ ​# ..​

​ ​end​

​ ​end​

and the good and bad “moral” methods can go into another:

tut_modules/morals.rb

​ ​module​ ​Morals​

​ VERY_BAD = 0

​ BAD = 1

​ ​def​ self.​sin​(badness)

​ ​# ...​

​ ​end​

​ ​end​

Module names are like class names, both are global constants with an initial
uppercase letter. Their method definitions look similar too: module methods
are defined like class methods, using the def self.method_name syntax.

If a third program wants to use these modules, it can simply load the two files
(using the Ruby require or require_relative method). To reference the name sin

unambiguously, our code can then qualify the name using the name of the
module containing the implementation we want:

tut_modules/pin_head.rb

​ require_relative ​"trig"​

​ require_relative ​"morals"​

http://media.pragprog.com/titles/ruby5/code/tut_modules/trig.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/morals.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/pin_head.rb

​ y = Trig.​sin​(Trig::PI / 4)

​ wrongdoing = Morals.​sin​(Morals::VERY_BAD)

As with class methods, you call a module method by preceding its name with
the module’s name and a period. As a result, one method is now accessible as
Trig.sin, the other is Moral.sin, and the names no longer conflict. Module
constants are referenced using the module name followed by two colons,
which is called the scope resolution operator, so in this example, Trig::PI and
Moral::VERY_BAD.

Mixins
Modules have another wonderful use. They can provide an alternative to
inheritance as a way of extending classes. This facility is sometimes called a
mixin. Mixins enable something very much like multiple inheritance in other
languages.

In the previous section’s examples, we defined module methods, methods
whose names were prefixed with self. If this made you think of class methods,
your next thought may well be “What happens if I define instance methods
within a module?” Good question. A module can’t have instances because a
module isn’t a class. But you can include a module within a class definition.
When this happens, all the module’s instance methods are suddenly available
as instance methods in the class as well. They get mixed in. In fact, for method
lookup, mixed-in modules effectively behave as superclasses.

tut_modules/who_am_i.rb

​ ​module​ ​Debug​

​ ​def​ ​who_am_i?​

​ ​"​​#{​self.​class​.​name​​}​​ (id: ​​#{​self.​object_id​​}​​): ​​#{​self.​name​​}​​"​

​ ​end​

​ ​end​

​

​ ​class​ Phonograph

​ ​include​ Debug

​

​ attr_reader ​:name​

​

http://media.pragprog.com/titles/ruby5/code/tut_modules/who_am_i.rb

​ ​def​ ​initialize​(name)

​ @name = name

​ ​end​

​ ​# ...​

​ ​end​

​

​ ​class​ EightTrack

​ ​include​ Debug

​

​ attr_reader ​:name​

​

​ ​def​ ​initialize​(name)

​ @name = name

​ ​end​

​ ​# ...​

​ ​end​

​

​ phonograph = Phonograph.​new​(​"West End Blues"​)

​ eight_track = EightTrack.​new​(​"Surrealistic Pillow"​)

​

​ phonograph.​who_am_i?​ ​# => "Phonograph (id: 60): West End Blues"​

​ eight_track.​who_am_i?​ ​# => "EightTrack (id: 80): Surrealistic Pillow"​

By including the Debug module, both the Phonograph and EightTrack classes gain
access to the who_am_i? instance method.

We’ll make a couple of points about the include statement before we go on.

First, although include looks like a statement, it’s actually a method of the
Module class. The include method has nothing to do with files. The Ruby include

method simply makes a reference to a module. If that module is in a separate
file, you must use require or require_relative to drag that file in before using
include. The require call is at the file level, and loads the module into the Ruby
application as a whole. The include call is at the class level and adds the
module’s behavior to the class in which it’s included.

Second, a Ruby include doesn’t copy and paste the module’s instance methods
into the class. Instead, it makes a reference from the class to the included
module. If multiple classes include that module, they’ll all point to the same

thing. If you change the definition of a method within a module, even while
your program is running, all classes that include that module will exhibit the
new behavior. Of course, we’re speaking only of methods here. Instance
variables are always different per object.

Mixins give you a wonderfully controlled way of adding functionality to
classes. But their true power comes out when the code in the mixin can make
assumptions about the code in the class that uses it and then can interact with
that code.

Ruby uses mixin behavior in the standard library extensively. Many of the
behaviors we’ve seen that are available to all objects are actually defined in a
module called Kernel which is included into Object and therefore in all objects.
Methods like puts, p, lambda, proc, and many more are added to objects using
mixin behavior.

The standard Ruby module Comparable is another great example of a mixin, but
one that makes an assumption about the classes that use it. Including
Comparable as a mixin adds the comparison operators (<, <=, ==, >=, and >) as
well as the method between? to a class. For these methods to work, Comparable

assumes that any class that uses it defines the method <=>, also known as the
“spaceship operator”. The spaceship operator compares two values and returns
-1, 0, or +1 depending on whether the first is less than, equal to, or greater
than the second, respectively. As a class writer, you can define one method,
<=>; include Comparable; and get six comparison functions for free.

Let’s take a Person class. We’ll make people comparable based on their names:

tut_modules/comparable.rb

​ ​class​ Person

​ ​include​ Comparable

​ attr_reader ​:name​

​

​ ​def​ ​initialize​(name)

​ @name = name

http://media.pragprog.com/titles/ruby5/code/tut_modules/comparable.rb

​ ​end​

​

​ ​def​ ​to_s​

​ @name.​to_s​

​ ​end​

​

​ ​def​ ​<​=>(other)

​ name <=> other.​name​

​ ​end​

​ ​end​

​

​

​

​ p1 = Person.​new​(​"Matz"​)

​ p2 = Person.​new​(​"Guido"​)

​ p3 = Person.​new​(​"Larry"​)

​

​ ​if​ p1 > p2

​ puts ​"​​#{​p1.​name​​}​​'s name > ​​#{​p2.​name​​}​​'s name"​

​ ​end​

​

​ puts ​"Sorted list:"​

​ puts [p1, p2, p3].​sort​

Produces:

​ Matz's name > Guido's name

​ Sorted list:

​ Guido

​ Larry

​ Matz

We included Comparable in our Person class and then defined a <=> method. We
were then able to perform comparisons (such as p1 > p2) and even sort an array
of Person objects.

Inheritance and Mixins
Some object-oriented languages (such as C++ or Python) support multiple inheritance,
where a class can have more than one immediate parent, inheriting functionality from
each. Although powerful, this technique can be dangerous because the inheritance
hierarchy can become ambiguous.

Other languages, such as Java, JavaScript, and C#, support single inheritance. Here, a
class can have only one immediate parent. Although cleaner (and easier to implement),
single inheritance also has drawbacks—in the real world, objects often inherit attributes
from multiple sources (a ball is both a bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you the simplicity of single
inheritance and the power of multiple inheritance. A Ruby class has only one direct
parent, so Ruby is a single-inheritance language. But Ruby classes can include the
functionality of any number of mixins (a mixin is like a partial class definition). This
provides a controlled multiple-inheritance-like capability with an unambiguous inheritance
hierarchy and method lookup path.

Ruby provides two mechanisms for mixing in module behavior which are
related to include but combine the module and the class differently. The
behavior of include is to add the module’s methods as instance methods to the
class in which the module is being included, and to have those module
methods be looked up after the class itself is checked for a method.

Ruby also provides the method extend. The behavior of extend is to add the
methods directly to the receiver of extend rather than as instance methods of a
class. As most commonly used, the effect of extend is to add the module
methods as class methods:

tut_modules/extend.rb

​ ​module​ ​ExtendedNew​

​ ​def​ ​new_from_string​(string, delimiter = ​","​)

​ new(*string.​split​(delimiter))

​ ​end​

​ ​end​

​

​ ​class​ Person

​ ​extend​ ExtendedNew

​

​ ​def​ ​initialize​(first_name, last_name)

​ @first_name = first_name

​ @last_name = last_name

​ ​end​

​

​ ​def​ ​full_name​ = ​"​​#{​@first_name​}​​ ​​#{​@last_name​}​​"​

http://media.pragprog.com/titles/ruby5/code/tut_modules/extend.rb

​ ​end​

​

​ superman = Person.​new_from_string​(​"Clark,Kent"​)

​ batman = Person.​new_from_string​(​"Bruce|Wayne"​, ​"|"​)

​ puts superman.​full_name​

​ puts batman.​full_name​

Produces:

​ Clark Kent

​ Bruce Wayne

In this example, the ExtendedNew module is extended into the Person class, and
so Person.new_from_string is available.

Ruby also provides prepend. The behavior of prepend is the same as that of
include except that a method in a prepended module is executed before a
method of the same name in the class. Typically, the method in the prepended
module calls super so that the method in the class is also called. Prepending is
often used to add logging or other logistical information to classes.

Iterators and the Enumerable Module
The Ruby collection classes (Array, Hash, and so on) support a large number of
operations that do various things with the collection: traverse it, sort it, and so
on. You may be thinking, “Gee, it’d sure be nice if my class could support all
these neat-o features too!”

Well, your classes can support all these neat-o features, thanks to the magic of
mixins and the Enumerable module. All you have to do is write an iterator
called each, which returns the elements of your collection in turn. Mix in
Enumerable, and suddenly your class supports methods such as map, include?,
and find_all?. If the objects in your collection implement meaningful ordering
semantics using the spaceship operator <=> method, you’ll also get methods
such as min, max, and sort.

Composing Modules

Enumerable is a mixin in the Ruby standard library, implementing a bunch of
methods in terms of the host class’s each method. One of the methods defined
by Enumerable is reduce, which we saw previously in ​​. This method applies a
function or operation to the first two elements in the collection and then
applies the operation to the result of this computation and to the third element,
and so on until all elements in the collection have been used.

Because reduce is made available by Enumerable, we can use it in any class that
includes the Enumerable module and defines the method each. Many built-in
classes do this.

​ [1, 2, 3, 4, 5].​reduce​(:+) ​# => 15​

​ (​"a"​..​"m"​).​reduce​(:+) ​# => "abcdefghijklm"​

We could also define our own class that mixes in Enumerable and hence gets
reduce support:

tut_modules/vowel_finder.rb

​ ​class​ VowelFinder

​ ​include​ Enumerable

​

​ ​def​ ​initialize​(string)

​ @string = string

​ ​end​

​

​ ​def​ ​each​

​ @string.​scan​(​/[aeiou]/​) ​do​ |vowel|

​ ​yield​ vowel

​ ​end​

​ ​end​

​ ​end​

tut_modules/vowel_finder_eg.rb

​ require_relative ​"vowel_finder"​

​ vf = VowelFinder.​new​(​"the quick brown fox jumped"​)

​ puts vf.​reduce​(:+)

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_modules/vowel_finder.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/vowel_finder_eg.rb

​ euiooue

Note that we used the same pattern in the call to reduce in these examples—
we’re using it to perform a summation. When applied to numbers, it returns
the arithmetic sum; when applied to strings, it concatenates them. We can use
a module to encapsulate this functionality too:

tut_modules/vowel_finder_sum.rb

​ require_relative ​"vowel_finder"​

​

​ ​module​ ​Summable​

​ ​def​ ​sum​

​ reduce(:+)

​ ​end​

​ ​end​

​

​ ​class​ Array

​ ​include​ Summable

​ ​end​

​

​ ​class​ Range

​ ​include​ Summable

​ ​end​

​

​ ​class​ VowelFinder

​ ​include​ Summable

​ ​end​

​

​ puts [1, 2, 3, 4, 5].​sum​

​ puts (​"a"​..​"m"​).​sum​

​

​ vf = VowelFinder.​new​(​"the quick brown fox jumped"​)

​ puts vf.​sum​

Produces:

​ 15

​ abcdefghijklm

​ euiooue

http://media.pragprog.com/titles/ruby5/code/tut_modules/vowel_finder_sum.rb

Note that you don’t need to define this particular example in Ruby since sum is
already defined as part of the Enumerable module.

Instance Variables in Mixins
People learning Ruby often ask, “What happens to instance variables in a
module that’s used as a mixin?”

Remember how instance variables work in Ruby: the first mention of an @-
prefixed variable creates the instance variable in the current object, self.

For a mixin, this means the module you mix into your client class may create
instance variables in the client object and may use attr_reader and friends to
define accessors for these instance variables. For instance, the Observable

module in the following example adds an instance variable @observer_list to
any class that includes it:

tut_modules/observer_impl.rb

​ ​module​ ​Observable​

​ ​def​ ​observers​

​ @observer_list ||= []

​ ​end​

​

​ ​def​ ​add_observer​(obj)

​ observers << obj

​ ​end​

​

​ ​def​ ​notify_observers​

​ observers.​each​ { |o| o.​update​ }

​ ​end​

​ ​end​

But this behavior exposes us to a risk. A mixin’s instance variables can clash
with those of the host class or with those of other mixins. The example that
follows shows a class that uses our Observable module but that unluckily also
uses an instance variable called @observer_list. At runtime, this program will go
wrong in some hard-to-diagnose ways:

http://media.pragprog.com/titles/ruby5/code/tut_modules/observer_impl.rb

tut_modules/observer_impl_eg.rb

​ require_relative ​"observer_impl"​

​

​ ​class​ TelescopeScheduler

​ ​# other classes can register to get notifications​

​ ​# when the schedule changes​

​ ​include​ Observable

​

​ ​def​ ​initialize​

​ @observer_list = [] ​# folks with telescope time​

​ ​end​

​

​ ​def​ ​add_viewer​(viewer)

​ @observer_list << viewer

​ ​end​

​

​ ​# ...​

​ ​end​

For the most part, mixin modules don’t use instance variables directly—they
use accessors to retrieve data from the client object. But if you need to create a
mixin that has to have its own state, ensure that the instance variables have
unique names to distinguish them from any other mixins in the system
(perhaps by using the module’s name as part of the variable name).
Alternatively, the module could use a module-level hash, indexed by the
current object ID, to store instance-specific data without using Ruby instance
variables:

tut_modules/state_eg.rb

​ ​module​ ​Test​

​ ​def​ self.​states​

​ @states ||= {}

​ ​end​

​

​ ​def​ ​state​=(value)

​ Test.​states​[object_id] = value

​ ​end​

​

​ ​def​ ​state​

​ Test.​states​[object_id]

http://media.pragprog.com/titles/ruby5/code/tut_modules/observer_impl_eg.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/state_eg.rb

​ ​end​

​ ​end​

​

​ ​class​ Client

​ ​include​ Test

​ ​end​

​

​ c1 = Client.​new​

​ c2 = Client.​new​

​ c1.​state​ = ​"cat"​

​ c2.​state​ = ​"dog"​

​ c1.​state​ ​# => "cat"​

​ c2.​state​ ​# => "dog"​

A downside of this approach is that the data associated with a particular object
won’t get automatically deleted if the object is deleted. In general, a mixin that
requires its own state isn’t a mixin—it should be written as a class.

Method Lookup
Because of modules being mixed in, Ruby’s story for method lookup becomes
more complicated. In particular, what happens if methods with the same name
are defined in a class, in that class’s parent class, and in a module included
into the class?

When a method is called, Ruby looks for a definition of the method. Typically,
this search starts in the receiver’s class. If the method is found there, great!
Ruby executes that method. If not, Ruby continues up the search tree to
included modules and superclasses.

The exact order of places that Ruby searches for an instance method is the
following:

1. Methods that have specifically been added to that instance using the def

foo.bar that we’ve seen or the class << foo syntax that we haven’t talked
about yet.

2. Any module that has been added to the receiver’s class using prepend, the
last module so added is checked first.

3. Methods that are actually defined in the receiver’s class.

4. Any module that’s added to the receiver’s class using include, the last
module so added is checked first.

5. If the method hasn’t yet been found at this point, the entire loop is started
over with the superclass of the receiver’s class.

This continues until either a match is found or the top of the inheritance
structure is reached and no match is found.

The entire list of classes and modules in this lookup path can be accessed by
calling the method ancestors, as in String.ancestors. Modules that have been
prepended will show up before the receiver, and superclasses and appended
modules will show up after.

If no match is found, the entire loop is tried again from the receiver’s class,
this time for looking for a special method called method_missing. If no
method_missing is found to handle the message, a NameError is thrown.

Class or module methods have a slightly different path:

Methods added directly to the class or module via the def self.foo or class

<< self syntax
Methods in modules that are added to the receiving class or module via
extend

And so on upward via superclasses.

Super Lookup
When executing a method, if Ruby encounters the keyword super, it acts as
though a method of the same name as the method being executed had been
called, but starts the search later. Specifically, the method lookup for super

starts one step after the point where the method being executed is located. If
the method being executed is defined inside the class as a normal instance

method (step 3 in the method lookup steps described in ​Method Lookup​), then
Ruby starts looking in step 4, with included modules, and then goes looking to
the superclass. If, instead, the method is defined in a prepended module (step 1
in the steps described in ​Method Lookup​) then Ruby starts looking in steps 2
and 3 for regular instance methods.

If super has no argument list, the same method arguments from the original
method call are passed forward, if any argument list (even an empty one with
empty parentheses) is specified, those arguments are passed through.

Short examples of method lookup are kind of contrived, but let’s try one
anyway:

tut_modules/lookup.rb

​ ​module​ ​Log​

​ ​def​ ​execute​

​ puts ​"logging"​

​ ​super​

​ ​end​

​ ​end​

​

​ ​module​ ​Caller​

​ ​def​ ​execute​

​ puts ​"calling"​

​ ​super​

​ ​end​

​ ​end​

​

​ ​class​ Parent

​ ​def​ ​execute​

​

​ puts ​"parenting"​

​ ​end​

​ ​end​

​

​ ​class​ Child < Parent

​ prepend Log

​ ​include​ Caller

​

​ ​def​ ​execute​

http://media.pragprog.com/titles/ruby5/code/tut_modules/lookup.rb

​ puts ​"childing"​

​ ​super​

​ ​end​

​ ​end​

​

​ puts Child.​new​.​execute​

Produces:

​ logging

​ childing

​ calling

​ parenting

When the execute method is called, Ruby looks first at the prepended module,
Log, and executes there. That method calls super, which continues the lookup
chain upward, to the actual Child class. The super in that method moves up the
lookup chain to the included module Caller, and the super in that method
moves up the chain to Parent.

Inheritance, Mixins, and Design
Inheritance and mixed-in modules both allow you to write code in one place
and use that code in multiple classes. So, when do you use each?

As with most questions of design, the answer is, well…it depends. But over
the years, developers have come up with some general guidelines to help us
decide.

First, let’s look at subclassing. Classes in Ruby are related to the idea of
types. It would be natural to say that "cat" is a string and [1, 2] is an array.
And that’s another way of saying that the class of "cat" is String and the class
of [1, 2] is Array. When we create our own classes, you can think of it as
adding new types to the language. And when we subclass either a built-in
class or our own class, we’re creating a subtype.

Now, a lot of research has been done on type theories. One of the more
useful concepts is the Liskov Substitution Principle. The Liskov
Substitution Principle states that you should be able to substitute an object
of a child class wherever you use an object of the parent class—the child
should honor the parent’s contract. There’s another way of looking at this
relationship: we should be able to say that the child object is a kind of the
parent. We’re used to saying this in English: a car is a vehicle, a cat is an
animal, and so on. This means that a cat should, at the very least, be capable
of doing everything we say that a generic animal can do.

So, when you’re looking for subclassing relationships while designing your
application, be on the lookout for these is-a relationships.

But here’s the bad news. In the real world, there aren’t that many true is a
relationships. Instead, it’s far more common to have has a or uses a
relationships between things. The real world is built using composition, not
strict hierarchies.

In the past, we’ve tended to gloss over that fact when programming. When
inheritance is the only scheme available for sharing code, it’s easy to say
things like “My Person class is a subclass of my DatabaseWrapper class.”
(Indeed, the Ruby on Rails framework makes this design choice.) But a
person object is not a kind of database wrapper object. A person object uses
a database wrapper to provide persistence services.

Is this just a theoretical issue? No! Inheritance represents an incredibly tight
coupling of two components. Change a parent class, and you risk breaking
the child class. But, even worse, if code that uses objects of the child class
relies on those objects also having methods defined in the parent, then all
that code will break too. The parent class’s implementation leaks through
the child classes and out into the rest of the code. With a decent-sized
program, this becomes a serious inhibitor to change.

And that’s why we tend to move away from inheritance in our designs.
Instead, we need to be using composition wherever we see a case of A uses
a B, or A has a B. Our persisted Person object won’t subclass DataWrapper.
Instead, it’ll construct a reference to a database wrapper object and use that
object reference to save and restore itself.

But that can also make code messy. And that’s where a combination of
mixins comes to the rescue, because we can say this:

​ ​class​ Person

​ ​include​ Persistable

​ ​# ...​

​ ​end​

instead of this:

​ ​class​ Person < DataWrapper

​ ​# ...​

​ ​end​

If you’re new to object-oriented programming, this discussion may feel
remote and abstract. But as you start to code larger and larger programs, we
urge you to think about the issues discussed here. Try to reserve inheritance
for the times when it’s justified. And try to explore all the cool ways that
mixins let you write decoupled, flexible code.

[15]

What’s Next
In this chapter, we looked at using Ruby modules to encapsulate code into
namespaces and to share code by using the include method to mix modules
into classes. We also talked about how module inclusion affects method
lookup and when to use mixins versus inheritance.

Now that we’ve learned some of Ruby’s class and object structure, let’s
look at some of the classes that Ruby uses for standard types.

Footnotes

http://www.rubyonrails.org

Copyright © 2024, The Pragmatic Bookshelf.

http://www.rubyonrails.org/

Chapter 7

Basic Types: Numbers, Strings, and
Ranges

We’ve been having fun implementing programs using arrays, hashes, and
procs, but we haven’t yet covered the most basic types in Ruby: numbers,
strings, and ranges. Let’s spend a few pages on these basic building blocks
now.

Numbers
Ruby supports integers, floating-point, rational, and complex numbers.
Integers can be of any length (up to a maximum determined by the amount
of free memory on your system) and are of type Integer.

Integers are assumed to be decimal base 10, but, you can write integers
using a leading sign as an optional base indicator—0 for octal, 0x for hex, or
0b for binary (and 0d for decimal)—followed by a string of digits in the
appropriate base.

Underscore characters are ignored in the digit string, you’ll see them used
in place of commas in larger numbers.

​ 123456 => 123456 ​# base 10​

​ 0d123456 => 123456 ​# base 10​

​ 123_456 => 123456 ​# underscore ignored​

​ -543 => -543 ​# negative number​

​ 0xaabb => 43707 ​# hexadecimal​

​ 0377 => 255 ​# octal​

​ -0b10_1010 => -42 ​# binary (negated)​

​ 123_456_789_123_456_789 => 123456789123456789

A numeric literal with a decimal point and/or an exponent is turned into a
Float corresponding to double-width floating-point numbers in the
underlying system. You must both precede and follow the decimal point
with a digit—if you write 1.0e3 as 1.e3, Ruby will try to invoke the method
e3 on the object 1.

The standard Ruby library contains the BigDecimal class, which is Ruby’s
high-precision decimal class. When you require BigDecimal, in addition to
the class itself, the Kernel module gets a BigDecimal method for converting
strings or numbers to BigDecimal instances.

​ require ​"bigdecimal"​

​ x = BigDecimal(​"3.14"​)

​ y = BigDecimal(​"4.13"​)

​ x + y ​# => 0.727e1​

Ruby includes support for rational and complex numbers. Rational numbers
are the ratio of two integers—they are fractions—and hence have an exact
representation (unlike floats). Complex numbers represent points on the
complex plane. They have two components, the real and imaginary parts.

Ruby has a literal syntax for both Rational and Complex numbers, but it
might not be what you expect. Rationals first. If you try to directly represent
a fraction like 3/4, Ruby will interpret that as integer division and return 0.
To make the fraction into a Ruby Rational instance, you need to add the letter
r, as in 3/4r. You can also convert decimals into rationals with this syntax,
for example, 0.75r will also convert into three-fourths (but note that .75r is
still a syntax error because decimal numbers need to have digits on both
sides of the decimal point). Strings can be converted to rationals with the
to_r method. Finally, Ruby offers a conversion method, Rational, which takes
either a string or two arguments and creates a Rational instance.

​ 3/4 ​# => 0​

​ 3/4r ​# => (3/4)​

​ 0.75r ​# => (3/4)​

​ ​"3/4"​.​to_r​ ​# => (3/4)​

​ Rational(3, 4) ​# => (3/4)​

​ Rational(​"3/4"​) ​# => (3/4)​

The literal syntax for Complex numbers uses i as a suffix. Alternatively, you
can convert strings via the to_c method. There is also a Complex conversion
method.

​ 1+2i ​# => (1+2i)​

​ ​"1+2i"​.​to_c​ ​# => (1+2i)​

​ Complex(1, 2) ​# => (1+2i)​

​ Complex(​"1+2i"​) ​# => (1+2i)​

If you were wondering, a number can be both rational and imaginary, as in
5.7ri, but the r needs to come before the i otherwise you get a syntax error.

All numbers are objects and respond to a variety of messages. Unlike
Python, for example, you find the absolute value of a number by writing
num.abs, not abs(num).

Finally, we’ll offer a warning for users of other languages. Strings that
contain only digits are not automatically converted into numbers when used
in expressions. This tends to bite when reading numbers from a file or when
trying to use the parameters from a web request.

For example, we may want to find the sum of the two numbers on each line
for a file such as the following:

​ 3 4

​ 5 6

​ 7 8

The following code doesn’t work:

​ some_file.​each​ ​do​ |line|

​ v1, v2 = line.​split​ ​# split line on spaces​

​ print v1 + v2, ​" "​

​ ​end​

Produces:

​ 34 56 78

The problem is that the input was read as strings, not numbers. The plus
operator for strings concatenates them, and that’s what we see in the output.
To fix this, use the Integer method to convert the strings to integers:

​ some_file.​each​ ​do​ |line|

​ v1, v2 = line.​split​

​ print Integer(v1) + Integer(v2), ​" "​

​ ​end​

Produces:

​ 7 11 15

How Numbers Interact
Most of the time, numbers work the way you’d expect. If you perform some
operation between two numbers of the same class, the answer will typically
be a number of that same class. If the two numbers are of different classes,
the result will have the class of the more general one. If you mix integers
and floats, the result will be a float; if you mix floats and complex numbers,
the result will be complex.

​ 1 + 2 ​# => 3​

​ 1 + 2.0 ​# => 3.0​

​ 1.0 + 2 ​# => 3.0​

​ 1.0 + 1+2i ​# => (2.0+2i)​

​ 1 + 2/3r ​# => (5/3)​

​ 1.0 + 2/3r ​# => 1.6666666666666665​

The return-type rule still applies when it comes to division. But this often
confuses folks because division between two integers yields an integer
result. If you want integer division to yield a float, you can either convert
one side of the division with the to_f method or multiply one side by 1.0,
which is the same thing, or you can use the fdiv method.

​ 1.0 / 2 ​# => 0.5​

​ 1 / 2.0 ​# => 0.5​

​ 1 / 2 ​# => 0​

​ 1.​to_f​ / 2 ​# => 0.5​

​ 1 * 1.0 / 2 ​# => 0.5​

​ 1.​fdiv​(2) ​# => 0.5​

Looping Using Numbers
Integers support several iterators. We’ve seen one already: 5.times. Others
include upto and downto for iterating up and down between two integers.

Class Numeric also provides the more general method step, which is more
like a traditional for loop.

​ 3.​times​ { print ​"X "​ }

​ 1.​upto​(5) { |i| print i, ​" "​ }

​ 99.​downto​(95) { |i| print i, ​" "​ }

​ 50.​step​(80, 5) { |i| print i, ​" "​ }

Produces:

​ X X X 1 2 3 4 5 99 98 97 96 95 50 55 60 65 70 75 80

As with other iterators, if you leave the block off, the call returns an
Enumerator.

​ 10.​downto​(7).​with_index​ { |num, index| puts ​"​​#{​index​}​​: ​​#{​num​}​​"​ }

Produces:

​ 0: 10

​ 1: 9

​ 2: 8

​ 3: 7

Strings
Ruby strings are sequences of characters. They normally hold printable
characters, but that isn’t a requirement; a string can also hold binary data.
Strings are instances of class String and are often created using string literals—
sequences of characters between delimiters.

Ruby has a lot of different ways to create string literals, which differ in how
much processing is done on the characters in the string. One kind of
processing is an escape sequence. An escape sequence allows you to represent
data that is otherwise impossible to represent in the string. Escape sequences
in Ruby start with a backslash (\).

The simplest literal in Ruby is the single-quoted string. Inside a single-quoted
string, only two escape sequences are recognized. Two consecutive
backslashes (\\) are replaced by a single backslash, and a backslash followed
by a single quote (\\’) becomes a single quote. In these cases, the escape
sequence allows you to represent a character that would otherwise cause
problems because the character has meaning to the Ruby parser.

​ ​'escape using "\\"'​ ​# => escape using "\"​

​ ​'That\'s right'​ ​# => That's right​

Note that the double quote inside the top string is handled normally.

Double-quoted strings support a boatload of escape sequences. The most
common is probably \n, the newline character. For a complete list, see Table
11, ​Substitutions in double-quoted strings​.

Double-quoted strings also support string interpolation. With string
interpolation, you can substitute the value of any Ruby code into a string using
the sequence #{ expr }. If the expression being evaluated is a global variable, a
class variable, or an instance variable, you can omit the braces, as in #@foo,
#@@foo, or #$foo.

​ ​"Seconds/day: ​​#{​24 * 60 * 60​}​​"​ ​# => Seconds/day: 86400​

​ ​"​​#{​​'Ho! '​ * 3​}​​Merry Christmas!"​ ​# => Ho! Ho! Ho! Merry Christmas!​

​ ​"The input file name is ​​#$FILENAME​​"​ ​# => The input file name is -​

The interpolated code can be one or more statements, not just an expression—
we don’t recommend this, but here’s an example:

​ puts ​"now is ​​#{​

​ ​def​ ​the​(a)

​ ​'the '​ + a

​ ​end​

​ the(​'time'​)

​ ​}​​ for all bad coders..."​

Produces:

​ now is the time for all bad coders...

Some style guides prefer single quotes if interpolation isn’t used because they
are faster. As far as we’ve been able to tell, there’s no significant speed
difference between the two, so you’ll need a different justification if you want
to prefer that style quirk.

Ruby will concatenate string literals that are next to each other if no operator
is between them:

​ ​"This"​ ​"is"​ ​"just"​ ​"one"​ ​"string"​ ​# => "Thisisjustonestring"​

Ruby provides an alternative to single- and double-quote delimiters, which
comes in handy sometimes when the string you want to quote contains the
delimiter you need. The syntax is %q or %Q followed by a delimiter character.
The %q delimiter is equivalent to single quote, and %Q is equivalent to double
quote. In fact, the Q is optional, a % followed by the delimiter is equivalent to
double quote:

​ ​%q/general single-quoted string/​ ​# => general single-quoted string​

​ ​%Q!general double-quoted string!​ ​# => general double-quoted string​

​ ​%Q{Seconds/day: ​​#{​24*60*60​}​​}​ ​# => Seconds/day: 86400​

​ ​%!general double-quoted string!​ ​# => general double-quoted string​

​ ​%{Seconds/day: #{24*60*60}}​ ​# => Seconds/day: 86400​

Notice that the delimiter changes from line to line. Whatever character follows
the initial q or Q is the delimiter—this also goes for other variants on the
flexible delimiter syntax we’ll see. If the character is an opening bracket [, a
brace {, a parenthesis (, or a less-than sign <, the string is read until the
matching closing symbol is found. Otherwise, the string is read until the next
occurrence of the same delimiter. The delimiter can be any nonalphanumeric
or nonmultibyte character. Current code style guidelines will often suggest that
you stick to parentheses as the string delimiters, %q().

Finally, you can construct a string using a here document, or heredoc. A
heredoc allows you to build a multiline string.

​ string = <<END_OF_STRING

​ ​ The body of the string is the input lines up to​

​ ​ one starting with the same text that followed the '<<'​

​ END_OF_STRING

A here document consists of lines in the source up to but not including the
terminating string that you specify after the << characters. Normally, this
terminator must start in column one. But, if you put a minus sign after the <<

characters, you can indent the terminator:

​ string = <<-END_OF_STRING

​ ​The body of the string is the input lines up to​

​ ​one starting with the same text that followed the '<<'​

​ END_OF_STRING

And if you put a tilde after the << characters you can indent the text. Well, you
can always indent the text, but if you use a ~, then Ruby will remove the
indentation spaces from the beginning of each line, making it easier to lay out
a long string:

​ ​def​ ​a_long_string​

​ <<~END_OF_STRING

​ ​ Faster than a speeding bullet, more powerful than​

​ ​ a locomotive, able to leap tall buildings in a single​

​ ​ bound—look, up there in the sky, it's a bird, it's a​

​ ​ plane, it's Superman!​

​

​ END_OF_STRING

​ ​end​

​ puts a_long_string

Produces:

​ Faster than a speeding bullet, more powerful than

​ a locomotive, able to leap tall buildings in a single

​ bound—look, up there in the sky, it's a bird, it's a

​ plane, it's Superman!

You can also have multiple here documents on a single line. Each acts as a
separate string. The bodies of the here documents are fetched sequentially
from the source lines that follow:

​ print <<-STRING1, <<-STRING2

​ ​ Concat​

​ STRING1

​ ​ enate​

​ STRING2

Produces:

​ Concat

​ enate

This is generally considered super confusing.

Note that Ruby doesn’t strip leading spaces off the contents of the strings in
these cases. If you want to do so, you can call a method on the initial
delimiter, x = <<EOL.strip

Strings and Encodings
An encoding is a mechanism for translating bits into characters. For many
years, most developers who used English used ASCII, a 7-bit encoding of
English characters, such as binary 101 to capital A—it used to be extremely
common for programming books to include a table of ASCII values as an

appendix. Somewhat later, an 8-bit representation called Latin-1 that included
most characters in European languages became common.

All of these were eventually superseded by Unicode,[16] a global standard for
all text characters used in all languages. A Unicode character is two bytes
long, which makes a Unicode string twice as long internally as a Latin-1
string. As a result, the overwhelming majority of web pages use an encoding
called UTF-8, which represents any Unicode character but uses fewer bytes
for ASCII or Latin-1 characters. UTF-8 isn’t the only encoding you’ll
encounter but is the default for Ruby and the one you’ll likely encounter most
often.

Every string in Ruby has an associated encoding. The default encoding of a
string literal depends on the encoding of the source file that contains it. With
no explicit encoding specified, a source file (and its strings) is encoded using
UTF-8:

​ plain_string = ​"dog"​

​ puts ​"Encoding of ​​#{​plain_string.​inspect​​}​​ is ​​#{​plain_string.​encoding​​}​​"​

Produces:

​ Encoding of "dog" is UTF-8

If you want to use your own encoding for some reason (and honestly, it’s hard
to think of a good reason), you can use a magic comment at the top of the file
to change the encoding for that file. If you override the encoding, you’ll do
that for all strings in the file:

​ ​#encoding: utf-8​

​ plain_string = ​"dog"​

​ puts ​"Encoding of ​​#{​plain_string.​inspect​​}​​ is ​​#{​plain_string.​encoding​​}​​"​

​ utf_string = ​"δog"​

​ puts ​"Encoding of ​​#{​utf_string.​inspect​​}​​ is ​​#{​utf_string.​encoding​​}​​"​

Produces:

​ Encoding of "dog" is UTF-8

​ Encoding of "δog" is UTF-8

If there’s a shebang line, the encoding comment must be after the shebang but
before any actual Ruby code:

​ ​#! /usr/local/rubybook/bin/ruby​

​ ​# encoding: utf-16​

The special constant __ENCODING__ returns the encoding of the current source
file.

Working with Strings
String is probably the largest built-in Ruby class, with more than one hundred
standard methods. We won’t go through them all here; the online API
documentation has a complete list. Instead, we’ll look at some common string
idioms—things that are likely to pop up during day-to-day programming.

Maybe we’ve been given a file containing information on a song playlist. For
historical reasons (are there any other kind?), the list of songs is stored as lines
in the file. Each line holds the name of the file containing the song, the song’s
duration, the artist, and the title, all in vertical bar–separated fields. A typical
file may start like this:

tut_stdtypes/songdata

​ /jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'

​ /jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World

​ /bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

Looking at the data, it’s clear that we’ll be using some of class String’s many
methods to extract and clean up the fields before we use them. At a minimum,
we’ll need to do the following:

Break each line into fields
Convert the running times from mm:ss to seconds
Remove those extra spaces from the artists’ names

Our first task is to split each line into fields, and String#split will do the job
nicely. In this case, we’ll pass split a regular expression, /\s*\|\s*/, that splits the

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/songdata

line into tokens wherever split finds a vertical bar, optionally surrounded by
spaces (more about regular expressions in Chapter 8, ​Regular Expressions​).
And, because the line read from the file has a trailing newline, we’ll use chomp

to strip it off each line as we read it.

We’ll store details of each song in a Struct that contains an attribute for each of
the three fields. (A Struct is simply a data structure that contains a given set of
attributes—which in this case is the title, name, and length. It’s a shortcut for
declaring a class that only has instance variables but little to no logic. For
more on this subject, see ​Struct​.)

tut_stdtypes/read_songdata_1.rb

​ Song = Struct.​new​(​:title​, ​:name​, ​:length​)

​

​ songs = File.​readlines​(​"code/tut_stdtypes/songdata"​, ​chomp: ​​true​).​map​ ​do​ |line|

​ _file, length, name, title = line.​chomp​.​split​(​/\s*\|\s*/​)

​ Song.​new​(title, name, length)

​ ​end​

​ puts songs[1]

Produces:

​ #<struct Song title="Wonderful World", name="Louis Armstrong",
length="2:58">

We’re using readlines and map here to convert each line of the input file into its
own Song.

Unfortunately, whoever created the original file entered the artists’ names in
columns, so some of them contain extra spaces that we’d better remove before
we go much further. We have many ways of doing this, but probably the
simplest is String#squeeze, which trims runs of repeated characters.

tut_stdtypes/read_songdata_2.rb

​ Song = Struct.​new​(​:title​, ​:name​, ​:length​)

​

​ songs = File.​readlines​(​"code/tut_stdtypes/songdata"​, ​chomp: ​​true​).​map​ ​do​ |line|

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/read_songdata_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/read_songdata_2.rb

​ _file, length, name, title = line.​chomp​.​split​(​/\s*\|\s*/​)

​ Song.​new​(title, name.​squeeze​(​" "​), length)

​ ​end​

​ puts songs[1]

Produces:

​ #<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Finally, we have the minor matter of the time format. The file says 2:58, but
we want it to say the number of seconds, 178. We could use split again, this
time splitting the time field around the colon character:

​ ​"2:58"​.​split​(​":"​) ​# => ["2", "58"]​

Instead, we’ll use a related method. String#scan is similar to split in that it
breaks a string into chunks based on a pattern. But, unlike split, with scan you
specify the pattern that you want the chunks to match. In this case, we want to
match one or more digits for both the minutes and seconds components. The
pattern for one or more digits is /\d+/. Then we convert the resulting minutes
and seconds to the length in seconds.

tut_stdtypes/read_songdata_3.rb

​ Song = Struct.​new​(​:title​, ​:name​, ​:length​)

​

​ songs = File.​readlines​(​"code/tut_stdtypes/songdata"​, ​chomp: ​​true​).​map​ ​do​ |line|

​ _file, length, name, title = line.​chomp​.​split​(​/\s*\|\s*/​)

​ minutes, secs = length.​scan​(​/\d+/​)

​ Song.​new​(title, name.​squeeze​(​" "​), minutes.​to_i​ * 60 + secs.​to_i​)

​ ​end​

​ puts songs[1]

Produces:

​ #<struct Song title="Wonderful World", name="Louis Armstrong", length=178>

We could spend the next fifty pages looking at all the methods in class String

(see ​Strings​ for a fuller list). For now, let’s move on instead to look at a
simpler data type: the range.

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/read_songdata_3.rb

Ranges
Ranges occur everywhere: January to December, 0 to 9, rare to well done,
lines 50 through 67, and so on. If Ruby is to help us model reality, it seems
natural for it to support these ranges. In fact, Ruby goes one better: it uses
ranges to implement sequences and intervals.

Ranges as Sequences
The first and perhaps most natural use of ranges is to express a sequence of
values. Sequences have a start point, an end point, and a way to produce
successive values in the sequence. In Ruby, these sequences are created using
the .. and ... range operators. The two-dot form creates an inclusive range, and
the three-dot form creates a range that excludes the specified high value:

​ 1..10

​ ​"a"​..​"z"​

​ 0...3

If you’re looking for a way to remember which is which, you can imagine the
third dot as replacing the high-end value. The two-dot form is more common
in actual code, and we recommend not switching between the two—it’s a
subtle distinction and hard to read.

You can convert a range to an array using the to_a method and convert it to an
Enumerator using to_enum.

​ (1..10).​to_a​ ​# => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]​

​ (​'bar'​..​'bat'​).​to_a​ ​# => ["bar", "bas", "bat"]​

​ enum = (​'bar'​..​'bat'​).​to_enum​

​ enum.​next​ ​# => "bar"​

​ enum.​next​ ​# => "bas"​

Sometimes people worry that ranges take a lot of memory. That’s not an issue:
the range 1..100000 is held as a Range object containing references to two
Fixnum objects. But, convert a range into an array, and all that memory will get
used.

Ruby also allows you to specify ranges that have no beginning or no end.
While this can be useful for generating infinite sequences, it’s also pretty
useful to define a subrange for an array or string. A range starting with [..x]
goes from the beginning of the sequence to index x, while [x..] goes from x to
the end of the sequence:

​ arr = [1, 2, 3, 4, 5, 6]

​ arr[..2] ​# => [1, 2, 3]​

​ arr[2..] ​# => [3, 4, 5, 6]​

Ranges have methods that let you iterate over them and test their contents in a
variety of ways:

​ digits = 0..9

​ digits.​include?​(5) ​# => true​

​ digits.​max​ ​# => 9​

​ digits.​reject​ { |i| i < 5 } ​# => [5, 6, 7, 8, 9]​

​ digits.​reduce​(:+) ​# => 45​

So far, we’ve shown ranges of numbers and strings. But, as you’d expect from
an object-oriented language, Ruby ranges can be based on objects that you
define. The only constraints are that the objects must respond to succ by
returning the next object in sequence and they must be comparable using <=>
(as described in ​Mixins​).

In reality, this isn’t something you do often, so examples tend to be a bit
contrived. Here’s one—a class that presents numbers that are powers of 2.
Because it defines <=> and succ, we can use objects of this class in ranges:

​ ​class​ PowerOfTwo

​ attr_reader ​:value​

​ ​def​ ​initialize​(value)

​ @value = value

​ ​end​

​

​ ​def​ ​<​=>(other)

​ @value <=> other.​value​

​ ​end​

​

​ ​def​ ​succ​

​ PowerOfTwo.​new​(@value + @value)

​ ​end​

​

​ ​def​ ​to_s​

​ @value.​to_s​

​ ​end​

​ ​end​

​

​ p1 = PowerOfTwo.​new​(4)

​ p2 = PowerOfTwo.​new​(32)

​

​ puts (p1..p2).​to_a​

Produces:

​ 4

​ 8

​ 16

​ 32

Ranges as Intervals
A final use of the versatile range is as an interval test: seeing whether some
value falls within the interval represented by the range. We do this using ===,
the case equality operator, which is equivalent to the include? methods for
boolean testing. Ranges also provide the cover? method, which is identical to
include? for numbers, but for nonnumeric sequences the method behaves
differently. The cover? method includes any item between the start and end of
the range even if the item isn’t in the range itself.

​ (1..10) === 5 ​# => true​

​ (1..10) === 15 ​# => false​

​ (1..10) === 3.14159 ​# => true​

​ (​'a'​..​'j'​) === ​'c'​ ​# => true​

​ (​'a'​..​'j'​) === ​'z'​ ​# => false​

​ (​'a'​..​'j'​).​include?​(​'c'​) ​# => true​

​ (​'a'​..​'j'​).​include?​(​'bb'​) ​# => false​

​ (​'a'​..​'j'​).​cover?​(​'bb'​) ​# => true​

Since case statements use triple-equals for comparisons, ranges are often used
as a convenient shortcut for branch conditions.

tut_stdtypes/range_case.rb

​ car_age = gets.​to_f​ ​# let's assume it's 9.5​

​ ​case​ car_age

​ ​when​ 0...1

​ puts ​"Mmm.. new car smell"​

​ ​when​ 1...3

​ puts ​"Nice and new"​

​ ​when​ 3...10

​ puts ​"Reliable but slightly dinged"​

​ ​when​ 10...30

​ puts ​"Clunker"​

​ ​else​

​ puts ​"Vintage gem"​

​ ​end​

Produces:

​ Reliable but slightly dinged

Note the use of exclusive ranges in the previous example. These are usually
the correct choice in case statements. If instead we had written the following,
we’d get the wrong answer because 9.5 doesn’t fall within any of the ranges,
so the else clause triggers:

tut_stdtypes/range_case_2.rb

​ car_age = gets.​to_f​ ​# let's assume it's 9.5​

​ ​case​ car_age

​ ​when​ 0..0

​ puts ​"Mmm.. new car smell"​

​ ​when​ 1..2

​ puts ​"Nice and new"​

​ ​when​ 3..9

​ puts ​"Reliable but slightly dinged"​

​ ​when​ 10..29

​ puts ​"Clunker"​

​ ​else​

​ puts ​"Vintage gem"​

​ ​end​

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/range_case.rb
http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/range_case_2.rb

​ Vintage gem

[16]

What’s Next
In this chapter, we covered some of Ruby’s most commonly used types:
numbers, strings, and ranges. We showed how to create literals and how to
use the functionality of these types. Now let’s look at one of Ruby’s most
powerful standard types—regular expressions.

Footnotes

https://home.unicode.org

Copyright © 2024, The Pragmatic Bookshelf.

https://home.unicode.org/

Chapter 8

Regular Expressions

We spend much of our time in Ruby working with strings, so it seems
reasonable for Ruby to have great tools for working with those strings. As
we’ve seen, the String class itself is no slouch—it has more than 100
methods. But it still can’t do everything on its own. For example, we might
want to see whether a string contains two or more repeated characters, or
we might want to replace every word longer than fifteen characters with its
first five characters and an ellipsis. This is when we turn to the power of
regular expressions.

Regular expressions are powerful and are used in many languages besides
Ruby. In this chapter, we’ll cover the basics of what regular expressions can
do in Ruby; later, in ​Regular Expressions​, we’ll show you all the details and
more complex techniques.

What Regular Expressions Let You Do
A regular expression is a pattern that can be matched against a string. It can
be a simple pattern, such as the string must contain the sequence of letters
“cat,” or the pattern can be complex, such as the string must start with a
protocol identifier, followed by two literal forward slashes, followed by…,
and so on. This is cool in theory. But what makes regular expressions so
powerful is what you can do with them in practice:

You can test a string to see whether it matches a pattern.
You can extract from a string the sections that match all or part of a
pattern.
You can change the string, replacing the parts that match a pattern.

Ruby provides built-in support that makes pattern matching, extraction, and
substitution convenient and concise. In this first section, we’ll work through
the basics of regular expression patterns and see how Ruby supports
matching and replacing based on those patterns. In the sections that follow,
we’ll dig deeper into both the patterns and Ruby’s support for them.

Creating and Using Regular Expressions
Ruby has many ways of creating a regular expression pattern. By far, the
most common is to write the pattern between forward slashes. Thus, the
pattern /cat/ is a regular expression literal in the same way that "cat" is a
string literal.

/cat/ is an example of a simple pattern. It matches any string that contains
the substring cat. In fact, inside a regular expression pattern, all characters
except ., |, (,), [,], {, }, +, \, ^, $, *, and ? match themselves. So, at the risk of
creating something that sounds like a logic puzzle, here are some patterns
and examples of strings they match and don’t match:

/cat/ Matches "dog and cat" and "catch" but not "Cat" or "c.a.t."

/123/ Matches "86512312" and "abc123" but not "1.23"

/t a b/ Matches "hit a ball" but not "table"

If you want to match one of the special characters literally in a pattern,
precede it with a backslash, so /*/ is a pattern that matches a single asterisk,
and /\// is a pattern that matches a forward slash. Those backslashes can be
confusing, so Ruby provides a %r delimiter for regular expressions, similar
to %q for strings. The recommended delimiter is the curly brace, so you can
write regular expression literals as %r{cat} or %r{\/}.

Regular expression literals are processed like double-quoted strings. In
particular, you can use #{...} expression interpolations in the pattern.

Matching Strings with Patterns

The Ruby operator =~ matches a string against a pattern. It returns the
character offset of the string at which the beginning of the match occurred:

​ ​/cat/​ =~ ​"dog and cat"​ ​# => 8​

​ ​/cat/​ =~ ​"catch"​ ​# => 0​

​ ​/cat/​ =~ ​"Cat"​ ​# => nil​

If you only want the boolean true or false result of whether the match
occurred and don’t need the character offset, you can use the match? method.
The use of match? is more common than the operator in current Ruby style.

​ ​/cat/​.​match?​(​"dog and cat"​) ​# => true​

​ ​/cat/​.​match?​(​"catch"​) ​# => true​

​ ​/cat/​.​match?​(​"Cat"​) ​# => false​

You can put the string on the left-hand side of either the =~ operator or the
match? method if you prefer.

​ ​"dog and cat"​ =~ ​/cat/​ ​# => 8​

​ ​"catch"​ =~ ​/cat/​ ​# => 0​

​ ​"catch"​.​match?​(​/cat/​) ​# => true​

​ ​"Cat"​ =~ ​/cat/​ ​# => nil​

Because pattern matching returns nil when it fails and because nil is
equivalent to false in a boolean context, you can use the result of a pattern
match as a condition in statements such as if and while.

​ str = ​"cat and dog"​

​

​ ​if​ str.​match?​(​/cat/​)

​ puts ​"There's a cat here somewhere"​

​ ​end​

Produces:

​ There's a cat here somewhere

The following code prints the lines in testfile that have the string on in them:

​ File.​foreach​(​"testfile"​).​with_index​ ​do​ |line, index|

​ puts ​"​​#{​index​}​​: ​​#{​line​}​​"​ ​if​ line.​match?​(​/on/​)

​ ​end​

Produces:

​ 0: This is line one

​ 3: And so on...

You can test to see whether a pattern doesn’t match a string using the
negative match operator !~:

​ File.​foreach​(​"testfile"​).​with_index​ ​do​ |line, index|

​ puts ​"​​#{​index​}​​: ​​#{​line​}​​"​ ​if​ line !~ ​/on/​

​ ​end​

Produces:

​ 1: This is line two

​ 2: This is line three

Changing Strings with Patterns
The String method sub takes a pattern and some replacement text. (Actually,
it does more than that, but we won’t get to that for a while.) If it finds a
match for the pattern in the string, it replaces the matched substring with the
replacement text.

​ str = ​"Dog and Cat"​

​ new_str = str.​sub​(​/Cat/​, ​"Gerbil"​)

​ puts ​"Let's go to the ​​#{​new_str​}​​ for a pint."​

Produces:

​ Let's go to the Dog and Gerbil for a pint.

The sub method changes only the first match it finds. To replace all
matches, use gsub. (The g stands for global.)

​ str = ​"Dog and Cat"​

​ new_str1 = str.​sub​(​/a/​, ​"*"​)

​ new_str2 = str.​gsub​(​/a/​, ​"*"​)

​ puts ​"Using sub: ​​#{​new_str1​}​​"​

​ puts ​"Using gsub: ​​#{​new_str2​}​​"​

Produces:

​ Using sub: Dog *nd Cat

​ Using gsub: Dog *nd C*t

Both sub and gsub return a new string. (If no substitutions are made, that
new string will just be a copy of the original.)

If you want to modify the original string, use the sub! and gsub! forms—
often in the Ruby library, the use of ! at the end of a method name means
the method modifies the receiver in place rather than duplicating it.

​ str = ​"now is the time"​

​ str.​sub!​(​/i/​, ​"*"​)

​ str.​gsub!​(​/t/​, ​"T"​)

​ puts str

Produces:

​ now *s The Time

Unlike sub and gsub, sub! and gsub! return the string only if the pattern was
matched. If no match for the pattern is found in the string, they return nil

instead. This means it can make sense (depending on your need) to use the !
forms in conditions.

Regular Expression Patterns
Like most things in Ruby, regular expressions are just objects—they are
instances of the class Regexp. This means you can assign them to variables,
pass them to methods, and so on:

​ str = ​"dog and cat"​

​ pattern = ​/nd/​

​ pattern.​match?​(str) ​# => true​

​ str.​match?​(pattern) ​# => true​

You can also create regular expression objects by calling the Regexp class’s new
method or by using the arbitrary delimiter %r{...} syntax. The %r syntax is
particularly useful when creating patterns that contain forward slashes:

​ ​/mm\/dd/​ ​# => /mm\/dd/​

​ Regexp.​new​(​"mm/dd"​) ​# => /mm\/dd/​

​ ​%r{mm/dd}​ ​# => /mm\/dd/​

Playing with Regular Expressions
If you’re like us, you’ll sometimes get confused by regular expressions. You create
something that should work, but it doesn’t seem to match. That’s when we fall back to irb.
We’ll cut and paste the regular expression into irb and then try to match it against strings.
We’ll slowly remove portions until we get it to match the target string and add stuff back
until it fails. At that point, we’ll know what we were doing wrong.

Another option is to use the website Rubular, at https://rubular.com. Rubular allows you to
enter a regular expression and a test string and shows what the match result is. The site
also allows you to create a permalink for your particular regular expression and a test
string which is excellent for using as a comment where the regular expression is defined
in your code.

Regular Expression Options
A regular expression may include one or more options that modify the way the
pattern matches strings. If you’re using literals to create the Regexp object, then
the options are one or more characters placed immediately after the terminator.

https://rubular.com/

If you’re using Regexp.new, the options are constants used as the second
parameter of the constructor.

i Case
insensitive.

The pattern match will ignore the case of letters in the
pattern and string.

o Substitute
once.

Any #{...} substitutions in a particular regular expression
literal will be performed just once, the first time it’s
evaluated. Otherwise, the substitutions will be
performed every time the literal generates a Regexp
object.

m Multiline
mode.

Normally, “.” matches any regexp option character
except a newline. With the /m option, “.” matches any
character.

x Extended
mode.

Complex regular expressions can be difficult to read.
The x option allows you to insert spaces and newlines in
the pattern to make it more readable. You can also use #
to introduce comments.

It’s worth taking a second to explore extended mode, which allows you to add
whitespace and comments into the regular expression definition. If there’s
actually whitespace in the pattern, you need to explicitly use character classes
to denote the whitespace. This can make the regular expression more readable.
We’ll see what all this syntax means in a moment:

​ city_state_zip = ​%r{​

​ ​ (​​\w​​.*), # city name followed by a comma​

​ ​ ​​\s​​ # a space​

​ ​ ([A-Z][A-Z]) # a two character state abbreviation​

​ ​ ​​\s​​ # a space​

​ ​ (​​\d​​{5}) # 5 digits for the US simple zip code​

​ ​}x​

​

​ ​"Chicago, IL 60601"​.​match?​(city_state_zip) ​# => true​

Another set of options allows you to set the language encoding of the regular
expression. If none of these options is specified, the regular expression will
have US-ASCII encoding if it contains only 7-bit characters. Otherwise, it’ll
use the default encoding of the source file containing the literal. The options
are:

n: no encoding (ASCII)
e: EUC
s: SJIS
u: UTF-8

Matching against Patterns
Once you have a regular expression object, you can match it against a string
using the Regexp#match method, the boolean match? method, or the match
operators =~ (positive match) and !~ (negative match). The methods and match
operators are defined for both String and Regexp objects. One operand of the
match operator must be a regular expression.

​ name = ​"Fats Waller"​

​ name =~ ​/a/​ ​# => 1​

​ name =~ ​/z/​ ​# => nil​

​ ​/a/​ =~ name ​# => 1​

​ ​/a/​.​match​(name) ​# => #<MatchData "a">​

​ Regexp.​new​(​"all"​).​match​(name) ​# => #<MatchData "all">​

The different versions return different results:

Method or
operator

Return on match Return on no
match

=~ index of beginning of first match
in string

nil

!~ false true

Method or
operator

Return on match Return on no
match

match MatchData object nil

match? true false

After a successful match using either =~ or match, but not using match?, Ruby
sets a whole bunch of magic global variables with data:

The global variable $~ receives the entire MatchData object.
The same MatchData object is also accessible as Regexp.last_match.
$& receives the complete matched text.
$‘ receives the part of the string that preceded the match.
$’ receives the string after the match.
$1 receives the first capture group, $2 the second, and so on. More on that
in ​Grouping​.

But these particular variables are considered to be fairly ugly, so most Ruby
programmers use the MatchData object returned from the match method instead,
because it encapsulates all the information Ruby knows about the match.
Given a MatchData object, you can call pre_match to return the part of the string
before the match, post_match for the string after the match, and index using [0]
to get the matched portion.

​ ​"Faster than a speeding bullet"​ =~ ​/speed/​ ​# => 14​

​ $~ ​# => #<MatchData "speed">​

​ $& ​# => "speed"​

​ $` ​# => "Faster than a "​

​ $' ​# => "ing bullet"​

​

​ match_data = ​"Faster than a speeding bullet"​.​match​(​/speed/​)

​ match_data ​# => #<MatchData "speed">​

​ match_data[0] ​# => "speed"​

​ match_data.​pre_match​ ​# => "Faster than a "​

​ match_data.​post_match​ ​# => "ing bullet"​

We can use these to write show_regexp, a method that shows where a pattern
matches:

tut_regexp/show_match.rb

​ ​def​ ​show_regexp​(string, pattern)

​ match = pattern.​match​(string)

​ ​if​ match

​ ​"​​#{​match.​pre_match​​}​​->​​#{​match[0]​}​​<-​​#{​match.​post_match​​}​​"​

​ ​else​

​ ​"no match"​

​ ​end​

​ ​end​

We could use this method like this:

​ show_regexp(​'very interesting'​, ​/t/​) ​# => very in->t<-eresting​

​ show_regexp(​'Fats Waller'​, ​/lle/​) ​# => Fats Wa->lle<-r​

​ show_regexp(​'Fats Waller'​, ​/z/​) ​# => no match​

http://media.pragprog.com/titles/ruby5/code/tut_regexp/show_match.rb

Regular Expression Syntax
We said earlier that, within a pattern, all characters match themselves except
for . | () [] { } + \ ^ $ * and ?. Those characters all have special meanings in
regular expression patterns. First, always remember that you need to escape
any of these characters with a backslash if you want them to be treated as
regular characters to match:

​ show_regexp(​'yes | no'​, ​/\|/​) ​# => yes ->|<- no​

​ show_regexp(​'yes (no)'​, ​/\(no\)/​) ​# => yes ->(no)<-​

​ show_regexp(​'are you sure?'​, ​/e\?/​) ​# => are you sur->e?<-​

Now let’s see what some of these characters mean if you use them without
escaping them.

Anchors
By default, a regular expression will try to find the first match for the pattern
in a string. Match /iss/ against the string “Mississippi,” and it’ll find the
substring “iss” starting at position 1 (the second character in the string). But
what if you want to force a pattern to match only at the start or end of a string?

The patterns ^ and $ match the beginning and end of a line, respectively. These
are often used to anchor a pattern match; for example, /^option/ matches the
word option only if it appears at the start of a line. Similarly, the sequence \A

matches the beginning of a string, and only at the beginning of a string,
whereas ^ would match the first character after a newline even if it isn’t the
beginning of the string. Similarly, you have \z and \Z which match the end of
the entire string rather than the end of a line. The difference is that \Z matches
the end of a string unless the string ends with \n, in which case it matches just
before the \n.

​ str = ​"this is​​\n​​the time"​

​ show_regexp(str, ​/^the/​) ​# => this is\n->the<- time​

​ show_regexp(str, ​/is$/​) ​# => this ->is<-\nthe time​

​ show_regexp(str, ​/\Athis/​) ​# => ->this<- is\nthe time​

​ show_regexp(str, ​/\Athe/​) ​# => no match​

The pattern \b is an anchor that matches a word boundary. A word boundary is
the separation between a word character—an ASCII letter, a number, or an
underscore—and something that isn’t a word character. The string “six
o’clock” has six word boundaries:

Before the s—the beginning of the string is considered a non-word
character
After the x—between the ASCII letter x and the space
Before the o—between the space and the letter o
Before and after the ’—because apostrophes aren’t word characters
After the k—the end of the string is also considered a nonword character

You can see where word boundaries occur by replacing every instance of a
word boundary with an * using gsub:

​ ​"six o'clock"​.​gsub​(​/\b/​, ​"*"​) ​# => "*six* *o*'*clock*"​

The \B pattern is the inverse, it matches the boundary between any two
characters that’s not a word boundary. The string “six o’clock” also has six of
those.

​ ​"six o'clock"​.​gsub​(​/\B/​, ​"*"​) ​# => "s*i*x o'c*l*o*c*k"​

You use these anchors to limit a match to the beginning or end of a word (\b)
or prevent a match from happening at the beginning or end of a word (\B).

​ show_regexp(​"this is​​\n​​the time"​, ​/\bis/​) ​# => this ->is<-\nthe time​

​ show_regexp(​"this is​​\n​​the time"​, ​/\Bis/​) ​# => th->is<- is\nthe time​

Character Classes
A character class is a set of characters between brackets: [characters]. The
character class pattern matches any individual character between the brackets,
with no delimiter separating them, so [aeiou] matches any of the five vowels,
[,.:;!?] matches some punctuation, and so on. The significance of the special
regular expression characters—.|(){+^$*?—is turned off inside the brackets. But

normal string substitution still occurs. So, for example, \b represents a
backspace character, and \n represents a new line.

​ show_regexp(​'Price $ 12.'​, ​/[aeiou]/​) ​# => Pr->i<-ce $ 12.​

​ show_regexp(​'Price $ 12.'​, ​/[0123456789]/​) ​# => Price $ ->1<-2.​

​ show_regexp(​'Price $ 12.'​, ​/[$.]/​) ​# => Price ->$<- 12.​

Within the brackets, a sequence such as c1-c2 represents all the characters from
c1 to c2 in the current string encoding:

​ a = ​'see [The PickAxe-page 123]'​

​ show_regexp(a, ​/[A-F]/​) ​# => see [The Pick->A<-xe-page 123]​

​ show_regexp(a, ​/[A-Fa-f]/​) ​# => s->e<-e [The PickAxe-page 123]​

​ show_regexp(a, ​/[0-9]/​) ​# => see [The PickAxe-page ->1<-23]​

​ show_regexp(a, ​/[0-9][0-9]/​) ​# => see [The PickAxe-page ->12<-3]​

It’s common to see [a-zA-Z] to represent all the English letters or [0-9] to
represent all the digits.

You can negate a character class by putting an up arrow (^, sometimes called a
caret) immediately after the opening bracket:

​ show_regexp(​'Price $12.'​, ​/[^A-Z]/​) ​# => P->r<-ice $12.​

​ show_regexp(​'Price $12.'​, ​/[^\w]/​) ​# => Price-> <-$12.​

​ show_regexp(​'Price $12.'​, ​/[a-z][^a-z]/​) ​# => Pric->e <-$12.​

> Some character classes are used so frequently that Ruby provides
abbreviations for them. These abbreviations are listed in Table 2, ​Character
class abbreviations​. They may be used both within brackets and in the body of
a pattern.

​ show_regexp(​'It costs $12.'​, ​/\s/​) ​# => It-> <-costs $12.​

​ show_regexp(​'It costs $12.'​, ​/\d/​) ​# => It costs $->1<-2.​

If you want to include the literal characters] and - in a character class, escape
them with a backslash:

​ a = ​'see [The PickAxe-page 123]'​

​ show_regexp(a, ​/[\]]/​) ​# => see [The PickAxe-page 123->]<-​

​ show_regexp(a, ​/[0-9\]]/​) ​# => see [The PickAxe-page ->1<-23]​

​ show_regexp(a, ​/[\d\-]/​) ​# => see [The PickAxe->-<-page 123]​

Finally, a period (.) appearing outside the brackets represents any character
except a newline (though in multiline mode it matches a newline, too):

​ a = ​'It costs $12.'​

​ show_regexp(a, ​/c.s/​) ​# => It ->cos<-ts $12.​

​ show_regexp(a, ​/./​) ​# => ->I<-t costs $12.​

​ show_regexp(a, ​/\./​) ​# => It costs $12->.<-​

Table 2. Character class abbreviations
For some of these classes, the meaning depends on the character set mode selected for the pattern.
In these cases, the different options are shown like this:

(?a), (?d) → [a-zA-Z0-9_]

(?u) → Letter, Mark, Number, Connector_Punctuation

In this case, the first line applies to ASCII and default modes, and the second to Unicode. In the
second part of each line, the […] is a conventional character class. Words in italic are Unicode
character classes.

Sequence Logical intent Characters matched

\d Decimal digit (?a), (?d) → [0-9]

(?u) → Decimal_Number

\D Any character except a
decimal digit

All characters not matched by \d

\h Hexadecimal digit
character

[0-9a-fA-F]

\H Any character except a
hex digit

All characters not matched by \h

\R A generic linebreak
sequence

Matches any ASCII or Unicode
linebreak may also match the two
characters \r\n

Sequence Logical intent Characters matched

\s Whitespace (?a), (?d) → [␣\t\r\n\f\v]
(?u) → [\t\n\r\x{000B}\x{000C}\x{0085}]

plus Line_Separator,
Paragraph_Separator,
Space_Separator

\S Any character except
whitespace

Any character not matched by \s

\w A “word” character
(really, a programming
language identifier)

(?a), (?d) → [a-zA-Z0-9_]

(?u) → Letter, Mark, Number
,Connector_Punctuation

\W Any character except a
word character

Any character not matched by \w

\X An extended Unicode
grapheme (two or more
characters that combine
to form a single visual
character)

Repetition
Back in ​Working with Strings​, we specified the pattern that split the song list
line, /\s*\|\s*/, and we said we wanted to match a vertical bar surrounded by an
arbitrary amount of whitespace. We now know that the \s sequences match a
single whitespace character and \| means a literal vertical bar, so it seems
likely that the asterisks somehow mean “an arbitrary amount.” In fact, the

asterisk is one of a number of modifiers that allow you to match multiple
occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern,
then:

r* Matches zero or more occurrences of r

r+ Matches one or more occurrences of r

r? Matches zero or one occurrence of r

r{m,n} Matches at least m and at most n occurrences of r

r{m,} Matches at least m occurrences of r

r{,n} Matches at most n occurrences of r

r{m} Matches exactly m occurrences of r

These repetition constructs have a high precedence—they bind only to the
immediately preceding matching construct in the pattern. /ab+/ matches an “a”
followed by one or more “b”s, not a sequence of “ab”s. If you want a sequence
of “ab”s, you need to group the pattern, /(ab)+/.

These patterns are called greedy because by default they’ll match as much of
the string as they can. You can alter this behavior and have them match the
minimum by adding a question mark suffix. The repetition is then called lazy
—it stops once it has done the minimum amount of work required.

​ a = ​"The moon is made of cheese"​

​ show_regexp(a, ​/\w+/​) ​# => ->The<- moon is made of cheese​

​ show_regexp(a, ​/\s.*\s/​) ​# => The-> moon is made of <-cheese​

​ show_regexp(a, ​/\s.*?\s/​) ​# => The-> moon <-is made of cheese​

​ show_regexp(a, ​/[aeiou]{2,99}/​) ​# => The m->oo<-n is made of cheese​

​ show_regexp(a, ​/mo?o/​) ​# => The ->moo<-n is made of cheese​

​ show_regexp(a, ​/mo??o/​) ​# => The ->mo<-on is made of cheese​

The lazy versions on lines three and six behave differently than their matching
greedy versions on lines two and five.

Be careful when using the * modifier. It matches zero or more occurrences. We
often forget about the zero part. In particular, a pattern that contains only a *
repetition will always match, whatever string you pass it. For example, the
pattern /a*/ will always match because every string contains zero or more “a”s.

Both of these examples match an empty substring at the start of the string:

​ a = ​"The moon is made of cheese"​

​ show_regexp(a, ​/m*/​) ​# => -><-The moon is made of cheese​

​ show_regexp(a, ​/Z*/​) ​# => -><-The moon is made of cheese​

Alternation
We know that the vertical bar is special because our line-splitting pattern had
to escape it with a backslash. That’s because an unescaped vertical bar, as in |,
matches either the construct that precedes it or the construct that follows it:

​ a = ​"red ball blue sky"​

​ show_regexp(a, ​/d|e/​) ​# => r->e<-d ball blue sky​

​ show_regexp(a, ​/al|lu/​) ​# => red b->al<-l blue sky​

​ show_regexp(a, ​/red ball|angry sky/​) ​# => ->red ball<- blue sky​

There’s a trap for the unwary here because | has a very low precedence. The
last example in the previous lines matches red ball or angry sky, not red ball
sky or red angry sky. To match red ball sky or red angry sky, you’d need to
override the default precedence using grouping, /red (ball|angry) sky/.

Grouping
You can use parentheses to group terms within a regular expression.
Everything within the group is treated as a single regular expression.

The first example here, without a group, matches an ‘a’ followed by one or
more ‘n’s. The second, using a group, matches the sequence ‘an’ one or more
times.

​ show_regexp(​'banana'​, ​/an+/​) ​# => b->an<-ana​

​ show_regexp(​'banana'​, ​/(an)+/​) ​# => b->anan<-a​

​ a = ​'red ball blue sky'​

​ show_regexp(a, ​/blue|red/​) ​# => ->red<- ball blue sky​

​ show_regexp(a, ​/(blue|red) \w+/​) ​# => ->red ball<- blue sky​

​ show_regexp(a, ​/(red|blue) \w+/​) ​# => ->red ball<- blue sky​

​ show_regexp(a, ​/red|blue \w+/​) ​# => ->red<- ball blue sky​

​ show_regexp(a, ​/red (ball|angry) sky/​) ​# => no match​

​ a = ​'the red angry sky'​

​ show_regexp(a, ​/red (ball|angry) sky/​) ​# => the ->red angry sky<-​

Parentheses do double duty in regular expressions. They also collect the
results of pattern matching. Ruby counts opening parentheses and stores the
result of the partial match between each opening parenthesis and the
corresponding closing parenthesis. You can use this partial match both within
the rest of the pattern and in your Ruby program. Within the pattern, the
sequence \1 refers to the match of the first group, \2 refers to the second group,
and so on. Outside the pattern, the special global variables $1, $2, and so on,
serve the same purpose and are reset on every regular expression match, just
like $~.

​ ​/(\d\d):(\d\d)(..)/​ =~ ​"12:50am"​ ​# => 0​

​ ​"Hour is #$1, minute #$2"​ ​# => "Hour is 12, minute 50"​

​ ​/((\d\d):(\d\d))(..)/​ =~ ​"12:50am"​ ​# => 0​

​ ​"Time is #$1"​ ​# => "Time is 12:50"​

​ ​"Hour is #$2, minute #$3"​ ​# => "Hour is 12, minute 50"​

​ ​"AM/PM is #$4"​ ​# => "AM/PM is am"​

If you’re using the MatchData object returned by the match method, you can
index into it to get the corresponding subpatterns. This is much more common
than using the global magic variables.

​ md = ​/(\d\d):(\d\d)(..)/​.​match​(​"12:50am"​)

​ ​"Hour is ​​#{​md[1]​}​​, minute ​​#{​md[2]​}​​"​ ​# => "Hour is 12, minute 50"​

​ md = ​/((\d\d):(\d\d))(..)/​.​match​(​"12:50am"​)

​ ​"Time is ​​#{​md[1]​}​​"​ ​# => "Time is 12:50"​

​ ​"Hour is ​​#{​md[2]​}​​, minute ​​#{​md[3]​}​​"​ ​# => "Hour is 12, minute 50"​

​ ​"AM/PM is ​​#{​md[4]​}​​"​ ​# => "AM/PM is am"​

The ability to use part of the current match later in that match allows you to
look for various forms of repetition:

​ ​# match duplicated letter​

​ show_regexp(​'He said "Hello"'​, ​/(\w)\1/​) ​# => He said "He->ll<-o"​

​ ​# match duplicated substrings​

​ show_regexp(​'Mississippi'​, ​/(\w+)\1/​) ​# => M->ississ<-ippi​

Rather than use numbers, you can use names to refer to previously matched
content. You give a group a name by placing ?<_name_> immediately after the
opening parenthesis. You can subsequently refer to this named group using
\k<_name_> (or \k’_name_’).

tut_regexp/named_regex_groups_1.rb

​ ​# match duplicated letter​

​ str = ​'He said "Hello"'​

​ show_regexp(str, ​/(?<char>\w)\k<char>/​) ​# => He said "He->ll<-o"​

​

​

​

​ ​# match duplicated adjacent substrings​

​ str = ​"Mississippi"​

​ show_regexp(str, ​/(?<seq>\w+)\k<seq>/​) ​# => M->ississ<-ippi​

The named matches in a regular expression are also available as local
variables, but only if you use a literal regexp and that literal appears on the
left-hand side of the =~ operator. (So you can’t assign a regular expression
object to a variable, match the contents of that variable against a string, and
expect the local variables to be set.)

tut_regexp/named_regex_groups_2.rb

​ ​/(?<hour>\d\d):(?<min>\d\d)(..)/​ =~ ​"12:50am"​ ​# => 0​

​ ​"Hour is ​​#{​hour​}​​, minute ​​#{​min​}​​"​ ​# => "Hour is 12, minute 50"​

​

​ ​# You can mix named and position-based references​

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_2.rb

​ ​"Hour is ​​#{​hour​}​​, minute ​​#{​$2​}​​"​ ​# => "Hour is 12, minute 50"​

Finally, the named matches also can be used as indexes into a MatchData

instance.

tut_regexp/named_regex_groups_3.rb

​ md = ​/(?<hour>\d\d):(?<min>\d\d)(..)/​.​match​(​"12:50am"​)

​ ​"Hour is ​​#{​md[​:hour​]​}​​, minute ​​#{​md[​:min​]​}​​"​ ​# => "Hour is 12, minute 50"​

As you can see in these examples, named groups are a mixed bag. They can
make the actual regular expressions look more complicated, but they can also
make expressions using the result of the match clearer.

Pattern-Based Substitution
We’ve already seen how sub and gsub replace the matched part of a string with
other text. In those previous examples, the pattern was always fixed text, but
the substitution methods work equally well if the pattern contains repetition,
alternation, and grouping.

​ a = ​"quick brown fox"​

​ a.​sub​(​/[aeiou]/​, ​"*"​) ​# => "q*ick brown fox"​

​ a.​gsub​(​/[aeiou]/​, ​"*"​) ​# => "q**ck br*wn f*x"​

​ a.​sub​(​/\s\S+/​, ​""​) ​# => "quick fox"​

​ a.​gsub​(​/\s\S+/​, ​""​) ​# => "quick"​

The substitution methods can take a string or a block. If a block is used, the
block is passed each matching substring, and the block’s return value is
substituted into the original string.

​ a = ​"quick brown fox"​

​ a.​sub​(​/^./​) { |match| match.​upcase​ } ​# => "Quick brown fox"​

​ a.​gsub​(​/[aeiou]/​) { |vowel| vowel.​upcase​ } ​# => "qUIck brOwn fOx"​

Maybe we want to normalize city names entered by users into a web
application even if the city name is multiple words. They may enter NEW
YORK, new york, or nEw yORk, and we’d like to store it as New York. The
following method is a simple first iteration. The pattern that matches the first

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_3.rb

character of a word is \b\w—look for a word boundary followed by a word
character. Combine this with gsub, and we can hack the names:

​ ​def​ ​mixed_case​(name)

​ name.​downcase​.​gsub​(​/\b\w/​) { |first| first.​upcase​ }

​ ​end​

​ mixed_case(​"NEW YORK"​) ​# => "New York"​

​ mixed_case(​"new york"​) ​# => "New York"​

​ mixed_case(​"nEw yORk"​) ​# => "New York"​

As we saw previously, that substitution block could also be written as either {
_1.upcase } or &:upcase as a second argument written.

​ ​def​ ​mixed_case​(name)

​ name.​downcase​.​gsub​(​/\b\w/​, &​:upcase​)

​ ​end​

​

​ mixed_case(​"nEw yORk"​) ​# => "New York"​

You can also give sub and gsub a hash as the replacement parameter, in which
case they’ll look up matched groups and use the corresponding values as
replacement text:

​ replacement = { ​"cat"​ => ​"feline"​, ​"dog"​ => ​"canine"​ }

​ replacement.​default​ = ​"unknown"​

​

​ ​"cat and dog"​.​gsub​(​/\w+/​, replacement) ​# => "feline unknown canine"​

Backslash Sequences in the Substitution
Earlier we noted that the sequences \1, \2, and so on, are available in the
pattern, standing for the _n_th group matched so far. The same sequences can
be used in the second argument of sub and gsub.

​ puts ​"fred:smith"​.​sub​(​/(\w+):(\w+)/​, ​'\2, \1'​)

​ puts ​"nercpyitno"​.​gsub​(​/(.)(.)/​, ​'\2\1'​)

Produces:

​ smith, fred

​ encryption

You can also reference named groups:

tut_regexp/named_regex_groups_4.rb

​ puts ​"fred:smith"​.​sub​(​/(?<first>\w+):(?<last>\w+)/​, ​'\k<last>, \k<first>'​)

​ puts ​"nercpyitno"​.​gsub​(​/(?<c1>.)(?<c2>.)/​, ​'\k<c2>\k<c1>'​)

Produces:

​ smith, fred

​ encryption

Additional backslash sequences work in substitution strings: \& (last match), \+

(last matched group), \ (string prior to match), ’ (string after match), and \‘ (a literal
backslash).

It gets confusing if you want to include a literal backslash in a substitution.
Your first attempt might be str.gsub(/\\/, ’\\\\’).

Clearly, this code is trying to replace each backslash in str with two. The
programmer doubled up the backslashes in the replacement text, knowing that
they’d be converted to \\ in syntax analysis. But when the substitution occurs,
the regular expression engine performs another pass through the string,
converting \\ to \, so the net effect is to replace each single backslash with
another single backslash. You need to write gsub(/\\/, ’\\\\\\\\’)!

​ str = ​'a\b\c'​ ​# => "a\b\c"​

​ str.​gsub​(​/\\/​, ​'\\\\\\\\'​) ​# => "a\\b\\c"​

But, using the fact that \& is replaced by the matched string, you could also
write this:

​ str = ​'a\b\c'​ ​# => "a\b\c"​

​ str.​gsub​(​/\\/​, ​'\&\&'​) ​# => "a\\b\\c"​

If you use the block form of gsub, the string for substitution is analyzed only
once (during the syntax pass), and the result is what you intended:

​ str = ​'a\b\c'​ ​# => "a\b\c"​

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_4.rb

​ str.​gsub​(​/\\/​) { ​'\\\\'​ } ​# => "a\\b\\c"​

What’s Next
So that’s it! If you’ve made it this far, consider yourself a regular expression
ninja. Get out there and match some strings. Now we’ll take a more general
look at Ruby expressions.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 9

Expressions

So far, we’ve been fairly cavalier in our use of expressions in Ruby. After
all, a = b + c is pretty standard stuff. That said, Ruby expressions are different
than what you might see in JavaScript, Python, or Java, and there’s a lot of
power and flexibility there. You could write a whole lot of Ruby code
without reading any of this chapter, but it wouldn’t be as much fun.

One of the first differences in Ruby is that anything that can reasonably
return a value does: just about everything is an expression. What does this
mean in practice?

Well, for one thing, we have the ability to chain statements together:

​ a = b = c = 0

​ [3, 1, 7, 0].​sort​.​reverse​ ​# => [7, 3, 1, 0]​

Code structures that are statements in languages like JavaScript or Java are
expressions in Ruby. For example, the if and case statements both return the
value of the last expression executed:

​ song_type = ​if​ song.​mp3_type​ == MP3::Jazz

​ ​if​ song.​written​ < Date.​new​(1935, 1, 1)

​ Song::TradJazz

​ ​else​

​ Song::Jazz

​ ​end​

​ ​else​

​ Song::Other

​ ​end​

​

​ rating = ​case​ votes_cast

​ ​when​ 0...10 ​then​ Rating::SkipThisOne

​ ​when​ 10...50 ​then​ Rating::CouldDoBetter

​ ​else​

​ Rating::Rave

​ ​end​

We’ll talk more about if and case later in ​if and unless Expressions​.

Operator Expressions
Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few
surprises. A complete list of the operators, and their precedences, is given in
Table 19, ​Ruby operators (high to low precedence)​.

In Ruby, many binary operators are implemented as method calls. For
example, when you write a * b + c, you’re actually asking the object
referenced by a to execute the method *, passing in the parameter b. You
then ask the object that results from that calculation to execute the +
method, passing c as a parameter. This is the same as writing the following
(perfectly valid) Ruby:

​ a, b, c = 1, 2, 3

​ a * b + c ​# => 5​

​ (a.​*​(b)).​+​(c) ​# => 5​

Because everything is an object and because you can redefine instance
methods, you can always redefine basic arithmetic if you don’t like the
answers you’re getting:

​ ​class​ Integer

​ ​alias​ old_plus +

​

​ ​# Redefine addition of Integers. This is a BAD IDEA!​

​ ​def​ ​+​(other)

​ old_plus(other).​succ​

​ ​end​

​ ​end​

​

​ 1 + 2 ​# => 4​

​ a = 3

​ a += 4 ​# => 8​

​ a + a + a ​# => 26​

What’s going on here? First off, we’re reopening the Integer class to allow
new definitions inside it, a feature of the Ruby object model that we talked

about in ​Reopening Classes​. Inside the class, the keyword alias allows you
to give a new name to an existing method; here we rename the + method to
old_plus. The syntax here might seem odd because there’s only a space
between the new name and the old name. Typically, you’d use alias because
you’re planning on overwriting the existing method but you want that new
method to still be able to access the original, as in this case, we’ve rewritten
+ to use old_plus but added 1.

More useful is that classes you write can participate in operator expressions
just as if they were built-in objects. For example, the left shift operator, <<,
is often used to mean append to receiver.

Arrays support this:

​ a = [1, 2, 3]

​ a << 4 ​# => [1, 2, 3, 4]​

You can add similar support to your classes:

​ ​class​ ScoreKeeper

​ ​def​ ​initialize​

​ @total_score = @count = 0

​ ​end​

​

​ ​def​ ​<<​(score)

​ @total_score += score

​ @count += 1

​ self

​ ​end​

​

​ ​def​ ​average​

​ fail ​"No scores"​ ​if​ @count.​zero?​

​ Float(@total_score) / @count

​ ​end​

​ ​end​

​

​ scores = ScoreKeeper.​new​

​ scores << 10 << 20 << 40

​ puts ​"Average = ​​#{​scores.​average​​}​​"​

Produces:

​ Average = 23.333333333333332

Note that there’s a subtlety in this code—the << method explicitly returns
self. It does this to allow the method chaining in the line scores << 10 << 20 <<

40. Because each call to << returns the scores object, you can then call <<

again, passing in a new score. (Arrays also implement << the same way, and
for the same reason.)

In addition to operators such as +, *, and <<, indexing using square brackets
is also implemented as a method call:

​ some_obj[1, 2, 3]

Here you’re actually calling a method named [] on some_obj, passing it three
parameters, equivalent to some_obj.[](1, 2, 3). You’d define this method using
this:

​ ​class​ SomeClass

​ ​def​ ​[]​(p1, p2, p3)

​ ​# ...​

​ ​end​

​ ​end​

Similarly, assignment to an element is implemented using the []= method.
This method receives each object passed as an index as its first n parameters
and the value of the assignment as its last parameter:

​ ​class​ SomeClass

​ ​def​ ​[]=​(*params)

​ value = params.​pop​

​ puts ​"Indexed with ​​#{​params.​join​(​', '​)​}​​"​

​ puts ​"value = ​​#{​value.​inspect​​}​​"​

​ ​end​

​ ​end​

​

​ s = SomeClass.​new​

​ s[1] = 2

​ s[​'cat'​, ​'dog'​] = ​'enemies'​

Produces:

​ Indexed with 1

​ value = 2

​ Indexed with cat, dog

​ value = "enemies"

Command Expressions
If you enclose a string in backquotes (sometimes called backticks) or use
the delimited form %x{…}, the string will (by default) be executed as a
command by your underlying operating system. The value returned is the
standard output of that command. Newlines will not be stripped, so the
value you get back will likely have a trailing return or linefeed character.

​ ​̀date`​ ​# => "Thu Nov 2 17:16:02 CDT 2023\n"​

​ ​̀ls`​.​split​[34] ​# => "irb.md"​

​ ​%x{echo "hello there"}​ ​# => "hello there\n"​

You can use expression expansion and all the usual escape sequences in the
command string:

​ 0..3.​each​ ​do​ |i|

​ status = ​̀dbmanager status id=​​#{​i​}​​̀​

​ ​# ...​

​ ​end​

The exit status of the command is available in the global variable $?, also
aliased as Process.last_status.

In the description of the command expression, we said that the string in
backquotes would “by default” be executed as a command. In fact, the
string is passed to the Kernel method called ‘ (a single backquote). If you
want, you can override this method. This example uses Process.last_status,
which contains the status of the last external process run:

​ ​alias​ old_backquote ​̀​

​

​ ​def `​(cmd)

​ result = old_backquote(cmd)

​ ​unless​ Process.​last_status​.​success?​

​ puts ​"*** Command ​​#{​cmd​}​​ failed: status = ​​#{​Process.​last_status​.​
exitstatus​​}​​"​

​ ​end​

​ result

​ ​end​

​

​ print ​̀ls -l /etc/passwd`​

​ print ​̀ls -l /etc/wibble`​

Produces:

​ -rw-r--r-- 1 root wheel 8460 Oct 20 02:35 /etc/passwd

​ ls: /etc/wibble: No such file or directory

​ *** Command ls -l /etc/wibble failed: status = 1

Assignment

Almost every example we’ve given so far in this book has featured
assignment. It’s about time we said something about it.

An assignment statement sets the variable or attribute on its left side (the
lvalue) to refer to the value on the right (the rvalue). It then returns that rvalue
as the result of the assignment expression. This means you can chain
assignments, and you can perform assignments in some unexpected places:

​ a = b = 1 + 2 + 3

​ a ​# => 6​

​ b ​# => 6​

​ a = (b = 1 + 2) + 3

​ a ​# => 6​

​ b ​# => 3​

​

​ File.​open​(name = gets.​chomp​)

Ruby has two basic forms of assignment. The first assigns an object reference
to a variable or constant. This form of assignment is hardwired into the
language:

​ instrument = ​"piano"​

​ MIDDLE_A = 440

The second form of assignment involves having an object attribute or element
reference on the left side. These forms are special because they are
implemented by calling methods in the lvalues, which means you can override
them.

We’ve already seen how to define a writable object attribute. Simply define a
method name ending in an equals sign. This method receives as its parameter
the assignment’s rvalue. We’ve also seen that you can define [] as a method:

tut_expressions/assignment.rb

http://media.pragprog.com/titles/ruby5/code/tut_expressions/assignment.rb

​ ​class​ ProjectList

​ ​def​ ​initialize​

​ @projects = []

​ ​end​

​

​ ​def​ ​projects​=(list)

​ @projects = list.​map​(&​:upcase​) ​# store list of names in uppercase​

​ ​end​

​

​ ​def​ ​[]​(offset)

​ @projects[offset]

​ ​end​

​ ​end​

​

​ list = ProjectList.​new​

​ list.​projects​ = ​%w[strip sand prime sand paint sand paint rub paint]​

​ list[3] ​# => "SAND"​

​ list[4] ​# => "PAINT"​

As this example shows, these attribute-setting methods don’t have to
correspond with internal instance variables, and you don’t need an attribute
reader for every attribute writer (or vice versa).

The value of the assignment is always the value of the parameter; the return
value of the method is discarded. In the code that follows, result will be set to
2, even though the attribute setter actually returns 99.

tut_expressions/assignment_setter.rb

​ ​class​ Test

​ ​def​ ​val​=(val)

​ @val = val

​ ​return​ 99

​ ​end​

​ ​end​

​

​

​

​ t = Test.​new​

​ result = (t.​val​ = 2)

​ result ​# => 2​

http://media.pragprog.com/titles/ruby5/code/tut_expressions/assignment_setter.rb

You can also flip the order of assignments in Ruby using the => operator,
which is sometimes called “rightward assignment” and is a special case of
Ruby’s general ​Pattern Matching​.

​ 2 => x

​ puts x

Produces:

​ 2

Note that the return value of the rightward assignment itself is nil, not the
value of the assignment.

Parallel Assignment
You may have had to write code to swap the values in two variables and have
done so by creating a temporary variable:

​ ​# C, or Java, or ...​

​ ​int​ a = 1;

​ ​int​ b = 2;

​ ​int​ temp;

​

​ temp = a;

​ a = b;

​ b = temp;

You can do this swap much more cleanly in Ruby with parallel assignment:

​ a, b = 1, 2 ​# a=1, b=2​

​ a, b = b, a ​# b=2, a=1​

Ruby lets you have a comma-separated list of rvalues (the things on the right
of the assignment). Once Ruby sees more than one rvalue in an assignment,
the rules of parallel assignment come into play. What follows is a description
at the logical level: what happens inside the interpreter is somewhat hairier.

When Ruby interprets a parallel assignment, the values on the left are
evaluated before the values on the right.

Then all the rvalues are evaluated, left to right, and collected into an array
(unless they are already an array). This array will be the eventual value
returned by the overall assignment.

Next, the left side result is inspected. If it contains a single element, the array
is assigned to that element.

a = 1, 2, 3, 4 # a=[1, 2, 3, 4]

b = [1, 2, 3, 4] # b=[1, 2, 3, 4]

If the left side contains a comma, Ruby matches values on the right side
against successive elements on the left side. Excess elements are discarded.

a, b = 1, 2, 3, 4 # a=1, b=2

c, = 1, 2, 3, 4 # c=1

Splats and Assignment
If Ruby sees any splats on the right side of an assignment (that is, rvalues
preceded by an asterisk), each will be expanded inline into its constituent
values during the evaluation of the rvalues and before the assignment to
lvalues starts:

a, b, c, d, e = *(1..2), 3, *[4, 5] # a=1, b=2, c=3, d=4, e=5

Exactly one lvalue may be a splat. This makes it greedy—it’ll end up being an
array, and that array will contain as many of the corresponding rvalues as
possible. So, if the splat is the last lvalue, it’ll soak up any rvalues that are left
after assigning rvalues to previous lvalues:

a, *b = 1, 2, 3 # a=1, b=[2, 3]

a, *b = 1 # a=1, b=[]

If the splat isn’t the last lvalue, then Ruby ensures that the lvalues that follow
it will all receive values from rvalues at the end of the right side of the
assignment. The splat lvalue will soak up only enough rvalues to leave one for
each of the remaining lvalues.

*a, b = 1, 2, 3, 4 # a=[1, 2, 3], b=4

c, *d, e = 1, 2, 3, 4 # c=1, d=[2, 3], e=4

f, *g, h, i, j = 1, 2, 3, 4 # f=1, g=[], h=2, i=3, j=4

As with method parameters, you can use a raw asterisk to ignore some
rvalues:

first, *, last = 1,2,3,4,5,6 # first=1, last=6

Nested Assignments
The left side of an assignment may contain a parenthesized list of terms. Ruby
treats these terms as if they were a nested assignment statement. It extracts the
corresponding rvalue, assigning it to the parenthesized terms, before
continuing with the higher-level assignment.

a, (b, c), d = 1,2,3,4 # a=1, b=2, c=nil, d=3

a, (b, c), d = [1,2,3,4] # a=1, b=2, c=nil, d=3

a, (b, c), d = 1,[2,3],4 # a=1, b=2, c=3, d=4

a, (b, c), d = 1,[2,3,4],5 # a=1, b=2, c=3, d=5

a, (b,*c), d = 1,[2,3,4],5 # a=1, b=2, c=[3, 4], d=5

Operator Plus Assignment
Ruby has a syntactic shortcut for applying an operation to a value and
immediately assigning that value the new result: a = a + 2 may be written as a +=

2. The second form is converted internally to the first. This means that the
operators you’ve defined as methods in your own classes work as you’d
expect:

​ ​class​ List

​ ​def​ ​initialize​(*values)

​ @list = values

​ ​end​

​

​ ​def​ ​+​(other)

​ @list.​push​(other)

​ ​end​

​

​ ​end​

​

​ a = List.​new​(1, 2) ​# => [1, 2]​

​ a += 3 ​# => [1, 2, 3]​

Ruby doesn’t have the autoincrement (++) and autodecrement (–) operators
that C, Java, and JavaScript have. Use the += and -= forms instead.

Conditional Execution
Ruby has several different mechanisms for the conditional execution of code;
they should feel similar to other programming languages, but many have some
neat twists. Before we get into them, we need to spend a short time looking at
boolean expressions.

Boolean Expressions
Ruby has a simple definition of truth. Any value that isn’t nil or the constant
false is true—"cat", 99, 0, and :a_song—are all considered true. An empty string
"", an empty array [], and an empty hash {} are all true in Ruby. (You’ll
sometimes see Rubyists refer to the set of all false values as “falsey” and the
set of all true values as “truthy”.)

In this book, when we want to talk about a general true or false value, we use
regular Roman type: true and false. When we want to refer to the actual
constants, we write true and false.

The fact that nil is considered to be false is convenient. For example, gets,
which returns the next line from a file, returns nil at the end of the file,
enabling you to write loops such as this:

​ ​while​ (line = gets)

​ ​# process line​

​ ​end​

And, Or, and Not
Ruby supports all the standard boolean operators. Both the keyword and and
the operator && (logical and) return their first argument if it’s falsey.
Otherwise, they evaluate and return their second argument (this is sometimes
known as short circuit evaluation).

​ ​nil​ && 99 ​# => nil​

​ ​false​ && 99 ​# => false​

​ ​"cat"​ && 99 ​# => 99​

The only difference in the two forms is precedence—the && operator has
higher precedence than and, meaning that where there’s a choice of operators
to evaluate, && will be evaluated first but and will be evaluated last.

​ result = ​"a"​ && ​"b"​

​ result ​# => "b"​

​

​ result = ​"a"​ and ​"b"​

​ result ​# => "a"​

In the first line, the operator && has higher precedence than the assignment, so
it’s evaluated first, returning "b", and the result is set to "b", as if the line was
written result = ("a" && "b").

In the second line, the assignment has higher precedence than and, so the result
is set to "a" first, and then the and is evaluated, as if it was written (result = "a")

and "b". The entire sequence still returns "b", but in the second line, the result is
set to "a". We strongly recommend that you use parentheses when the order of
execution might be ambiguous or confusing.

The && and and operators return a true value only if both of their arguments are
true.

Similarly, both or and || return their first argument unless it’s falsey, in which
case they evaluate and return their second argument.

​ ​nil​ || 99 ​# => 99​

​ ​false​ || 99 ​# => 99​

​ ​"cat"​ || 99 ​# => "cat"​

As with and, the only difference between or and || is their precedence. To make
life interesting, and and or have the same precedence, but && has a higher
precedence than ||.

The spelled-out versions of and and or are useful as a kind of control flow.
EXPRESSION or exit will perform the expression, no matter how complex it is,
and return that value if it’s truthy, exiting only if the entire expression is false.

A common idiom is to use ||= to assign a value to a variable only if that
variable isn’t already set:

​ var ||= ​"default value"​

This is almost, but not quite, the same as var = var || "default value". It differs in
that no assignment is made at all if the variable is already set. In pseudocode,
this might be written as var = "default value" unless var or as var || var = "default

value".

not and ! (logical not) return the opposite of their operand (false if the operand
is any true value and true if the operand is any false value). And, yes, not and !
differ only in precedence. You’ll sometimes see a !! used as an implicit
conversion to boolean, since the first ! converts any value to either true or false

and the second ! reverses the value to match the boolean status of the original
value. Teams will have different opinions about whether !! is good style, so
keep an eye out for that.

All these precedence rules are summarized in Table 19, ​Ruby operators (high
to low precedence)​.

The defined? Keyword
The defined? keyword returns nil if its argument (which can be an arbitrary
expression) isn’t defined in the current scope; otherwise, it returns a
description of that argument. If the argument is yield, defined? returns the string
“yield” if a code block is associated with the current context.

​ defined? 1 ​# => "expression"​

​ defined? dummy ​# => nil​

​ defined? printf ​# => "method"​

​ defined? String ​# => "constant"​

​ defined? $_ ​# => "global-variable"​

​ defined? Math::PI ​# => "constant"​

​ defined? a = 1 ​# => "assignment"​

​ defined? 42.​abs​ ​# => "method"​

​ defined? ​nil​ ​# => "nil"​

Comparing Objects
In addition to the boolean operators, Ruby objects support comparison using
the methods ==, ===, <=>, =~, eql?, and equal? (see Table 3, ​Common comparison
operators​). All but <=> are defined in class Object but are often overridden by
descendants to provide appropriate semantics. For example, class Array

redefines == so that two array objects are equal if they have the same number
of elements and the corresponding elements are equal.

It’s relatively rare to see eql? or equal? in Ruby code. Also, if you’re familiar
with JavaScript, please note that triple equal, ===, means something very
different in Ruby than in JavaScript.

Both == and =~ have negated forms, != and !~. When evaluating the negated
versions, Ruby first looks for methods called != or !~, calling them if found. If
not, it’ll then invoke either == or =~, negating the result.

In the following example, Ruby calls the == method to perform both
comparisons:

tut_expressions/equality.rb

​ ​class​ Type

​ ​def​ ​==​(other)

​ puts ​"Comparing self == ​​#{​other​}​​"​

​ other == ​"value"​

​ ​end​

​ ​end​

​

​ t = Type.​new​

​ p(t == ​"value"​)

​ p(t != ​"value"​)

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_expressions/equality.rb

​ Comparing self == value

​ true

​ Comparing self == value

​ false

If instead we explicitly define !=, Ruby calls it:

tut_expressions/negated_equality.rb

​ ​class​ Type

​ ​def​ ​==​(other)

​ puts ​"Comparing self == ​​#{​other​}​​"​

​ other == ​"value"​

​ ​end​

​

​ ​def​ !=(other)

​ puts ​"Comparing self != ​​#{​other​}​​"​

​ other != ​"value"​

​ ​end​

​ ​end​

​

​ t = Type.​new​

​ p(t == ​"value"​)

​ p(t != ​"value"​)

Produces:

​ Comparing self == value

​ true

​ Comparing self != value

​ false

You can use a Ruby range as a boolean expression. A range such as exp1..exp2

will evaluate as false until exp1 becomes true. The range will then evaluate as
true until exp2 becomes true.

Once this happens, the range resets, ready to fire again.

Table 3. Common comparison operators

http://media.pragprog.com/titles/ruby5/code/tut_expressions/negated_equality.rb

Operator Meaning
== Test for equal value.
=== Test for "matching" as defined by the type of the operand.

Used most often to compare each of the items with the target in
the when clause of a case statement.

<=> General comparison operator. Returns -1, 0, or +1, depending
on whether its receiver is less than, equal to, or greater than its
argument.

<, <=, >=,
>

Comparison operators for less than, less than or equal, greater
than or equal, and greater than.

=~ Regular expression pattern match.
eql? True if the receiver and argument have both the same type and

equal values. 1 == 1.0 returns true, but 1.eql?(1.0) is false.

equal? True if the receiver and argument have the same object ID.

if and unless Expressions
An if expression in Ruby is pretty similar to if statements in other languages:

​ ​if​ artist == ​"Gillespie"​ ​then​

​ handle = ​"Dizzy"​

​ ​elsif​ artist == ​"Parker"​ ​then​

​ handle = ​"Bird"​

​ ​else​

​ handle = ​"unknown"​

​ ​end​

The then keyword is optional if you lay out your statements on multiple lines:

​ ​if​ artist == ​"Gillespie"​

​ handle = ​"Dizzy"​

​ ​elsif​ artist == ​"Parker"​

​ handle = ​"Bird"​

​ ​else​

​ handle = ​"unknown"​

​ ​end​

But, if you want to lay out your code more tightly, you must separate the
boolean expression from the following statements with the then keyword:

​ ​if​ artist == ​"Gillespie"​ ​then​ handle = ​"Dizzy"​

​ ​elsif​ artist == ​"Parker"​ ​then​ handle = ​"Bird"​

​ ​else​ handle = ​"unknown"​

​ ​end​

You can have zero or more elsif clauses and an optional else clause. And notice
that there’s no e in the middle of elsif.

As we’ve said before, an if statement is an expression—it returns a value. You
don’t have to use the value of an if statement, but it can come in handy:

​ handle = ​if​ artist == ​"Gillespie"​

​ ​"Dizzy"​

​ ​elsif​ artist == ​"Parker"​

​ ​"Bird"​

​ ​else​

​ ​"unknown"​

​ ​end​

Ruby also has a negated form of the if statement:

​ ​unless​ volume.​nil?​

​ play_the_song

​ ​end​

The unless statement does support else, but it’s always clearer to switch to an if
statement in these cases.

Finally, Ruby also supports the ternary operator conditional expression, as
seen in C, JavaScript, and Java:

​ cost = duration > 180 ? 0.35 : 0.25

A ternary expression returns the value of the expression either before or after
the colon, depending on whether the boolean expression before the question
mark is true or false. In the previous example, if the duration is greater than
three minutes, the expression returns 0.35. For shorter durations, it returns
0.25. The result is then assigned to cost.

if and unless Modifiers
Statement modifiers let you tack conditional statements onto the end of a
normal statement:

​ mon, day, year = $1, $2, $3 ​if​ date =~ ​/(\d\d)-(\d\d)-(\d\d)/​

​ puts ​"a = ​​#{​a​}​​"​ ​if​ $DEBUG

​ print total ​unless​ total.​zero?​

For an if modifier, the preceding expression will be evaluated only if the
condition is true. The unless modifier works the other way around:

​ File.​foreach​(​"/etc/passwd"​) ​do​ |line|

​ ​next​ ​if​ line =~ ​/^#/​ ​# Skip comments​

​ parse(line) ​unless​ line =~ ​/^$/​ ​# Don't parse empty lines​

​ ​end​

case Expressions
The Ruby case expression is a powerful beast: a multiway if on steroids.

A Ruby case expression can be written as basically a series of if statements. It
lets you list a series of conditions and execute a statement corresponding to the
first one that’s true:

​ ​case​

​ ​when​ song.​name​ == ​"Misty"​

​ puts ​"Not again!"​

​ ​when​ song.​duration​ > 120

​ puts ​"Too long!"​

​ ​when​ Time.​now​.​hour​ > 21

​ puts ​"It's too late"​

​ ​else​

​ song.​play​

​ ​end​

The else clause at the end is optional and is evaluated if none of the earlier
expressions are true.

Note that standard Ruby style has the when statements at the same level as the
parent case, not indented.

More commonly, you can specify a target at the top of the case statement, and
each when clause lists one or more comparisons to be tested against that target:

​ ​case​ command

​ ​when​ ​"debug"​

​ dump_debug_info

​ dump_symbols

​ ​when​ ​/p\s+(\w+)/​

​ dump_variable($1)

​ ​when​ ​"quit"​, ​"exit"​

​ exit

​ ​else​

​ print ​"Illegal command: ​​#{​command​}​​"​

​ ​end​

The first comparison to match the target is evaluated. Again, the else clause is
optional and evaluates if none of the other clauses do.

Unlike JavaScript, you don’t need to explicitly break out of each when clause,
Ruby will only evaluate the expression of the first clause to match.

As with if, case returns the value of the last expression executed, and you can
use a then keyword to place the expression on the same line as the condition:

​ kind = ​case​ year

​ ​when​ 1850..1889 ​then​ ​"Blues"​

​ ​when​ 1890..1909 ​then​ ​"Ragtime"​

​ ​when​ 1910..1929 ​then​ ​"New Orleans Jazz"​

​ ​when​ 1930..1939 ​then​ ​"Swing"​

​ ​else​ ​"Jazz"​

​ ​end​

A case expression operates by comparing the target (the expression after the
keyword case) with each of the comparison expressions after the when

keywords. This test is a little unusual in that it uses an operator that’s unique
to Ruby, the === operator. Please note that Ruby’s === is different than
JavaScript’s. Ruby’s means “matches, as defined by the type of the left
operand,” which is different from JavaScript’s “equal and of the same type”
operator.

What does _comparison_ === _target_ mean? It depends on how the class defines
it. Different classes define different meaningful semantics for ===.

For example, regular expressions define === as a pattern match:

​ ​case​ line

​ ​when​ ​/title=(.*)/​

​ puts ​"Title is #$1"​

​ ​when​ ​/track=(.*)/​

​ puts ​"Track is #$1"​

​ ​end​

Ruby classes are instances of class Class. (Try saying that three times quickly.)
The === operator is defined in Class to test whether the argument is an instance
of the receiver or one of its superclasses. So (abandoning the benefits of
polymorphism and bringing the gods of refactoring down around your ears),
you can test the class of objects:

​ ​case​ shape

​ ​when​ Square, Rectangle

​ ​# ...​

​ ​when​ Circle

​ ​# ...​

​ ​when​ Triangle

​ ​# ...​

​ ​else​

​ ​# ...​

​ ​end​

This example shows another syntactic feature of Ruby’s case statement, which
is that if you have multiple comparisons for the same result, you can put them

in the same when statement and separate them with a comma, as this example
does with Square, Rectangle.

There are a couple of other interesting uses of ===. For a Range, === means the
target is inside the range. A Set is === if the target is in the set. A Proc checks
for === by calling the proc with the target as an argument and using the truth
value of whatever the proc returns.

Safe Navigation
It’s common to have a chain of method calls on a series of objects. For
example, you might want to retrieve a string from a hash and perform other
processing on it:

​ data[​:name​].​upcase​

There’s only one problem: you might have no way of knowing if data[:name]

returns a value or returns nil. If a value is returned, great! The line of code
works as intended. If nil is returned, there’s a problem because nil.upcase isn’t
defined and will raise an exception.

As a result, checking for nil is a common pattern:

​ name = data[​:name​]

​ ​if​ name ​then​ name.​upcase​ ​else​ ​nil​ ​end​

This is often written with the && as a shortcut:

​ data[​:name​] && data[​:name​].​upcase​

But this version is a little awkward, and it requires the fetch to be executed
twice.

To make this pattern a little nicer, Ruby offers the safe navigation operator, &.

(ampersand followed by a dot). You’ll sometimes see this called the lonely

operator because Matz thought that the ampersand dot combination looked
like a person sitting alone staring off into space. It works like this:

​ data[​:name​]&.​upcase​

The way the &. operator works is that if the receiver of the message on the left
side (in this case data[:name]) is nil, then the message isn’t sent and the nil value
is returned without raising an exception. If the receiver isn’t nil, then the
message is processed normally.

This is what we want—the code works as desired for both nil and non-nil

values for the data[:name].

The safe navigation operator’s powers only last for the one message. If you
want to continue with more downstream messages, you need more safe
navigation operators.

​ data[​:name​]&.​upcase​&.​strip​&.​split​

The safe navigation operator is a great shortcut, but it’s not a substitute for
software design. If you have a lot of values and you don’t know whether or not
they are nil, it’s worth thinking about whether there’s a better way to structure
the code.

Loops and Iterators
We discussed Ruby blocks and iterators back in Chapter 4, ​Collections,
Blocks, and Iterators​. In this section, we’ll talk about all of Ruby’s looping
constructs in more depth.

Loops
Ruby has primitive built-in looping constructs, separate from the iterator
constructs we’ve already seen.

The most basic loop of all that Ruby provides is a built-in iterator method
called loop:

​ ​loop​ ​do​

​ ​# block ...​

​ ​end​

The loop iterator calls the associated block forever (or at least until you
break out of the loop, but you’ll have to read ahead to find out how to do
that).

The while loop executes its body zero or more times as long as its condition
is true. For example, this idiom reads until the input is exhausted, assigning
each line to the local variable line:

​ ​while​ (line = gets)

​ ​# ...​

​ ​end​

The until loop is the opposite; it executes the body until the condition
becomes true:

​ ​until​ play_list.​duration​ > 60

​ play_list.​add​(song_list.​pop​)

​ ​end​

As with if and unless, you can use both of the loops as statement modifiers:

​ a = 1

​ a *= 2 ​while​ a < 100

​ a ​# => 128​

​ a -= 10 ​until​ a < 100

​ a ​# => 98​

Earlier, we said that a range can be used as a kind of flip-flop, returning true
when some event happens and then staying true until a second event occurs.
This facility is normally used within loops. In the example that follows, we
read a text file containing the first ten ordinal numbers (“first,” “second,”
and so on) but print only the lines starting with the one that matches “third”
and ending with the one that matches “fifth”:

​ file = File.​open​(​"ordinal"​)

​ ​while​ line = file.​gets​

​ puts(line) ​if​ line =~ ​/third/​ .. line =~ ​/fifth/​

​ ​end​

Produces:

​ third

​ fourth

​ fifth

The start and end of a range used in a boolean expression can themselves be
expressions. These are evaluated each time the overall boolean expression
is evaluated. For example, the following code uses the fact that the variable
$. contains the current input line number to display the first three lines as
well as those lines between a match of /eig/ and /nin/:

​ File.​foreach​(​"ordinal"​) ​do​ |line|

​ ​if​ (($. == 1) || line =~ ​/eig/​) .. (($. == 3) || line =~ ​/nin/​)

​ print line

​ ​end​

​ ​end​

Produces:

​ first

​ second

​ third

​ eighth

​ ninth

You’ll come across a wrinkle when you use while and until as statement
modifiers. If the statement they are modifying is a begin…end block, the
code in the block will always execute at least one time, regardless of the
value of the boolean expression:

​ print ​"Hello​​\n​​"​ ​while​ ​false​

​ ​begin​

​ print ​"Goodbye​​\n​​"​

​ ​end​ ​while​ ​false​

Produces:

​ Goodbye

Iterators
If you read the beginning of the previous section, you may have been
discouraged. “Ruby has primitive built-in looping constructs,” it said. Don’t
despair, gentle reader, for we have good news. Ruby doesn’t need
sophisticated built-in loops because all the fun stuff is implemented using
Ruby’s iterators.

As we’ll see, even Ruby’s for loop is defined in terms of Ruby iterators.

Ruby uses methods defined in various built-in classes to provide equivalent,
but less error-prone functionality to other languages’ primitive for loops.

Let’s look at some examples:

​ 3.​times​ ​do​

​ print ​"Ho! "​

​ ​end​

Produces:

​ Ho! Ho! Ho!

It’s easy to avoid fence-post and off-by-one errors; this loop will execute
three times, period. In addition to times, integers can loop over specific
ranges by calling downto and upto, and all numbers can loop using step. For
instance, a simple “for” loop that runs from 0 to 9 (something that you’d
write in JavaScript as for(let i = 0; i < 10; i++)) is written as follows:

​ 0.​upto​(9) ​do​ |x|

​ print x, ​" "​

​ ​end​

Produces:

​ 0 1 2 3 4 5 6 7 8 9

A loop from 0 to 12 by 3 can be written as follows:

​ 0.​step​(12, 3) { |x| print x, ​" "​ }

Produces:

​ 0 3 6 9 12

Similarly, iterating over arrays and other containers is easy if you use their
each method:

​ [1, 1, 2, 3, 5].​each​ { |val| print val, ​" "​ }

Produces:

​ 1 1 2 3 5

And once a class supports each, it can also include Enumerable, and the
additional methods in the Enumerable module become available. (We talked
about this back in Chapter 6, ​Sharing Functionality: Inheritance, Modules,
and Mixins​.) For example, the File class provides an each method, which

returns each line of a file in turn. Using the grep method in Enumerable, we
could iterate over only those lines that end with a d:

​ File.​open​(​"ordinal"​).​grep​(​/d$/​) ​do​ |line|

​ puts line

​ ​end​

Produces:

​ second

​ third

for … in
Earlier we said that the only built-in Ruby looping primitives were while and
until. Technically, that’s not true, Ruby does have a for keyword. What’s this
for thing, then? Well, for is a different way to write an each loop.

When you write this:

​ ​for​ song ​in​ playlist

​ song.​play​

​ ​end​

Ruby translates it into something like this:

​ playlist.​each​ ​do​ |song|

​ song.​play​

​ ​end​

The only difference between the for loop and the each form is the scope of
local variables that are defined in the body.

You can use for to iterate over any object that responds to the method each,
such as an Array or a Range:

​ ​for​ i ​in​ [​'fee'​, ​'fi'​, ​'fo'​, ​'fum'​]

​ print i, ​" "​

​ ​end​

​

​ ​for​ i ​in​ 1..3

​ print i, ​" "​

​ ​end​

​

​ ​for​ i ​in​ File.​open​(​"ordinal"​).​find_all​ { |line| line =~ ​/d$/​ }

​ print i.​chomp​, ​" "​

​ ​end​

Produces:

​ fee fi fo fum 1 2 3 second third

As long as your class defines a sensible each method, you can use a for loop
to traverse its objects:

​ ​class​ Periods

​ ​def​ ​each​

​ ​yield​ ​"Classical"​

​ ​yield​ ​"Jazz"​

​ ​yield​ ​"Rock"​

​ ​end​

​ ​end​

​

​ periods = Periods.​new​

​ ​for​ genre ​in​ periods

​ print genre, ​" "​

​ ​end​

Produces:

​ Classical Jazz Rock

break, redo, and next
The loop control constructs break, redo, and next let you alter the normal
flow through a loop or iterator.

break terminates the immediately enclosing loop; control resumes at the
statement following the block. redo repeats the current iteration of the loop

from the start but without reevaluating the condition or fetching the next
element in an iterator. next skips to the end of the loop, effectively starting
the next iteration:

​ ​while​ (line = gets)

​ ​next​ ​if​ line.​matches?​(​/^\s*#/​) ​# skip comments​

​ ​break​ ​if​ line.​matches?​(​/^END/​) ​# stop at end​

​

​ ​# substitute stuff in backticks and try again​

​ ​redo​ ​if​ line.​gsub!​(​/`(.*?)`/​) { eval($1) }

​

​ ​# process line ...​

​ ​end​

These keywords can also be used within blocks. Although you can use them
with any block, they make the most sense when the block is being used for
iteration:

​ i=0

​ ​loop​ ​do​

​ i += 1

​ ​next​ ​if​ i < 3

​ print i

​ ​break​ ​if​ i > 4

​ ​end​

Produces:

​ 345

A value may be passed to break or next. A value passed to break is returned
as the value of the loop when the break is triggered. A value passed to next

is effectively lost, while you can pass a value to next, there’s no reason to do
so. If a conventional loop doesn’t execute a break, its value is nil.

Here’s a contrived example:

​ result = ​while​ (line = gets)

​ ​break​(line) ​if​ line =~ ​/answer/​

​ ​end​

​

​ process_answer(result) ​if​ result

Variable Scope, Loops, and Blocks
The while, until, and for loops are built into the language and don’t introduce
new scope. Previously existing locals can be used in the loop, and any new
locals created will be available afterward. Depending on what languages
you might be used to, this will either seem normal (Python), very weird
(Java), or actually a model of relative clarity (JavaScript).

The scoping rules for blocks (such as those used by loop and each) are
different. Normally, the local variables created in these blocks aren’t
accessible outside the block:

​ [1, 2, 3].​each​ ​do​ |x|

​ y = x + 1

​ ​end​

​ [x, y]

Produces:

​ [x, y]

​ ^

​ prog.rb:4:in `<main>': undefined local variable or method `x' for main

​ (NameError)

But, if at the time the block executes a local variable already exists with the
same name as that of a variable in the block, the existing local variable will
be used in the block. So its value will be available after the block finishes.
As the following example shows, this applies to normal variables in the
block but not to the block’s parameters:

​ x = ​"initial value"​

​ y = ​"another value"​

​ [1, 2, 3].​each​ ​do​ |x|

​ y = x + 1

​ ​end​

​ [x, y] ​# => ["initial value", 4]​

Note that the assignment to the outer variable doesn’t have to be executed.
The Ruby interpreter just needs to see that the variable exists on the left
side of an assignment:

​ a = ​"never used"​ ​if​ ​false​

​ [99].​each​ ​do​ |i|

​ a = i

​ ​end​

​ a ​# => 99​

The a = i statement in the block sets the outer value of a even though a =
“never used” isn’t executed.

You can list block-local variables in the block’s parameter list, preceded by
a semicolon. This code doesn’t use block-locals:

​ square = ​"yes"​

​ total = 0

​

​ [1, 2, 3].​each​ ​do​ |val|

​ square = val * val

​ total += square

​ ​end​

​

​ puts ​"Total = ​​#{​total​}​​, square = ​​#{​square​}​​"​

Produces:

​ Total = 14, square = 9

In contrast, the following code, which uses a block-local variable, square in
the outer scope isn’t affected by a variable of the same name within the
block:

​ square = ​"yes"​

​ total = 0

​

​ [1, 2, 3].​each​ ​do​ |val; square|

​ square = val * val

​ total += square

​ ​end​

​

​ puts ​"Total = ​​#{​total​}​​, square = ​​#{​square​}​​"​

Produces:

​ Total = 14, square = yes

If you’re concerned about the scoping of variables with blocks, turn on
Ruby warnings, and declare your block-local variables explicitly.

Pattern Matching
When you’re dealing with a complicated data structure, but you only need to
use part of the structure, it can be awkward to access the structure through
regular [] methods, with something like movies[:mcu][1][:actors][1][:first_name].
Not only is the access complicated but validating that the data has the shape
you’re looking for can also be difficult.

In Ruby, pattern matching is designed to make both these tasks easier by
allowing you to specify the structure of the data as a pattern, and assign values
to the parts of the data that match. Please note that many programming
languages have features they call “pattern matching,” but Ruby’s
implementation is somewhat different from many of these. The most similar
seems to be in Python.

Pattern matching in Ruby compares a target, which can be any Ruby object, to
a pattern. A pattern is also a Ruby object, but the pattern can also contain the
names of not-yet-defined local variables. If the target matches the pattern, the
target is deconstructed into the pattern, setting the value of those variables.

Single-Line Pattern Matching
Ruby uses the keyword in to match a target to a pattern. When used this way,
the expression returns true if the target matches and false if it doesn’t.

The simplest pattern match is that values match themselves:

​ ​"banana"​ ​in​ ​"banana"​ ​# => true​

​ ​"banana"​ ​in​ ​"apple"​ ​# => false​

​ 3 ​in​ 3 ​# => true​

​ 3 ​in​ 5 ​# => false​

​ 2i ​in​ 2i ​# => true​

Behind the scenes, the pattern match for values uses the same === triple-equal
operator that case statements do. This means that classes that implement ===

can do more general matches. As we saw earlier, a class is === to instances of

that class, regular expressions are === to strings that match the expression, and
ranges are === to elements covered by the range.

So we can write the following patterns:

​ ​"banana"​ ​in​ String ​# => true​

​ ​"banana"​ ​in​ Integer ​# => false​

​ ​"banana"​ ​in​ ​/b(an+)/​ ​# => true​

​ 3 ​in​ 1..10 ​# => true​

That’s starting to look a little more interesting.

The next step is that you can match not only scalar values but also arrays and
hashes. Each subelement of the array or hash can be a pattern that matches the
associated element in the target. For an array, every element in the array must
match the associated pattern element. For a hash, only keys in the pattern must
match. The existence of other keys in the target doesn’t fail the match. If you
want to have an exact hash match, you need to include **nil in the pattern.

​ [1, 2, 3] ​in​ [Integer, Integer, Integer] ​# => true​

​ [3, ​"banana"​, ​"apple"​] ​in​ [1..10, String, ​/p{2}/​] ​# => true​

​ {​name: ​​"Fred"​, ​city: ​​"Bedrock"​} ​in​ {​city: ​String} ​# => true​

​ {​name: ​​"Fred"​, ​city: ​​"Bedrock"​} ​in​ {} ​# => false​

That last line shows that the empty hash is treated differently—an empty hash
only matches another empty hash.

You can use * at the end of an array pattern to indicate rest, and you can use
one at the front to indicate a “find pattern”, where you’re looking for an
element in the middle.

​ [1, ​"potato"​, 2, ​"potato"​] ​in​ [Integer, ​"potato"​, Integer, ​"potato"​] ​# => true​

​ [1, ​"potato"​, 2, ​"potato"​] ​in​ [Integer, ​"potato"​, *] ​# => true​

​ [1, ​"potato"​, 2, ​"potato"​] ​in​ [*, ​"potato"​, 2, *] ​# => true​

You can nest the data:

​ {​likes: ​[3, 5], ​dislikes: ​[2, 4]} ​in​ {​likes: ​[3, *], ​dislikes: ​[2, *]} ​# =>
true​

And you can provide multiple patterns using “or” logic:

​ [1, 2, 3] in [Integer, Integer, Integer] | [String, String, String]

​ # => true

​

​ ["a", "b", "c"] in [Integer, Integer, Integer] | [String, String, String]

​ # => true

​

​ ["a", "b", 3] in [Integer, Integer, Integer] | [String, String, String]

​ # => false

The last example is false because the left side of the expression does not
match either of the patterns completely.

Variable Binding
Where pattern matching starts to get really powerful is that you can also assign
values in the target to variables in the pattern and then use those values. You
can include a bare variable in the pattern by adding a hashrocket => and a local
variable name to any part of a pattern:

​ ​"value"​ ​in​ String => a

​ puts a

Produces:

​ value

Note that the in expression still returns true, and the variable assignment is a
side effect.

If you only want the variable assignment and don’t care about the truth value,
you can replace the in operator with =>, which we’ve already seen can be used
for rightward assignment:

​ ​"value"​ => String => a

​ puts a

Produces:

​ value

There’s a shortcut if the part of the pattern being assigned doesn’t have any
other pattern-matching syntax. You can leave off the hashrocket and just put in
the local name:

​ ​"value"​ ​in​ a

​ puts a

​

​ ​"Another value"​ => b

​ puts b

Produces:

​ value

​ Another value

The second form here is the rightward assignment we’ve already seen. This
can be used in more complex patterns:

​ [1, ​"potato"​, 2, ​"potato"​] => [first, String, second, String]

​

​ puts ​"the numbers are ​​#{​first​}​​ and ​​#{​second​}​​"​

Produces:

​ the numbers are 1 and 2

There’s a shorter shortcut for hash patterns where you’re only asserting that
the key exists, including the name of the key assigned a local variable with
that name.

​ {​rank: ​​"Ace"​, ​suit: ​​"Hearts"​} => {rank:, suit:}

​

​ puts ​"Your card is the ​​#{​rank​}​​ of ​​#{​suit​}​​."​

Produces:

​ Your card is the Ace of Hearts.

If the pattern doesn’t match, the variable assignment behavior is technically
“undefined” to allow for potential performance improvements in the future. It

looks like variables are assigned up to the point of the first mismatch, but we
wouldn’t recommend depending on that. This pattern assigns first but not
second:

​ [1, ​"potato"​, 2, ​"potato"​] ​in​ [Integer => first, Integer, Integer => second,
String]

​

​ puts ​"the numbers are ​​#{​first​}​​ and ​​#{​second​}​​"​

Produces:

​ the numbers are 1 and

If you use => instead of in here, the behavior is much more clearly defined: you
get a NoMatchingPatternError error, and neither variable is assigned.

There are two limitations on assigning variables in pattern matching. First, you
can only assign a value to a local variable. Specifically, you cannot assign a
value to an @ instance variable inside a pattern match. This seems to be related
to performance and thread-safety concerns (it’s actually related to the
undefined performance of failed matches mentioned earlier), and there’s a
decent chance this will change in the future.

Second, you cannot do a variable assignment inside a pattern that uses the | to
provide alternative patterns because you’ll get a syntax error. We’re honestly
not 100% sure why this is, but we suspect it’s related to performance concerns.
(Technically, you can do this if the variable names start with an _, but the
official docs suggest not relying on this behavior, since the underscore is
supposed to indicate a variable that’s being discarded.)

Case Pattern Matching
Having mentioned that pattern matching uses the Ruby === operator and that it
compares a target value against another value, this might remind you of
Ruby’s case statement in ​case Expressions​, which also uses the === operator
and compares a target value.

And in fact, Ruby does support a case/in statement that pattern matches the
target against one or more successive patterns:

tut_expressions/pick_a_card_1.rb

​ ​def​ ​pick_a_card​(cards)

​ ​case​ cards

​ ​in​ [*, {​rank: ​​"Ace"​, ​suit: ​String => s}, *]

​ ​"You have an Ace! Its suit is ​​#{​s​}​​."​

​ ​in​ [*, {​rank: ​r, ​suit: ​​"Diamonds"​}, *]

​ ​"You have a Diamond! Its rank is ​​#{​r​}​​."​

​ ​in​ [*, {​rank: ​​"Queen"​, suit:}, *]

​ ​"You have a Queen! Its suit is ​​#{​suit​}​​."​

​ ​else​

​ ​"You have no interesting cards,"​

​ ​end​

​ ​end​

​

​ puts pick_a_card([

​ {​rank: ​​"Ace"​, ​suit: ​​"Hearts"​},

​ {​rank: ​​"King"​, ​suit: ​​"Diamonds"​},

​ {​rank: ​​"Queen"​, ​suit: ​​"Clubs"​}

​])

Produces:

​ You have an Ace! Its suit is Hearts.

The case/in statement works like a successive set of pattern matchings the way
we’ve already seen pattern matches work. The target variable, in this case, our
list of card hashes that’s passed to cards, is matched against the first pattern.
The first pattern is a find pattern, matching against the first hash with key rank

and value Ace. The rest of the pattern assigns the variable in the suit key to s,
and then that variable is local to all the code within that pattern.

If that pattern doesn’t match, the next one is tried. In this case, the second
pattern looks for a suit of Diamonds, and we’re not expecting anything in
particular for the matching rank, so we can just bind it to r. If that doesn’t
match, the third line shows another shortcut for variable assignment, in this

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_1.rb

one the hash key shortcut is used to assign suit to the suit of the card that
matches rank: "queen".

Eventually, we run out of patterns. If there’s an else clause, then the else clause
is executed. If not, the statement raises a NoMatchingPatternError. The
expectation is that the case statement will be complete and always have a
clause to execute, even if that clause is the else clause.

A case statement either has in clauses or when clauses; you can’t mix the two in
a single statement.

Pinning Values
Pattern matching is a great way to combine validating data with variable
assignment, but we’re still missing an important piece of the puzzle. In our
earlier card example, the pick_a_card example hard codes the ranks of cards it’s
looking for. But what if you wanted to use an existing value, for example, if
you wanted to pass a value to look for?

tut_expressions/pick_a_card_2.rb

​ ​def​ ​pick_a_card​(rank_to_look_for, suit_to_look_for, cards)

​ ​case​ cards

​ ​in​ [*, {​rank: ​̂rank_to_look_for, suit:}, *]

​ ​"You have a ​​#{​rank_to_look_for​}​​! Its suit is ​​#{​suit​}​​."​

​ ​in​ [*, {rank:, ​suit: ​̂suit_to_look_for}, *]

​ ​"You have a {rank}! Its suit is ​​#{​suit_to_look_for​}​​."​

​ ​else​

​ ​"You have no interesting cards,"​

​ ​end​

​ ​end​

​

​ puts pick_a_card(​"King"​, ​"Clubs"​, [

​ {​rank: ​​"Ace"​, ​suit: ​​"Hearts"​},

​ {​rank: ​​"King"​, ​suit: ​​"Diamonds"​},

​ {​rank: ​​"Queen"​, ​suit: ​​"Clubs"​}

​])

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_2.rb

​ You have a King! Its suit is Diamonds.

The new syntax in that example is the ^ operator, which is called the pin
operator because it “pins” a value to part of the pattern. Without the ^
operator, Ruby would interpret the use of rank_to_look_for and suit_to_look_for as
variables to be bound by the pattern match. With the ^ operator, Ruby
interprets them as existing values that are part of the pattern.

Unlike a variable assignment, you can pin any value, including an instance
variable ^@foo, or a global variable ^$global.

You can even pin a local variable assigned earlier in the pattern match, which
makes pattern matching much more powerful:

tut_expressions/pick_a_card_3.rb

​ ​def​ ​pick_a_card​(cards)

​ ​case​ cards

​ ​in​ [*, {​rank: ​}, {​rank: ​̂rank}, *]

​ ​"You have a pair of ​​#{​rank​}​​s."​

​ ​else​

​ ​"You have no interesting cards,"​

​ ​end​

​ ​end​

​

​ puts pick_a_card([

​ {​rank: ​​"Ace"​, ​suit: ​​"Hearts"​},

​ {​rank: ​​"Ace"​, ​suit: ​​"Diamonds"​},

​ {​rank: ​​"Queen"​, ​suit: ​​"Clubs"​}

​])

Produces:

​ You have a pair of Aces.

In this example, the pattern [*, {rank: }, {rank: ^rank}, *] looks for a match where
the first matching object sets the rank local variable using the hash shortcut
syntax, and the second matching object matches if its rank is equal to the
existing rank by pinning the value using ^rank.

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_3.rb

You can also pin an expression rather than a mere value, allowing for
something like this (we converted the rank attribute to an integer to make this
a little easier to write, and we’re also sorting the cards by rank up front):

tut_expressions/pick_a_card_4.rb

​ ​def​ ​pick_a_card​(cards)

​ cards = cards.​sort_by​ { _1[​:rank​] }

​ ​case​ cards

​ ​in​ [{rank:}, {​rank: ​̂(rank + 1)}, {​rank: ​̂(rank + 2)}]

​ ​"You have three consecutive cards"​

​ ​else​

​ ​"You have no interesting cards,"​

​ ​end​

​ ​end​

​

​ puts pick_a_card([

​ {​rank: ​7, ​suit: ​​"Hearts"​},

​ {​rank: ​8, ​suit: ​​"Diamonds"​},

​ {​rank: ​9, ​suit: ​​"Clubs"​}

​])

Produces:

​ You have three consecutive cards

In this example, the pattern matches if the first card has a rank, the second
card has a rank that’s rank + 1, and the third card has rank + 2.

Pinning also works on single-line patterns, it’s not limited to patterns within
case statements.

Guard Clauses
There’s one other thing that you can do with patterns. You can use a boolean
statement to add a guard clause at the end of the pattern, the pattern only
matches if the clause is true.

tut_expressions/pick_a_card_5.rb

​ ​def​ ​pick_a_card​(cards)

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_4.rb
http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_5.rb

​ cards = cards.​sort_by​ { _1[​:rank​] }

​ ​case​ cards

​ ​in​ [{rank:}, {​rank: ​̂(rank + 1)}, {​rank: ​̂(rank+ 2)}] ​if​ rank > 6

​ ​"You have three consecutive high cards"​

​ ​else​

​ ​"You have no interesting cards,"​

​ ​end​

​ ​end​

​

​ puts pick_a_card([

​ {​rank: ​7, ​suit: ​​"Hearts"​},

​ {​rank: ​8, ​suit: ​​"Diamonds"​},

​ {​rank: ​9, ​suit: ​​"Clubs"​}

​])

Produces:

​ You have three consecutive high cards

In the previous example, the clause if rank > 6 limits the pattern to match only
cases where the lowest rank of the three cards is greater than 6. As you can
see, variables assigned as part of the pattern can be used in the clause. You can
use unless instead of if here, in which case the pattern matches when the unless

clause is false.

Custom Pattern Matching
Our “pick a card” examples so far have had our card data stored in a Ruby
hash, but it’s not unlikely that we’d rather have them stored in their own class.

At this point, we can no longer pattern match against our card class because a
hash match no longer works:

tut_expressions/pick_a_card_6.rb

​ ​class​ Card

​ attr_accessor ​:rank​, ​:suit​

​

​ ​def​ ​initialize​(rank, suit)

​ @rank = rank

​ @suit = suit

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_6.rb

​ ​end​

​ ​end​

​

​ ​def​ ​pick_a_card​(cards)

​ cards = cards.​sort_by​(&​:rank​)

​ ​case​ cards

​ ​in​ [{rank:}, {​rank: ​̂(rank + 1)}, {​rank: ​̂(rank+ 2)}] ​if​ rank > 6

​ ​"You have three consecutive high cards"​

​ ​else​

​ ​"You have no interesting cards,"​

​ ​end​

​ ​end​

​

​ puts pick_a_card([

​ Card.​new​(7, ​"Hearts"​),

​ Card.​new​(8, ​"Diamonds"​),

​ Card.​new​(9, ​"Clubs"​)

​])

Produces:

​ You have no interesting cards,

The problem is that {rank:} no longer matches anything because Card isn’t a
hash.

Happily, Ruby provides a way for this to work, the Card class can implement a
method called deconstruct_keys that returns a Hash version of the class suitable
for pattern matching.

Here we use the hash shortcut to define our deconstruct_keys method:

tut_expressions/pick_a_card_7.rb

​ ​class​ Card

​ attr_accessor ​:rank​, ​:suit​

​

​ ​def​ ​initialize​(rank, suit)

​ @rank = rank

​ @suit = suit

​ ​end​

​

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_7.rb

​ ​def​ ​deconstruct_keys​(keys)

​ {rank:, suit:}

​ ​end​

​ ​end​

​

​ ​def​ ​pick_a_card​(cards)

​ cards = cards.​sort_by​(&​:rank​)

​ ​case​ cards

​ ​in​ [{rank:}, {​rank: ​̂(rank + 1)}, {​rank: ​̂(rank+ 2)}] ​if​ rank > 6

​ ​"You have three consecutive high cards"​

​ ​else​

​ ​"You have no interesting cards,"​

​ ​end​

​ ​end​

​

​ puts pick_a_card([

​ Card.​new​(7, ​"Hearts"​),

​ Card.​new​(8, ​"Diamonds"​),

​ Card.​new​(9, ​"Clubs"​)

​])

Produces:

​ You have three consecutive high cards

This works because now the pattern match runs against the hash returned by
deconstruct_keys.

The deconstruct_keys method takes an argument that in many cases you can
ignore. The value of that argument is the set of keys that the pattern is actually
inquiring about, and the purpose of that information is to allow you to send
back a subset of your object for performance reasons. For simple cases, the
subset operation is probably more expensive than creating the hash. If the
argument is nil, then the pattern has used ** to request the entire hash. The
return value of deconstruct_keys is arbitrary, but typically it’s a hash
representation of the data in the object.

An analogous method called deconstruct allows your class to match against
array patterns. It takes no arguments, and the expectation is that you return an
array that’s a representation of your instance. We suspect that fewer classes

will use deconstruct than deconstruct_keys because many classes don’t seem to
have an array representation with a clear order. But if you do have a class
where the data has a clearly ordered representation, like a date or a cartesian
point, then deconstruct would be useful. A class can implement both
deconstruct_keys and deconstruct if both a useful array and a hash representation
exist.

What’s Next
In this chapter, we went through a lot of different Ruby expressions, from
assignment to math to logic to loops to patterns. Next, we’ll look at Ruby’s
exception handling and see what to do when things go wrong.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 10

Exceptions

So far, we’ve been developing code in Pleasantville, a wonderful place
where nothing ever, ever goes wrong. Every library call succeeds, users
never enter incorrect data, and resources are plentiful and cheap. Well,
that’s about to change.

In the real world, errors happen. Good programs (and programmers)
anticipate them and arrange to handle them gracefully. This isn’t always as
easy as it may sound. Often the code that detects an error doesn’t have the
context to know what to do about it. For example, attempting to open a file
that doesn’t exist is acceptable in some circumstances and is a fatal error at
other times. What’s your file-handling module to do?

One approach is to use return codes to signal errors (for example, the Go
language uses this pattern). In this approach, Ruby’s File.open method could
return some specific value to say it failed. This value is then propagated
back through the layers of calling routines until someone wants to take
responsibility for it.

The problem with this approach is that managing all these error codes can
be a pain. If a function calls open, then read, and finally close and if each can
return an error indication, how can the function distinguish these error
codes in the value it returns to its caller?

Ruby uses exceptions to help solve the problem of responding to errors.
Exceptions let you package information about an error into an object. That
exception object is then propagated back up the calling stack automatically
until the runtime system finds code that explicitly declares that it knows
how to handle that type of exception.

The Exception Class
Information about an exception is encapsulated in an object of class
Exception or in one of class Exception’s children. Ruby predefines a tidy
hierarchy of exceptions, see https://docs.ruby-
lang.org/en/master/Exception.xhtml for the full list. As we’ll see later, this
hierarchy makes handling exceptions considerably easier.

The most important subclass of Exception is StandardError. The StandardError
exception and its subclasses represent the exceptional conditions that you’re
going to want to capture in your code. Other subclasses of Exception are
raised by Ruby internals or system-level problems. Almost all of the time, if
you want to capture exceptions, you capture StandardError or one of its
children.

When you need to raise an exception, you can use one of the built-in
Exception classes, or you can create one of your own. Your own exception
classes should be subclasses of StandardError or one of its children, for the
same reason we just gave. Making your exceptions children of StandardError
ensures that regular Ruby processes will capture them appropriately.

Often, the only new piece of data associated with a custom exception is that
it’s a custom exception, so you can declare it in one line:

​ ​class​ MissingUserError < StandardError; ​end​

Semicolons, which are rare in Ruby, are used to separate expressions when
you put more than one on a line. This syntax is often used to indicate a class
with no particular new data other than its parent class. By convention,
custom exception class names end with Error.

Every Exception has associated with it a message string and a stack
backtrace. If you define your own exceptions, you can add extra

https://docs.ruby-lang.org/en/master/Exception.xhtml
https://docs.ruby-lang.org/en/master/Exception.xhtml

information, see ​Adding Information to Exceptions​.

Handling Exceptions
Here’s some simple code that uses the open-uri library to download the
contents of a web page and write it to a file, line by line:

tut_exceptions/fetch_web_page/fetch1.rb

​ require ​"open-uri"​

​ URI.​open​(​"https://pragprog.com/news/index.xhtml"​) ​do​ |web_page|

​ output = File.​open​(​"index.xhtml"​, ​"w"​)

​ ​while​ (line = web_page.​gets​)

​ output.​puts​ line

​ ​end​

​ output.​close​

​ ​end​

What happens if we get a fatal error halfway through? We certainly don’t want
to store an incomplete page to the output file.

Let’s add some exception-handling code and see how it helps. To start
exception handling, we enclose the code that could raise an exception in a
begin/end block and use one or more rescue clauses to tell Ruby the types of
exceptions we want to handle. If our code was already inside a method or an
existing Ruby block, we wouldn’t need a separate begin/end block to trigger
exception handling—the method or block is considered to be a begin/end block
on its own. This code isn’t in a method, so we need to create an explicit begin/
end block.

tut_exceptions/fetch_web_page/fetch2.rb

​ require ​"open-uri"​

​

​ file_name = ​"index.xhtml"​

​ URI.​open​(​"https://pragprog.com/news/​​#{​file_name​}​​"​) ​do​ |web_page|

​ output = File.​open​(file_name, ​"w"​)

​ ​begin​

​ ​while​ (line = web_page.​gets​)

​ output.​puts​ line

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/fetch_web_page/fetch1.rb
http://media.pragprog.com/titles/ruby5/code/tut_exceptions/fetch_web_page/fetch2.rb

​ ​end​

​ output.​close​

​ ​rescue​ StandardError

​ $stderr.​warn​ ​"Failed to download ​​#{​file_name​}​​: ​​#{​$!​}​​"​

​ output.​close​

​ File.​delete​(file_name)

​ ​raise​

​ ​end​

​ ​end​

Because we specified StandardError in the rescue line, that clause will handle the
exceptions of class StandardError and all of its children, which means that we
won’t catch Ruby’s internal errors, which is fine. In the error-handling block,
we report the error, close and delete the output file, and then reraise the
exception. It’s also worth noting that the close and delete calls could also raise
exceptions, and those exceptions aren’t caught in this code example. We’ll see
a partial fix for that in a moment.

As a matter of style, the rescue statement is outdented to the level of the
begin/end block.

When an exception is raised, independent of any subsequent exception
handling, Ruby places a reference to the associated exception object into the
global variable $!. (The exclamation point presumably mirroring our surprise
that any of our code could cause errors.) In the previous example, we used the
$! variable to format our error message.

After closing and deleting the file, we call raise with no parameters, which
reraises the exception that’s currently stored in $!. This is a useful technique
because it allows you to write code that filters exceptions, passing on those
you can’t handle to higher levels. It’s almost like implementing an inheritance
hierarchy for error processing.

You can have multiple rescue clauses in a method or begin block, and each
rescue clause can specify multiple exceptions to catch. At the end of each
rescue clause, you can give Ruby the name of a local variable to receive the

matched exception. Most people find this more readable than using $! all over
the place:

​ ​begin​

​ eval string

​ ​rescue​ SyntaxError, NameError => e

​ print ​"String doesn't compile: "​ + e

​ ​rescue​ StandardError => e

​ print ​"Error running script: "​ + e

​ ​end​

How does Ruby decide which rescue clause to execute? It turns out that the
processing is similar to that used by the case statement. For each rescue clause
in the begin block, Ruby compares the raised exception against each of the
parameters in turn. If the raised exception matches a parameter, Ruby executes
the body of the rescue and stops looking. The match is made using _parameter_

=== $!.

This means that the match will succeed if the exception named in the rescue

clause is the same as or a superclass of the type of the currently thrown
exception. This comparison happens because exceptions are classes, and
classes in turn are kinds of Module. The === method is defined for modules,
returning true if the class of the operand is the same as or is a descendant of
the receiver. If you write a rescue clause with no parameter list, the parameter
defaults to StandardError, so technically our declaration of StandardError in the
earlier code is redundant.

If no rescue clause matches or if an exception is raised outside a begin/end

block, Ruby moves up the stack and looks for an exception handler in the
caller, then in the caller’s caller, and so on. If nothing catches the exception,
the program typically halts.

Although the parameters to the rescue clause are typically the names of
exception classes, they can be arbitrary expressions (including method calls)
that return an Exception class.

Tidying Up
Sometimes you need to guarantee that particular processing is done at the end
of a block of code, regardless of whether an exception was raised. For
example, you may have a file open on entry to the block, and you need to
make sure it always gets closed as the block exits.

The ensure clause does just this. An ensure clause goes after the last rescue

clause and contains a chunk of code that will always be executed as the block
terminates. It doesn’t matter if the block exits normally, raises and rescues an
exception, or it’s terminated by an uncaught exception—the ensure block will
get run:

​ f = File.​open​(​"testfile"​)

​ ​begin​

​ ​# .. process​

​ ​rescue​

​ ​# .. handle error​

​ ​ensure​

​ f.​close​

​ ​end​

You might assume that the File.open call should be inside the begin block. In
this case, having the File.open inside this begin block would be a problem
because open can itself raise an exception. If the exception happened on open,
you wouldn’t want to run the code in the ensure block because there’d be no
file to close.

In the specific case of File.open, you can pass the call a block argument that
uses exception handling techniques to ensure the file is closed at the end of the
block, as in the next example. (We talked about this in ​Using Blocks for
Transactions​.)

​ File.​open​(​"testfile"​) ​do​ |f|

​ ​# .. process​

​ ​end​

The else clause is a similar, although less useful, construct. If present, it goes
after the rescue clauses and before any ensure. The body of an else clause is
executed only if no exceptions are raised by the main body of code.

​ f = File.​open​(​"testfile"​)

​ ​begin​

​ ​# .. process​

​ ​rescue​

​ ​# .. handle error​

​ ​else​

​ puts ​"Congratulations-- no errors!"​

​ ​ensure​

​ f.​close​

​ ​end​

Play It Again
Sometimes you may be able to correct the cause of an exception. In those
cases, you can use the retry statement within a rescue clause to repeat the entire
begin/end block. Clearly, tremendous scope exists for infinite loops here, so
this is a feature to use with caution (and with a finger resting lightly on the
interrupt key).

As an example of code that retries on exceptions, take a look at the following
simplified code that you might find making a network connection.

​ attempts = 0

​ ​begin​

​ attempts += 1

​ @connection = @remote_server.​read_data​

​

​ ​rescue​ TimeOutError

​ ​if​ @remote_server && attempts < 10 ​then​

​ sleep(attempts ** 2)

​ ​retry​

​ ​else​

​ ​raise​

​ ​end​

​ ​end​

This code tries to read data from remote_server. If the code returns a
TimeOutError and if the remote_server exists, the code sleeps for a while and
then tries again. It keeps track of the number of attempts, lengthening the time
out, until eventually if the number of attempts gets too high, it stops trying to
connect and just raises the error.

Raising Exceptions
So far, we’ve been on the defensive, handling exceptions raised by others. It’s
time to turn the tables and go on the offensive. It’s time to raise some…
exceptions.

You can raise exceptions in your code with the raise method (or its judgmental
and less commonly used synonym, fail):

​ ​raise​

​ ​raise​ ​"bad mp3 encoding"​

​ ​raise​ InterfaceException, ​"Keyboard failure"​

The first form simply reraises the current exception (or raises a RuntimeError if
no current exception exists). This is used in exception handlers that intercept
an exception before passing it on.

The second form creates a new RuntimeError exception, setting its message to
the given string. This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the
associated message to the second argument. Typically, the first argument will
be either the name of a class in the Exception hierarchy or a reference to an
instance of one of these classes. If the argument is a class name, then Ruby
will create an instance using a call to new with no arguments. Technically, this
argument can be any object that responds to the message exception by returning
an object such that object.kind_of?(Exception) is true.

Here are some typical examples of raise in action:

​ ​raise​

​

​ ​raise​ ​"Missing name"​ ​if​ name.​nil?​

​

​ ​if​ i >= names.​size​

​ ​raise​ IndexError, ​"​​#{​i​}​​ >= size (​​#{​names.​size​​}​​)"​

​ ​end​

​

​ ​raise​ ArgumentError, ​"Name too big"​, caller

In this example, we show that we can add a stack trace as an optional third
argument to the raise method. The effect of this usage is to remove the current
routine from the stack backtrace, which is often useful in library modules. We
do this using the Kernel#caller method, which returns the current stack trace.
The ability to edit the stack trace sent to the exception for more focused
information is why you have the optional third argument.

The Kernel#caller method returns an array of strings with information about the
call stack. We can take this further by manipulating that array. The following
code removes two routines from the backtrace by passing only a subset of the
call stack to the new exception:

​ ​raise​ ArgumentError, ​"Name too big"​, caller[1..]

Adding Information to Exceptions
You can define your own exceptions to hold any information that you need to
pass out from the site of an error. For example, certain types of network errors
may be transient depending on the circumstances. If such an error occurs and
the circumstances are right, you could set a flag in the exception to tell the
handler that it may be worth retrying the operation.

Here’s what part of the remote server from the previous example might look
like:

tut_exceptions/retry_exception.rb

​ ​class​ RetryException < RuntimeError

​ attr_reader ​:ok_to_retry​

​ ​def​ ​initialize​(ok_to_retry)

​ @ok_to_retry = ok_to_retry

​ ​end​

​ ​end​

Somewhere down in the depths of the code, a transient error occurs:

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/retry_exception.rb

tut_exceptions/read_data.rb

​ ​def​ ​read_data​(attempt_count)

​ data = @socket.​read​(512)

​ ​if​ data.​nil?​

​ ​raise​ RetryException.​new​(attempt_count < 10), ​"transient read error"​

​ ​end​

​ ​# .. normal processing​

​ ​end​

And we might incorporate that in our call:

​ attempts = 0

​ ​begin​

​ attempts += 1

​ @connection = @remote_server.​read_data​(attempts)

​

​ ​rescue​ RetryException => e

​ ​retry​ ​if​ e.​okay_to_retry​

​ ​raise​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/read_data.rb

Using Catch and Throw
Although the exception mechanism of raise and rescue is great for abandoning
execution when things go wrong, it’s sometimes nice to be able to jump out of
some deeply nested construct during normal processing. This is where the
rarely used catch and throw come in handy.

Here’s a trivial example. The following code reads a list of words one at a time
and adds them to an array. When done, it prints the array in reverse order. But,
if any of the lines in the file don’t contain a valid word, we want it to abandon
the whole process.

tut_exceptions/catch_1.rb

​ word_list = File.​open​(​"wordlist"​)

​ ​catch​(​:done​) ​do​

​ result = []

​ ​while​ (line = word_list.​gets​)

​ word = line.​chomp​

​ ​throw​ ​:done​ ​unless​ ​/^\w+$/​.​match?​(word)

​ result << word

​ ​end​

​ puts result.​reverse​

​ ​end​

catch defines a block that’s labeled with the given name (which may be a
Symbol or a String). The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a
catch block with a matching symbol. When it finds it, Ruby unwinds the stack
to that point and terminates the block. So, in the previous example, if the input
doesn’t contain correctly formatted lines, the throw will skip to the end of the
corresponding catch, not only terminating the while loop but also skipping the
code that writes the reversed list. If the throw is called with the optional second
parameter, that value is returned as the value of the catch. In the next example,

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/catch_1.rb

our word list incorrectly contains the line *wow*. Without the second parameter
to throw, the corresponding catch returns nil.

tut_exceptions/catch_2.rb

​ word_list = File.​open​(​"wordlist"​)

​ word_in_error = ​catch​(​:done​) ​do​

​ result = []

​ ​while​ (line = word_list.​gets​)

​ word = line.​chomp​

​ ​throw​(​:done​, word) ​unless​ ​/^\w+$/​.​match?​(word)

​ result << word

​ ​end​

​ puts result.​reverse​

​ ​end​

​ ​if​ word_in_error

​ puts ​"Failed: '​​#{​word_in_error​}​​' found, but a word was expected"​

​ ​end​

Produces:

​ Failed: '*wow*' found, but a word was expected

The following example uses a throw to terminate interaction with the user if ! is
typed in response to any prompt:

tut_exceptions/catchthrow.rb

​ ​def​ ​prompt_and_get​(prompt)

​ print prompt

​ res = readline.​chomp​

​ ​throw​ ​:quit_requested​ ​if​ res == ​"!"​

​ res

​ ​end​

​

​ ​catch​ ​:quit_requested​ ​do​

​ name = prompt_and_get(​"Name: "​)

​ age = prompt_and_get(​"Age: "​)

​ sex = prompt_and_get(​"Sex: "​)

​ ​# ..​

​ ​# process information​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/catch_2.rb
http://media.pragprog.com/titles/ruby5/code/tut_exceptions/catchthrow.rb

As this example illustrates, the throw doesn’t have to appear within the static
scope of the catch.

What’s Next
In this chapter, we looked at how to make our Ruby code more error-proof
by catching and raising exceptions, and you saw how to create your own
exception classes that might have their own data. Next up, we’re going to
talk about a leading cause of exceptions in code: managing input and
output.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 11

Basic Input and Output

Ruby provides what looks at first sight like two separate sets of input and
output (I/O) routines. The first is the simple interface we’ve been using a lot
so far:

​ print ​"Enter your name: "​

​ name = gets

This whole set of I/O-related methods is implemented in the Kernel module,
including gets, open, print, printf, putc, puts, readline, readlines, and test. The
I/O methods are available to all objects, and they make it simple and
convenient to write straightforward Ruby programs. These methods
typically do I/O to standard input and standard output, which makes them
useful for writing simple tasks.

The other way to do I/O, which gives you more control, is to use Ruby’s
dedicated IO classes.

What Is an I/O Object?
Ruby defines a single base class, IO, to handle input and output. This base
class is subclassed by classes File and BasicSocket to provide more
specialized behavior, but the principles are the same. An IO object is a
bidirectional channel between a Ruby program and some external resource.

In this chapter, we’ll focus on class IO and its most commonly used
subclass, class File.

Opening and Closing Files
You can create a new file object using File.new:

​ file = File.​new​(​"testfile"​, ​"r"​)

​ ​# ... process the file​

​ file.​close​

The first parameter to the method is the filename. The second is called the
mode string, which lets you declare whether you’re opening the file for
reading, writing, or both. Here we opened testfile for reading with an "r". We
could also have used "w" for write or "r+" for read-write. The full list of
allowed modes appears in Table 28, ​Mode values​.

You can also optionally specify file permissions when creating a file. After
opening the file, we can write and/or read data as needed and as specified
by the mode string. When we’re done, as responsible software citizens, we
close the file, ensuring that all buffered data is written and that all related
resources are freed.

But Ruby can make life a little bit easier for you. The method File.open also
opens a file. In regular use, it behaves like File.new. But, if you associate a
block with the call, open behaves differently (see ​Using Blocks for
Transactions​). Instead of returning a new File object, it invokes the block,
passing the newly opened File as a parameter. When the block exits, the file
is automatically closed.

​ File.​open​(​"testfile"​, ​"r"​) ​do​ |file|

​ ​# ... process the file​

​ ​end​ ​# <- file automatically closed here​

Using File.open with a block has an added benefit. When using File.new as we
did earlier, if an exception is raised while processing the file, the call to
File.close may not happen. Once the file variable goes out of scope, then

garbage collection will eventually close it, but this may not happen for a
while. Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is
raised inside the block, the file is closed before the exception is propagated
on to the caller. It’s as if the File.open method looks like the following:

​ ​class​ File

​ ​def​ self.​open​(*args)

​ f = File.​new​(*args)

​ result = f

​ ​if​ block_given?

​ ​begin​

​ result = ​yield​ f

​ ​ensure​

​ f.​close​

​ ​end​

​ ​end​

​ result

​ ​end​

​ ​end​

Reading and Writing Files
The same methods that we’ve been using for “simple” I/O from standard input
and output are available for File objects. So, where Kernel#gets reads a line
from standard input (or from any files specified on the command line when the
script was invoked), File#gets reads a line from the file object.

For example, we could create a program called copy.rb:

tut_io/copy.rb

​ ​while​ (line = gets)

​ puts line

​ ​end​

If we run this program with no arguments, it’ll read lines from the console and
copy them back to the console. Note that each line is echoed once the Return
key is pressed. (In this and later examples, we show user input in a bold font.)
The ^D is the end-of-file character on Unix systems.

​ ​$ ​​ruby​​ ​​copy.rb​

​ ​These are lines​

​ These are lines

​ ​that I am typing​

​ that I am typing

​ ​̂D​

We can also pass in one or more filenames on the command line. In this case,
the filenames are passed to standard input and the Kernel#gets will read from
each in turn as if all the files in the command line were concatenated into a
single file. From the top directory of the sample code, we get this:

​ ​$​ ruby code/tut_io/copy.​rb​ code/tut_io/testfile

​ This is line one

​ This is line two

​ This is line three

​ And so on...

http://media.pragprog.com/titles/ruby5/code/tut_io/copy.rb

We have another option. We can explicitly open the file and read from it using
File#gets:

​ File.​open​(​"testfile"​) ​do​ |file|

​ ​while​ line = (file.​gets​)

​ puts line

​ ​end​

​ ​end​

Produces:

​ This is line one

​ This is line two

​ This is line three

​ And so on...

In addition to gets, I/O objects define an additional set of access methods, all
intended to make our lives easier.

Iterators for Reading
While the usual loops work to allow you to read data from an IO stream, Ruby
also defines some task-specific iterators. The method each_byte invokes a block
with the next 8-bit byte from an IO object (in this case, an object of type File).
The Integer#chr method converts an integer to the corresponding ASCII
character:

​ File.​open​(​"testfile"​) ​do​ |file|

​ file.​each_byte​.​with_index​ ​do​ |ch, index|

​ print ​"​​#{​ch.​chr​​}​​:​​#{​ch​}​​ "​

​ ​break​ ​if​ index > 10

​ ​end​

​ ​end​

Produces:

​ T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 l:108 i:105 n:110 e:101

The method IO#each_line calls the block with each line from the file. In the next
example, we’ll make the original newlines visible using String#dump, which

returns the string in double quotes with escape characters, so you can see that
we’re not cheating:

​ File.​open​(​"testfile"​) ​do​ |file|

​ file.​each_line​ { |line| puts ​"Got ​​#{​line.​dump​​}​​"​ }

​ ​end​

Produces:

​ Got "This is line one\n"

​ Got "This is line two\n"

​ Got "This is line three\n"

​ Got "And so on...\n"

The each_line method includes the line ending at the end of each line of data.
That’s why you see the \n characters in the output of the previous example.
You don’t have to use \n as the separator, though. You can pass each_line an
argument, any sequence of characters. The method will use that argument as a
line separator, and break up the input accordingly, returning the separator at
the end of each line of data. In the next example, we’ll use the character e as
the line separator:

​ File.​open​(​"testfile"​) ​do​ |file|

​ file.​each_line​(​"e"​) { |line| puts ​"Got ​​#{​ line.​dump​ ​}​​"​ }

​ ​end​

Produces:

​ Got "This is line"

​ Got " one"

​ Got "\nThis is line"

​ Got " two\nThis is line"

​ Got " thre"

​ Got "e"

​ Got "\nAnd so on...\n"

If you combine the idea of an iterator with the autoclosing block feature, you
get IO.foreach, or the subclass method File.foreach. This method takes the name
of an I/O source, opens it for reading, calls the iterator once for every line in
the file, and then closes the file automatically:

​ File.​foreach​(​"testfile"​) { |line| puts line }

Produces:

​ This is line one

​ This is line two

​ This is line three

​ And so on...

Or, if you prefer, you can retrieve an entire file into a string:

​ str = IO.​read​(​"testfile"​)

​ str.​length​ ​# => 66​

​ str[0, 30] ​# => "This is line one\nThis is line "​

Or into an array of lines:

​ arr = IO.​readlines​(​"testfile"​)

​ arr.​length​ ​# => 4​

​ arr[0] ​# => "This is line one\n"​

Don’t forget that I/O is never certain in an uncertain world—exceptions will
be raised on most errors, and you should be ready to rescue them and take
appropriate action.

Writing to Files
So far, we’ve been merrily calling puts and print, passing in any old object and
trusting that Ruby will do the right thing (which, of course, it does). But what
exactly is it doing?

With a couple of exceptions, every object you pass to puts or print is converted
to a string by calling that object’s to_s method. If for some reason the to_s

method doesn’t return a valid string, a string is created containing the object’s
class name and ID, something like <ClassName:0x123456>. This example opens a
file for writing (note the mode string is "w") and then reads the file in and
prints its contents to STDOUT. As with the other Kernel methods, there’s an
equivalent IO#puts that we can use.

​ File.​open​(​"output.txt"​, ​"w"​) ​do​ |file|

​ file.​puts​ ​"Hello"​

​ file.​puts​ ​"1 + 2 = ​​#{​1+2​}​​"​

​ ​end​

​

​ puts File.​read​(​"output.txt"​)

Produces:

​ Hello

​ 1 + 2 = 3

There is one slight difference between puts and print. The puts method inserts a
newline after the output unless the output already ends in a newline, but print

does not.

The “every object calls its to_s method” rule has two exceptions. The nil object
will print as the empty string, and an array passed to puts will be written as if
each of its elements in turn were passed separately to puts.

More generally, we have File#write, which writes its argument to the file,
converting non-strings to strings with to_s. The difference is that write returns
the number of bytes written to the file, while puts returns nil.

​ File.​open​(​"output.txt"​, ​"w"​) ​do​ |file|

​ file.​write​ ​"Hello"​

​ file.​write​ ​"1 + 2 = ​​#{​1+2​}​​"​

​ ​end​

​

​ puts File.​read​(​"output.txt"​)

Produces:

​ Hello1 + 2 = 3

What if you want to write binary data and don’t want Ruby messing with it?
Well, normally, you can simply use print and pass in a string containing the
bytes to be written. You can also get at the low-level I/O routines if you really

want them (look at the documentation for sysread and syswrite at
https://docs.ruby-lang.org/en/master/IO.xhtml#method-i-sysread).

And how do you get the binary data into a string in the first place? The three
common ways are to use a literal, poke it in byte by byte, or use Array#pack,
which takes an array of data and packs it into a string.

​ str1 = ​"​​\001\002\003​​"​ ​# => "\u0001\u0002\u0003"​

​ str2 = ​""​

​ str2 << 1 << 2 << 3 ​# => "\u0001\u0002\u0003"​

​ [1, 2, 3].​pack​(​"c*"​) ​# => "\x01\x02\x03"​

The first example here is using escape sequences to put raw bytes into the
string, the second is using the shovel operator to add the numbers one by one,
and the third is using Array#pack. The argument c* says that all the elements of
the array should be converted as 8-bit unsigned values.

Finding Files
Ruby has a couple of utility methods that can help you find files. Typically,
when you search for a file, the pathname is relative to the directory from
where the script was invoked, but in a large code base that’s unlikely to be the
file you’re writing code in.

To help orient yourself, Ruby provides __FILE__, which always has the relative
name of the file it’s contained in, and __dir__, which has the absolute pathname
of that file. File.realpath returns the absolute path to a file, so
File.realpath(__FILE__) gives you the absolute path to the current file. This means
__dir__ is equivalent to File.dirname(File.realpath(__FILE__)).

You’re probably wondering why __FILE__ is capitalized, while __dir__ isn’t.
Technically, __FILE__ is a reserved word (not quite a constant, but close), while
__dir__ is a method of Kernel. That’s not much of an explanation, but it’s what
we’ve got.

https://docs.ruby-lang.org/en/master/IO.xhtml#method-i-sysread

One way you might use realpath is to figure out what Ruby is thinking of as the
base path. You might try to do something like File.open("local.txt"), only to have
Ruby tell you that local.txt doesn’t exist. In that case, putting in a debug
statement like puts File.realpath("local.txt") will go a long way toward orienting
you as to where Ruby thinks it’s looking.

I/O with Streams
> Just as you can append an object to an Array using the << operator, you can
also append an object to an output IO stream:

​ endl = ​"​​\n​​"​

​ $stdout << 99 << ​" red balloons"​ << endl

Produces:

​ 99 red balloons

Again, the << method uses to_s to convert its arguments to strings before
printing them.

There are actually some good reasons for using the << operator. Because other
classes (such as String and Array) also implement a << operator with similar
semantics, you can often write code that appends to something using <<

without caring whether it’s added to an array, a file, or a string. This kind of
flexibility also makes unit testing easy. We’ll discuss this idea in greater detail
in Chapter 21, ​Ruby Style​.

Doing I/O with Strings
Sometimes you need to work with code that assumes it’s reading from or
writing to one or more files. But you have a problem: the data isn’t in files.
Perhaps it’s available instead via a remote network call, or it has been passed
to you as command-line parameters. Or maybe you’re running unit tests, and
you don’t want to alter the real file system.

Enter StringIO objects. They behave like other I/O objects, but they read and
write strings, not files. If you open a StringIO object for reading, you supply it
with a string. All read operations on the StringIO object and then read from this
string. Similarly, when you want to write to a StringIO object, you pass it a
string to be filled.

​ require ​"stringio"​

​

​ ip = StringIO.​new​(​"now is​​\n​​the time​​\n​​to learn​​\n​​Ruby!"​)

​ op = StringIO.​new​(​""​, ​"w"​)

​

​ ip.​each_line​ ​do​ |line|

​ op.​puts​ line.​reverse​

​ ​end​

​ op.​string​ ​# => "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"​

Talking to Networks
Ruby is fluent in most of the Internet’s protocols, both low-level and high-
level.

For those who enjoy groveling around at the network level, Ruby comes with
a set of classes in the socket library (https://docs.ruby-
lang.org/en/master/Socket.xhtml). These give you access to TCP, UDP,
SOCKS, and Unix domain sockets, as well as any additional socket types
supported on your architecture. The library also provides helper classes to
make writing servers easier. Here’s a simple program that gets information
about our user website on a local web server using the HTTP OPTIONS request:

tut_io/socket.rb

​ require ​"socket"​

​

​ client = TCPSocket.​open​(​"127.0.0.1"​, ​"www"​)

​ client.​send​(​"OPTIONS /~dave/ HTTP/1.0​​\n\n​​"​, 0) ​# 0 means standard packet​

​ puts client.​readlines​

​ client.​close​

At a higher level, the “lib/net” set of library modules provides handlers for a
set of application-level protocols (currently FTP, HTTP, HTTPS, IMAP, POP,
and SMTP). For example, the following program lists the images that are
displayed on this book’s home page. (To save space, we show only the first
three.)

tut_io/networking.rb

​ require ​"net/http"​

​

​ uri = URI(​"https://pragprog.com/titles/ruby5/programming-ruby-3-2-5th-edition/"​
)

​ Net::HTTP.​start​(

​ ​"pragprog.com"​,

​ Net::HTTP.​https_default_port​,

​ ​use_ssl: ​​true​

https://docs.ruby-lang.org/en/master/Socket.xhtml
https://docs.ruby-lang.org/en/master/Socket.xhtml
http://media.pragprog.com/titles/ruby5/code/tut_io/socket.rb
http://media.pragprog.com/titles/ruby5/code/tut_io/networking.rb

​) ​do​ |http|

​ request = Net::HTTP::Get.​new​(uri)

​ response = http.​request​(request)

​ ​if​ response.​code​ == ​"200"​

​ puts response.​body​.​scan​(​/<img class=".*?" src="(.*?)"/m​).​uniq​[0, 3]

​ ​end​

​ ​end​

Produces:

​ /titles/ruby5/programming-ruby-3-2-5th-edition/ruby5-beta-250.jpg

​ /img/pdf_icon.png

​ /titles/rails7/agile-web-development-with-rails-7/rails7-125.jpg

This example could be improved significantly. In particular, it doesn’t do
much in the way of error handling. It should report “Not Found” errors (the
infamous 404) and should handle redirects (which happen when a web server
gives the client an alternative address for the requested page).

We can take this to a higher level still. By bringing the open-uri library into a
program, the URI.open method recognizes http:// and ftp:// URLs in the
filename. Not just that—it also handles redirects automatically.

tut_io/networking_2.rb

​ require ​"open-uri"​

​

​ url = ​"https://pragprog.com/titles/ruby5/programming-ruby-3-3-5th-edition/"​

​ URI.​open​(url) ​do​ |f|

​ puts f.​read​.​scan​(​/<img class=".*?" src="(.*?)"/m​).​uniq​[0,3]

​ ​end​

Produces:

​ /titles/ruby5/programming-ruby-3-3-5th-edition/ruby5-beta-250.jpg

​ /img/pdf_icon.png

​ /titles/rails7/agile-web-development-with-rails-7/rails7-125.jpg

http://media.pragprog.com/titles/ruby5/code/tut_io/networking_2.rb

What’s Next
In this chapter, we’ve seen both Ruby’s simple I/O library, implemented as
a series of methods in the Kernel module, and the more complicated I/O
methods in the class IO and its children. We’ve also seen how to read and
write data.

A common problem with I/O is that it’s slow and blocks programs. A
common workaround is to use threading to allow the program to do
multiple things at once. Let’s take a look at some of Ruby’s threading
options.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 12

Threads, Fibers, and Ractors

Being able to do more than one thing at the same time is pretty useful.
When a computer program has to wait for one task to finish, like an API
call to a slow server, multitasking allows it to turn control over to another
task and do other useful work while it waits. When a computer has more
than one CPU—which, these days, means a computer—the program can
split tasks across multiple CPUs. You can achieve tremendous speed boosts
this way.

Being able to multitask is also pretty complicated. When a program
multitasks, a task can change the state of the data another task is using, so
the other task’s understanding of the data may no longer be correct. When a
program multitasks, its tasks may fight for access to limited resources, like
the filesystem, and might even overwrite each other’s changes. People are
notoriously bad at predicting the effects of even mildly complicated
threading scenarios, so unexpected bug cases are a real problem.

When writing programs that are doing multiple things at once, each “thing”
is called a thread, and the goal is to have thread safety, meaning the code
will execute correctly no matter in what order the threads operate. In some
cases, the order of operation matters. For example, if two threads are
writing to a log file and instead of appending to the log file, the last thread
overwrites the first one, the final contents of the log file will depend on

which thread executed first. This is called a race condition and it is bad
because it can lead to hard-to-diagnose bugs.

A key to achieving thread safety is to avoid having data or status
information shared between threads, especially if that data is changeable by
one thread without the knowledge of the other. But sometimes you must
share information such as access to a common database. In that case, you
need constructs that limit access to shared resources such that only one
thread can access them at a time.

Historically, Ruby programs have a Global Interpreter Lock (GIL), which
ensures that only one thread is actually being executed by Ruby at any time.
The GIL is one way Ruby protects thread safety. Since only one thread can
run at a time, shared global resources within Ruby are automatically
protected from being changed behind your thread’s back. You still get the
advantage of allowing one thread to take over execution if other threads are
blocked. But you can’t take advantage of, say, multiple parallel CPUs with
a single Ruby interpreter (with the exception of the Ractor library). Ruby
installations that do want to take advantage of multiple CPUs typically run
multiple Ruby interpreters that communicate via an external data source or
message system. (There’s one relatively new Ruby construct that works
around this—called Ractors—which we’ll talk about at the end of this
chapter.)

In this chapter, we’ll look at Ruby’s different threading abstractions that
allow you to organize your program so that you can run different parts of it
apparently “at the same time.” The Thread class is the basic unit of
multithreaded behavior in Ruby. Ruby also allows you to spawn processes
out to the underlying operating system and multithread those processes.
Fibers are an additional abstraction that lets you suspend the execution of
one part of your program and run some other part. Finally, the Ractor
library allows you to bypass the GIL and have true multithreading using
Ruby.

Let’s start with the Thread class, which is the basis for Ruby’s multithreaded
behavior.

Multithreading with Threads
The lowest-level mechanism in Ruby for doing two things at once is to use the
Thread class. Although threads can in theory take advantage of multiple
processors or multiple cores in a single processor, there’s a major catch. Many
Ruby extension libraries aren’t thread-safe because they expect to be protected
by the GIL. So, Ruby uses native operating system threads but operates only a
single thread at a time. Unless you use the Ractor library, you’ll never see two
threads in the same application running Ruby code truly concurrently. You’ll
instead see threads that are busy executing Ruby code while another thread
waits on an I/O operation.

Creating Ruby Threads
The code that follows is a simple example. It downloads a set of web pages in
parallel. For each URL the code is asked to download, it creates a separate
thread that handles the HTTP transaction:

tut_threads/fetcher.rb

​ require ​"net/http"​

​

​ pages = ​%w[www.rubycentral.org www.pragprog.com www.google.com]​

​

​ threads = pages.​map​ ​do​ |page_to_fetch|

​ Thread.​new​(page_to_fetch) ​do​ |url|

​ http = Net::HTTP.​new​(url, 80)

​ print ​"Fetching: ​​#{​url​}​​\n​​"​

​ response = http.​get​(​"/"​)

​ print ​"Got ​​#{​url​}​​: ​​#{​response.​message​​}​​\n​​"​

​ ​end​

​ ​end​

​ threads.​each​ { |thread| thread.​join​ }

​ print ​"We're done here!​​\n​​"​

The results look something like this:

​ Fetching: www.rubycentral.org

​ Fetching: www.pragprog.com

http://media.pragprog.com/titles/ruby5/code/tut_threads/fetcher.rb

​ Fetching: www.google.com

​ Got www.google.com: OK

​ Got www.pragprog.com: Moved Permanently

​ Got www.rubycentral.org: OK

​ We're done here!

Let’s look at this code in more detail because a few subtle things are
happening.

New threads are created with the Thread.new call. The Thread.new call is given a
block that contains the code to be run in the new thread. In our case, the block
uses the net/http library to fetch the page from the URL that’s passed to the
thread. Once the thread is created, it’s available to be scheduled for execution
by the operating system, and, in this code at least, we don’t have direct control
over when the thread runs.

This code uses a map call to create three new threads from the list of sites to
call and stores the threads in an array. Threads, like everything else in Ruby,
are objects that can be assigned to variables, returned from blocks or methods,
and passed as parameters.

Our output tracing shows that these fetches are going on in parallel because all
three “fetch” statements happen before any of the “got” statements do.
Broadly, what’s happening is that the first thread is created, is scheduled for
control, makes its HTTP request, and is blocked while it waits for the answer.
Control reverts back to the main program, which immediately creates the
second thread, and so on. The thread creation is much faster than the HTTP
request, so even with the overhead of making the threads, all three threads will
usually be created before any of them return.

Just to be clear, our discussion is using the word “block” in two ways: one
meaning “a chunk of Ruby code” and the other meaning “being stalled waiting
for a response.”

When we create the thread, we pass the required URL as a parameter to the
block as url, even though the same value is already available as page_to_fetch

outside the block. Why do we do this? The answer relates to thread safety and
how threads share values.

A thread shares all global, instance, and local variables that are in existence
and available at the time the thread starts. Despite what Mr. Rogers says,
sharing isn’t always a good thing. In this case, all three threads share the
variable page_to_fetch, defined outside the Thread.new block. The first thread
gets started, and page_to_fetch is set to "www.rubycentral.org". In the meantime,
the loop creating the threads is still running. The second time around,
page_to_fetch gets set to "pragprog.com". If the first thread hasn’t yet finished
using the page_to_fetch variable, it’ll suddenly start using this new value. In our
case, that would likely manifest as one value being used in the actual http.get
command, then the value changing while the thread is blocked, and then a
different value being used in the print statement on the next line. This would
be, to say the least, confusing. These kinds of bugs are difficult to track down.

However, local variables created within a thread’s block are truly local to that
thread—each thread will have its own copy of these variables. In our case, the
variable url will be set at the time the thread is created, and each thread will
have its own copy of the page address. You can pass any number of arguments
into the block via Thread.new, the arguments to the method become the
arguments to the block.

This code also illustrates a gotcha. Inside the loop, the threads use print to
write out the messages, rather than puts. Why? Well, behind the scenes, puts
splits its work into two chunks: it writes its argument, and then it writes a
newline. Between these two, a thread could get scheduled, and the output
would be interleaved. Calling print with a single string that already contains
the newline gets around the problem.

Manipulating Threads
Another subtlety occurs in the next to last line of our program, where we call
join on each thread.

When a Ruby program terminates, all threads are killed, regardless of their
states. Since we don’t control the scheduling of any internally created threads,
it’d be easy for this program to reach the end while one or more threads are
still waiting for responses. The program would terminate, and we’d never get
those responses.

You can wait for a particular thread to finish by calling that thread’s
Thread#join method. The thread in which the join method is called—in our case,
that’s the original program—will block until the thread receiving the join call
has finished. The subthread has been off on its own, but rejoins the parent
thread so the parent thread can move forward.

By calling join on each of the requested threads, you can make sure that all
three requests have completed before you terminate the main program. We can
see this in our code because the “we’re done here” print statement will always
happen after all three threads complete. Even though the join methods are
called one at a time, the order and speed of the subthread execution ultimately
don’t matter because the main thread will wait on all of them.

The join method normally returns the thread itself. If you don’t want to block
forever, you can give join a timeout parameter—if the timeout expires before
the thread terminates, the join call returns nil. The expiration of the timeout
doesn’t actually terminate the thread, but it does allow the calling thread to
continue, which might mean that the program will end before the thread is
complete. Another variant of join, the method Thread#value, returns the value of
the last statement executed by the thread. The value method doesn’t have a
timeout parameter.

In addition to join, a few other handy routines are used to manipulate threads.
The current thread is always accessible using Thread.current. You can obtain a
list of all threads using Thread.list, which returns a list of all Thread objects that
are runnable or stopped. You can stop a thread with Thread#exit which is
aliased as kill and terminate.

To determine the status of a particular thread, you can use Thread#status and
Thread#alive?. The status method returns "run" if the thread is executing
normally, "sleep" if it has been paused or is blocked, "aborting" if it is in the
process of being killed. If the thread ended normally it returns false; if the
thread terminated exceptionally, it returns nil. The alive? method returns true if
the status is “run” or “sleep.”

You can adjust the priority of a thread using Thread#priority=. Higher-priority
threads will run before lower-priority threads, though the operating system is
free to ignore this setting.

Thread Variables
A thread can normally access any variables that are in scope when the thread
is created. Variables local to the block containing the thread code are local to
the thread and aren’t shared. But what if you need per-thread variables that can
be accessed by other threads—including the main thread? Class Thread has a
facility that allows thread-local variables to be created and accessed by name.
You can treat the thread object as if it were a Hash, writing to elements using
[]= and reading them back using []. A true thread-local variable can be accessed
using Thread.thread_variable_get and Thread.thread_variable_set.

In the example that follows, each thread records the current value of the
variable count in a thread-local variable with the key mycount. To do this, the
code uses the symbol :mycount when indexing thread objects:

tut_threads/thread_variables.rb

​ count = 0

​ threads = 10.​times​.​map​ ​do​

​ Thread.​new​ ​do​

​ sleep(rand(0.1))

​ Thread.​current​[​:mycount​] = count

​ count += 1

​ ​end​

​ ​end​

​

http://media.pragprog.com/titles/ruby5/code/tut_threads/thread_variables.rb

​ threads.​each​ ​do​ |t|

​ t.​join​

​ print t[​:mycount​], ​", "​

​ ​end​

​ puts ​"count = ​​#{​count​}​​"​

Produces:

​ 7, 0, 8, 6, 5, 4, 1, 9, 3, 2, count = 10

The main thread waits for the subthreads to finish and then prints that thread’s
value of count. Just to make it interesting, we use rand(0.1) to have each thread
wait a random amount of time before recording the value so that we can’t
predict the order in which the threads will finish.

A subtle race condition exists in this code. A race condition occurs when two
or more pieces of code (or hardware) try to access some shared resource, and
the outcome changes depending on the order in which they do so. In the
example here, it’s possible for one thread to set the value of its mycount
variable to count, but before it gets a chance to increment count, the thread gets
descheduled and another thread reuses the same value of count. These issues
are fixed by synchronizing the access to shared resources such as the count
variable (see ​Synchronization via Mutual Exclusion​).

Threads and Exceptions
If a thread raises an unhandled exception, what happens next depends on the
setting of the Thread.abort_on_exception flag and on the setting of the
interpreter’s $DEBUG flag.

If abort_on_exception is false and the debug flag isn’t enabled (the default
condition), an unhandled exception simply kills the current thread—all the rest
continue to run. In fact, you don’t even hear about the exception until you
issue a join on the thread that raised it. In the following example, thread 1
blows up and fails to produce any output. But you can still see the trace from
the other threads:

tut_threads/exception_01.rb

​ 4.​times​.​map​ ​do​ |number|

​ Thread.​new​(number) ​do​ |i|

​ ​raise​ ​"Boom!"​ ​if​ i == 1

​ print ​"​​#{​i​}​​\n​​"​

​ ​end​

​ ​end​

​ puts ​"Waiting"​

​ sleep 0.1

​ puts ​"Done"​

Produces:

​ #<Thread:0x0000000104bb97e8 code/tut_threads/exception_01.rb:2 run> terminated

​ with exception (report_on_exception is true):

​ code/tut_threads/exception_01.rb:3:in `block (2 levels) in <main>': Boom!

​ (RuntimeError)

​ Waiting

​ 0

​ 2

​ 3

​ Done

You normally don’t sleep waiting for threads to terminate; you’d use join. If
you join to a thread that has raised an exception, then that exception will be
raised in the thread that does the joining:

tut_threads/exception_02.rb

​ threads = 4.​times​.​map​ ​do​ |number|

​ Thread.​new​(number) ​do​ |i|

​ ​raise​ ​"Boom!"​ ​if​ i == 1

​ print ​"​​#{​i​}​​\n​​"​

​ ​end​

​ ​end​

​

​ puts ​"Waiting"​

​ threads.​each​ ​do​ |t|

​ t.​join​

​ ​rescue​ RuntimeError => e

​ puts ​"Failed: ​​#{​e.​message​​}​​"​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/tut_threads/exception_01.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/exception_02.rb

​ puts ​"Done"​

Produces:

​ #<Thread:0x0000000103166d00 code/tut_threads/exception_02.rb:2 run> terminated

​ with exception (report_on_exception is true):

​ code/tut_threads/exception_02.rb:3:in `block (2 levels) in <main>': Boom!

​ (RuntimeError)

​ Waiting

​ 0

​ 2

​ 3

​ Failed: Boom!

​ Done

If you set abort_on_exception to true or use -d to turn on the debug flag, if an
unhandled exception occurs, it kills the main thread. This is shown in the
following code, where the message Done never appears.

tut_threads/exception_03.rb

​ Thread.​abort_on_exception​ = ​true​

​ threads = 4.​times​.​map​ ​do​ |number|

​ Thread.​new​(number) ​do​ |i|

​ ​raise​ ​"Boom!"​ ​if​ i == 1

​ print ​"​​#{​i​}​​\n​​"​

​ ​end​

​ ​end​

​

​ puts ​"Waiting"​

​ threads.​each​ { |t| t.​join​ }

​ puts ​"Done"​

Produces:

​ #<Thread:0x00000001047c95c0 code/tut_threads/exception_03.rb:3 run> terminated

​ with exception (report_on_exception is true):

​ code/tut_threads/exception_03.rb:4:in `block (2 levels) in <main>': Boom!

​ (RuntimeError)

​ code/tut_threads/exception_03.rb:4:in `block (2 levels) in <main>': Boom!

​ (RuntimeError)

​ Waiting

​ 0

http://media.pragprog.com/titles/ruby5/code/tut_threads/exception_03.rb

​ 2

​ 3

Controlling the Thread Scheduler
In a well-designed application, you’ll normally let threads do their thing.
Building timing dependencies into a multithreaded application is generally
considered to be bad form because it makes the code far more complex and
also prevents the thread scheduler from optimizing the execution of your
program.

That said, the Thread class provides a number of methods that control or give
hints to the scheduler. Invoking Thread.stop stops the current thread, and
invoking Thread#run arranges for a particular thread to be run. The method
Thread.pass deschedules the current thread, allowing others to run, and
Thread#join and Thread#value block the calling thread until a given thread
finishes. These last two are the only low-level thread control methods that the
average program should use. In fact, we believe that the low-level thread
control methods are too complex and dangerous to be used correctly in
programs we write. Fortunately, Ruby has support for higher-level thread
synchronization.

Synchronization via Mutual Exclusion
Let’s start by looking at a simple example of a race condition—multiple
threads updating a shared variable:

tut_threads/race_condition.rb

​ sum = 0

​ threads = 10.​times​.​map​ ​do​

​ Thread.​new​ ​do​

​ 100_000.​times​ ​do​

​ new_value = sum + 1

​ print ​"​​#{​new_value​}​​ "​ ​if​ new_value % 250_000 == 0

​ sum = new_value

​ ​end​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/tut_threads/race_condition.rb

​ ​end​

​ threads.​each​(&​:join​)

​ puts ​"​​\n​​sum = ​​#{​sum​}​​"​

Produces:

​ 250000 250000 250000 250000 250000 250000 250000 250000

​ sum = 349999

We create ten threads, and each increments the shared sum variable 100,000
times. But when the threads all finish, the final value in sum is considerably
less than 1,000,000. We have a race condition. The reason is the print call that
sits between the code that calculates the new value and the code that stores it
back into sum. In one thread, the updated value gets calculated. Let’s say that
the value of sum is 99,999, so new_value will be 100,000. Before storing the
new value back into sum, we call print, and that causes another thread to be
scheduled (because the first thread blocks waiting for the I/O to complete). So,
a second thread also fetches the value of 99,999 and increments it. It stores
100,000 into sum. It then loops around again and stores 100,001, 100,002, and
so on. Eventually, the original thread continues running because it finished
writing its message. It immediately stores its value of 100,000 into the sum,
overwriting (and losing) all the values stored by the other thread(s). We lost
data.

Fortunately, that’s easy to fix. We use the built-in class Mutex (short for
“mutually exclusive”) to create synchronized regions—areas of code that only
one thread may enter at a time.

Some grade schools coordinate students’ hall access during class time using a
system of hall passes. The number of passes is limited, and to leave the
classroom, you need to take a pass with you. If someone else already has that
pass, you have to wait for that person to return. The pass controls access to the
shared resource—you have to own the pass to use the resource, and only one
person can own it at a time.

A mutex is like that hall pass. You create a mutex to control access to a
resource and then lock it when you want to use that resource. If no one else
has it locked, your thread continues to run. If someone else has already locked
that particular mutex, your thread suspends until they unlock it.

Here’s a version of our counting code that uses a mutex to ensure that only one
thread updates the count at a time:

tut_threads/mutex_1.rb

​ sum = 0

​ mutex = Thread::Mutex.​new​

​ threads = 10.​times​.​map​ ​do​

​ Thread.​new​ ​do​

​ 100_000.​times​ ​do​

​ ​# one at a time, please​

​ mutex.​lock​

​ new_value = sum + 1

​ print ​"​​#{​new_value​}​​ "​ ​if​ new_value % 250_000 == 0

​ sum = new_value

​ mutex.​unlock​

​ ​end​

​ ​end​

​ ​end​

​ threads.​each​(&​:join​)

​ puts ​"​​\n​​sum = ​​#{​sum​}​​"​

Produces:

​ 250000 500000 750000 1000000

​ sum = 1000000

This pattern—lock a mutex, do something, and then unlock—is so common
that the Mutex class provides Mutex#synchronize, which locks the mutex, runs
the code in a block, and then unlocks the mutex. This also ensures that the
mutex will get unlocked even if an exception is thrown while it’s locked.
Otherwise, an exception might cause the mutex to never unlock and
permanently prevent other threads from gaining access to the shared resource.

tut_threads/mutex_2.rb

http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_2.rb

​ sum = 0

​ mutex = Thread::Mutex.​new​

​ threads = 10.​times​.​map​ ​do​

​ Thread.​new​ ​do​

​ 100_000.​times​ ​do​

​ mutex.​synchronize​ ​do​

​ new_value = sum + 1

​ print ​"​​#{​new_value​}​​ "​ ​if​ new_value % 250_000 == 0

​ sum = new_value

​ ​end​

​ ​end​

​ ​end​

​ ​end​

​

​ threads.​each​(&​:join​)

​ puts ​"​​\n​​sum = ​​#{​sum​}​​"​

Produces:

​ 250000 500000 750000 1000000

​ sum = 1000000

Sometimes you want to claim a lock if a mutex is currently unlocked, but you
don’t want to suspend the current thread if the mutex is locked. The
Mutex#try_lock method takes the lock if it can, but returns false if the lock is
already taken. The following code illustrates a hypothetical currency
converter. The ExchangeRates class caches rates from an online feed, and a
background thread updates that cache once an hour. This update takes a
minute or so. In the main thread, we interact with our user. But rather than just
go dead if we can’t claim the mutex that protects the rate object, we use
try_lock and print a status message if the update is in process.

tut_threads/mutex_3.rb

​ rate_mutex = Thread::Mutex.​new​

​ exchange_rates = ExchangeRates.​new​

​ exchange_rates.​update_from_online_feed​

​

​ Thread.​new​ ​do​

​ ​loop​ ​do​

​ sleep(3600)

http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_3.rb

​ rate_mutex.​synchronize​ ​do​

​ exchange_rates.​update_from_online_feed​

​ ​end​

​ ​end​

​ ​end​

​

​ ​loop​ ​do​

​ print ​"Enter currency code and amount: "​

​ line = gets

​ ​if​ rate_mutex.​try_lock​

​ ​begin​

​ puts(exchange_rates.​convert​(line))

​ ​ensure​

​ puts ​"Ensuring unlock"​

​ rate_mutex.​unlock​

​ ​end​

​ ​else​

​ puts ​"Sorry, rates being updated. Try again in a minute"​

​ ​end​

​ ​end​

By using ensure the unlock command is guaranteed to run even if puts raises an
exception.

If you’re holding the lock on a mutex and you want to temporarily unlock it,
allowing others to use it, you can call Mutex#sleep.

We could use this to rewrite the previous example:

tut_threads/mutex_4.rb

​ rate_mutex = Thread::Mutex.​new​

​ exchange_rates = ExchangeRates.​new​

​ exchange_rates.​update_from_online_feed​

​

​ Thread.​new​ ​do​

​ rate_mutex.​lock​

​ ​loop​ ​do​

​ rate_mutex.​sleep​(3600)

​ exchange_rates.​update_from_online_feed​

​ ​end​

​ ​end​

​

http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_4.rb

​ ​loop​ ​do​

​ print ​"Enter currency code and amount: "​

​ line = gets

​ ​if​ rate_mutex.​try_lock​

​ ​begin​

​ puts(exchange_rates.​convert​(line))

​ ​ensure​

​ puts ​"Ensuring unlock"​

​ rate_mutex.​unlock​

​ ​end​

​ ​else​

​ puts ​"Sorry, rates being updated. Try again in a minute"​

​ ​end​

​ ​end​

Running Multiple External Processes
Sometimes you may want to split a task into several process-sized chunks—
maybe to take advantage of all those cores in your shiny new processor. Or
perhaps you need to run a separate process that was not written in Ruby. Not a
problem: Ruby has a number of methods by which you may spawn and
manage separate processes.

Spawning New Processes
You have several ways to spawn a separate process. The easiest is to run some
command and wait for it to complete. You may find yourself doing this to run
a system command or retrieve data from the host system. Ruby lets you spawn
a process with the system or by using backquote (or backtick) methods:

​ system(​"tar xzf test.tgz"​) ​# => true​

​ spawn(​"date"​) ​# => 38483\nThu Nov 2 17:16:10 CDT 2023​

​ ​̀date`​ ​# => "Thu Nov 2 17:16:10 CDT 2023\n"​

The method Kernel#system executes the given command in a subprocess; it
returns true if the command was found and executed properly. It raises an
exception if the command cannot be found. It returns false if the command ran
but returned an error. In case of an error, you’ll find the subprocess’s exit code
in the global variable $?. The spawn method is the same as system, except that it
returns the process ID of the spawned process and doesn’t wait for the process
to be finished to move forward.

One problem with system is that the command’s output will simply go to the
same destination as the program’s output, which may not be what you want.
To capture the standard output of a subprocess, you can use the backquote
characters, as with date in the previous example. Note that you may need to
use String#chomp to remove the line-ending characters from the result.

This is fine for simple cases—we can run an external process and get the
return status. But many times we need a bit more control than that. We’d like

to carry on a conversation with the subprocess, possibly sending it data and
possibly getting some back. The method IO.popen does just this. The popen

method runs a command as a subprocess and connects that subprocess’s
standard input and standard output to a Ruby IO object. Write to the IO object,
and the subprocess can read it on standard input. Whatever the subprocess
writes is available in the Ruby program by reading from the IO object.

For example, on our systems, one of the more useful utilities is pig, a program
that reads words from standard input and prints them in pig Latin (or igpay
atinlay). We can use this when our Ruby programs need to send us output that
our five-year-olds shouldn’t be able to understand:

​ pig = IO.​popen​(​"local/util/pig"​, ​"w+"​)

​ pig.​puts​ ​"ice cream after they go to bed"​

​ pig.​close_write​

​ puts pig.​gets​

Produces:

​ iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the more subtle real-
world complexities involved in driving subprocesses through pipes. The code
certainly looks simple enough: open the pipe, write a phrase, and read back the
response. But it turns out that the pig program doesn’t flush the output it
writes. Our original attempt at this example, which had a pig.puts followed
immediately by a pig.gets, hung forever. The pig program processed our input,
but its response was never written to the pipe. We had to insert the
pig.close_write line. This sends an end-of-file to pig’s standard input, and the
output we’re looking for gets flushed as pig terminates.

The popen method has one more twist. If the command you pass is a single
minus sign (-), popen will fork a new Ruby interpreter. Both this and the
original interpreter will continue running by returning from the popen. The
original process will receive an IO object back, and the child will receive nil.

This works only on operating systems that support the fork call[17] (and for
now, this excludes Windows, unless you use WDSL).

tut_threads/fork.rb

​ new_pipe = IO.​popen​(​"-"​,​"w+"​)

​ ​if​ new_pipe

​ new_pipe.​puts​ ​"Get a job!"​

​ $stderr.​puts​ ​"I'm the parent, the child said to me '​​#{​new_pipe.​gets​.​chomp​​}​​'"​

​ ​else​

​ $stderr.​puts​ ​"I'm the child, the parent said to me '​​#{​gets.​chomp​​}​​'"​

​ puts ​"OK"​

​ ​end​

Produces:

​ I'm the child, the parent said to me 'Get a job!'

​ I'm the parent, the child said to me 'OK'

Let’s walk this one through. The original, soon-to-be parent interpreter calls
IO.popen with the minus sign argument. We now have two Ruby interpreters
each of which moves forward from this point. The original interpreter gets an
IO pipe back as new_pipe, and the new child interpreter gets nil. At this point,
the parent can send text to the child using new_pipe.puts and can listen for text
from the child using new_pipe.gets. From the child’s perspective, new_pipe is nil,
but it can communicate with the parent using the regular Kernel methods, gets

to listen for input and puts to send output to the parent.

The code splits on the if new_pipe expression. For the child, the pipe is nil, this
expression is false, and the child goes down the else branch. For the parent,
the pipe exists, the expression is true, and the parent goes down the main
branch.

In the parent branch, the parent immediately uses new_pipe.puts to send a string
to the child branch, and then it calls $stderr.puts to write something to the
global standard error output. That string contains new_pipe.gets, meaning that it
will block waiting for something to be sent from the child.

http://media.pragprog.com/titles/ruby5/code/tut_threads/fork.rb

In the child branch, similar things happen. The $stderr.puts call includes a call
to gets which is listening for the text coming from the parent process, and then
the child puts text to be read by the parent process.

We’re using the standard error port here rather than standard out because
standard error automatically flushes its text after being called. If we used
standard output, we’d likely get the first part of each output statement
interleaved while it waits for the text coming from the other process.

In addition to the popen method, some platforms support the methods
Kernel#fork, Kernel#exec, and Kernel#pipe. The file naming convention of many
IO methods and Kernel#open will also spawn subprocesses if you put a pipe
character, |, as the first character of the filename. Note that you cannot create
pipes using File.new; that method is only for files.

Independent Children
Sometimes we don’t need to be so hands-on; we’d like to give the subprocess
its assignment and then go on about our business. Later, we’ll check to see
whether it has finished. For instance, we may want to kick off a long-running
external sort:

​ pid = spawn(​"sort testfile > output.txt"​)

​ ​# The sort is now running in a child process​

​ ​# carry on processing in the main program​

​

​ ​# ... dum di dum ...​

​

​ ​# then wait for the sort to finish​

​ Process.​wait​(pid)

The call to Kernel#spawn here executes a system-level command and returns its
process ID. But it does not wait for the command to finish, so Ruby
processing continues apace. Later, we issue a Process.wait call with the process
ID, which causes the parent process to wait for the child process running the
sort to complete and returns the child process ID.

If you’d rather be notified when a child exits (instead of just waiting around),
you can set up a signal handler using Kernel#trap. Here we set up a trap on
SIGCLD, which is the signal sent on “death of child process”:

tut_threads/trap.rb

​ trap(​"CLD"​) ​do​

​ pid = Process.​wait​

​ puts ​"Child pid ​​#{​pid​}​​: terminated"​

​ ​end​

​

​ spawn(​"sort testfile > output.txt"​)

​

​ ​# Do other stuff...​

Produces:

​ Child pid 38545: terminated

Blocks and Subprocesses
The IO.popen method takes a command as an argument and an optional block.
It runs the command and returns an IO object attached to that command. The
method then passes the IO object to the block, where you can read from it or
(more rarely) write to it.

​ IO.​popen​(​"date"​) { |f| puts ​"Date is ​​#{​f.​gets​​}​​"​ }

Produces:

​ Date is Thu Nov 2 17:16:10 CDT 2023

The IO object will be closed automatically when the code block exits, just as it
is with IO.open.

If you associate a block with Kernel#fork, the code in the block will be run in a
Ruby subprocess, and the parent will continue after the block:

tut_threads/fork_02.rb

http://media.pragprog.com/titles/ruby5/code/tut_threads/trap.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/fork_02.rb

​ fork ​do​

​ puts ​"In child, pid = ​​#{​$$​}​​"​

​ exit 99

​ ​end​

​ pid = Process.​wait​

​ puts ​"Child terminated, pid = ​​#{​pid​}​​, status = ​​#{​$?.​exitstatus​​}​​"​

Produces:

​ In child, pid = 38576

​ Child terminated, pid = 38576, status = 99

The $$ here is a global variable that’s the process ID of the running process.

The wait method will, by default, wait for any subprocess to complete, but you
can pass it a process ID (pid) as an argument if you want to wait on a specific
process.

$? is a global variable that contains information on the termination of a
subprocess.

Although Ruby’s thread utilities are powerful, they are kind of low-level and
have some common usage patterns. Ruby gives us two built-in higher-level
patterns to support common usage: fibers and ractors. We’ll talk about fibers
first.

Creating Fibers
Although the name “fibers” suggests some kind of lightweight thread, Ruby’s
fibers are a mechanism for denoting a block of code that can be stopped and
restarted, which is sometimes called a coroutine. Fibers in Ruby are
cooperatively multitasked, meaning that the responsibility for yielding control
rests with the individual fibers and not the operating system. Fibers can
explicitly yield control, or be set to automatically yield control when its
operations are blocked.

Fibers let you write programs that share control without incurring all of the
complexity inherent in low-level threading. Let’s look at a simple example.
We’d like to analyze a text file, counting the occurrence of each word. We
could do this (without using fibers) in a simple loop:

tut_threads/loop_word_count.rb

​ counts = Hash.​new​(0)

​ File.​foreach​(​"./testfile"​) ​do​ |line|

​ line.​scan​(​/\w+/​) ​do​ |word|

​ word = word.​downcase​

​ counts[word] += 1

​ ​end​

​ ​end​

​ counts.​keys​.​sort​.​each​ { |k| print ​"​​#{​k​}​​:​​#{​counts[k]​}​​ "​ }

Produces:

​ and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

But this code is messy—it mixes word finding with word counting. We could
fix this by writing a method that reads the file and yields each successive
word. But fibers give us a simpler solution:

tut_threads/fiber_word_count.rb

​ words = Fiber.​new​ ​do​

​ File.​foreach​(​"./testfile"​) ​do​ |line|

http://media.pragprog.com/titles/ruby5/code/tut_threads/loop_word_count.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/fiber_word_count.rb

​ line.​scan​(​/\w+/​) ​do​ |word|

​ Fiber.​yield​ word.​downcase​

​ ​end​

​ ​end​

​ ​nil​

​ ​end​

​

​ counts = Hash.​new​(0)

​ ​while​ (word = words.​resume​)

​ counts[word] += 1

​ ​end​

​ counts.​keys​.​sort​.​each​ { |k| print ​"​​#{​k​}​​:​​#{​counts[k]​}​​ "​ }

Produces:

​ and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

The constructor for the Fiber class takes a block and returns a fiber object.
Unlike a thread, the code in the block for a Fiber isn’t immediately executed.

After the Fiber is created, we can call resume on the fiber object. Calling
resume the first time causes the block to start execution. In this case, the file is
opened, and the scan method starts extracting individual words and passing
each individual word to the block passed to scan. Inside that block, Fiber.yield is
called. Calling Fiber.yield suspends execution of the fiber—the resume method
that we called to run the block returns any value passed to Fiber.yield.

Upon receiving the yielded value as the return value of resume, our main
program enters the body of the loop and increments the count for the first
word returned by the fiber. It then loops back up to the top of the while loop,
which again calls words.resume while evaluating the condition. The resume call
goes back into the block, continuing where it left off at the line after the
Fiber.yield call.

When the fiber runs out of words in the file, the foreach block exits, and the
code in the fiber terminates. Just as with a method call, the return value of the
fiber will be the value of the last expression evaluated (which this code sets to
nil). In this case, nil isn’t strictly needed, as foreach will return nil when it

terminates. But here nil just makes it explicit. The next time resume is called, it
returns this value, nil. You’ll get a FiberError if you attempt to call resume again
after the fiber has terminated.

Fibers can be used to generate values from infinite sequences on demand.
Here’s a fiber that returns successive integers divisible by 2 and not divisible
by 3:

tut_threads/infinite_fiber.rb

​ twos = Fiber.​new​ ​do​

​ num = 2

​ ​loop​ ​do​

​ Fiber.​yield​(num) ​unless​ num % 3 == 0

​ num += 2

​ ​end​

​ ​end​

​ 10.​times​ { print twos.​resume​, ​" "​ }

Produces:

​ 2 4 8 10 14 16 20 22 26 28

But you can more easily use lazy enumerators to gracefully create infinite
lists. These are described in ​Enumerators Used as Generators and Filters​.

Because fibers are just objects, you can pass them around, store them in
variables, and so on. Fibers can be resumed only in the thread that created
them.

Fibers can also use the transfer method to explicitly transfer control between
specific fibers. The tricky part here is that the receiver of transfer is the thread
to be resumed—in other words, the call is fiber_that_gets_control.transfer(args)

and not calling_fiber.transfer(fiber_that_gets_control). The return value of the
transfer call is the same as yield—the last expression before the fiber pauses
control again.

http://media.pragprog.com/titles/ruby5/code/tut_threads/infinite_fiber.rb

The yield/resume mechanism for switching control and the transfer method
don’t work well together. Specifically, if a fiber is started with resume then
cedes control, it can only receive control using the same mechanism. If it uses
yield, it can only be returned with resume. If it transfers out, it can only be
transfered back. If a fiber is started with transfer, it can only return control
using transfer, not yield. Using the wrong mechanism will result in an
exception.

Fibers can be non-blocking, meaning that when a fiber would otherwise block
because of I/O or waiting on another process, it automatically cedes control to
a fiber scheduler which chooses another fiber to wake up and controls
resuming the original fiber when it has whatever it needs to proceed.

To create a non-blocking fiber, you need to do two things:

Call Fiber.set_scheduler to set a scheduler
Create the fiber with Fiber.new(blocking: false)

The scheduler is the tricky part because instead of distributing a standard
scheduler, Ruby only provides an interface that schedulers are expected to
implement. Bruno Sutic’s website
https://github.com/bruno-/fiber_scheduler_list maintains a list of available
schedulers and recommends using FiberScheduler[18] in Ruby 3.1 and up.

https://github.com/bruno-/fiber_scheduler_list

Understanding Ractors
Ruby 3.0 introduced ractors, a Ruby implementation of the Actor pattern for
multithreaded behavior. (Experimental support for the feature was originally
developed under the name “Guilds.”)

How Ractors Work
Ractors allow true parallelism within a single Ruby interpreter: each ractor
maintains its own GIL, allowing for potentially better performance. In order
for this to work, ractors have only limited ability to access variables outside
their scope and can communicate with each other in only specific, pre-defined
ways. (Also, if for some reason you’re running multiple threads inside a single
ractor—probably you shouldn’t do this—those threads are subject to the
equivalent of a global lock on the ractor and won’t run in parallel.)

We think that showing trivial examples of ractor code tends to obfuscate
what’s going on, so we’re first going to explain conceptually how ractors work
and talk about the API and then show some code that can actually do a thing.

You can think of a ractor as a chunk of code that has a single input port and a
single output port. Metaphorically, you can think of a room with one door
marked “entrance” and one door marked “exit.” The entrance door has a
potential queue to get in.

You create a ractor with Ractor.new, which always takes a block. The block
becomes the inside of our metaphorical room. The new method optionally
takes an arbitrary number of positional arguments, and there’s an optional
keyword argument called name: that you should use to give the ractor a unique
name. We find it helps in understanding ractors to realize that in many useful
cases, the block will contain a loop of some kind. Once a ractor is created, the
pre-existing part of the thread is called the main ractor and can be accessed
with Ractor.main.

Ractors mostly interact with each other in one of four ways:

A ractor (including the main thread) can send arguments to a known other
ractor. In our metaphorical room, this is asking somebody to stand in line
at the entrance door to a different ractor. The entrance lines are infinite,
and the sending call is guaranteed not to block (by “guaranteed” we mean
“if this goes wrong you have much bigger problems”). The API call is
send, and the receiver of the message is the ractor that the message is
being sent to, other_ractor.send(my_args). This is similar to the API for
fibers.

A ractor (or the main thread) can take output from an other known ractor.
Metaphorically, we’re waiting by the exit door for the next value to
emerge and grabbing it. The API call here is take, as in new_value =

other_ractor.take, and the take call will block waiting for a value to be sent
by the other ractor.

Inside the ractor, the ractor can block waiting for an incoming message.
Metaphorically, the ractor is waiting for somebody to show up at the
entrance door. The API call here is Ractor.receive, and yes, that’s a class
method of the class Ractor.

Inside the ractor, the ractor can block waiting for another ractor to ask for
a value. Metaphorically, the ractor is waiting for somebody to knock on
the exit door, and will then send a value out for them. The API call is
Ractor.yield(obj), and the argument is the value that’s sent out. The pattern
here is that the external calls are messages sent to a ractor and the internal
calls are class messages sent to Ractor that know that they take place
inside a specific ractor. The API is constrained here to allow for some
automatic thread safety to happen as values are passed to a ractor using
send or from a ractor using yield or take.

Let’s take a closer look at the lifecycle of a ractor.

First, the ractor is created using Ractor.new. The block is immediately started,
and any arguments passed to new are passed to the block as though they came
from a send message—we’ll show what that means in ​How Ractors Pass
Variables​.

The new ractor is isolated. This concept comes from other languages but is a
new thing for Ruby that was added just for ractors. Being isolated means that
the code inside the block won’t be able to access any variables that aren’t
defined in the block—no globals and no external locals. The only way to have
a value be visible to a ractor is via send.

The code block passed to the ractor executes until one of the following
happens:

The code block hits a Ractor.yield call. In this case, it waits for a different
ractor to call ractor.take with this ractor as the receiver. When that
happens, it passes away the argument to yield and continues operation.

The code block hits a Ractor.recieve call. In this case, the ractor waits to
receive another call to send (the arguments passed to send become the
result returned by the recieve call) and then continues operation.

The code block ends. The last expression value is available for one other
ractor to retrieve using take.

Let’s take a look at how ractors might be used to do the same word count
example we did using fibers:

tut_threads/ractor_word_count.rb

​ reader = Ractor.​new​(​name: ​​"reader"​) ​do​

​ File.​foreach​(​"testfile"​) ​do​ |line|

​ line.​scan​(​/\w+/​) ​do​ |word|

​ Ractor.​yield​(word.​downcase​)

​ ​end​

​ ​end​

​ ​nil​

http://media.pragprog.com/titles/ruby5/code/tut_threads/ractor_word_count.rb

​ ​end​

​

​ counter = Ractor.​new​(reader, ​name: ​​"counter"​) ​do​ |source|

​ result = Hash.​new​(0)

​ ​while​(word = source.​take​)

​ result[word] += 1

​ ​end​

​ result

​ ​end​

​

​ counts = counter.​take​

​ counts.​keys​.​sort​.​each​ { |k| print ​"​​#{​k​}​​:​​#{​counts[k]​}​​ "​ }

Produces:

​ and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

We’ve maintained the same structure of the code. There’s one ractor that’s
reading the file and another ractor that’s actually doing the word count.

Here’s more or less how this plays out, with the understanding that because
this is parallel code, the exact order may differ slightly.

First, we create the reader ractor. The block starts immediately (or is scheduled
to start immediately) and opens the file and scans the first line, at which point
it blocks on Ractor.yield with the first word scanned.

Moving down the file, the counter ractor is created, with—and this is important
—the reader as an argument. The counter block is now executed with the reader
passed in as source. We have to pass the ractor to the block because the ractor
is isolated. The block inside the ractor doesn’t have access to the local variable
reader.

Inside the counter ractor block, we build an empty hash and then a while loop
on source.take. Each time we call source.take, we grab the most recent value
yielded by the reader, and the reader continues forward until it blocks on the
next yield call.

Eventually, the reader runs out of words in the file and hits nil at the end of the
block. Subsequently, the last source.take returns nil and ends the while loop, and
the counter returns the result.

After these two blocks comes the counter.take call, which will block the main
ractor until the counter ractor is ready to return a value. Since the counter
ractor doesn’t yield anywhere, that call waits until it exits, and then the final
value is available to take. It’s a good thing we have that take call blocking
because, if we didn’t block on something in the main ractor, the code would
terminate and all the internal ractors would be stopped.

Having pulled that last value, we then print out the results.

And it works. The two ractors run in parallel. But I don’t like that the reader is
blocked on every word; it seems like you’d rather allow the reader to get as far
ahead as it can, and let the counter catch up.

You can do that by reversing the direction of the interaction, like this:

tut_threads/ractor_word_count_flipped.rb

​ counter = Ractor.​new​(​name: ​​"counter"​) ​do​

​ result = Hash.​new​(0)

​ ​while​ (word = Ractor.​receive​)

​ result[word] += 1

​ ​end​

​ result

​ ​end​

​

​ Ractor.​new​(counter, ​name: ​​"reader"​) ​do​ |worker|

​ File.​foreach​(​"./testfile"​) ​do​ |line|

​ line.​scan​(​/\w+/​) ​do​ |word|

​ worker.​send​(word.​downcase​)

​ ​end​

​ ​end​

​ worker.​send​(​nil​)

​ ​end​

​

​ counts = counter.​take​

http://media.pragprog.com/titles/ruby5/code/tut_threads/ractor_word_count_flipped.rb

​ counts.​keys​.​sort​.​each​ { |k| print ​"​​#{​k​}​​:​​#{​counts[k]​}​​ "​ }

Produces:

​ and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

Same logic, same result. This time, though, we start the counter first, it creates
its hash and then blocks at Ractor.receive. Then we create the reading ractor,
which takes the counter as an argument, again because otherwise the ractor
block would be isolated. Inside the block, the reader opens the files and scans
as before, but this time it uses send to pass each word back to the counter
without blocking. Note that in this case, we need to explicitly also send nil at
the end to terminate the loop.

The final two lines are the same, waiting on the counter to be finished, but
overall, this version of the code should block less and allow the reader to get
ahead of the worker if it can.

How Ractors Pass Variables
We’ve hinted that variables passed to and from ractors don’t behave the same
way as regular variable passing does in Ruby. The goal of the ractor
implementation is to prevent ractors from changing values that other ractors
depend on. One way that’s done is by preventing ractors from having access to
mutable variables that exist outside the ractor scope.

As we’ve already mentioned, ractors are isolated from the rest of their
binding. Variables that would normally be in scope for the block aren’t
available inside the ractor.

Additionally, ractors apply special semantics to values that are passed to a
ractor using send or yield. The ractor world divides Ruby objects into
“shareable” or “unsharable.”

Broadly, sharable objects are objects whose value can’t be changed—
immutable objects and objects that have been frozen. Specifically, the
following are all considered shareable:

The special values true, false, and nil.

Symbols.

“Small integers.” What’s a small integer? If you’re familiar with Ruby
before 2.4, it’s an integer small enough to be represented as a Fixnum. For
everybody else, it’s an integer small enough to fit in one memory
location, so, on a 64-bit machine, that’s 2^^62 - 1. (That’s one bit for the
sign and one bit to mark it as an integer.)

Instances of type Float, Complex, Rational, String, or Regexp or larger Integers
if they’ve been frozen.

Instances of Class or Module – not instances of an individual class,
instances of Class itself.

Individual ractors.

An instance of an object whose instance variables are all sharable.

Ruby provides the method Ractor.make_sharable(obj) which tries to make an
arbitrary object sharable by walking through all its attributes and freezing
them all. With the keyword argument copy: true, it makes a copy of the object
and returns the copy.

Sharable objects are shared when passed to a ractor, meaning that a reference
to them is passed along and both the sender and the receiver are still able to
access the object. Unsharable objects are copied, unless you pass move: true to
either Ractor.send or Ractor.yield. If you move the unsharable object, then it’s
available to the new ractor but no longer available to the ractor that sent it,
attempting to access that variable after it moves will raise an exception.

Conditional Reception
A ractor can be made to be picky about what it lets in the front door by using
the Ractor.receive_if method, which takes a block argument. If another ractor

tries to send to a ractor that’s waiting on receive_if, the receiving ractor will call
the block argument on the objects sent. If the block returns a truthy value, then
recieve_if returns the object the same way that plain ordinary recieve does. If the
block returns a falsey value, the ractor continues to wait. But the failing object
stays at the head of the line, so if the ractor ever does get an object that passes
the block, all the failed objects are still in the entrance queue and are able to
get picked up by future receive calls in the ractor.

Waiting on Multiple Ractors
If you have multiple ractors you might be waiting on and you want to respond
to whichever of them yields a value on the outgoing port first, you can use
Ractor.select. The argument to Ractor.select is an arbitrary number of ractors, as
in Ractor.select(r1, r2, r3). The value returned is a two-object array; the first
object is the ractor that has put the value on the port, and the second is the
value itself, so r, val = Ractor.select(r1, r2, r3).

Now, there are a couple of weirdnesses here. First off, one of the ractors in the
argument could be the ractor making the call, as in Ractor.select(r1,

Ractor.current). If the current ractor is somehow the one that emits the value,
then the select call still returns the value, but instead of returning the ractor, it
returns :receive.

Also, you can use Ractor.select to deal with multiple other ractors that you
expect to take rather than yield. In this case, our call needs to provide the value
for the take call, which you do with a yield_value keyword argument:
Ractor.select(r1, r2, yield_value: 37). In the yield case, the return values are :yield

and nil. It’s frankly not clear why those aren’t two different methods.

You can slam shut either the entrance or exit door with the close_incoming and
close_outgoing methods. Attempts to access a closed port on a ractor return an
exception, as do attempts to access the outgoing port of a ractor that has ended
and returned its last value.

[17]

[18]

What’s Next
That covers the basics of threading in Ruby. We’ve talked about basic
threads, using system processes, fibers, and ractors. Now let’s look at how
we can use testing to help ensure that our code does what we expect.

Footnotes

https://www.freebsd.org/cgi/man.cgi?query=fork

https://github.com/bruno-/fiber_scheduler

Copyright © 2024, The Pragmatic Bookshelf.

https://www.freebsd.org/cgi/man.cgi?query=fork
https://github.com/bruno-/fiber_scheduler

Chapter 13

Testing Ruby Code

Automated testing has long been an important part of how Ruby developers
validate their code. Not only does testing ensure that the code behaves as
expected, but the process of writing tests can also expose weaknesses in the
structure of the code. Ruby provides a core library called minitest to make it
easy to write automated tests. A more complex and fully-featured library,
RSpec, is also commonly used. The two tools have different terminologies
and a slightly different focus. In this chapter, we’ll look at how these tools
are used for unit testing, which is testing that focuses on small chunks of
code, typically individual methods or branches within methods.

Why Unit Test?
It’s important to be able to test individual units for many reasons, one of
which is that being able to isolate code into testable units is useful for
ongoing changes and maintenance. Code in one unit often relies on the
correct operation of the code in other units. If one unit turns out to contain
bugs, then all the code that depends on that unit is potentially affected. This
is a big problem.

When you unit test this code as you write it, two things can happen. First,
you’re more likely to find the bug while the code was still fresh in your
mind. Second, because the unit test was only interacting with the code you
just wrote, when a bug does appear, you only have to look through a
handful of lines of code to find it, rather than doing archaeology on the rest
of the code base.

Unit testing helps developers write better code. It helps before the code is
actually written because thinking about testing naturally leads you to create
better, more decoupled designs. It helps as you’re writing the code because
it gives you instant feedback on how accurate your code is. And it helps
after you’ve written code because it both gives you the ability to check that
the code still works and helps others understand how to use your code.

Unit testing is a Good Thing.

Unit testing and dynamic languages such as Ruby go hand in hand. The
flexibility of Ruby makes writing tests easy, and the tests make it easier to
verify that your code is working. Once you get into the swing of it, you’ll
find yourself writing a little code, writing a test or two, verifying that
everything is copacetic, and then writing some more code. You may even
find yourself writing the test before you write a little code.

Testing with Minitest
If all that seems a little abstract, let’s look at an example of how you use the
minitest library to write automated testing. We’ll start with a Roman numeral
class. Our first pass at the code is pretty simple; it lets us create an object
representing a certain number and display that object in Roman numerals:

unittesting/romanbug.rb

​ ​# This code has bugs​

​ ​class​ Roman

​ MAX_ROMAN = 4999

​

​ ​def​ ​initialize​(value)

​ ​if​ value <= 0 || value > MAX_ROMAN

​ fail ​"Roman values must be > 0 and <= ​​#{​MAX_ROMAN​}​​"​

​ ​end​

​ @value = value

​ ​end​

​

​ FACTORS = [

​ [​"m"​, 1000], [​"cm"​, 900], [​"d"​, 500], [​"cd"​, 400],

​ [​"c"​, 100], [​"xc"​, 90], [​"l"​, 50], [​"xl"​, 40],

​ [​"x"​, 10], [​"ix"​, 9], [​"v"​, 5], [​"iv"​, 4],

​ [​"i"​, 1]

​]

​

​ ​def​ ​to_s​

​ value = @value

​ roman = ​""​

​ FACTORS.​each​ ​do​ |code, factor|

​ count, value = value.​divmod​(factor)

​ roman << code ​unless​ count.​zero?​

​ ​end​

​ roman

​ ​end​

​ ​end​

We could test this without a framework code by writing another plain Ruby
script, like this:

http://media.pragprog.com/titles/ruby5/code/unittesting/romanbug.rb

unittesting/manual_romanbug.rb

​ require_relative ​"romanbug"​

​

​ r = Roman.​new​(1)

​ fail ​"'i' expected"​ ​unless​ r.​to_s​ == ​"i"​

​

​ r = Roman.​new​(9)

​ fail ​"'ix' expected"​ ​unless​ r.​to_s​ == ​"ix"​

As the number of tests in a project grows, this kind of ad hoc approach can get
complicated to manage. The Ruby standard library comes with minitest—a
framework originally written by Ryan Davis and the seattle.rb user group,
which makes tests easier to write, run, and manage.

The minitest testing framework has three facilities wrapped into a neat
package:

It gives you a way of expressing individual tests.
It provides a framework for structuring the tests.
It gives you flexible ways of invoking the tests.

Assertions == Expected Results
Rather than have you write series of individual if or unless statements in your
tests, the testing framework allows you to define assertions that achieve the
same thing. Although a number of different styles of assertion exist, they all
follow the same pattern. Each gives you a way of specifying an expected
result and a way of passing in the actual outcome. If the actual value doesn’t
match the expected value, the assertion outputs a nice message and records the
failure.

For example, we could rewrite our previous test of the Roman class using
minitest. For now, ignore the scaffolding code at the start and end, and just
look at the assert_equal method:

unittesting/test_romanbug1.rb

​ require_relative ​"romanbug"​

http://media.pragprog.com/titles/ruby5/code/unittesting/manual_romanbug.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/test_romanbug1.rb

​ require ​"minitest/autorun"​

​

​ ​class​ TestRoman < Minitest::Test

​ ​def​ ​test_simple​

​ assert_equal(​"i"​, Roman.​new​(1).​to_s​)

​ assert_equal(​"ix"​, Roman.​new​(9).​to_s​)

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 38570

​ # Running:

​

​ .

​ Finished in 0.000223s, 4484.3059 runs/s, 8968.6118 assertions/s.

​

​ 1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

The first assertion says that we’re expecting the Roman number string
representation of 1 to be "i," and the second test says we expect 9 to be "ix."

We can run the test by running the file as a Ruby file—the minitest/autorun

module will automatically load and run our tests (more on that in a bit).
Luckily for us, both expectations are met, and the tracing reports that our tests
pass. Let’s add a few more tests:

unittesting/test_romanbug2.rb

​ require_relative ​"romanbug"​

​ require ​"minitest/autorun"​

​

​ ​class​ TestRoman < Minitest::Test

​ ​def​ ​test_simple​

​ assert_equal(​"i"​, Roman.​new​(1).​to_s​)

​ assert_equal(​"ii"​, Roman.​new​(2).​to_s​)

​ assert_equal(​"iii"​, Roman.​new​(3).​to_s​)

​ assert_equal(​"iv"​, Roman.​new​(4).​to_s​)

​ assert_equal(​"ix"​, Roman.​new​(9).​to_s​)

​ ​end​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/unittesting/test_romanbug2.rb

Produces:

​ Run options: --seed 32554

​ # Running:

​

​ F

​ Finished in 0.000392s, 2551.0207 runs/s, 5102.0414 assertions/s.

​

​ 1) Failure:

​ TestRoman#test_simple [code/unittesting/test_romanbug2.rb:7]:

​ Expected: "ii"

​ Actual: "i"

​

​ 1 runs, 2 assertions, 1 failures, 0 errors, 0 skips

Uh-oh! The second assertion failed. The error message uses the fact that the
assertion knows both the expected and actual values: it expected to get “ii” but
instead got “i.” Looking at our code, you can see a clear bug in to_s. If the
count after dividing by the factor is greater than zero, then we should output
that many Roman digits. The existing code outputs only one. The fix is easy,
change the line roman << code unless count.zero? to roman << (code * count):

unittesting/roman3.rb

​ ​def​ ​to_s​

​ value = @value

​ roman = ​""​

​ FACTORS.​each​ ​do​ |code, factor|

​ count, value = value.​divmod​(factor)

» roman << (code * count)

​ ​end​

​ roman

​ ​end​

Now let’s run our tests again:

unittesting/test_roman3.rb

​ require_relative ​"roman3"​

​ require ​"minitest/autorun"​

​ ​class​ TestRoman < Minitest::Test

​ ​def​ ​test_simple​

http://media.pragprog.com/titles/ruby5/code/unittesting/roman3.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/test_roman3.rb

​ assert_equal(​"i"​, Roman.​new​(1).​to_s​)

​ assert_equal(​"ii"​, Roman.​new​(2).​to_s​)

​ assert_equal(​"iii"​, Roman.​new​(3).​to_s​)

​ assert_equal(​"iv"​, Roman.​new​(4).​to_s​)

​ assert_equal(​"ix"​, Roman.​new​(9).​to_s​)

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 59738

​ # Running:

​

​ .

​ Finished in 0.000451s, 2217.2952 runs/s, 11086.4759 assertions/s.

​

​ 1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

It’s looking good. You can see there’s some duplication in the test, and you
might be tempted to address it by running each expected and actual value pair
in a loop. We recommend avoiding loops in tests because they are often hard
to read and debug if the tests fail. Instead, we recommend making the
assertions as clear as possible, so we might re-write the test like this:

unittesting/test_roman4.rb

​ require_relative ​"roman3"​

​ require ​"minitest/autorun"​

​

​ ​class​ TestRoman < Minitest::Test

​ ​def​ ​assert_roman_value​(roman_numeral, arabic_numeral)

​ assert_equal(roman_numeral, Roman.​new​(arabic_numeral).​to_s​)

​ ​end​

​

​ ​def​ ​test_simple​

​ assert_roman_value(​"i"​, 1)

​ assert_roman_value(​"ii"​, 2)

​ assert_roman_value(​"iii"​, 3)

​ assert_roman_value(​"iv"​, 4)

​ assert_roman_value(​"ix"​, 9)

​ ​end​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/unittesting/test_roman4.rb

Produces:

​ Run options: --seed 44317

​ # Running:

​

​ .

​ Finished in 0.000279s, 3584.2290 runs/s, 17921.1451 assertions/s.

​

​ 1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

We think this does a good job of separating the boilerplate action of the
comparison from the data values we’re trying to compare.

What else can we test? Well, the constructor of our Roman class checks that the
number we pass in can be represented as a Roman number, throwing an
exception if it can’t. Let’s test the exception:

unittesting/test_roman5.rb

​ require_relative ​"roman3"​

​ require ​"minitest/autorun"​

​

​ ​class​ TestRoman < Minitest::Test

​ ​def​ ​assert_roman_value​(roman_numeral, arabic_numeral)

​ assert_equal(roman_numeral, Roman.​new​(arabic_numeral).​to_s​)

​ ​end​

​

​ ​def​ ​test_simple​

​ assert_roman_value(​"i"​, 1)

​ assert_roman_value(​"ii"​, 2)

​ assert_roman_value(​"iii"​, 3)

​ assert_roman_value(​"iv"​, 4)

​ assert_roman_value(​"ix"​, 9)

​ ​end​

​

​ ​def​ ​test_range​

​ ​# no exception for these two...​

​ Roman.​new​(1)

​ Roman.​new​(4999)

​ ​# but an exception for these​

​ assert_raises(RuntimeError) { Roman.​new​(0) }

​ assert_raises(RuntimeError) { Roman.​new​(5000) }

http://media.pragprog.com/titles/ruby5/code/unittesting/test_roman5.rb

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 4358

​ # Running:

​

​ ..

​ Finished in 0.000328s, 6097.5622 runs/s, 21341.4676 assertions/s.

​

​ 2 runs, 7 assertions, 0 failures, 0 errors, 0 skips

We could do more testing on our Roman class, but let’s move on. We’ve only
scratched the surface of the set of assertions available inside the testing
framework. For example, for every positive assertion (such as assert_equal)
there’s a negative refutation (such as refute_equal).

The final parameter to every assertion is an optional message that will be
output before any failure message. This normally isn’t needed because the
failure messages are normally pretty reasonable. The one exception is the
assertion refute_nil, where the default message “Expected nil to not be nil”
doesn’t help much. In that case, you may want to add some annotation of your
own. (This code assumes the existence of some kind of User class.)

​ require ​'minitest/autorun'​

​ ​class​ ATestThatFails < Minitest::Test

​ ​def​ ​test_user_created​

​ user = User.​find​(1)

​ refute_nil(user, ​"User with ID=1 should exist"​)

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 16917

​ # Running:

​

​ F

​ Finished in 0.000252s, 3968.2549 runs/s, 3968.2549 assertions/s.

​

​ 1) Failure:

​ ATestThatFails#test_user_created [prog.rb:11]:

​ User with ID=1 should exist.

​ Expected nil to not be nil.

​

​ 1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

Structuring Tests
Earlier we asked you to ignore the scaffolding around our tests. Now it’s time
to look at it.

You include the testing framework facilities in your unit by including
minitest/autorun.

​ require ​"minitest/autorun"​

The minitest/autorun module includes minitest itself, which has most of the
features we’ve talked about so far. It also includes an alternate minitest/spec

syntax that’s more like RSpec and the minitest/mock mock object package.
(We’re not going to talk about minitest/spec syntax in this book. If you want
that style of syntax, we recommend actually using RSpec.) Finally, it calls
Minitest.autorun, which starts the test runner. This is why our test files have
been executing tests when invoked just as plain Ruby files.

Unit tests are often combined into high-level groupings, called test cases. The
test cases generally contain all the tests relating to a particular facility or
feature—in Ruby, often each application class will have one associated test
case. Within the test case, you’ll typically want to organize your assertions
into separate test methods, where each method contains the assertions for one
type of test; one method could check regular number conversions, another
could test error handling, and so on. (We’ll see later that RSpec allows you to
structure tests a little bit differently.)

The classes that represent test cases must be subclasses of Minitest::Test. The
methods that hold the assertions must have names that start with test_. This is
important: the testing framework dynamically searches the test methods to
find tests to run, and only methods whose names start with test_ are eligible.

Quite often you’ll find that all the test methods within a test case start by
setting up a particular scenario. Each test method then probes some aspect of

that scenario. Finally, each method may then tidy up after itself. For example,
we could be testing a class that extracts jukebox playlists from a database.
(The playlist_builder file contains a DBI class that simulates a database
connection for our purposes here.)

unittesting/test_playlist_builder1.rb

​ require ​"minitest/autorun"​

​ require_relative ​"playlist_builder"​

​

​ ​class​ TestPlaylistBuilder < Minitest::Test

​ ​def​ ​test_empty_playlist​

​ database = DBI.​new​(​"DBI:mysql:playlists"​)

​ playlist_builder = PlaylistBuilder.​new​(database)

​ assert_empty(playlist_builder.​playlist​)

​ playlist_builder.​close​

​ ​end​

​

​ ​def​ ​test_artist_playlist​

​ database = DBI.​new​(​"DBI:mysql:playlists"​)

​ playlist_builder = PlaylistBuilder.​new​(database)

​ playlist_builder.​include_artist​(​"krauss"​)

​ refute_empty(playlist_builder.​playlist​, ​"Playlist shouldn't be empty"​)

​ playlist_builder.​playlist​.​each​ ​do​ |entry|

​ assert_match(​/krauss/i​, entry.​artist​)

​ ​end​

​ playlist_builder.​close​

​ ​end​

​

​ ​def​ ​test_title_playlist​

​ database = DBI.​new​(​"DBI:mysql:playlists"​)

​ playlist_builder = PlaylistBuilder.​new​(database)

​ playlist_builder.​include_title​(​"midnight"​)

​ refute_empty(playlist_builder.​playlist​, ​"Playlist shouldn't be empty"​)

​ playlist_builder.​playlist​.​each​ ​do​ |entry|

​ assert_match(​/midnight/i​, entry.​title​)

​ ​end​

​ playlist_builder.​close​

​ ​end​

​

​ ​# ...​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/unittesting/test_playlist_builder1.rb

Produces:

​ Run options: --seed 19023

​ # Running:

​

​ ...

​ Finished in 0.000397s, 7556.6751 runs/s, 115869.0188 assertions/s.

​

​ 3 runs, 46 assertions, 0 failures, 0 errors, 0 skips

Each test starts by connecting to a database and creating a new playlist builder.
Each test ends by disconnecting from the database. The idea of using a real
database in unit tests is questionable because unit tests are supposed to be fast-
running, context-independent, and easy to set up, but it illustrates a point.
(And that said, Ruby on Rails makes database calls in its unit tests all the
time.)

We can extract all this common code into setup and teardown methods. Within
a Minitest::Test class, if a method called setup exists, it’ll be run before each and
every test method, and if a method called teardown exists, it’ll be run after each
test method finishes. The setup and teardown methods bracket each test rather
than being run only once for the entire test case. This is shown in the code that
follows:

unittesting/test_playlist_builder2.rb

​ require ​"minitest/autorun"​

​ require_relative ​"playlist_builder"​

​

​ ​class​ TestPlaylistBuilder < Minitest::Test

​ ​def​ ​setup​

​ @database = DBI.​new​(​"DBI:mysql:playlists"​)

​ @playlist_builder = PlaylistBuilder.​new​(@database)

​ ​end​

​

​ ​def​ ​teardown​

​ @playlist_builder.​close​

​ ​end​

​

​ ​def​ ​test_empty_playlist​

http://media.pragprog.com/titles/ruby5/code/unittesting/test_playlist_builder2.rb

​ assert_empty(@playlist_builder.​playlist​)

​ ​end​

​

​ ​def​ ​test_artist_playlist​

​ @playlist_builder.​include_artist​(​"krauss"​)

​ refute_empty(@playlist_builder.​playlist​, ​"Playlist shouldn't be empty"​)

​ @playlist_builder.​playlist​.​each​ ​do​ |entry|

​ assert_match(​/krauss/i​, entry.​artist​)

​ ​end​

​ ​end​

​

​ ​def​ ​test_title_playlist​

​ @playlist_builder.​include_title​(​"midnight"​)

​ refute_empty(@playlist_builder.​playlist​, ​"Playlist shouldn't be empty"​)

​ @playlist_builder.​playlist​.​each​ ​do​ |entry|

​ assert_match(​/midnight/i​, entry.​title​)

​ ​end​

​ ​end​

​

​ ​# ...​

​ ​end​

Produces:

​ Run options: --seed 17223

​ # Running:

​

​ ...

​ Finished in 0.000437s, 6864.9875 runs/s, 105263.1415 assertions/s.

​

​ 3 runs, 46 assertions, 0 failures, 0 errors, 0 skips

Inside the teardown method, you can detect whether the preceding test
succeeded with the passed? method.

Creating Mock Objects in Minitest
Minitest allows you to create mock objects, which are objects that simulate the
API of an existing object in the system, typically providing a canned response
instead of a more expensive or fragile real response. A minitest mock object
can be verified, meaning it’ll raise a failure if the methods you expected to be
called were not called during the test.

Using these mock object expectations allows for a style of testing where,
instead of testing the result of a method by verifying its output, you test the
behavior of the method by verifying that it makes expected calls to other
methods.

In minitest, a mock object is created like any other Ruby object. Then you add
the methods you wish the mock to respond to via the expect method. At the
end, you can optionally test that all expected methods were called with verify.

For example, we can re-write our playlist builder test so that we don’t need to
create a “real” DBI instance. (The word real is in scare quotes because, for
this contrived example, even the DBI instance in the previous code was
faked….) Behind the scenes, our playlist builder calls connect and disconnect on
the DBI instance.

We can instead create a mock object:

unittesting/test_playlist_builder_mock.rb

​ require ​"minitest/autorun"​

​ require_relative ​"playlist_builder"​

​

​ ​class​ TestPlaylistBuilder < Minitest::Test

​ ​def​ ​setup​

​ @database = Minitest::Mock.​new​

​ @database.​expect​(​:connect​, ​true​)

​ @database.​expect​(​:disconnect​, ​false​)

​ @playlist_builder = PlaylistBuilder.​new​(@database)

​ ​end​

http://media.pragprog.com/titles/ruby5/code/unittesting/test_playlist_builder_mock.rb

​

​ ​def​ ​teardown​

​ @database.​disconnect​

​ @database.​verify​

​ ​end​

​

​ ​def​ ​test_empty_playlist​

​ assert_empty(@playlist_builder.​playlist​)

​ ​end​

​

​ ​def​ ​test_artist_playlist​

​ @playlist_builder.​include_artist​(​"krauss"​)

​ refute_empty(@playlist_builder.​playlist​, ​"Playlist shouldn't be empty"​)

​ @playlist_builder.​playlist​.​each​ ​do​ |entry|

​ assert_match(​/krauss/i​, entry.​artist​)

​ ​end​

​ ​end​

​

​ ​def​ ​test_title_playlist​

​ @playlist_builder.​include_title​(​"midnight"​)

​ refute_empty(@playlist_builder.​playlist​, ​"Playlist shouldn't be empty"​)

​ @playlist_builder.​playlist​.​each​ ​do​ |entry|

​ assert_match(​/midnight/i​, entry.​title​)

​ ​end​

​ ​end​

​

​ ​# ...​

​ ​end​

Produces:

​ Run options: --seed 61004

​ # Running:

​

​ ...

​ Finished in 0.000585s, 5128.2049 runs/s, 78632.4745 assertions/s.

​

​ 3 runs, 46 assertions, 0 failures, 0 errors, 0 skips

Now, the setup method is creating the @database as a Minitest::Mock and then
setting the expectation that the test will call connect and disconnect on the object
(which is done behind the scenes by the PlaylistBuilder). The second argument
to each method is a value returned when the mocked method is called. At the

end of each test, in the teardown method, we verify the mock object, which
raises a failure if both expectations aren’t met.

Minitest mock objects can get more complicated. A mock object can take an
optional third argument, which is an array of arguments, and an optional block
argument. If those arguments are used, then the mock object only accepts the
method call if the arguments match. If not, it raises a MockExpectationError

when called with arguments that don’t match. If you want to call the mock
object multiple times, you need to have multiple expect calls, which are used in
the order defined.

It’s common to want to override one method on an existing object rather than
create an entire mock object (this isn’t necessarily recommended, but it’s
common). In minitest, you can do this with the stub method, which is added to
Object, so it’s available to all objects.

The first argument to stub is the name of the method you want to intercept, as
a symbol. The second argument is the value you want returned, or you can
pass a block argument. The return value of the stub is one of these:

The value returned by the block if there is a block.

The result of second_arg.call if the second argument responds to call,
usually meaning that it’s a Proc or lambda.

The second argument itself if neither of the first two options is true.

So, we could re-write the setup of that test using stub as follows:

​ ​def​ ​setup​

​ @database = DBI.​new​(​"DBI:mysql:playlists"​)

​ @database.​stub​(​:connect​, ​true​)

​ @database.​stub​(​:disconnect​, ​true​)

​ @playlist_builder = PlaylistBuilder.​new​(@database)

​ ​end​

This version calls stub to make calls to connect or disconnect be handled by the
stubbing functionality to return true rather than making the actual method call.

Stubs don’t get verified, so they are most useful for replacing an expensive or
flaky method call with a canned value for use as part of some larger logic.

If you want a more complex mock object behavior, the longstanding Ruby
library Mocha[19] is the next step up in using mock objects in minitest.

Organizing and Running Tests
The test cases we’ve seen so far are all runnable Ruby programs. If, for
example, the test case for the Roman class was in a file called test_roman.rb,
we could run the tests from the command line using this:

​ ​$ ​​ruby​​ ​​test_roman.rb​

​ Run options: --seed 29842

​ ​# Running:​

​ ..

​ Finished in 0.000407s, 4914.0040 runs/s, 17199.0141 assertions/s.

​ 2 runs, 7 assertions, 0 failures, 0 errors, 0 skips

Minitest is clever enough to run the tests even though there’s no main
program. It collects all the test case classes and runs each in turn.

If we want, we can ask it to run a particular set of test methods based on a
naming pattern:

​ ​$ ​​ruby​​ ​​test_roman.rb​​ ​​-n​​ ​​test_range​

​ Run options: -n test_range --seed 26287

​ ​# Running:​

​ .

​ Finished in 0.000276s, 3623.1883 runs/s, 7246.3767 assertions/s.

​ 1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

In this case, minitest will run test methods whose names exactly match the
text passed to -n. That’s pretty restrictive. So, if you want to run more than
one test based on a naming pattern and include any regular expression
punctuation in the argument, minitest will match the test name against the
regular expression:

​ ​$ ​​ruby​​ ​​test_roman.rb​​ ​​-n​​ ​​/range/​

​ Run options: -n /range/ --seed 52301

​ ​# Running:​

​ .

​ Finished in 0.000321s, 3115.2648 runs/s, 6230.5296 assertions/s.

​ 1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

This last capability is a great way of grouping your tests. Use meaningful
names, and you’ll be able to run (for example) all the shopping cart–related
tests by running tests with -n /cart/.

Where to Put Tests
Once you get into unit testing, you may well find yourself generating as
much test code as production code. All of those tests have to live
somewhere. But if you put them alongside your regular production code
source files, your directories start to get bloated, and you end up with two
files for every production source file.

A common solution is to have a test/ directory where you place all your test
source files. This directory is then placed parallel to the directory containing
the code you’re developing. For example, for our Roman numeral class, we
may have this:

​ roman/

​ lib/

​ roman.​rb​

​ OTHER FILES

​

​ test/

​ test_roman.​rb​

​ OTHER TESTS

​

​ OTHER STUFF

This works well as a way of organizing files but leaves you with a small
problem: how do you tell Ruby where to find the library files that are being
tested? For example, if our TestRoman test code is in a test/ subdirectory,
how does Ruby know where to find the roman.rb source file that we’re
trying to test?

An option that doesn’t work reliably is to build the path into require

statements in the test code and run the tests from the test/ subdirectory:

​ require ​'test/unit'​

​ require ​'../lib/roman'​

​

​ ​class​ TestRoman < Minitest::Test

​ ​# ...​

​ ​end​

This doesn’t work in general because our roman.rb file may itself require
other source files in the library we’re writing. The roman.rb file will load
them using require (without the leading ../lib/), and, because they aren’t in
Ruby’s $LOAD_PATH, they won’t be found. Our test just won’t run. A second,
less immediate problem is that we won’t be able to use these same tests to
test our classes once installed on a target system because then they’ll be
referenced simply using require "roman".

You could do this using require_relative ’../lib/roman’, which would be more
stable and doesn’t assume anything about the load path. A better solution is
to assume that your Ruby program is packaged according to the
conventions we’ll be discussing in Chapter 15, ​Ruby Gems​. In this
arrangement, the top-level lib directory of your application is assumed to be
in Ruby’s load path by all other components of the application. Your test
code would then be as follows:

​ require ​'minitest/autorun'​

​ require ​'roman'​

​

​ ​class​ TestRoman < Minitest::Test

​ ​# ...​

​ ​end​

And you’d run it using this:

​ ​$ ​​ruby​​ ​​-I​​ ​​path/to/app/lib​​ ​​path/to/app/test/test_roman.rb​

The normal case, where you’re already in the application’s directory, would
be as follows:

​ ​$ ​​ruby​​ ​​-I​​ ​​lib​​ ​​test/test_roman.rb​

This would be a good time to investigate using Rake to automate your
testing (see ​Using the Rake Build Tool​).

Test Suites
After a while, you’ll grow a decent collection of test cases for your
application. You may well find that these tend to cluster: one group of cases
tests a particular set of functions, and another group tests a different set of
functions. If so, you can group those test cases together into test suites,
letting you run them all as a group.

This is easy to do. You create a Ruby file that requires minitest/autorun and
then requires each of the files holding the test cases you want to group. This
way, you build a helpful hierarchy of test material.

You can run individual tests by name.
You can run all the tests in a file by running that file.
You can group a number of files into a test suite and run them as a unit.
You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that
you can control, testing one method or the entire application.

Most people seem to use test_ as the test-case filename prefix. A sample test
suite file might look like this:

​ require ​'minitest/autorun'​

​ require_relative ​'test_connect'​

​ require_relative ​'test_query'​

​ require_relative ​'test_update'​

​ require_relative ​'test_delete'​

Now, if you run Ruby on this file, you execute the test cases in the four files
you’ve required.

Testing with RSpec
The minitest framework has a lot going for it. It’s simple and compatible in
style with frameworks from other languages (such as JUnit for Java and pytest
for Python).

RSpec has different things going for it. It’s feature-rich (or “complicated,” as
some would say), and it has a different vocabulary for discussing testing. It
also has a different syntax. Even so, that syntax has influenced the design of
other testing tools including the Jasmine and Jest JavaScript testing
frameworks.

In RSpec, the focus isn’t on assertions. Instead, you write expectations. RSpec
is very much concerned with driving the design side of things. As a result, the
vocabulary words of RSpec (expectation and specification) are associated with
ways you might reason about your code before you write it. A “spec” is
something you’d write before coding; an “assertion” is something you use to
describe code that already exists.

To be clear, you can write RSpec after you write your code, just as you can
write minitest before you write your code. The design goal of RSpec is to
encourage thinking about tests as a way to influence the design of code yet to
be written and express those tests in a way that’s closer to natural language.
Then, as you fill in the code, the specs can continue to act as tests that validate
that your code meets your expectations.

Let’s start with a simple example of RSpec in action.

Starting to Score Tennis Matches
The scoring system used in lawn tennis originated in the Middle Ages. As
players win successive points, their scores are shown as 15, 30, and 40. The
next point is a win unless your opponent also has 40. If you’re both tied at 40,
then different rules apply. The first player with a clear two-point advantage is
the winner. Some say the 0, 15, 30, 40 system is a corruption of the fact that

scoring used to be done using the quarters of a clock face. We just think those
medieval folks enjoyed a good joke.

We want to write a class that handles this scoring system. Let’s use RSpec
specifications to drive the process. We install RSpec with gem install rspec, or
place it in our Gemfile (see Chapter 15, ​Ruby Gems​). We’ll then create our first
specification file:

unittesting/bdd/1/ts_spec.rb

​ RSpec.​describe​ ​"TennisScorer"​ ​do​

​ describe ​"basic scoring"​ ​do​

​ it ​"starts with a score of 0-0"​

​ it ​"makes the score 15-0 if the server wins a point"​

​ it ​"makes the score 0-15 if the receiver wins a point"​

​ it ​"makes the score 15-15 after they both win a point"​

​ ​end​

​ ​end​

This file contains nothing more than a description of the beginning of how a
tennis scoring class that we haven’t yet written should behave. Inside the
declaration of the class is a grouping (describe "basic scoring") and inside that is a
set of four expectations, all of which start with it. We can run this specification
using the rspec command.

​ ​$ ​​rspec​​ ​​ts_spec.rb​

​ ****

​ Pending: (Failures listed here are expected and do not affect your suite's
status)

​ 1) TennisScorer basic scoring starts with a score of 0-0

​ ​ # Not yet implemented​

​ ​ # ./ts_spec.rb:3​

​ 2) TennisScorer basic scoring makes the score 15-0 if the server wins a point

​ ​ # Not yet implemented​

​ ​ # ./ts_spec.rb:4​

​ 3) TennisScorer basic scoring makes the score 0-15 if the receiver wins a
point

​ ​ # Not yet implemented​

​ ​ # ./ts_spec.rb:5​

​ 4) TennisScorer basic scoring makes the score 15-15 after they both win a
point

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/1/ts_spec.rb

​ ​ # Not yet implemented​

​ ​ # ./ts_spec.rb:6​

​ Finished in 0.00191 seconds (files took 0.0777 seconds to load)

​ 4 examples, 0 failures, 4 pending

That’s pretty cool. Executing the tests echoes our expectations back at us,
telling us that each has yet to be implemented. Fixing things is just a few
keystrokes away. Let’s start by meeting the first expectation—when a game
starts, the score should be 0 to 0. We’ll start by fleshing out the spec:

unittesting/bdd/2/ts_spec.rb

​ require_relative ​"tennis_scorer"​

​

​ RSpec.​describe​ TennisScorer ​do​

​ describe ​"basic scoring"​ ​do​

​ it ​"starts with a score of 0-0"​ ​do​

​ ts = TennisScorer.​new​

​ expect(ts.​score​).​to​ eq(​"0-0"​)

​ ​end​

​

​ it ​"makes the score 15-0 if the server wins a point"​

​ it ​"makes the score 0-15 if the receiver wins a point"​

​ it ​"makes the score 15-15 after they both win a point"​

​ ​end​

​ ​end​

Our tests assume that we have a class TennisScorer, both in the line of code that
creates an instance and also in the top line of code RSpec.describe TennisScorer.
Inside that, we have a second call to describe that groups our expectations. Our
first expectation now has a code block associated with it. Inside that block, we
create a TennisScorer and then use RSpec’s expectation syntax to validate that
the score starts out at “0-0”. This particular aspect of RSpec syntax probably
generates the most controversy—some people love it, others find it awkward.
Either way, expect(ts.score).to eq("0-0") is equivalent to assert_equal("0-0", ts.score).

We can run our tests at this point with the same command, and we’ll see the
test fail because the TennisScorer class doesn’t exist.

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/2/ts_spec.rb

Before we create that class and pass the test, let’s take a moment to explain
what RSpec is doing here. RSpec is an example of a domain-specific language
(DSL), an alternate syntax built on Ruby with the goal of making it easier to
express the intent of the test. Like a lot of Ruby DSLs, RSpec takes advantage
of Ruby’s flexibility to result in code that doesn’t look exactly like regular
Ruby.

When trying to understand RSpec, it’s helpful to reinstate full parentheses and
implicit self message receivers as a guide to what’s actually happening. Here’s
what that looks like for our current spec:

unittesting/bdd/2/ts_spec_paren.rb

​ require_relative ​"tennis_scorer"​

​

​ RSpec.​describe​(TennisScorer) ​do​

​ self.​describe​(​"basic scoring"​) ​do​

​ self.​it​(​"starts with a score of 0-0"​) ​do​

​ ts = TennisScorer.​new​

​ self.​expect​(ts.​score​).​to​(self.​eq​(​"0-0"​))

​ ​end​

​

​ self.​it​(​"makes the score 15-0 if the server wins a point"​)

​ self.​it​(​"makes the score 0-15 if the receiver wins a point"​)

​ self.​it​(​"makes the score 15-15 after they both win a point"​)

​ ​end​

​ ​end​

With all the parentheses, the structure of the code becomes more familiar. The
top line shows that describe is a method of an object named RSpec, and that the
inner describe and it lines are also methods with block arguments. There’s
actually an important part of how this fits together that we haven’t discussed
(it’s a method called instance_eval, which is discussed in Chapter 22, ​The Ruby
Object Model and Metaprogramming​), but the basic idea is that RSpec takes
the blocks that are arguments to describe and it, holds on to them, and then
invokes them later in order to run the spec.

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/2/ts_spec_paren.rb

You can see that the actual expectation is also just a set of method calls. The
expect method is called with an object as an argument. The result of that
method is passed the to method, which itself takes an argument that’s
generated by calling eq. The result of the call to eq is a matcher, and RSpec
defines a series of matchers that interact with the to method (or its sibling
method not_to) to determine whether the expectation is fulfilled or not.

We’ll set up our TennisScorer class but only enough to let it satisfy this
assertion:

unittesting/bdd/2/tennis_scorer.rb

​ ​class​ TennisScorer

​ ​def​ ​score​

​ ​"0-0"​

​ ​end​

​ ​end​

Now we can run our spec again:

​ ​$ ​​rspec​​ ​​ts_spec.rb​

​ .***

​ Pending: (Failures listed here are expected and do not affect your suite's
status)

​ 1) TennisScorer basic scoring makes the score 15-0 if the server wins a point

​ ​ # Not yet implemented​

​ ​ # ./ts_spec.rb:10​

​ 2) TennisScorer basic scoring makes the score 0-15 if the receiver wins a
point

​ ​ # Not yet implemented​

​ ​ # ./ts_spec.rb:11​

​ 3) TennisScorer basic scoring makes the score 15-15 after they both win a
point

​ ​ # Not yet implemented​

​ ​ # ./ts_spec.rb:12​

​ Finished in 0.0016 seconds (files took 0.04504 seconds to load)

​ 4 examples, 0 failures, 3 pending

Now we have only three pending specs; the first one has been satisfied.

Let’s write the next couple of specs (I’ve added a new one for an error case):

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/2/tennis_scorer.rb

unittesting/bdd/3/ts_spec.rb

​ require_relative ​"tennis_scorer"​

​

​ RSpec.​describe​ TennisScorer ​do​

​ describe ​"basic scoring"​ ​do​

​ it ​"starts with a score of 0-0"​ ​do​

​ ts = TennisScorer.​new​

​ expect(ts.​score​).​to​ eq(​"0-0"​)

​ ​end​

​

​ it ​"makes the score 15-0 if the server wins a point"​ ​do​

​ ts = TennisScorer.​new​

​ ts.​give_point_to​(​:server​)

​ expect(ts.​score​).​to​ eq(​"15-0"​)

​ ​end​

​

​ it ​"raises an error if it doesn't know the player"​ ​do​

​ ts = TennisScorer.​new​

​ expect { ts.​give_point_to​(​:referee​) }.​to​ raise_error(RuntimeError)

​ ​end​

​

​ it ​"makes the score 0-15 if the receiver wins a point"​

​ it ​"makes the score 15-15 after they both win a point"​

​ ​end​

​ ​end​

This won’t pass yet because our TennisScorer class doesn’t implement a
give_point_to method. Let’s rectify that. Our code isn’t finished, but now the
existing specs will pass:

unittesting/bdd/3/tennis_scorer.rb

​ ​class​ TennisScorer

​ PLAYERS = ​%i[server receiver]​

​

​ ​def​ ​initialize​

​ @score = {​server: ​0, ​receiver: ​0}

​ ​end​

​

​ ​def​ ​score​

​ ​"​​#{​@score[​:server​] * 15​}​​-​​#{​@score[​:receiver​] * 15​}​​"​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/3/ts_spec.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/3/tennis_scorer.rb

​

​ ​def​ ​give_point_to​(player)

​ ​raise​ ​"Unknown player ​​#{​player​}​​"​ ​unless​ PLAYERS.​include?​(player)

​ @score[player] += 1

​ ​end​

​ ​end​

Again, we’ll run the file:

​ ​$ ​​rspec​​ ​​ts_spec.rb​

​ ​...​​**​

​ Pending: (Failures listed here are expected and do not affect your suite's
status)

​ 1) TennisScorer basic scoring makes the score 0-15 if the receiver wins a
point

​ ​ # Not yet implemented​

​ ​ # ./ts_spec.rb:21​

​ 2) TennisScorer basic scoring makes the score 15-15 after they both win a
point

​ ​ # Not yet implemented​

​ ​ # ./ts_spec.rb:22​

​ Finished in 0.0031 seconds (files took 0.04484 seconds to load)

​ 5 examples, 0 failures, 2 pending

We’re now meeting two of the four initial expectations. But, before we move
on, note there’s a bit of duplication in the specification: all of our expectations
create a new TennisScorer object. We can fix that by using a before method in
the specification. This works a bit like the setup method in minitest, allowing
us to run code before expectations are executed. Let’s use this feature and, at
the same time, build out the last two expectations:

unittesting/bdd/4/ts_spec.rb

​ require_relative ​"tennis_scorer"​

​

​ RSpec.​describe​ TennisScorer ​do​

​ describe ​"basic scoring"​ ​do​

​ before(​:example​) ​do​

​ @ts = TennisScorer.​new​

​ ​end​

​

​ it ​"starts with a score of 0-0"​ ​do​

​ expect(@ts.​score​).​to​ eq(​"0-0"​)

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/4/ts_spec.rb

​ ​end​

​

​ it ​"makes the score 15-0 if the server wins a point"​ ​do​

​ @ts.​give_point_to​(​:server​)

​ expect(@ts.​score​).​to​ eq(​"15-0"​)

​ ​end​

​

​ it ​"raises an error if it doesn't know the player"​ ​do​

​ expect { @ts.​give_point_to​(​:referee​) }.​to​ raise_error(RuntimeError)

​ ​end​

​

​ it ​"makes the score 0-15 if the receiver wins a point"​ ​do​

​ @ts.​give_point_to​(​:receiver​)

​ expect(@ts.​score​).​to​ eq(​"0-15"​)

​ ​end​

​

​ it ​"makes the score 15-15 after they both win a point"​ ​do​

​ @ts.​give_point_to​(​:receiver​)

​ @ts.​give_point_to​(​:server​)

​ expect(@ts.​score​).​to​ eq(​"15-15"​)

​ ​end​

​ ​end​

​ ​end​

Let’s run it:

​ ​$ ​​rspec​​ ​​ts_spec.rb​

​

​ Finished in 0.00193 seconds (files took 0.04763 seconds to load)

​ 5 examples, 0 failures

RSpec gives us an alternative, preferred way of setting up variables that are
conditions for our tests. The let method creates what looks like a variable
whose value is given by evaluating a block. This lets us write the following:

unittesting/bdd/5/ts_spec.rb

​ require_relative ​"tennis_scorer"​

​

​ RSpec.​describe​ TennisScorer ​do​

​ describe ​"basic scoring"​ ​do​

​ let(​:ts​) { TennisScorer.​new​ }

​

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/5/ts_spec.rb

​ it ​"starts with a score of 0-0"​ ​do​

​ expect(ts.​score​).​to​ eq(​"0-0"​)

​ ​end​

​

​ it ​"makes the score 15-0 if the server wins a point"​ ​do​

​ ts.​give_point_to​(​:server​)

​ expect(ts.​score​).​to​ eq(​"15-0"​)

​ ​end​

​

​ it ​"raises an error if it doesn't know the player"​ ​do​

​ expect { ts.​give_point_to​(​:referee​) }.​to​ raise_error(RuntimeError)

​ ​end​

​

​ it ​"makes the score 0-15 if the receiver wins a point"​ ​do​

​ ts.​give_point_to​(​:receiver​)

​ expect(ts.​score​).​to​ eq(​"0-15"​)

​ ​end​

​

​ it ​"makes the score 15-15 after they both win a point"​ ​do​

​ ts.​give_point_to​(​:receiver​)

​ ts.​give_point_to​(​:server​)

​ expect(ts.​score​).​to​ eq(​"15-15"​)

​ ​end​

​ ​end​

​ ​end​

The let block is only evaluated when the associated variable is used, and then
the block is evaluated once, and further uses of that variable use the stored
value from the first evaluation.

We’re going to stop here, but I suggest that you take this code and continue to
develop it. Write expectations such as these:

​ it ​"is 40-0 after the server wins three points"​

​ it ​"is W-L after the server wins four points"​

​ it ​"is L-W after the receiver wins four points"​

​ it ​"is Deuce after each wins three points"​

​ it ​"is Advantage-server after each wins three points and the server gets one
more"​

RSpec and Matchers

In the previous code, we kind of ran right past RSpec’s matchers—lines like
expect(@ts.score).to eq("15-0"). RSpec has a rich syntax of matchers to cover the
same ground that minitest does with different assertions.

We’ve already seen eq, but that matcher is a little unusual. Many of RSpec’s
matchers start with be, as with this set of matchers that cover basic logic:

​ expect(value).​to​ be_truthy

​ expect(value).​to​ be_falsey

​ expect(value).​to​ be_an_instance_of(Product)

​ expect(value.​price​).​to​ be > 10

​ expect(value.​price​).​to​ be_between(5, 15)

You can substitute any Ruby comparison operator for the greater than symbol
in be >.

RSpec also provides matchers for structured data, such as objects, arrays,
hashes, and strings:

​ expect(array).​to​ contain_exactly(​:a​, ​:b​, ​:c​)

​

​ expect(hash).​to​ ​include​(​key: ​value)

​

​ expect(string).​to​ start_with(​"abc"​)

​ expect(string).​to​ end_with(​"xyz"​)

​

​ expect(instance).​to​ have_attributes(​color: ​​"blue"​)

​

​ expect(array_string_or_hash).​to​ ​include​(​"value"​)

In addition, RSpec has a generic matcher match, which can be applied to
arrays, strings, or hashes. Typically, the argument to match is a pattern, and the
expectation passes if the expected value fits the pattern. You can use other
RSpec matchers to fill part of the pattern.

Some examples:

​ expect(string).​to​ match(​/regex/​)

​ expect(array).​to​ match([3, 5])

​ expect(hash).​to​ match(​color: ​a_string_starting_with(​"b"​))

The last example shows that RSpec offers aliases for most of its matchers so
they read more like natural language when used internally, so
“a_string_starting_with” is an alias for “starts_with”. This is where people’s
opinions about RSpec start to split—some people find this kind of linguistic
wordplay elegant and clever, while others find it confusing and overly
complicated.

Which is a great lead into RSpec’s dynamic matcher syntax.

Often, an object has boolean methods that you want to test. In Ruby, the
community standard is to end boolean methods with a ? as in: paperback?.

​ ​class​ Book

​ ​def​ ​paperback?​

​ type == ​:paper​

​ ​end​

​ ​end​

You can test this method in RSpec using normal RSpec syntax, which would
look something like this:

​ expect(book.​paperback?​).​to​ be_truthy

And that’s fine, and it works. But if you read it out loud it sounds weird—
more like how computers talk and not like how people talk. You might want to
be able to write this:

​ expect(book).​to​ be_a_paperback

Read that out loud, and it sounds like natural language.

So, to make that work in RSpec, you need to do…nothing. It already works.

When RSpec sees a matcher that starts with be, be_a, or be_an, it does some
parsing on the name of the matcher and looks for a method in the object under
test. If the matcher has no arguments, it looks for a predicate method that ends
in a question mark, so expect(book).to be_a_paperback looks for book.paperback?

and failing that, book.paperbacks?. If the matcher has arguments, it looks for a

regular method, so expect(book).to be_published_at(Date.today) would look for
book.published_at(Date.today). RSpec will do the same thing with have and has.
The matcher expect(book).to have_cover will look for book.has_cover?, while
expect(book).to have_author("Dave") will look for book.has_author("Dave").

There is also a set of matchers that take a block. The general structure is expect

{ SOMETHING }.to MATCHER. The most common is probably expect { }.to

raise_error(arg), where the argument is usually a Ruby exception class and the
matcher passes if the block raises the expected error. The argument could also
be a string or regular expression matching the error message.

There are also a series of matchers based on expect { BLOCK 1 }.to change { BLOCK 2

}. Here’s how this works: RSpec runs block 2 and stores the value, then it runs
block 1, and then it checks block 2 again, and the matcher passes if block 2’s
value has changed. You can chain additional methods to the end if you want to
specify details, as in expect { book.publish! }.to change { book.publication_date

}.from(nil).to(Date.today).

There’s a lot more to RSpec matchers, including the ability to create your own.
For more information, see Effective Testing with RSpec 3 by Myron Marston
and Erin Dees.

RSpec and Mocks
rb In addition to minitest, RSpec also allows you to create mock and stub
objects and has a lot of features available by default. Here’s an overview of the
most common.

In RSpec, the generic term for a fake object is test double, an object that
stands in for another object, by analogy to “stunt double.” The simplest way to
create one is by using the method double. You can create the double and assign
it a method to respond to using the RSpec method allow:

​ obj = double

​ allow(obj).​to​ receive(​:cost​).​and_return​(​"cheap"​)

​ allow(obj).​to​ receive(​:name​).​and_return​(​"banana"​)

​ obj.​cost​

​ obj.​name​

If you pass multiple arguments to and_return, you specify responses for
multiple times that the method is called. You can limit the arguments under
which the double is invoked by chaining in .with, as in allow(obj).to

receive(:availability).with("January").and_return(true).

You can define multiple responses at once with the receive_messages method,
which takes a hash. Keys become the methods to respond to, and values are
the fake values returned:

​ obj = double

​ allow(obj).​to​ receive_messages(​cost: ​​"cheap"​, ​name: ​​"banana"​)

​ obj.​cost​

​ obj.​banana​

Or you can use a shortcut by passing keyword arguments directly to double:

​ obj = double(​cost: ​​"cheap"​, ​name: ​​"banana"​)

​ obj.​cost​

​ obj.​banana​

In minitest, we talked about validating mock objects by having the test fail if
the method being faked isn’t called during the test. In RSpec, you manage this
with the expect method.

You can call expect on a double before the main action of the spec. In this case,
expect is an exact replacement for allow:

​ obj = double

​ expect(obj).​to​ receive(​:cost​).​and_return​(​"cheap"​)

​ expect(obj).​to​ receive(​:name​).​and_return​(​"banana"​)

​ obj.​cost​

​ obj.​banana​

The expect method behaves the same as allow except that, at the end of the
spec, RSpec additionally and automatically validates whether the expected

methods have been called. If not, it fails the spec.

A downside of this mechanism is that the expectation happens at the beginning
of the spec, but the validation happens at the end, and only implicitly. This can
make the spec hard to read. An alternative is to use a slightly different form of
expect at the end of the spec:

​ obj = double

​ allow(obj).​to​ receive(​:cost​).​and_return​(​"cheap"​)

​ obj.​cost​

​ expect(obj).​to​ have_received(​:cost​)

The allow and expect constructs in RSpec are powerful. You can even use them
on objects that aren’t test doubles to stub a particular method on an existing
object:

​ kermit = Muppet.​new​

​ allow(kermit).​to​ receive(​:greeting​).​and_return​(​"Hi ho"​)

A potential problem with test doubles is that the API of the underlying object
might change, but the test, with its stubbed method, blissfully continues to
pass. RSpec offers some protection from that with the instance_double variation.
An instance_double call takes a class as an argument:

​ fake_product = instance_double(Product)

​ allow(fake_product).​to​ receive(​:name​).​and_return​(​"pretzel"​)

Now, when you call allow or expect with the instance double as an argument,
RSpec checks to see if the class in question actually defines the method you’re
stubbing. (There’s a similar RSpec creator, class_double, for class methods
rather than instance methods.) If the method doesn’t exist, RSpec raises an
error at the point of the declaration.

This only scratches the surface of RSpec’s mock package.

[19]

What’s Next
In this chapter, we covered Ruby’s two most commonly used test
frameworks: minitest and RSpec. Which should you use? Well, if you’re
working on a project that already uses one of them, we recommend sticking
with that one. There’s not so much difference between the two that it’s
worth re-writing all your tests.

If you’re starting a new project, consider whether you like RSpec’s syntax.
RSpec is probably more widely used, but some prominent Ruby projects
still use minitest, including Ruby on Rails. RSpec has a higher initial
complexity but is also more flexible and has more available functionality
out of the box. Ultimately, though, it’s a question of which syntax you like
better and will get you to write more tests.

We’ve finished our tutorial of the Ruby language, and now it’s time to
widen our view and take a look at the larger Ruby tool ecosystem.

Footnotes

https://mocha.jamesmead.org

Copyright © 2024, The Pragmatic Bookshelf.

https://mocha.jamesmead.org/

Part 2
Ruby in Its Setting

Ruby isn’t just a programming language. It’s an entire
ecosystem of tools that enables you to leverage the language
and make it valuable for a variety of tasks in a range of
different contexts. These tools include the Ruby command-
line program itself, the Ruby gems tool for including
libraries, and tools for interacting with and debugging Ruby.
Ruby also has support for automated documentation, can be
used in various editors and different operating systems, and
has runtime versions that are optimized for performance in
different settings.

Chapter 14

Ruby from the Command Line

If you’re using Ruby as a scripting language, you’ll be starting it from the
command line. In this chapter, we’ll look at how to use Ruby as a
command-line tool and how to interact with your operating system
environment. The two most common ways for a Ruby program to kick off
from the command line are with the Ruby interpreter itself and with Rake, a
utility that makes it easy to define a series of interrelated tasks. You also
might want to create your own command-line programs, and Ruby can help
with that as well.

Please note that some of the details of this chapter only apply to Unix-based
systems like Linux, MacOS, and WSL.

Calling the Ruby Command
The most direct way to start the Ruby interpreter and run a Ruby program is
by calling the ruby command from the command line. Regardless of the system
in which Ruby is deployed, you have to start the Ruby interpreter somehow,
and doing so gives us the opportunity to pass in command-line arguments both
to Ruby itself and to the script being run.

A Ruby command-line call consists of three parts, none of which are required:
options for the Ruby interpreter itself, the name of a program to run, and
arguments for that program.

ruby <options> <--> <programfile> <arguments>*

You only need the double-dash if you’re separating options to Ruby itself from
options being passed to the program being run. The simplest Ruby command
is ruby followed by a filename:

​ ​$ ​​ruby​​ ​​my_code.rb​

This command will cause the Ruby interpreter to load the my_code.rb file, parse
it, and then execute it.

If the file has a syntax error, Ruby will attempt to locate the error and suggest
where the problem is.

Here’s an example:

rubyworld/syntax_error.rb

​ ​class​ HasAnError

​ ​def​ ​this_method_ends​

​ p ​"it sure does"​

​ ​end​

​

​ ​def​ ​this_doesnt_end​

​ ​return​ ​"a thing"​

​

http://media.pragprog.com/titles/ruby5/code/rubyworld/syntax_error.rb

​ ​def​ ​this_one_is_also_right​

​ p ​"fine"​

​ ​end​

​ ​end​

​ sh: code/rubyworld/syntax_error.rb:12: syntax error, unexpected end-of-input,

​ expecting 'end' or dummy end (SyntaxError)

Ruby notices the error—a missing end—and attempts to find the actual
location of the item missing the end. In this case, it gets it right.

Any options after the command ruby are sent to the Ruby interpreter. The Ruby
interpreter options end with the first word on the command line that doesn’t
start with a hyphen or with the special flag -- (two hyphens).

There are ways to invoke the Ruby interpreter without passing it a filename.
One way is to use the -e command-line option, which executes one line of
script.

This lets us use Ruby as a powerful command-line calculator. Here’s a one-
liner that returns the first five square numbers:

​ ruby -e "p (1..5).map { _1 ** 2 }"

​ [1, 4, 9, 16, 25]

When you do this, remember that the command you run needs to be a string
and that you have to print it, or you won’t see the result.

You can also pipe a file into the command using Unix standard input and then
access that file using Kernel#gets:

​ ruby -e 'puts "line: ​#{gets}"' < testfile​

That works swimmingly, but it only processes the first line of the file.
However, we can use Ruby’s while expression clause to loop over the file in a
single line:

​ ​$ ​​ruby​​ ​​-e​​ ​​'puts "line: #{$_}" while gets'​​ ​​<​​ ​​testfile​

​ line: This is line one

​ line: This is line two

​ line: This is line three

​ line: And so on...

In this snippet, we’re not only taking advantage of the while clause, we’re also
using the Ruby global $_, which contains the most recent text read in by a gets

call. So, the while gets reads the line and puts it in $_ and the body of the
statement prints out the line.

Still, that while at the end seems kind of awkward for something you might do
often. If only there were some kind of shortcut:

​ ​$ ​​ruby​​ ​​-ne​​ ​​'puts "line: #{$_}"'​​ ​​<​​ ​​testfile​

​ line: This is line one

​ line: This is line two

​ line: This is line three

​ line: And so on...

The -n command-line option wraps whatever else is sent to the Ruby
interpreter in a while gets; <INPUT>; end loop. This is frequently a single line
passed in using -e, but it doesn’t have to be. You could have a script file that
processes a single line of input and use -n to apply that script to an entire input.

Now, looking at it, that puts statement seems like boilerplate, and it turns out
there’s a shortcut for that as well…sort of:

​ ruby -pe '"line: ​#{$_}"' < testfile​

​ This is line one

​ This is line two

​ This is line three

​ And so on...

The -p option behaves like n but also prints the line as it is being input, not the
line that we’re processing, which is sometimes helpful.

There’s one more twist to the looping input, which is -a for auto-split mode.
With -a set, the incoming gets line is automatically split using String#split, and
the result goes into the global $F. The default delimiter is space, but you can

set a delimiter with the command-line option -F, as in -F"\n". So this code uses -
a to split the line from the input:

​ ​$ ​​ruby​​ ​​-nae​​ ​​'puts "line: #{$F}"'​​ ​​<​​ ​​testfile​

​ line: ["This", "is", "line", "one"]

​ line: ["This", "is", "line", "two"]

​ line: ["This", "is", "line", "three"]

​ line: ["And", "so", "on..."]

And this code uses -F to also set a custom delimiter:

​ ​$ ​​ruby​​ ​​-F​​"i"​​ ​​-nae​​ ​​'puts "line: #{$F}"'​​ ​​<​​ ​​testfile​

​ line: ["Th", "s ", "s l", "ne one\n"]

​ line: ["Th", "s ", "s l", "ne two\n"]

​ line: ["Th", "s ", "s l", "ne three\n"]

​ line: ["And so on...\n"]

And just to clear one thing up—the options can be stacked if they don’t have
any arguments, so -nae is identical to -n -a -e.

If no filename is present on the command line or if the filename is a single
hyphen, Ruby reads the program source from standard input.

Arguments for the program itself follow the program name:

​ ​$ ​​ruby​​ ​​-w​​ ​​-​​ ​​"Hello World"​

In this snippet, -w will enable warnings, and then Ruby will read a program
from standard input, and pass that program the string "Hello World" as an
argument. We’ll talk in a moment about how to deal with incoming command-
line arguments.

Ruby Command-Line Options
Following is a complete list of Ruby’s command-line options roughly
organized by functionality.

Options That Determine What Ruby Runs

-0[octal]

The 0 flag (the digit zero) specifies the record separator character (\0,
if no digit follows). -00 indicates paragraph mode: records are
separated by two successive default record separator characters. 0777

reads the entire file at once (because it’s an illegal character). Sets $/.

-a

Autosplit mode when used with -n or -p; equivalent to executing $F =

$_.split at the top of each loop iteration.

-c

Checks syntax only; does not execute the program.

--copyright

Prints the copyright notice and exits.

-e ’command’

Executes command as one line of Ruby source. Several -es are
allowed, and the commands are treated as multiple lines in the same
program. If programfile is omitted when -e is present, execution stops
after the -e commands have been run. Programs that run using -e can
use ranges and regular expressions in conditions—ranges of integers
compare against the current input line number, and regular expressions
match against $_.

-F pattern

Specifies the input field separator ($;) used as the default for split

(affects the -a option).

-h, --help

Displays a short help screen.

-l

Enables automatic line-ending processing; sets $\ to the value of $/ and
chops every input line automatically.

-n

Assumes a while gets; ...; end loop around your program. For example, a
simple grep command could be implemented as follows:

​ ​$ ​​ruby​​ ​​-n​​ ​​-e​​ ​​"print if /wombat/"​​ ​​*.txt​

-p

Places your program code within the loop while gets; ...; print; end.

​ ​$ ​​ruby​​ ​​-p​​ ​​-e​​ ​​"$_.downcase!"​​ ​​*.txt​

--version

Displays the Ruby version number and exits.

Options That Change the Way the Interpreter Works

--backtrace-limit=num

Sets a limit on the number of lines of backtrace that are sent to
standard error when the program sends a backtrace (when the program
terminates unexpectedly, for example). The default value is -1,
meaning unlimited backtrace.

-C directory

Changes working directory to directory before executing.

-d, --debug

Sets $DEBUG and $VERBOSE to true. This can be used by your programs
to enable additional tracing.

--disable={FEATURE}

Disables one of the features described in ​Features That Can Be
Enabled or Disabled​.

-Eex[:in], --encoding=ex[:in], external-encoding=encoding, internal-encoding=encoding

Specifies the default character encoding for data read from and written
to the outside world. This can be used to set both the external encoding
(the encoding to be assumed for file contents) and optionally the
default internal encoding (the file contents are transcoded to this when
read and transcoded from this when written). The format of the single
encoding parameter is -E external, -E external:internal, or -E :internal.

-I directories

Specifies directories to be prepended to $LOAD_PATH ($:). Multiple -I
options may be present. Multiple directories may appear following
each -I, separated by a colon on Unix-like systems and by a semicolon
on DOS/Windows systems.

-i [extension]

Edits ARGV files in place. For each file named in ARGV, anything you
write to standard output will be saved back as the contents of that file.
A backup copy of the file will be made if the extension is supplied, as
in the following code sample:

​ ​$ ​​ruby​​ ​​-pi.bak​​ ​​-e​​ ​​"gsub(/Perl/, 'Ruby')"​​ ​​*.txt​

--jit, --rjit, --yjit

Enables one of the two just-in-time compilers available in Ruby. The
Rust-based compiler can be enabled with --jit or --yjit, while the
experimental Ruby-based version can be enabled with --rjit. Ruby
versions prior to 3.3 also had -mjit. The JIT compilers are designed to

improve program performance in long-running Ruby applications.
Both compilers have several of their own command-line options.

-r library

Requires the named library or gem before executing.

-S

Looks for the program file using the RUBYPATH or PATH environment
variable.

-s

Any command-line switches found after the program filename, but
before any filename arguments or before a --, are removed from ARGV

and set to a global variable named for the switch. In the following
example, the effect of this would be to set the variable $opt to "electric":

​ ​$ ​​ruby​​ ​​-s​​ ​​prog​​ ​​-opt=electric​​ ​​./mydata​

-v, --verbose

Sets $VERBOSE to true, which enables verbose mode. Also prints the
version number. In verbose mode, compilation warnings are printed. If
no program filename appears on the command line, Ruby exits.

-w

Enables warning mode, which is like verbose mode, except it reads the
program from standard input if no program files are present on the
command line. We recommend running your Ruby programs with -w.

-W level

Sets the level of warnings issued. With a level of 2 (or with no level
specified), which is the equivalent to -w, additional warnings are given.
If level is 1, it runs at the standard (default) warning level. With -W0,
absolutely no warnings are given (including those issued using
Object.warn).

-x [directory]

Strips off text before #!ruby line and changes working directory to
directory if given.

Other Options

--dump option…

Tells Ruby to dump various items of internal state. options… is a
comma or space separated list containing one or more of insns,
insns_without_opt, parsetree, parsetree_with_comment, and yydebug. This is
intended for Ruby core developers.

Features That Can Be Enabled or Disabled
All of these features can be explicitly enabled or disabled from the
command line, using an option such as --enable=gems or --
disable=did_you_mean.

did_you_mean

When enabled, a NameError will also show the results of a search of the
receiving object for similarly named messages that might have been
the intended message. Helpful when you can’t remember the name of
the message you want. Enabled by default.

error_highlight

When enabled, error messages will have arrows highlighting the exact
part of the line where the error was triggered. Useful in tracking down
errors in a long line of code that chains multiple method calls. Enabled
by default.

frozen-string-literal

When enabled, acts as if the magic comment # frozen_string_literal: true

is placed at the front of all Ruby files. This comment causes all string
literals to be implicitly frozen without freeze being called on them.
Disabled by default.

gems

Stops Ruby from automatically loading RubyGems from require.
Enabled by default.

rjit

Enables the rjit compiler. Disabled by default.

rubyopt

Prevents Ruby from examining the RUBYOPT environment variable. You
should probably disable this in an environment you want to secure.
Enabled by default.

syntax_suggest

Enables the syntax_suggest tool which provides better handling of
syntax errors when code is loaded.

yjit

Enables the yjit compiler. Disabled by default.

Making Your Code an Executable Program
It’s a little clunky to have to call ruby my_code.rb when you want to run your
code; it’d be easier if you could use my_code.rb. This is more of an operating
system tip than a Ruby tip, but on Unix systems, this is doable with just a
couple of steps.

First, you need to make the file executable by changing the mode of the file.
To oversimplify slightly, the mode of the file is metadata that determines if
the current user can read from, write to, or execute a given file. Typically,
on a Unix-based system, the command to make a file executable is chmod +x

<FILENAME>. The chmod command is Unix-speak for “change the mode of the
file,” +x means “make it executable,” and FILENAME is the filename. For
more on the Unix command line, see Appendix 3, ​Command-Line Basics​.

Having made the file executable, we also need to tell Unix what it means
for the file to be executable. For a Ruby script, what we mean is “run this
file through the Ruby runtime”. And we tell that to the Unix system through
a special comment on the first line of the file that starts with #! and contains
the name of an interpreter program that should be used to run the file. (This
comment is often referred to as “shebang” because the two characters that
make it up are the #, which is a musical sharp, and !, which coders often call
“bang”.)

In most cases, the shebang command you use to invoke Ruby can look like
this:

​ ​#!/usr/bin/env ruby​

​

​ ​# Ruby code goes here​

The path /usr/bin/env is, for weird Unix reasons, a common cross-platform
way to ensure you’re running the proper shell and ruby is the Ruby

interpreter. (You can use other ways to specify the Ruby interpreter, but this
is the most recommended way to have the script run in most common Unix
setups.)

Anyway, once you’ve done both these steps, you can invoke your script
directly:

​ ​$ ​​my_code.rb​

If for some reason you want to send command-line options to Ruby itself
(for example, you might want to run in warning mode), you can do so by
setting an environment variable called RUBYOPTS:

​ RUBYOPTS="-w" my_code.rb

The Ruby interpreter will, by default, look in that environment variable for
options before it starts.

Any arguments after the filename are passed to the Ruby code itself, so this
would be a good time to show how to access those arguments…

Processing Command-Line Arguments to Your
Code
Just as you can pass arguments to methods in your Ruby code, you can pass
arguments from the command line to the Ruby script itself. Ruby provides
mechanisms for capturing arguments passed to the script and allowing you to
read and parse them as part of your script.

ARGV
Any command-line arguments after the program filename are available to your
Ruby program in the global array ARGV. For instance, assume test.rb contains
the following program:

​ ARGV.​each​ { |arg| p arg }

If you invoke it with the following command line:

​ ​$​ ruby -w test.​rb​ ​"Hello World"​ a1 1.6180

It’ll generate the following output:

​ ​"Hello World"​

​ ​"a1"​

​ ​"1.6180"​

There’s a gotcha here for all you C programmers. In Ruby, ARGV[0] is the first
argument to the program, not the program name. The name of the current
program is available in the global variable $0, which is aliased to
$PROGRAM_NAME. All the values in ARGV are strings.

If your program reads from standard input (or uses the special object ARGF,
described in the next section), the arguments in ARGV will be taken to be
filenames, and Ruby will read from these files. If your program takes a
mixture of arguments and filenames, make sure you empty the nonfilename
arguments from the ARGV array before reading from the files.

ARGF
It’s common for a command-line program to take a list of zero or more
filenames to process. It’ll then read through these files in turn, doing whatever
it does. Imagine a command that takes a list of log files and processes them
line by line, like process.rb log1 log2 log3. It’d be handy to be able to treat all the
log file arguments as a single logical file object.

Ruby provides a convenience object, referenced by the name ARGF, that
handles access to these files, allowing you to treat the files as a single stream.
The data for the ARGF object is taken from the values in ARGV. The assumption
is that when you use ARGF all the elements in the ARGV array are filenames.
This means that any nonfilename arguments need to be removed from the
ARGV array before you start reading from them using ARGF. Conversely, any
filenames you add to ARGV in your code will be available to ARGF just as
though they were supplied in the command line. We recommend that you do
any ARGV manipulation before you start reading from ARGF.

The ARGF object defines most of the same read methods that IO does, including
gets, read, and readline. If you read from ARGF, Ruby will open the file whose
name is the first element of ARGV and perform the I/O on it. If, as you continue
to read, you reach the end of that file, Ruby closes it, shifts it out of the ARGV

array, and then opens the next file in the list. At some point, when you’ve
finished reading from the last file, ARGF will return an end-of-file condition (so
gets will return nil, for example). If ARGV is initially empty, ARGF will read from
standard input.

You can get to the name of the file currently being read from using
ARGF.filename, and you can get the current File object as ARGF.file. ARGF keeps
track of the total number of lines read in ARGF.lineno—if you need the line
number in the current file, use ARGV.file.lineno. Here’s a program that uses this
information:

​ ​while​ (line = gets)

​ printf ​"%d: %10s[%d] %s"​, ARGF.​lineno​, ARGF.​filename​, ARGF.​file​.​lineno​, line

​ ​end​

If we run it, passing a couple of filenames, it’ll copy the contents of those
files.

​ ​$ ​​ruby​​ ​​copy.rb​​ ​​testfile​​ ​​otherfile​

​ 1: testfile[1] This is line one

​ 2: testfile[2] This is line two

​ 3: testfile[3] This is line three

​ 4: testfile[4] And so on...

​ 5: otherfile[1] ANOTHER LINE ONE

​ 6: otherfile[2] AND ANOTHER LINE TWO

​ 7: otherfile[3] AND FINALLY THE LAST LINE

In-Place Editing of ARGF Files
In-place editing is a hack inherited from Perl. It allows you to alter the
contents of files passed in on the command line, retaining a backup copy of
the original contents.

To turn on in-place editing, give Ruby the file extension to use for the backup
file, either with the -i [_ext_] command-line option or by calling
ARGF.inplace_mode=_ext_ in your code.

Now, as your code reads through each file given on the command line, Ruby
will rename the original file by appending the backup extension. It’ll then
create a new file with the original name and open it for writing on standard
output. For example, you might code a program like this:

​ ​while​ (line = gets)

​ puts line.​chomp​.​reverse​

​ ​end​

You invoke it like this:

​ ​$ ​​ruby​​ ​​-i.bak​​ ​​reverse.rb​​ ​​testfile​​ ​​otherfile​

The result is that testfile and otherfile would now have reversed lines and the
original files would be available in testfile.bak and otherfile.bak.

For finer control over the I/O to these files, you can use the methods provided
by ARGF. They’re rarely used, so rather than document them here, we’ll refer
you to the online documentation.

Option Parsing
It’s quite handy that Ruby packages up all the options into the ARGV array. If
you have a complex script, and you want your script to use conventional
patterns of options, where there’s something like -a true --database sqlite, then
the ARGV array isn’t enough. You’d also like to be able to respond to these
options by running code in your script based on them. Ruby provides the
conveniently named class OptionParser to allow you to run code based on
command-line options or to convert those options into a more convenient data
object.

The API here is a little tricky, but, basically, you need to do the following:

Create a new instance of OptionParser.

Tell the instance about various options it should respond to and what it
should do for each one.

Tell the instance to parse and also to do something with the options as it
parses.

Along the way, the OptionParser instance also does a few things for you,
including automatically generating a --help response based on the options.
We’ll also note here that the OptionParser class has a couple of different ways
to do the things we’re discussing in this section. We’re only going to talk
about the main one, but the official API reference has other options.

To create the parser, you can use parser = OptionParser.new. Then you can define
options to match with the method on. For option parser purposes, an option is
either of these:

Short: A single dash and a single character, as in -x
Long: A double dash and more than one character, as in --database

The basic idea is the same either way, the on method is called with the option,
an optional string that defines it, and a block that’s invoked if the option is in
ARGV. You can also define both a short and a long version of the same option.

rubyworld/option_1.rb

​ require ​"optparse"​

​

​ parser = OptionParser.​new​

​

​ sort_type = ​nil​

​ parser.​on​(​"-a"​, ​"Alphabetical"​) ​do​

​ sort_type = ​:alphabetical​

​ ​end​

​

​ parser.​on​(​"--recent"​, ​"Most Recent"​) ​do​

​ sort_type = ​:recency​

​ ​end​

​

​ parser.​on​(​"-s"​, ​"--size"​, ​"Size"​) ​do​

​ sort_type = ​:size​

​ ​end​

​

​ parser.​parse!​

​

​ p ​"we are sorting by ​​#{​sort_type​}​​"​

In this example, each option is setting a sort type local variable. Options
created with on are invoked in the order they are defined, so if more than one
of these is invoked, the last one defined wins. The parse! at the end is what
actually triggers the parsing of the options, and it’s also a signal that you’re
done defining options.

At this point, if you call your script with a --help option (whether you do it via
ruby or make it a standalone executable script), you get a useful help message:

​ ​$ ​​ruby​​ ​​code/rubyworld/option_1.rb​​ ​​--help​

​ Usage: option_1 [options]

http://media.pragprog.com/titles/ruby5/code/rubyworld/option_1.rb

​ -a Alphabetical

​ --recent Most Recent

​ -s, --size Size

You can use the method banner to add a message to the top of this help listing
as in parser.banner = "Usage: option_1.rb [options]".

If you call with one of the various options, the appropriate value is set:

​ ​$ ​​ruby​​ ​​code/rubyworld/option_1.rb​​ ​​-a​

​ "we are sorting by alphabetical"

Often, you want a command-line option to take an argument, as in -xSort or --
database postgres. You can specify those arguments using OptionParser as well.
Generally, the idea is that you add text in all caps after the option, like SORT.
The actual text doesn’t matter, only that you put some marker there. If the text
marker is surrounded by square brackets, the argument is optional; if not, the
option is required. There’s one slight bit of weirdness here: which is that a
required argument is separated from a long option by a space but can be flush
against a short option, so -x THING or -xTHING but only --example THING. Optional
arguments are separated by a space in both cases. If you’re specifying multiple
options in the same on call—for example, both a long and short option—then
the argument only needs to be specified once, and it applies to all the options
in that call.

In any case, the argument to the option is then passed as an argument to the
block:

rubyworld/option_2.rb

​ require ​"optparse"​

​

​ parser = OptionParser.​new​

​

​ sort_type = ​nil​

​

​ parser.​on​(​"-sSORT"​, ​"Sort Type"​) ​do​ |value|

​ sort_type = value

​ ​end​

http://media.pragprog.com/titles/ruby5/code/rubyworld/option_2.rb

​

​ parser.​on​(​"-a [DIR]"​, ​"Alphabetical"​) ​do​ |value|

​ sort_type = ​:alphabetical​

​ ​end​

​

​ parser.​on​(​"--recent DATE"​, ​"Most Recent"​) ​do​

​ sort_type = ​:recency​

​ ​end​

​

​ parser.​on​(​"-h"​, ​"--height [METRIC]"​, ​"Height"​) ​do​

​ sort_type = ​:size​

​ ​end​

​

​ parser.​parse!​

​

​ p ​"we are sorting by ​​#{​sort_type​}​​"​

You can do a few more things with options to limit values or coerce types—be
sure to check out the official API documentation.

Once you’ve defined all the options, you need to tell the OptionParser to do
something. Again, the OptionParser class provides a few different mechanisms,
but most of the time, we think you’ll want to call parse!.

Calling parse! triggers a walk through the ARGV array, calling the blocks of any
options that it encounters and destructively removing those options and their
arguments from ARGV. Removing the options allows you to easily have a
command line that mixes options and non-options, so you can do something
like my_code.rb -x --database postgres other_file other_thing. Then the parse!

removes the option switches, and you end up with ARGV equals ["other_file",

"other_thing"].

You can also specify a keyword argument, into:, which takes an existing object
(usually a hash) and causes all the parsed options to be placed into that
argument. The key is the option itself. The value is the return value of the
block, the argument value if there is no block, or true if there is neither a block
nor an argument:

rubyworld/option_3.rb

​ require ​"optparse"​

​

​ parser = OptionParser.​new​

​

​ parser.​on​(​"-x"​) ​do​

​ puts ​"yep, do the x thing"​

​ ​true​

​ ​end​

​

​ parser.​on​(​"-yTYPE"​, ​"--y"​) ​do​ |value|

​ puts ​"There's a y with ​​#{​value​}​​"​

​ value

​ ​end​

​

​ options = {}

​ parser.​parse!​(​into: ​options)

​

​ p ARGV

​ p options

If you want a more powerful framework for building CLI interfaces, you
should check out Thor,[20] which uses a different API to attach subcommands
and options to different parts of your code.

Program Termination

The method exit terminates your program, returning a status value to the
operating system. However, unlike some languages, exit doesn’t terminate the
program immediately—exit first raises a SystemExit exception, which you may
catch, and then performs a number of cleanup actions, including running any
registered at_exit methods and object finalizers.

http://media.pragprog.com/titles/ruby5/code/rubyworld/option_3.rb

Accessing Environment Variables
You can access operating system environment variables using the predefined
variable ENV. It responds to the same methods as Hash. Technically, ENV isn’t
actually a hash—it’s a separate class—but if you need to, you can convert it
into a Hash using ENV#to_h.

​ ENV[​'SHELL'​]

​ ENV[​'HOME'​]

​ ENV[​'USER'​]

​ ENV.​keys​.​size​

​ ENV.​keys​[0, 4]

Standard Environment Variables
The values of some environment variables are read by Ruby when it first
starts. These variables modify the behavior of the interpreter. Some of the
environment variables used by Ruby are listed in the table shown.

Table 4. Ruby environment variables

Variable Name Description
DLN_LIBRARY_PATH Specifies the search path for dynamically loaded

modules.

HOME Points to the user’s home directory. This is used when
expanding ~ in file and directory names.

LOGDIR Specifies the fallback pointer to the user’s home
directory if $HOME is not set. This is used only by
Dir.chdir.

OPENSSL_CONF Specifies the location of OpenSSL configuration file.

Variable Name Description
PATH The Unix list of places to look for files, Ruby uses it

when calling Kernel#system.

RUBY_YJIT_ENABLE Enables the YJIT just-in-time compiler.

RUBYLIB Specifies an additional search path for Ruby programs
($SAFE must be 0).

RUBYLIB_PREFIX (Windows only) Mangles the RUBYLIB search path by
adding this prefix to each component.

RUBYOPT Specifies additional command-line options to Ruby;
examined after real command-line options are parsed
($SAFE must be 0).

RUBYPATH With -S option, specifies the search path for Ruby
programs (defaults to PATH).

RUBYSHELL Specifies shell to use when spawning a process under
Windows; if not set, will also check SHELL or COMSPEC.

Other Ruby tools like Bundler or your Ruby version manager will also add
environment variables.

Ruby uses several environment variables to manage its garbage collector
during runtime. These variables all start with RUBY_GC, and you can find them
in the man page for Ruby by typing man ruby. Similarly, a few variables that
start with RUBY_THREAD or RUBY_FIBER control the amount of size allocated for
threads and fibers. These variables are generally used to tweak performance
for long-running Ruby programs.

Writing to Environment Variables
A Ruby program may write to the ENV object. On most systems, this changes
the values of the corresponding environment variables. However, this change
is local to the process that makes it and to any subsequently spawned child
processes. This inheritance of environment variables is illustrated in the code
that follows. A subprocess changes an environment variable, and this change is
inherited by a process that it then starts. However, the change isn’t visible to
the original parent. (This goes to prove that parents never really know what
their children are doing.)

rubyworld/envvar.rb

​ puts ​"In parent, term = ​​#{​ENV[​'TERM'​]​}​​"​

​ fork ​do​

​ puts ​"Start of child 1, term = ​​#{​ENV[​'TERM'​]​}​​"​

​ ENV[​'TERM'​] = ​"ansi"​

​ fork ​do​

​ puts ​"Start of child 2, term = ​​#{​ENV[​'TERM'​]​}​​"​

​ ​end​

​

​ Process.​wait​

​ puts ​"End of child 1, term = ​​#{​ENV[​'TERM'​]​}​​"​

​ ​end​

​ Process.​wait​

​ puts ​"Back in parent, term = ​​#{​ENV[​'TERM'​]​}​​"​

Produces:

​ In parent, term = xterm-256color

​ Start of child 1, term = xterm-256color

​ Start of child 2, term = ansi

​ End of child 1, term = ansi

​ Back in parent, term = xterm-256color

Setting an environment variable’s value to nil removes the variable from the
environment.

http://media.pragprog.com/titles/ruby5/code/rubyworld/envvar.rb

Where Ruby Finds Its Libraries
You use require to bring a library into your Ruby program. Some of these
libraries are supplied with Ruby, some may have been packaged as
RubyGems, and some you may have written yourself. How does Ruby find
them?

Let’s start with the basics. When Ruby is built for your particular machine,
it predefines a set of standard directories to hold library stuff. Where these
are depends on the machine in question. You can determine this from the
command line with something like this:

​ ​$ ​​ruby​​ ​​-e​​ ​​'puts $LOAD_PATH'​

On our MacOs box, with rbenv installed, this produces the following list:

​ /opt/homebrew/Cellar/rbenv/1.2.0/rbenv.d/exec/gem-rehash

​ /Users/noel/.rbenv/versions/3.3.0-dev/lib/ruby/site_ruby/3.3.0+0

​ /Users/noel/.rbenv/versions/3.3.0-dev/lib/ruby/site_ruby/3.3.0+0/arm64-
darwin23

​ /Users/noel/.rbenv/versions/3.3.0-dev/lib/ruby/site_ruby

​ /Users/noel/.rbenv/versions/3.3.0-dev/lib/ruby/vendor_ruby/3.3.0+0

​ /Users/noel/.rbenv/versions/3.3.0-dev/lib/ruby/vendor_ruby/3.3.0+0/arm64-
darwin23

​ /Users/noel/.rbenv/versions/3.3.0-dev/lib/ruby/vendor_ruby

​ /Users/noel/.rbenv/versions/3.3.0-dev/lib/ruby/3.3.0+0

​ /Users/noel/.rbenv/versions/3.3.0-dev/lib/ruby/3.3.0+0/arm64-darwin23

The site_ruby directories are intended to hold modules and extensions that
you’ve added. The architecture-dependent directories (arm64-darwin21 in this
case) hold executables and other things specific to this particular machine.
All these directories are automatically included in Ruby’s search for
libraries.

Sometimes this isn’t enough. Perhaps you’re working on a large project
written in Ruby, and you and your colleagues have built a substantial library

of Ruby code. You want everyone on the team to have access to all this
code. And, for some reason, you don’t want to package it as a Ruby gem,
you just want it to be in a known location in the file tree.

You have a couple of options to accomplish this. You can set the
environment variable RUBYLIB to a list of one or more directories to be
searched. (The separator between entries is a semicolon on Windows; for
Unix, it’s a colon.) If your program is not setuid, you can use the command-
line parameter -I to do the same thing.

The Ruby variable $: is an array of places to search for loaded files. As
we’ve seen, this variable is initialized to the list of standard directories, plus
any additional ones you specified using RUBYLIB and -I. You can always add
directories to this array from within your running program. Prior to Ruby
1.9, this used to be a common idiom:

​ $: << File.​dirname​(​__FILE__​)

​ require ​'other_file'​

This added the directory of the running file to the search path, so
other_file.rb could be found there by the subsequent require. Now we use
require_relative instead.

​ require_relative ​'other_file'​

Using the Rake Build Tool
Another way to structure code that can be easily invoked from the
command line is with a useful utility program called Rake. Written by Jim
Weirich, Rake was initially implemented as a Ruby version of Make, the
Unix build utility. However, calling Rake a build utility is to miss its true
power. Really, Rake is an automation tool—it’s a way of putting all those
tasks that you perform in a project into one neat and tidy place.

Rake gives you a convenient way to define small tasks and task
dependencies, allowing you to say that a particular task requires a different
task to run first. Rake also allows you to automate transitions between files
based on file extensions, for example, converting all your .csv files to .json.

Let’s start with an example. As you edit files, you might accumulate backup
files in your working directories. On Unix systems, these files usually have
the same name as the original files, but with a tilde character appended. On
Windows boxes, the files usually have a .bak extension.

We could write a Ruby program that deletes these files. For a Unix box, it
might look something like this:

​ require ​"fileutils"​

​ files = Dir[​"*~"​]

​ FileUtils.​rm​(files, ​verbose: ​​true​)

The FileUtils module defines methods for manipulating files and directories
(see the description in the library section). Our code uses its rm method. We
use the Dir class to return a list of filenames in the current directory
matching the given pattern and pass that list to rm.

Let’s package this code as a Rake task—a chunk of code that Rake can
execute for us.

By default, Rake searches the current directory (and its parents) for a file
called Rakefile. This file contains definitions for the tasks that Rake can run.

So, put the following code into a file called Rakefile:

​ desc ​"Remove files whose names end with a tilde"​

​ task ​:delete_unix_backups​ ​do​

​ files = Dir[​"*~"​]

​ rm(files, ​verbose: ​​true​) ​unless​ files.​empty?​

​ ​end​

Although it doesn’t have an rb extension, the Rakefile is actually just a file of
Ruby code. Rake defines an environment and methods including desc and
task and then executes the Rakefile.

The desc method provides a single line of documentation for the task that
follows it. The task method defines a Rake task that can be executed from
the command line. The parameter is the name of the task (a symbol), and
the block that follows is the code to be executed. Here we can just use rm—
all the methods in FileUtils are automatically available inside Rake files.

We can invoke this task from the command line:

​ ​$ ​​rake​​ ​​delete_unix_backups​

One quick note: if you’re using Ruby on Rails, the rails command also
searches for available Rake tasks, so within a Rails application, you could
execute this as rails delete_unix_backups.

Okay, now let’s write a second task in the same Rakefile. This one deletes
Windows backup files.

​ desc ​"Remove files with a .bak extension"​

​ task ​:delete_windows_backups​ ​do​

​ files = Dir[​"*.bak"​]

​ rm(files, ​verbose: ​​true​) ​unless​ files.​empty?​

​ ​end​

We can run this with rake delete_windows_backups.

But let’s say that our application could be used on both platforms, and we
wanted to let our users delete backup files on either one of them. We could
write a combined task, but Rake gives us a better way—it lets us compose
tasks. Here, for example, is a new task:

​ desc ​"Remove Unix and Windows backup files"​

​ task ​delete_backups: ​[​:delete_unix_backups​, ​:delete_windows_backups​] ​do​

​ puts ​"All backups deleted"​

​ ​end​

The task’s name is delete_backups, and it depends on the two other tasks.
This isn’t some special Rake syntax. We’re simply passing the task method
a Ruby hash containing a single entry whose key is the task name and
whose value is the list of antecedent tasks. Rake parses the hash to create
the list of task dependencies. In this case, Rake will execute the two
platform-specific tasks in the order they are listed before executing the
delete_backups task:

​ ​$ ​​rake​​ ​​delete_backups​

​ rm entry~

​ rm index.bak list.bak

​ All backups deleted

If those dependent tasks have their own dependent tasks, then those tasks
are run first, and as a result, it’s possible to build complex trees of task
execution while keeping each individual task relatively small.

Our current Rakefile contains some duplication between the Unix and
Windows deletion tasks. As it is just Ruby code, we can define a Ruby
method to eliminate this:

​ ​def​ ​delete​(pattern)

​ files = Dir[pattern]

​ rm(files, ​verbose: ​​true​) ​unless​ files.​empty?​

​ ​end​

​ desc ​"Remove files whose names end with a tilde"​

​ task ​:delete_unix_backups​ ​do​

​ delete(​"*~"​)

​ ​end​

​

​ desc ​"Remove files with a .bak extension"​

​ task ​:delete_windows_backups​ ​do​

​ delete(​"*.bak"​)

​ ​end​

​

​ desc ​"Remove Unix and Windows backup files"​

​ task ​delete_backups: ​[​:delete_unix_backups​, ​:delete_windows_backups​] ​do​

​ puts ​"All backups deleted"​

​ ​end​

All these tasks as written here use the current directory, but you might want
to run the task on an arbitrary directory passed via the command line
(something like rake delete_unix_backups subdir). But there’s a problem:

​ ​$ ​​rake​​ ​​delete_unix_backups​​ ​​subdir​

​ Don't know how to build task 'subdir'

​ (See the list of available tasks with `rake --tasks`)

Rake interprets a command-line argument as another task to run. (Rake
doesn’t interpret flag arguments like -d as tasks, but that doesn’t help us
here.)

If you do want to pass a command-line argument to Rake, you have a
couple of options. Rake has a mechanism to allow command-line
arguments, but it’s a little convoluted.

First, you need to define the arguments in the task, the syntax sets them up
as extra arguments in the task definition:

​ ​def​ ​delete​(dir, pattern)

​ files = Dir[​"​​#{​dir​}​​/​​#{​pattern​}​​"​]

​ rm(files, ​verbose: ​​true​) ​unless​ files.​empty?​

​ ​end​

​

​ desc ​"Remove files with a .bak extension"​

​ task ​:delete_windows_backups​, [​:dir​] ​do​

​ delete(args[​:dir​], ​"*.bak"​)

​ ​end​

​

​ desc ​"Remove files whose names end with a tilde"​

​ task ​:delete_unix_backups​, [​:dir​] ​do​ |t, args|

​ delete(args[​:dir​], ​"*~"​)

​ ​end​

​

​ task ​:delete_backups​, [​:dir​]: [​:delete_unix_backups​, ​:delete_windows_backups​
]

So, the second argument to the task is an array of the names of all the
expected command-line arguments. If the task has both dependencies and
expected command-line arguments, then the hash is keyed off the
command-line arguments, as in task :delete_backups, [:dir]: [:delete_unix_backups,

:delete_windows_backups]. The block that defines the task takes a new
argument, which this code calls args. That argument is a hash, the keys are
the names specified in the task definition, in this case :dir and the values are
the passed values from the command line.

The command-line invocation is a little weird:

​ ​$ ​​rake​​ ​​delete_backups[code]​

The arguments go inside square brackets, and if multiple arguments exist,
they are separated by commas as in $ rake delete_backups[code,verbose]. As an
extra syntax gotcha, you can’t have spaces before the brackets or on either
side of the comma. So this is a little awkward.

Making it more awkward is that if you’re using Z shell, this flat-out doesn’t
work because Z shell uses brackets for its own purposes. You can get
around this by defining an alias alias rake="noglob rake", which will turn off Z
shell’s use of brackets for the command. (If you don’t use Z shell or this
paragraph doesn’t make sense, you can safely ignore it.)

So, while you can pass command-line arguments using Rake, the syntax
isn’t exactly easy. An alternative to consider is just using OptionParser.
With OptionParser, you can pass arguments after a --, and they’ll get passed
to the task and parsed. It’s a little tricky because you want to make sure you
don’t get the --, so you need to add an OptionParser call to clarify that:

​ ​def​ ​delete​(dir, pattern)

​ files = Dir[​"​​#{​dir​}​​/​​#{​pattern​}​​"​]

​ rm(files, ​verbose: ​​true​) ​unless​ files.​empty?​

​ ​end​

​

​ desc ​"Remove files whose names end with a tilde"​

​ task ​:delete_unix_backups​ ​do​

​ dir = ​"."​

​ parser = OptionParser.​new​

​ parser.​on​(​"-d DIR"​) { |opt| dir = opt }

​ args = parser.​order!​(ARGV) {}

​ parser.​parse!​(args)

​ delete(dir, ​"*~"​)

​ ​end​

Then you’d call this with rake delete_unix_backups -- -d code. The parse!

command removes the options from ARGV, preventing Rake from
considering them as their own tasks.

If a Rake task is named default, it’ll be executed if you invoke Rake with no
parameters: just $ rake. Most Ruby applications and gems set the default
task to run tests. Rake also allows you to set up two special variables called
CLEAN and CLOBBER, which initially are an empty list of files that you can
add to, as in CLEAN << Dir["*.bak"]. If those lists aren’t empty, then Rake
automatically defines two tasks named clean and clobber that delete all the
files in the respective file list. The terms “clean” and “clobber” are inherited
from Make. Typically, “clean” removes intermediate files but allows the
end files to stick around, while “clobber” removes intermediate and final
files.

You can find a list of the tasks implemented by a Rake file (or, more
accurately, the tasks for which there’s a description) using this:

​ ​$ ​​rake​​ ​​-T​

​ (in /Users/dave/BS2/titles/ruby4/Book/code/rake)

​ rake delete_backups ​# Remove Unix and Windows backup files​

​ rake delete_unix_backups ​# Remove files whose names end with a tilde​

​ rake delete_windows_backups ​# Remove files with a .bak extension​

This section only touches on the full power of Rake. It can handle
dependencies between files (for example, rebuilding an executable file if
one of the source files has changed), it knows about running tests and
generating documentation, and it can even package gems for you. Martin
Fowler has written a good overview of Rake[21] if you’re interested in
digging deeper.

The Build Environment
When Ruby is compiled for a particular architecture, all the relevant
settings used to build it (including the architecture of the machine on which
it was compiled, compiler options, source code directory, and so on) are
written to the module RbConfig within the library file rbconfig.rb. After
installation, any Ruby program can use this module to get details on how
Ruby was compiled:

​ require ​"rbconfig"​

​ ​include​ RbConfig

​ CONFIG[​"host"​] ​# => "arm64-apple-darwin23"​

​ CONFIG[​"libdir"​] ​# => "/Users/noel/.rbenv/versions/3.3.0-dev/lib"​

Extension libraries use this configuration file to compile and link properly
on any given architecture.

[20]

[21]

What’s Next
Now that we’ve seen how to run our Ruby files from the command line and
use command-line and environment options within Ruby, we’re ready to
look at the entire Ruby gems system for packaging tools, managing
dependencies, and organizing code.

Footnotes

http://whatisthor.com

http://martinfowler.com/articles/rake.xhtml

Copyright © 2024, The Pragmatic Bookshelf.

http://whatisthor.com/
http://martinfowler.com/articles/rake.xhtml

Chapter 15

Ruby Gems

One of the tremendous benefits of being a Ruby developer is being able to
take advantage of the entire ecosystem of other Ruby developers who have
written and shared useful tools with the community. These tools are called
gems, a term that can refer to the individual tools and the library of code
that manages packaging the tools and distributing them. Ruby comes
standard with RubyGems, a command-line tool for installing and managing
Ruby gems, and Bundler, a tool for creating manifests of gem versions so
that developers all use the same set of dependencies.

Not only can you use existing gems, but you can also write your own. Even
if you don’t intend on sharing your gem, the basic structure of a Ruby gem
is a good skeleton for your application. And if you do want to share your
gem, you can do that via the central repository at http://www.rubygems.org.

http://www.rubygems.org/

Installing and Managing Gems
All the RubyGems tooling comes standard as a part of Ruby, including the
command-line application gem, which you can use for many of your
RubyGem-related needs. Ruby gems conform to a standardized format that
provides metadata about the gems and most importantly about any other
gems that this gem might depend on. The gem command-line tool knows to
look in the central repository for gems, but you can also point it to look at
other sources. Using other sources allows you to maintain a private gem
repository, for example, as a place to keep internal tooling that you don’t
want to be made public.

In this section, we’ll talk about managing gems directly from the command
line, which is useful, but please keep in mind that on any application that’s
at all complex, much of the installation and gem management will be
handled by Bundler, which we’ll look at in ​Using Bundler to Manage
Groups of Gems​.

Searching for Gems
Let’s start by finding a gem to install. So far, the only gem we’ve discussed
is RSpec, which will be a suitable example for our purposes. To download a
gem, we need to know the exact name under which the gem is stored in the
central gems repository. In this case, which is fairly typical, the internal
name of the gem, rspec, is the lowercase version of the colloquial name,
RSpec.

Gem naming can be complicated, especially if the gem name is more than
one word. You can find out the official name of a gem in a couple of
different ways.

If you go to the RubyGems website at rubygems.org, you’ll see a very
prominently placed search feature. Typing “RSpec” into the search bar

gives us a list of search results which tells us that rspec is the gem’s official
name and that there are a lot of gems whose names start with rspec-. (RSpec
is split among several smaller gems, and there are also extensions to RSpec
that use the same naming convention.) Clicking on RSpec takes us to the
RubyGems page for RSpec.

This page has a lot of useful information including the name of the gem, its
self-description (“BDD for Ruby”), the current version (3.12.0, as of this
writing), a list of previous versions, and a list of the owners of the gem. The
right column includes the number of times the gem has been downloaded,
the syntax for including the gem in a Gemfile or for installing it from the
command line (we’ll get to that in a second), a Homepage link, a Source
Code repo link (often the same as the Homepage link), and a few other links
that for most gems will all link back to the same GitHub page.

You can get some of this information from the command line:

​ ​$ ​​gem​​ ​​search​​ ​​rspec​​ ​​-erd​

​ rspec (3.12.0)

​ Authors: Steven Baker, David Chelimsky, Myron Marston

​ Homepage: http://github.com/rspec

​

​ rspec-3.12.0

The gem search command searches the local and remote gem repositories for
the text argument. The options used here are -e for “exact”, which is
searching for an exact match rather than a partial match (a partial match
would give us a page or two of gems that contain the word “rspec”), -r for
“remote only”, and -d for “details” (without this we’d just get the names of
the gems).

If we want to list gems locally, the command is gem list. You can find a full
description of all the gem command-line commands at
https://guides.rubygems.org/command-reference.

https://guides.rubygems.org/command-reference

Installing a Gem
After identifying the gem, the next step is to install it locally, which you can
do with gem install:

​ ​$ ​​gem​​ ​​install​​ ​​rspec​

​ Successfully installed rspec-3.12.0

​ Parsing documentation for rspec-3.12.0

​ Installing ri documentation for rspec-3.12.0

​ Done installing documentation for rspec after 0 seconds

​ 1 gem installed

The resulting text tells us that the most recent version of RSpec has been
installed, as well as the documentation for RSpec via the ri tool that we’ll
talk about in Chapter 19, ​Documenting Ruby​. Uninstalled dependent gems,
if any, would also be installed at this time. (The machine this is running on
already has RSpec’s dependencies installed.)

What does it mean to install a gem? First off, the gem tool interacts with
your current Ruby runtime to place the gem in a known location.

We can find out where that is:

​ ​$ ​​gem​​ ​​which​​ ​​rspec​

​ /Users/noel/.rbenv/versions/3.3.0/lib/ruby/gems/3.3.0/gems/rspec-
3.12.0/lib/rspec.rb

If you’re running gem install on a Unix platform and you aren’t using a Ruby
version manager, you’ll need to prefix the command with sudo because by
default the local gems are installed into shared system directories.

The exact location will depend on the operating system and the Ruby
version manager you’re using. In this case, the Ruby version manager
maintains a hidden directory in my home directory for all the Ruby versions
it is managing (/Users/noel/.rbenv/versions), and a specific subdirectory for the
currently running version (/3.3.0). Inside that directory, the rest of the
structure is managed by Ruby gems. There is a general set of directories for

the version (/lib/ruby/gems/3.3.0/gems), a specific directory for this gem
(/rspec-3.12.0), and then the path to the actual main script of the gem, which
will typically install everything needed to use the gem (lib/rspec.rb).

Gem Version Numbers

You might wonder why the path to a gem file contains two
apparently redundant folder names based on the version, in our
case, 3.3.0 and 3.3.0. The two directories are managed by
different parts of the system. The outer 3.3.0 is managed by the
Ruby version manager, and if you have multiple Ruby versions
installed, you’ll see that they each have different directories.
This means that each version of Ruby gets its own separate
copy of each gem. (It also means that you can reclaim some
disc space by deleting versions of Ruby you don’t use
anymore.) The inner 3.3.0 is managed by Ruby itself and is the
name of the directory that Ruby is using to look for gems. Each
version of Ruby should have only one directory here.

Now the gem is installed, which means that any Ruby program can use
require "rspec" and the RSpec library will be usable as if it were part of the
Ruby standard library. You’ll need to check out the documentation for each
gem to see how to use it. Often that documentation is accessible from the
gem’s home page.

The gem command has a lot of options, but the one you’re most likely to use
is -v or --version. When we installed RSpec, RubyGems installed the most
recent version of the gem. Sometimes, you actually need a different gem
version from the most recent, usually for compatibility with a specific
version of Ruby. You can specify the version string at the command line
with -v "3.0.0" or whatever the actual version you need. You can have

multiple versions of the same gem installed locally, but a general require

statement will load the one with the highest version number. If you need to
use a different version number, we recommend using Bundler.

With the gem installed, you can browse the source code locally with gem

open <GEMNAME>, which opens the directory with that gem in your current
system editor. You can edit the files in the gem, and because Ruby is an
interpreted language, those edits will be available to other code that uses the
gem, the interpreter will load your changes. The most common case here is
to place logging statements to aid in debugging. If you get too tangled up in
your own edits, the command gem pristine <GEMNAME> will reinstall the
original gem, and gem uninstall <GEMNAME> will remove the gem.

Using Bundler to Manage Groups of Gems
Gems are pretty great, and any reasonably sized Ruby program will likely
depend on many of them, each of which may have its own gem
dependencies. This can easily become a management problem in and of
itself. How can you have multiple programs on one machine that might use
different versions of a gem? Or, because gems change all the time, how can
you guarantee that everybody working on the application will be using the
same set of gems?

The answer to both of these questions and many more is Bundler.[22]

Bundler is itself a Ruby gem, and it manages a manifest file of the gems
and versions in use on a project. Bundler allows you to specify the versions
in use and limit your Ruby programs to only find the specific version of a
gem endorsed by Bundler.

To use Bundler, you first must install it. It’s a Ruby gem, so gem install

bundler will do it for you. The installation gives you the bundler command-
line program, which you then use to manage your gems.

Building a Gemfile
To use Bundler effectively, you create a listing of all the gems in your
application in a file called Gemfile. The Gemfile should be in the root
directory of your application.

Here’s a small sample, which happens to be the Gemfile used for this
book’s code examples and code management, at least so far (slightly
edited):

​ source ​"https://rubygems.org"​

​

​ ruby ​"3.3.0"​

​

​ gem ​"debug"​

​ gem ​"i18n"​

​ gem ​"nokogiri"​

​ gem ​"pry"​

​ gem ​"pry-byebug"​

​ gem ​"rack"​

​ gem ​"rackup"​

​ gem ​"rspec"​

​ gem ​"solargraph"​

​ gem ​"standard"​

​ gem ​"yard"​

The Gemfile is made up of a series of different statements that describe the
set of all the gems being used by the project. The Gemfile is actually Ruby
code, which means that each line is actually a Ruby method call (without
parentheses) and also that Ruby syntax can be used if the Gemfile gets more
complicated.

The first line declares a source, we’re using "https://rubygems.org", which is
the central repository for RubyGems, but you could also create your own
server and use that as a source. Many companies use internal gem servers to
distribute common internal code that’s not public. You can declare multiple
sources, but the recommendation is to have one top-level source and limit
the scope of secondary sources. (You’ll see how to do that in a moment.)

The next line specifies the Ruby version that this application expects. As we
saw in the previous section, Ruby gems are matched to specific versions of
Ruby and stored separately for different versions. This line of code specifies
an exact version of Ruby—unlike gem declarations, the Ruby version must
be exact.

After that, we declare gems. Each gem declaration is the word gem followed
by the official name of the gem. The order of the gem listings doesn’t
matter, but it’s considered polite to keep them alphabetical.

That’s a pretty basic Gemfile, as you’ll see shortly, but they can get more
complicated.

Using a Gemfile
Now that we have a Gemfile, we are most likely to do these three important
things:

Install the listed gems.
Run a program that has visibility to those gems, and only those gems.
Update the gems when new versions are released.

Bundle Install
To install a set of gems, you use the command bundle install, which performs
a gem install on all the gems listed in the Gemfile. If you run the command,
you’ll see something like the following example. (The exact output depends
on what’s already installed.)

​ ​$ ​​bundle​​ ​​install​

​ bundle install

​ Fetching gem metadata from https://rubygems.org/.........

​ Fetching ast 2.4.2

​ Installing ast 2.4.2

​ ​...​​ ​​MORE​​ ​​GEMS​​ ​​...​

​ Bundle complete! 6 Gemfile dependencies, 40 gems now installed.

​ Use `bundle info [gemname]` to see where a bundled gem is installed.

If you compare that output to the Gemfile for this book listed earlier, you’ll
see that the first gem that Bundler installs is ast, which is interesting
because our Gemfile doesn’t reference ast.

Bundler is installing not only the gems listed in our Gemfile, but also their
dependencies and transitive dependencies all the way down. Bundler
downloads those files to exactly the same place that a regular gem install

would, meaning it depends on your operating system and Ruby version
manager. Unless otherwise specified, Bundler installs the most recent
version of the gem.

When you install your Gemfile with Bundler, Bundler creates a new file,
Gemfile.lock. The lock file is important because that’s where Bundler stores
the actual versions of the gems that have been installed.

​ GEM

​ remote: https://rubygems.org/

​ specs:

​ ast (2.4.2)

​ backport (1.2.0)

​ benchmark (0.2.0)

​ concurrent-ruby (1.1.10)

​ debug (1.5.0)

​ irb (>= 1.3.6)

​ reline (>= 0.2.7)

​

​ ... THERE'S MORE, LOCK FILES CAN GET LONG ...

​

​ PLATFORMS

​ arm64-darwin-21

​

​ DEPENDENCIES

​ debug

​ i18n

​ nokogiri

​ rspec

​ solargraph

​ standardrb

​

​ RUBY VERSION

​ ruby 3.3.0p0

​

​ BUNDLED WITH

​ 2.4.20

This shows the actual version loaded for each gem, and in the case of debug,
it shows the dependent gems (irb and reline) and the acceptable version
range for each of them. It ends with a list of platforms that the bundle has
been built for (this information is used for gems that include native code
components, and so they need to be compiled locally by the operating
system), the Ruby version, and the version of Bundler.

The lock file is there to be an exact snapshot of the versions of all the gems
in use by the application. When bundle install is called again, if there is a
Gemfile.lock file, Bundler uses the information in the lock file to determine
which version of each gem to install. The lock file, if it exists, is the most
trusted source for which version of each gem should be installed.

If, after I install this bundle, there’s a new version of RSpec released, my
bundle will continue using the older version as listed in the lock file until I
explicitly update RSpec’s version.

This is great because any developer in the future who’ll work on this code
base will automatically use Bundler to install the exact same set of gem
versions as every other developer. (And of course, “any developer” doesn’t
just mean other people, it also means you in six months.)

Bundle Exec and Bundle.require
Being able to load a specific set of gem versions is a good start, but you
also need to be able to find those specific versions when you run your code.
You might have multiple different applications that use different versions of
RSpec. RubyGems will store all those different versions for you, but each
individual application needs to be matched to the version it expects given
its lock file. How can we ensure that when we use require we get the
expected gem version?

Bundler provides a command called bundle exec that manages this
bookkeeping for us. You use it by prepending bundle exec before whatever
command you want to run, as in bundle exec rspec spec/my_spec.rb.

The bundle exec command does some manipulation of your environment.
Basically, it modifies RubyGems itself to limit RubyGems to loading the
gems in the bundle, and it also manages the command-line environment so
that normal command-line things work without surprise. Calling rspec, for
example, which is an executable script created by a gem, requires some

background environment management to make sure the correct version of
RSpec is called.

Alternatively, inside your code, before you use any gems, you can use
require "bundler/setup", which will do the same RubyGems manipulation to
manage references to gems, and will autoload the gems so you don’t have to
require them individually. Many frameworks, such as Ruby on Rails, do the
Bundler setup as part of their regular boot process. That said, if you bundle

exec code that also has a require "bundler/setup" that’s fine, the management
work will only be done once.

If you get tired of typing bundle exec and you’re using gems that don’t
autoload when you run them (like RSpec), Bundler offers binstubs, which
are a way for Bundler to create a wrapper program around a specific
executable Ruby program defined by your gems that invokes Bundler
before it starts.

As you’ll see in ​Writing and Packaging Your Own Code into Gems​, gems
can signal to their users that there are top-level executable commands that
are part of the gem. RSpec, the gem, offers rspec the command as its test
runner. But if we don’t want to keep typing bundle exec rspec, we can ask
Bundler to create a binstub for us.

​ ​$ ​​bundle​​ ​​binstubs​​ ​​rspec​

​ rspec has no executables, but you may want one from a gem it depends on.

​ rspec-core has: rspec

Oops. Turns out the rspec gem itself has almost no code. It’s only a way to
get all the dependent pieces of RSpec in one place. Let’s try this again:

​ ​$ ​​bundle​​ ​​binstubs​​ ​​rspec-core​

There’s no output here, but we now have a file at bin/rspec. (If you call
bundle binstubs and don’t specify a gem, it’ll run through all the gems in your
bundle and create all their binstubs.)

The generated binary file has some boilerplate to make sure the
environment is correct, but the main part is at the end:

​ require ​"rubygems"​

​ require ​"bundler/setup"​

​

​ load Gem.​bin_path​(​"rspec-core"​, ​"rspec"​)

It requires bundler/setup and then loads the rspec script via RubyGems. As a
result, you now have a bin/rspec that behaves the same as bundle exec rspec.

If you don’t think that’s much better, what you can then do is set up your
Unix shell’s $PATH variable with something like export PATH="./bin:$PATH",
and then you can use $ rspec like before and the version in ./bin will be found
first and executed. If this paragraph doesn’t make sense, check out
Appendix 3, ​Command-Line Basics​, for context.

By default, when you engage Bundler via Bundler.require or require

"bundler/setup" each gem will be autoloaded under the name of the gem. In
other words, gem rspec implies require "rspec". In some cases this behavior
isn’t helpful. Sometimes the gem actually has a require file that’s not the
same as the name of the gem (this was much more common in the past, but
gems have tended to converge on the convention that makes using Bundler
easier). Sometimes the gem has undesirable behavior when loaded at the
top of the program and you only want to require it at a specific point—
perhaps it does extra logging or something.

You can control the require behavior by augmenting the line of gem code
with a require: keyword option. If the option is false, then the gem isn’t auto-
required:

​ gem ​"rspec"​, ​require: ​​false​

If the option is a string, then the gem is auto-required, but using the name of
the require option rather than the name of the gem. More rarely, if the gem

is an array of strings, each of those names is required when Bundler
autoloads.

Bundle Update
Now that we’ve loaded our gems and made sure we’re using the right
versions, things are great. For a while. But then, time passes, as it does, and
new versions of gems are released. And as great as it is that Bundler is
keeping our gems stabilized, we’d like to upgrade.

The command for upgrading is bundle update. If it’s called without any
arguments, it’ll update all gems in the Gemfile to the most recent version
(or the most recent version allowed by the version specifier, which we’ll
look at later) and then will update the entire Gemfile.lock in response.
Normally, Bundler will attempt to resolve existing version dependencies
before updating. But you can force it to reconsider the entire file with bundle

update --all. You can get the same functionality by deleting the Gemfile.lock

and re-running bundle install, which is a fact that you might want to keep in
your back pocket for a day when Bundler’s dependency management seems
to be spinning its wheels.

You can update a subset of your Gemfile by listing those gems after the
command, as in bundle update rspec. The gems you list can either be gems
that are explicitly in the Gemfile itself or any dependency in the lock file.
Bundler will update the listed gems to their most recent versions (again
bounded by version specifiers) and will also update all dependencies of
these gems. There may be some reason why you don’t want to update the
downstream dependencies, in which case you can attach the option --
conservative to the end of the bundle update command.

Gemfile Options
The Gemfile you saw earlier in ​Building a Gemfile​, is a minimal file. In
particular, each gem listing can have options that specify more information

about where to get the gem in question.

Versioning
The most important information to list about the gem is whether to restrict
its version. If you don’t specify a version, Bundler will load the most recent
version. But you may not want Bundler to load the most recent version. If
you’re depending on a feature that was added to the gem along the way, you
may want to specify a minimum version. If you know that a future version
of the gem breaks compatibility, you’d want to add a maximum version. Or,
you may want to say “don’t update this gem without me explicitly saying
so.”

When you add a gem to a Gemfile, you can add one or more optional
version specifiers. (We’ll see in ​Writing and Packaging Your Own Code
into Gems​, that individual gems also use version specifiers to manage their
dependency lists.)

The simplest version specifier is just an exact version number:

​ gem rspec, ​"3.11.0"​

Specifying an exact version number means that Bundler won’t change the
version behind your back, but it also means that you lose some flexibility to
respond to version changes or requirements. If you want that version to be a
minimum, you can use a greater-than or greater-than-or-equal symbol.

​ gem rspec, ​">= 3.11.0"​

Similarly, a < or <= operator sets the version as a maximum. If you’re setting
a version ceiling, there’s often a reason, and we recommend commenting
the Gemfile to say what the reason is and what to look for to be able to lift
the ceiling. Otherwise, over time, you’ll wind up with multiple gems in the
Gemfile that you want to upgrade but are afraid of negative side effects.
Ask us how we know.

You can use the full set of Ruby operators for version specifiers—this table
outlines what they mean in context.

Table 5. Version operators

Operator Description

= Exact version match. Major, minor, and patch levels must be
identical.

!= Any version that’s not the one specified.

> Any version that’s greater (even at the patch level) than the
one specified.

< Any version that’s less than the one specified.

>= Any version greater than or equal to the specified version.

<= Any version less than or equal to the specified version.

~> Pessimistic version constraint operator, officially.
Sometimes called the "twiddle-wakka" or "squiggle rocket"
because the Ruby community contains multitudes. This
operator allows updated versions if the new version differs
from the current version only in the last digit specified.

That last operator in the table (~>) could use a little explanation. The idea is
to allow for patch updates that are probably bug fixes but not allow larger
updates that might have breaking changes. So, you might want to specify
gem "rspec", "~> 3.11.0", and when RSpec releases a patch version 3.11.1,

you’ll get that version with a bundle update, but when they update the minor
version to 3.12.0, you won’t get that version. The ~> operator is usually used
with major, minor, and patch versions specified, but you don’t have to do
that. You could specify gem "rspec", "~> 3.11", in which case you’d get 3.11.1

and 3.12.0, but not 4.0.0.

There’s one other twist here: sometimes you want to use a gem that has
been released in a beta version. Gem versioning assumes that a version
number is a pre-release version if it contains a letter character. You can get
pre-release versions of gems by including letters in your version specifier:
gem "rspec", ">= 3.11.0.beta.1.

If you’ve specified a pre-release version, Bundler will look at all pre-release
versions when resolving its install or update, so >= 3.11.0.beta.1 would still
receive the updated version when 3.11.0.beta.2 is released because the
operator is greater than and beta.2 is higher than beta.1.

The sorting is alphabetical for sections that contain letters and numeric for
sections that don’t. Sometimes this can be confusing. For example,
RubyGems considers 7.0.0.pre.1 to be greater than 7.0.0.beta.1, but Ruby on
Rails releases pre before beta, so you can get the wrong version if you aren’t
careful. (Be sure to check the lock file to see what version you’re actually
using.)

Sometimes you need to use a gem that’s so far into pre-release that it hasn’t
actually been released as a gem and only exists in a git repo or even in a
local directory on your computer. Often you need this to test gems that
you’re currently developing or to help test other people’s work before the
official release.

You can get access to unreleased gems via Bundler with different options in
the Gemfile. Generically, I can access any remote git server with the git:

option:

​ gem ​"rspec"​, ​git: ​​"git@github.com:rspec/rspec-metagem.git"​

Any of the Git access versions will work here, assuming that you have the
appropriate access to the remote Git server.

If the gem is hosted on GitHub, there’s a shortcut:

​ gem ​"rspec"​, ​github: ​​"rspec/rspec"​

And Bundler will use your GitHub access to install the gem. (There’s a
similar option for BitBucket.) In both cases, you can further specify which
part of the repo you want with a branch:, tag:, or ref: option.

When using a git source, you must bundle update to change the git commit
that you are pointing to.

If you’re working on the gem yourself locally, you can specify a path option
that points to the top-level directory of the gem (specifically, the location of
the .gemspec file) relative to the location of the Gemfile:

​ gem ​"rspec"​, ​path: ​​"../development/rspec"​

Unlike a git source, when you use a path, Bundler executes the local source
directly each time, so you don’t need to bundle update to get the newest
version of a gem you’re working on locally.

Gemfile Groups
Another way to specify more information about a gem is with the groups
feature. A group is a collection of gems within a Gemfile that can be
included or not included together when Bundler is used. Commonly, this
feature is used to limit what gems are loaded based on environment or
context. You may have certain gems that are only useful in production, or
only needed when running tests.

You can attach gems to groups in two ways.

You can specify one or more groups for a gem by using the group: option
inside the gemfile. The argument is either a single symbol or an array of
symbols representing the group or groups that the gem is a part of:

​ gem ​"rspec"​, ​group: ​[​:development​, ​:test​]

We’ve assigned RSpec to the :development, and :test groups. The group
names are arbitrary, but it’s conventional to match them to environment
names when possible.

The other way you can attach gems to groups is to use the block form of
group. This is shorter in the common case where you have several gems
belonging to the same group or groups.

​ group ​:development​ ​do​

​ gem ​"standardrb"​

​ gem ​"debug"​

​ ​end​

​

​ group ​:development​, ​:test​ ​do​

​ gem ​"rspec"​

​ ​end​

If you have multiple group blocks with the same group name, the group
adds the contents of all of the blocks. In this example, the :development

group contains Standard, debug, and RSpec, while the :test group contains
only RSpec.

To use groups, you modify the Bundle setup instead of using require

"bundle/setup". You just use require "bundler" and then explicitly call
Bundler.setup with one or more group names.

​ require ​"bundler"​

​ Bundler.​setup​(​:development​, ​:test​)

Gems that aren’t a part of any group will always be installed, calling setup

with arguments additionally adds the gems that are in the specified groups.

If you’re using bundle exec to load a program, the default will be to install all
gems in all groups, but you can modify this with the environment variables
BUNDLE_WITH or BUNDLE_WITHOUT. BUNDLE_WITH creates a list of groups to
include and ignores other groups, and BUNDLE_WITHOUT creates a list of
groups to exclude and includes all other groups.

​ ​$ ​​BUNDLE_WITH=test​​ ​​bundle​​ ​​exec​​ ​​rspec​

If one of the environment variables is set, then groups will only be loaded if
they conform to the logic of the environment variables.

Writing and Packaging Your Own Code into Gems
RubyGems isn’t only for downloading gems; you can also write and distribute
your own gems. Even if you don’t plan to distribute a gem, the default
packaging for RubyGems can help you plan the basic structure of your Ruby
code. There used to be multiple sources for how to structure a Ruby gem, but
Bundler also provides a default template that has become the basic standard.

As your programs grow (and they all seem to grow over time), you’ll find that
you’ll need to start organizing your code. Simply putting everything into a
single huge file becomes unworkable and makes it hard to reuse chunks of
code in other projects. So, we need to find a way to split our project into
multiple files and then knit them together as our program runs.

There are two major aspects to this organization. The first is internal to your
code: how do you prevent different things with the same name from clashing?
The second area is related: how do you conveniently organize the source files
in your project?

Single File Projects
Small, self-contained scripts can be in a single file. But if you do this, you
won’t easily be able to write automated tests for your program because the test
code won’t be able to load the file containing your source without the program
itself running. So, if you want to write a small program that also has
automated tests, split that program into a trivial driver that provides the
external interface (the command-line part of the code) and one or more files
containing the rest. Your tests can then exercise these separate files without
actually running the main body of your program.

Let’s try this for real. Here’s a simple program that finds anagrams in a
dictionary. Feed it one or more words, and it gives you the anagrams of each.
Here’s an example:

​ ​$ ​​ruby​​ ​​anagram.rb​​ ​​teaching​​ ​​ruby​

​ Anagrams of teaching: cheating, teaching

​ Anagrams of ruby: bury, ruby

If we were typing in this program for casual use, we might enter it into a
single file (perhaps anagram.rb).

gems/anagram.rb

​ ​#!/usr/bin/env ruby​

​

​ require ​'optparse'​

​

​ dictionary = ​"/usr/share/dict/words"​

​

​ OptionParser.​new​ ​do​ |opts|

​

​ opts.​banner​ = ​"Usage: anagram [options] word..."​

​

​ opts.​on​(​"-d"​, ​"--dict path"​, String, ​"Path to dictionary"​) ​do​ |dict|

​ dictionary = dict

​ ​end​

​

​ opts.​on​(​"-h"​, ​"--help"​, ​"Show this message"​) ​do​

​ puts opts

​ exit

​ ​end​

​

​

​ ​begin​

​ ARGV << ​"-h"​ ​if​ ARGV.​empty?​

​ opts.​parse!​(ARGV)

​ ​rescue​ OptionParser::ParseError => e

​ STDERR.​puts​ e.​message​, ​"​​\n​​"​, opts

​ exit(-1)

​ ​end​

​ ​end​

​

​ ​# convert "wombat" into "abmotw". All anagrams share a signature​

​ ​def​ ​signature_of​(word)

​ word.​unpack​(​"c*"​).​sort​.​pack​(​"c*"​)

​ ​end​

​

​ signatures = Hash.​new​

http://media.pragprog.com/titles/ruby5/code/gems/anagram.rb

​ File.​foreach​(dictionary) ​do​ |line|

​ word = line.​chomp​

​ signature = signature_of(word)

​ (signatures[signature] ||= []) << word

​ ​end​

​

​ ARGV.​each​ ​do​ |word|

​ signature = signature_of(word)

​ ​if​ signatures[signature]

​ puts ​"Anagrams of ​​#{​word​}​​: ​​#{​signatures[signature].​join​(​', '​)​}​​"​

​ ​else​

​ puts ​"No anagrams of ​​#{​word​}​​ in ​​#{​dictionary​}​​"​

​ ​end​

​ ​end​

You might be wondering about the line word.unpack("c*").sort.pack("c*"). This
uses the function unpack to break a string into an array of characters, which are
then sorted and packed back into a string.

Anyway, this is fine as far as it goes. It’s a small bit of code that does a small
thing. We’re somewhat limited because it’s awkward to test code in the same
file (not impossible, but generally, the Ruby test libraries assume they’ll be in
their own files). We’ve put a bunch of variables in the global namespace,
which isn’t ideal, and generally, this code isn’t well-situated to manage
complexity.

You might think that because Bundler requires a separate Gemfile, you can’t
use it with a standalone single-file Ruby script. Actually, you can, through the
magic of bundler/inline.

Here’s an admittedly contrived example where we want to print the date that
we’re requesting an Anagram report, and we want to use the date_by_example
gem to display the date. By requiring bundler/inline we can then use a method
called gemfile that takes a block, like so:

gems/anagram_inline.rb

​ ​#!/usr/bin/env ruby​

​

http://media.pragprog.com/titles/ruby5/code/gems/anagram_inline.rb

​ require ​"optparse"​

​

» require ​"bundler/inline"​

»

» gemfile ​do​

» source ​"https://rubygems.org"​

» gem ​"date_by_example"​

» ​end​

​

​ dictionary = ​"/usr/share/dict/words"​

​

​ OptionParser.​new​ ​do​ |opts|

​ opts.​banner​ = ​"Usage: anagram [options] word..."​

​

​ opts.​on​(​"-d"​, ​"--dict path"​, String, ​"Path to dictionary"​) ​do​ |dict|

​ dictionary = dict

​ ​end​

​

​ opts.​on​(​"-h"​, ​"--help"​, ​"Show this message"​) ​do​

​ puts opts

​ exit

​ ​end​

​

​ ​begin​

​ ARGV << ​"-h"​ ​if​ ARGV.​empty?​

​ opts.​parse!​(ARGV)

​ ​rescue​ OptionParser::ParseError => e

​ warn e.​message​, ​"​​\n​​"​, opts

​ exit(-1)

​ ​end​

​ ​end​

​

​ ​# convert "wombat" into "abmotw". All anagrams share a signature​

​ ​def​ ​signature_of​(word)

​ word.​unpack​(​"c*"​).​sort​.​pack​(​"c*"​)

​ ​end​

​

​ signatures = {}

​

​ File.​foreach​(dictionary) ​do​ |line|

​ word = line.​chomp​

​ signature = signature_of(word)

​ (signatures[signature] ||= []) << word

​ ​end​

​

» puts ​"Anagram Report for ​​#{​Date.​today​.​by_example​(​"Jan 02, 2006"​)​}​​"​

​

​ ARGV.​each​ ​do​ |word|

​ signature = signature_of(word)

​ ​if​ signatures[signature]

​ puts ​"Anagrams of ​​#{​word​}​​: ​​#{​signatures[signature].​join​(​", "​)​}​​"​

​ ​else​

​ puts ​"No anagrams of ​​#{​word​}​​ in ​​#{​dictionary​}​​"​

​ ​end​

​ ​end​

Inside the gemfile block, we can do exactly the same things we can do in a
Gemfile, here we list a source and one dependent gem. When we run the file
normally, Bundler ensures that the gems are downloaded and automatically
requires them so that later in the script we can just use the gems—in this case,
the by_example call later on comes from the gem.

The main limitation to using bundle/inline is that because it’s meant to work on
one file, it doesn’t create a lock file. Other than that, it’s a great way to add a
little depth to a simple script before it becomes a full-fledged app.

Namespaces
One issue with our existing anagram script right now is that it puts variable
names in the global scope. We don’t declare a class in the script (at least, not
yet), but we do create dictionary and signatures, and if we had created a class,
that class would be in the global namespace, meaning that any other code in
the script could easily collide and overwrite it. This is, to put it mildly, not a
good feature for long-term growth. We need to be able to separate out different
parts of the code into different areas where they won’t interfere with each
other.

We’ve already encountered a way that Ruby helps you manage the names of
things in your programs. If you define methods or constants in a class, Ruby
ensures that their names can be used only in the context of that class (or its
objects, in the case of instance methods):

​ ​class​ Triangle

​ SIDES = 3

​ ​def​ ​area​

​ ​# ..​

​ ​end​

​ ​end​

​

​ ​class​ Square

​ SIDES = 4

​ ​def​ ​initialize​(side_length)

​ @side_length = side_length

​ ​end​

​

​ ​def​ ​area​

​ @side_length * @side_length

​ ​end​

​ ​end​

​

​ puts ​"A triangle has ​​#{​Triangle::SIDES​}​​ sides"​

​

​ sq = Square.​new​(3)

​ puts ​"Area of square = ​​#{​sq.​area​​}​​"​

Produces:

​ A triangle has 3 sides

​ Area of square = 9

Both classes define a constant called SIDES and an instance method area, but
these names don’t get confused. You access the instance method via objects
created from the class, and you access the constant by prefixing it with the
name of the class followed by a double colon. The double colon (::) is Ruby’s
namespace resolution operator. The thing to the left must be a class or module,
and the thing to the right is a constant defined in that class or module.

So, putting code inside a module or class is a good way of separating it from
other code. Ruby’s Math module is a good example—it defines constants such
as Math::PI and Math::E and methods such as Math.sin and Math.cos. You can
access these constants and methods via the Math module object:

​ Math::E ​# => 2.718281828459045​

​ Math.​sin​(Math::PI/6.0) ​# => 0.49999999999999994​

(Modules have another significant use—they implement Ruby’s mixin
functionality, which we discussed in ​Mixins​.)

Ruby has an interesting little secret. The names of classes and modules are
themselves just constants. Remember that we said that almost everything in
Ruby is an object. Well, classes and modules are too. The name that you use
for a class, such as String, is actually a Ruby constant containing the object
representing that class. And that means that, if you define classes or modules
inside other classes and modules, the names of those inner classes are
constants that follow the same namespacing rules as other constants:

​ ​module​ ​Formatters​

​ ​class​ Html

​ MEDIA_TYPE = ​"text/html"​

​ ​# ...​

​ ​end​

​

​ ​class​ Pdf

​ ​# ...​

​ ​end​

​ ​end​

​

​ html_writer = Formatters::Html.​new​

​ html_media_type = Formatters::Html::MEDIA_TYPE

You can nest classes and modules inside other classes and modules to any
depth you want (although it’s rare to see them nested more than three deep).

So, now we know that we can use classes and modules to partition the names
used by our programs.

Organizing Your Source Code
We have two related problems to solve: how do we split our source code into
separate files, and where in the file system do we put those files? Some
languages, such as Java, make this easy. They dictate that each outer-level
class should be in its own file and that file should be named according to the
name of the class. Other languages, such as Ruby, have no rules that relate
source files and their content. In Ruby, you’re free to organize your code as
you like.

That said, you’ll find that some kind of consistency helps. It’ll make it easier
for you to navigate your own projects, and it’ll also help when you read (or
incorporate) other people’s code.

The Ruby community has largely adopted a de facto standard. In many ways,
it follows the spirit of the Java model—each file is intended to have one top-
level module or class, and the name of that class is based on the name of the
file. (If you use Rails, the Zeitwerk[23] auto-loader enforces this pattern. You
can also use Zeitwerk to add auto-loading to your own gems.)

Looking at the anagram code, there appear to be three sections. The first
twenty-five or so lines do option-parsing, the next ten or so lines read and
convert the dictionary, and the last few lines look up each command-line
argument and report the result. Let’s split our file into four parts:

An option parser
A class to hold the lookup table for anagrams
A class that looks up words given on the command line
A small command-line interface

The first three of these are effectively library files, used by the fourth. We can
turn this into a gem, allowing access to anagram features for any program, and
the command-line interface. The standard gem structure is given to us by
Bundler, which doesn’t go with Bundler’s other features but is a standard tool
that you’re extremely likely to have around.

All we need is to name the gem. As it happens, both “anagrams” and
“anagram” are already taken. Let’s go with “aaagmnr”, which is the
“signature” of anagram given the code’s implementation of signatures and is
somehow not taken in the RubyGems central listing as I write this (there’s a
note about changing the initial git branch that we elided from the output):

​ ​$ ​​bundle​​ ​​gem​​ ​​aaagmnr​

​ Creating gem 'aaagmnr'...

​ MIT License enabled in config

​ Code of conduct enabled in config

​ Changelog enabled in config

​ Standard enabled in config

​ Initializing git repo in
/Users/noel/projects/pragmatic/ruby5/Book/code/gems/aaagmnr

​ create aaagmnr/Gemfile

​ create aaagmnr/lib/aaagmnr.rb

​ create aaagmnr/lib/aaagmnr/version.rb

​ create aaagmnr/sig/aaagmnr.rbs

​ create aaagmnr/aaagmnr.gemspec

​ create aaagmnr/Rakefile

​ create aaagmnr/README.md

​ create aaagmnr/bin/console

​ create aaagmnr/bin/setup

​ create aaagmnr/.gitignore

​ create aaagmnr/.rspec

​ create aaagmnr/spec/spec_helper.rb

​ create aaagmnr/spec/aaagmnr_spec.rb

​ create aaagmnr/.github/workflows/main.yml

​ create aaagmnr/LICENSE.txt

​ create aaagmnr/CODE_OF_CONDUCT.md

​ create aaagmnr/CHANGELOG.md

​ create aaagmnr/.standard.yml

​ Gem 'aaagmnr' was successfully created.

​ For more information on making a RubyGem visit

​ https://bundler.io/guides/creating_gem.xhtml

The “config” referred to here is the bundle config, which contains some global
options for bundler, and which you can update with bundle config set ci github or
whatever the config variable and setting you want. Anything in the
configuration can also be set using command-line options to the bundle gem

command itself.

What has Bundler created for us?

A aaagmnr.gemspec file. A .gemspec file contains all the metadata that
RubyGems uses to manage this gem. We’ll talk about that in a second in ​
Distributing and Installing Your Code​. We’ve also got a regular Gemfile.

A series of logistical files. These include an open-source license, a basic
change log, a code of conduct file, a readme, and a Rakefile. Some of
these are managed by the configuration (such as the type of license and
whether to include the code of conduct).

The lib directory. This is where our code will go.

The sig directory. This is where Ruby type info would go if we were
using Ruby types. See Chapter 7, ​Basic Types: Numbers, Strings, and
Ranges​.

A bin directory. This has some useful pre-created setup scripts.

We’ve been set up as a Git repo. You can choose other source control
repositories in the config.

We’ve been set up with a spec directory and RSpec. You can choose a
different testing tool in the config.

A linter file to enforce coding style; we’re using the Standard gem.[24] The
choice is a configurable option.

That’s a lot of work already done for us. Now we can fit our code inside that
structure.

Let’s look at the lib directory. This is where we put our source code. Right now
it has two files in it, aaagmnr.rb, which will be our top-level access to the code,
and aaagmnr/version.rb, which contains a VERSION constant. We’ll see more of
this later.

The intention is that our actual logic will go alongside that version.rb in the
lib/aaagnmr directory. Why is that?

We know we’re going to be defining (at least) three classes. Right now, these
classes will be used only by our command-line program, but it’s conceivable
that other people might want to include one or more of our libraries in their
own code. This means that we should be polite and not pollute the top-level
Ruby namespace with the names of all our classes and so on. We’ll create one
top-level module, Aaagnmr, and then place all our classes inside this module.
This means that the full name of our options-parsing class will be
Aaagnmr::Options.

This choice informs our decision on where to put the corresponding source
files. Because class Options is inside the module Aaagnmr, it makes sense to put
the corresponding file, options.rb, inside the lib/aaagnmr/ directory. This helps
people who read your code in the future; when they see a name like A::B::C,
they know to look for c.rb in the b/ directory in the a/ directory of your library.
It also helps autoloaders find the file. When an autoloader sees a reference to
Aaagnmr::Options, it knows that the corresponding file is lib/aaagnmr/options.rb.

Let’s add the option parser. Its job is to take an array of command-line options
and return to us the path to the dictionary file and the list of words to look up
as anagrams. The source, in lib/aaagnmr/options.rb, looks like this:

gems/aaagmnr/lib/aaagmnr/options.rb

​ ​module​ ​Aaagmnr​

​ ​class​ Options

​ DEFAULT_DICTIONARY = ​"/usr/share/dict/words"​

​ attr_reader ​:dictionary​, ​:words_to_find​

​

​ ​def​ ​initialize​(argv)

​ @dictionary = DEFAULT_DICTIONARY

​ parse(argv)

​ @words_to_find = argv

​ ​end​

​

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/lib/aaagmnr/options.rb

​ ​private​ ​def​ ​parse​(argv)

​ OptionParser.​new​ ​do​ |opts|

​ opts.​banner​ = ​"Usage: anagram [options] word..."​

​

​ opts.​on​(​"-d"​, ​"--dict path"​, String, ​"Path to dictionary"​) ​do​ |dict|

​ @dictionary = dict

​ ​end​

​

​ opts.​on​(​"-h"​, ​"--help"​, ​"Show this message"​) ​do​

​ puts opts

​ exit

​ ​end​

​

​ ​begin​

​ argv = [​"-h"​] ​if​ argv.​empty?​

​ opts.​parse!​(argv)

​ ​rescue​ OptionParser::ParseError => e

​ warn e.​message​, ​"​​\n​​"​, opts

​ exit(-1)

​ ​end​

​ ​end​

​ ​end​

​ ​end​

​ ​end​

Notice how we define the Options class inside a top-level Aaagnmr module.

Let’s write some unit tests. This should be fairly easy because options.rb is self-
contained—the only dependency is to the standard Ruby OptionParser. (Note
that it’s not explicitly required in this file because we’ve moved the require to
the top-level aaagnmr.rb, which we’ll show in a little bit.)

We’re going to use RSpec here because the gem library has already loaded it.

gems/aaagmnr/spec/aaagmnr/options_spec.rb

​ ​module​ ​Aaagmnr​

​ RSpec.​describe​ Options ​do​

​ describe ​"without specifiying a dictionary"​ ​do​

​ it ​"returns the default dictionary"​ ​do​

​ opts = Options.​new​([​"someword"​])

​ expect(opts.​dictionary​).​to​ eq(Options::DEFAULT_DICTIONARY)

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/spec/aaagmnr/options_spec.rb

​ ​end​

​

​ it ​"should retain specified words"​ ​do​

​ opts = Options.​new​([​"word1"​, ​"word2"​])

​ expect(opts.​words_to_find​).​to​ eq([​"word1"​, ​"word2"​])

​ ​end​

​ ​end​

​

​ describe ​"when specifying a dictionary"​ ​do​

​ it ​"should be able to reference the specified dictionary"​ ​do​

​ opts = Options.​new​([​"-d"​, ​"mydict"​, ​"someword"​])

​ expect(opts.​dictionary​).​to​ eq(​"mydict"​)

​ ​end​

​

​ it ​"should retain specified words"​ ​do​

​ opts = Options.​new​([​"-d"​, ​"mydict"​, ​"word1"​, ​"word2"​])

​ expect(opts.​words_to_find​).​to​ eq([​"word1"​, ​"word2"​])

​ ​end​

​ ​end​

​ ​end​

​ ​end​

You should note a few things to note in this file:

You won’t be able to run this without also updating the .gemspec file (as
shown later in ​Distributing and Installing Your Code​). The gem system
will block you from running an incomplete .gemspec.

We didn’t need to use require to load anything in this file—not our code,
and not the option parser gem. That’s because the RSpec spec_helper.rb

requires our main file at lib/aaagmnr.rb (we’ll see this code in a moment),
which does all of those things.

We’ve put the RSpec file inside our module Aaagmnr, meaning that we can
refer to our Options class directly rather than qualifying it as
Aaagmnr::Options. Alternatively, we could’ve started the file with
RSpec.describe Aaagmnr::Options, but that has the potential to be flaky, since
it depends on the Aaagmnr module to already exist.

These tests pass (after you update the .gemspec file), you can run them from the
root directory of the gem:

​ ​$ ​​rspec​​ ​​spec/aaagmnr/options_spec.rb​

​ Aaagmnr::Options

​ without specifiying a dictionary

​ returns the default dictionary

​ should retain specified words

​ when specifying a dictionary

​ should be able to reference the specified dictionary

​ should retain specified words

​ Finished in 0.00104 seconds (files took 0.0532 seconds to load)

​ 4 examples, 0 failures

The finder code (in lib/aaagmnr/finder.rb) is modified slightly from the original
version. To make it easier to test, we’ll have the default constructor take a list
of words, rather than a filename. We’ll then provide an additional factory
method, from_file, that takes a filename and constructs a new Finder from that
file’s contents:

gems/aaagmnr/lib/aaagmnr/finder.rb

​ ​module​ ​Aaagmnr​

​ ​class​ Finder

​ ​def​ self.​from_file​(file_name)

​ new(File.​readlines​(file_name))

​ ​end​

​

​ ​def​ ​initialize​(dictionary_words)

​ @signatures = {}

​ dictionary_words.​each​ ​do​ |line|

​ word = line.​chomp​

​ signature = signature_of(word)

​ (@signatures[signature] ||= []) << word

​ ​end​

​ ​end​

​

​ ​def​ ​lookup​(word)

​ signature = signature_of(word)

​ @signatures[signature]

​ ​end​

​

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/lib/aaagmnr/finder.rb

​ ​def​ ​signature_of​(word)

​ word.​unpack​(​"c*"​).​sort​.​pack​(​"c*"​)

​ ​end​

​ ​end​

​ ​end​

Again, we embed the Finder class inside the top-level Aaagmnr module. And,
again, this code is self-contained, allowing us to write some simple unit tests:

gems/aaagmnr/spec/aaagmnr/finder_spec.rb

​ ​module​ ​Aaagmnr​

​ RSpec.​describe​ Finder ​do​

​ describe ​"signature"​ ​do​

​ subject(​:finder​) { Finder.​new​([]) }

​

​ specify { expect(finder.​signature_of​(​"cat"​)).​to​ eq(​"act"​) }

​ specify { expect(finder.​signature_of​(​"act"​)).​to​ eq(​"act"​) }

​ specify { expect(finder.​signature_of​(​"wombat"​)).​to​ eq(​"abmotw"​) }

​ ​end​

​

​ describe ​"lookup"​ ​do​

​ subject(​:finder​) { Finder.​new​([​"cat"​, ​"wombat"​]) }

​

​ it ​"returns the word if the word is given"​ ​do​

​ expect(finder.​lookup​(​"cat"​)).​to​ eq([​"cat"​])

​ ​end​

​

​ it ​"returns the word if an anagram is given"​ ​do​

​ expect(finder.​lookup​(​"act"​)).​to​ eq([​"cat"​])

​ expect(finder.​lookup​(​"tca"​)).​to​ eq([​"cat"​])

​ ​end​

​

​ it ​"returns nil if no word matches the anagram"​ ​do​

​ expect(finder.​lookup​(​"wibble"​)).​to​ be_nil

​ ​end​

​ ​end​

​ ​end​

​ ​end​

​ ​$ ​​rspec​​ ​​spec/aaagmnr/finder_spec.rb​

​ Aaagmnr::Finder

​ signature

​ is expected to eq "act"

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/spec/aaagmnr/finder_spec.rb

​ is expected to eq "act"

​ is expected to eq "abmotw"

​ lookup

​ returns the word if the word is given

​ returns the word if an anagram is given

​ returns nil if no word matches the anagram

​ Finished in 0.00176 seconds (files took 0.04836 seconds to load)

​ 6 examples, 0 failures

We now have all the support code in place. We just need to run it. We’ll make
the command-line interface (the thing the end user actually executes) really
thin. It’s in the exe/ directory in a file called aaagmnr, which has no .rb

extension because that would be unusual in a command. (If you’re on
Windows, you might want to wrap the invocation of this in a cmd file.)

gems/aaagmnr/exe/aaagmnr

​ #!/usr/bin/env ruby

​ require_relative "../lib/aaagmnr"

​

​ runner = Aaagmnr::Runner.new(ARGV)

​ runner.run

The code that this script invokes (lib/anagram/runner.rb) knits our other libraries
together:

gems/aaagmnr/lib/aaagmnr/runner.rb

​ ​module​ ​Aaagmnr​

​ ​class​ Runner

​ ​def​ ​initialize​(argv)

​ @options = Options.​new​(argv)

​ ​end​

​

​ ​def​ ​run​

​ finder = Finder.​from_file​(@options.​dictionary​)

​ @options.​words_to_find​.​each​ ​do​ |word|

​ anagrams = finder.​lookup​(word)

​ ​if​ anagrams

​ puts ​"Anagrams of ​​#{​word​}​​: ​​#{​anagrams.​join​(​", "​)​}​​"​

​ ​else​

​ puts ​"No anagrams of ​​#{​word​}​​ in ​​#{​@options.​dictionary​​}​​"​

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/exe/aaagmnr
http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/lib/aaagmnr/runner.rb

​ ​end​

​ ​end​

​ ​end​

​ ​end​

​ ​end​

With all our classes created, we can finally see the entire top-level file that’s
required by users of this gem:

gems/aaagmnr/lib/aaagmnr.rb

​ ​# frozen_string_literal: true​

​

​ require_relative ​"aaagmnr/finder"​

​ require_relative ​"aaagmnr/options"​

​ require_relative ​"aaagmnr/runner"​

​ require_relative ​"aaagmnr/version"​

​ require ​"optparse"​

​

​ ​module​ ​Aaagmnr​

​ ​class​ Error < StandardError; ​end​

​ ​# Your code goes here...​

​ ​end​

It requires all our files, the version, and optparse. The custom error is created
by the gem boilerplate; we don’t really have any reason to use it yet.

Now that all our files are in place, we can run our program from the command
line (use chmod to make the program executable).

​ ​$ ​​exe/aaagmnr​​ ​​teaching​​ ​​ruby​

​ Anagrams of teaching: cheating, teaching

​ Anagrams of ruby: bury, ruby

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/lib/aaagmnr.rb

Distributing and Installing Your Code
There are a few parts of using RubyGems we haven’t discussed. We need to
consider the metadata that allows the RubyGems ecosystem to know things
about our gem. In particular, we want to see how we can inject executables
into code that uses our gem and also how our gem declares its dependencies.

RubyGems needs to know information about your project that isn’t contained
in the directory structure. Instead, you have to write a short RubyGems
specification. Our gem creation tool has already created one with most of the
boilerplate at aaagmnr.gemspec. This comes with some lines marked TODO

which must be changed before the gem can be used. Here’s the completed file,
after the TODO lines have been changed:

gems/aaagmnr/aaagmnr.gemspec

​ ​# frozen_string_literal: true​

​

​ require_relative ​"lib/aaagmnr/version"​

​

​ Gem::Specification.​new​ ​do​ |spec|

​ spec.​name​ = ​"aaagmnr"​

​ spec.​version​ = Aaagmnr::VERSION

​ spec.​authors​ = [​"Noel Rappin"​]

​ spec.​email​ = [​"noel.rappin@pragprog.com"​]

​

​ spec.​summary​ = ​"A simple anagrams tool"​

​ spec.​homepage​ = ​"http://pragprog.com"​

​ spec.​license​ = ​"MIT"​

​ spec.​required_ruby_version​ = ​">= 2.6.0"​

​

​ spec.​metadata​[​"homepage_uri"​] = spec.​homepage​

​ spec.​metadata​[​"source_code_uri"​] = ​"http://pragprog.com"​

​ spec.​metadata​[​"changelog_uri"​] = ​"http://pragprog.com"​

​

​ ​# Specify which files should be added to the gem when it is released.​

​ ​# The `git ls-files -z` loads the files in the RubyGem that have been added​

​ ​# into git.​

​ spec.​files​ = Dir.​chdir​(File.​expand_path​(__dir__)) ​do​

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/aaagmnr.gemspec

​ ​̀git ls-files -z`​.​split​(​"​​\x0​​"​).​reject​ ​do​ |f|

​ (f == ​__FILE__​) ||

​ f.​match​(​%r{​​\A​​(?:(?:test|spec|features)/|​​\.​​
(?:git|travis|circleci)|appveyor)}​)

​ ​end​

​ ​end​

​ spec.​bindir​ = ​"exe"​

​ spec.​executables​ = spec.​files​.​grep​(​%r{​​\A​​exe/}​) { |f| File.​basename​(f) }

​ spec.​require_paths​ = [​"lib"​]

​

​ spec.​add_dependency​ ​"date_by_example"​, ​'~> 0.1'​

​ ​end​

The specification itself happens inside that Gem::Specification.new block, where
the spec argument is the specification object and we’re setting all kinds of
attributes on it. Most of these are basically what they claim to be and are used,
among other things, to populate the gem’s page on rubygems.org should we
submit it there.

The first line of the spec gives our gem a name. This is important because it’ll
be used as part of the package name and will appear as the name of the gem
when installed. The convention is for gem names to be all lowercase, and to
use underscores to separate words, as in date_by_example, but use a dash to
mark an extension to another gem, as in rspec-mocks. The dash indicates a
submodule in the structure of the code, the main file of rspec-mocks would be
rspec/mocks.

We pull the version string from the file inside the gem itself. The version
string is significant because RubyGems will use it both for package naming
and dependency management. The required_ruby_version tells RubyGems what
versions of Ruby the gem would be expected to run with.

Eventually, we get to spec.files which lists all the files that we want to be
distributed when the gem is downloaded. That boilerplate code basically says
“everything in the git repository that isn’t a test or part of source control or
CI.” You can choose to change that if you want; you just need a list of files.

The spec.executables line tells RubyGems where to look for command-line
scripts that get exposed to any other code that uses this gem. The default is to
include all files in the exe directory (because bin is used for developer scripts).

Finally, we’ve used add_dependency to include the date_by_example gem. This
tells RubyGems that any user of this gem must also install date_by_example.
The second argument is a version specifier using the same syntax as we used
in Gemfile. If we wanted a dependency that was only used for development,
we’d use add_dev_dependency, but in practice, development dependencies are
just as often added to the Gemfile.

Speaking of Gemfile, here it is:

gems/aaagmnr/Gemfile

​ # frozen_string_literal: true

​

​ source "https://rubygems.org"

​

​ # Specify your gem's dependencies in aaagmnr.gemspec

​ gemspec

​ gem "rake", "~> 13.0"

​ gem "rspec", "~> 3.0"

​ gem "standard", "~> 1.3"

The important part here is the gemspec method, which pulls in all the
dependencies and development dependencies specified in the .gemspec and
adds them as though they were part of the Gemfile.

Packaging Your RubyGem
Once the gem specification is complete, you can create a packaged gem file for
distribution. This is as easy as navigating to the top level of your project and
typing this:

​ ​$ ​​gem​​ ​​build​​ ​​aaagmnr.gemspec​

​ Successfully built RubyGem

​ Name: aaagmnr

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/Gemfile

​ Version: 0.1.0

​ File: aaagmnr-0.1.0.gem

You’ll find you now have a file called anagram-0.0.1.gem.

You can install it:

​ ​$ ​​gem​​ ​​install​​ ​​aaagmnr-0.1.0.gem​

​ Successfully installed aaagmnr-0.1.0

​ Parsing documentation for aaagmnr-0.1.0

​ Installing ri documentation for aaagmnr-0.1.0

​ Done installing documentation for aaagmnr after 0 seconds

​ 1 gem installed

You can check to see that it is there:

​ ​$ ​​gem​​ ​​list​​ ​​aaagmnr​​ ​​-d​

​

​ *** LOCAL GEMS ***

​

​ aaagmnr (0.1.0)

​ Author: Noel Rappin

​ Homepage: http://pragprog.com

​ License: MIT

​ Installed at: /Users/noel/.rbenv/versions/3.1.2/lib/ruby/gems/3.1.0

​

​ A simple anagrams tool

Now you can send your gem file to friends and colleagues or share it from a
server—many corporate environments use gem servers to share code. Or, you
could go one better and publish it to the central RubyGems server.

Serving Public RubyGems

RubyGems.org[25] is the main repository for public Ruby libraries and projects.
If you create a RubyGems.org account, you can push your gem file to their
public servers. We’re not actually going to do that here, but the command is
gem push.

And, at that point, any Ruby user in the world can use it with gem install

aaagmnr.

[22]

[23]

[24]

[25]

What’s Next
In this chapter, we looked at how to build Ruby programs and package them
as gems. Now it’s time to dig a little deeper into working with Ruby itself.
In the next chapter, we’ll talk about interacting with Ruby using irb, the
interactive Ruby shell.

Footnotes

http://bundler.io

https://github.com/fxn/zeitwerk

https://github.com/testdouble/standard

http://rubygems.org

Copyright © 2024, The Pragmatic Bookshelf.

http://bundler.io/
https://github.com/fxn/zeitwerk
https://github.com/testdouble/standard
http://rubygems.org/

Chapter 16

Interactive Ruby

If you want to play with Ruby, we recommend Interactive Ruby—irb, for
short. irb is a Ruby command-line “shell” similar in concept to an operating
system shell (complete with job control). It’s sometimes called a REPL
(which is an abbreviation for “Read, Evaluate, Print Loop”) and provides an
environment where you can play around with the language in real time.

You launch irb at the command prompt:

​ ​$ ​​irb​

irb displays the value of each expression as you complete it.

​ ​$ ​​irb​

​ irb(main):001:0* a = 1 +

​ irb(main):002:0* 2 * 3 /

​ irb(main):003:0> 4 % 5

​ => 2

​ irb(main):004:0> 2 + 2

​ => 4

​ irb(main):005:0> x = _

​ => 4

​ irb(main):006:0> x

​ => 4

​ irb(main):007:1* def test

​ irb(main):008:1* puts "Hello, world!"

​ irb(main):009:0> end

​ => :test

​ irb(main):010:0> test

​ Hello, world!

​ => nil

​ irb(main):011:0>

You should note a couple of things about this session. If you typed along
with it in Ruby 3.1 or higher, you may have noticed that irb tried to
autocomplete text as you typed it. You may also have noticed that it color-
coded the text as you entered it and even backdented the end line to line up.
Also, irb always stores the result of the last expression in a special variable
(_) as you can see in line 5, where we use it in an assignment statement x = _,
which can be a useful way to capture data and use it in the future.

irb is a great learning tool. It’s very handy if you want to try an idea quickly
and see if it works.

Using irb
irb is run with this command:

irb <irb-options> <ruby_script> <program arguments>

The command-line options for irb are listed in the following table. Typically,
you’ll run irb with no options, but if you want to run a script and watch the
step-by-step description as it runs, you can provide the name of the Ruby
script and any options for that script.

Table 6. irb command-line options

Option Description
--autocomplete, --
noautocomplete

Uses or doesn’t use the autocomplete feature.
The default is --autocomplete.

--back-trace-limit n Displays backtrace information using the top n
and last n entries. The default value is 16.

--colorize, --nocolorize Uses or doesn’t use color syntax highlighting.
The default is --colorize.

--context-mode n Specifies what binding to use for the new
workspace. 0 is a proc at the top level, 1 is a
loaded file, 2 is per thread binding in a load file,
3 is binding in a top-level function. 4, the default,
is the top-level binding.

-d Sets $DEBUG and $VERBOSE to true (same as ruby -

d).

Option Description
-E enc Same as Ruby’s -E option; sets internal or

external encodings with in or ex.

--echo, --noecho Echoes or doesn’t echo the result of each line.
The default is --echo.

--echo-on-assignment, --
noecho-on-assignment,
truncate-echo-on-

assignment

Echoes, doesn’t echo, or partially echoes the
result of an assignment statement. The default is
truncated.

--extra-doc-dir Specifies an extra directory for documentation.

-f Suppresses reading ~/.irbrc.

-h, --help Displays usage information.

-I directories Same as Ruby’s -I option. Sets directories on the
load path.

--inf-ruby-mode Sets up irb to run in inf-ruby-mode under Emacs.
Same as --prompt inf-ruby --nomultiline.

--inspect, --noinspect Uses or doesn’t use Kernel#inspect to format
output (--inspect is the default).

--multiline, --nomultiline Use or don’t use multiline editor mode. The
default is multiline. You can also specify modes
with --singleline or --nosingleline.

--noprompt Doesn’t display a prompt. Same as --prompt null.

Option Description
--prompt prompt-mode Switches prompt. Predefined prompt modes are

null, default, classic, simple, xmp, and inf-ruby.

--prompt-mode prompt-

mode

Same as --prompt.

-r module Requires module. Same as ruby -r.

--sample-book-mode Same as --prompt simple.

--single-irb Nested irb sessions will all share the same
context.

--tracer Displays trace for execution of commands.

-U Same as Ruby’s -U option. Sets encoding to UTF-
8.

-v, --version Prints the version of irb.

--verbose, --noverbose Shows or doesn’t show verbose details. The
default is --noverbose.

-W[level] Sets warning level: 0 is no warnings, 2 is
verbose, and 1 is in the middle.

-w Suppresses warning mode, like Ruby’s -w.

Once started, irb displays a prompt and waits for you to type Ruby code. irb
understands Ruby, so it knows when statements are incomplete. When this
happens, irb will indicate that status as part of the prompt.

​ irb(main):001:0> 1 + 2

​ => 3

​ irb(main):002:0* 3 +

​ irb(main):003:0> 4

​ => 7

That * sign on line two happened after the + sign was typed, and indicates that
the statement is incomplete. You get the same * if you type an opening
parenthesis. The first number between the colons is the line number, and the
second number between the colon and the final prompt is the indent level—
you’ll see that number will increase if you add an opening parenthesis.

You can leave irb by typing exit or quit or by entering an end-of-file character
(usually command-d). The latter behavior can be blocked by setting
IGNORE_EOF mode. We’ll talk about configuration options in the next section.

During an irb session, the work you do is accumulated in irb’s workspace.
Variables you set, methods you define, and classes you create are all
remembered and may be used subsequently in that session.

​ irb(main):001:1* def fib_up_to(n)

​ irb(main):002:1* f1, f2 = 1, 1

​ irb(main):003:2* while f1 <= n

​ irb(main):004:2* puts f1

​ irb(main):005:2* f1, f2 = f2, f1 + f2

​ irb(main):006:1* end

​ irb(main):007:0> end

​ => :fib_up_to

​ irb(main):008:0> fib_up_to(4)

​ 1

​ 1

​ 2

​ 3

​ => nil

​ irb(main):009:0>

In this session, we defined a method in the irb session and then used it. Note
that the irb session handles indent and outdent automatically. Also, the method
definition returns the symbol name of the method, but the method call prints
items and returns nil.

The internals of this method definition and the arithmetic expression are both
split over multiple lines. When in the middle of editing something over
multiple lines, pressing the up and down arrows will move you through that
expression to allow you to edit across lines until the expression is complete. If
you’re not in the middle of a multiline expression, pressing the up or down
arrows will move you through the command history.

A great use of irb is experimenting with code you’ve already written. Perhaps
you want to track down a bug, or maybe you just want to play. If you load
your program into irb, you can then create instances of the classes it defines
and invoke its methods. For example, the file code/irb/fibbonacci_sequence.rb

contains the following method definition:

irb/fibonacci_sequence.rb

​ ​def​ ​fibonacci_sequence​

​ Enumerator.​new​ ​do​ |generator|

​ i1, i2 = 1, 1

​ ​loop​ ​do​

​ generator.​yield​ i1

​ i1, i2 = i2, i1 + i2

​ ​end​

​ ​end​

​ ​end​

We can load this into irb and play with the method:

​ ​irb(main):001:0>​ load(​"code/irb/fibonacci_sequence.rb"​)

​ ​=>​ ​true​

​ ​irb(main):002:0>​ fibonacci_sequence.​first​(10)

​ ​=>​ [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

In this example, we use load, rather than require, to include the file in our
session. We do this as a matter of practice. Using load allows us to load the
same file multiple times, so if we find a bug and edit the file, we can reload it
into our irb session.

http://media.pragprog.com/titles/ruby5/code/irb/fibonacci_sequence.rb

Navigating irb
From the irb prompt, if you’re not in the middle of typing a multiline
expression, pressing the up arrow will move you through your command
history, showing the previous command, then the one before it and so on.
The down arrow will move you forward in the history once you’ve started
backward. The command history is persisted between sessions.

Unlike the way your shell might be set up, the up arrow doesn’t act as a
partial search. If you type a character and then press the up arrow, your
typing will be replaced by the entire previous command regardless of
whether the character you typed is the beginning of the previous command.
By default, irb stores 1000 commands in its history, but this amount can be
configured.

If you’re in the middle of an expression, pressing the arrow keys will move
you through that expression, allowing you to edit the expression before it’s
evaluated. This is relatively hard to demonstrate in a static book, but let’s
give it a try. For example, you might open up irb, type def foo, press return,
type 1 + 1, and press return. Then an up arrow will allow you to navigate to
change the 1 + 1 expression until you eventually come back to where you
started and type end to complete the method expression.

irb has its own native autocompletion functionality. When you press Tab
partway through a word, irb will look for possible completions that make
sense at that point. If only one completion exists, irb will fill it in
automatically and show you the beginning of the documentation for that
completion (if any documentation exists).

If multiple completions exist, irb will display them in a list. Pressing Tab
again will move you through the list of completions, each one displaying its

documentation when selected, and then pressing Return will complete the
selected entry.

For example, the following image shows the middle of an irb session:

In this session, we assigned a string object to the variable a. Now we want
to try the method String#reverse on this object. The screenshot here comes
from typing a.re and hitting Tab twice.

You can see that irb lists all the methods supported by the object in a, whose
names start with re, and that reverse is now selected and irb has filled out
our input line with reverse—all we typed was a.re<tab><tab>. The
documentation from the method is now also displayed.

irb responds to the Return key by expanding the name as far as it can go, in
this case completing the word reverse. If we keyed Tab twice at this point, it
would show us the current options, reverse and reverse!. Because reverse is
the one we want, we instead hit Return again, and the line of code is
executed.

Tab completion isn’t limited to built-in names. If we define a class in irb,
then tab completion works when we try to invoke one of its methods:

In this example, my_method is included in the autocomplete for the new
object in the defined class.

Subsessions
irb supports multiple concurrent sessions. One is always current, and the
others lie dormant until activated. Entering the command irb within irb
creates a subsession, entering the jobs command lists all sessions, and
entering fg activates a particular dormant session. This example also
illustrates the -r command-line option, which loads in the given file before
irb starts:

​ ​$ ​​irb​​ ​​-r​​ ​​./code/irb/fibonacci_sequence.rb​

​ irb(main):001:0> result = fibonacci_sequence.first(5)

​ => [1, 1, 2, 3, 5]

​ irb(main):002:0> ​# Creating nested irb session​

​ => nil

​ irb(main):003:0> irb

​ ​irb#​​1(main):001:0>​​ ​​result​​ ​​=​​ ​​%w[cat​​ ​​dog​​ ​​elk]​

​ => ["cat", "dog", "elk"]

​ ​irb#​​1(main):002:0>​​ ​​result.map(&:upcase)​

​ => ["CAT", "DOG", "ELK"]

​ ​irb#​​1(main):003:0>​​ ​​jobs​

​ =>

​ ​#0->irb on main (#<Thread:0x00000001025e4d60 sleep_forever>: stop)​

​ ​#1->irb#1 on main (#<Thread:0x000000010656caf0​

​ /Users/noel/.rbenv/versions/3.1.2/lib/ruby/3.1.0/irb/ext/multi-irb.rb:192

​ ​run>​​:​​ ​​running)​

​ ​irb#​​1(main):004:0>​​ ​​fg​​ ​​0​

​ => ​#<IRB::Irb: @context=#<IRB::Context:0x00000001064ed9d0>,​

​ @signal_status=:IN_EVAL, @scanner=​#<RubyLex:0x000000010659e370>>​

​ irb(main):004:0> result

​ => [1, 1, 2, 3, 5]

​ irb(main):005:0> fg 1

​ => ​#<IRB::Irb: @context=#<IRB::Context:0x000000010656c960>,​

​ @signal_status=:IN_EVAL, @scanner=​#<RubyLex:0x0000000106567258>>​

​ ​irb#​​1(main):005:0>​​ ​​result​

​ => ["cat", "dog", "elk"]

​ ​irb#​​1(main):006:0>​

In this example, we start a job and set result to the list of the first five
Fibonacci numbers, and then we use the irb command internally to start a
second job, setting result to something else. Then we switch back and forth
to show that the namespaces are independent.

Bindings
If you specify an object when you create a subsession, that object becomes
the value of self in that binding. This is a convenient way to experiment
with objects. In the following example, we create a subsession with the
string “wombat” as the default object. Methods with no receiver will be
executed by that object.

​ irb

​ irb(main):001:0> self

​ => main

​ irb(main):002:0> irb "wombat"

​ ​irb#​​1(wombat):001:0>​​ ​​self​

​ => "wombat"

​ ​irb#​​1(wombat):002:0>​​ ​​upcase​

​ => "WOMBAT"

​ ​irb#​​1(wombat):003:0>​​ ​​size​

​ => 6

​ ​irb#​​1(wombat):004:0>​​ ​​gsub(/[aeiou]/,​​ ​​'*'​​)​

​ => "w*mb*t"

​ ​irb#​​1(wombat):005:0>​​ ​​irb_exit​

​ => ​#<IRB::Irb: @context=#<IRB::Context:0x0000000108fa9e80>,​

​ @signal_status=:IN_EVAL, @scanner=​#<RubyLex:0x00000001090be8e8>>​

​ irb(main):003:0> self

​ => main

​ irb(main):004:0> upcase

​ (irb):4:in `<main>': undefined local variable

​ or method `upcase' for main:Object (NameError)

​ Did you mean? case

​ from /[elided]/gems/irb-1.4.1/exe/irb:11:in `<top (required)>'

Configuring irb
irb is remarkably configurable. You can set configuration options with
command-line options, from within an initialization file, and while you’re
inside irb itself.

irb uses an initialization file in which you can set commonly used options or
execute any required Ruby statements. When irb is run, it’ll try to load an
initialization file from one of the following sources in order: ~/.irbrc, .irbrc,
irb.rc, _irbrc, and $irbrc.

Within the initialization file, you may run any arbitrary Ruby code. For
example, you can use require for any gem that you might want included in
an irb session (such as irbtools[26] or awesome-print[27]).

You can also set configuration values. The list of configuration variables is
given in ​irb Configuration Options​. The values that can be used in an
initialization file are the symbols (starting with a colon). You use these
symbols to set values into the IRB.conf hash. For example, to make SIMPLE

the default prompt mode for all your irb sessions, you could have the
following in your initialization file:

​ IRB.​conf​[​:PROMPT_MODE​] = ​:SIMPLE​

For a dynamic twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc
object. This proc will be invoked whenever the irb context is changed and
will receive the configuration for that context as a parameter. You can use
this facility to change the configuration dynamically based on the context.
For example, the following .irbrc file sets the prompt so that only the main
prompt shows the irb level, but the continuation prompts and the result still
line up:

​ IRB.​conf​[​:IRB_RC​] = lambda ​do​ |conf|

​ leader = ​" "​ * conf.​irb_name​.​length​

​ conf.​prompt_i​ = ​"​​#{​conf.​irb_name​​}​​ --> "​

​ conf.​prompt_s​ = leader + ​' \-" '​

​ conf.​prompt_c​ = leader + ​' \-+ '​

​ conf.​return_format​ = leader + ​" ==> %s​​\n\n​​"​

​ puts ​"Welcome!"​

​ ​end​

An irb session using this .irbrc file looks like the following:

​ irb

​ Welcome!

​ irb --> 1 + 2

​ ==> 3

​

​ \-+ 2 +

​ irb --> 6

​ ==> 8

The static nature of this code listing doesn’t quite capture some dynamic
behavior that appears where the prompts change while typing.

Extending irb
Because the things you type into irb are interpreted as Ruby code, you can
effectively extend irb by defining new top-level methods. For example, you
may want to time how long certain things take. You can use the measure

method in the Benchmark library to do this, but this is more convenient to
use if you wrap it in a helper method.

Add the following to your .irbrc file:

​ ​def​ ​time​(&block)

​ require ​'benchmark'​

​ result = ​nil​

​ timing = Benchmark.​measure​ ​do​

​ result = block.()

​ ​end​

​ puts ​"It took: ​​#{​timing​}​​"​

​ result

​ ​end​

The next time you start irb, you’ll be able to use this method to get timings:

​ irb(main):001:0> time { 1_000_000.times { "cat".upcase } }

​ It took: 0.106198 0.000795 0.106993 (0.106986)

​ => 1000000

Another common thing to do is reopen the Object class and add some
diagnostic methods. Here’s one that looks up the source location of a
method (via https://medium.com/simply-dev/do-more-with-rails-console-
by-configuring-irbrc-e5c25284305d).

​ ​class​ Object

​ ​def​ ​sl​(method_name)

​ self.​method​(method_name).​source_location​ ​rescue​ ​"​​#{​method_name​}​​ not
found"​

​ ​end​

​ ​end​

We’ll see in Chapter 17, Debugging Ruby​, that the built-in debugger and the
Pry tool also provide great support for looking up source locations.

You can configure irb to remember the commands you enter between
sessions. Simply add the following to your .irbrc file, where the number
indicates the amount of commands you want to save:

​ IRB.​conf​[​:SAVE_HISTORY​] = 50

Interactive Configuration
Most configuration values are also available while you’re running irb. The
list in ​irb Configuration Options​, shows these values as conf._xxx_. For
example, to change your prompt back to SIMPLE, you could use the
following:

​ irb(main):001:0​*​ 1 +

​ ​irb(main):002:0>​ 2

​ ​=>​ 3

​ ​irb(main):003:0>​ conf.​prompt_mode​ = ​:SIMPLE​

https://medium.com/simply-dev/do-more-with-rails-console-by-configuring-irbrc-e5c25284305d
https://medium.com/simply-dev/do-more-with-rails-console-by-configuring-irbrc-e5c25284305d

​ ​=>​ ​:SIMPLE​

​ ​?>​ 1 +

​ ​>>​ 2

​ ​=>​ 3

​ ​>>​

irb Configuration Options
In the descriptions that follow, a label of the form :XXX signifies a key used
in the IRB.conf hash in an initialization file, and conf.xxx signifies a value that
can be set interactively.

:AUTO_INDENT / auto_indent_mode

If true, irb will indent nested structures as you type them. Default is
true.

:BACK_TRACE_LIMIT / back_trace_limit

Displays n initial and n final lines of backtrace. Default is 16.

:CONTEXT_MODE

Specifies what binding to use for the new workspace. 0 is a proc at the
top level, 1 is a loaded file, 2 is per thread binding in a load file, 3 is
binding in a top-level function. 4, the default, is the top-level binding

:EVAL_HISTORY / save_history

Stores the result of all ERB commands, you can use __ to retrieve this
or __[line_no] to get a specific line’s result. Default is nil.

:IGNORE_EOF / ignore_eof

Specifies the behavior of an end of file received on input. If true, it’ll
be ignored; otherwise, irb will quit. Default is false.

:IGNORE_SIGINT / ignore_sigint

If false, ^C (Ctrl+C) will quit irb. If true, ^C during input will cancel
input and return to the top level; during execution, ^C will abort the
current operation. Default is true.

:INSPECT_MODE / inspect_mode

Specifies how values will be displayed: true or nil means use inspect,
false uses to_s. Default is nil.

:IRB_NAME / irb_name

The name of an irb session, defaults to irb.

:IRB_RC

Can be set to a proc object that will be called when an irb session (or
subsession) is started. Default is nil.

prompt_c

The prompt for a continuing statement (for example, immediately after
an if).

prompt_i

The standard, top-level prompt. (The defualt depends on the prompt
mode.)

:PROMPT_MODE / prompt_mode

The style of prompt to display. The default is :DEFAULT.

prompt_s

The prompt for a continuing string. (The default depends on the
prompt mode.)

:PROMPT

See ​Configuring the Prompt​.

:SAVE_HISTORY / save_history

The number of commands to save between irb sessions. Default is nil.

:USE_AUTOCOMPLETE

If true or nil use the autocomplete feature. Default is true.

:USE_COLORIZE

If true or nil colorize irb output. Default is true.

:USE_LOADER / use_loader

Specifies whether irb’s own file reader method is used with
load/require. Default is false.

:USE_MULTILINE

If true or nil use multiline edit mode. Default is nil.

:USE_SINGLELINE

If true or nil use singleline edit mode. Default is nil.

:USE_TRACER / use_tracer

If true, traces the execution of statements. Default is false.

Commands
At the irb prompt, you can enter any valid Ruby expression and see the
results. You can also use any of the following commands to control the irb
session. (For some inexplicable reason, many of these commands have up
to nine different aliases. We don’t bother to show all of them.)

bindings

Lists the current bindings.

cb, irb_change_binding <obj>
Creates and enters a new binding (sometimes called a workspace) that
has its own scope for local variables. If obj is given, it’ll be used as self
in the new binding.

conf, context, irb_context

Displays current configuration. Modifying the configuration is
achieved by invoking methods of conf. The list in​irb Configuration
Options, shows the available conf settings.

For example, to set the default prompt, you could use this:

​ ​irb(main):001:0>​ conf.​prompt_i​ = ​"Yes, Master? "​

​ ​=>​ ​"Yes, Master? "​

​ Yes, Master? 1 + 2

exit, quit, irb_exit, irb_quit

Quits this irb session or subsession. If you’ve used cb to change
bindings (as detailed under the cb entry in this list), it exits from this
binding mode.

fg n, irb_fg n

Switches into the specified irb subsession. n may be any of the
following: an irb subsession number, a thread ID, an irb object, or the
object that was the value of self when a subsession was launched.

help ClassName, string, or symbol

Displays the ri help for the given thing.

irb <obj>
Starts an irb subsession. If obj is given, it’ll be used as self.

irb_cwws

Prints the object that’s the binding of the current workspace.

jobs, irb_jobs

Lists irb subsessions.

kill n, irb_kill n

Kills an irb subsession. n may be any of the values as described for
irb_fg.

pushb obj, popb

Pushes and pops the current binding.

source filename

Loads and executes the given file, displaying the source lines.

Configuring the Prompt
You have a lot of flexibility in configuring the prompts that irb uses. Sets of
prompts are stored in the prompt hash, IRB.conf[:PROMPT].

For example, to establish a new prompt mode called MY_PROMPT, you
could enter the following (either directly at an irb prompt or in the .irbrc
file):

​ IRB.​conf​[​:PROMPT​][​:MY_PROMPT​] = { ​# name of prompt mode​

​ ​:PROMPT_I​ => ​'-->'​, ​# normal prompt​

​ ​:PROMPT_S​ => ​'--"'​, ​# prompt for continuing strings​

​ ​:PROMPT_C​ => ​'--+'​, ​# prompt for continuing statement​

​ ​:RETURN​ => ​" ==>%s​​\n​​"​ ​# format to return value​

​ }

Once you’ve defined a prompt, you have to tell irb to use it. From the
command line, you can use the --prompt option. (Notice how the name of the
prompt on the command line is automatically converted to uppercase, with
hyphens changing to underscores.)

​ ​$ ​​irb​​ ​​--prompt​​ ​​my-prompt​

If you want to use this prompt in all your future irb sessions, you can set it
as a configuration value in your .irbrc file:

​ IRB.​conf​[​:PROMPT_MODE​] = ​:MY_PROMPT​

The symbols :PROMPT_I, :PROMPT_N, :PROMPT_S, and :PROMPT_C specify the
format for each of the prompt strings. In a format string, certain %
sequences are expanded, as shown in the following table:

Table 7. irb prompt string substitutions

Flag Description

%N Current command.

%m to_s of the main object (self).

%M inspect of the main object (self).

%l Delimiter type. In strings that are continued across a line break,
%l will display the type of delimiter used to begin the string, so
you’ll know how to end it. The delimiter will be ", ’, /,], or ‘.

%NNi Indent level. The optional number n is used as a width
specification to printf, as printf("%NNd").

%NNn Current line number (n used as with the indent level).

%% A literal percent sign.

The default prompt mode is defined as:

​ IRB.​conf​[​:PROMPT​][​:DEFAULT​] = {

​ ​:PROMPT_I​ => ​"%N(%m):%03n:%i> "​,

​ ​:PROMPT_N​ => ​"%N(%m):%03n:%i> "​,

​ ​:PROMPT_S​ => ​"%N(%m):%03n:%i%l "​,

​ ​:PROMPT_C​ => ​"%N(%m):%03n:%i* "​,

​ ​:RETURN​ => ​"=> %s​​\n​​"​

​ }

[26]

[27]

What’s Next
In this chapter, we looked at how to use Ruby interactively with irb.
Debugging is a common use case for irb. In the next chapter, we’ll dive into
the official Ruby debugging tools.

Footnotes

https://irb.tools

https://github.com/awesome-print/awesome_print

Copyright © 2024, The Pragmatic Bookshelf.

https://irb.tools/
https://github.com/awesome-print/awesome_print

Chapter 17

Debugging Ruby

Sometimes code doesn’t work as you expect. Ruby provides different ways
for you to see what’s happening as you execute your code, which better
enables you in understanding and debugging it. From humble print
statements to elaborate inline debugging tools, you can get the visibility you
need into your code.

Printing Things
If you want to debug code and you don’t want to use any fancy tools, then
printing things out to the console is the way to go. We don’t mean to make
fun—we extensively use this method. It’s quick and lends itself to faster
cycle times than using a debugger to step through code.

We’ve seen a few options for this already, like puts, which uses to_s to
convert its argument to a string, and p, which does the same thing but uses
inspect. Ruby also provides print and pretty-print via the pp method. Here’s a
table of what they all look like for nil, a string, a symbol, an array, a hash,
and an array with a hash element:

Table 8. print method

print p puts pp
nil nil

test "test" test "test"

test :test test :test

[1, 2, 3] [1, 2, 3] 1

2

3

[1, 2, 3]

{:a=>1, :b=>2} {:a=>1, :b=>2} {:a=>1, :b=>2} {:a=>1, :b=>2}

[1, 2, {:a=>1, :b=>2}] [1, 2, {:a=>1, :b=>2}] 1 [1, 2, {:a=>1, :b=>2}]

print p puts pp
2

{:a=>1, :b=>2}

You can see some differences here, but they are subtle. (This is, by the way,
exactly the kind of table an author puts in a book when the author can never
remember the differences. It’s now a convenient place for the author to look
them up.)

Ruby has some other print tools that do a better job with more complex
structured data. One of these tools is the jj method, which creates pretty-
printed JSON. You need to use require "json" to have access to this method.
Another tool is y, which comes when you use require "yaml" and produces the
argument in YAML syntax. We also recommend the awesome-print gem,
which, when loaded and required, gives you ap, a method that produces a
clear structure of complex data.

You should find one of these tools useful when writing output. For example,
it’s often faster to put one of these statements in a test, run the test, and
inspect the output than it is to use a step debugger.

You can use Ruby’s reflection abilities quite powerfully for printing
information to the console. The caller method is part of Kernel and will
always show you the current call stack. Aaron Patterson has a lot of helpful
output tips at https://tenderlovemaking.com/2016/02/05/i-am-a-puts-
debuggerer.xhtml.

https://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.xhtml
https://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.xhtml

The Ruby Debugger
Debuggers can also be quite powerful, and Ruby 3.1 came with a big
improvement to Ruby’s standard debugger. The new debugger is distributed as
a separate Ruby gem rather than part of the standard library:

​ ​$ ​​gem​​ ​​install​​ ​​debug​

Note that the gem is named debug and not debugger. The debugger gem is a
separate tool that hasn’t been maintained since 2015. Similarly, if you’re using
Bundler, specify a version constraint of ">= 1.0.0" or else you’ll get a different,
older gem. Global, permanent namespaces are fun!

After you have installed the debugger gem, there are a few different ways to
start the debugger.

You can start your script with the command rdbg rather than ruby:

rdbg code/trouble/profileeg.rb

The script will start in debug mode, which we’ll talk about in a moment.

If you want to run the debugger on a Ruby process that’s invoked via a
separate command like rake, then you use rdbg -c --:

rdbg -c -- rake test:load.

More commonly, you’d use the debugger by inserting the line binding.break into
your code. (For this to work, you must have done a require "debug" somewhere
along the code path.) The debugger is invoked at that line.

Visual Studio Code also has a plugin[28] that allows you to invoke the new
Ruby debugger using VS Code’s existing debugging interface. (To be clear,
many editors support Ruby debugging but may do so via a different tool.)

You can also use the debugger remotely against an application that’s not
running in your terminal (often because it’s running in a Docker container, it’s
a background process, or it’s not using the standard in and out ports). To
connect to a remote process, you start with rdbg --open SCRIPT_NAME, which
starts your script as a background process. Then in a different terminal, you
run rdbg --attach to connect to the running process in a debugger session.

Alternatively, you can use require "debug/open" in the background process,
which allows you to skip the rdbg --open step and go straight to the attach step.
Doing so stops the program on the first line; if you want the program to run
normally, use require "debug/open_nonstop". But don’t do that in production—
it’ll leave the debug socket open waiting for a debugger to attach.

Here’s a short sample program that we’ll use to demonstrate the Ruby
debugger:

debugging/debugger_test.rb

​ require ​"debug"​

​

​ ​class​ CashRegister

​ attr_accessor ​:tax_rate​

​

​ ​def​ ​initialize​(tax_rate)

​ @tax_rate = tax_rate

​ @items = []

​ ​end​

​

​ ​def​ ​add_item​(item, quantity, price_in_cents)

​ @items << {item:, quantity:, price_in_cents:}

​ ​end​

​

​ ​def​ ​subtotals​

​ @items.​map​ {_1[​:quantity​] * _1[​:price_in_cents​]}

​ ​end​

​

​ ​def​ ​pre_tax_total​ = subtotals.​sum​

​

​ ​def​ ​tax​ = pre_tax_total * tax_rate

​

http://media.pragprog.com/titles/ruby5/code/debugging/debugger_test.rb

​ ​def​ ​total​ = pre_tax_total + tax

​

​ ​def​ ​sale_price​(price_in_cents, discount)

​ price_in_cents * (1.0 - discount)

​ ​end​

​ ​end​

​

​ register = CashRegister.​new​(0.05)

​ register.​add_item​(​"pen"​, 3, 499)

​ binding.​break​

​ register.​add_item​(​"paper"​, 2, register.​sale_price​(799, 25))

​ p register.​total​

We don’t think there’s a bug in here, but let’s trace through it via the debugger.

When you enter the debugging tool via either rdbg or binding.break, you’re
taken to the command-line interface for the tool, which looks like this:

​ [27, 34] in code/debugger/debugger_test.rb

​ 27| end

​ 28| end

​ 29|

​ 30| register = CashRegister.new(0.05)

​ 31| register.add_item("pen", 3, 499)

​ => 32| binding.break

​ 33| register.add_item("paper", 2, register.sale_price(799, 25))

​ 34| p register.total

​ =>​#0 <main> at code/debugger/debugger_test.rb:32​

The first line shows what file is being executed and what lines are being
displayed. You then see about ten lines of code (fewer here because we hit the
end of the file), with a pointer to the line currently about to be executed. The
final line, <main> at, shows both the current self object at the beginning of the
line and the line you’re at.

Below that is a prompt at which you can type commands. The full list is at
https://github.com/ruby/debug.

Control Flow

https://github.com/ruby/debug

Most of what you’ll want to do is move through the program. The debugger
will helpfully give you comments as to what your commands do, so when I
type s at the next prompt, I also see # step command. The most common
commands are:

step or s. The step command moves to the next place the code can stop,
even if that’s on a different line than what is called from this line. If you
put a number after the command as in s 5, the command moves that
number of steps before stopping. If I type s at this prompt, I end up at the
beginning of the next line. If I type s again, I jump to the sale_price

method because that’s the next thing invoked.

next or n. The next command steps over or moves to the next line. It
executes the entire line of code and then stops. Again, you can add a
number argument if you want to go more than one line at a time. If I type
n at this prompt, I end up at the beginning of the next line. If I type n
again, I end up at the beginning of the following line; the sale_price

method is already complete.

continue or c. The continue command moves forward until the script ends
or you hit a breakpoint or a binding.debug line. If I type c at the prompt, the
program runs until the end because no other stopping points exist.

The difference between step and next is worth mentioning. For example, you
have a line of code such as this:

​ register.​add_item​(​"paper"​, 2, register.​sale_price​(799, 25))

Typing s will take you to the sale_price method, and you’ll be able to walk
through that. Typing n will run the entire line of code and take you to the next
one.

To exit the debugger, the command is q. Ctrl+D will also work. If you’re
remote debugging and want to end the remote process without exiting the
debugger, the command is kill. Both of those commands prompt for a

confirmation. If you want to skip that prompt, you can use q! or kill! to exit
directly.

Breakpoints
A breakpoint is a location in the code where the debugger stops execution and
gives you control at the debugger prompt to inspect or navigate through the
code. As we saw, binding.break creates a breakpoint, but the debugger provides
alternate ways to denote breakpoints without adding lines to the code.

You can set a breakpoint from the debugger’s command prompt with break n or
b n, where n is the line number of the currently displayed file. You have a lot of
other options, including break FILENAME:n, which lets you set a breakpoint on a
different file, and break CLASSNAME#METHOD or break EXPRESSION.METHOD, both
of which set a breakpoint at the beginning of the given method. All of those
options can add an if EXPRESSION such that the breakpoint only stops the code if
the expression is true. You also have the suffixes pre: COMMAND and do:

COMMAND, which run the command at the breakpoint—the difference being
that pre stops the debugger, and do runs the command and keeps going.

Typing b by itself with no other arguments will give you a numbered list of
breakpoints, which is useful because del NUM allows you to delete a specific
breakpoint and del with no numbers deletes them all.

A reasonable thing to do in a debugger is look for errors, and the Ruby
debugger allows you to catch ERROR as in catch ArgumentError, which stops
execution when an exception of that type is raised, at which point you can
continue to navigate or query the system using the methods in the next section.
The catch command also takes the if, pre, and do suffixes just as break does.

You can also cause the debugger to stop when a value is changed—in kind of a
limited way. The watch command takes an instance variable name, as in watch

@name, and stops execution if that instance variable of the object in the current

scope changes. The official docs do point out that this is, and we quote, “super
slow.” The watch command also takes if, pre, and do suffixes.

Querying the System
When you’re stopped via a breakpoint, that’s a great time for you to look
around and try to find out what the code is doing.

Most generally, you can type eval EXPRESSION and evaluate an arbitrary
expression in the context of the current set of active variables. You can even
use this to change the value of variables, which means you can easily break
things if you want, or you can explicitly set up edge cases that are otherwise
hard to create. You can also use p EXPRESSION or pp EXPRESSION to print or
pretty-print the result of the expression. And you can type irb, which will take
you into an irb session with the current set of variable values.

You can specifically see the current call stack with bt or backtrace. If you put a
number after the command, the debugger will only show that number of lines.
If you put a regular expression after the command, it’ll only show you lines
that match the expression. The i command will show you all the values active
at the current point, and i i and i l will show instance values and local values,
respectively.

The debugger has the concept of a “tracer” where you can get a message from
the debugger when running code triggers an event. The command trace call will
show you all method calls (and I mean all method calls). You can add a
regular expression on the end of the command to filter the calls you see. You
can use trace exception to see what exceptions get raised, and trace line to track
lines of code as the script bounces along.

There’s more to the debugger. See a full list of commands at
https://github.com/ruby/debug.

https://github.com/ruby/debug

Pry
In addition to the official Ruby debugger and the official irb client, there is
a third-party alternative called Pry.[29]. Pry predates the Ruby 3.1 debugger
and contains many overlapping features, but with a slightly different
command-line interface.

To install Pry, you need the Pry gem. Pry also has a plugin system that
allows extensions, and we’ll be adding the pry-byebug gem that gives step-
by-step debugging control to Pry. You can add them to a Gemfile:

​ gem ​"pry"​

​ gem ​"pry-byebug"​

The main way to use Pry is by adding the method call binding.pry into a code
base. If we do that with the same code we used for the debugger earlier, just
by replacing require "debug" with require "pry" and the binding.break call with
binding.pry we get this:

​ From:
/Users/noel/projects/pragmatic/ruby5/Book/code/debugging/pry_test.rb:32 :

​

​ 27: end

​ 28: end

​ 29:

​ 30: register = CashRegister.new(0.05)

​ 31: register.add_item("pen", 3, 499)

​ => 32: binding.pry

​ 33: register.add_item("paper", 2, register.sale_price(799, 25))

​ 34: p register.total

​

​ [1] pry(main)>

That certainly looks familiar. We’ve got the line of code we’re blocked at
with a few lines of context surrounding it, and then a command prompt
below it.

This command prompt is a full REPL, similar to irb, and you can type in
arbitrary Ruby expressions within it, including the creation of new methods
or classes. You can also type commands. One important command to start
with is exit, which takes you out of the current frame. If you’re at the top
level, you exit the program. You can also exit the program at any time by
typing !!!.

For all Pry output, if the output runs longer than the current screen, it’ll act
like a paging reader (specifically the Unix less program), which is to say
it’ll pause output at the bottom of the screen with a : prompt and await
navigation. The space bar will move you one screen forward; the letter b
will move you one page back. The Enter key or j moves you one line
forward, and k moves you one line back. You need to type q to quit and go
back to regular input.

Like irb, Pry considers itself to be running inside a particular scope, which
is self to anything you type at the command prompt and is the target of other
Pry commands. The Pry command structure was based on Unix command
shell syntax, so you can change the scope to a different object with cd

OBJECT. The object in question must be visible to Pry.

As with Unix, cd .. goes back to the previous scope, cd / takes you back to
the original top level scope of the session, and cd - toggles you between the
last two scopes.

What does that look like in a session? Let’s pick up our Pry session, already
in progress:

​ [1] pry(main)> self

​ => main

​ [2] pry(main)> cd register

​ [3] pry(​#<CashRegister>):1> self​

​ => ​#<CashRegister:0x000000010277ecc0​

​ @items=[{:item=>"pen", :quantity=>3, :price_in_cents=>499}],

​ @tax_rate=0.05>

​ [4] pry(​#<CashRegister>):1> cd @items​

​ [5] pry(​#<Array>):2> size​

​ => 1

​ [6] pry(​#<Array>):2> cd first​

​ [7] pry(​#<Hash>):3> keys​

​ => [:item, :quantity, :price_in_cents]

​ [8] pry(​#<Hash>):3> cd ..​

​ [9] pry(​#<Array>):2>​

The session starts out with the scope pointed at main. On line 2, we change
to register, a local variable in scope. We can prove this on line 3 by checking
the value of self. Note the number after the colon in the prompt, which tells
us how many levels deep we are. On line 4, we change scope again, this
time to @items, an instance variable that is part of register. Then on line 5,
we show that size is sent to the item in scope, effectively @items.size, giving
us 1. Then we use cd again, this time changed to first, the first item of that
array, and we show that keys is sent to that hash. Then on line 9, we use cd ..

to pop back up a level to the array scope.

At any time you can use the command nesting to see a list of the current
stack of contexts and the jump-to n command to immediately go back up the
stack to a particular point in that stack. Intervening contexts are exited.

Pry gives you some ways to explore the context that it’s currently
embedded in. The main way is with the ls method. The ls method gives you
access to all of the ways Ruby lets you learn things about an item. You can
see a list of the instance variables of an object and also the methods
available from that object.

If you type ls without an argument, it’ll give you that list on the current
context, but if you give it an object argument, as in ls items, Pry will display
the information for that object. You have a number of options for how to
limit the fire hydrant of information (see
https://github.com/pry/pry/wiki/State-navigation#Ls for a full list).

https://github.com/pry/pry/wiki/State-navigation#Ls

Pry also gives you a lot of ways to learn about the code you’re looking at.
You can type find-method with a method name, and Pry will search the Ruby
libraries to show you what classes define methods that include that string in
the name. In the following code, we see that String and Symbol both define
the method upcase:

​ [2] pry(main)> find-method upcase

​ String

​ ​String#​​upcase​

​ ​String#​​upcase!​

​ Symbol

​ ​Symbol#​​upcase​

Pry’s most distinctive feature is its ability to show you the source code for
methods that you might be looking at. The show-source command takes a
method or class name, and if that name is defined in the current context, it
shows you the source code:

​ ​>​​ ​​cd​​ ​​register​

​ [2] pry(​#<CashRegister>):1> show-source add_item​

​

​ From: code/debugging/pry_test.rb:11:

​ Owner: CashRegister

​ Visibility: public

​ Signature: add_item(item, quantity, price_in_cents)

​ Number of lines: 3

​

​ def add_item(item, quantity, price_in_cents)

​ @items << {item:, quantity:, price_in_cents:}

​ end

If you type show-source without an argument, it will show the source of the
current context’s class or, if you are at the top level, the method you were in
the middle of when you invoked Pry.

The similar command show-doc will show the documentation of the method
or class used as the argument.

Another useful quirk of Pry is that you can easily treat it like a regular Unix
command line. Any command you start with a dot (.) is sent to the
underlying terminal shell. By using this, you can interact with the operating
system directly without using Pry. Pry also overrides the common file
reading program cat. You can invoke cat FILENAME without using a ., and Pry
will display the output paged and with the syntax highlighted.

Pry is a big program with a plugin-filled ecosystem of its own, and there’s
more to it that we can cover here. Check out http://pry.github.io for full
details.

http://pry.github.io/

Debugging Performance Issues with Benchmark
Ruby is an interpreted, high-level language, and as such it may not perform
as fast as a lower-level language such as C. In the following sections, we’ll
list some basic things you can do to inspect its performance.

Typically, slow-running programs have one or two performance graveyards
—places where execution time goes to die. Find and improve them, and
suddenly your whole program springs back to life. The trick is finding them
—developers are notoriously bad at guessing where performance hangups
actually are. The Benchmark module can help.

You can use the Benchmark module to time sections of code. For example,
we may wonder what the overhead of method invocation is. You can use
Benchmark.bm or Benchmark.bmbm to find out.

​ require ​"benchmark"​

​

​ LOOP_COUNT = 1_000_000

​

​ Benchmark.​bmbm​(12) ​do​ |test|

​ test.​report​(​"inline:"​) ​do​

​ LOOP_COUNT.​times​ ​do​ |x|

​ ​# nothing​

​ ​end​

​ ​end​

​

​ test.​report​(​"method:"​) ​do​

​ ​def​ ​method​

​ ​# nothing​

​ ​end​

​

​ LOOP_COUNT.​times​ ​do​ |x|

​ method

​ ​end​

​ ​end​

​ ​end​

Produces:

​ Rehearsal --

​ inline: 0.019779 0.000008 0.019787 (0.019800)

​ method: 0.035100 0.000015 0.035115 (0.035148)

​ --------------------------------------- total: 0.054902sec

​

​ user system total real

​ inline: 0.020352 0.000009 0.020361 (0.020378)

​ method: 0.034613 0.000005 0.034618 (0.034648)

The bm or bmbm methods take a block, execute it while calculating the time
that the block takes, and report that result in four columns:

The time in seconds used by the CPU executing the user process.
The time in seconds used by the CPU in system calls during the block.
The sum of the first two columns.
The actual amount of elapsed time during the block, sometimes called
“clock time” or “wall time.”

Because the resulting value is in seconds, lower values are faster, which we
only mention because some timing tools give an “executions per second”
measure, and that can be confusing.

The argument to bm or bmbm is the width of the columns of the output.

You may be wondering what the difference is between bm and bmbm. It has
to do with trying to make the output of the benchmarking test more
consistent.

Ruby programs can run slowly because of the overhead of garbage
collection. Because this garbage collection can happen at any time during
your program’s execution, you may find that benchmarking gives
misleading results, showing a section of code running slowly when, in fact,
the slowdown was caused because garbage collection happened to trigger
while that code was executing. So the bmbm method runs the tests twice—
once as a rehearsal and once to actually measure performance—in an

attempt to minimize the distortion introduced by garbage collection. In fact,
the official docs even say “there’s only so much that bmbm can do, and the
results are not guaranteed to be isolated from garbage collection and other
effects.”

The benchmarking process itself is relatively well-mannered—it won’t slow
down your program much.

[28]

[29]

What’s Next
In this chapter, we talked about different ways to debug Ruby, including
printing information to the console, using the official Ruby debugger and
the popular third-party program, Pry. We also looked at how to use Ruby’s
benchmarking tools to identify slow spots in your code.

Type errors are a common source of bugs in Ruby, and there are some
attempts to allow developers to add type information to their Ruby code so
that tooling can identify type problems before they can become bugs. Let’s
check this out.

Footnotes

https://marketplace.visualstudio.com/items?itemName=KoichiSasada.vscode-rdbg

http://pry.github.io

Copyright © 2024, The Pragmatic Bookshelf.

https://marketplace.visualstudio.com/items?itemName=KoichiSasada.vscode-rdbg
http://pry.github.io/

Chapter 18

Typed Ruby

When you see a variable in your code, it’s useful to know what values can
be assigned to that variable without the code breaking. For example, you
might have the following Ruby method:

​ ​def​ ​mystery_method​(x)

​ x * 3

​ ​end​

You’d likely expect that x should be a number. But it’s also completely valid
Ruby for x to be a string ("a" * 3 resolves to “aaa”) or an array ([:a] * 3

resolves to [:a, :a, :a]).

Let’s say that this method is in your code, and over time people call
mystery_method with strings, integers, floating-point numbers, and so on,
until somebody changes the method and inadvertently changes what
variables it’ll accept. Here’s an example:

​ ​def​ ​mystery_method​(x)

​ x.​abs​ * 3

​ ​end​

Now all of those string and array uses break because abs isn’t defined for
strings and arrays. If the original developer had been able to specify that x
must be numeric, then the string and array uses would’ve found some other

place to multiply by three and wouldn’t have broken when the method
changed.

Historically, Ruby has gotten along just fine without requiring or allowing
developers to augment code with this kind of information about the
expected values of a variable, which is often called the type of the variable.

Spurred by the increasing complexity of large Ruby projects and the
possibility of improved performance, Ruby 3.0 added RBS, a mechanism
for allowing developers to specify type information about classes and
methods. In addition, a third-party tool called Sorbet provides a separate
mechanism for type control in Ruby. In this chapter, we take a look at both
RBS and Sorbet.

What’s a Type?
The terminology around types in programming languages can be confusing
because each language community uses the terms slightly differently.

Most generally, setting the type of a variable, attribute, or method argument
limits the set of values that can be assigned to that variable, attribute, or
method argument. The type also determines the behavior of the variable
within the program. For example, the result of x / y depends on the type of x
and y. In many languages, the result will be different if the numbers are
integers than if they are floating-point types.

Many programming languages have a set of “basic types” that can be used,
often including strings, boolean values, different kinds of numerical values,
and so on. Ruby doesn’t have basic types. Every variable in Ruby is an
instance of a class, and that class determines the behavior of the variable. In
Ruby, x / y is equivalent to the method call x./(y), and the behavior depends
on what class x is.

In many typed programming languages, you must declare the type of a
variable before it’s used. This is called explicit typing. Some programming
languages can infer the type of a variable from its first use, so if I say let x =

3 in TypeScript, TypeScript knows that x is a number. This is called type
inference.

In either case, there is usually a tool, often part of the compiler, that
evaluates every variable interaction to see if type information is followed.
If, later in the TypeScript code, I try to say x = "foo", TypeScript will give a
compilation error because "foo" is a string. This is called static typing.

Without type information, Ruby doesn’t do this. In Ruby, the type of a
variable is determined while the code is running by the variables that are

assigned to it, and Ruby determines if the variable can receive a method
only at runtime. This is called dynamic typing, and the process of
determining the behavior of the method at the last possible moment is
called late binding.

There’s another distinction here that isn’t as useful to us. In some
languages, the type barriers are more permeable, and if you type 3 + "3", the
language will automatically coerce the string to an integer and allow the
addition to continue. This is called weak typing, and languages that don’t do
this have strong typing. You’ll sometimes see “strong typing” incorrectly
used as a synonym for “static typing,” but these are two different concepts
and it’s useful to keep them separate.

These are some of the benefits of static typing and a compilation step that
validates all assignments:

If the compiler and runtime know information about what type to
expect, they can often optimize internal behavior and improve
performance.

A person reading the code can get more information about the intent
and behavior of the code if there is type information.

A developer tool like an IDE or editor can use type information to
provide information to the developer as the code is being written.

These are some of the drawbacks:

Statically typed code is usually more verbose than dynamic code.
Though type inferencing has improved this situation.

Sometimes a developer has to spend time convincing the type system
that the code that has been written is correct.

Statically typed code is often less flexible than dynamic code and
harder to change. (To be fair, lots of people would see this as an
advantage.)

The goal of the type systems in Ruby is to allow for as many of the benefits
of typed languages as we can get without giving up the flexibility that
makes Ruby, Ruby.

Official Ruby Typing with RBS
The official Ruby typing system is called RBS (short for Ruby Signature).
With RBS, you create a separate file that contains type signature information
for all or part of your code.

Writing RBS
To take a look at how RBS works, we’ll use the gem we created in ​Writing
and Packaging Your Own Code into Gems​, and augment it with RBS typing. If
you look at the Aaagmnr gem code, you’ll see that it contains a directory
named sig that we didn’t talk much about. That directory is where you’re
supposed to put the type information, and right now it contains one file:

gems/aaagmnr/sig/aaagmnr.rbs

​ module Aaagmnr

​ VERSION: String

​ # See the writing guide of rbs: https://github.com/ruby/rbs#guides

​ end

The only thing this file tells us is that the module Aaagmnr has a VERSION

constant, which is a String. True enough, but not useful.

Here’s what an RBS file for the entire gem looks like:

typed_ruby/aaagmnr/sig/aaagmnr.rbs

​ module Aaagmnr

​ class Finder

​ @signatures: Hash[String, Array[String]]

​ def self.from_file: (String file_name) -> Finder

​ def initialize: (Array[String] dictionary_words) -> void

​ def lookup: (String word) -> Array[String]

​ def signature_of: (String word) -> String

​ end

​

​ class Options

​ attr_reader dictionary: Array[String]

http://media.pragprog.com/titles/ruby5/code/gems/aaagmnr/sig/aaagmnr.rbs
http://media.pragprog.com/titles/ruby5/code/typed_ruby/aaagmnr/sig/aaagmnr.rbs

​ attr_reader words_to_find: Array[String]

​

​ def initialize: (Array[String] argv) -> void

​ private def parse: (Array[String] argv) -> void

​ end

​

​ class Runner

​ @options: Array[String]

​ def initialize: (Array[String] argv) -> void

​ def run: () -> void

​ end

​

​ VERSION: String

​ end

The goal here is to describe the expected types of all the modules, constants,
and methods in the gem. The syntax is meant to be similar enough to Ruby to
be readable, while still providing for type information.

A full description of the syntax may be found at
https://github.com/ruby/rbs/blob/master/docs/syntax.md. We’ll talk about the
most common usages here.

The .rbs file typically combines one or more entire modules into a single file,
but, as with typical Ruby, there’s nothing preventing you from splitting the file
up as you please.

The basic structure of module and class declarations has the same syntax as
regular Ruby and the side effect of allowing those constant names to be used
as type names. In other words, the same way we use String as a type name,
after declaring class Finder, we could also use Finder as a type in a method
argument or return value or wherever.

Inside each class, this gem has two different kinds of declarations.

We declare attributes and constants, including VERSION: String. The Finder class
declares @signatures: Hash[String, Array[String]], meaning it expects to have an
instance variable called @signatures and the type of that variable is a Hash

https://github.com/ruby/rbs/blob/master/docs/syntax.md

whose keys are of type String and whose values are of type Array[String]. The
general syntax is the name of the instance variable, followed by a colon and
then by the type. The square bracket syntax here is called a generic (more on
this in ​Advanced RBS Syntax​), and it allows us to define both the type of a
container and the type of objects in the container, so Array[String] is an Array

container where each element is a String.

In general, any time you see a type in RBS, you can add a ? to the end of it to
indicate that the value can be nil. So, @name: String means the name has to be a
string, but @name: String? means the name can be a string or can be nil.

The lines attr_reader dictionary: Array[String] and attr_reader words_to_find:

Array[String] are also attribute declarations. Similar to how Ruby code works,
attr_reader is both a shortcut for declaring the type of an instance variable and
a getter method. The related declaration attr_writer declares the type of the
instance variable and the setter method, and attr_accessor declares all three. The
syntax is: the kind of declaration, the name of the attribute, a colon, and the
type.

The rest of the lines in the file are type signatures of methods. For example,
def lookup: (String word) -> Array[String] tells us that the lookup method takes a
positional argument named word of type String and returns an array of strings.

The general syntax here is def followed by the name of the method, a colon,
the attributes inside parentheses, the -> arrow, and the return type.

The attribute listing has a few variants. As that declaration shows, positional
arguments have the type first followed by the variable name—the name is
actually optional and isn’t checked against the name in the actual code. The
keyword arguments are in a different order: name, colon, and then type. So def

lookup: (word: String) -> Array[String] would indicate that word is a keyword
argument. Keyword arguments are checked against the actual Ruby method
signature.

An optional argument is denoted with a ? prefix, so def lookup: (?String) is a
method with an optional positional argument, but if the argument is specified,
it can’t be nil. The two kinds of optional can be combined: def lookup: (?String?)

is a method that takes an argument that’s both optional and can take a nil value.

Before we talk about more complex RBS syntax, let’s take a look at how you
can use RBS.

Using RBS
Having taken the effort to create these type annotations, what can we do with
them? Well, there are two answers:

There are some command-line tools that will do static analysis of your
Ruby code. For example, based on the RBS files, a tool might find cases
where the code doesn’t match the type information, indicating a potential
bug.

Depending on the editor or development environment you’re using, the
tool may be able to use the RBS files to provide hints or real-time error
analysis as you type. RubyMine provides significant support for RBS
files.

The Ruby interpreter could also use RBS information to optimize code
generation, it seems as though more on that line of work is yet to come.

You may need to gem install rbs to get access to the RBS command-line tools.

RBS offers its own command-line tools. These are generally proof-of-concept
tools. The rbs list tool gives you a list of classes and modules used by the
application. The rbs ancestors and rbs methods tools both take the name of a
class and provide what RBS knows about the ancestors or methods of that
class:

​ ​$ ​​rbs​​ ​​ancestors​​ ​​String​

​ ::String

​ ::Comparable

​ ::Object

​ ::Kernel

​ ::BasicObject

And the rbs method call takes a class and a method name and provides what
RBS knows about that method:

​ rbs method String gsub

​ ​::String#​​gsub​

​ defined_in: ::String

​ implementation: ::String

​ accessibility: public

​ types:

​ (::Regexp | ::string pattern, ::string replacement) -> ::String

​ | (::Regexp | ::string pattern, ::Hash[::String, ::String] hash) ->
::String

​ | (::Regexp | ::string pattern) { (::String match) -> ::_ToS } -> ::String

​ | (::Regexp | ::string pattern) -> ::Enumerator[::String, self]

There are other RBS commands that aren’t documented, and which
presumably are either not expected to be in use or are not yet complete.

The entire Ruby standard library has RBS files, so you can get type
information about any method in that library.

Ruby also provides a tool called TypeProf, which can help you generate RBS
files. To use this tool, first add gem "typeprof" to the gemfile of the application
you’re working on and then bundle install.

TypeProf takes a Ruby file, which should be the top-level file of your gem or
application, and optionally takes an RBS file, and it then spits out an RBS file.
Here’s what running TypeProf without the existing RBS file looks like for our
gem:

​ ​$ ​​typeprof​​ ​​lib/aaagmnr.rb​

​ ​# TypeProf 0.21.3​

​

​ ​# Classes​

​ module Aaagmnr

​ VERSION: String

​

​ class Finder

​ @signatures: Hash[String, Array[String]]

​

​ def self.from_file: (untyped file_name) -> Finder

​ def initialize: (Array[String] dictionary_words) -> void

​ def lookup: (untyped word) -> Array[String]?

​ def signature_of: (String word) -> String

​ end

​

​ class Options

​ DEFAULT_DICTIONARY: String

​

​ attr_reader dictionary: String?

​ attr_reader words_to_find: untyped

​ def initialize: (untyped argv) -> void

​

​ private

​ def parse: (untyped argv) -> bot

​ end

​

​ class Runner

​ @options: bot

​

​ def initialize: (untyped argv) -> void

​ def run: -> untyped

​ end

​

​ class Error < StandardError

​ end

​ end

This is similar to the RBS file that we created by hand, with a few changes:

We forgot a couple of constants, like DEFAULT_DICTIONARY and Error.
In quite a few cases, TypeProf can’t determine a type and puts in untyped.
We know that Finder#lookup takes a string and returns an array of strings,
but TypeProf returns def lookup: (untyped word) -> Array[String]?, meaning that
it can’t infer a type for the parameter, and it’s also assuming that nil is a
potential output (which, looking at the code as written, is correct—that
method can return nil if the word being looked up isn’t in the dictionary).

What you get from TypeProf, then, is a mix of items that we know about the
code that TypeProf can’t figure out and items that TypeProf can figure out but
that we, the developers, didn’t necessarily see. This makes TypeProf a useful
way to start with RBS, but not necessarily the completed goal.

As an alternative to running TypeProf from the command line, an
experimental plugin for Visual Studio Code
(https://marketplace.visualstudio.com/items?itemName=mame.ruby-typeprof)
will generate method type signatures as you write code.

To generate these type signatures, TypeProf executes your Ruby code…kind
of. The phrase the documentation uses is “abstractly executes,” which means
that it walks through the code paths knowing the types of variables but not
their values.

In other words, TypeProf tracks type information through the code, using
variable assignments and what it knows about method calls.

As an example, run the following code through TypeProf:

​ ​def​ ​approximate_word_count​(sentence)

​ sentence.​split​(​/\W+/​).​size​

​ ​end​

​

​ approximate_word_count(​"This is a sample word count"​)

TypeProf will infer that sentence is a string from the literal assignment, and
then it’ll walk through the known type signatures in the method. The split
method takes a string and returns an array of strings, and the size method takes
an array and returns an integer. So TypeProf deduces that
approximate_word_count takes a string argument and returns an integer.

TypeProf has some limitations. If there’s no call to a method or no assignment
in the code, then TypeProf is limited in how much information it has and will
only provide limited and probably overly general results. Metaprogramming
will often confuse TypeProf, especially if a lot of the data is unknown at load

https://marketplace.visualstudio.com/items?itemName=mame.ruby-typeprof

time. For example, TypeProf might be able to manage a define_method over a
known array, but using send where the argument is a variable will confound it.

TypeProf continues to be under active development. An up-to-date description
of changes can be found at
https://github.com/ruby/typeprof/blob/master/doc/doc.md.

Advanced RBS Syntax
RBS syntax, for the most part, uses : CLASS after method names, argument
names, and attribute names, and it uses the -> CLASS syntax for the return
values of methods. In some cases, that’s not enough to capture the complexity
of a Ruby program. You need to be aware of some additional syntax. We can’t
cover all the intricacies here, and also, Ruby syntax may change. So be sure to
check out the current documentation at
https://github.com/ruby/rbs/blob/master/docs/syntax.md.

In general, the type of an object is its class name, but there are some special
cases. You can reflexively refer to the type of the receiver inside a class with
self and to the singleton object of the class with singleton. The class itself is
accessible with class, and instances of the class are accessible as instance.

Sometimes a proc or method is used as a return value or argument. The syntax
is ^(ARGLIST) -> RETURN_TYPE, as in:

​ ​def​ ​apply_a_function​: (^(String, Integer) -> String) -> String

In this case, the argument to apply_a_function is a function that takes a string
and an integer argument and returns a string.

You can use alias to give a new name to an existing name or pattern, so you
could simplify the previous code like this:

​ ​alias​ func ^(String, Integer) -> String

​ ​def​ ​apply_a_function​: (func) -> String

https://github.com/ruby/typeprof/blob/master/doc/doc.md
https://github.com/ruby/rbs/blob/master/docs/syntax.md

In some cases, you might have a variable that’s more than one type. For
example, we sometimes write methods that take either an ID pointing to an
object in a database or an object itself. RBS lets you create union types, which
are one type or another, with the | character. So a method that takes an ID or
an object might have the signature def name: (Integer | User) -> String.

Any Ruby literal (including nil) can be used as an RBS type, such as in the
unusual example where you want to limit a variable to a single value. That’s
rare, but you can use it to build up union types, such as the built-in type bool,
which is defined as true | false. In Ruby, any object has a truth value, not just
the boolean literals. In RBS, if you want to mark that you’re taking in an
arbitrary object to use for its truth value, RBS provides the type boolish, as in
def name: (use_full: boolish) -> String.

Because any Ruby object can have a truth value, any Ruby object can be of
type boolish, it’s more a marker for the developers that the value is only being
used for its truth value. RBS has a couple of other defined ways to refer to a
value that can be of any type. Generically, if you want to specify that an object
is known to have any type, you use top, which is a supertype of all types. If
you’re allowing any object, but only because you don’t know any better about
the type system, you should use untyped rather than top. And if you’re
signaling that a value shouldn’t be used, as in a method whose return value is
uninteresting, you should use void.

You can specify the type of each element of a fixed-length array using
something like array syntax: [String, String]. Similarly, you can specify the type
of a hash per key: {name: String, age: Integer}. Note that Ruby doesn’t enforce
these at runtime; they are currently used only for static analysis and for hints
when developing.

For methods, if the return value is overloaded, you can use union syntax to
define multiple versions of the method at once:

​ ​def​ ​name​: (Integer) -> String

​ | (User) -> String

Somewhat unusually for Ruby, RBS allows you to define an interface,
meaning a subset of methods that might be implemented by more than one
class. By convention, interface names start with an underscore:

​ interface _Loggable

​ ​def​ ​log​: (?String) -> String

​ ​end​

You can then use _Loggable as an RBS type, and it’ll assume nothing about the
underlying object, other than that it defines a log method.

​ ​class​ LogManager

​ ​def​ ​generate_log​: (_Loggable) -> String

​ ​end​

RBS provides the & operator as an intersection operator, so you can define the
intersection of, say, multiple interfaces.

If you’ve used other type systems, like TypeScript or Java, you may be
familiar with the concept of a generic type. For example, in Ruby, an array
works the same whether it’s an array of strings, an array of numbers, or an
array of arbitrary user objects. For many purposes, which type makes up the
array doesn’t matter (for example, the size method behaves the same no matter
what). But for other purposes, it does matter (the find method behaves the
same but the type of the return value is the type of the elements of the array).

We’ve already seen the syntax for declaring a variable to be of type
Array[String], this is the RBS generic syntax, it’s a generic array with String

elements.

You can declare your own class with a generic parameter:

​ ​class​ MyArray[T]

​ ​def​ ​first​ () -> T

​ ​end​

​

​ ​class​ Classroom

​ attr_attribute ​students: ​MyArray[Student]

​ ​end​

The MyArray has a generic type T (by cross-language convention, generic types
are single capital letters), and the first method takes no arguments and returns a
value with type T, whatever T turns out to be.

Later, we can use that definition to declare that Students is a MyArray[Student],
meaning that each element in the array is of type Student.

Ruby Typing with Sorbet
You may have noticed that while RBS is an interesting way to add type hints
to your application, the actual usage of it is still a little light. A third-party tool
called Sorbet that’s managed by a team at Stripe also provides type checking.
At the moment Sorbet has more powerful analysis tools.

As with some other third-party tools, we’re covering Sorbet here because
there’s a good chance you’ll see it out in the world, but third-party tools often
change quickly, so we recommend https://sorbet.org/docs for the full scoop of
Sorbet, so to speak.

Sorbet is different from RBS in that the type annotations generally go in the
Ruby file, though there is also an external file format. The type annotations are
plain Ruby, and the type analysis tools parse them to check the code. Sorbet
can do static analysis and it can also do type checking at runtime.

Installing Sorbet
To set up Sorbet, we’ll start from a completely fresh copy of our Aaagmnr
gem. Step one is to add a few gems to our Gemfile:

sorbet/aaagmnr/Gemfile

​ # frozen_string_literal: true

​

​ source "https://rubygems.org"

​

​ gemspec

​ gem "rake", "~> 13.0"

​ gem "rspec", "~> 3.0"

​ gem "standard", "~> 1.3"

​

​ gem "sorbet", group: :development

​ gem "sorbet-runtime"

​ gem "tapioca", require: false, group: :development

https://sorbet.org/docs
http://media.pragprog.com/titles/ruby5/code/sorbet/aaagmnr/Gemfile

We’ve added the sorbet and sorbet-runtime gems, which manage static and
runtime checking, and the tapioca gem, which manages external type
information that Sorbet puts in .rbi files. The Sorbet gem gives us a runtime
command called srb which we’ll do type checking with momentarily.

To initialize Sorbet, we need to run tapioca init. This may take a bit and will
generate a lot of output:

​ ​$ ​​bundle​​ ​​exec​​ ​​tapioca​​ ​​init​

This should generate a folder called sorbet. It contains a top-level sorbet/config

file, a subdirectory called rbi that has RBI type definitions for all the gems in
the project, and a subdirectory called tapioca that has configurations and
settings for the tapioca tool.

The next step is to run static type checking analysis, the command is bundle

exec srb tc. In theory, because we’ve added no type checking this should pass,
but in practice, if we’ve done anything that Sorbet doesn’t like, it’ll get
flagged here. This might include dynamic references to constants or included
modules that would make static analysis difficult.

Let’s see what we get:

​ bundle exec srb tc

​ No errors! Great job.

That’s encouraging, and a testament to the Aaagmnr gem being somewhat
simple.

Now let’s add the type checks.

Adding Type Checks
Type checks in Sorbet are written in the Ruby file, in—well, it’s probably not
accurate to say they are written in plain Ruby, but the Sorbet-type checks are
written as Ruby method calls in valid Ruby syntax. They do take a little
getting used to.

Here’s what the Finder class looks like with Sorbet annotations added:

sorbet/aaagmnr/lib/aaagmnr/finder.rb

​ ​# typed: true​

​

​ require ​"sorbet-runtime"​

​

​ ​module​ ​Aaagmnr​

​ ​class​ Finder

​ ​extend​ T::Sig

​

​ sig { params(​file_name: ​String).​returns​(Aaagmnr::Finder) }

​ ​def​ self.​from_file​(file_name)

​ new(File.​readlines​(file_name))

​ ​end​

​

​ sig { params(​dictionary_words: ​T::Array[String]).​void​ }

​ ​def​ ​initialize​(dictionary_words)

​ @signatures = T.​let​({}, T::Hash[String, T::Array[String]])

​ dictionary_words.​each​ ​do​ |line|

​ word = line.​chomp​

​ signature = signature_of(word)

​ (@signatures[signature] ||= []) << word

​ ​end​

​ ​end​

​

​ sig { params(​word: ​String).​returns​(T.​nilable​(T::Array[String])) }

​ ​def​ ​lookup​(word)

​ signature = signature_of(word)

​ @signatures[signature]

​ ​end​

​

​ sig { params(​word: ​String).​returns​(String) }

​ ​def​ ​signature_of​(word)

​ word.​unpack​(​"c*"​).​sort​.​pack​(​"c*"​)

​ ​end​

​ ​end​

​ ​end​

There’s a lot to look at here, but it’s worth emphasizing that the basic idea is
the same as with RBS—we’re trying to explicitly denote the types of method
arguments, return values, and class attributes.

http://media.pragprog.com/titles/ruby5/code/sorbet/aaagmnr/lib/aaagmnr/finder.rb

The file itself starts with two pieces of boilerplate: the magic comment # typed:

true, which tells Sorbet to pay attention to this file, and then the Finder class
has extend T::Sig, which puts Sorbet’s type signature methods in the class.

Each individual method gets its type signature specified by prefacing the
method with a call to sig. The sig method is provided by Sorbet, and it takes a
block. Inside that block, you can optionally specify the parameters to the
method, and you must specify the return value of the method.

The parameters are specified with the params method. The params method takes
keyword arguments, the keys of which are the names of each parameter of the
actual method, and the values of which are the type of the method.

For example, the from_file method has the sig call sig { params(file_name:

String).returns(Aaagmnr::Finder) }. The params(file_name: String) part says that there
is a parameter to the method named file_name and its expected type is String.
For Sorbet’s purpose, the params method has the same structure—parameter
name and type—no matter whether the parameter in the actual method is
positional or keyword and whether the argument is required or optional.
(Sorbet can infer whether the argument is optional from the Ruby code.)

One gotcha is that splat and double-splat types are annotated with the type of
an individual element of the resulting data structure, not the data structure as a
whole:

​ sig { params(​args: ​String, ​kwargs: ​String) }

​ ​def​ ​i_have_splats​(*args, **kwargs)

​ ​end​

In this snippet args is of type String, not an array of strings, and kwargs is also of
type String and not an array with symbol keys and string values. Sorbet can
infer the data structure from the code.

The return value of the method is handled by chaining a call to returns. The
argument to returns is the type returned by the method. If the method’s return

value isn’t used, call void instead of returns—in the example, the initialize

method uses void.

Sorbet can infer the type of local variables from the initial assignment to the
valuable. For constants and for cases where the initial assignment isn’t enough
information, Sorbet would like you to replace the right hand of the initial
assignment to the attribute or constant with a call to the Sorbet method T.let.
You can see an example in the intialize method: @signatures = T.let({},

T::Hash[String, T::Array[String]]). The T.let method takes two arguments: the first is
the actual value being assigned, and the second is the type of the variable
going forward. In this case, the assignment to an empty hash is not enough
information to tell Sorbet that the hash actually has string keys and arrays of
string values.

Sorbet treats attr_reader and attr_writer like any other method, so they need to
have sig annotations. For attr_accessor, which defines both a reader and a
writer, the sig annotation should be for the reader, and Sorbet will infer the
writer.

The type value is usually just the Ruby type name, with a couple of
exceptions. As you can see in this file, arrays and hashes are handled specially,
through types defined in Sorbet’s T module. Arrays are specified as
T::Array[TYPE], and hashes are T::Hash[KEY TYPE, VALUE TYPE]. There’s also a
special T::Boolean for true or false values.

If you want to specify that a value can optionally be nil, as with the return
value to lookup, then you wrap the value in a call to T.nilable. A union type is
specified with T.any as in T.any(String, Integer).

There’s more to the Sorbet-type system; see full documentation at
https://sorbet.org/docs.

Using Sorbet

https://sorbet.org/docs

Sorbet allows for static type checking and runtime type checking. The static
checking comes from a command line:

​ ​$ ​​bundle​​ ​​exec​​ ​​srb​​ ​​tc​​ ​​FILES​

Usually you’ll want to run your entire project, which you can do like so:

​ ​$ ​​srb​​ ​​tc​​ ​​.​

​ No errors! Great job.

On the first pass, the T.nilable was missing, and Sorbet definitely noticed. The
output included errors like: aaagmnr/lib/aaagmnr/finder.rb:25: Expected

T::Array[String] but found T.nilable(T::Array[String]) and
aaagmnr/lib/aaagmnr/runner.rb:20: This code is unreachable.

Alternatively, you can list one or more specific paths (.rb or .rbi files after the
tc) to limit checking, or you can use the --ignore=PATTERN flag to take specific
files out. The --autocorrect option will give you a limited amount of autocorrect.
The default sorbet/config file generated with Sorbet includes the option --dir=.

Sorbet will also check code at runtime, which we can verify by going into the
gem’s console and trying to pass in a non-array of strings to the runner:

​ ​$ ​​bin/console​

​ irb(main):001:0> Aaagmnr::Runner.new(3)

​ /Users/noel/.rbenv/versions/3.1.2/lib/ruby/gems/3.1.0/gems/sorbet-runtime-
0.5.10346/

​ lib/types/configuration.rb:296:in `call_validation_error_handler_default': \

​ Parameter 'argv':

​ Expected type T::Array[String], got type Integer with value 3 (TypeError)

Here Sorbet is telling us that if we pass the Runner a 3 instead of an array of
words, that violates the type signature of the runner. The advantage here, at
least in theory, is that the error is detected as soon as possible, even before
some message is called that would trigger a different error. Without the type
checking, at some point we’d try to do something with the Integer that expects
a string. In this case, no harm is done by letting the code go to that point, but
in a complex system, there’s some advantage in not letting code go any further

than necessary. Sorbet’s runtime checking can also catch dynamic method
calls that would be challenging for the static type checker to analyze.

What’s Next
To be honest, we’re a little conflicted about types in Ruby. We like the
potential performance benefit, and the tooling advantages are promising.
There’s definitely a communication benefit to being explicit with types. But
we worry that some of Ruby’s dynamic power and flexibility is being
traded for static typing, and for developers who came to Ruby for that
flexibility, that can be a hard trade-off.

Some of that communication benefit can also come from documentation. In
the next chapter, we’ll discuss RDoc, the official Ruby documentation
solution, and YARD, a commonly used third-party extension.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 19

Documenting Ruby

Documentation is a critical part of communicating across teams. Code
comments can help share the intent of the developer or can be a way to
explain constraints on the code that might not be clear from just reading
code. It’s not enough to add comments to the code; it’s also useful to be
able to publish those comments onto the web and to make them consumable
by your editor or command-line tools like ri or irb.

Two tools in the Ruby ecosystem are used for converting code comments
into external documentation: RDoc and YARD. Ruby comes bundled with
RDoc, which is used by Ruby itself to document the built-in Ruby classes
and modules. Those who like a more formal, tag-based scheme might want
to look at YARD (http://yardoc.org). We’ll cover both in this chapter. As
YARD is mostly a superset of RDoc, we’ll cover RDoc first and then talk
about YARD’s extensions.

http://yardoc.org/

Documenting with RDoc
RDoc does two jobs. Its first job is to analyze source files. Ruby files, of
course, but it will also analyze C files and Markdown files. Within those files,
RDoc looks for information to document. Its second job is to take this
information and convert it into something readable—usually HTML or Ruby’s
ri documentation format.

Let’s look at an example.

rdoc/example/counter.rb

​ ​class​ Counter

​ attr_reader ​:counter​

​

​ ​def​ ​initialize​(initial_value = 0)

​ @counter = initial_value

​ ​end​

​

​ ​def​ ​inc​

​ @counter += 1

​ ​end​

​ ​end​

Going into that directory and running rdoc will create an entire doc directory
with HTML files.

Here’s what one of the files looks like:

http://media.pragprog.com/titles/ruby5/code/rdoc/example/counter.rb

Even though the source contains no internal documentation, RDoc manages to
extract interesting information from it. We have three panes at the top of the
screen showing the files, classes, and methods for which we have
documentation. For class Counter, RDoc shows us the attributes and methods
(including the method signatures). If we clicked a method signature, RDoc
would pop up a window containing the source code for the corresponding
method.

If our source code contains comments, RDoc can use them to spice up the
documentation it produces.

Take for example, the following source code:

rdoc/example_with_comments/counter.rb

​ ​# Implements a simple accumulator, whose​

​ ​# value is accessed via the attribute​

​ ​# _counter_. Calling the method Counter#inc​

​ ​# increments this value.​

​ ​class​ Counter

​ ​# The current value of the count​

​ attr_reader ​:counter​

​

​ ​# create a new Counter with the given​

http://media.pragprog.com/titles/ruby5/code/rdoc/example_with_comments/counter.rb

​ ​# initial value​

​ ​def​ ​initialize​(initial_value = 0)

​ @counter = initial_value

​ ​end​

​

​ ​# increment the current value of the count​

​ ​def​ ​inc​

​ @counter += 1

​ ​end​

​ ​end​

This results in a similar RDoc page.

Notice how the comments before each element now appear in the RDoc
output, reformatted into HTML. Less obvious is that RDoc has detected
hyperlink opportunities in our comments. In the class-level comment, the
reference to Counter#inc is a hyperlink to the method description, and in the
comment for the new method, the reference to class Counter hyperlinks back to
the class documentation. This is a key feature of RDoc’s design. Instead of
being intrusive in the Ruby source files, RDoc tries to be clever when
producing output.

RDoc can also be used to produce documentation that can be read by the ri
command-line utility. For example, if we ask RDoc to document the code in

the previous example into ri format (with $ rdoc -r .), we can access the
documentation from the command line:

​ ​$ ​​ri​​ ​​Counter​

​ = Counter < Object

​

​ (from /Users/noel/.local/share/rdoc)

​ --

​ Implements a simple accumulator, whose value is accessed via the

​ attribute counter. Calling the method Counter​#inc​

​ increments this value.

​ --

​ = Class methods:

​

​ new

​

​ = Instance methods:

​

​ counter, inc

​

​ = Attributes:

​

​ attr_reader counter

The documentation will even get picked up by irb, as shown in the figure.

Ruby distributions document the built-in classes and modules this way. It’s the
documentation you’ll see at https://docs.ruby-lang.org/en/master.

https://docs.ruby-lang.org/en/master

Adding RDoc to Ruby Code
RDoc parses Ruby source files to extract the major elements (such as
classes, modules, methods, attributes, and so on). You can choose to
associate additional documentation with these by simply adding a comment
block before the element in the file.

One of the design goals of RDoc was to leave the source code looking
totally natural. In most cases, you don’t need any special markup in your
code to get RDoc to produce decent looking documentation. For example,
comment blocks can be written fairly naturally:

​ ​# Calculate the minimal-cost path though the graph using Debrinkski's
algorithm,​

​ ​# with optimized inverse pruning of isolated leaf nodes.​

​ ​def​ ​calculate_path​

​ . ​.​ .

​ ​end​

You can also use Ruby’s block-comments by including the documentation
in a =begin…=end block. If you use this (which isn’t generally done), the
=begin line must be flagged with an rdoc tag to distinguish the block from
other styles of documentation:

​ ​=begin rdoc​

​ ​Calculate the minimal-cost path though the graph using Debrinkski's
algorithm,​

​ ​with optimized inverse pruning of isolated leaf nodes.​

​ ​=end​

​ ​def​ ​calculate_path​

​ . ​.​ .

​ ​end​

Within a documentation comment, paragraphs are lines that share the left
margin. Text indented past this margin is formatted verbatim.

Nonverbatim text can be marked up. To set individual words in italic, bold,
or typewriter fonts, you can use _word_, *word*, and +word+, respectively. If
you want to do this to multiple words or text containing nonword
characters, you can use multiple words, more words, and
<tt>yet more words</tt>. Putting a backslash before inline markup stops it
from being interpreted.

RDoc stops processing comments if it finds a comment line starting with #-

-. This can be used to separate external from internal comments or to stop a
comment from being associated with a method, class, attribute, or module.
Documenting can be turned back on by starting a line with the comment
#++:

​ ​# Extract the age and calculate the​

​ ​# date of birth.​

​ ​#--​

​ ​# FIXME: fails if the birthday falls on February 29th, or if the person​

​ ​# was born before epoch and the installed Ruby doesn't support negative
time_t​

​ ​#++​

​ ​# The DOB is returned as a Time object.​

​ ​#--​

​ ​# But should probably change to use Date.​

​

​ ​def​ ​get_dob​(person)

​ ...

​ ​end​

Hyperlinks
Names of classes, source files, and any method names containing an
underscore or preceded by a hash character are automatically hyperlinked
from comment text to their description.

In addition, hyperlinks starting with http:, mailto:, ftp:, and www: are
recognized. An HTTP URL that references an external image file is
converted into an inline img tag. Hyperlinks starting with link: are assumed

to refer to local files whose paths are relative to the --op directory, where
output files are stored.

Hyperlinks can also be of the form label[url], where the label is used in the
displayed text and url is used as the target. If the label contains multiple
words, surround it in braces: {two words}[url].

Lists
Lists are typed as indented paragraphs with the following:

As asterisk (*) or hyphen (-) for bullet lists
A digit followed by a period for numbered lists
An uppercase or lowercase letter followed by a period for alpha lists

For example, you could produce something like the previous text with this:

​ ​# Lists are typed as indented paragraphs with​

​ ​# * a * or - (for bullet lists),​

​ ​# * a digit followed by a period for​

​ ​# numbered lists,​

​ ​# * an uppercase or lowercase letter followed​

​ ​# by a period for alpha lists.​

Note how subsequent lines in a list item are indented to line up with the text
in the element’s first line.

Labeled lists (sometimes called description lists) are typed using square
brackets for the label:

​ ​# [cat] Small domestic animal​

​ ​# [+cat+] Command to copy standard input​

​ ​# to standard output​

Labeled lists may also be produced by putting a double colon after the
label. This sets the result in tabular form so the descriptions all line up in
the output:

​ ​# cat:: Small domestic animal​

​ ​# +cat+:: Command to copy standard input​

​ ​# to standard output​

For both kinds of labeled lists, if the body text starts on the same line as the
label, then the start of that text determines the block indent for the rest of
the body. The text may also start on the line following the label, indented
from the start of the label. This is often preferable if the label is long. Both
of the following are valid labeled list entries:

​ ​# <tt>--output</tt> <i>name [, name]</i>::​

​ ​# specify the name of one or more output files. If multiple​

​ ​# files are present, the first is used as the index.​

​ ​#​

​ ​# <tt>--quiet:</tt>:: do not output the names, sizes, byte counts,​

​ ​# index areas, or bit ratios of units as​

​ ​# they are processed.​

Headings
Headings are entered on lines starting with equal signs. The more equal
signs, the higher the level of heading:

​ ​# = Level One Heading​

​ ​# == Level Two Heading​

​ ​# and so on...​

Rules (horizontal lines) are entered using three or more hyphens:

​ ​# and so it goes...​

​ ​# ----​

​ ​# The next section...​

Documentation Modifiers
Method parameter lists are extracted and displayed with the method
description. If a method calls yield, then the parameters passed to yield will
also be displayed. For example:

​ ​def​ ​fred​

​ ​# ...​

​ ​yield​ line, address

This will be documented as follows:

​ fred() { |line, address| ... }

You can override this using a comment containing :yields: ... on the same line
as the method definition:

​ ​def​ ​fred​ ​# :yields: index, position​

​ ​# ...​

​ ​yield​ line, address

This will be documented as follows:

​ fred() { |index, position| ... }

:yields: is an example of a documentation modifier. These appear
immediately after the start of the document element they are modifying.
Other modifiers include:

:nodoc: <all>
Don’t include this element in the documentation. For classes and
modules, the methods, aliases, constants, and attributes directly within
the affected class or module will also be omitted from the
documentation. But, by default, modules and classes within that class
or module will be documented. This is turned off by adding the all
modifier. For example, in the following code, only class SM::Input will
be documented:

​ ​module​ ​SM​ ​#:nodoc:​

​ ​class​ Input

​ ​end​

​ ​end​

​

​ ​module​ ​Markup​ ​#:nodoc: all​

​ ​class​ Output

​ ​end​

​ ​end​

:doc:

This forces a method or attribute to be documented even if it wouldn’t
otherwise be. This is useful if, for example, you want to include
documentation of a particular private method.

:notnew:

This is applicable only to the initialize instance method. Normally,
RDoc assumes that the documentation and parameters for #initialize are
actually for the corresponding class’s new method, so it fakes a new

method for the class. The :notnew: modifier stops this. Remember that
#initialize is protected, so you won’t see the documentation unless you
use the -a command-line option.

Other Directives
Comment blocks can contain other directives:

:call-seq: lines...

Text up to the next blank comment line is used as the calling sequence
when generating documentation (overriding the parsing of the method
parameter list). A line is considered blank even if it starts with #. For
this one directive, the leading colon is optional.

:include: filename

This includes the contents of the named file at this point. The file will
be searched for in the directories listed by the --include option or in the
current directory by default. The contents of the file will be shifted to
have the same indentation as the : at the start of the :include: directive.

:title: text

This sets the title for the document. It’s equivalent to the --title

command-line parameter. (The command-line parameter overrides any
:title: directive in the source.)

:main: name

This is equivalent to the --main command-line parameter, setting the
initial page displayed for this documentation.

:stopdoc: / :startdoc:

This stops and starts adding new documentation elements to the
current container. For example, if a class has a number of constants
that you don’t want to document, put a :stopdoc: before the first and a
:startdoc: after the last. If you don’t specify a :startdoc: by the end of the
container, this disables documentation for the entire class or module.

:enddoc:

This documents nothing further at the current lexical level.

Running RDoc
RDoc can be run from the command line, like this:

​ ​$ ​​rdoc​​ ​​OPTIONS​​ ​​FILENAMES​

Type rdoc --help for an up-to-date option summary.

Files are parsed, and the information they contain is collected before any
output is produced. This allows cross-references between all files to be
resolved. If a name is that of a directory, it is traversed. If no names are
specified, all Ruby files in the current directory (and subdirectories) are
processed.

A typical use may be to generate documentation for a package of Ruby
source (such as RDoc itself):

​ ​$ ​​rdoc​

This command generates HTML documentation for the files in and below
the current directory. These will be stored in a documentation tree starting
in the subdirectory doc/.

RDoc uses file extensions to determine how to process each file. Filenames
with rb and rbw extensions are assumed to be Ruby source. Filenames with
c, h, or cpp extension are parsed as C files. Files with md and markdown are
parsed as Markdown. A file named ChangeLog will be parsed as a change
log. All other files are assumed to contain just markup (with or without
leading # comment markers). If directory names are passed to RDoc, they
are scanned recursively for source files only. To include non-source files
such as READMEs in the documentation process, their names must be given
explicitly on the command line.

When writing a Ruby library, you often have some source files that
implement the public interface, but the majority are internal and of no
interest to the readers of your documentation. In these cases, construct a
.document file in each of your project’s directories. If RDoc enters a
directory containing a .document file, it’ll process only the files in that
directory whose names match one of the lines in that file. Each line in the
file can be a filename, a directory name, or a wildcard (a file system “glob”
pattern). For example, to include all Ruby files whose names start with
main, along with the file constants.rb, you could use a .document file
containing this:

​ main*.​rb​

​ constants.​rb​

Some project standards ask for documentation in a top-level README file.
You may find it convenient to write this file in RDoc format and then use
the :include: directive to incorporate the README into the documentation
for the main class.

RDoc has a lot of command-line options for how the output is generated
and styled that you’ll likely use approximately never, use the command rdoc

--help for a full rundown.

Using RDoc to Create Documentation for ri
RDoc is also used to create documentation that will be later displayed using
ri or by the irb inline documentation.

When you run ri, it looks by default for documentation in three places:

The system documentation directory, which holds the documentation
distributed with Ruby and is created by the Ruby install process

The site directory, which contains sitewide documentation added
locally

The user documentation directory, which is stored under the user’s
own home directory

You can find these three directories using ri --list-doc-dirs.

You can override the directory location using the --op option to RDoc and
subsequently using the --doc-dir option with ri.

To add documentation to ri, you need to tell RDoc which output directory to
use. For your own use, it’s easier to use the --ri option, which installs the
documentation into ~/.rdoc:

​ ​$ ​​rdoc​​ ​​--ri​​ ​​file1.rb​​ ​​file2.rb​

If you want to install sitewide documentation, use the --ri-site option:

​ ​$ ​​rdoc​​ ​​--ri-site​​ ​​file1.rb​​ ​​file2.rb​

The --ri-system option is normally used only to install documentation for
Ruby’s built-in classes and standard libraries. You can regenerate this
documentation from the Ruby source distribution (not from the installed
libraries themselves):

​ ​$ ​​cd​​ ​​ruby​​ ​​source​​ ​​base/lib​

​ ​$ ​​rdoc​​ ​​--ri-system​

Documenting with YARD
YARD (http://yardoc.org) is an extension of RDoc that uses tags to allow you
to add metadata to your comments. It then uses the metadata to create more
interesting documentation.

Yet Another Aside

While YARD claims to be short for “Yay! A Ruby Documentation
Tool,” it likely was named in reference to the long-standing open-
source tradition of starting acronyms with YA for “yet another.”
We think the first tool to this was the Yacc parser-generator (for
"Yet Another Compiler Compiler"), but there’s also YAML
(originally "Yet Another Markup Language," now styled as
"YAML Ain’t Markup Language," which is a whole other open-
source tradition of recursive acronyms), and some quick internet
searching reveals YaST, YAF, YAPM, YAPP, and who knows how
many more.

Here’s our minimal counterexample with some YARD tags added:

rdoc/example_with_yardoc/counter.rb

​ ​# Implements a simple accumulator, whose​

​ ​# value is accessed via the attribute​

​ ​# _counter_. Calling the method Counter#inc​

​ ​# increments this value.​

​ ​# @author Dave Thomas​

​ ​# @note This is only a minimal example​

​ ​# @version 1.0​

​ ​class​ Counter

​ ​# The current value of the count​

​ attr_reader ​:counter​

​

​ ​# create a new Counter with the given​

http://yardoc.org/
http://media.pragprog.com/titles/ruby5/code/rdoc/example_with_yardoc/counter.rb

​ ​# initial value​

​ ​# @param initial_value [Integer] the initial value of the counter​

​ ​def​ ​initialize​(initial_value = 0)

​ @counter = initial_value

​ ​end​

​

​ ​# increment the current value of the count​

​ ​# @example Increment the counter​

​ ​# Counter.new.increment #=> counter.value == 1​

​ ​# @return [Integer] The new value of the counter​

​ ​def​ ​inc​

​ @counter += 1

​ ​end​

​ ​end​

The comments are the same, but we’ve augmented them with tags like
@author, @param, and @return.

To use YARD, we need to get gem install yard or have it in our Gemfile. The
command to run the current directory is this:

​ ​$ ​​yard​​ ​​doc​​ ​​.​

The resulting HTML documentation goes in a doc directory. (YARD also
creates a .yardoc directory with its own information.) As you can see, the
HTML is more detailed and uses the tags appropriately, as shown in the figure.

YARD Tags
YARD allows you to augment your documentation with tags (which start with
@) and directives (which start with !@). As you can see from the earlier
example, some tags have a little bit of syntax structure.

Here are the tags you’re likely to use most often:

@author—The name of the author or authors of the class, method, or
module.

@deprecated—Marks a method as deprecated in the docs. Followed with a
description, ideally one that shows how to work around the deprecated

item.
@example—The first line of the example tag is a title for the example.
Subsequent lines should be indented further in than the tag and should
contain code showing the item in use.

@note—A note that’s placed at the top of the page for an item.

@param—A parameter to a method. Followed with the name, the expected
type in square brackets, and a description.

@raise—The method may raise an exception. Followed with the name of
the exception in square brackets and a description, as in @raise

[NoArgumentError] if the user does not exist.

@since—A version number where the item was first added.

@version—The version of the item being documented.

@yield—Describes what the method would yield to a passed-in block.
Consists of a list of parameters in square brackets followed by a
description string.

You can find a full list of tags and directives at
https://rubydoc.info/gems/yard/file/docs/Tags.md.

Using YARD
The YARD executable lets you generate a few different kinds of files.

The command yard doc, which is also aliased as yardoc, generates HTML
documentation for the current directory or for a list of given files or
directories. It looks for a file named .yardopts for options.

The yard ri command, aliased as yri, displays your documentation in an ri style
interface. The yri command doesn’t work on the core Ruby classes, only on
your own project’s YARD documentation.

https://rubydoc.info/gems/yard/file/docs/Tags.md

The command yard graph spits out text in GraphViz format https://graphviz.org,
which will generate a class diagram of the documented code.

https://graphviz.org/

What’s Next
In this chapter, we talked about the two most commonly used tools for
documenting Ruby: RDoc and YARD. If you look around the web at
documentation for Ruby gems, you’ll see both of their distinctive HTML
styles in regular use. Now let’s take a bit of a turn and talk about Ruby’s
tools for working with the web itself.

Copyright © 2024, The Pragmatic Bookshelf.

Part 3
Ruby Crystallized

Ruby is a sophisticated and flexible object-oriented
language, and using it effectively can mean exploring
reflection, metaprogramming, and other related ideas.

Chapter 20

Ruby and the Web

There’s a good chance that if you’re reading this book, you’re intending to
use Ruby in the context of some kind of Web application. Ruby is used as
the language for a lot of web tools, not only for Ruby on Rails,[30] but also
for many other web frameworks and third-party tools.

While the Ruby ecosystem is full of web tools, most of those tools are third-
party gems and not part of the core Ruby distribution. Core Ruby does
provide an implementation of the Common Gateway Interface (CGI), which
was the original dynamic web standard, but as we write this, you’re
unlikely to be writing CGI scripts directly, so we’re not going to spend time
on CGI scripts in this book. That said, for historical reasons, a lot of Ruby’s
web-related behavior is in a class called CGI, so we’ll be referencing that
class throughout.

Many options are available for using Ruby to implement web applications,
and a single chapter can’t do them all justice. Instead, we’ll touch on some
of the highlights and point you toward libraries and resources that can help.
In particular, we’ll focus on the following:

Ruby’s web utilities—a part of the Ruby Standard Library
ERB—the most common third-party tool for templating
Rack—a third-party standard for all behavior common to Ruby web
frameworks
Sinatra—perhaps the simplest of the powerful Ruby web frameworks

Wasm (Web Assembly)—a tool to run Ruby in a browser

Ruby’s Web Utilities
The Ruby standard distribution includes some core utilities as part of the CGI
class and CGI::Util module.

CGI Encoding
When dealing with URLs and HTML code, you must be careful to quote
certain characters. For instance, a slash character (/) has special meaning in a
URL, so it must be “escaped” if it’s not part of the path name. That is, any / in
the query portion of the URL is translated to the string %2F, and then it must
be translated back to a / for you to use it. Space and ampersand are also
special characters.

To handle this, CGI provides the methods escape and unescape:

​ require ​"cgi"​

​ puts CGI.​escape​(​"Nicholas Payton/Trumpet & Flugel Horn"​)

Produces:

​ Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

More frequently, you may want to escape HTML special characters:

web/escape_01.rb

​ require ​"cgi"​

​ puts CGI.​escapeHTML​(​"a < 100 && b > 200"​)

Produces:

​ a < 100 && b > 200

To get really fancy, you can decide to escape only certain HTML elements
within a string:

web/escape_02.rb

http://media.pragprog.com/titles/ruby5/code/web/escape_01.rb
http://media.pragprog.com/titles/ruby5/code/web/escape_02.rb

​ require ​"cgi"​

​ puts CGI.​escapeElement​(​"<hr>Click Here
"​, ​"A"​)

Produces:

​ <hr>Click Here

Here, only the <a...> element is escaped; other elements are left alone. Each of
these methods has an un- version to restore the original string:

web/escape_03.rb

​ require ​"cgi"​

​ puts CGI.​unescapeHTML​(​"a < 100 && b > 200"​)

Produces:

​ a < 100 && b > 200

Using the CGI Class to Handle Cookies
Cookies are a way of letting web applications store their state on the user’s
machine. Frowned upon by some, cookies are still a convenient (if unreliable)
way of remembering session information.

The Ruby CGI class handles the loading and saving of cookies for you,
assuming you’re working within a web framework that receives cookies. You
can access the cookies associated with the current request using the cookies
method, and you can set cookies back into the browser by setting the cookie
parameter of out to reference either a single cookie or an array of cookies:

web/cookies.rb

​ ​#!/usr/bin/ruby​

​ require ​"cgi"​

​

​ COOKIE_NAME = ​"chocolate chip"​

​

​ cgi = CGI.​new​

​ values = cgi.​cookies​[COOKIE_NAME]

http://media.pragprog.com/titles/ruby5/code/web/escape_03.rb
http://media.pragprog.com/titles/ruby5/code/web/cookies.rb

​ msg = ​if​ values.​empty?​

​ ​"It looks as if you haven't visited recently"​

​ ​else​

​ ​"You last visited ​​#{​values[0]​}​​"​

​ ​end​

​

​ cookie = CGI::Cookie.​new​(COOKIE_NAME, Time.​now​.​to_s​)

​ cookie.​expires​ = Time.​now​ + 30 * 24 * 3600 ​# 30 days​

​ cgi.​out​(​"cookie"​ => cookie) { msg }

Using the CGI Class to Generate HTML

CGI contains a huge number of methods that can be used to create HTML—one
method per element. To enable these methods, you must create a CGI object by
calling new and passing in the required version of HTML. In this example,
we’ll use html5.

To make element nesting easier, these methods take their content as code
blocks. The code blocks should return a String, which will be used as the
content for the element.

​ require ​'cgi'​

​ cgi = CGI.​new​(​"html5"​)

​ cgi.​out​ ​do​

​ cgi.​html​ ​do​

​ cgi.​head​ { cgi.​title​ { ​"This Is a Test"​} } +

​ cgi.​body​ ​do​

​ cgi.​form​ ​do​

​ cgi.​hr​ +

​ cgi.​h1​ { ​"A Form: "​ } +

​ cgi.​textarea​(​"get_text"​) +

​ cgi.​br​ +

​ cgi.​submit​

​ ​end​

​ ​end​

​ ​end​

​ ​end​

Although interesting, this method of generating HTML is fairly laborious and
probably isn’t used much in practice. Most people write HTML directly and

use a templating system or an application framework such as Rails.
Unfortunately, we don’t have space here to discuss Rails—take a look at the
online documentation at http://rubyonrails.org—so let’s look at templating.

http://rubyonrails.org/

Templating with ERB
Templating systems let you separate the presentation and logic of your
application.

So far, we’ve looked at using Ruby to create HTML output, but we can turn
the problem inside out: we can actually embed Ruby in an HTML document.
The embedded Ruby (or ERB) library is included with Ruby’s standard
distribution.

Embedding Ruby in HTML is a powerful concept—it gives us the equivalent
of a scripting tool such as PHP, but with the full power of Ruby.

Using ERB
ERB is a filter. Input text is passed through untouched, with the following
exceptions:

Expression Description
<% ruby code %> This executes the Ruby code between the delimiters.

Any resulting value isn’t sent to the output.
<%= ruby
expression %>

This evaluates the Ruby expression and places the
resulting value of the expression in the output.

<%# ruby code
%>

The Ruby code between the delimiters is ignored
(useful for testing).

% line of ruby
code

A line that starts with a percent is assumed to contain
just Ruby code.

You can run ERB from the command line:

erb <options> <document>

If document is omitted, ERB will read from standard input. The command-line
options for ERB are listed in the following table:

Option Description
-d Sets $DEBUG to true

-E ext[:int] Sets the default external/internal encodings

-n Displays resulting Ruby script (with line numbers)

-r library Loads the named library

-P Doesn’t do erb processing on lines starting %

-S level Sets the safe level

-T mode Sets the trim mode

-U Sets default encoding to UTF-8

-v Enables verbose mode

-x Displays resulting Ruby script

Let’s look at some simple examples. We’ll run the ERB executable on the
following input:

web/f1.erb

​ <​%​ 99​.​downto​(​96​)​ do ​|​number​|​ ​%​>

​ <​%=​ number ​%​> bottles of beer...

​ <​%​ end ​%​>

The lines starting with the percent sign simply execute the given Ruby. In this
case, it’s a loop that iterates the line between them. The sequence <%= number

http://media.pragprog.com/titles/ruby5/code/web/f1.erb

%> in the middle line calculates the value of number and inserts the result into
the output:

​ ​$ ​​erb​​ ​​f1.erb​

​

​ 99 bottles of beer...

​

​ 98 bottles of beer...

​

​ 97 bottles of beer...

​

​ 96 bottles of beer...

ERB works by rewriting its input as a Ruby script and then executing that
script. You can see the Ruby code ERB generates using the -n or -x option—the
output here is slightly edited for spacing:

​ ​$ ​​erb​​ ​​-x​​ ​​f1.erb​

​ ​#coding:UTF-8​

​ _erbout = +'';

​ 99.downto(96) do |number| ;

​ _erbout.<< "\n".freeze;

​ _erbout.<< " ".freeze;

​ _erbout.<<((number).to_s);

​ _erbout.<< " bottles of beer...\n".freeze;

​ end;

​ _erbout.<< "\n".freeze;

​ _erbout

Notice how ERB builds a string, _erbout, that contains both the static strings
from the template and the results of executing expressions (in this case the
value of number).

Embedding ERB in Your Code
So far, we’ve seen ERB running as a command-line filter. But the most
common use is as a library in your own code. Many Ruby web frameworks
automatically use ERB templates for output.

web/erb.rb

http://media.pragprog.com/titles/ruby5/code/web/erb.rb

​ require ​"erb"​

​

​ source = <<~SOURCE

​ ​ <% (min..max).each do |number| %>​

​ ​ The number is <%= number %>​

​ ​ <% end %>​

​ SOURCE

​

​ erb = ERB.​new​(source)

​

​ min = 4

​ max = 6

​ puts erb.​result​(binding)

Produces:

​ The number is 4

​

​ The number is 5

​

​ The number is 6

Notice how we can use local variables within the ERB template. This works
because we pass the current binding to the result method. ERB can use this
binding to make it look as if the template is being evaluated in the context of
the calling code. Using bindings is sometimes awkward, especially if you want
to limit what values are available to the template. ERB also provides
result_with_hash, which, true to its name, takes a hash argument, and within the
template, variable names are resolved as keys to the hash.

Be aware that in the default version of ERB, you can’t use the -%> trick to
suppress blank lines. (That’s why we have the extra blank lines in the output in
the previous example.) You can specify the way ERB handles blanks by
passing a trim_mode: keyword argument to ERB.new.

Here are the values that trim_mode can take:

% — Allows you to have lines starting with % processed as Ruby code.
> — Lines ending in %> don’t have a newline added to the result.
<> — Same as above, but for lines starting with <% and ending with %>.

- — Blank lines ending in -%> are omitted. (This is the setting used in
Rails.)

ERB comes with excellent documentation.[31]

Sending JSON
It’s also quite common for web tools to send responses formatted using JSON.
The Ruby JSON library is available with require "json" and provides a
JSON.generate(object) that converts a Ruby object into a JSON representation.
Many Ruby classes define a to_json method as well. Many third-party libraries
are also available to handle more complex JSON serialization patterns.

See ​JSON​, for more details on the Ruby library that manages JSON.

Serving Ruby Code to the Web
Ruby is commonly used as the back end of a web application. In this pattern, a
request is made to a web server, which executes Ruby code. The Ruby code
returns HTML (usually), which is sent back to the web browser as the
response.

While you could write all this in plain Ruby yourself, there’s no need for you
to do all that work. The Ruby ecosystem has multiple web servers, including
Puma,[32] Unicorn,[33] Thin,[34] and Falcon.[35] You can also use multiple web
frameworks, including Ruby on Rails,[36] Sinatra,[37] Roda,[38] and Hanami.[39]

You might look at that incomplete list of web servers and frameworks and
think that compatibility between the two sets might be a nightmare of
continually having to adjust the framework code based on what server you’re
using or vice versa. In fact, it’s not a nightmare, and it’s even possible for
behavior to be written once and shared between multiple web servers. This
compatibility is not a problem because of a library called Rack.[40]

Rack and Web Servers
Rack is a minimal interface for the relationship between a web server and a
web application framework. Imagine that you are writing a web server that
wants to work with an application framework. Certain logistical details of the
relationship between the server and the framework exist no matter what the
details of either tool’s internal structure are.

A user request comes as text, whose structure is defined by the HTTP
specification. The web server’s job is to convert that text into Ruby objects
and pass them to the framework. The framework’s job is to take that object, do
something with it, and return Ruby objects to the web server, which converts
them back to HTTP text or data to send to the browser.

Rack provides the following:

A standard structure for the environment data coming into the web server
via the user request—specifically, a hash with a pre-defined set of keys.

A standard structure for the response data coming back to the web server
from the frameworks. The response is an array with three elements: the
return status, the headers, and the body.

A mechanism for the interface between the two. A rack app is a method
or block that takes the environment as input and returns the response as
output. Rack provides the method run, which takes rack apps, sends them
environments, and returns the result.

Rack also provides a structure for chaining Rack applications together. For
example, you might have a series of small rack applications where one does
authentication, another sanitizes input, and another cleans up image sizing.
Rack makes it easy to create a pipeline of these middleware apps so that they
can be integrated into any Ruby web framework.

Here’s a minimal example of Rack in action (rack-tion?):

web/rack_01/config.ru

​ require "bundler/inline"

​

​ gemfile do

​ source "https://rubygems.org"

​ gem "rack"

​ gem "rackup"

​ end

​

​ run do |env|

​ [200, {"content-type" => "text/plain"}, ["Welcome to Rack"]]

​ end

This is a configuration file for Rack, often called a “rackup file.” This
particular rackup file is doing two things.

First, it’s using Bundler’s inline function (see ​Single File Projects​) to ensure
that the gems Rack and Rackup are installed. The Rack gem manages most of

http://media.pragprog.com/titles/ruby5/code/web/rack_01/config.ru

the Rack functionality. Rackup is the default command-line application for
serving applications defined using Rack.

Second, it’s creating a Rack app and running it using the Rack command run.

To make this work, in the directory with the code run this:

​ ​$ ​​bundle​​ ​​install​

​ ​$ ​​rackup​

​ [2022-09-25 10:04:10] INFO WEBrick 1.7.0

​ [2022-09-25 10:04:10] INFO ruby 3.2.2 (2023-03-30) [arm64-darwin23]

​ [2022-09-25 10:04:10] INFO WEBrick::HTTPServer​#start: pid=31252 port=9292​

This has started a web server called WEBrick and it’s serving at port 9292,
which you can confirm by going into a browser and hitting http://localhost:9292.
You’ll receive “Welcome to Rack” as the response.

Rack Versions

If you’re familiar with Rack, this example may look a little
strange. This example uses Rack 3.0, which is relatively new at
the time of this writing. The rackup gem was extracted from Rack
3.0 in part because WEBrick is now a separate project and is no
longer part of the standard Ruby distribution. Also, the run method
taking a block argument is new in 3.0.

That shows that it works, but what’s Rack doing?

The run method is part of Rack. Typically, a Rack application defined in a
rackup file will have one run method (though, as we’ll see, you can specify
multiple run methods if each one is matched to a different URL path). The run

method takes as its argument either a block or any Ruby object that can
respond to the call method. Because both lambdas and Procs define call, either
one of them can be an argument to run.

Here’s what our app would look like with a stabby lambda:

​ run -> (env) { [200, {​"content-type"​ => ​"text/plain"​}, [​"Welcome to Rack"​]] }

And here is the app with a custom object:

​ ​class​ SmallRackApp

​ ​def​ ​call​(env)

​ [200, {​"content-type"​ => ​"text/plain"​}, [​"Welcome to Rack"​]]

​ ​end​

​ ​end​

​

​ run SmallRackApp.​new​

In all these cases, the callable takes one argument—the environment—and
returns a three-element array as the response. The structure of both the
environment and response are defined by the Rack Specification.[41]

The environment is a regular Ruby hash. Because hash objects are mutable, a
Rack app can modify it, often to add new keys. The environment is required to
have several specific keys even if sometimes those keys are empty.

Those keys include the URL of the request, which is split into the keys
SERVER_NAME, SCRIPT_NAME, PATH_INFO, QUERY_STRING, and SERVER_PORT. The
HTTP verb of the request is in the key REQUEST_METHOD. Any HTTP request
headers are placed in corresponding keys starting with HTTP_. Rack puts
information of whether the request uses HTTP or HTTPS in the key
rack.url_scheme and adds a raw input stream at rack.input and an error stream at
rack.errors.

The response is a three-element unfrozen array made up of the following:

The HTTP status, which must be an integer greater than or equal to 100.

The headers to be sent as part of the response, as an unfrozen hash. Keys
in this hash that start with rack. aren’t sent back to the client browser.

The body of the response. Most commonly, the body is an array of
strings.

The body element of the response can be more complicated. Rather than an
array, the body can be any Ruby enumerable that responds to the method each

and results in a series of strings.

Less commonly, the body can act as something that’s streamed, rather than
returned all at once. In this case, the body is Proc or anything that responds to
call, and the result of call should be something that behaves like an I/O stream,
where reading from the stream returns data.

This gets even more powerful with the ability of these Rack applications to
chain together, allowing an application to act on the environment or the
response of a different application. This is called Rack middleware. While the
middleware uses the same environment and response objects, there’s a little bit
more structure.

Here’s an example:

web/rack_02/config.ru

​ require "bundler/inline"

​

​ gemfile do

​ source "https://rubygems.org"

​ gem "rack"

​ gem "rackup"

​ end

​

​ class PrefixingMiddleware

​ def initialize(app)

​ @app = app

​ end

​

​ def call(env)

​ status, headers, body = @app.call(env)

​ new_body = ["<h2>This is a prefix</h2>"] + body

​ [status, headers, new_body]

http://media.pragprog.com/titles/ruby5/code/web/rack_02/config.ru

​ end

​ end

​

​ class PostfixingMiddleware

​ def initialize(app)

​ @app = app

​ end

​

​ def call(env)

​ status, headers, body = @app.call(env)

​ new_body = body + ["<h2>This is a postfix</h2>"]

​ [status, headers, new_body]

​ end

​ end

​

​ class RackApplication

​ def call(env)

​ [

​ 200,

​ {"content-type" => "text/html"},

​ ["<h1>Welcome to Rack</h1>"]

​]

​ end

​ end

​

​ use PrefixingMiddleware

​ use PostfixingMiddleware

​ run RackApplication.new

This Rack application is built from three smaller applications,
PrefixingMiddleware, PostfixingMiddleware, and RackApplication. Where our
previous example used the run command, this example has the use command
once for each of the middleware classes. The use command takes as an
argument the name of the middleware class, in contrast to the run method,
which takes an instance of a Rack app as its argument.

When you execute this file with rackup, the following things happen:

Rack takes the instance passed to run as the first application.

Then starting from the bottommost use call and working up, Rack creates
an instance of each middleware class, passing it the previous instance as
the argument. In our case, an instance of PostfixingMiddleware is created
with the RackApplication instance as the argument, and then an instance of
PrefixingMiddleware is created with that previous instance as the argument.

At this point, we have a chain of Rack apps, each of which knows the
identity of the next item in the chain. We trigger the chain by calling the
call method on the topmost element in the chain. As part of being a good
Rack citizen, each middleware app is expected to invoke the call method
on its app argument. In this way, every Rack app is invoked.

Let’s trace this through our sample Rack app. We start with run

RackApplication.new, giving us an instance of RackApplication. The code then goes
up a line to use PostfixingMiddleware, and it creates an instance of
PostfixingMiddleware, passing it the already created RackApplication instance. We
repeat the process going upward, creating a PrefixingMiddleware instance that
has a relationship with the PostfixingMiddlware instance.

Now that we have an entire chain of objects that conform to the Rack standard
and respond to call, we invoke call on the object at the end of the chain, so our
PrefixingMiddleware instance gets called with the env environment directly from
the web request. The first thing that happens in that call method is status,

headers, body = @app.call(env)—meaning we immediately call the next app in the
chain, which is PostfixingMiddleware. The first thing that happens in the
PostfixingMiddleware#call method is the same status, headers, body = @app.call(env),
which takes us down to the bottom Rack app, which responds to call and
returns the three-element array [200, {"content-type" => "text/html"},["<h1>Welcome

to Rack</h1>"]].

At this point, we walk back up the chain. That return value is extracted by the
call method in PostfixingMiddleware, which promptly takes the three values,
appends some text to the body, and returns a new three-element array with the

new body. That return value is, in turn, extracted by PrefixingMiddleware, which
takes the values, prefixes some text to the new body, and returns the new
three-element array, which is the final result of the call.

And, if you run rackup on this file and then hit http://localhost:9292, you’ll see
all three lines of text in your browser, correctly formatted as HTML.

Although our Rack middleware classes both do similar things—retrieve the
previous call and adjust the body text—Rack middleware can do far more.
You have complete freedom to adjust the environment, status, headers, and
response body. You can completely ignore the work of other middleware and
change the response to ["Never gonna give you up"]. More usefully, you can add
API tokens to the environment, perform external services like logging, or filter
the response body in some way. There’s a lot of power there.

And although we’ve been using rackup, Rack applications work with a variety
of compatible Ruby web servers. To use the popular Puma server, do this:

​ ​$ ​​gem​​ ​​install​​ ​​puma​

​ ​$ ​​puma​

Puma will, by default, look for a config.ru file in the current directory and run
it.

Every major Ruby web framework is structured as a Rack application that can
be triggered with Rack’s run. Not only can your middleware be run with any
web server, it can be integrated into any web framework. Any problem that
can be solved with a Rack middleware can be applied to any compatible
framework.

Sinatra and Web Frameworks
While Rack is powerful, it’s also a little low-level and writing more complex
web interactions with it is complicated. For more involved web applications,
Ruby has many different web frameworks. The most popular is Ruby on Rails,

which provides web features along with database connectivity, and a complete
grab bag of everything you’d need to build full-featured web applications.

Rails is great, but it’s also a lot to learn. In this book, we’re going to show a
simpler framework called Sinatra[42], which is one of the fastest ways to get a
basic web application up and running in Ruby.

Here’s a minimal Sinatra file:

web/sinatra_01/sinatra.rb

​ require ​"bundler/inline"​

​

​ gemfile ​do​

​ source ​"https://rubygems.org"​

​ gem ​"sinatra"​, ​require: ​​false​

​ gem ​"thin"​

​ ​end​

​

​ require ​"sinatra"​

​

​ get ​"/"​ ​do​

​ ​"<h1>Fly me to the moon!</h1>"​

​ ​end​

To start a web server, all you need to do is run this file like an ordinary Ruby
program.

​ ​$ ​​ruby​​ ​​sinatra.rb​

​ == Sinatra (v3.1.0) has taken the stage on 4567

​ for development with backup from Thin

​ 2022-10-15 08:48:20 -0500 Thin web server (v1.8.2 codename Infinite Smoothie)

​ 2022-10-15 08:48:20 -0500 Maximum connections set to 1024

​ 2022-10-15 08:48:20 -0500 Listening on localhost:4567, CTRL+C to stop

From there, pointing a web browser at http://localhost:4567 will result in a web
page being served, with “Fly me to the moon,” just as specified at the end of
the code.

http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra.rb

How is this working? Logistically, the first ten lines or so of this example are
using bundler/inline to install gems as part of the script, which is a useful trick
for simple Sinatra scripts. We’re pulling in both Sinatra itself and the Thin
web server; when it runs, Sinatra will automatically use Thin if it’s available.
(You can use other servers, but you need to create a rackup file to do so.)
Because of the way Sinatra decides when to run, we need to explicitly use
require "sinatra", which means we need Bundler not to require Sinatra, so the
line in the gemfile section for Sinatra needs to include require: false.

The actual web serving part is the last three lines. Generically, a Sinatra
application is a collection of routes. A route is an HTTP verb followed by a
path, some optional options, and then a block. The HTTP verb, path, and
options tell Sinatra how to match requests to routes, and the block tells Sinatra
how to reply when the request matches the route.

In this case, we’ve defined one route, the HTTP verb is GET, which matches
the root path of /, and there are no other options. The return value of the block
is the string "<h1>Fly me to the moon!</h1>". And so, if we hit the root route, we
get that response. Hitting any other URL within that server triggers a 404 error
page, since Sinatra has no routes matching the URL.

As you might imagine, you can build up considerably more advanced logic
from there. A full description is at https://sinatrarb.com/intro.xhtml, but we’ll
cover some of the most important parts here.

We can start with the return value of the block. In our example, it’s a plain
string. For more complex output, you’ll likely want to use ERB or some other
templating language. In Sinatra, you can do that with the erb method:

web/sinatra_01/sinatra_with_erb.rb

​ get ​"/"​ ​do​

​ erb(​:root​)

​ ​end​

https://sinatrarb.com/intro.xhtml
http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra_with_erb.rb

The first argument to erb is a symbol and matches a filename, which is in a
views subdirectory by default. So the previous snippet will render an ERB
template in views/root.erb. Less commonly, the first argument can be a string,
in which case the string is expected to be an ERB template itself, and is
rendered as-is.

After the name of the template, you can pass in key/value pairs to erb as
options. By default, the ERB template has access to instance variables set in
the route, but if you want local variables to be visible, you can set them with a
locals: option. You can also set a layout with a layout: option. The layout is an
ERB template that includes a call to <%= yield %> somewhere, at which point
the actual template for the route is inserted. A few other options for erb are
available in the official docs together with a wide range of other template tools
that are supported with their own similar helper methods.

The erb method also returns a string. You can also return an object that
responds to each and returns a series of strings, in which case you’re streaming
output to the browser. You can also return a complete Rack response, meaning
the entire three-element array, or you can return an integer, which is assumed
to be an HTTP status code over an otherwise-empty response.

The route selectors can be made more flexible and complicated. You can
match delete, get, link, options, patch, post, put, and unlink. You cannot by default
have multiple HTTP verbs connected to the same route, though there are a
couple of workarounds for this including an extension called
sinatra/multi_route.

In the route name, you can have parameters or wild cards. Parameters are
either available in a hash called params or are passed as arguments to the block
associated with the route.

web/sinatra_01/sinatra_with_param.rb

​ get ​"/user/:username"​ ​do​ |block_un|

​ [

http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra_with_param.rb

​ ​"<p>Hello, ​​#{​params[​"username"​]​}​​</p>"​,

​ ​"<p>​​#{​block_un​}​​ has the same value</p>"​

​]

​ ​end​

A request to this route might look like “http://webhost.com/user/noelrap,” and
the resulting output would be <p>Hello, noelrap</p><p>noelrap has the same

value</p>. The block takes all the parameters from the URL in positional order,
rather than as a hash—we suspect that using the hash will typically be more
readable and flexible. In this example, we’re also taking advantage of Sinatra’s
ability to return an object that responds to each—an array—and its ability to
return a series of strings. We like this slightly better than concatenating the
strings together in the block.

The parameters are passed to the block in the order they are in the URL, and
the block parameters can be named arbitrarily, but the params hash will pick up
the name used in the path description. If the parameter name ends in a
question mark, like :username?, then the parameter is optional. Sinatra treats
trailing slashes as full elements, so user and user/ are different strings, but you
can make the trailing slash optional with a question mark, as in user/?.

You can also include a *, which will match an arbitrary number of segments in
the path, the unnamed variable will either be a block parameter or be
accessible as params["splat"].

If multiple routes match the request, the first one defined and matched is
taken. You can use pass which tells Sinatra to move to the next matching route.

Instead of a string, the first argument to the path matcher can be a regular
expression, in which case any path string that matches the regular expression
triggers the route. If you use parentheses to capture part of the regular
expression, then the capture groups are available as arguments to the block or
as params["captures"], so our route with the variable example could’ve been
written as:

web/sinatra_01/sinatra_with_regex.rb

http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra_with_regex.rb

​ get ​%r{/user/(​​\w​​+)}​ ​do​ |capture|

​ [

​ ​"<p>Hello, ​​#{​params[​"captures"​].​first​​}​​</p>"​,

​ ​"<p>​​#{​capture​}​​ has the same value</p>"​

​]

​ ​end​

Note the use of the %r for the regex literal since the string being matched
contains slashes.

After the string or regex, you can also pass some optional keyword parameters
to a route definition. These keyword parameters act as a condition that the
request must meet to trigger the route. Perhaps the most useful of these is
provides:, which compares against the Accept header to match the route based
on what media type the browser is expecting.

The Sinatra code we’ve seen so far is very powerful for being so short, but as
you build up more complex Sinatra scripts, you’ll probably want to go beyond
a top-level script and add some classes or modularity.

Sinatra allows you to import a sinatra/base module which gives you a
Sinatra::Application class that you can use the same Sinatra DSL inside, like this:

web/sinatra_01/sinatra_class.rb

​ require ​"sinatra/base"​

​

​ ​class​ SinatraApp < Sinatra::Application

​ get ​"/"​ ​do​

​ ​"<h1>Fly me to the moon!</h1>"​

​ ​end​

​ ​end​

There’s also a Sinatra::Base, which sets fewer defaults and allows you to have
more control over the Sinatra setup.

Once the Sinatra code is set up as a class, it won’t run as a script. You have a
few ways to get it to run, one of which is to use Rack. We can run the file in a
config.ru rackup file as just another Rack app:

http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/sinatra_class.rb

web/sinatra_01/config.ru

​ require_relative "./sinatra_class"

​ run SinatraApp

Now we’ve got multiple files, we’ve moved all the gem requirements out of
inline and into a Gemfile:

web/sinatra_01/Gemfile

​ source "https://rubygems.org"

​ gem "rack", "~> 2.2"

​ gem "puma"

​ gem "sinatra", "> 3.0"

Sinatra doesn’t currently support Rack 3.0, so we’ve used the Gemfile to
ensure that we have the most recent 2.2.x version of Rack.

At this point, we can run bundle install, and the Puma gem is installed. Then,
running puma from the command line, Puma will find the config.ru file and run
the Sinatra app. Pointing the browser at http://localhost:9292 will show that this
works.

There’s a lot more to Sinatra, so please check out https://sinatrarb.com for
additional information. And if Sinatra doesn’t meet your needs, many other
Ruby web frameworks might.

http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/config.ru
http://media.pragprog.com/titles/ruby5/code/web/sinatra_01/Gemfile
https://sinatrarb.com/

Ruby in the Browser with Web Assembly
Web Assembly (Wasm) is a virtual machine runtime engine that runs in a web
browser, allowing any Wasm-compliant programming language to be used as a
scripting language in that browser.

Ruby 3.2 added support for Wasm as a compilation target of Ruby. You can
see full instructions for creating your own Wasm build at
https://github.com/ruby/ruby/blob/master/wasm/README.md, but in most
cases you’ll likely either pull in the Wasm build as a module in Node Package
Manager (NPM) or point to a source for the Wasm build in your web page.

So, you can do this in an HTML file:

web/wasm.xhtml

​ <html>

​ <script

​ src=​"https://cdn.jsdelivr.net/npm/ruby-head-wasm-
wasi@0.5.0/dist/browser.script.iife.js"​

​ ></script>

​ <script type=​"text/ruby"​>

​ puts ​"Welcome To Ruby!"​

​ </script>

​ </html>

The first script tag downloads the Wasm-compliant Ruby build from a known
CDN location. This will take some time on first download at least, so it’s
probably not quite production-ready as we write this. The first script tag
registers the Ruby build as the interpreter for Ruby scripts, so subsequent
text/ruby scripts will be interpreted by Ruby and their output sent to the
browser.

In this case, the subsequent script prints “Welcome to Ruby!” to the browser
console.

You can do more complex things:

https://github.com/ruby/ruby/blob/master/wasm/README.md
http://media.pragprog.com/titles/ruby5/code/web/wasm.xhtml

web/wasm_2.xhtml

​ <html>

​ <head>

​ <script

​ src=​"https://cdn.jsdelivr.net/npm/ruby-head-wasm-
wasi@0.5.0/dist/browser.script.iife.js"​

​ ></script>

​ <script type=​"text/ruby"​>

​ require ​"js"​

​ document = JS.global[:document]

​ button = document.getElementById(​"button"​)

​ response = document.getElementById(​"response"​)

​ guess = document.getElementById(​"guess"​)

​ button.addEventListener(​"click"​) ​do​ |e|

​ real_number = (1..10).to_a.sample

​ result_text = ​"The number was #{real_number}. "​

​ ​if​ guess[:value].to_i == real_number

​ result_text << ​"You were right!!"​

​ ​else​

​ result_text << ​"You were incorrect"​

​ end

​ response[:innerText] = result_text

​ end

​ </script>

​ </head>

​ <body>

​ <p>Pick a number 1 through 10</p>

​ <input id=​"guess"​ />

​ <button id=​"button"​>Am I right?</button>

​ <div id=​"response"​></div>

​ </body>

​ </html>

The HTML at the end of this script has a button, a text field, and a placeholder
for a response. In the script, after we require a module called js, we have
access to the JavaScript document object as JS.global[:document]. From there,
we can use the DOM method getElementById to retrieve DOM elements and
access their values as if they were in a hash (not as attributes). We can even
call methods on them, as in addEventListener.

http://media.pragprog.com/titles/ruby5/code/web/wasm_2.xhtml

It all adds up to a button that causes a random number to be generated and
compared to the value in a text field, as shown here:

You don’t have to do this in the HTML script. You can grab the NPM package
directly and evaluate Ruby code, but you have to pass the Ruby code as a
string. This is a little clunky right now, but you can see an example at
https://github.com/ruby/ruby.wasm/blob/main/packages/npm-packages/ruby-
wasm-wasi/example/index.node.js.

This is a very new project, and we look forward to further developments of the
coding experience here.

https://github.com/ruby/ruby.wasm/blob/main/packages/npm-packages/ruby-wasm-wasi/example/index.node.js
https://github.com/ruby/ruby.wasm/blob/main/packages/npm-packages/ruby-wasm-wasi/example/index.node.js

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

What’s Next
We’ve covered many different ways Ruby interacts with the web. We’ve
seen Ruby’s own utilities, the Rack framework for interactions between
web servers and application frameworks, and the Sinatra framework for
building basic web applications. Next we’ll look at Ruby style.

Footnotes

http://www.rubyonrails.org

https://docs.ruby-lang.org/en/master/ERB.xhtml

https://puma.io

https://yhbt.net/unicorn

https://github.com/macournoyer/thin

https://github.com/socketry/falcon

https://rubyonrails.org

https://sinatrarb.com

https://github.com/jeremyevans/roda

https://hanamirb.org

https://github.com/rack/rack

https://github.com/rack/rack/blob/main/SPEC.rdoc

https://sinatrarb.com

Copyright © 2024, The Pragmatic Bookshelf.

http://www.rubyonrails.org/
https://docs.ruby-lang.org/en/master/ERB.xhtml
https://puma.io/
https://yhbt.net/unicorn
https://github.com/macournoyer/thin
https://github.com/socketry/falcon
https://rubyonrails.org/
https://sinatrarb.com/
https://github.com/jeremyevans/roda
https://hanamirb.org/
https://github.com/rack/rack
https://github.com/rack/rack/blob/main/SPEC.rdoc
https://sinatrarb.com/

Chapter 21

Ruby Style

As you become familiar with Ruby and the Ruby community, you will see
references to “Ruby style” or “idiomatic Ruby.” These terms refer to the
way in which developers who love Ruby tend to write Ruby code. Ruby
provides a broad range of allowed syntax and different ways of performing
similar tasks and interacting with existing code. Ruby is such a flexible
language that style and community standards of practice go a long way
toward keeping Ruby code readable from project to project.

There are two distinct kinds of Ruby style. The first is the kind that’s
syntax-based, governs how you write individual lines and small blocks of
code, and can (to some extent) be evaluated by a linting program. In this
chapter, we’ll discuss two tools that can check your code to see if it matches
style rules: RuboCop and Standard. Often, these tools can automatically
reformat your code to align with style guidelines.

The second kind of Ruby style is more nebulous, and it involves larger
decisions than individual lines and has to do more with how to use Ruby as
a tool. We’ll discuss how to lean into Ruby’s dynamism and support of
dynamic typing (sometimes called “duck typing”) as a way to make your
code’s intent clearer and give you less code to maintain and change in the
future.

Before we say anything else about style in this chapter, it’s important to
remember that style is subjective, and nearly all of these guidelines are

dependent on what you and your team find clear and readable. Team style is
a case where consistency is more important than perfection—any time spent
arguing over where the square brackets go is time lost. You want to avoid
“bikeshedding”—spending inordinate time on trivial cosmetic issues like
what color to paint the bike shed, rather than the important issues of your
project. We’ll offer some advice, but our overall recommendation is to pick
the tooling to support a common set of practices and then spend your time
on larger and more interesting code issues.

Written Ruby Style
The goal of having a written coding style is to make the intent and
functionality of the code clear and easy to maintain. When the physical
layout of the file matches its logical layout and the constructs are presented
consistently, it’s easier for a reader of the code to understand what the code
is doing.

Programming languages tend to offer flexibility in how the code is actually
laid out in the file as written by the developer. Some languages are stricter
in arranging the physical layout of their syntax. For example, Python is
known for enforcing the use of indentation to denote logical blocks of code.
Ruby, for better or worse, isn’t like that. Ruby offers the developer
tremendous flexibility.

In the face of that flexibility, various common practices have emerged. In
some cases, a particular style was found to have genuine clarity or
modification benefits. In other cases, the community picked from equally
fine choices, but the consistency of going with only one choice has its own
benefit.

Currently, the two most commonly used Ruby style guides can be found at
https://rubystyle.guide, which is maintained by Bozhidar Batsov and the
team that maintains the RuboCop tool, and at https://ruby-style-
guide.shopify.dev, which is a slightly different version maintained by the
team of Ruby developers at Shopify.

It’s not our intention to litigate every element in those guides, but we do
want to mention a few of the most important or most widely observed
features. (You’ll notice the features we highlight have a strong correlation
with the ones used by the Standard tool.)

Indentation and Spacing

https://rubystyle.guide/
https://ruby-style-guide.shopify.dev/
https://ruby-style-guide.shopify.dev/

Ruby code almost without exception uses two spaces for indentation—not
tabs and not four spaces:

​ ​module​ ​Game​

​ ​class​ Team

​ ​def​ ​initialize​

​ ​end​

​ ​end​

​ ​end​

We could go on about how this is optimal, but honestly, it’s largely a
question of consistency (and to some extent, a preference for more compact
code).

It’s important to note that a couple of things aren’t indented in Ruby that
might be indented in other languages. For example, in a case statement, the
when clauses aren’t indented relative to the case:

​ ​case​ name

​ ​when​ ​:superman​

​ ​"Clark Kent"​

​ ​when​ ​:batman​

​ ​"Bruce Wayne"​

​ ​end​

Similarly, exception keywords like rescue and ensure aren’t indented relative
to the blocks they are within:

​ ​def​ ​a_sample_method​(name)

​ a_dangerous_call

​ ​rescue​ StandardError

​ ​return​ ​"Oops"​

​ ​ensure​

​ something_else

​ ​end​

The rationale for this spacing is that if you squint hard enough, when and
rescue aren’t subordinate blocks and shouldn’t be indented. In practice, like

the two-space indenting, this lack of indentation tends to make Ruby code
more compact on the screen than code from other languages.

If you use private as a keyword, typically the methods below it aren’t
indented, again because private is a method call and doesn’t create a logical
block:

​ ​class​ Sample

​ ​def​ ​public_method​

​ ​end​

​

​ ​private​

​

​ ​def​ ​private_method​

​ ​end​

​ ​end​

As you’ve seen in the code samples in the book so far, Ruby code uses the
end of a line to end statements, so you don’t typically use a semicolon at the
end of a line.

Ruby code style uses spaces around operators, around equal signs, and after
commas, but it doesn’t use spaces inside square brackets or parentheses. For
example:

​ ​def​ ​do_some_things​(x, y = ​"default"​)

​ a = x + y

​ b = [1, 2, 3]

​ ​end​

Here are a few exceptions:

Range literals generally don’t have spaces, as in 1..10.

When ! is used as a negation operator it doesn’t have spaces, as in !foo.

The &. safe navigation operator doesn’t get spaces so that it visually is
just part of a method chain as in user&.name&.first.

Exponent operators don’t have spaces, as in x**2.

Rational and complex literal markers don’t have spaces, as in 3/5r.

Curly braces are a little more complicated. The most common style is to put
spaces inside curly braces for block literals, but not for hash literals or
string interpolation, because the spacing gives an immediate visual clue as
to whether the braces enclose a block or a hash:

​ ​def​ ​sample​

​ data = {​a: ​1, ​b: ​2}

​ data.​each​ { |key, value| p ​"​​#{​key​}​​/​​#{​value​}​​"​ }

​ ​end​

That said, you’ll see styles that put spaces inside hash literals as well.

As for block literals, the most common Ruby style is to use curly braces for
single-line blocks and do/end for multiline blocks:

​ ​def​ ​another_sample​

​ [1, 2, 3].​map​ { |x| x**2 }

​ [1, 2, 3].​map​ ​do​ |x|

​ print ​"working on ​​#{​x​}​​"​

​ x**2

​ ​end​

​ ​end​

There’s another convention, associated with Jim Weirich (the creator of
Rake), where braces are used for multiline blocks if the return value of the
method is immediately used in a method chain like this:

​ ​def​ ​another_sample​

​ [1, 2, 3].​map​ { |x|

​ do_something_with(x)

​ }.​sort​.​first​

​ ​end​

In this example, the result of the map call is passed directly to sort, so the
Weirich convention uses braces because the feeling is that end.sort.first looks

odd.

Typically, we put blank lines between method and class definitions, and
only rarely inside methods. Ruby methods tend to be short, and needing
internal space might be a sign that the method should be split.

Parentheses, especially for method calls, also have a couple of popular
styles. The most common style is to use parentheses for all method calls
unless the method call is one of these:

A Kernel method like puts or p that’s meant to look like a command.
A class method being invoked as part of the definition of a class, like
include or private.
Used in a Ruby domain-specific language that doesn’t use parentheses,
like RSpec’s it or describe.

No matter what, method calls with no arguments in Ruby shouldn’t get
empty parentheses (except in the one case where super() has a different
meaning than super).

You may sometimes see references to “Seattle Style” Ruby code, in which
parentheses are only included if they are needed to resolve ambiguity.

Naming and Calling
Local variables, symbols, method names, and filenames in Ruby use
underscores to separate words, as in a_multi_word_name. Modules and classes
that start with capital letters use intercaps to separate words, as in
AMultiWordName. Our preference is to lowercase acronyms in intercapped
names—as in HttpReceiver, not HTTPReceiver—on the grounds that it’s easier
to separate the words, but this is an example where people’s opinion
definitely varies.

Constants are typically written in all caps and use underscores to separate
names, as in A_MULTI_WORD_NAME.

Ruby tends not to prefix getters, setters, and predicate methods. Getters are
typically the name of the attribute, setters are the name of the attribute with
an = suffix, and predicate methods don’t typically start with is or a similar
prefix. Instead, predicate methods in Ruby end with ?, such as empty?.

The ! suffix on a method name indicates that the method is “dangerous.” In
Ruby-speak this means that the method does one of the following:

Modifies the receiver of the message
Raises an exception or error

There is typically a “safe” version of the same method that doesn’t end in !
and doesn’t modify the receiver or raise an exception.

Ruby style tends to avoid explicitly using self as the receiver of a method
unless it’s required to avoid ambiguity (as in the left side of an assignment).
Ruby style also avoids explicitly and redundantly using return on the last
line of a method where the return value is already specified. Only explicitly
use return when exiting early from a method.

Single-line method calls should only be used when the body of the method
is a single expression and has no side effects. Ideally, it also has no
arguments. Here’s an example:

def price_in_dollars = price_in_cents * 1.0 / 100.

Also, you should use attr_reader, attr_writer, and attr_accessor when
appropriate rather than explicitly defining simple setters and getters.

Ruby allows parallel assignment between multiple left and right arguments.
In general, use parallel assignment to do one of the following:

Swap values: first, second = second, first

Capture multiple return values from a method: user, count =

post.user_with_most_comments

Logical Flow
Ruby has a number of different looping and conditional flow constructs that
control the logical flow of the program through the code. Because these
flow statements are usually the most complex individual bits of logic, using
consistent style for clarity is important in keeping the code readable and
maintainable. Following are a few suggestions.

Even though Ruby has a for keyword, it’s better to use each for looping over
an enumeration—for is defined in terms of each, so you don’t gain speed and
you lose some clarity by using for.

In if and when statements, only use then where the condition and the result
are on the same line. Only use guard clauses at the end of the line like foo if

x.nil? if the clause is simple. If the clause is complex, consider breaking it
out into its own method with a meaningful name.

It’s fine to use unless instead of if !, but please don’t use unless followed by
else because that tends to be confusing.

The if and case statements return a value, and you should use this fact to
make code clearer, like this:

​ result = ​if​ a_thing

​ x

​ ​else​

​ y

​ ​end​

Note the indentation (you can also indent relative to the beginning of the
line). Also, note that Ruby style doesn’t put parentheses around the boolean
condition in an if or while statement.

For single-line conditional assignments, both of these styles are correct:
result = if a_thing then x else y end and result = a_thing ? x : y. They each have their

fans.

For equality, Ruby has a couple of different versions, though the one you
want is almost always ==. It’s the version that compares on the value of the
object, not the identity of the object.

Finally, avoid using assignment in the conditional, as in if x = gets (even
though some examples in this book do this for compactness). If you do, it’s
probably a good idea to put parentheses around the conditional, like this: if
(x = gets), to draw attention to the unusual code.

Data
When creating an array or a hash, it’s better to use the literal syntax [] or {}

over Array.new or Hash.new. If applicable, use %w for an array of short strings
or %i for an array of symbols.

In general, prefer symbols as hash keys or, at the very least, some other
immutable object. When using a symbol as a key, you should use the newer
{foo: bar} syntax rather than {:foo => :bar}. (This is a declaration against our
own tastes; we personally love the way the hash rocket looks, but
objectively, more people find the shorter syntax easier.)

Ruby has a handful of pre-existing methods that combine iteration
functions, like flat_map and reverse_each. These tend to be faster than
chaining the two methods, so you should use these when appropriate.

For strings, use interpolation syntax rather than concatenating strings with
bits of stuff, so use "#{last_name}, #{first_name}" instead of last_name + ", " +

first_name. We prefer using double-quoted strings in all cases because that’s
easier to modify if you later add interpolation to the strings. Double-quoted
strings aren’t appreciably slower than single-quoted strings. If the string
itself includes double quotes, use the %Q syntax. For long strings use
heredocs, especially the <<~SQUIGGLE syntax that manages indentation.

Similarly, use %r for regular expressions that contain / characters. Consider
using x as a modifier for complex regular expressions to allow for more
expressive spacing. Use a comment on regular expression literals to point to
Rubular or something similar where a reader can try the regular expression.

The Ruby style guides offer a lot of other suggestions; this is only some of
what a full-style guide might include.

Using RuboCop
When you write Ruby code, you often don’t want to have to think about style.
What you want to do is write your code and solve your problem. But what
usually happens is that once you have your team review your code, people on
your team start to nitpick your minor style choices, sometimes contradicting
each other. This is, to say the least, not compatible with great team morale.

Enter RuboCop.[43] RuboCop is a linter, which means that it automatically
checks your code for style and then either flags discrepancies or optionally
autocorrects them. (The name “linter” comes from the first such program, lint,
written in 1978 by Stephen C. Johnson for C code and named by analogy to a
lint trap as a thing that catches small issues.)

RuboCop is highly customizable. It ships with dozens of individual style rules,
which it calls “cops,” plus there’s a plugin system to add sets of rules and a
mechanism for writing your own rules. After adding RuboCop, in theory, you
have just one discussion among your team to set RuboCop’s preferences, and
then you let RuboCop handle the style-checking rather than continually
debating it in code review.

RuboCop’s documentation[44] is thorough. It includes a description of every
individual rule with examples of code that passes and fails each one.

Getting Started with RuboCop
Let’s look at how to get started using RuboCop in your code. For
demonstration purposes, we’re going to go through the process of adding
RuboCop to our Aaagmnr gem from Chapter 15, ​Ruby Gems​. RuboCop is a
Ruby gem, so you first need to add it to the Gemfile as gem "rubocop". (If you’re
literally following along with a copy of Aaagmnr, note that the previous
version had Standard installed. Here, we’re replacing it with RuboCop for the
sake of demonstration.)

Next, run bundle install to install the RuboCop gem and enable a command-line
program called rubocop, which you can run from the command line:

​ ​$ ​​rubocop​

​ Inspecting 14 files

​ CCCCCCCCCCCCCC

​

​ Offenses:

​ Gemfile:3:8: C: [Correctable] Style/StringLiterals:

​ Prefer single-quoted strings when you don't need

​ string interpolation or special symbols.

​ source "https://rubygems.org"

​ ^^^^^^^^^^^^^^^^^^^^^^

​ <LOTS OF THOSE>

​

​ 14 files inspected, 108 offenses detected, 102 offenses auto-correctable

​

​ Tip: Based on detected gems, the following RuboCop extension libraries

​ might be helpful:

​ * rubocop-rake (https://rubygems.org/gems/rubocop-rake)

​ * rubocop-rspec (https://rubygems.org/gems/rubocop-rspec)

​

​ You can opt out of this message by adding the following to your config

​ (see https://docs.rubocop.org/rubocop/extensions.xhtml​#extension-suggestions​

​ for more options):

​ AllCops:

​ SuggestExtensions: false

If you’re using the sample code that came with this book, you’ll only get these
results if you remove or rename the configuration files .rubocop.yml and
.rubocop_todo.yml described later in this chapter. Also, newer versions of
RuboCop may change this output.

Let’s parse this. RuboCop first tells us how many Ruby files it found to
inspect—14 in this case. Then it gives us a running progress bar. If this was a
live video and not a book, you’d see those C’s coming in one at a time.

RuboCop and Editors

If you’re using an integrated development environment (IDE) or
coding editor, there’s likely an extension that’ll read your
RuboCop configuration and display RuboCop issues in your
editor as you type. You may even be able to autocorrect from the
editor without running the command-line tool. (This goes for
Standard as well.)

Each file gets one character. If the file has no issues, it’s represented with a
dot. Apparently, we have an issue in each file, so we have no dots. If RuboCop
does flag something, the file is represented by the most serious issue. Each
individual cop specifies its own severity level. Following are RuboCop’s
severity levels in order of least serious to most serious:

I is used for “info.” It’s rare for an “info” failure to be reported. Typically
an “info” failure won’t be counted as a failure of the entire run as a
whole.

R is used for “refactor,” as in “something you might want to refactor.”

C is used for “convention,” meaning a style issue that’s part of your
team’s conventions, rather than something that might objectively be a
problem for all teams. Cops whose names don’t start with Lint default to
this severity.

W is used for “warning,” meaning the file is legal Ruby but has
something that you might consider an “objective” problem. The
indentation is unbalanced, there’s some ambiguity, or something like that.
Cops whose names start with Lint default to this severity.

E is used for “error,” meaning the file isn’t legal Ruby.

F is used for “fatal,” meaning the file has a syntax error that prevents it
from being parsed.

After the files comes a listing of all the offenses. The example code has a lot
of identical offenses; we’ve chosen to include the display of only one of them.
The layout looks like this:

The location of the issue, Gemfile:3:8 gives the filename, line number, and
character where the issue begins.

The severity of the issue, which in this case is level C.

If RuboCop can autocorrect the issue, it says so with [Correctable].

The name of the cop, which in this case is Style/StringLiterals, and a
description of what the cop shows.

The line of code with the text at issue underlined.

After the list of all the offenses is a summary line: 14 files inspected, 108 offenses

detected, 102 offenses auto-correctable. Also, RuboCop helpfully tells us that we
could install plugins for rubocop-rake and rubocop-rspec.

That’s a lot of offenses. We can get a sense for what’s going on by using a
different formatter from the command line:

​ rubocop --format offenses

​ 14/14 files |=====| Time: 00:00:00

​

​ 90 Style/StringLiterals

​ 6 Style/FrozenStringLiteralComment

​ 4 Style/WordArray

​ 3 Style/Documentation

​ 1 Gemspec/RequiredRubyVersion

​ 1 Metrics/MethodLength

​ 1 Style/AccessModifierDeclarations

​ 1 Style/MutableConstant

​ 1 Style/StringLiteralsInInterpolation

​ --

​ 108 Total

Most of these issues are that RuboCop’s default, for some reason, prefers
single-quoted strings. Most of the rest of these are other differences of opinion
between the gem author and RuboCop’s defaults. (To be honest, the
RequiredRubyVersion and MutableConstant cops are probably worth fixing.)

Anyway, at this point we have a couple of options for what we can do with
RuboCop just from the command line. As with many other command-line
programs, we can pass directory names, filenames, or filename patterns to the
CLI to limit RuboCop to the listed files (rubocop lib, for example).

We can auto-correct all the correctable cops. This will change all the double-
quoted strings to single-quoted strings and various and sundry other things that
RuboCop is currently complaining about.

To do that, we’d use the -a option, rubocop -a, and RuboCop would apply auto-
correct logic for all the issues it identifies. In this case, it would replace all
double-quoted strings with single-quoted strings. We don’t want to do that
right now, but the autocorrect is a quick way to fix many simple RuboCop
issues. RuboCop is generally cautious about what it chooses to autocorrect,
and most of the corrections are simple. But “cautious” doesn’t mean “perfect,”
and “most of” doesn’t mean “all,” so when you do autocorrect, you want to
check the result to make sure the new code is functionally equivalent to the
old code.

On the other hand, we could decide that the code base is so gnarly that we
don’t want to fix old issues; we just want to start fresh and not create new
issues. RuboCop allows us to create a to-do list of existing issues that are
excluded from being flagged by future runs with this:

​ ​$ ​​rubocop​​ ​​--auto-gen-config​

This will produce a lot of output, and in the end it’ll create a minimal
.rubocop.yml configuration file and a .rubocop_todo.yml file. The .rubocop_todo.yml

is an extension of the RuboCop configuration. It lists files where existing
issues have been found and which we don’t want to fix yet. Future runs of
RuboCop will ignore these issues. After running the auto-configuration, we
get this:

​ ​$ ​​rubocop​

​ ​# A LOT OF OUTPUT ABOUT SPECIFIC COPS AND OUR CONFIGURATION BEING TOO MINIMAL​

​

​ Inspecting 14 files

​

​

​ 14 files inspected, no offenses detected

To be clear, the offenses are still there, they are just being suppressed by the
todo file.

Configuring RuboCop
Almost everything in RuboCop can be configured, and the file in which to
make these changes is .rubocop.yml. Here’s a sample configuration that
configures RuboCop to be more in line with the style of the existing code. It
removes most of the issues RuboCop identified in our earlier code example:

ruby_style/aaagmnr/.rubocop.yml

​ ​#inherit_from: .rubocop_todo.yml​

​

​ AllCops:

​ TargetRubyVersion: ​3.3​

​ NewCops: ​enable​

​ SuggestExtensions: false

​ Exclude:

​ - ​"​​bin/**/*"​

​

​ ​Metrics/MethodLength​:

​ Enabled: false

​

​ ​Style/AccessModifierDeclarations​:

​ EnforcedStyle: ​inline​

​

​ ​Style/Documentation​:

http://media.pragprog.com/titles/ruby5/code/ruby_style/aaagmnr/.rubocop.yml

​ Enabled: false

​

​ ​Style/FrozenStringLiteralComment​:

​ Enabled: false

​

​ ​Style/StringLiterals​:

​ EnforcedStyle: ​double_quotes​

​

​ ​Style/StringLiteralsInInterpolation​:

​ EnforcedStyle: ​double_quotes​

​

​ ​Style/WordArray​:

​ MinSize: ​3​

At the top, we commented out the line inherit_from: .rubocop_todo.yml. That line
was generated in the previous section when we ran the --auto-gen-config

command. In general, RuboCop lets you inherit from other configurations so
as to modularize the configuration. If we wanted to include separate projects
like RuboCop’s Rails or RSpec cops, we’d use inherit_from:. The inherit_from

mechanism is often used for an organization to specify a common set of
standards, and then individual projects use their own configurations to extend
or override those standards.

Below that is a section in which we set default values by using the AllCops

name. In this case, we’re telling RuboCop to treat the code as though it was
being written for Ruby 3.3 and to exclude any file in the bin directory. We’re
also explicitly opting in to new cops and telling RuboCop not to suggest
extensions because if we don’t, RuboCop complains about both of those
things in the output every time we run the command.

The settings for individual cops can be changed directly, as this configuration
does. We don’t need RuboCop to tell us about method length—we trust our
team to only have long methods when necessary—so we set Enabled: false for
that cop. Any cop can have its Enabled setting set to true or false. Most cops
default to true.

If you look at the .rubocop_todo.yml file, notice that every cop also has an
Exclude setting that takes a list of files or file patterns that shouldn’t have that
cop applied. This is helpful in transitioning a code base to RuboCop because it
allows you to be judicious in switching individual files, but in general, you
wouldn’t use it in your main configuration.

Some cops have their own parameters to set—we set the Style/StringLiterals cop
to double_quotes. We still want this cop to work, we just want it to accept
double quotes as the ideal and flag single quotes. Similarly, the Style/WordArray

cop, which wants us to change all our ["cat", "dog"] tests to the word array
syntax of %w[cat dog], has a parameter that sets the minimum size of the array
that it cares about. We don’t mind the array syntax for two-element arrays, so
we set the minimum value to 3.

With this configuration in place (and with the todo shut off), our RuboCop
tells us there are four problems:

It wants us to set a config parameter for rubygems_mfa_required in the
.gemspec, which sets multi-factor security on the gem itself.

The target ruby in RuboCop is different from the Ruby version specified
in the .gemspec.

There’s a single-quote string in the .gemspec.

It wants us to freeze the constant DEFAULT_DICTIONARY =

"/usr/share/dict/words".

Most of the problems are in the .gemspec. We can now fix these either by
updating the configuration, by running rubocop -a to autocorrect, or running
rubocop -A to autocorrect and include some cops that might be unsafe to
autocorrect. Using rubocop -A will correct all but the first issue.

You can also disable a cop inline in your file with a magic comment: #
rubocop/disable Style/WordArray or whatever the name of the cop you want to
disable is. If the comment comes at the end of a line, it merely disables for that
line. If it stands on its own, it disables until the end of the file or a matching #
rubocop/enable comment, whichever comes first. This is sometimes useful, but
again is something you want to use sparingly. Frequent use of disabling
RuboCop suggests that the settings you have aren’t quite right.

There’s more to RuboCop, including a lot of extensions, and you can write
your own cops to identify whatever Ruby style options you want. See the
RuboCop documentation[45] for more information.

Using Standard
RuboCop is powerful, but also complicated. If we’re being honest, we don’t
like all the defaults. As a result, our typical project winds up with a long
configuration file that’s a bit unwieldy and continually subject to argument.
If only somebody would come up with a more consensus-based Ruby style-
checker.

Enter Standard,[46] a default configuration of RuboCop created by Justin
Searls that is minimally configurable and conforms to a small, but
commonly used, set of rules.

What rules? You can see the entire list in the Standard RuboCop’s setup, but
the gist is similar to the common rules we set out in the first part of this
chapter:

Two-space indentation
Double-quoted strings
No hash rockets for symbol hash keys
Spaces inside curly braces for blocks and not for hashes
Braces for single line blocks (Standard doesn’t specify how you handle
multiline blocks)

Installing Standard just requires putting gem "standard" in your gemfile. You
don’t need a configuration.

To run Standard, just enter standardrb from the command line and you’ll get
RuboCop output. Using standardrb --fix will autocorrect errors, and using
standardrb --generate-todo will create a .standard_todo.yml file just like the todo
file RuboCop generates.

You can only do a minimal amount of configuration to a .standard.yml file.
These are the available keys:

default_ignores: Defaults to true. If set to false, Standard will not ignore
files that it would normally ignore.

extend_config: Takes the name of additional RuboCop yaml files that
can themselves configure RuboCop. The idea is to allow you to run
Standard and RuboCop extensions. The default is an empty list.

fix: If true, Standard will autocorrect on a regular run, which you can
turn off with standard --no-fix. The default is false.

format: Sets the formatter for output. The default is the standard
formatter.

ignore: Takes a list of file patterns to ignore. The default is an empty
list.

parallel: If true, Standard will run in parallel. The default is false.

ruby_version: Sets the Ruby version to target; it defaults to the version of
Ruby that’s running. The default is the value of RUBY_VERSION.

You can use Standard as a base for a RuboCop configuration, which you
might want to do if you want to use additional RuboCop extensions like the
Rails or RSpec cops. In your .standard.yml:

​ ​extend_config:​

​ ​ ​- test_cops.​yml​

​ - rails_cops.​yml​

Those additional files are regular RuboCop files and can do whatever a
RuboCop config can do, but the idea of the feature is that you’d require and
configure a RuboCop extension that Standard doesn’t cover.

Ruby Style in the Large
Ruby style isn’t just a matter of how you code line-by-line, it also manifests
in how you approach problems and how you build solutions. The goal of all
of these style recommendations is to allow the code to clearly reflect the
intent of the programmer. Taking advantage of what Ruby does best and
most simply will make it easier to read and modify your code going
forward.

Ruby code is often written with shorter methods and smaller classes than
more strongly typed languages. Not only do smaller methods give you more
chances to give blocks of code meaningful names, but also having small
pieces of functionality made into methods makes it easier to build
functionality by combining methods using Ruby syntax such as blocks.

For example, let’s say we’re sending an email to a user to confirm whether
the user is eligible for a promotion and that there are a few different facets
to eligibility:

​ ​def​ ​send_promotion_email​

​ ​if​ last_active_date <= 1.​year​.​ago​ ||

​ ​%w[TX AZ FL]​.​includes?​(state) ||

​ opted_out?

​ ​return​ ​false​

​ ​end​

​ send_the_email

​ ​end​

In this example, the intent of the if condition is somewhat obscured by the
syntactic clutter of the three boolean choices. Giving the combined boolean
its own method with a meaningful name clears that up. And while many
programming languages will suggest extracting methods, in Ruby you get
the added bonus of making it possible to easily use the guard clause syntax
in a separated method:

​ ​def​ ​gets_promotion_email?​

​ ​return​ ​false​ ​if​ last_active_date <= 1.​year​.​ago​

​ ​return​ ​false​ ​if​ ​%w[IL GA MA]​.​includes?​(state)

​ ​return​ ​false​ ​if​ opted_out?

​ ​true​

​ ​end​

​

​ ​def​ ​send_promotion_email​

​ ​return​ ​false​ ​unless​ gets_promotion_email?

​ send_the_email

​ ​end​

You should note a few things about this:

You could do the gets_promotion_email as a single boolean expression as
it was done in the first code snippet. We just find it easier to reason
about each cause individually, and breaking them into a method makes
that easier to do.

It’s also true that some of those clauses might be clearer with their own
method. For example, the middle clause might use a method name to
say why those states are blocked.

The send_promotion_email method is now shorter and the meaning of the
initial if clause is now clearer. The use of the end-of-line syntax,
enabled by the fact that there’s now just one method to call, is a signal
that the first line is meant as a guard clause protecting the rest of the
method.

Blocks have a similar mechanism. Many commonly used Ruby methods use
blocks, and having the body of a block encapsulated in a method can enable
you to use one of Ruby’s shorter syntaxes, like this:

​ users.​map​ { |user| user.​convert_to_json​ }

​ users.​map​ { _1.​convert_to_json​ }

​ users.​map​(&​:convert_to_json​)

All three of these are equivalent, but they all depend on the body of the
conversion being broken out into its own method.

Duck Typing
You may have noticed that in Ruby you don’t explicitly declare the types of
variables or methods. Whether the particular value of a variable is correct for
the messages being passed to it’s evaluated at run time when the message is
sent.

Folks tend to react to this in one of two ways. Some like this flexibility and
feel comfortable writing code with dynamically typed variables and methods.
Others get nervous when they think about all those objects floating around
unconstrained. If you’ve come to Ruby from a language such as C#, Java, or
TypeScript, where you’re used to giving all your variables and methods an
explicit type, you may feel that Ruby is just too permissive for writing “real”
applications.

It isn’t.

We’d like to spend a couple of paragraphs trying to convince you that the lack
of static typing isn’t a problem when it comes to writing reliable applications.
In fact, an important part of Ruby style is trusting Ruby’s dynamic typing to
help you and not hurt you. We’re not trying to criticize other languages here.
Instead, we’d just like to contrast approaches.

The reality is that the static type systems in most mainstream languages don’t
help that much in terms of program correctness. If Java’s type system were
perfectly reliable, for example, it wouldn’t need to implement
ClassCastException. But the exception is necessary because there is runtime type
uncertainty in Java (as there is in TypeScript, C#, and others). Static typing
can be good for optimizing code, can be useful for communicating intent, and
can help IDEs do clever things with tooltip help, but we haven’t seen much
evidence that it promotes more reliable code.

Static typing also has costs. Statically typed languages are typically more
verbose than dynamic ones, which can cause the business logic to be obscured

by the type declaration clutter. It’s not unheard of to spend time convincing the
type checking system that the thing you know is right is actually also legal.

On the other hand, once you use Ruby for a while, you realize that
dynamically typed variables add to your productivity in many ways. You’ll
also be surprised to discover that your worst fears about the type chaos were
unfounded. Large, long-running Ruby programs run significant applications
and just don’t throw many type-related errors. Why is this?

Partly it’s a question of program structure. In many cases the structure of the
program makes type errors unlikely even if the language isn’t explicitly
checking for them. You put Person objects in, and a few lines later the code
sends Person objects out. Add in some reasonably meaningful variable names,
and you’re already minimizing the possibility of type errors.

Good style techniques limit the possibility of type errors in Ruby. If you use a
variable for some purpose, chances are good you’ll be using it for the same
purpose when you access it again three lines later. Object-oriented design and
polymorphism let you take advantage of dynamic typing to limit type errors.
The kind of chaos that could happen just doesn’t happen.

On top of that, folks who code Ruby a lot tend to adopt a certain style of
coding. They write lots of short methods and tend to test as they go along. The
short methods mean that the scope of most variables is limited; there just isn’t
that much time for things to go wrong with their type. The testing catches the
silly errors when they happen; typos and the like just don’t get a chance to
propagate through the code. As an added bonus, short, testable methods tend
to have other benefits for code quality in addition to limiting the possibility of
type errors.

The upshot is that the “safety” in “type safety” is often illusory and that
coding in a more dynamic language such as Ruby is both safe and productive.
So, if you’re nervous about the lack of static typing in Ruby, we suggest you
try to put those concerns on the back burner for a little while and give Ruby a
try. We think you’ll be surprised how rarely you see errors because of type

issues and how much more productive you feel once you start to exploit the
power of dynamic typing.

Classes Aren’t Types
If you’ve coded in strongly typed languages, you may have been taught that
the type of an object is the same as its class—all objects are instances of some
class, and that class is the object’s type. The class defines the operations
(methods) the object can support, along with the state (instance variables) on
which those methods operate. Let’s look at some Java code:

​ Customer c;

​ c = database.findCustomer(​"dave"​); ​/* Java */​

This fragment declares the variable c to be of type Customer and sets it to
reference the customer object for Dave that we’ve created from some database
record. So, the type of the object in c is Customer, right?

Maybe. However, even in Java, the issue is slightly deeper. Java supports the
concept of interfaces. An interface is a list of methods that are supported
together by classes that implement the interface. A Java class can be declared
as implementing multiple interfaces. More to the point, a variable can be
declared as being typed to an interface, rather than a class. Using this facility,
you may have defined your classes as follows:

​ ​public​ ​interface​ Customer {

​ ​long​ ​getID​();

​ Calendar ​getDateOfLastContact​();

​ ​// ...​

​ }

​

​ ​public​ ​class​ Person ​implements​ Customer {

​ ​public​ ​long​ ​getID​() { ... }

​ ​public​ Calendar ​getDateOfLastContact​() { ... }

​ ​// ...​

​ }

So, even in an explicitly-typed language, the class isn’t always the type—
sometimes the type is a subset of the class, and sometimes objects implement

multiple types.

In Ruby, the class is never (well, almost never) the type. Instead, the type of an
object is defined by what messages it responds to. The idea that typing is
implicitly based on messages defined rather than being explicitly declared is
called duck typing. If an object walks like a duck and quacks like a duck, then
the interpreter is happy to treat it as if it were a duck, even if it’s just a duck-
shaped puppet.

Earlier in the book, we said that a type defined both the values that could be
assigned to a variable and the expected behavior of those values. In Ruby
(when not using RBS or Sorbet), those values and behavior are both enforced
only by the set of messages that are passed to the value when the program
runs.

Let’s look at an example to see why taking advantage of Ruby’s dynamic
nature can be helpful. Perhaps we have written a method to write our
customer’s name to the end of an open file:

ducktyping/add_customer.rb

​ ​class​ Customer

​ ​def​ ​initialize​(first_name, last_name)

​ @first_name = first_name

​ @last_name = last_name

​ ​end​

​

​ ​def​ ​append_name_to_file​(file)

​ file << @first_name << ​" "​ << @last_name

​ ​end​

​ ​end​

Being good programmers, we’ll write a unit test for this. Be warned, though—
it’s messy (and we’ll improve on it shortly):

ducktyping/test_add_customer_1.rb

​ require ​"minitest/autorun"​

​ require_relative ​"add_customer"​

http://media.pragprog.com/titles/ruby5/code/ducktyping/add_customer.rb
http://media.pragprog.com/titles/ruby5/code/ducktyping/test_add_customer_1.rb

​

​ ​class​ TestAddCustomer < Minitest::Test

​ ​def​ ​test_add​

​ customer = Customer.​new​(​"Ima"​, ​"Customer"​)

​ File.​open​(​"tmpfile"​, ​"w"​) ​do​ |f|

​ customer.​append_name_to_file​(f)

​ ​end​

​ File.​open​(​"tmpfile"​) ​do​ |f|

​ assert_equal(​"Ima Customer"​, f.​gets​)

​ ​end​

​ ​ensure​

​ File.​delete​(​"tmpfile"​) ​if​ File.​exist?​(​"tmpfile"​)

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 3880

​ # Running:

​

​ .

​ Finished in 0.000537s, 1862.1973 runs/s, 1862.1973 assertions/s.

​

​ 1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

We have to do all that work in the test to create a file to write to. Then we
reopen it and read in the contents to verify the correct string was written. We
also have to delete the file when we’ve finished (but only if it exists).

Because Ruby is dynamic, we don’t actually have to do all that work on actual
files to make the test run. Instead, we could rely on duck typing. All we need
is something that walks like a file and quacks like a file that we can pass in to
the method under test. And all that means in this circumstance is that we need
an object that responds to the << method by appending something. Do we have
something that does this? How about a humble String?

ducktyping/test_add_customer_2.rb

​ require ​"minitest/autorun"​

​ require_relative ​"add_customer"​

​

http://media.pragprog.com/titles/ruby5/code/ducktyping/test_add_customer_2.rb

​ ​class​ TestAddCustomer < Minitest::Test

​ ​def​ ​test_add​

​ customer = Customer.​new​(​"Ima"​, ​"Customer"​)

​ fake_file = ​""​

​ customer.​append_name_to_file​(fake_file)

​ assert_equal(​"Ima Customer"​, fake_file)

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 29322

​ # Running:

​

​ .

​ Finished in 0.000279s, 3584.2290 runs/s, 3584.2290 assertions/s.

​

​ 1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

The method under test thinks it’s writing to a file, but instead, it’s just
appending to a string. Actually, even that statement is a little strong—the
method under test thinks it’s sending the message << to an object that will
receive it and do something. Even though the method may have been written
with a file in mind, any object that responds to << will work. At the end, we
can test that the content is correct given what the receiver does with the
message <<.

We didn’t have to use a string; an array would work just as well for the
purposes of the test:

ducktyping/test_add_customer_3.rb

​ require ​"minitest/autorun"​

​ require_relative ​"add_customer"​

​

​ ​class​ TestAddCustomer < Minitest::Test

​ ​def​ ​test_add​

​ customer = Customer.​new​(​"Ima"​, ​"Customer"​)

​ fake_file = []

​ customer.​append_name_to_file​(fake_file)

​ assert_equal([​"Ima"​, ​" "​, ​"Customer"​], fake_file)

http://media.pragprog.com/titles/ruby5/code/ducktyping/test_add_customer_3.rb

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 31340

​ # Running:

​

​ .

​ Finished in 0.000239s, 4184.1012 runs/s, 4184.1012 assertions/s.

​

​ 1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

Indeed, this form may be more convenient if we wanted to check that the
correct individual elements were inserted.

At this point, you could make the argument that the original method
append_name_to_file is misnamed and that the method should be just
append_name—especially because the argument is also named file. We can see
an argument either way on this point. On the one hand, file is only a limited
subset of what this method actually works on; on the other hand, putting file in
the method name signals to users of the method what’s expected. The point
here is to make your intent clear so that future changes aren’t surprising.
Putting file in the message name clearly sends an intent that other file
functionality beyond << might be used in the future. (Of course, using other
file functionality means that we might have to rewrite the test.)

So, duck typing is convenient for testing, but what about in the body of
applications themselves? Well, it turns out that the same feature that made the
tests easy in the previous example also makes it easy to write flexible
application code.

In fact, Dave once had an interesting experience where duck typing dug him
(and a client) out of a hole. He’d written a large Ruby-based web application
that (among other things) kept a database table full of details of participants in
a competition. The system provided a comma-separated value (CSV)

download capability so administrators could import this information into their
local spreadsheets.

Just before competition time, the phone starts ringing. The download, which
had been working fine up to this point, was now taking so long that requests
were timing out. The pressure was intense because the administrators had to
use this information to build schedules and send out mailings.

A little experimentation showed that the problem was in the routine that took
the results of the database query and generated the CSV download. The code
looked something like this:

ruby_style/csv_from_row.rb

​ ​def​ ​csv_from_row​(accumulator, row)

​ result = ​""​

​ ​until​ row.​empty?​

​ entry = row.​shift​.​to_s​

​ ​if​ ​/[,"]/​.​match?​(entry)

​ entry = entry.​gsub​(​/"/​, ​'""'​)

​ result << ​'"'​ << entry << ​'"'​

​ ​else​

​ result << entry

​ ​end​

​ result << ​","​ ​unless​ row.​empty?​

​ ​end​

​ accumulator << result << CRLF

​ ​end​

​

​ result = ​""​

​ query.​each_row​ { |row| csv_from_row(result, row) }

​

​ http.​write​(result)

When this code ran against moderate-size data sets, it performed fine. But at a
certain input size, it suddenly slowed right down. The culprit? Garbage
collection. The approach was generating thousands of intermediate strings and
building one big result string, one line at a time. As the big string grew, it
needed more space, and garbage collection was invoked, which necessitated
scanning and removing all the intermediate strings.

http://media.pragprog.com/titles/ruby5/code/ruby_style/csv_from_row.rb

The answer was simple and surprisingly effective. Rather than build the result
string as it went along, the code was changed to store each CSV row as an
element in an array. This meant that the intermediate lines were still
referenced and hence were no longer garbage. It also meant that we were no
longer building an ever-growing string that forced garbage collection. Thanks
to duck typing, the change was trivial:

​ ​def​ ​csv_from_row​(accumulator, row)

​ ​# as before​

​ ​end​

​

​ result = []

​ query.​each_row​ { |row| csv_from_row(result, row) }

​

​ http.​write​(result.​join​)

All that changed was that we passed an array into the csv_from_row method.
Because it (implicitly) used duck typing, and the only message passed to the
accumulator was <<, the csv_from_row method itself was not modified. It
continued to append the data it generated to its accumulator parameter, not
caring what type that parameter was. After the method returned its result, we
joined all those individual lines into one big string. This one change reduced
the time to run from more than three minutes to a few seconds.

Coding Like a Duck
If you want to write your programs using the duck-typing philosophy, you
need to remember only one thing: an object’s type is determined by what it
can do, not by its class.

What does this mean in practice? At one level, it simply means that there’s
often little value explicitly checking for the class of an object.

For example, you may be writing a routine to add song information to a string.
If you come from a C# or Java background, you may be tempted to write this:

​ ​def​ ​append_song​(result, song)

​ ​unless​ result.​kind_of?​(String)

​ fail TypeError.​new​(​"String expected"​)

​ ​end​

​ ​unless​ song.​kind_of?​(Song)

​ fail TypeError.​new​(​"Song expected"​)

​ ​end​

​

​ result << song.​title​ << ​" ("​ << song.​artist​ << ​")"​

​ ​end​

​

​ result = ​""​

​ append_song(result, song)

Embrace Ruby’s duck typing, and you’d write something far simpler:

​ ​def​ ​append_song​(result, song)

​ result << song.​title​ << ​" ("​ << song.​artist​ << ​")"​

​ ​end​

​

​ result = ​""​

​ append_song(result, song)

You don’t need to check the type of the arguments. If they support << (in the
case of result) or title and artist (in the case of song), everything will just work.
If they don’t, your method will throw an exception anyway (just as it
would’ve done if you’d checked the types). But without the check, your
method is suddenly a lot more flexible. You could pass it an array, a string, a
file, or any other object that appends using <<, and it would just work.

Now sometimes you may want more than this style of laissez-faire
programming. You may have good reasons to check that a parameter can do
what you need. Will you get thrown out of the duck typing club if you check
the parameter against a class? No, you won’t.The duck typing club doesn’t
check to see whether you’re a member anyway…. But you may want to
consider checking based on the object’s capabilities, rather than its class:

​ ​def​ ​append_song​(result, song)

​ ​unless​ result.​respond_to?​(​:<<​)

​ ​raise​ TypeError.​new​(​"'result' needs `<<' capability"​)

​ ​end​

​ ​unless​ song.​respond_to?​(​:artist​) && song.​respond_to?​(​:title​)

​ ​raise​ TypeError.​new​(​"'song' needs 'artist' and 'title'"​)

​ ​end​

​ result << song.​title​ << ​" ("​ << song.​artist​ << ​")"​

​ ​end​

​

​ result = ​""​

​ append_song(result, song)

But before going down this path, make sure you’re getting a real benefit—it’s
a lot of extra code to write and maintain.

Standard Protocols and Coercions
Although not technically part of the syntax of the language, the Ruby
interpreter and standard library use various protocols to handle issues of type
conversion that other languages would deal with using the type system. That is
to say that the Ruby interpreter looks for certain standard method names and,
if those names exist, uses the methods to convert an arbitrary class to a
standard type.

Some objects have more than one natural representation. For example, you
may be writing a class to represent Roman numbers (I, II, III, IV, V, and so
on). This class wouldn’t be implemented as a subclass of Integer because its
objects are representations of numbers, not numbers in their own right. At the
same time, they do have an integer-like quality. It would be nice to be able to
use objects of our Roman number class wherever Ruby was expecting to see
an integer.

To do this, Ruby has the concept of conversion protocols—an object may elect
to have itself converted to an object of another class. Ruby has two different
ways of looking at this kind of conversion.

An explicit conversion is triggered in the code deliberately by calling the
conversion method. The intent here is to say that the original type isn’t the
same as the type being converted to, but that the method gives a reasonable
representation of the data in the new type. By convention, explicit conversion

methods have short names, like to_s for Strings, to_h for Hash, and to_i for
Integer.

These conversion methods aren’t particularly strict. If an object has any kind
of decent representation as a string, for example, it’ll probably have a to_s

method. Our RomanNumeral class would probably implement to_s in order to
return the string representation of a number (“VII”, for instance).

An implicit conversion is triggered by the Ruby interpreter as part of using
new objects in the same context where standard types are expected. This form
of conversion function uses methods with longer names such as to_str and
to_int (though there are some cases where shorter names are used for implicit
conversions for historical reasons).

The implicit conversions are stricter. You implement them only if your object
can naturally be used every place a string or an integer (or whatever the
original type) could be used. For example, our Roman number objects have a
clear representation as an integer and so should implement to_int. But when it
comes to stringiness, we have to think a bit harder.

Roman numbers clearly have a string representation, but are they strings?
Should we be able to use them wherever we can use a string itself? No,
probably not. Logically, they’re a representation of a number. You can
represent them as strings, but they aren’t plug-and-play-compatible with
strings. For this reason, a Roman number won’t implement to_str because it
isn’t really a string. Just to drive this home, Roman numerals can be converted
to strings using to_s, but they aren’t inherently strings, so they don’t
implement to_str.

To see how this works in practice, let’s look at opening a file. The first
parameter to File.new can be either an existing file descriptor (represented by
an integer) or a filename to open. But Ruby doesn’t simply look at the first
parameter and check whether its type is Fixnum or String. Instead, it gives the

object passed in the opportunity to represent itself as a number or a string. If it
were written in Ruby, it may look something like this:

​ ​class​ File

​ ​def​ self.​new​(file, *args)

​ ​if​ file.​respond_to?​(​:to_int​)

​ IO.​new​(file.​to_int​, *args)

​ ​else​

​ name = file.​to_str​

​ ​# call operating system to open file 'name'​

​ ​end​

​ ​end​

​ ​end​

So, let’s see what happens if we want to pass a file descriptor integer stored as
a Roman number into File.new. Because our class implements to_int, the first
respond_to? test will succeed. We’ll pass an integer representation of our
number to IO.new, and the file descriptor will be returned, all wrapped up in a
new IO object.

A small number of strict conversion functions are built into the standard
library:

to_ary → Array
Used when the interpreter needs a parameter to a method to be an array
and when expanding parameters and assignments containing the *xyz

syntax on the method definition side. In this case, puts does this
conversion in its method definition.

​ ​class​ OneTwo

​ ​def​ ​to_ary​

​ [1, 2]

​ ​end​

​ ​end​

​

​ ot = OneTwo.​new​

​ puts ot

Produces:

​ 1

​ 2

to_a → Array
Used when the interpreter needs to convert an object into an array for
parameter passing on the caller side of the method call or during parallel
assignment.

​ ​class​ OneTwo

​ ​def​ ​to_a​

​ [1, 2]

​ ​end​

​ ​end​

​

​ ot = OneTwo.​new​

​ a, b = *ot

​ puts ​"a = ​​#{​a​}​​, b = ​​#{​b​}​​"​

​ printf(​"%d -- %d​​\n​​"​, *ot)

Produces:

​ a = 1, b = 2

​ 1 -- 2

to_enum → Enumerator

Converts an object (presumably a collection) to an enumerator. It’s never
called internally by the interpreter.

to_hash → Hash
Used when the interpreter expects to see Hash, as in when converting a **

in a method call.

to_int → Integer
Used when the interpreter expects to see an integer value (such as a file
descriptor or as a parameter to Integer).

to_io → IO
Used when the interpreter is expecting I/O objects (for example, as
parameters to the methods IO.reopen or IO.select).

to_open → IO

Called (if defined) on the first parameter to IO.open.

to_path → String
Called by the interpreter when it’s looking for a filename (for example,
by File.open).

to_proc → Proc
Used to convert an object prefixed with an ampersand in a method call.

​ ​class​ OneTwo

​ ​def​ ​to_proc​

​ proc { ​"one-two"​ }

​ ​end​

​ ​end​

​ ​def​ ​silly​

​ ​yield​

​ ​end​

​

​ ot = OneTwo.​new​

​ silly(&ot) ​# => "one-two"​

to_regexp → Regexp
Invoked by Regexp#try_convert to convert its argument to a regular
expression.

to_str → String
Used pretty much any place the interpreter is looking for a String value.
Except for string interpolation, which uses to_s.

​ ​class​ OneTwo

​ ​def​ ​to_str​

​ ​"one-two"​

​ ​end​

​ ​end​

​

​ ot = OneTwo.​new​

​ puts(​"count: "​ + ot)

​ File.​open​(ot) ​rescue​ puts $!.​message​

Produces:

​ count: one-two

​ No such file or directory @ rb_sysopen - one-two

to_sym → Symbol

Expresses the receiver as a symbol. This is used by the interpreter when
compiling instruction sequences. It’s rarely necessary in user code
because the most common case, String to Symbol, is often handled in
syntax as :"a weird symbol".

Note that Integer implements the to_int method, and String implements to_str.
That way, you can call the strict conversion functions polymorphically:

​ ​# it doesn't matter if obj is a Fixnum or a​

​ ​# Roman number, the conversion still succeeds​

​ num = obj.​to_int​

Separately, the Kernel module defines a handful of methods that are available
anywhere and act as general conversion methods, as listed in the table shown.
These methods are distinctive in Ruby because they begin with capital letters.
These methods are generally meant to be the definitive conversions to use
when you’re just using conversions, rather than defining them.

Table 9. Kernel module conversion methods

Method Description
Array(obj) Attempts to call to_ary on the argument (this means that if

the argument is already an array, it’s returned as-is). If the
argument doesn’t respond to to_ary, it calls to_a. If the
argument responds to neither, the argument is returned as
the element in a one-element array.

Complex(real,

imag, ex: true)

If the argument is a string, it calls to_c on the string.
Otherwise, it creates a complex number that is real + imag *

i. If either argument is nil and ex is true, it raises a
TypeError, if ex is false, then it returns nil.

Method Description
Float(obj, ex:

true)

If the obj is numeric, Ruby’s numeric conversion is
performed. Otherwise, to_f is called on the object. An
invalid string will result in an ArgumentError, while a nil

object will generate a TypeError. Again, if ex is false, nil is
returned rather than throwing exceptions.

Hash(obj) Calls obj.to_hash.

Integer(obj,

base=0, ex: true)

If obj is numeric, Ruby’s numeric conversions are
performed. Other objects attempt to_int and then to_i.
String behavior is slightly different than String#to_i, in that
if base is 0, then base prefixes, like 0x, will be used to
determine the base. Exception behavior is the same as
Float.

Rational(num,

den=1, ex: true)

If there’s only a string argument, it calls to_r on the string.
Otherwise, it returns num/den as a rational. Exception
behavior is the same as Float.

String(obj) Calls obj.to_str if it exists and then tries obj.to_s.

The Symbol#to_proc Trick
Ruby implements the to_proc method for objects of class Symbol. Say you want
to convert an array of strings to uppercase. You could write this:

​ names = ​%w[ant bee cat]​

​ result = names.​map​ { |name| name.​upcase​ }

That’s fairly concise, right? Return a new array where each element is the
corresponding element in the original, converted to uppercase. But you can
instead write this:

​ names = ​%w[ant bee cat]​

​ result = names.​map​(&​:upcase​)

Now that’s concise, apply the upcase method to each element of names.

How does it work? It relies on Ruby’s type coercions. Let’s start at the top.

When you say names.map(&xxx), you’re telling Ruby to pass the Proc object xxx

to the map method as a block. If xxx isn’t already a Proc object, Ruby tries to
coerce it into one by sending it a to_proc message.

Now :upcase isn’t a Proc object—it’s a symbol. So when Ruby sees
names.map(&:upcase), the first thing it does is try to convert the symbol :upcase

into a Proc by calling to_proc. And, by an incredible coincidence, Ruby
implements just such a method. If it was written in Ruby, it would look
something like this:

​ ​def​ ​to_proc​

​ proc { |obj, *args| obj.​send​(self, *args) }

​ ​end​

This method creates a Proc, which, when called on an object, sends that object
the symbol itself. So, when names.map(&:upcase) starts to iterate over the strings
in names, it’ll call the block, passing in the first name and invoking its upcase
method.

It’s an incredibly elegant use of coercion and of closures.

Numeric Coercion
In addition to implicit and explicit object conversion, Ruby has coercion logic
specific to numeric types.

Here’s the problem. When you write 1 + 2, Ruby knows to call the + on the
object 1 (an Intger), passing it the Integer 2 as a parameter. But when you write
1 + 2.3, the same + method now receives a Float parameter. How can it know

what to do (particularly because checking the classes of your parameters is
against the spirit of duck typing)?

The answer lies in Ruby’s coercion protocol, based on the method coerce. The
basic operation of coerce is simple. It takes one argument and returns a two-
element array with the argument first and the original receiver of coerce

second. The coerce method guarantees that the two numbers in the array will
have the same class and that they can be added, multiplied, compared, or
whatever.

​ 1.​coerce​(2) ​# => [2, 1]​

​ 1.​coerce​(2.3) ​# => [2.3, 1.0]​

​ (4.5).​coerce​(2.3) ​# => [2.3, 4.5]​

​ (4.5).​coerce​(2) ​# => [2.0, 4.5]​

The trick is that the coerce call happens in the reverse of the original arithmetic
method—the right side of an arithmetic operation receives coerce with the left
side of the operation as an argument to generate this array.

In other words, 1 + 2 is equivalent to the method call 1.+(2) and Ruby calls
2.coerce(1) to generate the array [1, 2] and perform the operation. This technique
of calling a method on a parameter is called double dispatch, and it allows a
method to change its behavior based not only on its class but also on the class
of its parameter. In this case, we’re letting the parameter decide exactly what
classes of objects should get added, compared, or whatever.

Let’s say that we’re writing a new class that’s intended to take part in
arithmetic. To participate in coercion, we need to implement a coerce method.
This takes some other kind of number as a parameter and returns an array
containing two objects of the same class, whose values are equivalent to its
parameter and itself.

For our Roman number class, it’s fairly easy. Internally, each Roman number
object holds its real value as an Integer in an instance variable, @value. The
coerce method checks to see whether the class of its parameter is also an

Integer. If so, it returns its parameter and its internal value. If not, it first
converts both to floating point.

​ ​class​ Roman

​ ​def​ ​initialize​(value)

​ @value = value

​ ​end​

​

​ ​def​ ​coerce​(other)

​ ​if​ Integer === other

​ [other, @value]

​ ​else​

​ [Float(other), Float(@value)]

​ ​end​

​ ​end​

​

​ ​# .. other Roman stuff​

​ ​end​

​

​ iv = Roman.​new​(4)

​ xi = Roman.​new​(11)

​

​ 3 * iv ​# => 12​

​ 1.2 * xi ​# => 13.2​

In the last two lines, the numeric left side of the argument calls coerce on the
Roman numeral, receives the coerced array of values, and multiplies them.

Class Roman as implemented doesn’t know how to do addition. You couldn’t
have written xi + 3 in the previous example because Roman doesn’t have a +
method. Let’s go wild and implement addition for Roman numbers.

The whole class might look like this:

ducktyping/roman3.rb

​ ​class​ Roman

​ MAX_ROMAN = 4999

​

​ attr_reader ​:value​

​ ​protected​ ​:value​

​

http://media.pragprog.com/titles/ruby5/code/ducktyping/roman3.rb

​ ​def​ ​initialize​(value)

​ ​if​ value <= 0 || value > MAX_ROMAN

​ fail ​"Roman values must be > 0 and <= ​​#{​MAX_ROMAN​}​​"​

​ ​end​

​ @value = value

​ ​end​

​

​ ​def​ ​coerce​(other)

​ ​if​ Integer === other

​ [other, @value]

​ ​else​

​ [Float(other), Float(@value)]

​ ​end​

​ ​end​

​

​ ​def​ ​+​(other)

​ ​if​ Roman === other

​ other = other.​value​

​ ​end​

​ ​if​ Integer === other && (other + @value) < MAX_ROMAN

​ Roman.​new​(@value + other)

​ ​else​

​ x, y = other.​coerce​(@value)

​ x + y

​ ​end​

​ ​end​

​

​ FACTORS = [[​"m"​, 1000], [​"cm"​, 900], [​"d"​, 500], [​"cd"​, 400],

​ [​"c"​, 100], [​"xc"​, 90], [​"l"​, 50], [​"xl"​, 40],

​ [​"x"​, 10], [​"ix"​, 9], [​"v"​, 5], [​"iv"​, 4],

​ [​"i"​, 1]]

​

​ ​def​ ​to_s​

​ value = @value

​ roman = ​""​

​ FACTORS.​each​ ​do​ |code, factor|

​ count, value = value.​divmod​(factor)

​ roman << (code * count)

​ ​end​

​ roman

​ ​end​

​ ​end​

​

​ iv = Roman.​new​(4)

​ xi = Roman.​new​(11)

​

​ iv + 3 ​# => vii​

​ iv + 3 + 4 ​# => xi​

​ iv + 3.14159 ​# => 7.14159​

​ xi + 4900 ​# => mmmmcmxi​

​ xi + 4990 ​# => 5001​

Finally, be careful with coerce—always try to coerce something into a more
general type, or you may end up generating coercion loops. This is a situation
where A tries to coerce something to B and B tries to coerce it back to A.

Walk the Walk, Talk the Talk
Duck typing can generate controversy. Every now and then, a thread flares on
social media or someone blogs for or against the concept. Many of the
contributors to these discussions have some fairly extreme positions.

Ultimately, though, duck typing isn’t a set of rules; it’s just a style of
programming. Design your programs to balance paranoia and flexibility. If
you feel the need to constrain the types of objects that the users of a method
pass in, ask yourself why. Try to determine what could go wrong if you were
expecting a String and instead get an Array. Sometimes, the difference is
crucially important. Often, though, it isn’t. Try erring on the more permissive
side for a while and see whether bad things happen. If not, perhaps duck
typing isn’t just for the birds.

[43]

[44]

[45]

[46]

What’s Next
In this chapter, we talked about Ruby style in terms of the decisions you
make both when writing individual lines and also when writing methods
and classes.

But we’ve only talked about part of Ruby’s dynamic toolkit. Ruby has a
rich set of options that make metaprogramming easier. These are often
referred to as “magic,” so let’s take a look behind the curtain and see how
the magic is done.

Footnotes

https://rubocop.org

https://docs.rubocop.org/rubocop/1.38/index.xhtml

https://docs.rubocop.org

https://github.com/testdouble/standard

Copyright © 2024, The Pragmatic Bookshelf.

https://rubocop.org/
https://docs.rubocop.org/rubocop/1.38/index.xhtml
https://docs.rubocop.org/
https://github.com/testdouble/standard

Chapter 22

The Ruby Object Model and
Metaprogramming

The Jacquard loom, invented more than 200 years ago, was the first device
controlled by punched cards—rows of holes in each card were used to
control the pattern woven into the cloth. But imagine if instead of churning
out fabric, the loom could punch more cards, and those cards could be fed
back into the mechanism. The machine could be used to create new
programming that it could then execute. And that would be
metaprogramming—writing code that writes code.

Programming is all about building layers of abstractions. As you solve
problems, you’re building bridges from the unrelenting and mechanical
world of silicon to the more ambiguous and fluid world we inhabit. Some
programming languages—such as C—are close to the machine. The
distance from C code to the application domain can be large. Other
languages—Ruby, perhaps—provide higher-level abstractions and hence let
you start coding closer to the target domain. For this reason, most people
consider a higher-level language to be a better starting place for application
development (although they’ll argue about the choice of language).

But when you metaprogram, you are no longer limited to the set of
abstractions built into your programming language. Instead, you create new
abstractions that are integrated into the host language. In effect, you’re

creating a new, domain-specific programming language—one that lets you
express the concepts you need to solve your particular problem.
Metaprogramming can be an excellent way to manage complex problems
where the structure of the underlying data drives the structure of the code.

Ruby makes metaprogramming easy. As a result, Ruby programmers will
often use metaprogramming techniques to simplify their code. This chapter
shows how they do it. It isn’t intended to be an exhaustive survey of
metaprogramming techniques. Instead, we’ll look at the underlying Ruby
object model and structures that make metaprogramming possible. From
there, you’ll be able to invent your own metaprogramming idioms.

Understanding Objects and Classes
Classes and objects are central to Ruby, but at first sight, they can be
confusing. It seems like there are a lot of concepts: classes, objects, class
objects, instance methods, class methods, singleton classes, and virtual
classes. In reality, all these Ruby constructs are part of the same underlying
class and object structure.

Internally, a Ruby object has three components: a set of flags, some
instance variables, and an associated class. A Ruby class contains all the
things an object has plus a set of method definitions and a reference to a
superclass (which is itself another class). A Ruby class is itself an instance
of the class Class. Let’s look at how that structure lends itself to
metaprogramming in Ruby.

Method Calling and self
Ruby has a concept of the current object. The current object is referenced
by the built-in, read-only variable self. The first time that Noel heard Dave
Thomas speak in public, the topic was Ruby metaprogramming and he said
“understanding self is the key to Ruby. Also the key to life.” Words to live
by.

The value self has two significant roles in a running Ruby program. First,
self controls how Ruby finds instance variables. We already said that every
object carries around a set of instance variables. When you access an
instance variable using the @<varname> syntax, Ruby looks for that variable
in the self object, as defined in the current context. In this section and the
next, we’ll show how the value of self changes when you call methods or
define classes and modules.

Second, self plays a vital role in method calling. In Ruby, each method call
is a message passed to some object. This object is called the receiver of the

call. When you make a call such as items.size, the object on the left side of
the dot—here referenced by the variable items—is the receiver and size is
the method to invoke.

Often, you’ll see a method call with no explicit receiver, such as puts "hi". In
this case, Ruby uses the current object, self, as the receiver. It goes to self’s
class and looks up the method (in this case, puts). If it can’t find the method
in the class, it looks in the class’s superclass and then in that class’s
superclass, stopping when it runs out of superclasses (which will happen
after it has looked in BasicObject). If it can’t find the method in the object’s
class hierarchy, Ruby looks for a method called method_missing on the
original receiver, starting back at the class of self and then looking up the
superclass chain. (In the case of puts, Ruby will find the method defined in
the Kernel module that’s included in Object.)

When you make a method call with an explicit receiver (for example,
invoking items.size), the process is similar. The only change—but a vitally
important one—is that the value of self is changed for the duration of the
call. Before starting the method lookup process, Ruby sets self to the
explicit receiver (the object referenced by items in this case). Then, after the
call returns, Ruby restores self to the value it had before the call.

Let’s see how this works in practice. Here’s a simple program:

​ ​class​ Test

​ ​def​ ​one​

​ @var = 99

​ two

​ ​end​

​

​ ​def​ ​two​

​ puts @var

​ ​end​

​ ​end​

​

​ t = Test.​new​

​ t.​one​

Produces:

​ 99

The call to Test.new on the second-to-last line creates a new object of class
Test, assigning that object to the variable t. Then, on the next line, we call
the method t.one. To execute this call, Ruby sets self to t and then looks in
t’s class for the method one. Ruby finds the method defined in the class and
calls it.

Inside the method, we set the instance variable @var to 99. This instance
variable will be associated with the current object. What is that object?
Since the call to t.one sets self to t, within that call of the one method, self

will be that particular instance of class Test.

On the next line, the method one calls the method two. Because there’s no
explicit receiver, self isn’t changed. When Ruby looks for the method two, it
looks in Test, the class of t.

The method two references an instance variable @var. Again, Ruby looks for
this variable in the current object and finds the same variable that was set
by the method one.

The call to puts inside the two method works the same way. Again, because
there’s no explicit receiver, self will be unchanged. Ruby looks for the puts

method in the class of the current object but can’t find it. It then looks in
Test’s superclass, class Object. Again, it doesn’t find puts. But Object mixes in
the module Kernel. We’ll talk more about this later. For now, we can say that
mixed-in modules act as if they were superclasses. The Kernel module does
define puts, so the method is found and executed.

After two and one return, Ruby resets self to the value it had before the
original call to t.one. The code is at the top level. The top-level self is an
object called main, which is placed there by the Ruby runtime.

This explanation may seem labored, but understanding it is an important
part of mastering metaprogramming in Ruby.

Class Definitions and self
We’ve seen that calling a method with an explicit receiver changes self.
Perhaps surprisingly, self is also changed inside a class or module definition,
but outside all the method definitions. This is a consequence of the fact that
class definitions are actually executable code in Ruby—if we can execute
code, we need to have a current object. A simple test shows what this object
is:

​ puts ​"Before the class definition, self = ​​#{​self​}​​\n​​"​

​ ​class​ Test

​ puts ​"In the definition of class Test, self = ​​#{​self​}​​"​

​ puts ​"Class of self = ​​#{​self.​class​​}​​\n​​"​

​ ​end​

​ puts ​"After the class definition, self = ​​#{​self​}​​"​

Produces:

​ Before the class definition, self = main

​ In the definition of class Test, self = Test

​ Class of self = Class

​ After the class definition, self = main

Outside the class definition, self is set to an object called main, which is
what Ruby uses as the implicit top-level object. It’s also the object that
holds on to method definitions that happen outside of a class definition.

Inside a class or module definition, self is set to the object of the class or
module being defined. This means that instance variables set inside a class
or module definition will be available to class or module methods (because

self will be the same when the variables are defined and when the methods
execute):

​ ​class​ Test

​ @var = 99

​ ​def​ self.​value_of_var​

​ @var

​ ​end​

​ ​end​

​

​ Test.​value_of_var​ ​# => 99​

The fact that self is set to the class during a class definition turns out to be a
dramatically elegant decision, but to see why, we’ll first need to have a look
at singleton methods.

Defining Singleton Methods
Ruby lets you define methods that are specific to a particular object. These
are called singleton methods.

Here’s a simple string object and a regular, non-singleton method call:

​ animal = ​"cat"​

​ puts animal.​upcase​

Produces:

​ CAT

This call results in the object structure shown in the following illustration:

The animal variable points to an object containing (among other things) the
value of the string ("cat") and a pointer to the object’s class, String.

When we call animal.upcase, Ruby checks the object referenced by the animal

variable and then looks up the method upcase in the class object referenced

from the animal object. Our animal is a string and so all the methods of class
String are available.

Now let’s make it more interesting. We’ll define a singleton method on the
string referenced by animal. We’ve seen this syntax before, we use a method
name that includes a reference to a specific object:

​ animal = ​"cat"​

​ ​def​ animal.​speak​

​ puts ​"The ​​#{​self​}​​ says miaow"​

​ ​end​

​

​ animal.​speak​

​ puts animal.​upcase​

Produces:

​ The cat says miaow

​ CAT

The call to animal.speak is handled similar to the way animal.upcase was
invoked earlier. Ruby sets self to the string object "cat", which is referenced
by animal, and then looks for a method called speak in that object’s class.
Surprisingly, it finds it. This is initially surprising because the class of "cat"

is String, and String doesn’t have a speak method. But the specific object
called animal has a speak method that we’ve defined for that object and that
object only.

So, does Ruby have some kind of special-case magic for these methods that
are defined on individual objects?

Not exactly.

When we defined animal.speak, the singleton method for the "cat" object,
Ruby created a new anonymous class and placed the speak method in that
class. This anonymous class goes by a couple of different names, but you’ll

most likely see it called a singleton class (it’s sometimes called an
eigenclass). We prefer the former name because it ties in to the idea of
singleton methods.

Every object in Ruby has the potential of having its own singleton class.
When you define a singleton class, Ruby creates that anonymous class and
makes it the singleton class of that object.

You can access that singleton class via the singleton_class method, and you
can get a list of methods defined there with singleton_methods.

​ animal = ​"cat"​

​ ​def​ animal.​speak​

​ puts ​"The ​​#{​self​}​​ says miaow"​

​ ​end​

​

​ animal.​speak​

​ puts animal.​class​

​ puts animal.​singleton_class​

​ puts animal.​singleton_methods​

Produces:

​ The cat says miaow

​ String

​ #<Class:#<String:0x0000000103209258>>

​ speak

If an object has a singleton class, that’s the first place Ruby looks for object
lookup. It’s as if Ruby makes String (which was the original class of "cat")
the superclass of the singleton class. The picture looks like this:

Now let’s follow the call to animal.speak. Ruby goes to the object referenced
by animal and then looks in its singleton class class for the method speak.
The singleton class of the animal object is the newly created singleton class,
and it contains the method we need.

What happens if we instead call animal.upcase? The processing starts the
same way: Ruby looks for the method upcase in the singleton class but fails
to find it there. It then follows the normal processing rules and starts
looking up the chain of superclasses. The superclass of the singleton is
String, and Ruby finds the upcase method there. Notice that no special-case
processing is here—Ruby method calls always work up the object chain in
the same way.

Singletons and Classes
Earlier, we said that inside a class definition, self is set to the class object
being defined. It turns out that this is the basis for one of the more elegant
aspects of Ruby’s object model.

Recall that we can define class methods in Ruby using either the def self.xxx

or (more rarely) def ClassName.xxx form:

​ ​class​ Dave

​ ​def​ self.​class_method_one​

​ puts ​"Class method one"​

​ ​end​

​ ​def​ Dave.​class_method_two​

​ puts ​"Class method two"​

​ ​end​

​ ​end​

​

​ Dave.​class_method_one​

​ Dave.​class_method_two​

Produces:

​ Class method one

​ Class method two

Now we can explain why the two forms are identical: inside the class
definition, self is set to the class object Dave.

But now that we’ve looked at singleton methods, we also know that, in
reality, no such thing as a class method exists in Ruby. Both of the previous
definitions define singleton methods on the class object. As with all other
singleton methods, we can then call them via the object (in this case, the
class Dave).

Before we created the two singleton methods in class Dave, the class pointer
in the class object pointed to class Class. (That’s a confusing sentence.

Another way of saying it is “Dave is a class, so the class of Dave is class
Class,” but that’s pretty confusing, too.) The situation looks like this:

The object diagram for class Dave after the methods are defined looks like
this:

Do you see how the singleton class is created, just as it was for the animal
example? The class is inserted as the singleton class of the class Dave, and
the original class of Dave is made this new singleton class’s parent.

We can now tie together the two uses of self, the current object. We talked
about how instance variables are looked up in self, and we talked about how
singleton methods defined on self become class methods. Let’s use these
facts to access instance variables for class objects:

​ ​class​ Test

​ @var = 99

​

​ ​def​ self.​var​

​ @var

​ ​end​

​

​ ​def​ self.​var​=(value)

​ @var = value

​ ​end​

​ ​end​

​

​ puts ​"Original value = ​​#{​Test.​var​​}​​"​

​ Test.​var​ = ​"cat"​

​ puts ​"New value = ​​#{​Test.​var​​}​​"​

Produces:

​ Original value = 99

​ New value = cat

Newcomers to Ruby commonly try to set instance variables inline in the
class definition (as we did with @var in the previous code) and then attempt
to access these variables from instance methods. As the code illustrates, this
won’t work because instance variables are associated with self in their
current context. In the context of the instance variables defined in the class
body, self is the class, and therefore instance variables defined in the class
body outside of methods are associated with the class object, not with
instances of the class.

Another Way to Access the Singleton Class
We’ve seen how you can create methods in an object’s singleton class by
adding the object reference to the method definition using something like
def animal.speak.

You can also access the singleton class using Ruby’s class << an_object

notation:

​ animal = ​"dog"​

​ ​class​ << animal

​ ​def​ ​speak​

​ puts ​"The ​​#{​self​}​​ says WOOF!"​

​ ​end​

​ ​end​

​

​ animal.​speak​

Produces:

​ The dog says WOOF!

Inside this kind of class definition, self is set to the singleton class for the
given object (animal in this case). Because class definitions return the value
of the last statement executed in the class body, we can use this fact to get
the singleton class object:

​ animal = ​"dog"​

​ ​def​ animal.​speak​

​ puts ​"The ​​#{​self​}​​ says WOOF!"​

​ ​end​

​

​ singleton = ​class​ << animal

​ ​def​ ​lie​

​ puts ​"The ​​#{​self​}​​ lies down"​

​ ​end​

​ self ​# << return singleton class object​

​ ​end​

​

​ animal.​speak​

​ animal.​lie​

​ puts ​"Singleton class object is ​​#{​singleton​}​​"​

​ puts ​"It defines methods ​​#{​singleton.​instance_methods​ - animal.​methods​​}​​"​

​ puts ​"You can also access it as ​​#{​animal.​singleton_class​​}​​"​

​ puts ​"And the list of methods as ​​#{​animal.​singleton_methods​​}​​"​

Produces:

​ The dog says WOOF!

​ The dog lies down

​ Singleton class object is #<Class:#<String:0x0000000100337628>>

​ It defines methods []

​ You can also access it as #<Class:#<String:0x0000000100337628>>

​ And the list of methods as [:lie, :speak]

Pay attention to the notation that Ruby uses to denote a singleton class: #
<Class:#<String:...>>.

Ruby goes to some trouble to stop you from using singleton classes outside
the context of their original object. For example, you can’t create a new
instance of a singleton class:

​ singleton = ​class​ << ​"cat"​; self; ​end​

​ singleton.​new​

Produces:

​ from prog.rb:2:in `<main>'

​ prog.rb:2:in `new': can't create instance of singleton class (TypeError)

Let’s tie together what we know about instance variables, self, and singleton
classes. We could write class-level accessor methods to let us get and set the
value of an instance variable defined in a class object. Ruby already has
attr_accessor, which defines getter and setter methods for instances.
Normally, these are defined as instance methods and hence will access
values stored in instances of a class. To make them work with class-level
instance variables, we have to invoke attr_accessor in the singleton class:

​ ​class​ Test

​ @var = 99

​

​ ​class​ << self

​ attr_accessor ​:var​

​ ​end​

​ ​end​

​

​ puts ​"Original value = ​​#{​Test.​var​​}​​"​

​ Test.​var​ = ​"cat"​

​ puts ​"New value = ​​#{​Test.​var​​}​​"​

Produces:

​ Original value = 99

​ New value = cat

Inheritance and Visibility
Method definition and class inheritance have a wrinkle, but it’s fairly
obscure. Within a class definition, you can change the visibility of a method
in an ancestor class. For example, you can do something like this:

​ ​class​ Base

​ ​def​ ​a_method​

​ puts ​"Got here"​

​ ​end​

​ ​private​ ​:a_method​

​ ​end​

​

​ ​class​ MakeItPublic < Base

​ ​public​ ​:a_method​

​ ​end​

​

​ ​class​ KeepItPrivate < Base

​ ​end​

In this example, you could invoke a_method in instances of class
MakeItPublic, but not via instances of Base or KeepItPrivate.

So, how does Ruby pull off this feat of having one method with two
different visibilities? Simply put, it cheats.

If a subclass changes the visibility of a method in a parent, Ruby effectively
inserts a hidden proxy method in the subclass that invokes the original
method using super. It then sets the visibility of that proxy to whatever you
requested.

For example, you might have this code:

​ ​class​ MakeItPublic < Base

​ ​public​ ​:a_method​

​ ​end​

Which is effectively the same as this:

​ ​class​ MakeItPublic < Base

​ ​def​ ​a_method​(*)

​ ​super​

​ ​end​

​ ​public​ ​:a_method​

​ ​end​

The call to super can access the parent’s method regardless of its visibility,
so the rewrite allows the subclass to override its parent’s visibility rules.

Modules and Mixins
As we saw in ​Mixins​, when you include a module into a Ruby class, the
instance methods in that module become available as instance methods of the
class, like this:

​ ​module​ ​Logger​

​ ​def​ ​log​(msg)

​ STDERR.​puts​ Time.​now​.​strftime​(​"%H:%M:%S: "​) + ​"​​#{​self​}​​ (​​#{​msg​}​​)"​

​ ​end​

​ ​end​

​

​ ​class​ Song

​ ​include​ Logger

​ ​end​

​

​ s = Song.​new​

​ s.​log​(​"created"​)

Produces:

​ 17:16:19: #<Song:0x0000000104717708> (created)

Ruby implements include very simply. The module you include is added as an
ancestor of the class being defined. It’s as if the module is the parent of the
class that it’s mixed into. And that would be the end of the description except
for one small wrinkle. Because the module is injected into the chain of
superclasses, it must itself hold a link to the original parent class. If it didn’t,
there’d be no way of traversing the superclass chain to look up methods. But
you can mix the same module into many different classes, and those classes
could potentially have totally different superclass chains. If there were just one
module object that we mixed into all these classes, there’d be no way of
keeping track of the different superclasses for each.

To get around this, Ruby uses a clever trick. When you include a module in
class Example, Ruby constructs a new class object, makes it the superclass of
Example, and then sets the superclass of the new class to be the original

superclass of Example. It then references the module’s methods from this new
class object in such a way that when you look a method up in this class, it
actually looks it up in the module, as shown here:

A nice side effect of this arrangement is that if you change a module after
including it in a class, those changes are reflected in the class (and the class’s
objects). In this way, modules behave just like classes:

​ ​module​ ​Mod​

​ ​def​ ​greeting​

​ ​"Hello"​

​ ​end​

​ ​end​

​

​ ​class​ Example

​ ​include​ Mod

​ ​end​

​

​ ex = Example.​new​

​ puts ​"Before change, greeting is ​​#{​ex.​greeting​​}​​"​

​

​ ​module​ ​Mod​

​ ​def​ ​greeting​

​ ​"Hi"​

​ ​end​

​ ​end​

​

​ puts ​"After change, greeting is ​​#{​ex.​greeting​​}​​"​

Produces:

​ Before change, greeting is Hello

​ After change, greeting is Hi

If a module itself includes other modules, a chain of proxy classes will be
added to any class that includes that module—one proxy for each module
that’s directly or indirectly included.

Finally, Ruby will include a particular module only once in an inheritance
chain. Including a module that’s already included by one of your superclasses
has no effect.

Using prepend
Ruby enables you to place a module at a different point in the method lookup
chain using the prepend method. Logically, prepend behaves just like include,
but the methods in the prepended module take precedence over those in the
host class. Ruby pulls off this magic by inserting a dummy class in place of
the original host class. Actually, it inserts the dummy class above the original
class, moves the methods from the original to the copy. and then inserts the
prepended module between the two.

If a method inside a prepended module has the same name as the one in the
original class, it’ll be invoked instead of the original. The prepended method
can then call the original using super:

​ ​module​ ​VanityPuts​

​ ​def​ ​puts​(*args)

​ args.​each​ ​do​ |arg|

​ ​super​(​"Dave says: ​​#{​arg​}​​"​)

​ ​end​

​ ​end​

​ ​end​

​

​ ​class​ Object

​ prepend VanityPuts

​ ​end​

​

​ puts ​"Hello and"​, ​"goodbye"​

Produces:

​ Dave says: Hello and

​ Dave says: goodbye

But there’s a problem—the change we just made to class Object is global.
We’ll see how to manage that shortly when we look at refinements.

Using extend
The include method effectively adds a module as a superclass of self. This
method is used inside a class definition to make the instance methods in the
module available to instances of the class.

However, it’s sometimes useful to add the instance methods directly to a
particular object and not to its class. For example, you’d want to do this to add
methods directly to a class object that you want to be treated like class
methods. You do this using Module#extend. Here’s an example:

​ ​module​ ​Humor​

​ ​def​ ​tickle​

​ ​"​​#{​self​}​​ says hee, hee!"​

​ ​end​

​ ​end​

​

​ obj = ​"Grouchy"​

​ obj.​extend​(Humor)

​ obj.​tickle​ ​# => "Grouchy says hee, hee!"​

Stop for a second to think about how this might be implemented.

When Ruby executes obj.tickle in this code example, it does the usual trick of
looking in the class of obj for a method called tickle. For extend to work, it has

to add the Humor module’s instance methods into the superclass chain for the
class of obj. Just as with the singleton method definitions, Ruby creates a
singleton class for obj and then includes the module Humor in that class. To
prove this is all that happens, here’s the C implementation of extend in the
current Ruby interpreter:

​ ​void​

​ ​rb_extend_object​(VALUE obj, VALUE module)

​ {

​ rb_include_module(rb_singleton_class(obj), module);

​ }

There is an interesting trick with extend. If you use it within a class definition,
the module’s methods become class methods. This is because calling extend is
equivalent to self.extend, so the methods are added to self, which in a class
definition is the class itself.

Here’s an example of adding a module’s methods at the class level:

​ ​module​ ​Humor​

​ ​def​ ​tickle​

​ ​"​​#{​self​}​​ says hee, hee!"​

​ ​end​

​ ​end​

​

​ ​class​ Grouchy

​ ​extend​ Humor

​ ​end​

​

​ Grouchy.​tickle​ ​# => "Grouchy says hee, hee!"​

Later, in ​Class Methods and Modules​, we’ll see how to use extend to add
macro-style methods to a class.

Using Refinements
We previously looked at applying a change to a built-in class by defining the
altered version of a method in a module and then prepending that module in
the class. When we subsequently call the method on instances of the class, it

finds the version in the module first. We’ve also seen that Ruby allows you to
reopen an existing class or module and add new methods to it. When we
subsequently use instances of the class, the new methods exist along with the
ones that were previously defined.

These techniques are time-honored, and frameworks such as Ruby on Rails
rely on them. But they come with a price. Any changes we make with prepend
and monkey patches are global to our running application. They apply not just
to the code we wrote for our application but also to the code in all the libraries
and gems we use while the application is running, too.

It’s possible that a change that made our code easier to write breaks someone
else’s library code that we rely on. This is clearly a problem in theory. Does it
happen in practice? Actually, surprisingly rarely. But you can never be sure
that things will quite work as you expect. Even if you don’t override these
classes yourself, it’s possible you’re using two separate libraries whose
patches to third-party classes clash.

Ruby has a feature called refinements. They allow you to make these changes
locally without affecting code outside the file you’re writing. The goal of
using refinements is to continue to allow you to make changes to existing
classes, but to only allow those changes to be in effect when you explicitly say
that they are. Not only are the changes no longer global, but when an added
method is used in a file, an explicit statement says where the added method is
coming from. This means a reader of the code has a better chance of finding
the source more easily.

Now, before going any further, here’s the mandatory warning. Refinements
have been a part of Ruby since 2.0, but their actual uptake has been minor. It’s
unusual to see refinements in the wild. Even though it seems they solve a
problem in theory, not many teams seem to have found them to solve a
problem in fact.

A refinement is a way of packaging a set of changes to one or more classes.
These refinements are defined within a module. You can then elect to use this

module with the refinements within a source file, in which case the change
will apply to the source in that module past the point where the refinement is
used. However, code outside this file isn’t affected. Alternatively, you can
elect to use the module with refinements inside a module or class, in which
case the refinement applies inside that module or class, but not outside of it.

Let’s make this concrete. Here’s a vanity version of puts rewritten using
refinements:

metaprogramming/vanity_puts.rb

​ ​module​ ​VanityPuts​

​ refine Object ​do​

​ ​private​ ​def​ ​puts​(*args)

​ args.​each​ ​do​ |arg|

​ Kernel.​puts​(​"Dave says: ​​#{​arg​}​​"​)

​ ​end​

​ ​end​

​ ​end​

​ ​end​

The refinement is contained in the module VanityPuts. The line refine Object do

starts the definition. What’s happening here is we’re calling the method
Module#refine, and the receiver is the VanityPuts module. The refine method
takes an argument, which is a class or module and a block. Within the block,
you define the methods that you’d like to update in that class. At this point, no
change is made to the underlying class. You have defined a method, but
haven’t yet told Ruby to use it.

That’s what the using method does:

metaprogramming/use_in_class.rb

​ require_relative ​"vanity_puts"​

​

​ ​class​ DavesStuff

​ using VanityPuts

​

​ ​def​ ​greet​(msg)

http://media.pragprog.com/titles/ruby5/code/metaprogramming/vanity_puts.rb
http://media.pragprog.com/titles/ruby5/code/metaprogramming/use_in_class.rb

​ puts msg

​ ​end​

​ ​end​

​

​ DavesStuff.​new​.​greet​(​"in DavesStuff"​)

Produces:

​ Dave says: in DavesStuff

You give it a module containing one or more refinements, and it marks the
refined objects to say “for the rest of the scope of this method, when you make
a call to an instance of Object, first check to see if the method can be found in
the refinement. If so, invoke it, otherwise invoke the original.”

The basic scoping rule is that a refinement is activated in a source file by
calling using. If using is called inside a module or class, the refinement is in
effect for the duration of that definition.

You can also invoke using at the top level of a file, in which case for the rest of
that source file, the methods that are defined in that refinement are active
inside any classes or methods yet to be defined in the source file:

metaprogramming/use_in_file.rb

​ require_relative ​"vanity_puts"​

​ using VanityPuts

​ puts ​"Hello"​, ​"world"​

Produces:

​ Dave says: Hello

​ Dave says: world

Let’s step it up a notch. We’ll define three source files.

Here’s one that contains a refinement definition:

metaprogramming/ref1/vanity_refinement.rb

http://media.pragprog.com/titles/ruby5/code/metaprogramming/use_in_file.rb
http://media.pragprog.com/titles/ruby5/code/metaprogramming/ref1/vanity_refinement.rb

​ ​module​ ​VanityPuts​

​ refine Object ​do​

​ ​private​ ​def​ ​puts​(*args)

​ args.​each​ ​do​ |arg|

​ Kernel.​puts​(​"Dave says: ​​#{​arg​}​​"​)

​ ​end​

​ ​end​

​ ​end​

​ ​end​

And here’s a file that uses this refinement:

metaprogramming/ref1/file_using_refinement.rb

​ ​class​ VanityShouter

​ using VanityPuts

​

​ ​def​ ​shout​(msg)

​ puts(msg.​upcase​)

​ ​end​

​ ​end​

​

​ VanityShouter.​new​.​shout​(​"I'm here!"​)

Finally, let’s run them from a third file:

metaprogramming/ref1/main_program.rb

​ require_relative ​"vanity_refinement"​

​

​ puts ​"About to require file using refinement"​

​ require_relative ​"file_using_refinement"​

​ puts ​"Back from require"​

​

​ VanityShouter.​new​.​shout​(​"finished"​)

Produces:

​ About to require file using refinement

​ Dave says: I'M HERE!

​ Back from require

​ Dave says: FINISHED

http://media.pragprog.com/titles/ruby5/code/metaprogramming/ref1/file_using_refinement.rb
http://media.pragprog.com/titles/ruby5/code/metaprogramming/ref1/main_program.rb

Notice how the puts calls in the main program are unadorned, but the calls in
the file that uses the refinement have the vanity prefix.

Designing with Refinements
In general, refinements can be used any place you’d want to extend or
monkey-patch a third-party tool. There are two main use cases.

The first is the case where a developer wants to make changes to a third-party
class for the developer’s own use. For example, Rake, which issues a lot of
calls to run external programs using the system method, might want to modify
the built-in version of system so that it logs errors differently. But it doesn’t
want that logging to apply to other calls to system that aren’t part of Rake. In
this case, the code could use the refinement locally within its own source files.
The refinement would be an implementation detail, hidden from users of the
code.

The second use case is where a library writer offers the refinement as part of
the external interface. For example, the Rails Active Support gem defines
methods such as hours, minutes, and ago on numbers, allowing you to write
3.days.ago. Right now, those changes to numbers are global. But, using
refinements, the Rails team could code the new methods, but not add them in
to any system classes. Instead, their API would document how to add them for
yourself into just those source files that use them. They might tell you to write
this in any source file that needs to use them:

​ using Rails::Extensions::Durations

There are many more potential use cases. And the two we’ve mentioned aren’t
mutually exclusive. The Rails framework, for example, is likely to want to use
these duration-related methods itself, as well as making them available via a
documented refinement.

Metaprogramming Class-Level Macros
If you’ve used Ruby for any time at all, you’re likely to have used
attr_accessor, the method that defines reader and writer methods for instance
variables:

​ ​class​ Song

​ attr_accessor ​:duration​

​ ​end​

If you’ve written a Ruby on Rails application, you’ve probably used has_many:

​ ​class​ Album < ActiveRecord::Base

​ has_many ​:tracks​

​ ​end​

These are both examples of class-level methods that generate code behind the
scenes. Because of the way they expand into something bigger, folks
sometimes call these kinds of methods macros.

Let’s create a trivial example and then build it up into something realistic.
We’ll start by implementing a simple method that adds logging capabilities to
instances of a class. We previously did this using a module. This time we’ll do
it using a class-level method. Here’s the first iteration:

metaprogramming/logging_0.rb

​ ​class​ Example

​ ​def​ self.​add_logging​

​ ​def​ ​log​(msg)

​ $stderr.​puts​(​"​​#{​Time.​now​.​strftime​(​"%H:%M:%S: "​)​}​​ ​​#{​self​}​​ (​​#{​msg​})"​)

​ ​end​

​ ​end​

​

​ add_logging

​ ​end​

​

​ ex = Example.​new​

​ ex.​log​(​"hello"​)

http://media.pragprog.com/titles/ruby5/code/metaprogramming/logging_0.rb

Produces:

​ 17:16:20: #<Example:0x0000000104e77610> (hello)

This is a silly piece of code because it includes a very general concern—
logging—in a very specific class. But bear with us—it’ll get better. And we
can still learn from it. First, notice that add_logging is a class method—it’s
defined in the class object’s singleton class. That means we can call it later in
the class definition without an explicit receiver because self is set to the class
object inside a class definition.

Then, notice that the add_logging method contains a nested method definition.
This inner definition will get executed only when we call the add_logging
method. The result is that log will be defined as an instance method of class
Example.

Let’s take one more step. We can define the add_logging method in one class
and then use it in a subclass. This works because the singleton class hierarchy
parallels the regular class hierarchy. As a result, class methods in a parent class
are also available in the child class, as the following example shows:

metaprogramming/logging_1.rb

​ ​class​ Logger

​ ​def​ self.​add_logging​

​ ​def​ ​log​(msg)

​ $stderr.​puts​(​"​​#{​Time.​now​.​strftime​(​"%H:%M:%S: "​)​}​​ ​​#{​self​}​​ (​​#{​msg​})"​)

​ ​end​

​ ​end​

​ ​end​

​

​ ​class​ Example < Logger

​ add_logging

​ ​end​

​

​ ex = Example.​new​

​ puts ex.​log​(​"hello"​)

Produces:

http://media.pragprog.com/titles/ruby5/code/metaprogramming/logging_1.rb

​ 17:16:20: #<Example:0x00000001049b9718> (hello)

Think back to the two examples at the beginning of this section. Both work in
the same way as our add_logging example. attr_accessor is an instance method
defined in class Module and so is available in all module and class definitions.
has_many is a class method defined in the Base class within the Rails
ActiveRecord module and so is available to all classes that subclass
ActiveRecord::Base.

This example is still not particularly compelling. It would still be easier to add
the log method directly as an instance method of our Logger class. But what
happens if we want to construct a different version of the log method for each
class that uses it? For example, let’s add the capability to add a short class-
specific identifying string to the start of each log message. We want to be able
to say something like this:

​ ​class​ Song < Logger

​ add_logging ​"Song"​

​ ​end​

​

​ ​class​ Album < Logger

​ add_logging ​"CD"​

​ ​end​

To do this, let’s define the log method on the fly. We can no longer use a
straightforward def…end-style definition—doing so won’t allow us to
dynamically determine the method behavior on the fly. Instead, we’ll use one
of the cornerstones of Ruby metaprogramming, define_method. This takes the
name of a method and a block, defining a method with the given name and
with the block as the method body. Any arguments in the block definition
become parameters to the method being defined:

metaprogramming/logging_2.rb

​ ​class​ Logger

​ ​def​ self.​add_logging​(id_string)

​ define_method(​:log​) ​do​ |msg|

​ now = Time.​now​.​strftime​(​"%H:%M:%S"​)

http://media.pragprog.com/titles/ruby5/code/metaprogramming/logging_2.rb

​ $stderr.​puts​(​"​​#{​now​}​​-​​#{​id_string​}​​: ​​#{​self​}​​ (​​#{​msg​}​​)"​)

​ ​end​

​ ​end​

​ ​end​

​

​ ​class​ Song < Logger

​ add_logging ​"Tune"​

​ ​end​

​

​ ​class​ Album < Logger

​ add_logging ​"CD"​

​ ​end​

​

​ song = Song.​new​

​ puts song.​log​(​"rock on"​)

Produces:

​ 17:16:20-Tune: #<Song:0x00000001006f8e88> (rock on)

There’s an important subtlety in this code. The body of the log method
contains this line:

​ $stderr.​puts​(​"​​#{​now​}​​-​​#{​id_string​}​​: ​​#{​self​}​​ (​​#{​msg​}​​)"​)

The value now is a local variable, and msg is the parameter to the block. But
id_string is the parameter to the enclosing add_logging method. It’s accessible
inside the block because block definitions create closures, allowing the context
in which the block is defined to be carried forward and used when the block is
used. In this case, we’re taking a value from a class-level method and using it
in an instance method we’re defining. This is a common pattern when creating
these kinds of class-level macros.

In addition to passing parameters from the class method into the body of the
method being defined, we can also use the parameter to dynamically
determine the name of the method or methods to create. Here’s an example
that creates a new kind of attr_accessor that logs all assignments to a given
instance variable:

metaprogramming/accessor_1.rb

http://media.pragprog.com/titles/ruby5/code/metaprogramming/accessor_1.rb

​ ​class​ AttrLogger

​ ​def​ self.​attr_logger​(name)

​ attr_reader name

​

​ define_method(​:"​​#{​name​}​​="​) ​do​ |val|

​ puts ​"Assigning ​​#{​val.​inspect​​}​​ to ​​#{​name​}​​"​

​ instance_variable_set(​"@​​#{​name​}​​"​, val)

​ ​end​

​ ​end​

​ ​end​

​

​ ​class​ Example < AttrLogger

​ attr_logger ​:value​

​ ​end​

​

​ ex = Example.​new​

​ ex.​value​ = 123

​ puts ​"Value is ​​#{​ex.​value​​}​​"​

​ ex.​value​ = ​"cat"​

​ puts ​"Value is now ​​#{​ex.​value​​}​​"​

Produces:

​ Assigning 123 to value

​ Value is 123

​ Assigning "cat" to value

​ Value is now cat

Again, we use the fact that the block defining the method body is a closure,
accessing the name of the attribute in the log message string. Notice we also
make use of the fact that attr_reader is simply a class method—we can call it
inside our class method to define the reader method for our attribute. There’s
another bit of metaprogramming—we use instance_variable_set to set the value
of an instance variable. The argument to instance_variable_set is possibly
unexpected—it’s a string starting with @ containing the name of the variable
you want to set. There’s a corresponding instance_variable_get method that
fetches the value of a named instance variable.

Class Methods and Modules

You can define class methods in one class and then use them in subclasses of
that class. But it’s often inappropriate to use subclassing for the kinds of
metaprogramming we have been showing because either we already have to
subclass some other class or our design aesthetic rebels against making Song a
subclass of Logger.

In these cases, you can use a module to hold your metaprogramming
implementation. As we’ve seen, using extend inside a class definition will add
the methods in a module as class methods to the class being defined:

metaprogramming/accessor_2.rb

​ ​module​ ​AttrLogger​

​ ​def​ ​attr_logger​(name)

​ attr_reader name

​

​ define_method(​"​​#{​name​}​​="​) ​do​ |val|

​ puts ​"Assigning ​​#{​val.​inspect​​}​​ to ​​#{​name​}​​"​

​ instance_variable_set(​"@​​#{​name​}​​"​, val)

​ ​end​

​ ​end​

​ ​end​

​

​ ​class​ Example

​ ​extend​ AttrLogger

​ attr_logger ​:value​

​ ​end​

​

​ ex = Example.​new​

​ ex.​value​ = 123

​ puts ​"Value is ​​#{​ex.​value​​}​​"​

​ ex.​value​ = ​"cat"​

​ puts ​"Value is now ​​#{​ex.​value​​}​​"​

Produces:

​ Assigning 123 to value

​ Value is 123

​ Assigning "cat" to value

​ Value is now cat

http://media.pragprog.com/titles/ruby5/code/metaprogramming/accessor_2.rb

Things get a little trickier if you want to add both class methods and instance
methods into the class being defined. Here’s one technique that’s used
extensively in the implementation of Rails. This technique makes use of a
Ruby hook method, included, which is called automatically by Ruby when you
include a module into a class. It is passed the class object of the class being
defined:

metaprogramming/accessor_3.rb

​ ​module​ ​GeneralLogger​

​ ​# Instance method to be added to any class that includes us​

​ ​def​ ​log​(msg)

​ puts Time.​now​.​strftime​(​"%H:%M: "​) + msg

​ ​end​

​

​ ​# module containing class methods to be added​

​ ​module​ ​ClassMethods​

​ ​def​ ​attr_logger​(name)

​ attr_reader name

​

​ define_method(​"​​#{​name​}​​="​) ​do​ |val|

​ log ​"Assigning ​​#{​val.​inspect​​}​​ to ​​#{​name​}​​"​

​ instance_variable_set(​"@​​#{​name​}​​"​, val)

​ ​end​

​ ​end​

​ ​end​

​

​ ​# extend host class with class methods when we're included​

​ ​def​ self.​included​(host_class)

​ host_class.​extend​(ClassMethods)

​ ​end​

​ ​end​

​

​ ​class​ Example

​ ​include​ GeneralLogger

​

​ attr_logger ​:value​

​ ​end​

​

​ ex = Example.​new​

​ ex.​log​(​"New example created"​)

​ ex.​value​ = 123

http://media.pragprog.com/titles/ruby5/code/metaprogramming/accessor_3.rb

​ puts ​"Value is ​​#{​ex.​value​​}​​"​

​ ex.​value​ = ​"cat"​

​ puts ​"Value is ​​#{​ex.​value​​}​​"​

Produces:

​ 17:16: New example created

​ 17:16: Assigning 123 to value

​ Value is 123

​ 17:16: Assigning "cat" to value

​ Value is cat

Notice how the included callback is used to extend the host class with the
methods defined in the inner module ClassMethods. Ruby on Rails uses this
pattern, where a module provides both class and instance methods,
extensively. The Rails name for this pattern is a Concern. The Rails Concern
implementation also provides shortcut methods so that you don’t need to add
the included hook yourself.

Now, as an exercise, try walking through the previous example in your head.
For each line of code, work out the value of self. Master this, and you’ve pretty
much mastered this style of metaprogramming in Ruby.

Struct and Subclassing Expressions

In Ruby, we’ve seen that that you can create a superclass relationship with <:

​ ​class​ Parent

​ ...

​ ​end​

​

​ ​class​ Child < Parent

​ ...

​ ​end​

What you might not know is that the thing to the right of the < needn’t be just
a class name; it can be any expression that returns a class object. In this code
example, we have the constant Parent. A constant is a simple form of

expression, and in this case, the constant Parent holds the class object of the
first class we defined.

Ruby comes with a class called Struct, which allows you to define classes that
contain simple data attributes. For example, you could write this:

​ Person = Struct.​new​(​:name​, ​:address​, ​:likes​)

​

​ dave = Person.​new​(​'Dave'​, ​'TX'​)

​ dave.​likes​ = ​"Programming Languages"​

​ puts dave

Produces:

​ #<struct Person name="Dave", address="TX", likes="Programming Languages">

The return value from Struct.new(...) is a class object. By assigning it to the
constant Person, we can thereafter use Person as if it were any other class.

But say we wanted to change the to_s method of our structure. We could do it
by opening up the class and writing the following method:

​ Person = Struct.​new​(​:name​, ​:address​, ​:likes​)

​ ​class​ Person

​ ​def​ ​to_s​

​ ​"​​#{​self.​name​​}​​ lives in ​​#{​self.​address​​}​​ and likes ​​#{​self.​likes​​}​​"​

​ ​end​

​ ​end​

We can do this more elegantly (although at the cost of an additional class
object) by writing this:

​ ​class​ Person < Struct.​new​(​:name​, ​:address​, ​:likes​)

​ ​def​ ​to_s​

​ ​"​​#{​self.​name​​}​​ lives in ​​#{​self.​address​​}​​ and likes ​​#{​self.​likes​​}​​"​

​ ​end​

​ ​end​

​

​ dave = Person.​new​(​'Dave'​, ​'Texas'​)

​ dave.​likes​ = ​"Programming Languages"​

​ puts dave

Produces:

​ Dave lives in Texas and likes Programming Languages

This mechanism is useful enough that Struct provides a shortcut by taking a
block in which you can define your own methods on the Struct, like this:

​ Person = Struct.​new​(​:name​, ​:address​, ​:likes​) ​do​

​ ​def​ ​to_s​

​ ​"​​#{​self.​name​​}​​ lives in ​​#{​self.​address​​}​​ and likes ​​#{​self.​likes​​}​​"​

​ ​end​

​ ​end​

​

​ dave = Person.​new​(​'Dave'​, ​'Texas'​)

​ dave.​likes​ = ​"Programming Languages"​

​ puts dave

Produces:

​ Dave lives in Texas and likes Programming Languages

Using Data for Immutable Structs
Structs are often used to create small classes that represent constrained,
encapsulated values with minimal behavior, but where it’s useful to be able to
treat the value as one thing, like a point with x and y coordinates. It’s also
sometimes useful to have those values be immutable, meaning that their values
cannot be changed. Immutable objects can be easier to reason about and
manage when sharing objects across threads.

True immutability in Ruby is hard, but you can achieve it with the Data class.
You use Data.define to create a new class with a particular set of attributes.
Once you’ve created the new class, you can construct instances using either
positional or keyword arguments.

​ LineItem = Data.​define​(​:name​, ​:price_in_cents​, ​:count​)

​ li_1 = LineItem.​new​(​"Apple"​, 105, 3)

​ li_2 = LineItem.​new​(​name: ​​"Orange"​, ​count: ​2, ​price_in_cents: ​75)

​

​ li_1.​name​ ​# => "Apple"​

​ li_2.​price_in_cents​ ​# => 75​

Once you have a Data instance, you can convert it to a hash with to_h.

Since the instances are immutable, you can’t directly set the attributes, but you
can create a new instance using with:

​ LineItem = Data.​define​(​:name​, ​:price_in_cents​, ​:count​)

​ li_1 = LineItem.​new​(​"Apple"​, 105, 3)

​ li_2 = li_1.​with​(​name: ​​"Orange"​)

The new instance is created using any keyword arguments passed to with and
the values of the original instance for the attributes that aren’t included.
Including a keyword argument that doesn’t match an attribute raises an error.

Creating Classes Dynamically
Let’s look at some Ruby code:

​ ​class​ Example

​ ​end​

​

​ ex = Example.​new​

When we call Example.new, we’re invoking the method new on the class object
Example. This is a regular method call—Ruby looks for the method new in the
class of the object (and the class of Example is Class) and invokes it. So we can
also invoke Class#new directly to create a new class dynamically at runtime:

​ some_class = Class.​new​

​ puts some_class.​class​

If you pass Class.new a block, that block is used as the body of the class:

metaprogramming/class_new.rb

​ some_class = Class.​new​ ​do​

​ ​def​ self.​class_method​

http://media.pragprog.com/titles/ruby5/code/metaprogramming/class_new.rb

​ puts ​"In class method"​

​ ​end​

​

​ ​def​ ​instance_method​

​ puts ​"In instance method"​

​ ​end​

​ ​end​

​

​ some_class.​class_method​

​ obj = some_class.​new​

​ obj.​instance_method​

Produces:

​ In class method

​ In instance method

By default, these classes will be direct descendants of Object. You can give
them a different parent by passing the parent’s class as a parameter:

​ some_class = Class.​new​(String) ​do​

​ ​def​ ​vowel_movement​

​ tr ​'aeiou'​, ​'*'​

​ ​end​

​ ​end​

​

​ obj = some_class.​new​(​"now is the time"​)

​ puts obj.​vowel_movement​

Produces:

​ n*w *s th* t*m*

How Classes Get Their Names
You may have noticed that the classes created by Class.new have no name. However, if
you assign the class object for a class with no name to a constant, Ruby automatically
names the class after the constant:

​ some_class = Class.​new​

​ obj = some_class.​new​

​ puts ​"Initial name is ​​#{​some_class.​name​​}​​"​

​ SomeClass = some_class

​ puts ​"Then the name is ​​#{​some_class.​name​​}​​"​

​ puts ​"also works via the object: ​​#{​obj.​class​.​name​​}​​"​

Produces:

​ Initial name is

​ Then the name is SomeClass

​ also works via the object: SomeClass

We can use these dynamically constructed classes to extend Ruby in
interesting ways. For example, here’s a simple reimplementation of the Ruby
Struct class:

​ ​def​ ​MyStruct​(*keys)

​ Class.​new​ ​do​

​ attr_accessor *keys

​

​ ​def​ ​initialize​(hash)

​ hash.​each​ ​do​ |key, value|

​ instance_variable_set(​"@​​#{​key​}​​"​, value)

​ ​end​

​ ​end​

​ ​end​

​ ​end​

​

​ Person = MyStruct ​:name​, ​:address​, ​:likes​

​ dave = Person.​new​(​name: ​​"dave"​, ​address: ​​"TX"​, ​likes: ​​"Stilton"​)

​ chad = Person.​new​(​name: ​​"chad"​, ​likes: ​​"Jazz"​)

​ chad.​address​ = ​"Berlin"​

​

​ puts ​"Dave's name is ​​#{​dave.​name​​}​​"​

​ puts ​"Chad lives in ​​#{​chad.​address​​}​​"​

Produces:

​ Dave's name is dave

​ Chad lives in Berlin

Using instance_eval and class_eval
No matter where you are in a Ruby program, self always has a value
determined by your location in the code. Sometimes it’s useful to be able to
manage that relationship and change the value of self for a while.

The methods Module#instance_eval, Module#class_eval, and Module#module_eval

let you set self to be an arbitrary object, evaluate the code in a block with
that object as self, and then reset self:

​ ​"cat"​.​instance_eval​ ​do​

​ puts ​"Upper case = ​​#{​upcase​}​​"​

​ puts ​"Length is ​​#{​self.​length​​}​​"​

​ ​end​

Produces:

​ Upper case = CAT

​ Length is 3

Inside the instance_eval block, the variable self is temporarily given the value
of the object that received the instance_eval message.

All the _eval methods take a string instead of a block argument, where the
string is evaluated by Ruby with the receiver as self. But the string version
is considered dangerous, and you shouldn’t use it. First, it’s slow—calling
eval effectively compiles the code in the string before executing it. But,
even worse, eval from a string can be dangerous. If there’s any chance that
external data—stuff that comes from outside your application—can wind up
inside the string argument to eval, then you have a security hole because that
external data may end up containing arbitrary code that your application
will blindly execute.

class_eval and instance_eval both set self for the duration of the block. But they
differ in the way they set up the environment for method definition. This
can make a big difference when the receiver is a class. The method class_eval
sets things up as if you were in the body of a class definition, so when the
receiver is a class, method definitions will define instance methods in that
class:

​ ​class​ MyClass

​ ​end​

​

​ MyClass.​class_eval​ ​do​

​ ​def​ ​instance_method​

​ puts ​"In an instance method"​

​ ​end​

​ ​end​

​

​ obj = MyClass.​new​

​ obj.​instance_method​

Produces:

​ In an instance method

In contrast, calling instance_eval acts as if you were working inside the
singleton class of self.

So, if the receiver is a class, any methods you define will become singleton
methods of that class, which is to say that they become class methods:

​ ​class​ MyClass

​ ​end​

​

​ MyClass.​instance_eval​ ​do​

​ ​def​ ​class_method​

​ puts ​"In a class method"​

​ ​end​

​ ​end​

​

​ MyClass.​class_method​

Produces:

​ In a class method

It might be helpful to remember that class_eval and instance_eval refer to the
context in which self is being replaced—and not the kind of method that’s
defined inside the block. For method definition, class_eval defines instance
methods, and instance_eval defines class methods.

Ruby has variants of these methods. instance_exec, class_exec, and module_exec

behave identically to their _eval counterparts but only have the block version
(that is, they don’t take a string). Any arguments given to the methods are
passed to the block as block parameters. This is an important feature. Using
_eval, it’s impossible to pass an instance variable into a block given to one
of the _eval methods—because self is changed by the call, these variables go
out of scope. With the _exec form, you can pass them in:

​ @animal = ​"cat"​

​ ​"dog"​.​instance_exec​(@animal) ​do​ |other|

​ puts ​"​​#{​other​}​​ and ​​#{​self​}​​"​

​ ​end​

Produces:

​ cat and dog

instance_eval and Constants
When using instance_eval, constants are looked up in the lexical scope in
which they were referenced. This (artificial) example shows the behavior:

​ ​module​ ​One​

​ CONST = ​"Defined in One"​

​ ​def​ self.​eval_block​(&block)

​ instance_eval(&block)

​ ​end​

​ ​end​

​

​ ​module​ ​Two​

​ CONST = ​"Defined in Two"​

​ ​def​ self.​call_eval_block​

​ One.​eval_block​ ​do​

​ CONST

​ ​end​

​ ​end​

​ ​end​

​

​ Two.​call_eval_block​ ​# => "Defined in Two"​

instance_eval and Domain-Specific Languages
It turns out that instance_eval has a pivotal role to play in a certain type of
domain-specific language (DSL). For example, we might be writing a
simple DSL for turtle graphics. In turtle graphics systems, you imagine you
have a turtle you can command to move forward n squares, turn left, and
turn right. You can also make the turtle raise and lower a pen. If the pen is
lowered, a line will be drawn tracing the turtle’s subsequent movements.
Few of these turtles exist in the wild, so we tend to simulate them inside
computers. To draw a set of three 5x5 squares, we might write the
following:

​ 3.​times​ ​do​

​ forward(8)

​ pen_down

​ 4.​times​ ​do​

​ forward(4)

​ left

​ ​end​

​ pen_up

​ ​end​

Yes, the forward(4) is correct in this code. The initial point is always drawn.

Clearly, pen_down, forward, left, and pen_up can be implemented as Ruby
methods. But this API has all the methods being called without receivers.
For that to work, we have to either be within a class that defines those

methods (or is a child of such a class) or have to make the methods global.
Neither of those allows for the API to be as simple as we’ve defined it here.

instance_eval comes to the rescue. We can define a class Turtle that defines
the various methods we need as instance methods. We’ll also define a walk
method, which will execute our turtle DSL, and a draw method to draw the
resulting picture:

​ ​class​ Turtle

​ ​def​ ​left​; ... ​end​

​ ​def​ ​right​; ... ​end​

​ ​def​ ​forward​(n); ... ​end​

​ ​def​ ​pen_up​; .. ​end​

​ ​def​ ​pen_down​; ... ​end​

​ ​def​ ​walk​(...); ​end​

​ ​def​ ​draw​; ... ​end​

​ ​end​

If we implement walk correctly, we can then write the code like this:

​ turtle = Turtle.​new​

​ turtle.​walk​ ​do​

​ 3.​times​ ​do​

​ forward(8)

​ pen_down

​ 4.​times​ ​do​

​ forward(4)

​ left

​ ​end​

​ pen_up

​ ​end​

​ ​end​

​ turtle.​draw​

Inside the walk block we want all the methods to have turtle as the receiver,
but they have self as the implicit receiver. And as written, self is based on
the class or location where this whole block is defined, and that isn’t the
object named turtle.

So, what is the correct implementation of walk? Well, we clearly have to use
instance_eval because we want the DSL commands in the block to call the
methods in the turtle object. We also have to arrange to pass the block given
to the walk method to be evaluated by that instance_eval call. Our
implementation looks like this:

​ ​def​ ​walk​(&)

​ instance_eval(&)

​ ​end​

Notice how we use Ruby’s anonymous block syntax to grab the block
passed to walk and pass it as-is as a block to instance_eval.

Is this a good use of instance_eval? It depends on the circumstances. The
benefit is that the code inside the block looks simple—you don’t have to
make the receiver explicit:

​ 4.​times​ ​do​

​ turtle.​forward​(4)

​ turtle.​left​

​ ​end​

There’s a drawback, though. Inside the block, scope isn’t what you might
think it is, so this code wouldn’t work:

​ @size = 4

​ turtle.​walk​ ​do​

​ 4.​times​ ​do​

​ turtle.​forward​(@size)

​ turtle.​left​

​ ​end​

​ ​end​

Instance variables are looked up in self, and self in the block isn’t the same
as self in the code that sets the instance variable @size. Because of this kind
of confusion, you may want to move away from using this style of
instance_eval blocks.

Using Hook Methods
In ​Class Methods and Modules​, we defined a method called included in our
GeneralLogger module. When this module was included in a class, Ruby
automatically invoked this included method, allowing our module to add class
methods to the host class.

included is an example of a hook method (sometimes called a callback). A hook
method is a method that you write but that Ruby calls from within the
interpreter when some particular event occurs. The interpreter looks for these
methods by name. If you define a method in the right context with an
appropriate name, Ruby will call it when the corresponding event happens.

The methods that can be invoked from within the interpreter are:

Method-related hooks
method_added, method_missing, method_removed, method_undefined,
singleton_method_added, singleton_method_removed,
singleton_method_undefined

Class and module-related hooks
append_features, const_missing, extend_object, extended, included, inherited,
initialize_clone, initialize_copy, initialize_dup

Object marshaling hooks
marshal_dump, marshal_load

Coercion hooks
coerce, induced_from, various to_xxx methods

We won’t discuss all of them in this chapter—instead, we’ll show just a few
examples of use.

The inherited Hook

If a class defines a class method called inherited, Ruby will call that method
whenever that class is subclassed (that is, whenever any class inherits from the
original).

This hook is often used in situations where a base class needs to keep track of
its children. For example, an online store might offer a variety of shipping
options. Each might be represented by a separate class, and each of these
classes could be a subclass of a single Shipping class. This parent class could
keep track of all the various shipping options by recording every class that
subclasses it. When it comes time to display the shipping options to the user,
the application could call the base class, asking it for a list of its children:

metaprogramming/shipping.rb

​ ​class​ Shipping ​# Base class​

​ @children = [] ​# this variable is in the class, not instances​

​

​ ​def​ self.​inherited​(child)

​ @children << child

​ ​end​

​

​ ​def​ self.​shipping_options​(weight, international)

​ @children.​select​ { |child| child.​can_ship​(weight, international) }

​ ​end​

​ ​end​

​

​ ​class​ MediaMail < Shipping

​ ​def​ self.​can_ship​(_weight, international)

​ !international

​ ​end​

​ ​end​

​

​ ​class​ FlatRatePriorityEnvelope < Shipping

​ ​def​ self.​can_ship​(weight, international)

​ weight < 64 && !international

​ ​end​

​ ​end​

​

​ ​class​ InternationalFlatRateBox < Shipping

​ ​def​ self.​can_ship​(weight, international)

​ weight < 9*16 && international

http://media.pragprog.com/titles/ruby5/code/metaprogramming/shipping.rb

​ ​end​

​ ​end​

​

​ puts ​"Shipping 16oz domestic"​

​ puts Shipping.​shipping_options​(16, ​false​)

​

​ puts ​"​​\n​​Shipping 90oz domestic"​

​ puts Shipping.​shipping_options​(90, ​false​)

​

​ puts ​"​​\n​​Shipping 16oz international"​

​ puts Shipping.​shipping_options​(16, ​true​)

Produces:

​ Shipping 16oz domestic

​ MediaMail

​ FlatRatePriorityEnvelope

​

​ Shipping 90oz domestic

​ MediaMail

​

​ Shipping 16oz international

​ InternationalFlatRateBox

Command interpreters often use this pattern: the base class keeps a track of
available commands, each of which is implemented in a subclass.

The method_missing Hook
Earlier, we saw how Ruby executes a method call by looking for the method,
first in the object’s class, then in its superclass, then in that class’s superclass,
and so on. If the method call has an explicit receiver, then private methods are
skipped in this search. If the method isn’t found by the time we run out of
superclasses (because BasicObject has no superclass), then Ruby tries to invoke
the hook method method_missing on the original object. Again, the same
process is followed—Ruby first looks in the object’s class, then in its
superclass, and so on. Ruby predefines its own version of method_missing in
class BasicObject, so typically the search stops there. The built-in method_missing

basically raises an exception (either a NoMethodError or a NameError depending
on the circumstances).

The key here is that method_missing is simply a Ruby method. We can override
it in our own classes to handle calls to otherwise undefined methods in an
application-specific way.

The method_missing method has a signature that includes the name of the
method being sought and the arguments:

​ ​def​ ​method_missing​(name, *args, &block)

The name argument receives the name of the method that couldn’t be found.
It’s passed as a symbol. The args argument is an array of the arguments that
were passed in the original call. And the often forgotten block argument will
receive any block passed to the original method.

​ ​def​ ​method_missing​(name, *args, &block)

​ puts ​"Called ​​#{​name​}​​ with ​​#{​args.​inspect​​}​​ and ​​#{​block​}​​"​

​ ​end​

​

​ wibble

​ wobble 1, 2

​ wurble(3, 4) { stuff }

Produces:

​ Called wibble with [] and

​ Called wobble with [1, 2] and

​ Called wurble with [3, 4] and #<Proc:0x00000001026f73d8 prog.rb:7>

Before we get too deep into the details, we’ll offer a tip about etiquette. There
are two main ways that people use method_missing. The first intercepts every
use of an undefined method and handles it. The second is more subtle; it
intercepts all calls but handles only some of them. In the latter case, it’s
important to forward on the call to a superclass if you decide not to handle it
in your method_missing implementation.

In this snippet, imagine there’s some method called
name_handled_by_method_missing? that determines if the name matches whatever
criteria we’re using for dynamic methods:

​ ​class​ MyClass < OtherClass

​ ​def​ ​method_missing​(name, *args, &block)

​ ​if​ name_handled_by_method_missing?(name)

​ ​# handle call​

​ ​else​

​ ​super​ ​# otherwise pass it on​

​ ​end​

​ ​end​

​

​ ​def​ ​respond_to_missing?​(name)

​ name_handled_by_method_missing?(name)

​ ​end​

​ ​end​

If you fail to pass on calls that you don’t handle, your application will silently
ignore calls to unknown methods in your class.

It’s also important to keep the respond_to_missing? method consistent with
method_missing. As we mentioned in ​Duck Typing​, respond_to? is used to query
what messages an instance expects. Using method_missing changes the list of
expected messages, so there’s a parallel to respond_to? called respond_to_missing?

that’s similarly invoked if respond_to? returns false, as a final check on whether
the class actually responds to the message.

Using method_missing to Simulate Accessors
The OpenStruct class is distributed with Ruby. It allows you to write objects
with attributes that are created dynamically by assignment.

For example, you could write this:

​ require ​'ostruct'​

​ obj = OpenStruct.​new​(​name: ​​"Dave"​)

​ obj.​address​ = ​"Texas"​

​ obj.​likes​ = ​"Programming"​

​

​ puts ​"​​#{​obj.​name​​}​​ lives in ​​#{​obj.​address​​}​​ and likes ​​#{​obj.​likes​​}​​"​

Produces:

​ Dave lives in Texas and likes Programming

Let’s use method_missing to write our own version of OpenStruct:

metaprogramming/open_struct.rb

​ ​class​ MyOpenStruct < BasicObject

​ ​def​ ​initialize​(initial_values = {})

​ @values = initial_values

​ ​end​

​

​ ​def​ ​_singleton_class​

​ ​class​ << self

​ self

​ ​end​

​ ​end​

​

​ ​def​ ​method_missing​(name, *args, &block)

​ ​if​ name[-1] == ​"="​

​ base_name = name[0..-2].​intern​

​ _singleton_class.​instance_exec​(name) ​do​ |name|

​ define_method(name) ​do​ |value|

​ @values[base_name] = value

​ ​end​

​ ​end​

​ @values[base_name] = args[0]

​ ​else​

​ _singleton_class.​instance_exec​(name) ​do​ |name|

​ define_method(name) ​do​

​ @values[name]

​ ​end​

​ ​end​

​ @values[name]

​ ​end​

​ ​end​

​

​ ​def​ ​respond_to_missing?​(_)

​ ​true​

​ ​end​

​ ​end​

​

​ obj = MyOpenStruct.​new​(​name: ​​"Dave"​)

​ obj.​address​ = ​"Texas"​

​ obj.​likes​ = ​"Programming"​

​

​ puts ​"​​#{​obj.​name​​}​​ lives in ​​#{​obj.​address​​}​​ and likes ​​#{​obj.​likes​​}​​"​

http://media.pragprog.com/titles/ruby5/code/metaprogramming/open_struct.rb

Produces:

​ Dave lives in Texas and likes Programming

Notice how we base our class on BasicObject. BasicObject is the root of Ruby’s
object hierarchy and contains only a minimal number of methods:

​ p BasicObject.​instance_methods​

Produces:

​ [:equal?, :!, :__send__, :==, :!=, :instance_eval, :instance_exec, :__id__]

This is good because it means that our MyOpenStruct class will be able to have
attributes such as display or class. If instead, we’d based MyOpenStruct on class
Object, then these names, along with forty-nine others, would’ve been
predefined and hence wouldn’t trigger method_missing.

Notice also another common pattern inside method_missing. The first time we
reference or assign a value to an attribute of our object, we access or update
the @values hash appropriately. But we also use define_method to define the
method that the caller was trying to access. This means that the next time this
attribute is used, it’ll use the method and not invoke method_missing. In theory,
this will make subsequent calls to the same accessor perform faster. This may
or may not be worth the trouble, depending on the access patterns to your
object.

Also notice how we had to jump through some hoops to define the method.
We want to define the method only for the current object. This means we have
to put the method into the object’s singleton class. Ordinarily, we could do that
via a Ruby method called define_singleton_method, but that method is defined in
Object, not BasicObject, so it’s not available to us here.

So we hack it ourselves. We can do that using instance_exec and define_method.
But that means we have to use the class << self trick to get the object’s singleton
class. Through an interesting implementation subtlety, define_method will

always define an instance method, regardless of whether it’s invoked via
instance_exec or class_exec.

But this code reveals a dark underbelly of using method_missing and BasicObject:

metaprogramming/open_struct_flaw.rb

​ obj = MyOpenStruct.​new​(​name: ​​"Dave"​)

​ obj.​address​ = ​"Texas"​

​

​ o1 = obj.​dup​

​ o1.​name​ = ​"Mike"​

​ o1.​address​ = ​"Colorado"​

Produces:

​ code/metaprogramming/open_struct_flaw.rb:41:in `<main>': undefined method
`name='

​ for nil (NoMethodError)

​

​ o1.name = "Mike"

​ ^^^^^^^

The dup method isn’t defined by BasicObject; it appears in class Object. So when
we called dup, it was picked up by our method_missing handler, and we just
returned nil (because we don’t have an attribute called dup yet). We could fix
this so that it at least reports an error:

​ ​def​ ​method_missing​(name, *args, &block)

​ ​if​ name[-1] == ​"="​

​ ​# as before...​

​ ​else​

​ ​super​ ​unless​ @values.​has_key?​ name

​ ​# as before...​

​ ​end​

​ ​end​

This class now reports an error if we call dup (or any other method) on it. But
we still can’t dup or clone it (or inspect, convert to a string, and so on).

http://media.pragprog.com/titles/ruby5/code/metaprogramming/open_struct_flaw.rb

Although BasicObject seems like a natural fit for method_missing, you may find it
to be more trouble than it’s worth.

Using method_missing as a Filter
As the previous example showed, method_missing has some drawbacks if you
use it to intercept all calls. It’s probably better to use it to recognize certain
patterns of call, passing on those it doesn’t recognize to its parent class to
handle.

An example of this is the dynamic finder facility used to be found in the Ruby
on Rails ActiveRecord module. ActiveRecord is the object-relational library in
Rails—it allows you to access relational databases as if they were object
stores. One particular feature allows you to find rows that match the criteria of
having given values in certain columns. For example, if an Active Record
class called Book were mapping a relational table called books and the books

table included columns called title and author, you used to be able to write this
(it’s since been deprecated, but we kind of miss it):

​ pickaxe = Book.​find_by_title​(​"Programming Ruby"​)

​ daves_books = Book.​find_all_by_author​(​"Dave Thomas"​)

Active Record didn’t predefine all these potential finder methods. Instead, it
uses our old friend method_missing. Inside that method, it looks for calls to
undefined methods that match the pattern /^find_(all_)?by_(.*)/. It also looks for
/^find_or_(initialize|create)_by_(.*)/. If the method being invoked doesn’t match
this pattern or if the fields in the method name don’t correspond to columns in
the database table, Active Record calls super so that a genuine method_missing

exception will be generated.

A Metaprogramming Example
Let’s bring together all the metaprogramming topics we’ve discussed in a final
example by writing a module that allows us to trace the execution of methods
in any class that mixes the module in. This would let us write the following:

metaprogramming/trace_calls_example.rb

​ require_relative ​"trace_calls"​

​

​ ​class​ Example

​ ​def​ ​one​(arg)

​ puts ​"One called with ​​#{​arg​}​​"​

​ ​end​

​ ​end​

​

​ ex1 = Example.​new​

​ ex1.​one​(​"Hello"​) ​# no tracing from this call​

​

​ ​class​ Example

​ ​include​ TraceCalls

​ ​def​ ​two​(arg1, arg2)

​ arg1 + arg2

​ ​end​

​ ​end​

​

​ ex1.​one​(​"Goodbye"​) ​# but we see tracing from these two​

​ puts ex1.​two​(4, 5)

Produces:

​ One called with Hello

​ ==> calling one with ["Goodbye"]

​ One called with Goodbye

​ <== one returned nil

​ ==> calling two with [4, 5]

​ <== two returned 9

​ 9

We can see immediately that there’s a subtlety here. When we mix the
TraceCalls module into a class, it has to add tracing to any existing instance

http://media.pragprog.com/titles/ruby5/code/metaprogramming/trace_calls_example.rb

methods in that class. It also has to arrange to add tracing to any methods we
subsequently add.

Let’s start with the full listing of the TraceCalls module:

metaprogramming/trace_calls.rb

​ ​module​ ​TraceCalls​

​ ​def​ self.​included​(klass)

​ klass.​instance_methods​(​false​).​each​ ​do​ |existing_method|

​ wrap(klass, existing_method)

​ ​end​

​

​ ​def​ klass.​method_added​(method) ​# note: nested definition​

​ ​unless​ @trace_calls_internal

​ @trace_calls_internal = ​true​

​ TraceCalls.​wrap​(self, method)

​ @trace_calls_internal = ​false​

​ ​end​

​ ​end​

​ ​end​

​

​ ​def​ self.​wrap​(klass, method)

​ klass.​instance_eval​ ​do​

​ method_object = instance_method(method)

​

​ define_method(method) ​do​ |*args, &block|

​ puts ​"==> calling ​​#{​method​}​​ with ​​#{​args.​inspect​​}​​"​

​ result = method_object.​bind_call​(self, *args, &block)

​ puts ​"<== ​​#{​method​}​​ returned ​​#{​result.​inspect​​}​​"​

​ result

​ ​end​

​ ​end​

​ ​end​

​ ​end​

When we include this module in a class, the included hook method gets
invoked. It first uses the instance_methods reflection method to find all the
existing instance methods in the host class (the false parameter limits the list to
methods in the class itself, and not in its superclasses). For each existing

http://media.pragprog.com/titles/ruby5/code/metaprogramming/trace_calls.rb

method, the module calls a helper method, wrap, to add some tracing code to it.
We’ll talk about wrap shortly.

Next, the included method uses another hook, method_added. This is called by
Ruby whenever a method is defined in the receiver. Note that we define this
method in the class passed to the included method. This means that the method
will be called when methods are added to this host class and not to the
module. This is what allows us to include TraceCalls at the top of a class and
then add methods to that class—all those method definitions will be handled
by method_added.

Now look at the code inside the method_added method. We have to deal with a
potential problem here. As you’ll see when we look at the wrap method, we
add tracing to a method by creating a new version of the method that calls the
old one. Inside method_added, we call the wrap function to add this tracing. But
inside wrap, we’ll define a new method to handle this wrapping, and that
definition will invoke method_added again, and then we’d call wrap again, and
so on, until the stack gets exhausted. To prevent this, we use an instance
variable and do the wrapping only if we’re not already doing it.

The wrap method takes a class object and the name of a method to wrap. It
finds the original definition of that method (using instance_method) and saves it.
It then redefines this method. This new method outputs some tracing and then
calls the original, passing in the parameters and block from the wrapper. Note
how we call the method by binding the method object to the current instance
and then invoking that bound method.

The key to understanding this code, and most metaprogramming code, is to
follow the principles we worked out at the start of this chapter—how self
changes as methods are called and classes are defined and how methods are
called by looking for them in the class of the receiver. If you get stuck, do
what we do and draw little boxes and arrows. We find it useful to stick with
the convention used in this chapter: class links go to the right, and superclass
links go up. Given an object, a method call is then a question of finding the

receiver object, going right once, and then following the superclass chain up
as far as you need to go.

Top-Level Execution Environment
Finally, there’s one small detail we have to cover to complete the
metaprogramming environment. Many times in this book we’ve claimed that
everything in Ruby is an object. But we’ve used one thing time and time again
that appears to contradict this—the top-level Ruby execution environment:

​ puts ​"Hello, World"​

Not an object in sight. We may as well be writing some variant of Fortran or
Basic. But dig deeper, and you’ll come across objects and classes lurking in
even the simplest code.

We know that the literal "Hello, World" generates a Ruby String, so that’s one
object. We also know that the bare method call to puts is effectively the same
as self.puts. But what is self?

​ self ​# => main​

​ self.​class​ ​# => Object​

At the top level, we’re executing code in the context of a predefined object,
called main. When we define methods using def method_name at the top level,
Ruby defines those as (private) instance methods for class Object. This is why
methods defined at the top level are available inside all objects. In the
following sample, the top-level be_polite method is visible from inside the
introduce method of class Person:

metaprogramming/top_level.rb

​ ​def​ ​be_polite​

​ ​"Why, if it isn't ​​#{​self.​to_s​​}​​? So glad to see you."​

​ ​end​

​

​ ​class​ Person

​ attr_accessor ​:first_name​, ​:last_name​

​

​ ​def​ ​initialize​(first_name, last_name)

http://media.pragprog.com/titles/ruby5/code/metaprogramming/top_level.rb

​ @first_name = first_name

​ @last_name = last_name

​ ​end​

​

​ ​def​ ​to_s​ = ​"​​#{​first_name​}​​ ​​#{​last_name​}​​"​

​

​ ​def​ ​introduce​

​ be_polite

​ ​end​

​ ​end​

​

​ clark = Person.​new​(​"Clark"​, ​"Kent"​)

​ p clark.​introduce​

Produces:

​ "Why, if it isn't Clark Kent? So glad to see you."

This is fairly subtle—since they are defined in class Object, these methods are
available everywhere. And because we’re in the context of Object, we can use
all of Object’s methods (including those mixed in from Kernel) in function
form. This explains why we can call Kernel methods such as puts at the top
level (and indeed throughout Ruby); it’s because these methods are part of
every object. Top-level instance variables also belong to this main, top-level
object.

What’s Next
Metaprogramming is one of Ruby’s sharpest tools. Don’t be afraid to use it
to raise up the level at which you program. But, at the same time, use it only
when necessary—overly metaprogrammed applications can become pretty
obscure pretty quickly.

There’s one more piece of the Ruby metaprogramming puzzle: reflection,
which is how Ruby knows things about the runtime environment. Let’s take
a look.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 23

Reflection and Object Space

One of the advantages of dynamic languages such as Ruby is the ability to
introspect—to examine aspects of a program from within the program
itself. This is also called reflection.

When people introspect, they think about their thoughts and feelings. This
is interesting because we’re using thought to analyze thought. It’s the same
when programs use introspection—a program can discover the following
information about itself:

What objects it contains
Its class hierarchy
The attributes and methods of objects
Information on methods

Armed with this information, we can look at particular objects and decide
which of their methods to call at runtime—even if the class of the object
didn’t exist when we first wrote the code. We can also start doing clever
things, perhaps modifying the program while it’s running. We’re going to
look at Ruby’s ObjectSpace, which allows us to reflect on Ruby’s internals.
Later in this chapter, we’ll look at distributed Ruby and marshaling, two
reflection-based technologies that let us send objects around the world and
through time.

Looking at Objects
Have you ever craved the ability to traverse all the living objects in your
program? We have! Ruby has a global object called ObjectSpace that lets you
do some fun tricks with the set of objects Ruby is tracking (this means all
the objects that have been created and not yet destroyed by garbage
collection).

What Is Garbage Collection?

Ruby is a dynamic language, and it doesn’t require the
programmer to manage the memory that the program uses
during runtime. Instead, Ruby uses a process called garbage
collection. Garbage collection looks for objects that have been
allocated into memory but are no longer in scope or are
otherwise not accessible. Those objects are released back into
the memory heap so that the space can be reused.

We’re not going to go into the details of how Ruby handles
garbage collecting in this book. For one thing, the details
change from version to version as newer and better algorithms
for identifying discarded objects are developed.

To traverse live objects, Ruby provides the method ObjectSpace.each_object,
which takes a block and applies it to each object that ObjectSpace knows
about. The method takes an optional argument, which is a class or module,
and filters the result to only the objects that are of that class, module, or
subclass.

For example, to iterate over all objects of type Complex, you’d write the
following:

​ a = Complex(1, 2)

​ b = Complex(99, -100)

​ ObjectSpace.​each_object​(Complex) { |x| puts x }

Produces:

​ 0+1i

​ 99-100i

​ 1+2i

Where did that extra number (0+1i) come from? We didn’t define it in our
program. Well, the Complex class defines a constant for I, which is the
square root of -1. Because we’re examining all living objects in the system,
this object turns up as well.

Let’s try the same example with different values. This time, they’re objects
of type Integer:

​ a = 102

​ b = 95

​ ObjectSpace.​each_object​(Integer) { |x| p x }

Produces:

​ 9223372036854775807

Neither of the Integers objects we created showed up, although another
integer did. That’s because ObjectSpace doesn’t know about objects with
immediate values. Immediate values are cases where the value is small
enough to be stored as part of the internal chip instructions rather than being
separately stored in memory. In Ruby, Symbol, true, false, and nil are
immediate, and Integer and Float values are also immediate if they are close
enough to zero (for machine-specific values of “close enough”). (Symbol is
weird because if you do this exercise with Symbol, you’ll see a lot of
symbols with what seems to be internal-facing names, but new ones you
create won’t show up.)

For what it’s worth, 9223372036854775807 = 2 ** 63 - 1 (we did have to
look that up), which suggests it’s a memory-specific number being
generated internally somewhere, possibly being used as a boundary for
integer values.

Looking inside Objects
Once you’ve found an interesting object, you may be tempted to find out
what it can do. Unlike static languages, where a variable’s type determines
its class, and hence the methods it supports, Ruby supports dynamic
objects. You cannot tell exactly what an object can do until you look under
its hood (or under its bonnet, for objects created to the east of the Atlantic).
We talked about this in ​Duck Typing​.

For instance, we can get a list of all the methods to which an object will
respond (these include methods in an object’s class and that class’s
ancestors) with this:

​ r = 1..10

​ list = r.​methods​

​ list.​length​ ​# => 123​

​ list[0..3] ​# => [:last, :exclude_end?, :step, :cover?]​

We can check to see whether an object responds to a particular method:

​ r = 1..10

​ r.​respond_to?​(​"frozen?"​) ​# => true​

​ r.​respond_to?​(​:key?​) ​# => false​

​ ​"me"​.​respond_to?​(​"=="​) ​# => true​

We can get the method object for a particular method:

​ r = 1..10

​ method = r.​method​(​:frozen?​)

​ method.​call​ ​# => true​

And we can ask for an object’s class and unique object ID and test its
relationship to other classes:

​ num = 1

​ num.​object_id​ ​# => 3​

​ num.​class​ ​# => Integer​

​ num.​kind_of?​ Integer ​# => true​

​ num.​kind_of?​ Numeric ​# => true​

​ num.​instance_of?​ Integer ​# => true​

​ num.​instance_of?​ Numeric ​# => false​

Looking at Classes
Knowing about objects is one aspect of reflection, but to get the whole picture,
you also need to be able to look at classes—and the methods and constants
that they contain.

Looking at the class hierarchy is easy. You can get the parent of any particular
class using Class#superclass and its children using Class#subclasses. For classes
and modules, the Module#ancestors method lists both superclasses and mixed-in
modules:

ospace/relatives.rb

​ klass = Integer

​ print ​"Inheritance chain: "​

​ ​begin​

​ print klass

​ klass = klass.​superclass​

​ print ​" < "​ ​if​ klass

​ ​end​ ​while​ klass

​ puts

​ p ​"Ancestors: ​​#{​Integer.​ancestors​​}​​"​

​ p ​"Subclasses: ​​#{​Integer.​subclasses​​}​​"​

Produces:

​ Inheritance chain: Integer < Numeric < Object < BasicObject

​ "Ancestors: [Integer, Numeric, Comparable, Object, Kernel, BasicObject]"

​ "Subclasses: []"

If you want to build a complete class hierarchy, simply run that code for every
class in the system. We can use ObjectSpace to iterate over all Class objects like
this:

​ ObjectSpace.​each_object​(Class) ​do​ |klass|

​ ​# ...​

​ ​end​

Looking inside Classes

http://media.pragprog.com/titles/ruby5/code/ospace/relatives.rb

We can find out a bit more about the methods and constants in a particular
object. We can ask for methods by access level, and we can ask for just
singleton methods. We can also take a look at the object’s constants, local, and
instance variables:

​ ​class​ Demo

​ @@var = 99

​ CONST = 1.23

​

​ ​private​ ​def​ ​private_method​

​ ​end​

​

​ ​protected​ ​def​ ​protected_method​

​ ​end​

​

​ ​public​ ​def​ ​public_method​

​ @inst = 1

​ i = 1

​ j = 2

​ local_variables

​ ​end​

​

​ ​def​ Demo.​class_method​

​ ​end​

​ ​end​

​

​ Demo.​private_instance_methods​(​false​) ​# => [:private_method]​

​ Demo.​protected_instance_methods​(​false​) ​# => [:protected_method]​

​ Demo.​public_instance_methods​(​false​) ​# => [:public_method]​

​ Demo.​singleton_methods​(​false​) ​# => [:class_method]​

​ Demo.​class_variables​ ​# => [:@@var]​

​ Demo.​constants​(​false​) ​# => [:CONST]​

​

​ demo = Demo.​new​

​ demo.​instance_variables​ ​# => []​

​ ​# Get 'public_method' to return its local variables​

​ ​# and set an instance variable​

​ demo.​public_method​ ​# => [:i, :j]​

​ demo.​instance_variables​ ​# => [:@inst]​

You may be wondering what all the false parameters were in the previous code.
These reflection methods will by default continue recursively into parent

classes, their parents, and so on, up the ancestor chain. Passing in false stops
this kind of prying.

Given a list of method names, we may now be tempted to try calling them.
Fortunately, that’s easy with Ruby.

Calling Methods Dynamically
The Object#send method lets you tell any object to invoke a method by
name. The first argument is a symbol or a string representing the name, and
any remaining arguments are passed along to the method of that name. Let’s
have a look at the following code:

​ ​"John Coltrane"​.​send​(​:length​) ​# => 13​

​ ​"Miles Davis"​.​send​(​"sub"​, ​/iles/​, ​'.'​) ​# => "M. Davis"​

There are two twists to send. First, your class might define its own send
method if it wanted to send something somewhere. Ruby provides the
__send__ method, defined in BasicObject, which is identical to send and is
meant to be used in cases where send might have been overwritten .

Second, the send method doesn’t enforce method access, meaning that it’ll
happily send to a method that is private or protected. You might reasonably
think that this undermines the point of having access control in the first
place. Ruby provides the related method public_send, which will only send to
methods that are public. For most usages, public_send is preferred.

Another way of invoking methods dynamically uses Method objects. A
Method object is like a Proc object: it represents a chunk of code and a
context in which it executes. In this case, the code is the body of the
method, and the context is the object that created the method. Once we have
our Method object, we can execute it sometime later by sending it the
message call:

​ trane = ​"John Coltrane"​.​method​(​:length​)

​ miles = ​"Miles Davis"​.​method​(​"sub"​)

​

​ trane.​call​ ​# => 13​

​ miles.​call​(​/iles/​, ​'.'​) ​# => "M. Davis"​

You can pass the Method object around as you would any other object, and
when you invoke Method#call, the method is run as if you had invoked it on
the original object. It’s like having a C-style function pointer but in a fully
object-oriented style.

In languages like JavaScript and Python, mentioning a method without
arguments returns the method itself, whereas in Ruby, mentioning the
method without arguments calls the method with no arguments, and if you
want the method itself, you need to call method.

You can use Method objects wherever you use proc objects. For example,
they work with iterators:

​ ​def​ ​double​(a)

​ 2 * a

​ ​end​

​

​ method_object = method(​:double​)

​ [1, 3, 5, 7].​map​(&method_object) ​# => [2, 6, 10, 14]​

Method objects are bound to one particular object, and that object acts as the
receiver when the method object is invoked. You can create unbound
methods (of class UnboundMethod) by calling instance_method on a class with
the name of the method. Subsequently, you can bind the method to one or
more objects with bind. The binding creates a new Method object, that is
bound to the argument of bind. As with aliases, unbound methods are
references to the definition of the method at the time they are created and
don’t reflect later changes:

​ unbound_length = String.​instance_method​(​:length​)

​ ​class​ String

​ ​def​ ​length​

​ 99

​ ​end​

​ ​end​

​

​ str = ​"cat"​

​ str.​length​ ​# => 99​

​

​ bound_length = unbound_length.​bind​(str)

​ bound_length.​call​ ​# => 3​

The pattern of binding a method and immediately calling it is common
enough that Ruby has a shortcut, bind_call. We can replace the last two lines
of the previous snippet with the single line unbound_length.bind_call(str). The
first argument to bind_call is the object to bind to, and any subsequent
arguments are passed to the call.

Because good things come in threes, here’s yet another way to invoke
methods dynamically. The eval method (and its variations such as class_eval,
module_eval, and instance_eval) will parse and execute an arbitrary string of
legal Ruby source code:

​ trane = ​%q{"John Coltrane".length}​

​ miles = ​%q{"Miles Davis".sub(/iles/, '.')}​

​

​ eval(trane) ​# => 13​

​ eval(miles) ​# => "M. Davis"​

When using eval, it can be helpful to state explicitly the context in which the
expression should be evaluated, rather than using the current context. You
obtain a context using Kernel#binding at the desired point:

​ ​def​ ​get_a_binding​

​ val = 123

​ binding

​ ​end​

​

​ val = ​"cat"​

​

​ the_binding = get_a_binding

​ eval(​"val"​, the_binding) ​# => 123​

​ eval(​"val"​) ​# => "cat"​

The first eval evaluates val in the context of the binding as it was when the
method get_a_binding was executing. In this binding, the variable val had a
value of 123. The second eval evaluates val in the top-level binding, where it
has the value "cat".

Performance Considerations
As we’ve seen in this section, Ruby gives us several ways to invoke an
arbitrary method of some object: Object#send, Method#call, and the various
flavors of eval.

You may prefer to use any one of these techniques depending on your
needs, but be aware that, as the following benchmark shows, eval is
significantly slower than the others (or, for optimistic readers, send and call
are significantly faster than eval).

​ require ​"benchmark"​

​ ​include​ Benchmark

​

​ test = ​"Stormy Weather"​

​ m = test.​method​(​:length​)

​ n = 100000

​

​ bm(12) ​do​ |x|

​ x.​report​(​"call"​) { n.​times​ { m.​call​ } }

​ x.​report​(​"send"​) { n.​times​ { test.​send​(​:length​) } }

​ x.​report​(​"eval"​) { n.​times​ { eval ​"test.length"​ } }

​ ​end​

Produces:

​ user system total real

​ call 0.004716 0.000001 0.004717 (0.004719)

​ send 0.004930 0.000001 0.004931 (0.004934)

​ eval 0.203683 0.001516 0.205199 (0.205515)

System Hooks
A hook is a technique that lets you trap some Ruby event, such as object
creation. Let’s take a look at some common Ruby hook techniques.

Intercepting Method Calls
The simplest hook technique in Ruby is to intercept calls to methods in core
classes. Perhaps you want to log all the operating system commands your
program executes. You could simply use alias_method to rename the system
method and replace it with a system method of your own that both logs the
command and calls the original Kernel#system method.

For example:

​ ​class​ Object

​ ​alias_method​ ​:old_system​, ​:system​

​

​ ​def​ ​system​(*args)

​ old_system(*args).​tap​ ​do​ |result|

​ puts ​"system(​​#{​args.​join​(​', '​)​}​​) returned ​​#{​result.​inspect​​}​​"​

​ ​end​

​ ​end​

​ ​end​

​

​ system(​"date"​)

​ system(​"kangaroo"​, ​"-hop 10"​, ​"skippy"​)

Produces:

​ Thu Nov 2 17:16:24 CDT 2023

​ system(date) returned true

​ system(kangaroo, -hop 10, skippy) returned nil

But the problem with this technique is that you’re relying on there not being
an existing method called old_system.

A better alternative is to make use of method objects, which are effectively
anonymous:

​ ​class​ Object

​ old_system_method = instance_method(​:system​)

​

​ define_method(​:system​) ​do​ |*args|

​ old_system_method.​bind_call​(self, *args).​tap​ ​do​ |result|

​ puts ​"system(​​#{​args.​join​(​', '​)​}​​) returned ​​#{​result.​inspect​​}​​"​

​ ​end​

​ ​end​

​ ​end​

​

​ system(​"date"​)

​ system(​"kangaroo"​, ​"-hop 10"​, ​"skippy"​)

Produces:

​ Thu Nov 2 17:16:24 CDT 2023

​ system(date) returned true

​ system(kangaroo, -hop 10, skippy) returned nil

You can also achieve a similar behavior by using prepend to insert a module
with a method of the same name earlier in the call chain. Within the
module’s methods, calling super calls the host’s method of the same name.
This gives us:

​ ​module​ ​SystemHook​

​ ​private​ ​def​ ​system​(*args)

​ ​super​.​tap​ ​do​ |result|

​ puts ​"system(​​#{​args.​join​(​', '​)​}​​) returned ​​#{​result.​inspect​​}​​"​

​ ​end​

​ ​end​

​ ​end​

​

​ ​class​ Object

​ prepend SystemHook

​ ​end​

​

​ system(​"date"​)

​ system(​"kangaroo"​, ​"-hop 10"​, ​"skippy"​)

Produces:

​ Thu Nov 2 17:16:24 CDT 2023

​ system(date) returned true

​ system(kangaroo, -hop 10, skippy) returned nil

Object Creation Hooks
Ruby lets you get involved when objects are created. If you can be present
when every object is born, you can do all sorts of interesting things with
them: you can wrap them, add methods to them, remove methods from
them, and add them to containers to implement persistence—you name it.
We’ll show a simple example here. We’ll add a timestamp to every object as
it’s created. First, we’ll add a timestamp attribute to every object in the
system. We can do this by hacking the class Object itself:

​ ​class​ Object

​ attr_accessor ​:timestamp​

​ ​end​

Then, we need to hook object creation to add this timestamp. One way to do
this is to do our method-renaming trick on Class#new—the method that’s
called to allocate space for a new object. The technique isn’t perfect—some
built-in objects, such as literal strings, are constructed without calling new—
but it’ll work just fine for objects we write:

​ ​class​ Class

​ old_new = instance_method(​:new​)

​ define_method(​:new​) ​do​ |*args, **kwargs, &block|

​ result = old_new.​bind_call​(self, *args, **kwargs, &block)

​ result.​timestamp​ = Time.​now​ ​unless​ result.​is_a?​(Time)

​ result

​ ​end​

​ ​end​

Finally, we can run a test. We’ll create a couple of objects a few
milliseconds apart and check their timestamps:

​ ​class​ Test

​ ​end​

​

​ obj1 = Test.​new​

​ sleep(0.002)

​ obj2 = Test.​new​

​ obj1.​timestamp​.​to_f​ ​# => 1698963384.31296​

​ obj2.​timestamp​.​to_f​ ​# => 1698963384.315474​

Tracing Your Program’s Execution
While we’re having fun reflecting on all the objects and classes in our
programs, let’s not forget about the humble expressions that make our code
actually do things. It turns out that Ruby lets us look at these expressions, too.

First, you can watch the interpreter as it executes code, using the TracePoint
class. TracePoint is used to execute a proc while adding all sorts of juicy
debugging information whenever a new source line is executed, methods are
called, objects are created, and so on.

Here’s a bit of what TracePoint can do (run this in your own irb window, but be
aware that it’ll produce a lot of output):

​ ​class​ Test

​ ​def​ ​test​

​ a = 1

​ ​end​

​ ​end​

​

​ TracePoint.​trace​(​:line​) ​do​ |trace_point|

​ p trace_point

​ ​end​

​

​ t = Test.​new​

​ t.​test​

How Did We Get Here?
That’s a fair question…one we ask ourselves regularly. Mental lapses aside, in
Ruby you can find out “how you got there” using the method Kernel#caller,
which returns an array of strings representing the current call stack:

​ ​def​ ​cat_a​

​ puts caller[0..2]

​ ​end​

​

​ ​def​ ​cat_b​

​ cat_a

​ ​end​

​

​ ​def​ ​cat_c​

​ cat_b

​ ​end​

​

​ cat_c

Produces:

​ prog.rb:6:in `cat_b'

​ prog.rb:10:in `cat_c'

​ prog.rb:13:in `<main>'

In this case, we’re limiting printing the first three elements of the call stack
because beyond that, we get into the depths of irb, which is unlikely to be
useful for debugging purposes.

Ruby also provides the method __callee__, which returns the name of the
current method.

Source Code
Ruby executes programs from plain old files. You can look at these files to
examine the source code that makes up your program using one of a number
of techniques.

The special variable __FILE__ contains the name of the current source file. This
leads to a fairly short (if cheating) quine—a program that outputs its own
source code:

​ print File.​read​(​__FILE__​)

Produces:

​ print File.read(__FILE__)

As we saw in the previous section, the method Kernel#caller returns the call
stack as a list. Each entry in this list starts off with a filename, a colon, and a

line number in that file. You can parse this information to display the source of
the method call. In the following example, we have a main program, main.rb,
that calls a method in a separate file, sub.rb. That method, in turn, invokes a
block, where we traverse the call stack and write out the source lines involved.
Notice the use of a hash of file contents, indexed by the filename.

Here’s some code that dumps out the call stack, including source information:

ospace/caller/stack_dumper.rb

​ ​def​ ​dump_call_stack​

​ file_contents = {}

​ puts ​"File Line Source Line"​

​ puts ​"---------------+----+------------"​

​ caller.​each​ ​do​ |position|

​ match_data = position.​match​(​/\A(.*?):(\d+)/​)

​ ​next​ ​if​ match_data.​nil?​

​ file = match_data[1]

​ line = Integer(match_data[2])

​ file_contents[file] ||= File.​readlines​(file)

​ printf(​"%-15s:%3d - %s"​,

​ File.​basename​(file),

​ line,

​ file_contents[file][line - 1].​lstrip​)

​ ​end​

​ ​end​

The file sub.rb contains a single method:

ospace/caller/sub.rb

​ ​def​ ​sub_method​(v1, v2)

​ main_method(v1 * 3, v2 * 6)

​ ​end​

The following is the main program, which invokes the stack dumper after
being called back by the submethod:

ospace/caller/main.rb

​ require_relative ​"sub"​

http://media.pragprog.com/titles/ruby5/code/ospace/caller/stack_dumper.rb
http://media.pragprog.com/titles/ruby5/code/ospace/caller/sub.rb
http://media.pragprog.com/titles/ruby5/code/ospace/caller/main.rb

​ require_relative ​"stack_dumper"​

​

​ ​def​ ​main_method​(arg1, arg2)

​ dump_call_stack

​ ​end​

​

​ sub_method(123, ​"cat"​)

Produces:

​ File Line Source Line

​ ---------------+----+------------

​ main.rb : 5 - dump_call_stack

​ sub.rb : 2 - main_method(v1 * 3, v2 * 6)

​ main.rb : 8 - sub_method(123, "cat")

The SCRIPT_LINES__ constant is closely related to this technique. If a program
initializes a constant called SCRIPT_LINES__ with a hash, that hash will receive a
new entry for every file subsequently loaded into the interpreter using require
or load. The entry’s key is the name of the file, and the value is the source of
the file as an array of strings.

Behind the Curtain: The Ruby VM
If you’d like to know what Ruby is doing with all that code you’re writing,
you can ask the Ruby interpreter to show you the intermediate code that it’s
executing.

You can ask it to compile the Ruby code in a string or in a file and then
disassemble it and even run it. You might wonder if it can dump the
opcodes out and later reload them. The answer is no—the interpreter has the
code to do this, but it’s disabled because there isn’t yet an intermediate code
verifier for the Ruby interpreter.

Here’s a trivial example of disassembly:

​ code = RubyVM::InstructionSequence.​compile​(​'a = 1; puts 1 + a'​)

​ puts code.​disassemble​

Produces:

​ == disasm: #<ISeq:<compiled>@<compiled>:1 (1,0)-(1,17)>

​ local table (size: 1, argc: 0 [opts: 0, rest: -1, post: 0, block: -1, kw:
-1@-1,

​ kwrest: -1])

​ [1] a@0

​ 0000 putobject_INT2FIX_1_ (1)
[Li]

​ 0001 setlocal_WC_0 a@0

​ 0003 putself

​ 0004 putobject_INT2FIX_1_

​ 0005 getlocal_WC_0 a@0

​ 0007 opt_plus <calldata!mid:+, argc:1,

​ ARGS_SIMPLE>[CcCr]

​ 0009 opt_send_without_block <calldata!mid:puts, argc:1,

​ FCALL|ARGS_SIMPLE>

​ 0011 leave

Maybe you want to know how Ruby handles #{...} substitutions in strings.
Ask the VM:

​ code = RubyVM::InstructionSequence.​compile​(​'a = 1; puts "a = #{a}."'​)

​ puts code.​disassemble​

Produces:

​ == disasm: #<ISeq:<compiled>@<compiled>:1 (1,0)-(1,23)>

​ local table (size: 1, argc: 0 [opts: 0, rest: -1, post: 0, block: -1, kw:
-1@-1,

​ kwrest: -1])

​ [1] a@0

​ 0000 putobject_INT2FIX_1_ (1)
[Li]

​ 0001 setlocal_WC_0 a@0

​ 0003 putself

​ 0004 putobject "a = "

​ 0006 getlocal_WC_0 a@0

​ 0008 dup

​ 0009 objtostring <calldata!mid:to_s, argc:0,

​ FCALL|ARGS_SIMPLE>

​ 0011 anytostring

​ 0012 putobject "."

​ 0014 concatstrings 3

​ 0016 opt_send_without_block <calldata!mid:puts, argc:1,

​ FCALL|ARGS_SIMPLE>

​ 0018 leave

For a full list of the opcodes, print out RubyVM::INSTRUCTION_NAMES.

Marshaling and Distributed Ruby
Ruby features the ability to serialize objects, letting you store them
somewhere and reconstitute them when needed. You can use this facility, for
instance, to save a tree of objects that represent some portion of the
application state—a document, a CAD drawing, a piece of music, and so on.

Ruby calls this kind of serialization marshaling (think of railroad marshaling
yards where individual cars are assembled in sequence into a complete train,
which is then dispatched somewhere). Saving an object and some or all of its
components is done using the method dump. Typically, you’ll dump an entire
object tree starting with some given object. Later, you can reconstitute the
object using load.

Here’s a short example. We have a class Chord that holds a collection of
musical notes. We’d like to save away a particularly wonderful chord so we
can e-mail it to a couple hundred of our closest friends so they can load it into
their copy of Ruby and savor it too. Let’s start with the classes for Note and
Chord:

ospace/chord.rb

​ Note = Struct.​new​(​:value​) ​do​

​ ​def​ ​to_s​

​ value.​to_s​

​ ​end​

​ ​end​

​

​ ​class​ Chord

​ ​def​ ​initialize​(arr)

​ @arr = arr

​ ​end​

​

​ ​def​ ​play​

​ @arr.​join​(​"-"​)

​ ​end​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/ospace/chord.rb

Now we’ll create our masterpiece and use dump to save a serialized version to
disk:

ospace/chord.rb

​ c = Chord.​new​(

​ [

​ Note.​new​(​"G"​),

​ Note.​new​(​"Bb"​),

​ Note.​new​(​"Db"​),

​ Note.​new​(​"E"​)

​]

​)

​

​ File.​open​(​"posterity"​, ​"w+"​) ​do​ |f|

​ Marshal.​dump​(c, f)

​ ​end​

Finally, our friends read it in and are transported by our creation’s beauty:

​ chord = Marshal.​load​(File.​open​(​"posterity"​))

​ chord.​play​ ​# => "G-Bb-Db-E"​

Custom Serialization Strategy
Not all objects can be dumped. Bindings, procedure objects, instances of class
IO, and singleton objects cannot be saved outside the running Ruby
environment (a TypeError will be raised if you try). Even if your object doesn’t
contain one of these problematic objects, you may want to take control of
object serialization yourself.

Marshal provides the hooks you need. In the objects that require custom
serialization, simply implement two instance methods: one called
marshal_dump, which writes the object out to a string, and the other called
marshal_load, which reads a string that you had previously created and uses it to
initialize a newly allocated object.

The instance method marshal_dump should return an object representing the
state to be dumped. When the object is subsequently reconstituted using load,

http://media.pragprog.com/titles/ruby5/code/ospace/chord.rb

the method marshal_load will be called with this object and will use it to set the
state of its receiver—it’ll be run in the context of an allocated but not
initialized object of the class being loaded.

For instance, here is a sample class that defines its own serialization. For
whatever reasons, Special doesn’t want to save one of its internal data
members, @volatile. The author has decided to serialize the two other instance
variables in an array:

ospace/marshal_load.rb

​ ​class​ Special

​ ​def​ ​initialize​(valuable, volatile, precious)

​ @valuable = valuable

​ @volatile = volatile

​ @precious = precious

​ ​end​

​

​ ​def​ ​marshal_dump​

​ [@valuable, @precious]

​ ​end​

​

​ ​def​ ​marshal_load​(variables)

​ @valuable = variables[0]

​ @precious = variables[1]

​ @volatile = ​"unknown"​

​ ​end​

​

​ ​def​ ​to_s​

​ ​"​​#{​@valuable​}​​ ​​#{​@volatile​}​​ ​​#{​@precious​}​​"​

​ ​end​

​ ​end​

​

​ obj = Special.​new​(​"Hello"​, ​"there"​, ​"World"​)

​ puts ​"Before: obj = ​​#{​obj​}​​"​

​ data = Marshal.​dump​(obj)

​

​ obj = Marshal.​load​(data)

​ puts ​"After: obj = ​​#{​obj​}​​"​

Produces:

http://media.pragprog.com/titles/ruby5/code/ospace/marshal_load.rb

​ Before: obj = Hello there World

​ After: obj = Hello unknown World

Using YAML and JSON for Marshaling
The Marshal module is built into the interpreter and uses a binary format to
store objects externally. Although fast, this binary format has a couple of
disadvantages. If the interpreter changes significantly, the marshal binary
format may also change and old dumped files may no longer be loadable.
Also, using Marshal assumes that the code on the other end loading the object is
also a Ruby program. You might be sending an object across the web on a
remote call to another server that might not be in Ruby, and in that case, you’ll
want a more general conversion format.

An alternative is to use a less fussy external format, preferably one using text
rather than binary files. One option, supplied as a standard library, is YAML.
[47] YAML stands for YAML Ain’t Markup Language, but that hardly seems
important. Another common option in the standard library is JavaScript Object
Notation, or JSON.[48] In Ruby, the YAML module is an alias for Psych, which is
the name of the Ruby YAML parser.

We can adapt our previous marshal example to use YAML. Rather than
implement specific loading and dumping methods to control the marshal
process, we define the method encode_with, which explicitly sets the values to
be saved into its parameter:

ospace/yaml_load.rb

​ require ​"yaml"​

​

​ ​class​ Special

​ ​def​ ​initialize​(valuable, volatile, precious)

​ @valuable = valuable

​ @volatile = volatile

​ @precious = precious

​ ​end​

​

​ ​def​ ​encode_with​(properties)

http://media.pragprog.com/titles/ruby5/code/ospace/yaml_load.rb

​ properties[​"precious"​] = @precious

​ properties[​"valuable"​] = @valuable

​ ​end​

​

​ ​def​ ​to_s​

​ ​"​​#{​@valuable​}​​ ​​#{​@volatile​}​​ ​​#{​@precious​}​​"​

​ ​end​

​ ​end​

​

​ obj = Special.​new​(​"Hello"​, ​"there"​, ​"World"​)

​

​ puts ​"Before: obj = ​​#{​obj​}​​"​

​ data = YAML.​dump​(obj)

​ obj = YAML.​load​(data, ​permitted_classes: ​[Special])

​ puts ​"After: obj = ​​#{​obj​}​​"​

Produces:

​ Before: obj = Hello there World

​ After: obj = Hello World

For security purposes, YAML.load takes a list of classes that you expect to find
in the incoming YAML text. The expectation is that you’re willing to create
instances of any of these classes based on data included in the YAML text.

We can take a look at what YAML creates as the serialized form of the object
—it’s pretty simple:

​ obj = Special.​new​(​"Hello"​, ​"there"​, ​"World"​)

​ puts YAML.​dump​(obj)

Produces:

​ Before: obj = Hello there World

​ After: obj = Hello World

​ --- !ruby/object:Special

​ precious: World

​ valuable: Hello

JSON is another commonly used interchange format, and Ruby also has a
JSON module that provides JSON loading and dumping. But Ruby’s JSON
module doesn’t, by itself, parse Ruby objects into Ruby objects; it converts

Ruby objects to hash data. If we want to restrict the attributes or convert to
and from actual objects, we need to do this ourselves:

ospace/json_load.rb

​ require ​"json"​

​

​ ​class​ Special

​ ​def​ ​initialize​(valuable, volatile, precious)

​ @valuable = valuable

​ @volatile = volatile

​ @precious = precious

​ ​end​

​

​ ​def​ self.​from_json​(json_string)

​ result = JSON.​parse​(json_string)

​ Special.​new​(result[​"valuable"​], ​nil​, result[​"precious"​])

​ ​end​

​

​ ​def​ ​to_json​

​ JSON.​dump​(

​ {

​ ​precious: ​@precious,

​ ​valuable: ​@valuable

​ }

​)

​ ​end​

​

​ ​def​ ​to_s​

​ ​"​​#{​@valuable​}​​ ​​#{​@volatile​}​​ ​​#{​@precious​}​​"​

​ ​end​

​ ​end​

​

​ obj = Special.​new​(​"Hello"​, ​"there"​, ​"World"​)

​

​ puts ​"Before: obj = ​​#{​obj​}​​"​

​ data = obj.​to_json​

​ new_obj = Special.​from_json​(data)

​ puts ​"After: obj = ​​#{​new_obj​}​​"​

Produces:

​ Before: obj = Hello there World

http://media.pragprog.com/titles/ruby5/code/ospace/json_load.rb

​ After: obj = Hello World

Notice that the new object no longer has the volatile attribute, since that was
not marshaled.

Distributed Ruby
Because we can serialize an object or a set of objects into a form suitable for
out-of-process storage, we can transmit objects from one process to another.
Couple this capability with the power of networking, and voilà—you have a
distributed object system. To save you the trouble of having to write the code,
we suggest using Masatoshi Seki’s Distributed Ruby library, often abbreviated
drb or dRuby, which is available as a standard Ruby library at
https://github.com/ruby/drb.

Using drb, a Ruby process may act as a server, a client, or both. A drb server
acts as a source of objects, while a client is a user of those objects. To the
client, it appears that the objects are local, but in reality, the code is still being
executed remotely.

A server starts a service by associating an object with a given port. Threads are
created internally to handle incoming requests on that port:

ospace/drb/drb_server.rb

​ require ​"drb"​

​

​ ​class​ TestServer

​ ​def​ ​add​(*args)

​ args.​inject​ { |n, v| n + v }

​ ​end​

​ ​end​

​

​ server = TestServer.​new​

​ DRb.​start_service​(​"druby://localhost:9000"​, server)

A simple drb client simply creates a local drb object and associates it with the
object on the remote server; the local object is a proxy:

https://github.com/ruby/drb
http://media.pragprog.com/titles/ruby5/code/ospace/drb/drb_server.rb

ospace/drb/drb_client.rb

​ require ​"drb"​

​ DRb.​start_service​

​ obj = DRbObject.​new​(​nil​, ​"druby://localhost:9000"​)

​

​ puts ​"Sum is: ​​#{​obj.​add​(1, 2, 3)​}​​"​

The client connects to the server and calls the method add, which uses the
magic of inject to sum its arguments. It returns the result, which the client
prints out. You can see that by writing a script that loads the server and then
the client.

ospace/drb/drb_integration.rb

​ require_relative ​"drb_server"​

​ require_relative ​"drb_client"​

​ ​#sleep 1​

Produces:

​ Sum is: 6

The initial nil argument to DRbObject indicates that we want to attach to a new
distributed object. We could also use an existing object.

Yes, this is a functional distributed object mechanism, but it’s written in a few
hundred lines of Ruby code—no C, nothing fancy, just plain old Ruby code.
Of course, it has no naming service, trader service, or anything like you’d see
in a full-fledged distributed system, but it’s simple and faster than you might
think.

http://media.pragprog.com/titles/ruby5/code/ospace/drb/drb_client.rb
http://media.pragprog.com/titles/ruby5/code/ospace/drb/drb_integration.rb

[47]

[48]

What’s Next
The important thing to remember about Ruby is that there’s no big
difference between “compile time” and “runtime.” It’s all the same. You can
add code to a running process. You can redefine methods on the fly, change
their scope from public to private, and so on. You can even alter basic types,
such as Class and Object. Once you get used to this flexibility, it’s hard to go
back to a static language such as C++ or even to a half-static language such
as Java.

But then, why would you want to do that?

Now it’s time to take a look at Ruby’s syntax in a more structured way.

Footnotes

http://www.yaml.org

https://www.json.org/json-en.xhtml

Copyright © 2024, The Pragmatic Bookshelf.

http://www.yaml.org/
https://www.json.org/json-en.xhtml

Part 4
Ruby Language Reference

This part looks at the Ruby language from the bottom up.
Most of what appears here is the syntax and semantics of the
Ruby language. The extensive library of classes and modules
will mostly be covered in Part V. However, Ruby’s syntax and
the library are closely entangled—literal values are part of
syntax, but they create objects in the library, so we’ll cover
parts of the library as needed to explain the syntax.

Chapter 24

Language Reference: Literal Types
and Expressions

So far, we’ve given a narrative look at how Ruby works. In this chapter,
we’re going to follow more of a reference structure to discuss Ruby’s
syntax as it concerns literal types and expressions. In the next chapter, we’ll
cover syntax relating to objects and classes.

Source Layout
Ruby is a line-oriented language. Ruby expressions and statements are
terminated at the end of a line unless the parser can determine that the
statement is incomplete. Some examples are when the last token on a line is
an operator or comma, or when an open delimiter, such as a parenthesis,
square bracket, or curly brace has not been closed. A backslash at the end of
a line also tells Ruby to continue the expression onto the next line:

​ ​# no backslash '\' needed -- ends with an operator​

​ d = 4 + 5 +

​ 6 + 7

​

​ ​# no backslash '\' needed -- has an unclosed parenthesis​

​ e = (4 + 5

​ + 6 + 7)

​

​ ​# backslash '\' needed -- ends with a number​

​ f = 8 + 9 \

​ + 10

A semicolon can be used to separate multiple expressions on a line:

​ a = 1

​ b = 2; c = 3

Comments start with # and run to the end of the physical line. Comments
are ignored during syntax analysis.

The first line of a multiline comment starts with =begin, and the last line
starts with =end. The lines in-between are ignored by Ruby and may be used
to comment out sections of code or to embed documentation. The =begin

and =end markers can’t be indented; they must start in the first column of a
line, like this:

​ ​=begin​

​ ​this is​

​ ​all a​

​ ​multiline comment​

​ ​=end​

Ruby uses comment syntax at the top of a file for directives that affect how
a file is parsed. These are often called “magic comments,” and they must
appear in the file before the first line of uncommented Ruby code. The
syntax of these magic comments is # directive: value.

If you have more than one magic comment, you may put them on separate
lines, as long as all of them come before the first line of Ruby code:

​ ​# frozen_string_literal: true​

​ ​# encoding: big5​

You may also put them on a single line, delimited by semicolons and
surrounded by -*-, like this:

​ -*- ​frozen_string_literal: ​​true​; ​encoding: ​big5 -*-

This syntax is based on the file configuration syntax used by the Emacs
editor.

The following table lists the magic comment directives Ruby supports:

Table 10. Magic comment directives

Comment Definition
coding Synonym of encoding.

encoding The default encoding used for string literals in
the file, and the encoding of the source code as a
whole. The default is utf-8.

frozen_string_literal If true, when string literals are loaded during
parsing, they are automatically frozen to make

Comment Definition
them immutable. String literals with
interpolation are never frozen. The default is
false.

sharable_constant_value This directive changes the behavior of
immutable constants to allow them to be shared
by ractors. The default value is none, in which
case constants aren’t frozen and can’t be shared
with ractors. With the value literal, constants that
are assigned literal values are frozen and can be
shared. With the value experimental_copy,
constants are automatically copied when shared
with ractors, and with the value
experimental_everything, all constant values are
sharable. This directive is experimental and
likely to change. Unlike the other magic
comments, this directive may be used multiple
times in a file and is applicable until the next
instance of this directive or the end of the scope
in which it’s declared.

warn_indent If true, mismatched indentation in the source
code triggers a warning when the file is loaded.
The default is false, unless Ruby is run with the -
w switch, in which case the default is true.

Ruby source files are assumed by default to be written with a UTF-8
encoding, but this can be changed with the encoding magic comment.

You can pipe programs to the Ruby interpreter’s standard input stream:

​ ​$ ​​echo​​ ​​'puts "Hello"'​​ ​​|​​ ​​ruby​

If Ruby comes across a line anywhere in the source containing just __END__,
with no leading or trailing whitespace, it treats that line as the end of the
program, and any subsequent lines won’t be treated as program code. Those
subsequent lines are treated as data, and they can be read into the running
program using the global IO object DATA. The DATA object only contains the
subsequent lines from the main file of the program, and the lines after
__END__ in other files will be ignored.

​ DATA.​each_line​ ​do​ |line|

​ p line

​ ​end​

​

​ ​__END__​

​ ​line one​

​ ​line two​

Produces:

​ "line one\n"

​ "line two\n"

BEGIN and END Blocks
Every Ruby source file can declare blocks of code to be run as the file is
being loaded (the BEGIN blocks) and after the program has finished
executing (the END blocks):

BEGIN { begin code } END { end code }

A program may include multiple BEGIN and END blocks. BEGIN blocks are
executed in the order they are encountered. END blocks are executed in
reverse order.

These blocks are admittedly a little obscure. They seem mostly to be used
on the command line for one-line commands to allow initialization or
teardown around the actual one-line command.

​ ​$ ​​ruby​​ ​​-ne​​ ​​"BEGIN {result = ""}; END {p result}; result += gets.upcase"​​ ​​
testfile​

With the -n acting as a while loop and the blocks, this code is equivalent to
the following:

​ result = ​""​

​ ​while​ gets

​ result << gets.​upcase​

​ ​end​

​ p result

Because gets is used as the while condition, this code prints every other line
of the file.

Unicode in Syntax
Ruby allows you to use Unicode characters as variable and method names,
as in the following example:

​ ​def​ ​∑​(*args)

​ args.​sum​

​ ​end​

​

​ puts ​∑​(1, 3, 5, 9)

Produces:

​ 18

This can lead to some pretty obscure and hard-to-use code. (For example, is
the summation character in the previous code a real summation, \u2211, or a
Greek sigma, \u03a3?) Just because we can do something doesn’t mean we
necessarily should.

Ruby Literals
Ruby has special syntax for scalar values that are booleans, numbers, lambdas,
ranges, regular expressions, strings, symbols, and array and hash collections.
Although all types in Ruby are implemented as classes, these types have
special syntax for creating literal values of them. Lambda literals will be
covered in ​Proc Objects​; we’re going to discuss the rest here.

Boolean Literals
Ruby provides the literal values true and false. The true value is the instance of
the singleton class TrueClass and represents a true value in logical expressions.
The false value is the instance of the singleton class FalseClass and represents a
false value in logical expressions. The literal value nil is the only instance of
the singleton NilClass and also represents a false value in logical expressions.

The only logically false values in Ruby are false and nil. You’ll sometimes see
the term “falsey” used to cover both values. All other values, including empty
strings and arrays, are logically true. These are sometimes called the “truthy”
values. Currently, Ruby doesn’t have a way to create a new value that will
behave as logically false.

Integer and Floating-Point Numbers
Ruby integers are objects of class Integer. Integer objects hold integers that fit
within the native machine word minus 1 bit. The internal storage of integers
changes depending on the size of the number, but for nearly every purpose in
Ruby, that internal detail is abstracted away from you.

Integers are written using an optional leading sign and an optional base
indicator (0 or 0o for octal, 0d for decimal, 0x for hex, or 0b for binary),
followed by a string of digits in the appropriate base. Underscore characters
are ignored in the digit string.

​ 123456 => 123456

​ 0d123456 => 123456

​ 123_456 => 123456 ​# - underscore ignored​

​ -543 => -543 ​# - negative number​

​ 0xaabb => 43707 ​# - hexadecimal​

​ 0377 => 255 ​# - octal​

​ 0o377 => 255 ​# - octal​

​ -0b10_1010 => -42 ​# - binary (negated)​

​ 123_456_789_123_456_789 => 123456789123456789 ​# Big number internal storage​

A numeric literal with a decimal point and/or an exponent is turned into a Float

object, corresponding to the native architecture’s double data type. You must
follow the decimal point with a digit; if you write 1.e3, Ruby tries to invoke
the method e3 on the Fixnum 1. You must place at least one digit before the
decimal point.

​ 12.34 ​# => 12.34​

​ -0.1234e2 ​# => -12.34​

​ 1234e-2 ​# => 12.34​

Rational and Complex Numbers
Classes that support rational numbers (ratios of integers) and complex
numbers are built into the Ruby interpreter. Rational numbers have a literal
syntax with an expression followed by the letter r:

​ 2r ​# => (2/1)​

​ 3/4r ​# => (3/4)​

​ -2/5r ​# => (-2/5)​

​ 2/-5r ​# => (-2/5)​

​ 1.4r ​# => (7/5)​

​ 3/9r ​# => (1/3)​

Complex numbers are integers with an i suffix for the complex part:

​ 2i ​# => (0+2i)​

​ 4 + 3i ​# => (4+3i)​

A number can be rational and imaginary, but the r needs to come before the i in
the suffix list.

Strings
Ruby provides a number of mechanisms for creating literal strings. Each
generates objects of type String. The different mechanisms vary in terms of
how a string is delimited and how much substitution is done on the literal’s
content. Literal strings are encoded using the source encoding of the file that
contains them.

Single-quoted string literals (’_stuff_’ and %q/_stuff_/) undergo the least
substitution. They convert the sequence \\ into a single backslash, and a
backslash can be used to escape the single quote or the string delimiter. All
other backslashes appear literally in the string.

​ ​'hello'​ ​# => hello​

​ ​'a backslash \'\\\''​ ​# => a backslash '\'​

​ ​%q/simple string/​ ​# => simple string​

​ ​%q(nesting (really) works)​ ​# => nesting (really) works​

​ ​%q(escape a​​\)​​ with backslash)​ ​# => escape a) with backslash​

​ ​%q no_blanks_here ​; ​# => no_blanks_here​

Double-quoted strings ("_stuff_", %Q/_stuff_/, and %/_stuff_/) undergo additional
substitutions. Refer to the table shown.

Table 11. Substitutions in double-quoted strings

#{code} Value of code \b Backspace (0x08) \t Tab (0x09)

\nnn Octal nnn \cx Ctrl+x \uxxxx Unicode character

\x x \e Escape (0x1b) \u{xx xx xx} Unicode characters

\C-x Ctrl+x \f Formfeed (0x0c) \v Vertical tab (0x0b)

\M-x Meta+x \n Newline (0x0a) \xnn Hex nn

\M-\C-x Meta+Ctrl+x \r Return (0x0d)

\a Bell/alert (0x07) \s Space (0x20)

Here are some examples:

​ a = 123

​ ​"​​\123​​mile"​ ​# => Smile​

​ ​"Greek pi: ​​\u​​03c0"​ ​# => Greek pi: π​

​ ​"Greek ​​\u​​{70 69 3a 20 3c0}"​ ​# => Greek pi: π​

​ ​"Say ​​\"​​Hello​​\"​​"​ ​# => Say "Hello"​

​ ​%Q!"I said 'nuts'​​\!​​," I said!​ ​# => "I said 'nuts'!," I said​

​ ​%Q{Try ​​#{​a + 1​}​​, not ​​#{​a - 1​}​​}​ ​# => Try 124, not 122​

​ ​%<Try #{a + 1}, not #{a - 1}>​ ​# => Try 124, not 122​

​ ​"Try ​​#{​a + 1​}​​, not ​​#{​a - 1​}​​"​ ​# => Try 124, not 122​

​ ​%{ #{ a = 1; b = 2; a + b } }​ ​# => 3​

Last, and probably least (in terms of usage), you can get the string
corresponding to an ASCII character by preceding that character with a
question mark, where “a” can represent any ASCII character. Refer to the
following table:

Table 12. ASCII character expressions

?a a ASCII character

?\n \n newline (0x0a)

?\C-a \u0001 control a (0x65 & 0x9f) == 0x01

?\M-a \xE1 meta sets bit 7

?\M-\C-a \x81 meta and control a

?\C-? \u007F delete character

Inside a double-quoted string, the sequence #{EXPR} will cause the expression
inside the curly braces to be evaluated, converted to a string, and interpolated

into the string. If you want to interpolate an instance, class, or global variable,
you can do so without the braces; just use #@var, #@@var, or #$var. But the
braces are recommended for consistency.

Strings can continue across multiple input lines, in which case they will
contain newline characters.

You can use here documents to express long string literals. When Ruby parses
the sequence <<IDENTIFIER or <<QUOTED_STRING, it replaces it with a string
literal built from successive logical input lines. It stops building the string
when it finds a line that starts with an identifier or a quoted string. You can put
a minus sign immediately after the << characters, in which case the terminator
can be indented from the margin. If a quoted string was used to specify the
terminator, its quoting rules are applied to the here document; otherwise,
double-quoting rules apply.

reference/quoting.rb

​ print <<HERE

​ ​Double quoted​

​ ​here document.​

​ ​It is ​​#{​Time.​now​​}​

​ HERE

​

​ print <<-'THERE'

​ ​ This is single quoted.​

​ ​ The above used ​​#{​Time.​now​​}​

​ THERE

Produces:

​ Double quoted

​ here document.

​ It is 2023-11-02 17:16:26 -0500

​ This is single quoted.

​ The above used #{Time.now}

Putting a tilde (~) in front of the identifier removes all leading spaces from
each line of the here document, allowing the heredoc to be indented for

http://media.pragprog.com/titles/ruby5/code/reference/quoting.rb

readability:

reference/heredoc.rb

​ print <<~HERE

​ ​ This is indented.​

​ ​ But the result will not have​

​ ​ the indentation.​

​ HERE

Produces:

​ This is indented.

​ But the result will not have

​ the indentation.

A quirk of the heredoc syntax is that if you want to call a method on the
resulting string, you chain the method after the opening identifier, as in this
example that calls upcase.

reference/heredoc_2.rb

​ print <<~HERE.​upcase​

​ ​ This is indented.​

​ ​ But the result will not have​

​ ​ the indentation.​

​ HERE

Produces:

​ THIS IS INDENTED.

​ BUT THE RESULT WILL NOT HAVE

​ THE INDENTATION.

Adjacent single- and double-quoted strings are concatenated to form a single
String object—in fact, the parser considers them a single string:

​ ​'Con'​ ​"cat"​ ​'en'​ ​"ate"​ ​# => "Concatenate"​

A new String object is created every time a string literal is assigned or passed
as a parameter.

http://media.pragprog.com/titles/ruby5/code/reference/heredoc.rb
http://media.pragprog.com/titles/ruby5/code/reference/heredoc_2.rb

​ 3.​times​ ​do​

​ print ​"hello"​.​object_id​, ​" "​

​ ​end​

Produces:

​ 60 80 100

To avoid this behavior, Ruby has the concept of a frozen string. A frozen string
isn’t mutable and is only allocated once. There’s one exception, strings with
interpolation are never frozen. Future attempts to allocate a frozen string will
result in the same object. You can create a frozen string by calling freeze on a
string.

​ 3.​times​ ​do​

​ print ​"hello"​.​freeze​.​object_id​, ​" "​

​ ​end​

Produces:

​ 60 60 60

You can automatically freeze all non-interpolated literal strings in a file with
the frozen_string_literal magic comment.

String literals are always encoded using the encoding of the source file that
contains them, regardless of the content of the string:

​ ​# encoding: utf-8​

​ ​def​ ​show_encoding​(str)

​ puts ​"'​​#{​str​}​​' (size ​​#{​str.​size​​}​​) is ​​#{​str.​encoding​.​name​​}​​"​

​ ​end​

​

​ show_encoding ​"cat"​ ​# latin 'c', 'a', 't'​

​ show_encoding ​"∂og"​ ​# greek delta, latin 'o', 'g'​

Produces:

​ 'cat' (size 3) is UTF-8

​ '∂og' (size 3) is UTF-8

Symbols and regular expression literals that contain only 7-bit characters are
encoded using US-ASCII. Otherwise, they will have the encoding of the file
that contains them.

​ ​# encoding: utf-8​

​ ​def​ ​show_encoding​(str)

​ puts ​"​​#{​str.​inspect​​}​​ is ​​#{​str.​encoding​.​name​​}​​"​

​ ​end​

​ show_encoding ​:cat​

​ show_encoding :​∂​og

​

​ show_encoding ​/cat/​

​ show_encoding ​/∂og/​

Produces:

​ :cat is US-ASCII

​ :∂og is UTF-8

​ /cat/ is US-ASCII

​ /∂og/ is UTF-8

You can create arbitrary Unicode characters in strings and regular expressions
using the \u escape. This has two forms: \uxxxx lets you encode a character
using four hex digits, and the delimited form \u{x... x... x...} lets you specify a
variable number of characters, each with a variable number of hex digits:

​ ​# encoding: utf-8​

​ ​"Greek pi: ​​\u​​03c0"​ ​# => "Greek pi: π"​

​ ​"Greek pi: ​​\u​​{3c0}"​ ​# => "Greek pi: π"​

​ ​"Greek ​​\u​​{70 69 3a 20 3c0}"​ ​# => "Greek pi: π"​

Literals containing \u will always be encoded in UTF-8, regardless of the
source file encoding.

The bytes method is a convenient way to inspect the bytes in a string object.
Notice that in the following code, the 16-bit codepoint is converted to a two-
byte UTF-8 encoding:

​ ​# encoding: utf-8​

​ ​"pi: ​​\u​​03c0"​.​bytes​ ​# => [112, 105, 58, 32, 207, 128]​

Ranges
expression .. expression expression ... expression

Outside the context of a conditional expression, EXPR..EXPR and
EXPRESSION...EXPRESSION construct Range objects. The two-dot form is an
inclusive range; the one with three dots is a range that excludes its last
element.

If the range is being used for comparison purposes to identify objects that are
inside the range, then the objects defining the range only need to implement
the <=> comparison operator. If the range is being used to iterate over the
values inside the range, then the elements on either side of the range can be
any object that implements a method called succ that returns the next object in
the sequence, for example, integers and strings.

A range can be constructed without a start value, as in ..5, or without an end
value, 5... In these cases, the range is an infinite sequence on the unbounded
end. An unbounded range can be useful in matching a set of values (as in
using ...today to indicate days in the past). Unbounded ranges can also be used
when taking a subelement of an array or string, where the infinite side is a
stand-in for the edge of the array:

​ [​"a"​, ​"b"​, ​"c"​, ​"d"​, ​"e"​][..2] ​# => ["a", "b", "c"]​

​ [​"a"​, ​"b"​, ​"c"​, ​"d"​, ​"e"​][2..] ​# => ["c", "d", "e"]​

Arrays
[expression, expression, ...]

Literals of class Array are created by placing a comma-separated series of
object references between square brackets. The objects can be of any type and
don’t have to be of the same type as each other. A trailing comma is ignored.

​ arr = [fred, 10, 3.14, ​"This is a string"​, barney(​"pebbles"​),]

Arrays of strings can be constructed using the shortcut notations %w and %W.
The lowercase form extracts space-separated tokens into successive elements

of the array. No substitution is performed on the individual strings. The
uppercase version also converts the words to an array but performs all the
normal double-quoted string substitutions on each individual word. A space
between words can be escaped with a backslash. The shortcut notation %i

creates an array of symbols, as in %i[a b c]. These are forms of general
delimited input, which is described in ​General Delimited Input​.

​ arr = ​%w(fred wilma barney betty great\ gazoo)​

​ arr ​# => ["fred", "wilma", "barney", "betty", "great gazoo"]​

​ arr = ​%w(Hey!\tIt is now -#{Time.now}-)​

​ arr ​# => ["Hey!\tIt", "is", "now", "-#{Time.now}-"]​

​ arr = ​%W(Hey!​​\t​​It is now -​​#{​Time.​now​​}​​-)​

​ arr ​# => ["Hey! It", "is", "now", "-2023-11-02 17:16:26 -0500-"]​

Hashes
{key expression => value expression, ...} {key expression:

value expression, ...} {key and value expression:, ...}

A literal Ruby Hash is created by placing a list of key/value pairs between
braces. Keys and values can be separated by the sequence =>. A comma
appears between each key/value pair:

​ colors = {​"red"​ => 0xf00, ​"green"​ => 0x0f0, ​"blue"​ => 0x00f}

If the keys are symbols, you can use this alternative notation:

​ colors = {​red: ​0xf00, ​green: ​0x0f0, ​blue: ​0x00f}

The key syntax here exactly matches the symbol-literal syntax, except with the
colon at the end instead of the beginning, allowing for symbols with
syntactically challenging names like {"do-this": 3, "do that": 4}. The resulting keys
will be symbols, not strings.

The keys and/or values in a particular hash need not have the same type. The
keys and values will be accessible in sequence in the same order in which they
were added to the hash.

Requirements for a Hash Key

Hash keys must be objects that respond to the message hash by returning a
hash code, and the hash code for a given key must not change. The keys used
in hashes must also be comparable using eql?. If eql? returns true for two keys,
then those keys must also have the same hash code. This means that you need
to be careful when using certain classes (such as Array and Hash) as keys
because their hash values can change based on their contents.

If you keep an external reference to an object that’s used as a key and use that
reference to alter the object, thus changing its hash code, the hash lookup
based on that key may not work. You can force the hash to be reindexed by
calling its rehash method.

​ arr = [1, 2, 3]

​ hash = {arr => ​"value"​}

​ hash[arr] ​# => "value"​

​ arr[1] = 99

​ hash ​# => {[1, 99, 3]=>"value"}​

​ hash[arr] ​# => nil​

​ hash.​rehash​

​ hash[arr] ​# => "value"​

Because strings are frequently used as hash keys and string contents are often
changed, Ruby treats string keys as a special case. If you use a String object as
a hash key, the hash will duplicate the string internally and will use that copy
as its key. The copy will be frozen. Any changes made to the original string
won’t affect the hash.

If you write your own classes and use instances of them as hash keys, you
need to make sure that either (a) the hashes of the key objects don’t change
once the objects have been created or (b) you remember to call the rehash

method to reindex the hash whenever a key hash is changed.

Hash Shortcuts
Often, a hash key has the same name as a value in the current context, and you
want to assign that value to that key as in {red: red, green: green, blue: blue}. If the

value already exists in the context where the hash is being created, then you
can leave off the value and the existing local value is used instead:

​ red = 0xf00

​ green = 0x0f0

​ blue = 0x00f

​ colors = {red:, green:, blue:}

The key can be a local variable or a method that takes no arguments.

Symbols
A Ruby symbol is an identifier similar to a string, but optimized for fast
lookup. If the symbol you want is an identifier—with no spaces and no
unusual characters–you construct the symbol for a name by preceding the
name with a colon. You can construct the symbol for any other arbitrary string
by preceding a string literal with a colon. Substitution occurs in double-quoted
strings. You can also use the %s delimited notation to create a symbol.

A particular name or string will always generate the same symbol and the
same internal object, regardless of how that name is used within the program.

​ ​:Object​

​ ​:my_variable​

​ ​:"Ruby rules"​

​ a = ​"cat"​

​ ​:'catsup'​ ​# => :catsup​

​ ​:"​​#{​a​}​​sup"​ ​# => :catsup​

​ ​:'#{a}sup'​ ​# => :"\#{a}sup"​

​ ​%s{"symbol with quotes"}​ ​# => :"\"symbol with quotes\""​

Other languages might use the term interning to refer to the process of having
a single internal representation for all objects with the same value. Those
languages might call symbols interned strings or atoms.

Regular Expressions
Regular expression literals are objects of type Regexp. They are created
explicitly by calling Regexp.new or implicitly by using the literal forms,
/_pattern_/ and %r{_pattern_}. The %r construct is a form of general delimited
input as described in ​General Delimited Input​.

/pattern/ /pattern/options %r{pattern} %r{pattern}options

Regexp.new("pattern" <, options>)

options is one or more of i (case insensitive), o (substitute once), m (matches
newline), and x (allow spaces and comments). You can additionally override
the default encoding of the pattern with n (no encoding-ASCII), e (EUC), s
(Shift_JIS), or u (UTF-8).

Within a regular expression, each entry in the following table matches the
characters described in its description. Most characters match themselves,
but several special characters or patterns have defined matches.

Table 13. Regular expression special characters

characters All except . | () [\ ^ { + $ * and ? match themselves.
To match one of these characters, precede it with a
backslash.

\a \cx \e \f \r \t

\unnnn \v \xnn
\nnn \C-\M-x \C-x
\M-x

Match the character derived according to Table 11, ​
Substitutions in double-quoted strings​.

^ Matches the beginning of a line.

$ Matches the end of a line.

\A Matches the beginning of the entire string.

\z, \Z Match the end of the entire string. \Z ignores trailing
\n.

\d, \h Match any decimal digit or hexadecimal digit ([0-9a-

fA-F]). If Unicode is set, matches a Unicode decimal
number.

\s Matches any whitespace character: tab, newline,
vertical tab, formfeed, return, and space. If Unicode is
set, also matches [\t\n\r\x{000B}\x{000C}\x{0085}] plus
Line_Separator, Paragraph_Separator,
Space_Separator.

\w Matches any word character: alphanumerics and
underscores. If Unicode is set, matches Letter, Mark,
Number ,Connector_Punctuation.

\D, \H, \S, \W The negated forms of \d, \h, \s, and \w, matching
characters that aren’t digits, hexadecimal digits,
whitespace, or word characters, per whatever
encoding is specified.

\b, \B Match word/nonword boundaries.

\G The position where a previous repetitive search
completed.

\K Discards the portion of the match to the left of the \K.

\R A generic end-of-line sequence. If Unicode is set, also
matches Unicode end-of-line characters.

\X A Unicode grapheme. Generally only useful in
Unicode encodings.

\p{property},
\P{property},
\p{!property}

Match a character that is in/not in the given property.

. (period) Appearing outside brackets, matches any character
except a newline. (With the /m option, it matches
newline, too).

[characters] Matches a single character from the specified set.

re* Matches zero or more occurrences of re.

re+ Matches one or more occurrences of re.

re{m,n} Matches at least m and at most n occurrences of re.

re{m,} Matches at least m occurrences of re.

re{,n} Matches at most n occurrences of re.

re{m} Matches exactly m occurrences of re.

re? Matches zero or one occurrence of re.

The ?, *, +, and {m,n} modifiers are greedy by default.
Append a question mark to make them minimal, and

append a plus sign to make them possessive (that is,
they are greedy and won’t backtrack).

re1 | re2 Matches either re1 or re2.

(...) Parentheses group regular expressions and introduce
extensions.

#{...} Substitutes expression in the pattern, as with strings.
By default, the substitution is performed each time a
regular expression literal is evaluated. With the /o

option, it’s performed just the first time.

\1, \2, ... \n Match the value matched by the nth grouped
subexpression.

(?# comment) Inserts a comment into the pattern.

(?:re) Makes re into a group without generating
backreferences.

(?=re), (?!re) Matches if re is/is not at this point but doesn’t
consume it.

(?<=re), (?<!re) Matches if re is/is not before this point but doesn’t
consume it.

(?>re) Matches re but inhibits subsequent backtracking.

(?adimux), (?-imx) Turn on/off the corresponding a, d, i, m, u, or x option.
If used inside a group, the effect is limited to that
group.

(?adimux:re), (?-

imx:re)

Turn on/off the i, m, or x option for re.

\n, \k’n’, and
\k<n>

The nth captured subpattern.

(?<name>...) or
(?’name’...)

Name the string captured by the group.

\k<name> or
\k’name’

The contents of the named group.

\k<name>+/-n or
\k’name’+/-n

The contents of the named group at the given relative
nesting level.

\g<name> or
\g<number>

Invokes the named or numbered group.

Regular Expression Matching Variables
Ruby sets a number of variables after a successful regular expression
match. Although these variables start with $, they are scoped to the current
thread, rather than being truly global. These variables are set to nil after an
unsuccessful regular expression match. Refer to the following table.

Table 14. Regular expression match variables
In these descriptions, the notation [r/o] indicates that the variables are read-only; an error will be
raised if a program attempts to modify a read-only variable. Entries marked [thread] are thread
local.

$& → String The string matched (following a successful pattern
match). This variable is local to the current scope. [r/o,
thread]

$+ → String The contents of the highest-numbered group matched
following a successful pattern match. Thus, in "cat" =~

/(c|a)(t|z)/, $+ will be set to “t.” This variable is local to
the current scope. [r/o, thread]

$‘ → String The string preceding the match in a successful pattern
match. This variable is local to the current scope. [r/o,
thread]

$’ → String The string following the match in a successful pattern
match. This variable is local to the current scope. [r/o,
thread]

$1...$n → String The contents of successive groups matched in a
pattern match. In "cat" =~ /(c|a)(t|z)/, $1 will be set to “a”
and $2 to “t.” This variable is local to the current
scope. [r/o, thread]

$~ → MatchData An object that encapsulates the results of a successful
pattern match. The variables $&, $‘, $’, and $1 to $9 are
all derived from $~. Assigning to $~ changes the values
of these derived variables. This variable is local to the
current scope. [thread]

Character Classes

If you look at the table, you’ll see that some of the character classes have
different interpretations depending on the character set option defined for
the regular expression. These options tell the regexp engine whether (for
example) word characters are just the ASCII alphanumerics, or whether
they should be extended to include Unicode letters, marks, numbers, and
connection punctuation. The options are set using the sequence (?_option_),
where the option is d for the default mode, a for ASCII-only support, or u
for full Unicode support. If you don’t specify an option, it defaults to (?d).
There doesn’t seem to be much difference between d and a.

​ show_regexp(​'über.'​, ​/\w+/​) ​# => ü->ber<-.​

​ show_regexp(​'über.'​, ​/(?a)\w+/​) ​# => ü->ber<-.​

​ show_regexp(​'über.'​, ​/(?d)\w+/​) ​# => ü->ber<-.​

​ show_regexp(​'über.'​, ​/(?u)\w+/​) ​# => ->über<-.​

​

​ show_regexp(​'über.'​, ​/\W+/​) ​# => ->ü<-ber.​

​ show_regexp(​'über.'​, ​/(?a)\W+/​) ​# => ->ü<-ber.​

​ show_regexp(​'über.'​, ​/(?d)\W+/​) ​# => ->ü<-ber.​

​ show_regexp(​'über.'​, ​/(?u)\W+/​) ​# => über->.<-​

The POSIX character classes, as shown in Table 15, ​POSIX character
classes​, correspond to the ctype(3) macros of the same names. They can
also be negated by putting an up arrow (or caret) after the first colon:

​ show_regexp(​'Price $12.'​, ​/[aeiou]/​) ​# => Pr->i<-ce $12.​

​ show_regexp(​'Price $12.'​, ​/[[:digit:]]/​) ​# => Price $->1<-2.​

​ show_regexp(​'Price $12.'​, ​/[[:space:]]/​) ​# => Price-> <-$12.​

​ show_regexp(​'Price $12.'​, ​/[[:^alpha:]]/​) ​# => Price-> <-$12.​

​ show_regexp(​'Price $12.'​, ​/[[:punct:]aeiou]/​) ​# => Pr->i<-ce $12.​

These versions are much rarer in actual Ruby code, in our experience. But
the POSIX classes do match non-ASCII characters.

You can create the intersection of character classes using &&. So, to match
all lowercase ASCII letters that aren’t vowels, you could use this:

​ str = ​"now is the time"​

​ str.​gsub​(​/[a-z&&[^aeiou]]/​, ​'*'​) ​# => "*o* i* **e *i*e"​

http://www.freebsd.org/cgi/man.cgi?query=ctype&sektion=3

The \p construct gives you an encoding-aware way of matching a character
with a particular Unicode property (shown in Table 16, ​Unicode character
properties​):

​ ​# encoding: utf-8​

​ string = ​"∂y/∂x = 2πx"​

​ show_regexp(string, ​/\p{Alnum}/​) ​# => ∂->y<-/∂x = 2πx​

​ show_regexp(string, ​/\p{Digit}/​) ​# => ∂y/∂x = ->2<-πx​

​ show_regexp(string, ​/\p{Space}/​) ​# => ∂y/∂x-> <-= 2πx​

​ show_regexp(string, ​/\p{Greek}/​) ​# => ∂y/∂x = 2->π<-x​

​ show_regexp(string, ​/\p{Graph}/​) ​# => ->∂<-y/∂x = 2πx​

Table 15. POSIX character classes

 POSIX Character Classes (Unicode)

 Text in parentheses indicates the Unicode classes. These apply if the regular
expression’s encoding is one of the Unicode encodings.

[:alnum:] Alphanumeric (Letter | Mark | Decimal_Number)

[:alpha:] Uppercase or lowercase letter (Letter | Mark)

[:ascii:] 7-bit character including nonprinting. This is a non-standard class supported by Ruby.

[:blank:] Blank and tab (+ Space_Separator)

[:cntrl:] Control characters—at least 0x00--0x1f, 0x7f (Control | Format | Unassigned |
Private_Use | Surrogate)

[:digit:] Digit (Decimal_Number)

[:graph:] Printable character excluding space (Unicode also excludes Control, Unassigned, and
Surrogate)

[:lower:] Lowercase letter (Lowercase_Letter)

[:print:] Any printable character (including space)

 POSIX Character Classes (Unicode)

[:punct:] Printable character excluding space and alphanumeric (Connector_Punctuation |
Dash_Punctuation | Close_Punctuation | Final_Punctuation | Initial_Punctuation |
Other_Punctuation | Open_Punctuation)

[:space:] Whitespace (same as \s)

[:upper:] Uppercase letter (Uppercase_Letter)

[:xdigit:] Hex digit (0--9, a--f, A--F)

[:word:] Alphanumeric, underscore, and multibyte (Letter | Mark | Decimal_Number |
Connector_Punctuation) This is a non-standard class supported by Ruby.

Table 16. Unicode character properties

Character Properties

\p{name} Matches character with named property

\p{^name} Matches any character except named property

\P{name} Matches any character except named property

Property names.

[1.9.2] Spaces, underscores, and case are ignored in property names.

All
encodings

Alnum, Alpha, Blank, Cntrl, Digit, Graph, Lower, Print, Punct, Space, Upper,
XDigit, Word, ASCII

EUC and
SJIS

Hiragana, Katakana

UTF-n Any, Assigned, C, Cc, Cf, Cn, Co, Cs, L, Ll, Lm, Lo, Lt, Lu, M, Mc, Me, Mn, N,
Nd, Nl, No, P, Pc, Pd, Pe, Pf, Pi, Po, Ps, S, Sc, Sk, Sm, So, Z, Zl, Zp, Zs, Arabic,
Armenian, Bengali, Bopomofo, Braille, Buginese, Buhid, Canadian_Aboriginal,
Cherokee, Common, Coptic, Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic,
Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo,

Character Properties

Hebrew, Hiragana, Inherited, Kannada, Katakana, Kharoshthi, Khmer, Lao, Latin,
Limbu, Linear_B, Malayalam, Mongolian, Myanmar, New_Tai_Lue, Ogham,
Old_Italic, Old_Persian, Oriya, Osmanya, Runic, Shavian, Sinhala, Syloti_Nagri,
Syriac, Tagalog, Tagbanwa, Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh,
Ugaritic, Yi

General Delimited Input
In addition to the normal quoting mechanism, Ruby supports a generalized
delimiter sequence that allows you to write alternative forms of literal
strings, arrays of strings and symbols, regular expressions, and shell
commands. All these literals start with a percent character followed by a
single character that identifies the literal’s type. These characters are
summarized in the following table (the actual literal values are described
later in this chapter):

Table 17. Literal input delimiters

Type Meaning Example
%q Single-quoted string %q{\a and #{1+2} are literal}

%Q, % Double-quoted string %Q{\a and #{1+2} are expanded}

%w, %W Array of strings %w[one two three]

%i, %I Array of symbols %i[one two three]

%r Regular expression pattern %r{cat|dog}

%s A symbol %s!a symbol!

Type Meaning Example
%x Shell command %x(df -h)

Unlike their lowercase counterparts, %I, %Q, and %W will perform
interpolation:

​ ​%i{one digit#{1+1} three}​ ​# => [:one, :"digit\#{1+1}", :three]​

​ ​%I{one digit​​#{​1+1​}​​ three}​ ​# => [:one, :digit2, :three]​

​ ​%q{one digit#{1+1} three}​ ​# => "one digit\#{1+1} three"​

​ ​%Q{one digit​​#{​1+1​}​​ three}​ ​# => "one digit2 three"​

​ ​%w{one digit#{1+1} three}​ ​# => ["one", "digit\#{1+1}", "three"]​

​ ​%W{one digit​​#{​1+1​}​​ three}​ ​# => ["one", "digit2", "three"]​

Following the type character is a delimiter, which can be any
nonalphanumericic or nonmultibyte character. If the delimiter is the (, [, {, or
< character, the literal consists of the characters up to the matching closing
delimiter, taking account of nested delimiter pairs. For all other delimiters,
the literal comprises the characters up to the next occurrence of the
delimiter character.

​ ​%q/this is a string/​

​ ​%q-string-​

​ ​%q(a (nested) string)​

Delimited strings may continue over multiple lines; the line endings and all
spaces at the start of continuation lines will be included in the string:

​ meth = ​%q{def fred(a)​

​ ​ a.each {|i| puts i }​

​ ​end}​

Names
Ruby names are used to refer to constants, variables, methods, classes, and
modules. The first character of a name helps Ruby determine its intended
use. Certain names, listed in the following table, are keywords and
shouldn’t be used as variable, method, class, or module names.
(Technically, many of these names are legal method or variable names; it’s
just very confusing to use them in that way.) Method names are described
later in ​Method Definition​.

Table 18. Reserved words

__ENCODING__ __FILE__ __LINE__ BEGIN END alias and begin
break case class def defined? do else elsif end
ensure false for if in module next nil not
or redo rescue retry return self super then true
undef unless until when while yield

In these descriptions, an uppercase letter is a capital letter from any
Unicode alphabet, and a digit means 0 through 9. A lowercase letter means
any non-7-bit character that’s valid in the current encoding, specifically
including the underscore (_). Names using non-7-bit character names won’t
be usable from other source files with different encoding.

A name is an uppercase letter, a lowercase letter, or an underscore, followed
by name characters, which are any combination of upper and lowercase
letters, underscores, and digits.

A local variable name consists of a lowercase letter followed by name
characters. It’s conventional to use underscores rather than CamelCase to
write multiword names, but the interpreter doesn’t enforce this.

​ fred anObject _x three_two_one

If the source file encoding is UTF-8, ∂elta and été are both valid local
variable names.

An instance variable name starts with an “at” sign (@) followed by name
characters. The general practice is to use a lowercase letter after the @. The
@ sign forms part of the instance variable name.

​ @name @_ @size

A class variable name starts with two “at” signs (@@) followed by name
characters.

​ @@name @@_ @@Size

A constant name starts with an uppercase letter followed by name
characters. Class names and module names are constants and follow the
constant naming conventions.

By convention, constant object references are normally spelled using
uppercase letters and underscores throughout, while class and module
names are MixedCase:

​ ​module​ ​Math​

​ ALMOST_PI = 22.0/7.0

​ ​end​

​ ​class​ BigBlob

​ ​end​

Global variables and some special system values start with a dollar sign ($)
followed by name characters. In addition, Ruby defines a set of two-
character global variable names in which the second character is a
punctuation character. These predefined variables are listed in ​Predefined
Values​. Finally, a global variable name can be formed using $- followed by a
single letter or underscore. These latter variables typically mirror the setting
of the corresponding command-line option (see Execution Environment
Values​, for details):

​ $params $PROGRAM $! $_ $-a ​$​-K

Variable/Method Ambiguity
When Ruby sees a name such as a in an expression, it needs to determine
whether it’s a local variable reference or a call to a method with no
parameters. To decide which is the case, Ruby uses a heuristic. As Ruby
parses a source file, it keeps track of symbols that have had values assigned
to them. Ruby assumes that these symbols are variables. When it
subsequently comes across a symbol that could be a variable or a method
call, it checks to see whether it has seen a prior assignment to that symbol.
If so, it treats the symbol as a variable; otherwise, it treats it as a method
call.

As a somewhat pathological case of this, consider the following code
fragment, submitted by Clemens Hintze:

​ ​def​ ​a​

​ puts ​"Function 'a' called"​

​ 99

​ ​end​

​

​ (1..2).​each​ ​do​ |i|

​ ​if​ i == 2

​ puts ​"i==2, a=​​#{​a​}​​"​

​ ​else​

​ a = 1

​ puts ​"i==1, a=​​#{​a​}​​"​

​ ​end​

​ ​end​

Produces:

​ i==1, a=1

​ Function 'a' called

​ i==2, a=99

When parsing the file, Ruby sees the use of a in the puts statement in the
main branch of the if and, because it hasn’t yet seen any assignment to a,
assumes that a is a method call. But by the time it gets to the puts statement
in the else branch, it has seen an assignment and so treats a as a variable.

Note that the assignment doesn’t have to be executed—Ruby just has to
have seen it. This program doesn’t raise an error.

​ a = 1 ​if​ ​false​ ​# => nil​

​ a ​# => nil​

Values, Variables, and Constants
Ruby variables and constants hold references to objects. Variables
themselves don’t have an intrinsic type. Instead, the type of a variable is
defined solely by the messages to which the object referenced by the
variable responds. (When we say that a variable is not typed, we mean that
any given variable can at different times hold references to objects of
different types.)

A Ruby constant is also a reference to an object. Constants are created
when they are first assigned to (normally in a class or module definition).
Ruby, unlike other less flexible languages, lets you alter the value of a
constant, although this will generate a warning message, which gets sent to
$stderr:

​ MY_CONST = 1

​ puts ​"First MY_CONST = ​​#{​MY_CONST​}​​"​

​

​ MY_CONST = 2 ​# generates a warning but sets MY_CONST to 2​

​ puts ​"Then MY_CONST = ​​#{​MY_CONST​}​​"​

Produces:

​ First MY_CONST = 1

​ Then MY_CONST = 2

Note that although constants shouldn’t be changed, you can alter the
internal states of the objects they reference (you can freeze objects to
prevent this). This is because assignment potentially aliases objects,
creating two references to the same object.

​ MY_CONST = ​"Tim"​

​ MY_CONST[0] = ​"J"​ ​# alter string referenced by constant​

​ MY_CONST ​# => "Jim"​

Scope of Constants and Variables

Constants defined within a class or module may be accessed anywhere
within the class or module without needing to reference the enclosing class
or module. Outside the class or module, the constant can be accessed using
the scope operator (::) prefixed by an expression that returns the appropriate
class or module object.

Constants defined outside any class or module may be accessed unadorned
or by using the scope operator with no prefix. Constants may not be defined
in methods. Constants may be added to existing classes and modules from
the outside by using the class or module name and the scope operator before
the constant name.

​ OUTER_CONST = 99

​ ​class​ Const

​ ​def​ ​get_const​

​ CONST

​ ​end​

​ CONST = OUTER_CONST + 1

​ ​end​

​

​ Const.​new​.​get_const​ ​# => 100​

​ Const::CONST ​# => 100​

​ ::OUTER_CONST ​# => 99​

​ Const::NEW_CONST = 123

Global variables are available throughout a program. Every reference to a
particular global name returns the same object. Referencing an uninitialized
global variable returns nil.

Class variables are available throughout a class or module body. Class
variables must be initialized before use. A class variable is shared among all
instances of a class and its subclasses and is available within the class itself:

​ ​class​ Song

​ @@count = 0

​

​ ​def​ ​initialize​

​ @@count += 1

​ ​end​

​

​ ​def​ Song.​get_count​

​ @@count

​ ​end​

​ ​end​

Class variables belong to the innermost enclosing class or module at the
point they are defined. You can’t use a class variables at the top level, you’ll
receive a RuntimeError.

Class variables are inherited by children, but they propagate upward if first
defined in a child:

​ ​class​ Top

​ @@A = ​"top A"​

​ @@B = ​"top B"​

​ ​def​ ​dump​

​ puts values

​ ​end​

​ ​def​ ​values​

​ ​"​​#{​self.​class​.​name​​}​​: @@A = ​​#@@A​​, @@B = ​​#@@B​​"​

​ ​end​

​ ​end​

​

​ ​class​ MiddleOne < Top

​ @@B = ​"One B"​

​ @@C = ​"One C"​

​ ​def​ ​values​

​ ​super​ + ​", C = ​​#@@C​​"​

​ ​end​

​ ​end​

​

​ ​class​ MiddleTwo < Top

​ @@B = ​"Two B"​

​ @@C = ​"Two C"​

​ ​def​ ​values​

​ ​super​ + ​", C = ​​#@@C​​"​

​ ​end​

​ ​end​

​

​ ​class​ BottomOne < MiddleOne; ​end​

​

​ ​class​ BottomTwo < MiddleTwo; ​end​

​

​ Top.​new​.​dump​

​ MiddleOne.​new​.​dump​

​ MiddleTwo.​new​.​dump​

​ BottomOne.​new​.​dump​

​ BottomTwo.​new​.​dump​

Produces:

​ Top: @@A = top A, @@B = Two B

​ MiddleOne: @@A = top A, @@B = Two B, C = One C

​ MiddleTwo: @@A = top A, @@B = Two B, C = Two C

​ BottomOne: @@A = top A, @@B = Two B, C = One C

​ BottomTwo: @@A = top A, @@B = Two B, C = Two C

Because of this behavior, class variables tend to be confusing, difficult to
debug, and hard to reason about, so we recommend avoiding them.

Instance variables are available within instance methods throughout a class
body. Referencing an uninitialized instance variable returns nil. Each object
(instance of a class) has a unique set of instance variables.

Local variables are unique in that their scopes are statically determined but
their existence is established dynamically. A local variable is created
dynamically when it’s first assigned a value during program execution. But
the scope of a local variable is statically determined to be the immediately
enclosing block, method definition, class definition, module definition, or
top-level program. Local variables with the same name are different
variables if they appear in disjoint scopes.

Method parameters are considered to be variables local to that method.

Block parameters are assigned values when the block is invoked. If a local
variable is first assigned in a block, it’s local to the block. If a block uses a

variable that’s previously defined in the scope containing the block’s
definition, the block will share that variable with the scope.

There are two exceptions to this rule. Block parameters are always local to
the block. In addition, variables listed after a semicolon at the end of the
block parameter list are also always local to the block:

​ a = 1

​ b = 2

​ c = 3

​

​ some_method ​do​ |b; c|

​ a = b + 1

​ c = a + 1

​ d = c + 1

​ ​end​

In this example, the variable a inside the block is shared with the
surrounding scope. The variables b and c aren’t shared because they are
listed in the block’s parameter list, and the variable d is not shared because
it occurs only inside the block.

A block takes on the set of local variables in existence at the time that it’s
created. This forms part of its binding. Note that although the binding of the
variables is fixed at this point, the block will have access to the current
values of these variables when it executes. The binding preserves these
variables even if the original enclosing scope is destroyed.

The bodies of while, until, and for loops don’t act as blocks. They are part of
the scope that contains them; previously existing locals can be used in the
loop, and any new locals created will be available outside the bodies
afterward.

Predefined Values

The following values are predefined in the Ruby interpreter. In these
descriptions, the notation [r/o] indicates that the variables are read-only. An
error will be raised if a program attempts to modify a read-only variable.
After all, you probably don’t want to change the meaning of true halfway
through your program (except perhaps if you’re a politician). Entries
marked [thread] are thread local.

Many global variables look like comic book swearing ($_, $!, $&, and so on).
This is for “historical” reasons—most of these variable names come from
Perl. If you find memorizing all this punctuation difficult, you may want to
take a look at the English library, which gives the commonly used global
variables more descriptive names.

In the tables of variables and constants that follow, we list the variable
name, the type of the referenced object, and a description.

Exception Information

$! → Exception The exception object passed to raise. [thread]

$@ → Array The stack backtrace generated by the last exception.
[thread]

Input/Output Values

$/ → String The input record separator (newline by default).
This is the value that routines such as Kernel#gets

use to determine record boundaries. If set to nil, gets

will read the entire file.

$-0 → String Synonym for $/.

$\ → String The string appended to the output of every call to
methods such as Kernel#print and IO#write. The
default value is nil.

$, → String The separator string output between the parameters
to methods such as print and join. Defaults to nil,
which adds no text.

$. → Fixnum The number of the last line read from the current
input file.

$; → String The default separator pattern used by String#split.
May be set using the -F command-line option.

$< → ARGF.class Synonym for ARGF. See​ARGF​.

$> → IO The destination stream for print and printf. The
default value is STDOUT.

$_ → String The last line read by gets or readline. Many string-
related functions in the Kernel module operate on $_

by default. The variable is local to the current
scope. [thread]

$-F → String Synonym for $;.

$stderr, $stdout,
$stdin, → IO

The current standard error, standard output, and
standard input streams.

Execution Environment Values

$0 → String The name of the top-level Ruby program
being executed. Typically this will be the
program’s filename. On some operating
systems, assigning to this variable will
change the name of the process reported
(for example) by the ‘ps(1)‘ command.

$* → Array An array of strings containing the
command-line options from the invocation
of the program. Options used by the Ruby
interpreter will have been removed. [r/o]

$" → Array An array containing the filenames of
modules loaded by require. [r/o]

$$ → Fixnum The process number of the program being
executed. [r/o]

$? → Process::Status The exit status of the last child process to
terminate. [r/o, thread]

$: → Array An array of strings, where each string
specifies a directory to be searched for
Ruby scripts and binary extensions used
by the load and require methods. The initial
value is the value of the arguments passed
via the -I command-line option, followed
by an installation-defined standard library
location. This variable may be updated
from within a program to alter the default
search path; typically, programs use
$: << dir to append dir to the path. [r/o]

$-a → Object True if the -a option is specified on the
command line. [r/o]

__callee__ → Symbol The name of the lexically enclosing
method.

$-d → Object Synonym for $DEBUG.

$DEBUG → Object Set to true if the -d command-line option is
specified.

__ENCODING__ → String The encoding of the current source file.
[r/o]

__FILE__ → String The name of the current source file. [r/o]

$F → Array The array that receives the split input line
if the -a command-line option is used.

$FILENAME → String The name of the current input file.
Equivalent to $<.filename. [r/o]

$-i → String If in-place edit mode is enabled (perhaps
using the -i command-line option), $-i

holds the extension used when creating the
backup file. If you set a value into $-i,
enables in-place edit mode, as described in
the options descriptions.

$-I → Array Synonym for $:. [r/o]

$-l → Object Set to true if the -l option (which enables
line-end processing) is present on the

command line. See the options description.
[r/o]

__LINE__ → String The current line number in the source file.
[r/o]

$LOAD_PATH → Array A synonym for $:. [r/o]

$LOADED_FEATURES → Array Synonym for $". [r/o]

__method__ → Symbol The name of the lexically enclosing
method.

$PROGRAM_NAME → String Alias for $0.

$-p → Object Set to true if the -p option (which puts an
implicit while gets...end loop around your
program) is present on the command line.
See the options description. [r/o]

$VERBOSE → Object Set to true if the -v, --version, -W, or -w
option is specified on the command line.
Set to false if no option, or -W1 is given.
Set to nil if -W0 was specified. Setting this
option to true causes the interpreter and
some library routines to report additional
information. Setting to nil suppresses all
warnings (including the output of
Object#warn).

$-v, $-w → Object Synonyms for $VERBOSE.

$-W → Object Return the value set by the -W command-
line option.

Standard Objects

ARGF → Object Provides access to a list of files. Used by command
line processing. See ​ARGF​.

ARGV → Array A synonym for $*.

ENV → Object A hash-like object containing the program’s
environment variables. An instance of class Object,
ENV implements the full set of Hash methods. Used to
query and set the value of an environment variable,
as in ENV["PATH"] and ENV["term"]="ansi".

false → FalseClass Singleton instance of class FalseClass. [r/o]

nil → NilClass The singleton instance of class NilClass. The value of
uninitialized instance and global variables. [r/o]

self → Object The receiver (object) of the current method. [r/o]

true → TrueClass Singleton instance of class TrueClass. [r/o]

Global Constants

DATA → IO If the main program file contains the
directive __END__, then the constant DATA

will be initialized so that reading from

it’ll return lines following __END__ from
the source file.

RUBY_COPYRIGHT → String The interpreter copyright.

RUBY_DESCRIPTION → String Version number and architecture of the
interpreter.

RUBY_ENGINE → String The name of the Ruby interpreter.
Returns "ruby" for Matz’s version. Other
active interpreters include jruby, ruby,
opal, and truffleruby.

RUBY_PATCHLEVEL → String The patch level of the interpreter.

RUBY_PLATFORM → String The identifier of the platform running
this program. This string is in the same
form as the platform identifier used by
the GNU configure utility (which is not a
coincidence).

RUBY_RELEASE_DATE → String The date of this release.

RUBY_REVISION → String The revision of the interpreter.

RUBY_VERSION → String The version number of the interpreter.

STDERR → IO The actual standard error stream for the
program. The initial value of $stderr.

STDIN → IO The actual standard input stream for the
program. The initial value of $stdin.

STDOUT → IO The actual standard output stream for the
program. The initial value of $stdout.

SCRIPT_LINES__ → Hash If a constant SCRIPT_LINES__ is defined and
references a Hash, Ruby will store an
entry containing the contents of each file
it parses, with the file’s name as the key
and an array of strings as the value.

TOPLEVEL_BINDING → Binding A Binding object representing the binding
at Ruby’s top level—the level where
programs are initially executed.

The constant __FILE__ and the variable $0 can be used together to run code
only if it appears in the file run directly by the user. For example, library
writers often use this to include tests in their libraries that will be run if the
library source is run directly, but not if the source is loaded into another
program using require.

​ ​# library code ...​

​

​ ​if​ ​__FILE__​ == $0

​ ​# tests...​

​ ​end​

Expressions, Conditionals, and Loops
Single terms in an expression may be any of the following:

Literal. Ruby literals are boolean, numbers, strings, arrays, hashes,
ranges, symbols, and regular expressions. These are described in ​Ruby
Literals​.

Shell command. A shell command is a string enclosed in backquotes or
in a general delimited string starting with %x. The string is executed
using the host operating system’s standard shell, and the resulting
standard output stream is returned as the value of the expression. The
execution also sets the $? variable with the command’s exit status:

​ filter = ​"*.c"​

​ files = ​̀ls ​​#{​filter​}​​̀​

​ files = ​%x{ls ​​#{​filter​}​​}​

Variable reference or constant reference. A variable is referenced by
citing its name. Depending on scope (see ​Scope of Constants and
Variables​), you reference a constant either by citing its name or by
qualifying the name, using the name of the class or module containing
the constant and the scope operator (::):

​ barney ​# variable reference​

​ APP_NAMR ​# constant reference​

​ Math::PI ​# qualified constant reference​

Method invocation. The various ways of invoking a method are
described in ​Invoking a Method​.

Operator Expressions
Expressions may be combined using operators. The Ruby operators in
precedence order are listed in the following table. The operators with a ✓
in the Method column are implemented as methods and may be overridden.

Table 19. Ruby operators (high to low precedence)

Method Operator Description
✓ ! ~ + - Not, complement, unary plus (method

name for unary plus is +@)

✓ ** Exponentiation

✓ - Unary minus (method names is -@)

✓ * / % Multiply, divide, and modulo

✓ + - Plus and minus

✓ >> << Right and left shift (<< is also the
append operator)

✓ & “And” (bitwise for integers)

✓ ^ | Exclusive “or” and regular “or”
(bitwise for integers)

✓ <= < > >= Comparison operators

✓ <=> == === != =~ !~ Equality and pattern match operators

&& Logical “and”

|| Logical “or”

.. ... Range (inclusive and exclusive)

? : Ternary if-then-else

rescue When used as a modifier at the end of
a line

Method Operator Description
= %= /= -= += |= &= >>= <<=

 *= &&= ||= **= ^=

Assignment

defined? Test for if a value is defined in current
binding

not Logical negation

or and Logical composition

if unless while until Expression modifiers at the end-of-
line

{ } Block expression

do end Block expression

More on Assignment
The assignment operator assigns one or more rvalues (the r stands for
“right,” because rvalues tend to appear on the right side of assignments) to
one or more lvalues (“left” values). The meaning of assignment depends on
each individual lvalue.

As the following shows, if an lvalue is a variable or constant name, that
variable or constant receives a reference to the corresponding rvalue. Ruby
will handle nested values on the left if they match the values to the right:

​ a = ​/regexp/​

​ b, c, d = 1, ​"cat"​, [3, 4, 5]

​ e, (f, g), h = [6, [7, 8], 9]

If the lvalue is an object attribute, the corresponding attribute-setting
method will be called in the receiver, passing as a parameter the rvalue:

​ ​class​ A

​ attr_writer ​:value​

​ ​end​

​

​ obj = A.​new​

​ obj.​value​ = ​"hello"​ ​# equivalent to obj.value=("hello")​

If the lvalue is an array or string element reference, Ruby calls the element
assignment operator ([]=) in the receiver, passing as parameters any indices
that appear between the brackets followed by the rvalue. This is illustrated
in the following table.

Table 20. Element assignment method calls

Element Reference Actual Method Call
var[] = "one" var.[]=("one")

var[1] = "two" var.[]=(1, "two")

var["a", /^cat/] = "three" var.[]=("a", /^cat/, "three")

If you’re writing an []= method that accepts a variable number of indices, it
might be convenient to define it using this:

​ ​def​ ​[]=​(*indices, value)

​ ​# ...​

​ ​end​

The value of an assignment expression is its rvalue. This is true even if the
assignment is to an attribute method that returns something different.

In addition, an assignment expression may have one or more lvalues and
one or more rvalues. The following explains how Ruby handles assignment
with different combinations of arguments:

If any rvalue is prefixed with an asterisk and implements to_a, the
rvalue is replaced with the elements returned by to_a, with each
element forming its own rvalue.

If the assignment contains one lvalue and multiple rvalues, the rvalues
are converted to an array and assigned to that lvalue.

If the assignment contains multiple lvalues and one rvalue, the rvalue
is expanded if possible into an array of rvalues as described in first
bullet point.

Successive rvalues are assigned to the lvalues. This assignment
effectively happens in parallel so that (for example) a,b=b,a swaps the
values in a and b.

If there are more lvalues than rvalues, the excess will have nil assigned
to them.

If there are more rvalues than lvalues, the excess will be ignored.

At most, one lvalue can be prefixed by an asterisk. This lvalue will end
up being an array and will contain as many rvalues as possible. If there
are lvalues to the right of the starred lvalue, these will be assigned
from the trailing rvalues, and whatever rvalues are left will be assigned
to the splat lvalue.

If an lvalue contains a parenthesized list, the list is treated as a nested
assignment statement, and then it’s assigned from the corresponding
rvalue as described by these rules.

See ​Parallel Assignment​, for examples of parallel assignment. The value of
a parallel assignment is its array of rvalues.

Rightward Assignment, or Single Pattern Matching
expression => pattern expression in pattern

Ruby’s pattern matching allows for a single-line form that effectively works
as “rightward” assignment, where the existing value is on the left and the
variables to be assigned are on the right. Note that the delimiter around the
right-hand side can be omitted:

​ 3 => x

​ puts x

​

​ {​a: ​1, ​b: ​2} ​in​ {a:, b:}

​ puts a

​ puts b

​

​ {​a: ​1, ​b: ​2} ​in​ a:, ​b:​

​ puts a

​ puts b

Produces:

​ 3

​ 1

​ 2

​ 1

​ 2

The difference between the two forms is what happens if the pattern and the
expression don’t match.

The => form returns nil on a successful match and throws a
NoMatchingPatternKeyError if it can’t match the pattern. The in form returns
true if the pattern matches and false if the pattern doesn’t match. In the non-
matching case, the behavior of the variables that would’ve been matched is

undefined—if the match returns false, you can’t depend on those values
being matched, unmatched, or anything else.

For the exact syntax of patterns, see ​Case Pattern Matching​. The definition
of a pattern is the same, and we’ll talk more about the semantics of patterns
there.

Block Expressions
begin body end

Expressions may be grouped between begin and end. The value of the block
expression is the value of the last expression executed.

Block expressions also play a role in exception handling (see ​Exceptions​).

Boolean Expressions
Ruby predefines the values false and nil. Both of these values are treated as
being false in a boolean context. All other values are treated as being true.
The constant true is available for when you need an explicit “true” value.

And, Or, Not
The and and && operators evaluate their first operand. If false, the
expression returns the value of the first operand; otherwise, the expression
returns the value of the second operand:

expr1 && expr2 expr1 and expr2

The or and || operators evaluate their first operand. If true, the expression
returns the value of their first operand; otherwise, the expression returns the
value of the second operand:

expr1 || expr2 expr1 or expr2

The not and ! operators evaluate their operand. If true, the expression returns
false. If false, the expression returns true.

The word forms of these operators (and, or, and not) have a lower
precedence than the corresponding symbol forms (&&, ||, and !). For details,
see Table 19, ​Ruby operators (high to low precedence)​. When used, these
versions are used for control flow more than logical operations.

defined?
The defined? keyword returns nil if its argument, which can be an arbitrary
expression, is not defined. Otherwise, it returns a description of that
argument. For examples, check out ​The defined? Keyword​.

Comparison Operators
Ruby defines the generic comparison operator, <=>. This operator should
return -1 if the left operand is smaller, 1 if the right operand is smaller, and 0
if the two operands are equal. Although the operators have intuitive
meaning, it’s up to the classes that implement them to produce meaningful
comparison semantics. The module Comparable allows a class to use the
definition of <=> to implement the operators ==, <, <=, >, and >=, as well as
the methods between? and clamp. All these operators are implemented as
methods (see Table 3, ​Common comparison operators​).

By convention, the language also uses the standard methods eql? and equal?

to test for equality and the method =~ to test for a regular expression match.
The operator === is used in case expressions, as described in ​case
Expressions​.

Both == and =~ have negated forms, != and !~. If an object defines these
methods, Ruby will call them. Otherwise, a != b is mapped to !(a == b), and a
!~ b is mapped to !(a =~ b).

Ranges in Boolean Expressions
if expr1 .. expr2 while expr1 .. expr2

A range used in a boolean expression acts as a flip-flop: .. (two dots) or ...
(three dots). It has two states—set and unset—and is initially unset.

1. For the three-dot form of a range, if the flip-flop is unset and expr1 is
true, the flip-flop becomes set and the flip-flop returns true.

2. If the flip-flop is set, it’ll return true. But, if expr2 isn’t true, the flip-
flop becomes unset.

3. If the flip-flop is unset, it returns false.

The first step differs for the two-dot form of a range. If the flip-flop is unset
and expr1 is true, then Ruby only sets the flip-flop if expr2 is not also true.

The difference is illustrated by the following code:

​ a = (11..20).​collect​ { |i| (i % 4 == 0)..(i % 3 == 0) ? i : ​nil​ }

​ a ​# => [nil, 12, nil, nil, nil, 16, 17, 18, nil, 20]​

​

​ a = (11..20).​collect​ { |i| (i % 4 == 0)...(i % 3 == 0) ? i : ​nil​ }

​ a ​# => [nil, 12, 13, 14, 15, 16, 17, 18, nil, 20]​

Regular Expressions in Boolean Expressions
If Ruby has been invoked via the -e parameter in the command line, and
only in that case, a regular expression by itself without any other operator in
a boolean expression matches against the current value of the variable $_,
the most recent line input by gets or readline:

​ ​$ ​​ruby​​ ​​-ne​​ ​​'print if /one/'​​ ​​testfile​

​ This is line one

In regular code, the use of implicit operands and $_ has been largely phased
out, so it’s better to use an explicit match against a variable.

if and unless Expressions

if boolean-expression

<then> body <elsif

boolean-expression then

 body >*
 < else body

> end

unless boolean-

expression <then>

 body <else

 body > end

The then keyword separates the body from the condition and is not required
if the body starts on a new line. The value of an if or unless expression is the
value of the last expression evaluated in whichever body is executed.

if and unless Modifiers
expression if boolean-expression expression unless boolean-

expression

This evaluates expression only if boolean-expression is true (for if) or false
(for unless).

Ternary Operator
boolean-expression ? expr1 : expr2

This returns expr1 if boolean-expression is true and expr2 otherwise.

case Expressions
Ruby has two forms of conditional case expressions (and another pattern-
matching case expression). The first allows a series of conditions to be
evaluated, executing code corresponding to the first condition that’s true:

case when <boolean-expression>+
 <then> body when

<boolean-expression>+
 <then> body ... <else

 body > end

The second form of a case expression takes a target expression following the
case keyword. It searches for a match starting at the first (top left)

comparison, using the triple-equals operator: _comparison_ === _target_ (as a
performance optimization, comparisons between literal strings and between
numbers don’t use ===):

case target when <comparison>+
 <then> body when

<comparison>+
 <then> body ... <else body >

end

A comparison can be an array reference preceded by an asterisk, in which
case it’s expanded into that array’s elements before the tests are performed
on each of them. When a comparison returns true, the search stops and the
body associated with the comparison is executed (nothing like a break

statement is required). The case statement then returns the value of the last
expression executed. If no comparison matches and an else clause is
present, the body of that clause will be executed; otherwise, the case

statement returns nil.

The then keyword separates the when comparisons from the bodies and is
not needed if the body starts on a new line.

Case Pattern Matching
case expression in pattern body in pattern body else

 body end

Pattern matching is a powerful construct to extract values from complicated
data structures.

The expression is an already existing piece of data, typically featuring
nested hashes and arrays. The case statement selects the first branch where
the pattern matches the expression, assigns any variables that are part of the
pattern, executes the body associated with that branch, and exits the case

expression. If no patterns match, the else branch is executed. If no patterns
match and no else branch exists, Ruby throws a NoMatchingPatternError.

Defining Patterns
The simplest pattern is a Ruby object. The pattern matches an expression if
the two values are ===. This is useful for classes that define === for extended
matching, like Class and String, though there are also cases where you might
just match against a regular literal value.

Even so, it’s probably more useful matched with a data structure:

[pattern, pattern, ...] [*variable, pattern, pattern, ...,

*variable]

An array pattern matches if every element of the array expression matches,
so [Integer, Integer] matches [1, 2], but not [1]. But you can use the splat
character as a wild card to match more than one element at the beginning or
end of an array pattern. If you use a splat at both the beginning and the end,
that’s called a find pattern:

​ ​case​ [1, 2, 3]

​ ​in​ [Integer, Integer, Integer]

​ puts ​"all integers"​

​ ​in​ [*, Integer, *]

​ puts ​"contains an integer"​

​ ​else​

​ puts ​"no integers"​

​ ​end​

If the pattern is not a find pattern, the brackets around the array pattern in
the in clause can be omitted.

{key: pattern, key: pattern, ..., <**nil>+
}

Hash patterns behave differently from array patterns. A hash pattern will
match if all the keys in the pattern match the target expression, even if there
are additional keys in the target expression. Appending **nil to the end of
the pattern will change this behavior; then the pattern will only match if the
keys in the pattern are the only keys in the target expression.

​ ​case​ {​first_name: ​​"Ron"​, ​last_name: ​​"Lithgow"​}

​ ​in​ {​first_name: ​String}

​ puts ​"this person has a first name"​

​ ​else​

​ puts ​"this data does not have a first name"​

​ ​end​

Produces:

​ this person has a first name

The curly braces around the hash in the pattern can be omitted.

The empty hash is an exception. It only matches other empty hashes.

pattern | pattern

The pipe character (|) can be used to specify multiple alternative patterns
that might match. Ruby will bind to the first of the multiples that matches.

Binding Variables in Patterns
pattern => variable

At any point in a pattern, you can bind a subpattern to a local variable by
appending => VAR_NAME to the subpattern:

​ ​case​ [1, 2, 3]

​ ​in​ [Integer, Integer => middle, Integer]

​ puts ​"all integers, the middle one is ​​#{​middle​}​​"​

​ ​in​ [*, Integer, *]

​ puts ​"contains an integer"​

​ ​else​

​ puts ​"no integers"​

​ ​end​

Produces:

​ all integers, the middle one is 2

There are a couple of shortcuts. If you don’t need to pattern match the part
of the pattern with the local variable, you can just use the variable name
without the hash rocket:

​ ​case​ [1, 2, 3]

​ ​in​ [Integer, middle, Integer]

​ puts ​"The middle one is ​​#{​middle​}​​"​

​ ​in​ [*, Integer, *]

​ puts ​"contains an integer"​

​ ​else​

​ puts ​"no integers"​

​ ​end​

Produces:

​ The middle one is 2

In a hash, you can bind a variable to the same name as the key of the hash
by just including the key:

​ ​case​ {​first_name: ​​"Ron"​, ​last_name: ​​"Lithgow"​}

​ ​in​ {first_name:}

​ puts ​"this person's name is ​​#{​first_name​}​​"​

​ ​else​

​ puts ​"this data does not have a first name"​

​ ​end​

Produces:

​ this person's name is Ron

The splatted parts of an array or hash can be bound to a local variable by
putting the variable name after the splat, as in [Integer, Integer, *rest].

One limitation comes with this. If you use the | character to match multiple
patterns, you can’t bind variables inside any of the multiple patterns. This is
a limitation of the pattern-matching parser.

If you want to reuse an existing variable, local, global, expression, or
instance, as part of a pattern, or if you want to set a variable at the
beginning of a pattern and use it later in the pattern, a ^ (caret) in front of
the variable name or expression means “use the existing value for this
variable.”

​ count = 2

​

​ ​case​ [1, 2, 3]

​ ​in​ [Integer, ^count, last]

​ puts ​"The middle one 2, the last one is ​​#{​last​}​​"​

​ ​in​ [*, Integer, *]

​ puts ​"contains an integer"​

​ ​else​

​ puts ​"no integers"​

​ ​end​

Produces:

​ The middle one 2, the last one is 3

​ ​case​ [1, 2, 2]

​ ​in​ [*, value, ^value]

​ puts ​"This has a pair of the same value, ​​#{​value​}​​"​

​ ​else​

​ puts ​"no pairs"​

​ ​end​

Produces:

​ This has a pair of the same value, 2

Guard Clauses in Patterns
pattern if boolean_expression

You can limit the ability of a pattern to match by putting a guard clause
after it. The match only occurs if the pattern matches the target expression
and the boolean expression in the guard clause is true. The guard clause
may use values bound in the pattern.

Loops

while boolean-expression <do> body end

This executes body zero or more times as long as boolean-expression is
true.

until boolean-expression <do> body end

This executes body zero or more times as long as boolean-expression is
false.

In both forms, the do separates boolean-expression from the body and can
be omitted when the body starts on a new line:

for <name>+
 in expression <do> body end

The for loop is executed as if it were the following each loop, except that
local variables defined in the body of the for loop will be available outside
the loop, and those defined within an iterator block will not.

expression.each do | <name>+
 | body end

loop, which iterates its associated block, isn’t a language construct—it’s a
method in module Kernel.

​ ​loop​ ​do​

​ print ​"Input: "​

​ ​break​ ​unless​ line = gets

​ process(line)

​ ​end​

while and until Modifiers
expression while boolean-expression expression until

boolean-expression

If expression is anything other than a begin/end block, then it executes
expression zero or more times while boolean-expression is true (for while)
or false (for until).

If expression is a begin/end block, the block will always be executed at least
one time.

break, redo, and next

break, redo, and next alter the normal flow through a while, until, for, or an
iterator-controlled loop.

The break keyword terminates the immediately enclosing loop—control
resumes at the statement following the block. redo repeats the loop from the
start but without reevaluating the condition or fetching the next element (in
an iterator). The next keyword skips to the end of the loop, effectively
starting the next iteration.

break and next may optionally take one or more arguments. If used within a
block, the given arguments are returned as the value of the yield. If used
within a while, until, or for loop, the value given to break is returned as the
value of the statement. If break is never called or if it’s called with no value,
the loop returns nil.

​ match = ​for​ line ​in​ ARGF.​readlines​

​ ​next​ ​if​ line =~ ​/^#/​

​ ​break​ line ​if​ line =~ ​/ruby/​

​ ​end​

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 25

Language Reference: Objects and
Classes

In this second chapter of language reference, we’ll cover the syntax of Ruby
objects and classes.

Method Definition

def defname <(param) > body end def defname

<(param)> = expression defname ← methodname |

expr.methodname

The defname contains the name of the method and optionally an expression
defining the context in which the method is valid, the most common
expression here is self, as in def self.method_name, but the expression can be any
Ruby object.

A methodname is either a redefinable operator (see Table 19, ​Ruby operators
(high to low precedence)​) or a name. If methodname is a name, it starts with a
letter or underscore optionally followed by uppercase and lowercase letters,
underscores, and digits. A method can start with an uppercase letter, but that’s
normally only done for the conversion methods in Kernel. A methodname may
optionally end with a question mark (?), exclamation point (!), or equal sign
(=). The question mark and exclamation point are simply part of the name. The
equal sign is also part of the name but additionally signals that this method
may be used as an lvalue (see the description of writeable attributes in ​Writing
to Attributes​).

Most methods are written over multiple lines, in which case the method ends
with a matching end keyword.

A single expression method can be written with the method name and optional
argument list followed by a space, then by an =, and then by a single-
expression body. Note that the space before the equal sign is important to
distinguish this from a method name ending in =. Because this method form
doesn’t need a matching end, it’s sometimes referred to as an “endless
method.”

The statement which creates the method returns the method name as a symbol.
This is useful for interacting with Ruby methods that take a symbol expecting

it to be a method name (for example, the access control methods, as in private

def foo = 1 + 1).

Within a class or module definition, a method definition that doesn’t have an
expression before the method name creates an instance method. An instance
method defined in a class may be invoked only by sending its name to a
receiver that’s an instance of the class that defined it, or one of that class’s
subclasses. An instance method defined in a module may be invoked by a
receiver that’s an instance of a class that has included or prepended the module
somewhere in its ancestor list.

Outside a class or module definition, a definition without an expression before
the method name is added as a private instance method to class Object. It may
be called in any context without an explicit receiver.

A definition that does have an expression before the method name of the form
expr.methodname creates a method associated with the object that’s the value
of the expression; the method will be callable only by supplying the object
referenced by the expression as a receiver. This style of definition creates per-
object or singleton methods. You’ll find it most often inside class or module
definitions, where the expr is either self or the name of the class/module. This
effectively creates a class or module method (as opposed to an instance
method).

​ ​class​ MyClass

​ ​def​ MyClass.​method​ ​# definition​

​ ​end​

​ ​end​

​

​ MyClass.​method​ ​# call​

​

​ obj = Object.​new​

​

​ ​def​ obj.​method​ ​# definition​

​ ​end​

​

​ obj.​method​ ​# call​

​

​ ​def​ (1.​class​).​fred​ ​# receiver may be an expression​

​ ​end​

​

​ Integer.​fred​ ​# call​

Method definitions may not contain class or module definitions. They may
contain nested instance or singleton method definitions. The internal method is
defined when the enclosing method is executed. The internal method doesn’t
act as a closure in the context of the nested method—it’s self-contained.

​ ​def​ ​toggle​

​ ​def​ ​toggle​

​ ​"subsequent times"​

​ ​end​

​ ​"first time"​

​ ​end​

​

​ toggle ​# => "first time"​

​ toggle ​# => "subsequent times"​

​ toggle ​# => "subsequent times"​

The body of a method acts as if it were a begin/end block, in that it may contain
exception-handling statements (rescue, else, and ensure).

Method Parameters
A method definition may list zero or more positional parameters, zero or more
keyword parameters, an optional splat parameter, an optional double splat
parameter, and an optional block parameter. Parameters are separated by
commas, and the parameter list may be (and usually is) enclosed in
parentheses. As described in ​Passing Parameters Through​, the parameter list
may be replaced by one or more forwarding markers. The elements of a
method are called parameters when discussing the definition of the method,
and arguments when discussing calling the method.

A positional parameter is a local variable name, optionally followed by an
equals sign and an expression defining a default value. The expression is
evaluated at the time the method is called. If there are multiple parameters

with default expressions, the expressions are evaluated from left to right. An
expression may reference a parameter that precedes it in the argument list.

​ ​def​ ​options​(a = 99, b = a + 1)

​ [a, b]

​ ​end​

​ options ​# => [99, 100]​

​ options(1) ​# => [1, 2]​

​ options(2, 4) ​# => [2, 4]​

Parameters without default values may appear after parameters with defaults.
When such a method is called, Ruby will use the default values only if fewer
arguments are passed to the method call than the total number of parameters.

​ ​def​ ​mixed​(a, b = 50, c = b + 10, d)

​ [a, b, c, d]

​ ​end​

​ mixed(1, 2) ​# => [1, 50, 60, 2]​

​ mixed(1, 2, 3) ​# => [1, 2, 12, 3]​

​ mixed(1, 2, 3, 4) ​# => [1, 2, 3, 4]​

As with parallel assignment, one of the parameters may start with an asterisk.
If the method call specifies any arguments in excess of the regular parameter
count, all these extra arguments will be collected into this newly created array.

​ ​def​ ​varargs​(a, *b)

​ [a, b]

​ ​end​

​ varargs(1) ​# => [1, []]​

​ varargs(1, 2) ​# => [1, [2]]​

​ varargs(1, 2, 3) ​# => [1, [2, 3]]​

This parameter need not be the last in the parameter list. See the description of
parallel assignment to see how values are assigned to this parameter.

​ ​def​ ​splat​(first, *middle, last)

​ [first, middle, last]

​ ​end​

​ splat(1, 2) ​# => [1, [], 2]​

​ splat(1, 2, 3) ​# => [1, [2], 3]​

​ splat(1, 2, 3, 4) ​# => [1, [2, 3], 4]​

If an array parameter follows arguments with default values, parameters will
first be used to override the defaults. The remainder will then be used to
populate the array.

​ ​def​ ​mixed​(a, b = 99, *c)

​ [a, b, c]

​ ​end​

​ mixed(1) ​# => [1, 99, []]​

​ mixed(1, 2) ​# => [1, 2, []]​

​ mixed(1, 2, 3) ​# => [1, 2, [3]]​

​ mixed(1, 2, 3, 4) ​# => [1, 2, [3, 4]]​

Keyword Parameters
Ruby methods may declare keyword parameters using the syntax <name>:

<default_value> for each. These arguments must follow any positional
parameters in the list. The default value is optional, in which case you just
type <name>:.

reference/kwargs.rb

​ ​def​ ​header​(name, level:, ​upper: ​​false​)

​ name = name.​upcase​ ​if​ upper

​ ​"<h​​#{​level​}​​>​​#{​name​}​​</h​​#{​level​}​​>"​

​ ​end​

​

​ header(​"Introduction"​, ​level: ​1) ​# => "<h1>Introduction</h1>"​

​ header(​"Getting started"​, level:2) ​# => "<h2>Getting started</h2>"​

​ header(​"Conclusion"​, ​upper: ​​true​, ​level: ​1) ​# => "<h1>CONCLUSION</h1>"​

When calling a method with keyword parameters, the keyword arguments
don’t need to be in the same order in the method call as they are in the method
definition. If you call a method that has keyword parameters, you must
provide values for each keyword that doesn’t have a default value. If you don’t
provide a value for a keyword with a default, the default will be used.

If you pass keyword arguments that aren’t defined as arguments, an error will
be raised unless you also define a double splat parameter, **<arg>. The double
splat argument will be defined as a hash containing any undeclared keyword
arguments passed to the method.

http://media.pragprog.com/titles/ruby5/code/reference/kwargs.rb

reference/kwargs_2.rb

​ ​def​ ​header​(name, ​level: ​1, ​upper: ​​false​, **attrs)

​ name = name.​upcase​ ​if​ upper

​ attr_string = attrs.​map​ { |k, v| ​%(#{k}="#{v}")​ }.​join​(​" "​)

​ ​"<h​​#{​level​}​​ ​​#{​attr_string​}​​>​​#{​name​}​​</h​​#{​level​}​​>"​

​ ​end​

​

​ puts header(​"TOC"​, ​class: ​​"nav"​, ​level: ​2, ​id: ​123)

Produces:

​ <h2 class="nav" id="123">TOC</h2>

Block Parameter
The optional block parameter must be the last in the list. Whenever the method
is called, Ruby checks for an associated block. If a block is present, it’s
converted to an object of class Proc and assigned to the block parameter. If no
block is present, the argument is set to nil.

​ ​def​ ​example​(&block)

​ p block

​ ​end​

​

​ example

​ example { ​"a block"​ }

Produces:

​ nil

​ #<Proc:0x0000000104ee8180 prog.rb:6>

Passing Parameters Through
Often in Ruby, we want to pass all the parameters from one method as
arguments to another method. Because a Ruby method can take three different
kinds of parameters, simply doing pass-throughs can feel kind of cumbersome:

​ ​def​ ​outer​(*args, **kwargs, &block)

​ other(*args, **kwargs, &block)

​ ​end​

http://media.pragprog.com/titles/ruby5/code/reference/kwargs_2.rb

Ruby has some shortcuts if you aren’t actually using the parameters in the
method. For all three types, you can pass through the parameters of that
particular kind by using the splat, double-splat, or ampersand without a
variable name:

​ ​def​ ​outer​(*)

​ other(*)

​ ​end​

​

​ ​def​ ​outer​(**)

​ other(**)

​ ​end​

​

​ ​def​ ​outer​(&)

​ other(&)

​ ​end​

These splats can’t be assigned to variables directly, but they can be used in
other assignments where you might use a splat. So you can’t do x = *, but you
can do x = [*].

If you’re passing multiple types of variables, you can forward them all with ...
(three dots).

​ ​def​ ​outer​(...)

​ other(...)

​ ​end​

You can even include leading positional parameters before the pass-through
shortcuts:

​ ​def​ ​outer​(first, ...)

​ other(first, ...)

​ ​end​

Undefining a Method
The keyword undef allows you to undefine a method.

undef name | symbol ...

An undefined method still exists; it’s simply marked as being undefined. If
you undefine a method in a child class and then call that method on an
instance of that child class, Ruby will immediately raise a NoMethodError and it
won’t look for the method in the child’s parents.

Invoking a Method

 <receiver.>name < arguments > < {block} >

<receiver::>name < arguments > < {block} > arguments ← (

<arg>*
 <, hashlist> <*array> <&a_proc>) block ← {

blockbody } or do blockbody end

When invoking a method, the parentheses around the arguments may be
omitted if the expression is otherwise unambiguous. So, foo 3, 4 as a line by
itself is a legal call to foo with two arguments. Usually, the ambiguity happens
if there are method calls in the arguments. If you had both foo and bar as
methods, then foo 3, bar 4, 5 would trigger an error because the parser would
attempt to resolve bar 4 as the second argument to foo. Fully parenthesizing as
foo(3, bar(4, 5)) is preferred, but foo 3, (bar 4, 5) would also be legal.

Positional arguments are assigned to the matching parameters of the method.
Following these arguments may be a list of _key_: _value_ pairs, which
correspond to keyword parameters of the method.

Any argument may be prefixed with an asterisk. If a starred argument
responds to the to_a method, that method is called, and the resulting array is
expanded inline to provide arguments to the method call. If a starred argument
doesn’t respond to to_a, the argument is simply passed through unaltered.

​ ​def​ ​regular​(a, b, *c)

​ ​"a = ​​#{​a​}​​, b = ​​#{​b​}​​, c = ​​#{​c​}​​"​

​ ​end​

​ regular 1, 2, 3, 4 ​# => a = 1, b = 2, c = [3, 4]​

​ regular(1, 2, 3, 4) ​# => a = 1, b = 2, c = [3, 4]​

​ regular(1, *2, *3, 4) ​# => a = 1, b = 2, c = [3, 4]​

​ regular(1, *[2, 3, 4]) ​# => a = 1, b = 2, c = [3, 4]​

​ regular(1, *[2, 3], 4) ​# => a = 1, b = 2, c = [3, 4]​

​ regular(1, *[2, 3], *4) ​# => a = 1, b = 2, c = [3, 4]​

​ regular(*[], 1, *[], *[2, 3], *[], 4) ​# => a = 1, b = 2, c = [3, 4]​

When a method defined with keyword parameters is called, Ruby matches the
keys in the passed hash with each parameter, assigning values when it finds a
match.

​ ​def​ ​keywords​(a, ​b: ​2, ​c: ​3)

​ ​"a = ​​#{​a​}​​, b = ​​#{​b​}​​, c = ​​#{​c​}​​"​

​ ​end​

​

​ keywords(99) ​# => a = 99, b = 2, c = 3​

​ keywords(99, ​c: ​98) ​# => a = 99, b = 2, c = 98​

​

​ args = {​b: ​22, ​c: ​33}

​ keywords(99, **args) ​# => "a = 99, b = 22, c = 33"​

​ keywords(99, **args, ​b: ​​"override"​) ​# => "a = 99, b = override, c = 33"​

If the passed hash contains any keys not defined as parameters, Ruby raises a
runtime error unless the method also declares a double splat parameter. In that
case, the double splat receives the excess key-value pairs from the passed
hash. If the passed hash is missing keys that are defined as required
parameters without default values, Ruby raises a runtime error.

​ ​def​ ​keywords1​(a, ​b: ​2, ​c: ​3)

​ ​"a = ​​#{​a​}​​, b = ​​#{​b​}​​, c = ​​#{​c​}​​"​

​ ​end​

​

​ keywords1(99, ​d: ​22, ​e: ​33)

Produces:

​ from prog.rb:5:in `<main>'

​ prog.rb:1:in `keywords1': unknown keywords: :d, :e (ArgumentError)

​ ​def​ ​keywords2​(a, ​b: ​2, ​c: ​3, **rest)

​ ​"a = ​​#{​a​}​​, b = ​​#{​b​}​​, c = ​​#{​c​}​​, rest = ​​#{​rest​}​​"​

​ ​end​

​

​ keywords2(99, ​d: ​22, ​e: ​33) ​# => a = 99, b = 2, c = 3, rest = {:d=>22,
:e=>33}​

Any argument may be prefixed with two asterisks (a double splat). Such
arguments are treated as hashes, using to_hash to convert if the parameter isn’t

a hash, and their key-value pairs are added as additional keyword arguments to
the method call.

​ ​def​ ​regular​(a, b)

​ ​"a = ​​#{​a​}​​, b = ​​#{​b​}​​"​

​ ​end​

​ regular(99, ​a: ​1, ​b: ​2) ​# => a = 99, b = {:a=>1, :b=>2}​

​

​ others = { ​c: ​3, ​d: ​4 }

​ regular(99, ​a: ​1, ​b: ​2, **others) ​# => a = 99, b = {:a=>1, :b=>2,​

​ ​# .. :c=>3, :d=>4}​

​ regular(99, **others, ​a: ​1, ​b: ​2) ​# => a = 99, b = {:c=>3, :d=>4,​

​ ​# .. :a=>1, :b=>2}​

​

​ rest = {​e: ​5}

​

​ regular(99, **others, ​a: ​1, ​b: ​2) ​# => a = 99, b = {:c=>3, :d=>4,​

​ ​# .. :a=>1, :b=>2}​

​ regular(99, **others, ​a: ​1, ​b: ​2, **rest) ​# => a = 99, b = {:c=>3, :d=>4,​

​ ​# .. :a=>1, :b=>2, :e=>5}​

As with hash literals, if an existing local value has the same name as the
keyword argument, you can pass the argument without a value and the local
value will be found and used:

​ x = 10

​ y = 5

​ foo(x:, y:)

A block may be associated with a method call using either a literal block
(which must start on the same source line as the last line of the method call) or
an argument containing a reference to a lambda, Proc, or Method object prefixed
with an ampersand character. If the object prefixed by an ampersand responds
to to_proc, then to_proc is invoked and the resulting proc passed to the method.

​ ​def​ ​some_method​

​ ​yield​

​ ​end​

​

​ some_method { }

​ some_method ​do​

​ ​end​

​

​ a_proc = lambda { 99 }

​ some_method(&a_proc)

Ruby provides the method Kernel#block_given?, which is always available and
reflects the availability of a block associated with the call, regardless of the
presence of a block parameter. An explicit block parameter will be set to nil if
no block is specified on the call to a method.

​ ​def​ ​other_method​(&block)

​ puts ​"block_given = ​​#{​block_given?​}​​, block = ​​#{​block.​inspect​​}​​"​

​ ​end​

​ other_method { }

​ other_method

Produces:

​ block_given = true, block = #<Proc:0x00000001043d9280 prog.rb:4>

​ block_given = false, block = nil

A method is called by passing its name to a receiver using a reciever.method

syntax. If no receiver is specified, self is assumed. The receiver checks for the
method definition in its own class and then sequentially in its ancestor classes.
The instance methods of included modules act as if they were in anonymous
superclasses of the class that includes them. If the method isn’t found, Ruby
invokes method_missing in the receiver. The default behavior defined in
method_missing is to report an error and terminate the program.

When a receiver is explicitly specified in a method invocation, it may be
separated from the method name using either a period (.) or, much more rarely,
two colons (::). The only difference between these two forms occurs if the
method name starts with an uppercase letter. In this case, Ruby will assume
that receiver::Thing is an attempt to access a constant called Thing in the receiver
unless the method invocation has an argument list between parentheses. Using
:: to indicate a method call is soft-deprecated because of its potential for
confusion with constant access.

​ Foo.Bar() ​# method call​

​ Foo.Bar ​# method call​

​ Foo::Bar() ​# method call​

​ Foo::Bar ​# constant access​

Safe Navigation
Ruby defines a safe navigation operator, &., as in receiver&.method. If the
receiver is nil, then the method isn’t called and the entire expression returns nil.
If the receiver isn’t nil, then the expression proceeds normally. So, safe
navigation is roughly equivalent to receiver.nil? ? nil : receiver.method or, written
more succinctly, receiver.nil? && receiver.method.

The safe navigation operator only works for the one method call, if you want
to chain multiple methods safely, they all need the safe navigation operator.

​ post&.​writer​&.​address​&.​country​

You may sometimes see this referred to as the “lonely” operator because Matz
said that he thought &. looks like “someone sitting on the floor looking at a
dot…by themself.”

Return Value
The return value of a method is the value of the last expression executed. The
method in the following example returns the value of the if statement it
contains, and that if statement returns the value of one of its branches:

​ ​def​ ​odd_or_even​(val)

​ ​if​ val.​odd?​

​ ​"odd"​

​ ​else​

​ ​"even"​

​ ​end​

​ ​end​

​

​ odd_or_even(26) ​# => "even"​

​ odd_or_even(27) ​# => "odd"​

A return expression immediately exits a method with the value of the
expression passed to return:

return <expr>*

The value of a return expression depends on its parameters. If a return is called
with no parameters, its value is nil. If it’s called with one parameter, its value is
the value of that parameter. If it’s called with more than one parameter, its
value is an array of all the parameters.

A return expression can be used at the top level, outside of a method call, in
which case it stops execution of the current file being loaded. If the load was
from a require statement, the file which called require will continue to load.

super

super < (param *array) > <block>

Within the body of a method, a call to super acts like a call to the original
method, except that the search for a method body starts one step after from the
original method. In an inheritance hierarchy with no included modules, this
means the search will start in the parent class. Using super gives you access to
the method of the same name in a parent class.

If modules are mixed in, the search still starts one step after the original
method, so a method defined in a module added using include will be found by
a call to super. Similarly, if super is called from a method that has been
prepended to the original class, then super starts its search one step later, in the
original class.

The arguments to super are a little unusual. If super is called with arguments,
then those arguments are passed to the next method up the chain. This allows
you to specify a different set of arguments if the original method has a
different parameter list than the parent method. If no arguments are passed to
super, the arguments to the original method will be passed.

This is the only functionality in Ruby where a method call without parentheses
behaves differently than a method call with empty parentheses. Calling super()

with empty parentheses explicitly passes an empty argument list to the next
method up the lookup path, whereas calling super with no arguments or
parentheses passes the argument list from the original method.

Operator Methods
expr operator operator expr expr1 operator expr2

If the operator in an operator expression is marked as “method” (see Table 19, ​
Ruby operators (high to low precedence)​), then the operator can be treated like
a method, and Ruby will execute the operator expression as if it had been
written like this:

(expr1).operator() or (expr1).operator(expr2)

You can use dot syntax for operators in your own code, as in: 1.+(2) is perfectly
legal Ruby. Using the dot syntax enables you to use other Ruby features
specific to method calls, such as the safe navigation operator 1&.+(2), and the
ability to chain method calls. Operators not marked as method cannot be
called in this way.

Attribute Assignment
receiver.attrname = rvalue

When the form receiver.attrname appears as an lvalue in an assignment
statement, Ruby invokes a method named attrname= in the receiver, passing
rvalue as a single parameter. The value returned by this assignment is always
rvalue—the return value of the method is discarded. If you want to access the
return value (in the unlikely event that it isn’t the rvalue), send an explicit
message to the method.

object_ref/attribute.rb

​ ​class​ Demo

​ attr_reader ​:attr​

​

​ ​def​ ​attr​=(val)

http://media.pragprog.com/titles/ruby5/code/object_ref/attribute.rb

​ @attr = val

​ ​"return value"​

​ ​end​

​ ​end​

​

​ d = Demo.​new​

​

​ ​# In all these cases, @attr is set to 99​

​ d.​attr​ = 99 ​# => 99​

​ d.​attr​=(99) ​# => 99​

​ d.​send​(​:attr​=, 99) ​# => "return value"​

Element Reference Operator

receiver[<expr>+
] receiver[<expr>+

] = rvalue

When used as an rvalue, an element reference invokes the method [] in the
receiver, passing as parameters the expressions between the brackets.

When used as an lvalue, an element reference invokes the method []= in the
receiver, passing as parameters the expressions between the brackets, followed
by the rvalue being assigned. In the most common case, as in an Array, the
expression foo[3] = 5 is equivalent to foo.[]=(3, 5). But if the class allows it,
comma-separated expressions inside the brackets are passed to the method, so
array slice access with foo[3, 2] = 5 is equivalent to foo.[]=(3, 2, 5). It’s up to the
receiving class what to do with the arguments or even if it accepts them at all
(for example, an extra argument to Array, as in foo.[]=(3, 2, 4, 5). is an
ArgumentError).

Aliasing
alias new_name old_name

This creates a new name that refers to an existing method, operator, global
variable, or regular expression backreference ($&, $“, $’, and $+). Local
variables, instance variables, class variables, and constants may not be aliased.
The parameters to alias may be names or symbols.

object_ref/alias_1.rb

​ ​class​ Integer

​ ​alias​ plus +

​ ​end​

​ 1.​plus​(3) ​# => 4​

​

​ ​alias​ $prematch $`

​ ​"string"​ =~ ​/i/​ ​# => 3​

​ $prematch ​# => "str"​

​

​ ​alias​ ​:cmd​ ​:`​

​ cmd ​"date"​ ​# => "Thu Nov 2 17:16:30 CDT 2023\n"​

When a method is aliased, the new name refers to a copy of the original
method’s body. If the original method is subsequently redefined, the aliased
name will still invoke the original implementation.

object_ref/alias_2.rb

​ ​def​ ​meth​

​ ​"original method"​

​ ​end​

​

​ ​alias​ original meth

​

​ ​def​ ​meth​

​ ​"​​#{​original​}​​ is now new and improved"​

​ ​end​

​

​ original ​# => "original method"​

​

http://media.pragprog.com/titles/ruby5/code/object_ref/alias_1.rb
http://media.pragprog.com/titles/ruby5/code/object_ref/alias_2.rb

​ meth ​# => "original method is now new and improved"​

Note that the new version can call the old version.

You can also alias inside a module or class with the method
Module.alias_method(new_name, old_name), which has the same behavior as alias

but acts as a method and not a keyword.

Defining Classes

class <scope::> classname << superexpr> body end

class << obj body end

A Ruby class definition creates or extends an object of class Class by
executing the code in body. In the first form, a named class is created or
extended. The resulting Class object is assigned to a constant named
classname (keep reading for scoping rules). This name should start with an
uppercase letter. In the second form, an anonymous (singleton) class is
associated with the specific object.

If present, superexpr should be an expression that evaluates to a Class object
that will be the superclass of the class being defined. If omitted, the
superclass defaults to class Object.

Within body, most Ruby expressions are executed as the definition is read. A
few exceptions:

Method definitions will register the methods in a table in the class
object.

Nested class and module definitions will be stored in constants within
the class, not as global constants. These nested classes and modules
can be accessed from outside the defining class using :: to qualify their
names:

​ ​module​ ​NameSpace​

​ ​class​ Example

​ CONST = 123

​ ​end​

​ ​end​

​

​ obj = NameSpace::Example.​new​

​

​ a = NameSpace::Example::CONST

Calling the Module#include method with modules as arguments will add
those modules as anonymous superclasses of the class being defined.

The classname in a class definition may be prefixed by the names of existing
classes or modules using the scope operator (::). This syntax inserts the new
definition into the namespace of the prefixing modules and/or classes but
doesn’t interpret the definition in the scope of these outer classes. A
classname with a leading scope operator places that class or module in the
top-level scope.

In the following example, class C is inserted into module A’s namespace but
isn’t interpreted in the context of A. As a result, the reference to CONST

resolves to the top-level constant of that name, not A’s version. We also
have to fully qualify the singleton method name because C on its own isn’t a
known constant in the context of A::C.

​ CONST = ​"outer"​

​

​ ​module​ ​A​

​ CONST = ​"inner"​ ​# This is A::CONST​

​ ​end​

​

​ ​module​ ​A​

​ ​class​ B

​ ​def​ self.​get_const​

​ CONST

​ ​end​

​ ​end​

​ ​end​

​

​ A::B.​get_const​ ​# => "inner"​

​

​ ​class​ A::C

​ ​def​ self.​get_const​

​ CONST

​ ​end​

​ ​end​

​

​ A::C.​get_const​ ​# => "outer"​

Remember that a class definition is executable code. Many of the directives
used in class definitions (such as attr and include) are actually private
instance methods of class Module. The value of a class definition is the value
of the last executed statement.

Chapter 22, ​The Ruby Object Model and Metaprogramming​, describes in
more detail how Class objects interact with the rest of the environment and
how the class << obj syntax works.

Creating Objects from Classes

obj = classexpr.new < (args) >

The class Class defines the instance method new, which creates an instance
of the class of its receiver (classexpr). This is done by calling the method
classexpr.allocate. You can override the allocate method, but your
implementation must return an object of the correct class. The new method
then invokes initialize in the newly created object and passes it any
arguments originally passed to new.

You can override new in your own classes, though we wouldn’t recommend
it without a good reason. If you want your override of new to have the same
instance-creating behavior, you usually would call super within the new

override. If for some reason you need to do this behavior manually, you can
explicitly call the method Class.allocate inside your new method and then call
initialize on the result.

Like any other method, initialize should call super if it wants to ensure that
parent classes have been properly initialized. This isn’t necessary when the
parent is Object because class Object does no instance-specific initialization.

Class Attribute Declarations

Class attribute declarations aren’t part of the Ruby syntax; they are simply
methods defined in class Module that create accessor methods automatically.

class name attr attribute <, writable> attr_reader

<attribute>+
 attr_writer <attribute>+

 attr_accessor

<attribute>+
 end

All of these methods return an array of the symbols defined, so you can
apply access control to them, as in private attr_accessor :attribute,

:other_attribute.

Defining Modules
module name body end

A module is a collection of behaviors that are grouped together. The
grouping can be used to include all the behaviors in a different module or
class as one unit, or it can be used for name spacing. Like a class, the
module body is executed during definition, and the resulting Module object
is stored in a constant. A module may contain both class and instance
methods and may define constants and class variables. (A module can also
reference instance variables, but those are dependent on the module being
added to a class; see the next section.)

As with classes, a module’s own methods (called module methods) are
invoked using the Module object as a receiver, and constants are accessed
using the :: scope resolution operator. The name in a module definition may
optionally be preceded by the names of enclosing classes and/or modules.

​ CONST = ​"outer"​

​ ​module​ ​Mod​

​ CONST = 1

​

​ ​def​ self.​method1​ ​# module method​

​ CONST + 1

​ ​end​

​ ​end​

​

​ ​module​ ​Mod::Inner​

​ ​def​ self.​method2​

​ CONST + ​" scope"​

​ ​end​

​ ​end​

​

​ Mod::CONST ​# => 1​

​ Mod.​method1​ ​# => 2​

​ Mod::Inner::method2 ​# => "outer scope"​

Mixins: Including Modules
class|module name include expr end

A module may be included within the definition of another module or class
using the include method. The module or class definition containing the
include gains access to the constants, class variables, and instance methods
of the module it includes.

If a module is included within a class definition, the module’s constants,
class variables, and instance methods are made available as if the module
was an additional superclass for that class. Objects of the class will respond
to messages sent to the module’s instance methods. Calls to methods not
defined in the class will be passed to the modules mixed into the class
before being passed to any parent class. A module may define an initialize

method, which will be called upon the creation of an object of a class that
mixes in the module if either the class doesn’t define its own initialize

method or the class’s initialize method invokes super.

A module may also be included at the top level, in which case the module’s
constants, class variables, and instance methods become available at the top
level.

class|module name prepend expr end

The method prepend behaves like include except that the prepended module’s
methods are placed in the lookup chain before the methods in the enclosing
class or module.

class|module name extend expr end

The method extend adds the module’s methods directly to the singleton class
of self. In typical usage, extend is at the top level of a class, and so the new
methods act as class or module methods of the enclosing class or module.
But foo.extend Module also works and adds the methods of the module to the
singleton class of foo.

Module Functions
Instance methods defined in modules can be mixed into a class using
include. But what if you want to call the instance methods in a module
directly?

​ ​module​ ​Math​

​ ​def​ ​sin​(x)

​ ​#​

​ ​end​

​ ​end​

​ ​include​ Math ​# The only way to access Math.sin​

​ sin(1)

The method module_function solves this problem by taking module instance
methods and copying their definitions into corresponding module methods:

​ ​module​ ​Math​

​ ​def​ ​sin​(x)

​ ​#​

​ ​end​

​ ​module_function​ ​:sin​

​ ​end​

​ Math.​sin​(1)

​ ​include​ Math

​ sin(1)

The instance method and module method are two different methods: the
method definition is copied by module_function, not aliased.

You can also use module_function with no parameters, in which case all
subsequent methods will be module methods.

Access Control

private <symbol>*
 protected <symbol>*

 public <symbol>*

Ruby defines three levels of access protection for module and class
constants and methods:

Public—Accessible to anyone.
Protected—Can be invoked only by objects of the defining class and
its subclasses.
Private—Can be called only with self as the receiver, including both
implicit and explicit uses of self. Private methods therefore can be
called in the defining class and by that class’s descendants and
ancestors, but only within the same object. (See ​Specifying Access
Control​ for examples.)

These levels are invoked with the methods public, protected, and private,
which are defined in class Module. Each access control function can be used
in three different ways:

If used with no arguments, the three functions set the default access
control of subsequently defined methods.

If the method call has arguments, as in private :secret_method,

:other_method, the functions set the access control of the methods and
constants named in the arguments.

Since def returns the method name as a symbol, the functions can be
used to decorate a method declaration, as in private def foo = 1 + 1.

Access control is enforced when a method is invoked.

Blocks, Closures, and Proc Objects
A code block is a set of Ruby statements and expressions inside braces or a
do/end pair. The block may start with an argument list between vertical bars. A
code block may appear only immediately after a method invocation. The start
of the block (the brace or the do) must be on the same logical source line as the
end of the invocation:

invocation do | a1, a2, ... | end

invocation { | a1, a2, ... | }

Braces have a high precedence; do has a low precedence. If the method
invocation has parameters that aren’t enclosed in parentheses, the brace form
of a block will bind to the last parameter, not to the overall invocation. The do
form will bind to the entire invocation.

Within the body of the invoked method, the code block may be called using
the yield keyword. Parameters passed to yield will be assigned to arguments in
the block. The return value of yield is the value of the last expression evaluated
in the block or the value passed to a next statement executed in the block.

A block is a closure; it remembers the context in which it was defined, and it
uses that context whenever it’s called. The context includes the value of self,
the constants, the class variables, the local variables, and any captured block:

​ ​class​ BlockExample

​ CONST = 0

​ @@a = 3

​

​ ​def​ ​return_closure​

​ a = 1

​ @a = 2

​ lambda { [CONST, a, @a, @@a, ​yield​] }

​ ​end​

​

​ ​def​ ​change_values​

​ @a += 1

​ @@a += 1

​ ​end​

​ ​end​

​

​ be = BlockExample.​new​

​ block = be.​return_closure​ { ​"original"​ }

​ block.​call​ ​# => [0, 1, 2, 3, "original"]​

​ be.​change_values​

​ block.​call​ ​# => [0, 1, 3, 4, "original"]​

Here, the return_closure method returns a lambda that encapsulates access to the
local variable a, the instance variable @a, the class variable @@a, and the
constant CONST. We call the block outside the scope of the object that contains
these values, but they’re still available via the closure. If we call the object to
change some values, the values accessed via the closure also change.

Block Arguments
Block argument lists are similar to method argument lists:

You can specify default values.

You can specify splat (starred) arguments.

You can specify keyword arguments.

You can specify a double-splat argument.

The last argument can be prefixed with an ampersand, in which case it’ll
collect any block passed when the original block is called.

Block-local variables are declared after a semicolon in the argument list.

You can’t use these anonymous forwarding syntaxes: *, **, &, or ... (three
dots).

Within a block, you can avoid giving positional arguments names and instead
refer to them by their numerical position using _1, _2, and so on.

​ [1, 2, 3].​map​ { _1.​sqrt​ }

Using both named positional arguments and numerical ones is a syntax error.
Naming a local variable using the _1 pattern is also a syntax error.

In Ruby 3.4, the keyword it is expected to be enabled as a synonym for _1. In
Ruby 3.3, a use of it that might conflict with this future usage will result in a
warning.

Proc Objects
Ruby’s blocks are chunks of code attached to a method. Blocks aren’t objects,
but they can be converted into objects of class Proc. There are many ways to
convert a block into a Proc object:

You can pass a block to a method whose last parameter is prefixed with
an ampersand. That parameter will receive the block as a Proc object:

​ ​def​ ​meth1​(p1, p2, &block)

​ puts block.​inspect​

​ ​end​

​

​ meth1(1,2) { ​"a block"​ }

​ meth1(3,4)

Produces:

​ #<Proc:0x0000000105188868 prog.rb:5>

​ nil

You can call Proc.new, again associating it with a block. There’s also a
built-in Kernel#proc method, which is the same as Proc.new:

​ block = Proc.​new​ { ​"a block"​ }

​ block ​# => #<Proc:0x0000000104418bb0 prog.rb:1>​

You can call the method Kernel#lambda and associating a block with the
call:

​ block = lambda { ​"a block"​ }

​ block ​# => #<Proc:0x00000001024f8c08 prog.rb:1 (lambda)>​

You can use the -> syntax:

​ lam = -> (p1, p2) { p1 + p2 }

​ lam.​call​(4, 3) ​# => 7​

The first two styles of Proc object are identical in use. We’ll call these objects
raw procs. The third and fourth styles, generated by lambda and ->, add some
functionality to the Proc object, as we’ll see in a minute. We’ll call these
objects lambdas.

Here’s the big thing to remember: raw procs are designed to work as the
bodies of control structures such as loops. Lambdas are intended to act like
methods. So, lambdas are stricter when checking the parameters passed to
them, and a return in a lambda exits much as it would from a method.

Calling a Proc
You call a proc by invoking its methods call, yield, or []. The three forms are
identical. Each takes arguments that are passed to the proc, just as if it were a
regular method. If the proc is a lambda, Ruby will check that the number of
supplied arguments match the expected parameters. You can also invoke a
proc using the syntax name.(_args..._). This is mapped internally into
name.call(args...).

Procs, break, and next
Within both raw procs and lambdas, executing next causes the block to exit
back to the caller of the block. The return value is the value (or values) passed
to next, or nil if no values are passed.

​ ​def​ ​ten_times​

​ 10.​times​ ​do​ |i|

​ ​if​ ​yield​(i)

​ puts ​"Caller likes ​​#{​i​}​​"​

​ ​end​

​ ​end​

​ ​end​

​

​ ten_times ​do​ |number|

​ ​next​(​true​) ​if​ number ==7

​ ​end​

Produces:

​ Caller likes 7

Within a raw proc, a break terminates the method that invoked the block. The
return value of the method is any parameters passed to the break.

Return and Blocks
A return from inside a raw block that’s inside a scope acts as a return from that
scope. A return from a block whose original context is no longer valid raises
an exception (LocalJumpError or ThreadError depending on the context). The
following example illustrates the first case:

​ ​def​ ​meth1​

​ (1..10).​each​ ​do​ |val|

​ ​return​ val ​# returns from meth1​

​ ​end​

​ ​end​

​

​ meth1 ​# => 1​

The following example shows a return failing because the context of its block
no longer exists:

reference/local_jump_error.rb

​ ​def​ ​meth2​

​ proc { ​return​ }

​ ​end​

​ res = meth2

​ res.​call​

Produces:

​ code/reference/local_jump_error.rb:2:in `block in meth2': unexpected return

​ (LocalJumpError)

http://media.pragprog.com/titles/ruby5/code/reference/local_jump_error.rb

​ from code/reference/local_jump_error.rb:5:in `<main>'

And here’s a return failing because the block is created in one thread and
called in another:

reference/local_jump_error_2.rb

​ ​def​ ​meth3​

​ ​yield​

​ ​end​

​

​ t = Thread.​new​ ​do​

​ meth3 { ​return​ }

​ ​end​

​

​ t.​join​

Produces:

​ #<Thread:0x00000001047f9bf8 code/reference/local_jump_error_2.rb:5 run>

​ terminated with exception (report_on_exception is true):

​ code/reference/local_jump_error_2.rb:6:in `block (2 levels) in <main>':

​ unexpected return (LocalJumpError)

​ from code/reference/local_jump_error_2.rb:2:in `meth3'

​ from code/reference/local_jump_error_2.rb:6:in `block in <main>'

​ code/reference/local_jump_error_2.rb:6:in `block (2 levels) in <main>':

​ unexpected return (LocalJumpError)

​ from code/reference/local_jump_error_2.rb:2:in `meth3'

​ from code/reference/local_jump_error_2.rb:6:in `block in <main>'

The proc behavior still holds even if you create the raw proc using Proc.new:

reference/proc_new.rb

​ ​def​ ​meth4​

​ p = Proc.​new​ { ​return​ 99 }

​ p.​call​

​ puts ​"Never get here"​

​ ​end​

​

​ meth4 ​# => 99​

http://media.pragprog.com/titles/ruby5/code/reference/local_jump_error_2.rb
http://media.pragprog.com/titles/ruby5/code/reference/proc_new.rb

A lambda behaves more like a free-standing method body—a return simply
returns from the block to the caller of the block:

reference/lambda.rb

​ ​def​ ​meth5​

​ p = lambda { ​return​ 99 }

​ res = p.​call​

​ ​"The block returned ​​#{​res​}​​"​

​ ​end​

​

​ meth5 ​# => "The block returned 99"​

Because of this, if you use define_method with a pre-existing proc and use an
explicit return, you’ll probably want to pass it a proc created using lambda,
rather than Proc.new. In the lambda version, return will work as expected and
return from the method, while the proc version will generate a LocalJumpError

on return.

http://media.pragprog.com/titles/ruby5/code/reference/lambda.rb

Exceptions
Ruby exceptions are objects of class Exception and its descendants.

Raising Exceptions
The raise method raises an exception:

raise raise string cause: $! raise thing <, string stack

tracecause: $!>

When an exception is raised, Ruby places a reference to the Exception object
in the global variable $!. The first form reraises the exception in $! or creates
a new RuntimeError if $! is nil. The second form creates a new RuntimeError

exception, setting its message to the given string. The third form creates an
exception object by invoking the method exception on its first argument,
setting this exception’s message and backtrace to its second and third
arguments. Class Exception and objects of class Exception contain a factory
method called exception, so an exception class name or instance can be used
as the first parameter to raise.

Handling Exceptions
Exceptions may be handled in the following ways:

Within the scope of a begin/end block:

begin code... code... <rescue parm => var then

 error handling code... >*
 <else no exception code...>

<ensure always executed code...> end

Within the body of a method or a block:

def method name and args code... code... <rescue

parm => var then error handling code... >*
 <else

 no exception code...> <ensure always executed

code...> end

After the execution of a single statement:

statement <rescue statement>*

A block or method may have multiple rescue clauses, and each rescue clause
may specify zero or more exception parameters. A rescue clause with no
parameter is treated as if it had a parameter of StandardError. Some lower-
level exceptions won’t be caught by a parameterless rescue class. If you
need to rescue those low-level exceptions, use this to explicitly set the
target of the rescue to Exception:

​ ​rescue​ Exception

When an exception is raised, Ruby scans the call stack until it finds an
enclosing begin/end block, method body, or statement with a rescue modifier.
For each rescue clause in that block, Ruby compares the raised exception
against each of the rescue clause’s parameters in turn; each parameter is
tested using _parameter_ === $!. If the raised exception matches a rescue

parameter, Ruby executes the body of the rescue and stops looking. If a
matching rescue clause ends with => and a variable name, the variable is set
to $!.

Although the parameters to the rescue clause are typically the exception
classes (not instances of expression classes), they can be arbitrary
expressions (including method calls) that return an appropriate class or
module.

If no rescue clause matches the raised exception, Ruby moves up the stack
looking for a higher-level begin/end block that matches. If an exception
propagates to the top level of the main thread without being rescued, the
program terminates with a message.

If an else clause is present, its body is executed if the code reaches its end
without returning and without raising an exception. Exceptions raised
during the execution of the else clause aren’t captured by rescue clauses in
the same block as the else.

If an ensure clause is present, its body is always executed as the block is
exited (even if an uncaught exception is in the process of being propagated).
If an ensure clause is present, the return value of the method is still the
return value of the main block—the last expression of the ensure block is
never the return value of the method.

Within a rescue clause, raise with no parameters will reraise the exception in
$!.

Rescue Statement Modifier
A statement may have an optional rescue modifier followed by another
statement (and by extension another rescue modifier, and so on). The rescue

modifier takes no exception parameter and rescues StandardError and its
children.

If an exception is raised to the left of a rescue modifier, the expression on
the left is abandoned, and the value of the overall line is the value of the
statement on the right:

​ values = [​"1"​, ​"2.3"​, ​/pattern/​]

​ result = values.​map​ { |v| Integer(v) ​rescue​ Float(v) ​rescue​ String(v) }

​ result ​# => [1, 2.3, "(?-mix:pattern)"]​

Retrying a Block

The retry statement can be used within a rescue clause to restart the
enclosing begin/end block from the beginning.

Catch and Throw
The method catch executes its associated block:

catch (object) do code... end

The method throw interrupts the normal processing of statements:

throw(object <, obj>)

When a throw is executed, Ruby searches up the call stack for the first catch
block with a matching object. If it’s found, the search stops, and execution
resumes past the end of the catch’s block. If the throw is passed a second
parameter, that value is returned as the value of the catch. Ruby honors the
ensure clauses of any block expressions it traverses while looking for a
corresponding catch.

If no catch block matches the throw, Ruby raises an ArgumentError exception
at the location of the throw.

Typed Ruby
RBS has its own syntax for defining Ruby types. The definitive source for
the syntax reference is found at
https://github.com/ruby/rbs/blob/master/docs/syntax.md. We’ll go over the
structure here.

RBS Declarations and File Structure
RBS syntax has a few main parts (we’re adopting the naming convention
from the official syntax file):

Declarations are class, module, and interface structures that can be
used as types in other parts of the file.

Members are things that are inside declarations that might have type
information, including instance variables, attributes, and methods.

Types are the things that RBS uses to specify actual type information,
including class names, union of class names, or literal types, as well as
a few RBS-specific keywords.

An RBS file looks like the skeleton of a Ruby file. It declares classes and
methods, but doesn’t include the body of methods. You’d typically have
more than one class in a single RBS file (one namespace per file is
common), and I’d say it’s rare for an RBS-using application to have top-
level methods included in the RBS file.

RBS Declarations
You can declare a class in RBS:

class <namespace::> classname module_types <<

superclass superclass_types> body end

https://github.com/ruby/rbs/blob/master/docs/syntax.md

An RBS class definition looks like a Ruby class definition except that both
the class name and the superclass name can be augmented with type
parameters. Those type parameters are used for Generics, and we’ll talk
about what those do and the syntax for them in ​RBS Generics​.

A class definition with the type modifiers looks like this:

​ ​class​ LinkedList[I] < List[I]

​ ​# body​

​ ​end​

A module definition is similar, but a module has an additional type
definition, like this:

module <namespace::> module_name module_types <<

superclass superclass_types> < : module-self-types>

 body end

The module self type is type information about the kinds of classes that can
include a module. So, you might have a whole class hierarchy underneath a
class named AbstractPolicy and a module that you only want included within
AbstractPolicy or one of its subclasses:

​ ​module​ ​PolicyPrinter​ : AbstractPolicy

​ ​end​

Where this gets a little more interesting is with the inclusion of an interface.
RBS allows you to specify an interface that has a set of methods, and then
any class that has those methods also matches the interface. (We’ll cover
the method syntax in ​RBS Members​.) Here’s an example:

​ interface Postish

​ ​def​ ​title​: () -> String

​ ​def​ ​description​: () -> String

​ ​end​

​

​ ​module​ ​Htmlable​ : Postish

​ ​end​

In this case, the Htmlable module can only be included by classes that
implement the Postish interface, meaning they have methods called title and
description.

An interface declaration is syntactically similar to a module:

interface <namespace::> module name module_types <<

superclass superclass_types> body end

You can also declare aliases using the keyword type, which allows you to
specify shortcuts:

type alias type-parameters = type

The type parameters are the same generics that modules and classes have,
and the type at the end is any RBS type as defined in ​RBS Types​.

In the RBS documentation, constants and globals are considered
declarations, and they both work the same way with the name followed by a
colon and then by the type:

constant: type $global: type

As in:

​ ​class​ Post

​ DEFAULT_TITLE: String

​ ​end​

​

​ $ADMIN_EMAIL: String

RBS Members
An RBS member is essentially something that you’d expect to live inside a
class, like a method definition or an instance variable. Unlike regular Ruby,
RBS expects you to declare the type of instance variables. Instance
variables that aren’t declared will be type errors as far as RBS tools are
concerned:

@instance_variable: type

If you’re using attr_accessor and its sibling methods, you can declare the
type of the internal variable. By default, this also declares an instance
variable of the same name, but you can override that by putting a different
variable name in parentheses, or you can omit declaring a variable name by
including empty parentheses (presumably because the variable name has
already been declared).

attr_attribute_type name : type attr_attribute_type name

(ivar) : type attr_attribute_type name () : type

Any of the attr methods can be used here:

​ ​class​ Person

​ @id_number: String

​ attr_accessor ​name: ​String

​ attr_reader height (@height_in_inches): Integer

​ attr_writer id_number (): String

​ ​end​

Most of the body of RBS classes are going to be method names where
you’re specifying the types of the arguments and the type of the return
value. This gets a little tangled because Ruby has a lot of different ways to
define method parameters, but the basic idea is that every element of the
method definition can have a type decoration.

The simplest version of the syntax is the method name followed by a colon,
then by all the parameters, a skinny arrow, and the return type:

def method_name: (params) -> type def method_name:

(params) -> type <| (params) -> type>

If the method name starts with self, that indicates a singleton method—in
normal usage that would be a class or module method. If the method name
starts with self?, that makes it both a public singleton method and a private
instance method.

If the method has multiple type signatures, you can separate them with a
pipe character. Typically you’d do that on multiple lines:

​ ​def​ ​add_money​: (Integer) -> Integer

​ | (RomanNumeral) -> RomanNumeral

You can have an arbitrary amount of overloads.

The parameter list can be empty, in which case you do include the empty
parentheses:

​ ​def​ ​price_in_cents​: () -> Integer

Take a deep breath here while we go through all the ways in which to
specify parameters….

A required positional parameter is denoted by the type optionally followed
by the name of the parameter:

​ ​def​ ​add​(Integer)

​

​ ​def​ ​add​(Integer other)

An optional positional parameter—meaning a parameter with a default
value—is specified with the same syntax, but with a ? prefix to the type:

​ ​def​ ​expand​(?String)

​

​ ​def​ ​expand​(?String delimeter)

A splat parameter is denoted with a splat before the type name, with or
without the name of the variable:

​ ​def​ ​join_all​(*String)

Keyword parameter syntax is a little different. The keyword is followed by
a colon and then by the type. Optional keywords—again, meaning
keywords with defaults—are prefixed with a ?, and the type double-splats

are preceded by ** (we’ll show how to specify hash types in the next
section):

​ ​def​ ​lots_of_args​(​arg1: ​String, ?​arg2: ​Integer, **HashType)

A block argument has its own syntax:

{parameters <[self: self_type]> -> return_type} ?

{parameters <[self: self_type]> -> return_type}

If the block is optional, the ? prefix is used. The parameters in the block
have the same syntax as we just described for method parameters, and the
return type can be any type:

​ ​def​ ​each_users_posts​ { User -> Array[Post] }

The optional “self type” is used when you expect the block to be a target of
an instance_eval call and limits the type of objects that can call instance_eval

on this block:

​ ​def​ ​each_users_posts​ { (User) [​self: ​Document] -> Array[Post] }

Proc objects have essentially the same syntax as blocks, except that they
start with ^ rather than having braces:

^parameters <[self: self_type]> <block> -> return_type

There are a couple of other things you can do with inside an RBS class or
module definition:

You can include, extend, or prepend modules just as you can in Ruby,
and with the same meaning.

The private, protected, and public modifiers can be used on methods or
attributes and specify the access that the member will have in the
actual class. They can either be directly modifying individual methods
or used on their own, as they can be in Ruby.

You can use alias to declare that two methods are the same.

RBS Types
To this point, we’ve kind of hand-waved what goes into the place where
RBS asks for a “type.” A type can be several things in RBS.

A type can be a literal value, in which case the object of this type can only
have that one literal value. This seems of little practical use, but you can do
it.

A type can be a class, model, or interface name (or a declared alias to one of
those things), which declares that the member must be an instance of that
class or a subclass of that class:

​ ​def​ ​height​: () -> Integer

If you want to specify that your type is the singleton class, then you use
singleton(type), so singleton(User), for example, would mean that your type is
the singleton class associated with User.

In some cases, the type is a container of other objects, and you can specify
the type of the objects contained using square brackets, as in Array[String] or
Hash[Symbol, Integer]. We’ll see how to implement this in ​RBS Generics​.

You can specify hash objects with fixed keys with key: type syntax, as in
{name: String, height: Integer}. You can specify array types with fixed lengths
with Array syntax, as in [Integer, String, Integer].

By default, types declared with RBS can’t have nil values. To specify that nil

is a potential value, you append the type with a ?, as in String?. This is called
an optional type. Note that if you have an optional parameter that’s also an
optional type, you can have both leading and trailing question marks, as in ?
String?.

You can combine types. The pipe character indicates a union, meaning that
the value can be a member of one or more of the grouped types. A common
use case is for a method to take either a record or the ID of that record,
which you could annotate as (id_or_record: User | Integer). Somewhat more
rarely, the & indicates an intersection, meaning the value has to match all the
types in the group, which you’d most commonly see as a set of interfaces:
(admin: Customer & Employee).

RBS defines a handful of keywords that stand in for various kinds of types,
often in the context of the class or method being defined:

bool—An alias of true | false.

boolish—An alias of top, which means you’re expecting an arbitrary
value here but treating it as a boolean. It’s recommended over bool for
method arguments and return values unless you’re strictly limiting the
values to true and false.

bot—A subtype of all RBS types.

class—Equivalent to the singleton class of the class being defined.

instance—The type of an instance of the class being defined.

nil—Means nil.

self—Indicates the type of the receiver of the method.

top—A supertype of all RBS types, similar to untyped.

untyped—RBS doesn’t care what this variable is. The equivalent of
TypeScript’s any.

void—Equivalent to top. Use in cases where the return value of a
method won’t be used.

RBS Generics
A common problem in a type system is a container that behaves similarly
no matter what type of objects are inside it. So, an array of String has a lot of
methods that return a String, while an array of Integer has all the same
methods, but they return an Integer. The container doesn’t care what type the
values are, but it does care that the values are consistent for any particular
container.

The term for this in typed languages is a generic. Typically, the container
class or module or interface defines one or more generic types as being part
of the container, and then methods within that container use those generics
to represent the type as a parameter or return type.

In RBS, a class, interface, or module can define one or more generic types
in square brackets at the top of the definition. The type names are
capitalized, and by convention, they are usually a single letter.

In this case, the Scheduler class defines a generic, the next method returns an
element of that type, and the perform method takes an element of that type
as an argument:

​ ​class​ Scheduler[T]

​ ​def​ ​next​: () -> T

​ ​def​ ​perform​: (T) -> void

​ ​end​

When you use Scheduler in other RBS definitions, you augment it with the
type to be used as a generic. So Scheduler[RedisJob] would imply that next

will return an object of type RedisJob and that perform will take an object of
type RedisJob.

You might want to limit the input type going to the generic. You can specify
a limiting parent class to the generic:

​ ​class​ Scheduler[T < Job]

​ ​def​ ​next​: () -> T

​ ​def​ ​perform​: (T) -> void

​ ​end​

So now, when Scheudler[RedisJob] is declared, RBS ensures that RedisJob is a
subclass of Job.

By default, the contained classes must match with their usages. If you
declare that something is of type Scheduler[RedisJob] and then try to pass that
variable to something that expects Scheduler[Job], RBS will consider that to
be a type mismatch, even though Job is a superclass of RedisJob.

To make this work, you can describe the scheduler generic as [out T]. If so
described, then Scheduler instances will type match with generics that are
superclasses of the generic. The technical term is covariant. A declaration
can also be [unchecked out T], which means the RBS type system doesn’t try
to match the types of the generic class.

If you want to go the other way and have classes be type matched with
subclasses, then the term is countervariant, and you indicate that with [in T].

Copyright © 2024, The Pragmatic Bookshelf.

Part 5
Ruby Library Reference

Ruby gets much of its functionality from its extensive library.
That library is sometimes described as having two parts: the
"core," which is part of Ruby and is included as part of
every Ruby program, and the "standard library," which is
shipped with Ruby but must be explictly required in code to
be used.

In this part, we cover a curated list of the most important
classes and their most useful methods in both the core and
the standard library. We didn’t separate the two. If a class in
this list needs to be explicitly required, we note that as part
of the description of that class. Note that we tried to keep
related functionality together, so when you browse for one
method, you might find another one that fits your needs
more completely.

Chapter 26

Library Reference: Core Data
Types

In this chapter, we’ll take a closer look at Ruby’s core data types. The goal
is to give you more information about what you can do with these classes
and also to discuss related functions together so that you can browse and
perhaps find a new feature that might help. We’re presenting the topics in
alphabetical order for easier browsing, and we’ll cross-reference between
topics as needed.

This isn’t intended to be a complete listing of every class, method, or
option. For that, please refer to the official Ruby documentation at
https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide
its complete name and signature. The notation Foo.bar indicates a class or
module method, while Foo#bar indicates an instance method. Optional
arguments are indicated with Ruby syntax and their default value, as in
Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with
brace syntax and an indication of what the arguments to the block will be,
as in Foo#bar { |object| block }. An optional block argument will be surrounded
by square brackets, Foo#bar [{block}]. Please note that this description syntax
is slightly different from the official documentation, and that in some cases,

https://docs.ruby-lang.org/

what the official documentation shows as multiple method signatures,
we’ve chosen to show as one signature with default values. Also, parameter
names sometimes differ from the official documentation to make the
naming clearer.

Dates and Times
Ruby has three separate classes to represent date and time data: Time, Date,
and DateTime.

Time represents a specific moment in time, and you can retrieve both
date and time information based on that. The Time class is based on a
library that is common to Unix systems and is used by many
programming languages.

Date represents a date only with no time information attached. It’s
useful for calendar arithmetic that doesn’t depend on the time of day.
You need require "date" to use the Date class.

DateTime also represents a specific moment in time but uses a different
internal representation than Time. DateTime is now considered
deprecated—at one point it had a more complete API than Time, but
that is no longer true. Currently, the only recommended use of DateTime

is if you’re dealing with dates in the distant past. You need require

"datetime" to use the DateTime class.

Creating Time Instances
There are a few ways to create a new Time instance. The method you’re
most likely to see is Time.new(in: nil), with no arguments, which is also
aliased as Time.now, and which returns the current time. This example shows
when this section was most recently executed when building the book:

​ Time.​new​ ​# => 2023-11-02 17:16:31.356058 -0500​

By default, the resulting time is in the current time zone. To change the time
zone, you use an optional keyword argument, in, that takes the time zone, as
in Time.now(in: nil).

You’ll see a few time methods that allow you to specify a time zone. For
those methods, Ruby allows a time zone to be specified in these ways:

A string representing the offset from UTC in hours and minutes in the
form “+HH:MM” or “-HH:MM”.

An integer representing the offset from UTC in seconds.

A single letter representing military time zones, as specified here.[49]

A custom object that responds to the methods local_to_utc and
utc_to_local with logic that performs the appropriate transition.
(Time.new and Time.now can’t take an object like this, but other time
methods can.)

A different form of Time.new(string, precision: 9, in: nil) takes in a string in a
YYYY-MM-DD HH:MM:SS format and returns that exact time. This version takes
a keyword argument, precision, which limits the number of decimal places
kept for the seconds, and also takes an optional time zone with the in:

keyword argument.

A more flexible way to create a new Time instance from a string is
Time.parse(time_string, now = Time.now) [{year}]. The parse method isn’t available
by default. The parse method isn’t part of the core library of Time, to use
Time.parse you must call require "time" somewhere in your code before use.

The Time.parse method takes a string and converts it to a time object based
on Ruby’s best guess as to the underlying format. Missing parts of the time
are set to 0, and missing parts of the date will be filled in based on the
current date. If you want to use a different date as the baseline, you can pass
in a date as the optional second positional argument.

You have some leeway in how you pass in the string, and Ruby will try to
do the right thing. Here are some examples:

​ require ​"time"​

​ Time.​parse​(​"2023-2-10"​) ​# => 2023-02-10
00:00:00​

​ ​# .. -0600​

​ Time.​parse​(​"2023-10-2"​) ​# => 2023-10-02
00:00:00​

​ ​# .. -0500​

​ Time.​parse​(​"2023-2-28"​) ​# => 2023-02-28
00:00:00​

​ ​# .. -0600​

​ Time.​parse​(​"1:00"​) ​# => 2023-11-02
01:00:00​

​ ​# .. -0500​

​ Time.​parse​(​"February 26, 2023, 3:00 America/Chicago"​) ​# => 2023-02-26
03:00:00​

​ ​# .. -0600​

Time.parse takes an optional block that accepts the year of the parsed time
and allows you to return a different year. This functionality is specifically
there to allow you to manage two-digit year formats.

If you’re using strings for dates as specified by the HTTP protocol, you can
use Time.httpdate(time) to get the given date and time in the format used by
HTTP requests. The output format is day-of-week, DD month-name CCYY

hh:mm:ss GMT. As I write this, that corresponds to Sun, 26 Feb 2023 20:26:12

GMT. Similarly, you can use Time.rfc2822(time) to parse the very similar date
format specified by that RFC.

If the unspecified nature of Time.parse bothers you, you can use
Time.strptime(time, format, now = Time.now), which is short for “string parse
time.” The first argument to strptime is a string representation of a time. The
second argument is a format string, and the third argument is an optional
date that fills in any missing date information. Like parse, an optional block
can be used to manage two-digit years.

The format string uses the same format characters as strftime, which are
shown in Table 21, ​Time#strftime directives​. The strptime method uses the

format string to interpret the string and convert it to a Time. To use
Time.strptime you must call require "time", as the strptime method isn’t
available by default. These are some examples:

​ require ​"time"​

​ Time.​strptime​(​"2023-2-10"​, ​"%Y-%m-%d"​) ​# => 2023-02-10 00:00:00 -0600​

​ Time.​strptime​(​"2023-2-10"​, ​"%Y-%d-%m"​) ​# => 2023-10-02 00:00:00 -0500​

Another way to create a Time instance is using the multi-argument form of
Time.new:

Time.new(year, month = 1, day_of_month = 1, hour = 0, minute = 0, second = 0,

time_zone = local, in: nil)

All the positional arguments other than the year are optional, and all the
values can be of type Integer, Float, Rational, or String instances that can be
converted to integers. The arguments accept different valid values:

The month value range is 1 to 12, or it can be the three-letter English
abbreviation of the month (case-insensitive).

The day of the month ranges from 1 to 31. If the month in question has
fewer than 31 days, then Ruby will push forward into the next month,
so Time.new(2023, 2, 31) returns 2023-03-03 00:00:00 -0600.

The hour ranges from 0 to 23, but you can use 24 if and only if the
minute and second are zero.

Minute ranges from 0 to 59.

Second ranges from 0 to 60, where 60 indicates a leap second. The
second can also be a float or rational number.

If any of the values are out of range, Ruby throws an ArgumentError.

The time zone can be specified via the last positional argument or the in:

keyword argument using the same timezone specifiers we saw earlier with
Time.now.

A couple of variations on Time.new return output based on the time zone:

Time.gm or Time.utc, which returns the time in UTC.
Time.local or Time.mktime, which returns the time in the local time zone.

All of these methods take up to seven positional arguments that match the
arguments to Time.now but with an additional argument for microseconds.
Alternatively, the methods are set up such that if they are called with
exactly ten arguments, they assume the arguments are in order as if they
were generated by Time#to_a. So x = Time.now; Time.gm(*x.to_a) will work as
expected even though the order of the result of to_a doesn’t match the order
of positional arguments in Time.now.

The method Time.at(time, subseconds = false, unit = :microseconds, in: nil) returns a
new time object that gives the number of seconds since the beginning of the
Unix Epoch on Jan 1, 1970. It takes an optional in: keyword argument to
specify the time zone of the result using the time zone specifiers discussed
earlier. An optional second positional argument can specify subseconds, and
an optional third argument specifies the unit of the subseconds. The unit can
be :millisecond, :microsecond, or :nanosecond. The default is :microsecond.

Table 21. Time#strftime directives

Format Meaning
 Unless otherwise specified, numerical fields are padded with zeroes if the numbers

are too small to fit the width of the field. Prefixing any format code with %0, as in
%0Y pads with zeros, prefixing with %_, as in %_Y pads with blanks, and %-, as in
%-Y, doesn’t pad.

%% Literal %

Format Meaning
%a The abbreviated weekday name (“Sun”)

%A The full weekday name (“Sunday”)

%b The abbreviated month name (“Jan”)

%B The full month name (“January”)

%c The preferred local date and time representation

%C The first two digits of a four-digit year (currently 20)

%d Day of the month (01..31)

%D Date (%m/%d/%y)

%e Day of the month, blank padded (␣1..31)

%F ISO8601 date (%Y-%m-%d)

%g Last 2 digits of ISO8601 week-based year

%G ISO8601 week-based year

%h The abbreviated month name (“Jan”)

%H Hour of the day, 24-hour clock (00..23)

%I Hour of the day, 12-hour clock (01..12)

%j Day of the year (001..366)

%k Hour of the day, 24-hour clock, blank padded (␣0..23)

%l Hour of the day, 12-hour clock, blank padded (␣1..12)

%L Milliseconds of the second

%m Month of the year (01..12)

%M Minute of the hour (00..59)

%n Newline

Format Meaning
%N Fractional seconds, 9 digits in width, an optional width specifier changes the width,

as in %3N

%p Meridian indicator, uppercase (“AM” or “PM”)

%P Meridian indicator, lowercase (“am” or “pm”)

%r 12-hour time (%I:%M:%S %p)

%R 24-hour time (%H:%M)

%s Number of seconds since 1970-01-01 00:00:00 UTC

%S Second of the minute (00..60)

%t Tab

%T 24-hour time (%H:%M:%S)

%u Day of the week (Monday is 1, 1..7)

%U Week number of the current year, starting with the first Sunday as the first day of
the first week (00..53)

%w Day of the week (Sunday is 0, 0..6)

%v VMS date (%e-%^b-%4Y)

%V ISO8601 week number (01..53)

%W Week number of the current year, starting with the first Monday as the first day of
the first week (00..53)

%x Preferred representation for the date alone, no time

%X Preferred representation for the time alone, no date

%y Year without a century (00..99)

%Y Year with century, four digits.

%z Time zone offset (+/-hhmm). Use %:z or %::z to format with colons

%Z Time zone name

Format Meaning
%+ Date and time, not supported by Time class.

Using Time Instances
Once you have a Time instance, you can extract all the various attributes.
Every attribute that might get passed in as part of a constructor call has an
associated getter method: Time#year, Time#month (aliased as Time#mon),
Time#day (aliased as Time#mday), Time#hour, Time#min, Time#sec, and
Time#subsec. All of these methods return the integer value of that attribute
except for subsec, which returns either a Rational or integer zero.

A Time instance includes a few calculated attributes:

Time#dst? returns true if the time zone is a daylight savings time zone.

Time#nsec returns the subseconds in nanoseconds.

Time#usec returns the subseconds in microseconds.

Time#wday returns the day of the week as an integer with Sunday as 0,
Monday as 1, and so on.

There are also a series of methods called sunday?, Time#monday? and so
on that return true if the day of the week matches that day.

Time#yday returns the integer day of the year, so January 1st is 1,
February 12th is 33, and so on.

Time#zone returns the name of the time zone.

A Time instance can be the left side of an addition operation and have a
number added to it. A new time object is returned with the number of
seconds added to the time.

​ t = Time.​now​

​ t ​# => 2023-11-02 17:16:31.572387 -0500​

​ t + 100 ​# => 2023-11-02 17:18:11.572387 -0500​

A Time instance can be the left side of a subtraction operation. The right side
can be a number, in which case a new instance is returned with the number
of seconds subtracted from the time. Alternatively, a second Time instance
can be the right operand, in which case the result is the number of seconds
between the two times as a float:

​ t = Time.​now​

​ t ​# => 2023-11-02 17:16:31.643105 -0500​

​ t2 = t - 100

​ t2 ​# => 2023-11-02 17:14:51.643105 -0500​

​ t - t2 ​# => 100.0​

Time implements the Time#<=> operator and includes the Comparable module,
so Time instances can be sorted and compared using all the logical
comparison operators.

Converting Time
You can convert a Time instance to a number with the methods Time#to_f,
Time#to_i, and Time#to_r. These return the number of seconds that have
passed since the Unix Epoch date as a float, integer, or rational,
respectively.

A Time instance can be converted to a Time instance in a different time zone
with Time#getutc or Time#getlocal, both of which have the corresponding
methods Time#utc and Time#localtime, which change the receiver in place.
You can convert a Time instance to a Date or DateTime with Time#to_date or
Time#to_datetime.

You can convert a Time instance to an array using Time#to_a, which returns a
10-element array made up of the attributes [sec, min, hour, day, month, year,

wday, yday, dst?, zone]. This array can be passed back to some of the Time

constructors to create a new Time instance. Although you cannot convert a
Time to a hash directly, Time does implement Time#deconstruct_keys so you
can use a Time instance in pattern matching. Here’s an example:

​ require ​"time"​

​ x = Time.​parse​(​"April 12, 2023"​)

​ ​case​ x

​ ​in​ {​month: ​3|4|5, day:}

​ puts ​"Spring is here and it's the ​​#{​day​}​​th"​

​ ​else​

​ puts ​"It's not winter"​

​ ​end​

Produces:

​ Spring is here and it's the 12th

You can convert a Time instance to a string in several ways. The most
general is Time#strftime(format_string), which takes a format string as an
argument. The format string uses the characters shown in Table 21, ​
Time#strftime directives​, to insert parts of the actual time in the string. Here
are examples of the string formatting methods:

Time#asctime (also ctime) formats as %a %b %e %T %Y, which has a
shortcut %c.
Time#httpdate formats as %a, %d %b %Y %T GMT.
Time#inspect formats as %Y-%m-%d %H:%M:%S %N %z.
Time#rfc2822 formats as %a, %-d %b %Y %T %z.
Time#to_s formats as %Y-%m-%d %H:%M:%S %z, which is the same as
inspect except for the subseconds.

Here are the methods in action:

​ require ​"time"​

​ t = Time.​now​

​ t.​strftime​(​"%m/%d/%y"​) ​# => "11/02/23"​

​ t.​strftime​(​"%a %b %e %H:%M:%S %Z %Y"​) ​# => "Thu Nov 2 17:16:31 CDT 2023"​

​ t.​ctime​ ​# => "Thu Nov 2 17:16:31 2023"​

​ t.​httpdate​ ​# => "Thu, 02 Nov 2023 22:16:31 GMT"​

​ t.​inspect​ ​# => "2023-11-02 17:16:31.78857 -0500"​

​ t.​rfc2822​ ​# => "Thu, 02 Nov 2023 17:16:31 -0500"​

​ t.​to_s​ ​# => "2023-11-02 17:16:31 -0500"​

Creating Date and DateTime Instances
The date library implements the classes Date and DateTime, which provide a
comprehensive set of facilities for storing, manipulating, and converting
dates with or without time components. The classes can represent and
manipulate civil, ordinal, commercial, Julian, and standard dates, starting
January 1, 4713 BCE. The DateTime class extends Date with hours, minutes,
seconds, and fractional seconds, and it provides some support for time
zones. The classes also provide support for parsing and formatting date and
datetime strings. To use them, you need to require "date".

DateTime is a subclass of Date and is generally considered deprecated in
favor of plain-old Time unless you specifically need its calendar calculation
facilities. In this section, we’ll talk about Date mostly, since DateTime is a
subclass, so you can assume anything about Date also applies to DateTime.

Many methods of Date that create or compare dates take an optional
positional argument at the end, start = Date::ITALY. This is for Gregorian vs.
Julian dates, and you’re unlikely to need this in regular work, so we’ve left
it off of all the methods that use it.

The main method for creating a Date is with Date.today, which returns the
current date as a Date instance. You’ll also often see Date.new(year, month day)

or Date.parse(string, current_century = true, limit: 128)—the parse method uses
similar logic to Time.parse. If the current_centry argument is true, a two-digit
year is augmented with the current century, otherwise, it’s taken as referring

to a two-digit year. There’s also a Date.strptime(string, format = "%F") that takes
a format string, again, just like Time.strptime. The DateTime class has
DateTime.now and also a DateTime.new that takes in arguments similar to the
multi-argument format of Time.new

Date can be the left side of an addition operation. The second operand is a
number in days to be added to the Date.

​ require ​"date"​

​ d = Date.​new​(2023, 2, 12)

​ d ​# => #<Date: 2023-02-12 ((2459988j,0s,0n),+0s,2299161j)>​

​ d + 25 ​# => #<Date: 2023-03-09 ((2460013j,0s,0n),+0s,2299161j)>​

Date can be the left side of a subtraction operation. Subtraction either takes
a numeric and returns a new Date that many days earlier, or another Date and
returns the number of days in between the two of them.

Date also takes Date#<<, which adds a number of months to the date, as in
Date.today << 3.

Date also supports <=> and Comparable.

You can get a following day with Date#next, Date#next_day(n = 1),
Date#next_month(n = 1), Date#next_year(n = 1). The last three take an optional
argument for the number of steps you want to move forward. You also have
Date#prev_day(n = 1), Date#prev_month(n = 1), and Date#prev_year(n = 1).

Once you have a Date, the components are accessible as Date#year,
Date#month (aliased as Date#mon), and Date#day (aliased as Date#mday). All
the weekday predicate methods like Date#sunday? also exist, as do Date#wday

(day of week), and Date#yday (day of year). The DateTime class also adds
DateTime#hour, DateTime#minute (aliased as DateTime#min), DateTime#second

(aliased as DateTime#sec), DateTime#second_fraction (aliased as
DateTime#sec_fraction), and DateTime#zone.

Date has most of the same string methods as Time, including Date#ctime and
Date#strftime(format = "%F"), and also implements Date#deconstruct_keys for
pattern matching. There’s also Date#to_datetime and Date#to_time.

Math
The Numeric class and its subclasses handle a lot of the basic arithmetic in
Ruby. (For more see ​Numbers​.) But sometimes you need to do more
advanced math. The Math module provides a couple dozen math functions,
largely trigonometry, but it also handles other branches of advanced math.
The BigMath model recreates a subset of those methods for BigDecimal

arguments and values.

All of these methods are module methods, so they are all called with
module syntax, as in Math.cos(value).

The Math module contains multitudes, especially if you like trigonometry.
Specifically, it contains:

The constant values Math::Pi and Math::E.

Math.sqrt(x) and Math.cbrt(x), which return the square and cube roots of
the argument, respectively.

Logarithm functions, so Math.log(x, base = Math::E) returns the logarithm
of the value and has an inverse method Math.exp(x), which returns e
raised to that value. The sibling log methods Math.log10(x) and
Math.log2(x) are also available and return the log of the argument in the
base of the method name.

A related method, Math.frexp(x), which returns a two-element array with
the fraction and exponent base two of that number, so the return value
is [y, z], where x = y * 2**z. The inverse method Math.ldexp(y, z), returns the
x value in that equation.

A method Math.hypot(x, y), which takes two arguments and returns
sqrt(x**2, y**2)—in other words, the hypotenuse of a right triangle with
sides x and y.

Error and gamma functions Math.erf(x), Math.erfc(x), Math.gamma(x), and
Math.gammac(x). We’re just going to assume that if you know what these
are, you’ll know what they do.

Lots of trig functions, including the basic Math.sin(x), Math.cos(x), and
Math.tan(x). The input value is in radians, and for sin and cos it must be
between -1 and 1. There’s also the inverse trig functions Math.acos,
Math.asin(x), Math.atan(x), and Math.atan2(x). Finally, the hyperbolic and
inverse hyperbolic functions Math.cosh(x), Math.sinh(x), Math.tanh(x),
Math.acosh(x), Math.asinh(x), and Math.atanh(x) are all also there, and all
also take arguments in radians. Some of these methods have their own
range limits.

Numbers
We talked about numeric literals in ​Integer and Floating-Point Numbers​.
Here, let’s talk about the library methods for numbers.

Numeric Class
All number classes inherit from the class Numeric. If you want to define your
own number subclass, it’s recommended that you also inherit from Numeric

because Numeric does some internal things about storing numbers in
memory that are useful to have.

It might go without saying—but it’s our job to say it—that Numeric
implements Numeric#<=> and includes Comparable. As with other <=>, the
return value is -1 if the left side is smaller, 1 if the left side is greater, and 0
if the two are equal. The equality test is also aliased as eql?.

It’s also our job to say that the actual arithmetic operators—Numeric#+

(other), Numeric#-(other), Numeric#*(other), Numeric#/(other), and Numeric#**

(other)—aren’t defined by Numeric but are defined by the subclasses
individually, presumably for performance reasons. The Numeric class does
define unary Numeric#@- for negating a number and unary Numeric#@+,
which is a no-op. Numeric also defines Numeric#%(other), which does modular
arithmetic, but this is also overridden in most of the subclasses. And Numeric

also defines Numeric#abs for the absolute value of the number.

The basic mechanism of converting between number types for the purposes
of doing arithmetic is Numeric#coerce(other). The coerce method takes another
numeric argument and returns a two-element array with the argument as the
first element and the original receiver as the second. The two numbers are
in a common type—broadly, an integer and a non-integer argument will
both be converted to floats. A float receiver and pretty much any argument

will be converted to floats. A rational or complex receiver will convert an
integer argument, but will be converted to float by a float argument, see ​
Numeric Coercion​, for more examples.

Numeric defines Numeric#ceil(digits = 0), Numeric#floor(digits = 0),
Numeric#round(digits = 0), and Numeric#truncate(digits = 0) for the common
mathematical definitions. All of these take an optional argument that is the
number of digits beyond the decimal point to keep; the default is 0. So, ceil

returns the smallest number above the receiver at that precision, floor

returns the largest number below, round returns whichever of floor or ceil is
closer, halfway point rounds up, and truncate cuts off the number.

Somewhat counterintuitively, Numeric does define a couple of division
methods. It defines Numeric#div(x) as integer division self / x using the self

objects definition of /. If you want a float result, then Numeric#fdiv(x) does
the same division but returns a float. The method Numeric#quo(x) does the
same division but returns a rational if the argument is an integer or rational,
or a float if the argument is a float. The method Numeric#divmod(x) returns a
two-element array such that self.divmod(x) = [(self / x).floor, self % x]. The mod
value is also available as Numeric#remainder(other).

Any number can be converted to an integer with Numeric#to_int, but the
kernel method Integer is preferred, and you can go to a complex number
with Numeric#to_c. Although they makes the most sense for rationals,
Numeric#numerator and Numeric#denominator are defined in Numeric.

Numeric defines a set of query methods that are valid for all number types.
The set Numeric#positive?, Numeric#negative?, Numeric#nonzero?, and
Numeric#zero? all return true or false based exactly on the check in the name
of the method. It’s fairly common to see x.zero? rather than x == 0 as a
condition. The Numeric#infinite? method checks against the -Infinity or +Infinity

special values; the inverse method is Numeric#finite?. If the number is an

Integer, then Numeric#integer? returns true, and similarly Numeric#real?. Note
that the check is based on the type of the number, not the value; 1.0.integer?

is false.

You can convert any number to a collection with the Numeric#step(to = nil, by

= 1) [{ |n| block}] or Numeric#step(to: nil, by: 1) [{ |n| block}] method, which takes a
variety of arguments and a block. It can take two positional arguments (to

and by), in which case the block is called with self as an argument. The by

amount is added to self, and the block is called again until the to argument is
crossed. If by is positive, it crosses by going higher; if by is negative, it
crosses by going lower. So it’s roughly equivalent to this implementation:

​ ​def​ ​step​(to = ​nil​, by = 1, &block)

​ counter = self

​ start_relationship = self <=> to

​ ​while​ (counter <=> to) == start_relationship

​ block.​call​(counter)

​ counter += by

​ ​end​

​ ​end​

As you can see, to defaults to nil, meaning an infinite sequence, and by

defaults to 1. You can also specify to: and by: as keyword arguments. If no
block is given, the real method, unlike our scratch implementation earlier,
will return an Enumerator that will successively return the values that
would’ve been passed to the block.

Integer Class
The Integer class inherits from the Numeric class and implements a number
of the methods described earlier on its own for memory or speed
performance purposes. It also adds some additional functionality of its own.

Integer implements these regular arithmetic operators: Integer#+, Integer#-,
Integer#*, Integer#/ (which is integer division and truncates the result),

Integer#% (also available as Integer#modulo), and Integer#** (also available as
Integer#pow). Integer also implements bitwise arithmetic.

The bitwise AND (Integer#&) operator returns a new number with a 1 in
each bit that is 1 in the binary representation of both operands. The bitwise
OR (Integer#|) operator returns a new number with a 1 in the binary
representation of either operand. The bitwise XOR (Integer#^) operator
returns a new number with a 1 in each bit that is 1 in the binary
representation of one but not both operands. The Integer#<< shifts the bits of
the left operand the number in the right operand, and Integer#~ is the one’s
complement—it flips all the bits. The Integer#[] operator can be used to read
(but not write) the bit at the given offset in the binary representation of the
integer.

Ruby also provides Integer#allbits?(mask), which returns true if every bit
that’s set to 1 in the mask is also set to 1 in the receiver. (In other words, it is
equivalent to self & mask == mask). The method Integer#anybits?(mask) returns
true if any bit set to 1 in the mask is also set to 1 in the receiver, so, self &

mask != 0. The method Integer#nobits?(mask) returns true if no bit set to 1 in the
mask is set to 1 in the receiver, so self & mask == 0.

​ 0b0111 & 0b0100 ​# => 4​

​ 0b0111.​allbits?​(0b0100) ​# => true​

​ 0b0111.​anybits?​(0b0100) ​# => true​

​ 0b0111.​nobits?​(0b0100) ​# => false​

​ 0b0111 | 0b0100 ​# => 7​

​ 0b0111 ^ 0b0100 ​# => 3​

​ ~0b0110 ​# => -7​

​ 1.​even?​ ​# => false​

​ 2.​odd?​ ​# => false​

The method Integer#gcd(other) takes an integer argument and returns the
greatest common denominator of the two integers. The Integer#lcm(other)

method returns the least common multiple of the two integers. The

Integer#gcdlcm(other) method returns a two-element array that returns the
greatest common denominator and the least common multiple of the two
integers.

​ 10.​gcd​(15) ​# => 5​

​ 10.​lcm​(15) ​# => 30​

​ 10.​gcdlcm​(15) ​# => [5, 30]​

Integers can be used to iterate inside ranges, which means integers
implement Integer#next to return the next integer going upward and
Integer#pred to return the previous integer going downward.

Integers define the query methods Integer#even? and Integer#odd?, which
return true or false based on the value of the integer.

The Integer#chr(encoding = Encoding::UTF_8) method converts the integer to a
single character string represented by that integer in a particular encoding.
The default is UTF-8, but you can pass any encoding as an optional
argument.

The Integer class also defines some base-transitioning methods. The
Integer#digits(base = 10) method returns an array of all the individual digits in
the integer but reversed (with the “ones” digit being the first digit of the
array). An optional base argument puts the digits in whatever base you want
as long as the base is greater than two. The default is base ten.

You can use an integer to drive a loop using the Integer#times [{ |n| block }]

method, which takes a block and calls the block with every integer value
from 0 to the receiving value minus one. If you want to do this starting at
the integer rather than ending at it, the Integer#upto [{ |n| block }] method takes
a required limit that’s higher and calls the block for each integer from the
receiver up to the limit, inclusive. To go the other direction, you can use the
Integer#downto [{ |n| block }] method, which takes a required limit argument
that is lower and calls the block for each integer value from the receiver

value down to the value of the limit, inclusive. Without a block, all these
methods return an Enumerator.

Integers are convertible to other objects with Integer#to_d for BigDecimal,
Integer#to_f for Float, Integer#to_i and Integer#to_int which just return the
integer, Integer#to_r for Rational, and Integer#to_s for String.

Float Class
The Float class implements several methods for performance purposes but
doesn’t add a whole lot to the functionality of Numeric.

Float defines constants, here are some of them:

Float::DIG—Machine dependent; the number of significant digits in a
double-precision floating point. (DIG for digits, not for digging.)
Usually 15 on most current Ruby implementations.

Float::EPSILON—Machine dependent: the smallest difference between
two numbers that can be represented. The documentation says it
usually defaults to 2.2204460492503131e-16.

Float::INFINITY—The representation of infinity.

Float::MAX—The largest possible value in a double-precision floating
point.

Float::MAX_EXP—The largest exponent in a double-precision floating
point; should be 1024.

Float::MIN—The smallest possible value in a double-precision floating
point.

Float::MIN_EXP—The smallest exponent in a double-precision floating
point; should be 1021.

Float::NAN—Represents not a number, usually the result of zero divided
by zero.

Floats implement the basic arithmetic operators, Float#+, Float#-, Float#*,
Float#/, Float#%, and Float#**, and have a query operator for Float#nan?.

Floats can’t be in iterable ranges, but they do have Float#next_float and
Float#prev_float methods that return the adjacent representable float values.

Floats can be approximately converted to rationals with the Float#rationalize

method, and have Float#to_d, Float#to_f, Float#to_i and Float#to_int (both of
which truncate the float to an integer), Float#to_r, and Float#to_s.

Beyond that, the Float class has the same features as a generic Numeric

object.

Rational Class
The Rational class is a subclass of Numeric. Rationals can be created with the
literal syntax (see ​Rational and Complex Numbers​) or with the Kernel
method Rational, which takes the numerator and denominator as arguments.

Nearly all the methods of Rational are performance improvements over
methods that exist in Numeric. The arithmetic methods Rational#+, Rational#-,
Rational#*, Rational#/, and Rational#** are defined. The conversion methods
Rational#to_d, Rational#to_f, Rational#to_i, Rational#to_r, and Rational#to_s are
defined.

If the JSON add-on library has been included, then Rational#to_json returns a
JSON representation of the hash {"json_class" => "Rational", "n" => self.numerator,

"d" => self.denominator}. (See ​JSON​, for more information.) The JSON string
can be deserialized with the class method Rational.json_create(json_string).

Complex Class
The Complex class is a subclass of Numeric. Complex numbers can be created
with the literal syntax (see ​Rational and Complex Numbers​) or with the
Kernel method Complex(real, imaginary = 0), which takes the real and
imaginary parts as arguments. The Complex class also defines
Complex.polar(magnitude, phase = 0) and Complex.rectangular(real, imaginary = 0)

methods that create complex objects in different formats.

The real part has a getter method Complex#real; the imaginary part has a
getter method Complex#imaginary, which is aliased as Complex#imag. The
method Complex#rectangular or Complex#rect returns a two-element array,
[real, imaginary]. For complex numbers, the query method Complex#real?

always returns false, no matter the value of the imaginary part.

In polar form, the getters are Complex#magnitude (aliased as Complex#abs) and
Complex#phase (aliased as Complex#arg). The getter Complex#polar returns the
two polar values as a two-element array, [magnitude, phase].

The Complex#infinite? boolean will return true if either the real or imaginary
part of the number is infinite.

Nearly all the methods of Complex are performance improvements over
methods that exist in Numeric. The arithmetic methods Complex#+, Complex#-,
Complex#*, Complex#/, and Complex#** are defined.

Complex has its own feature of the Complex#<=> operator. A comparison
involving a complex number with an imaginary part that isn’t zero will
return nil. In other cases, it’ll compare the real part of the complex number

with the other operand. The Complex#== method will compare the equality of
complex numbers including their imaginary dimension.

The conversion methods Complex#to_c, Complex#to_d, Complex#to_f,
Complex#to_i, Complex#to_json, Complex#to_r, and Complex#to_s are defined.
The numeric methods will return a RangeError if the imaginary part isn’t
integer 0.

If the JSON additions library is included, the Complex#to_json method
returns a JSON representation of the hash {"json_class" => "Complex", "r" =>

self.real, "i" => self.imaginary}. (See ​JSON​, for more information.) The JSON
string can be deserialized with the class method
Complex.json_create(json_string).

BigDecimal
Ruby has a lot of literal numeric types: integers, floating-point numbers,
rational numbers, and complex numbers. There’s one common need that
isn’t filled by Ruby’s literals and for which you need the standard library:
precise representation of decimal values.

What do we mean by precision? Well, here’s an example that you can
replicate in your own IRB session:

​ 1.1 - 0.8 ​# => 0.30000000000000004​

That seems…wrong? Your fourth grade math teacher would probably be
appalled.

It’s important that you’re familiar with two important facts:

Floating-point numbers are inherently imprecise—it’s not just a Ruby
issue—and shouldn’t be used for values like money, where exact
precision is necessary. (Floating-point numbers are used because they
are smaller in memory and faster in calculation.)

When you do need a precise number in Ruby, use BigDecimal.

Floating-point numbers are imprecise because they are trying to represent
base-10 decimals in a base-2 format, and there just isn’t a one-to-one match.

Internally, floating-point numbers are represented as a set of bytes (64 on
most of the machines you’ll be using) some of which are used for a base
number, and the rest are used for an exponent, so 24.68 might be represented
as 2468 x 10**-2. Without getting too deep into the exact details of the
representation, this also means that, as the floating-point numbers get
farther from zero, the worse the floating-point standard gets at matching
floats to actual numbers. One implication is that floating-point number
errors are worse if the two operands of an operation are of vastly different
magnitudes.

When you need precise decimal values, Ruby provides the BigDecimal class.
Internally, BigDecimal uses a decimal format that allows you to specify the
number of digits used and then represents that value exactly in any future
math operations you might perform.

To use BigDecimal, you must use require "bigdecimal" in your application. Once
you’ve done this, creating new instances of BigDecimal is a little odd. The
BigDecimal class doesn’t have a constructor. Instead, you use a Kernel

method, also called BigDecimal(value, number_of_digits = 0, exception: true),
which makes it look like you’re using one of the conversion methods:

​ require ​"bigdecimal"​

​ BigDecimal(​"3.14"​) ​# => 0.314e1​

​ BigDecimal(4.2, 2) ​# => 0.42e1​

The first argument to BigDecimal is the value you’re converting, and the
second argument is the number of digits of precision you want. Depending
on what the first argument is to BigDecimal, you may or may not be required
to specify the second argument.

The number of digits of precision is the number of digits used regardless of
what side of the decimal point the digit is on. In these examples, you can
see that the number of digits of precision changes the value of the BigDecimal

as it’s converted to a float using BigDecimal#to_f:

​ require ​"bigdecimal"​

​ BigDecimal(31.419, 5).​to_f​ ​# => 31.419​

​ BigDecimal(31.419, 4).​to_f​ ​# => 31.42​

​ BigDecimal(31.419, 3).​to_f​ ​# => 31.4​

​ BigDecimal(31.419, 2).​to_f​ ​# => 31.0​

​ BigDecimal(31.419, 1).​to_f​ ​# => 30.0​

If the first argument is a Complex, an Integer, a String, or another BigDecimal,
the conversion doesn’t need to know the digits of precision. If the first
argument is a Float or a Rational, then you must include the digits of
precision.

Strings are parsed and assumed to use the number of digits equivalent to
characters in the string:

​ require ​"bigdecimal"​

​ BigDecimal(​"31.419"​).​to_f​ ​# => 31.419​

If you have another type as the first value, Ruby attempts to convert it to a
string using to_str and parses that string. (According to the documentation,
it doesn’t appear that Ruby attempts to convert it to a number.) If the
conversion fails, the method returns nil. An optional keyword argument,
exception: true, will cause BigDecimal to raise an exception in that case
instead.

Once you have a BigDecimal, you can use it like any other numeric. If it’s the
left side of an operation, the result will also be a BigDecimal:

​ require ​"bigdecimal"​

​ x = BigDecimal(​"31.419"​) + 5.3

​ x.​class​ ​# => BigDecimal​

BigDecimal defines the full range of numeric operators: BigDecimal#+,
BigDecimal#-, BigDecimal#*, BigDecimal#/, BigDecimal#**, BigDecimal#%,
BigDecimal#@-, and BigDecimal#@+ as well as BigDecimal#<=> and the
Comparable module.

You can convert out of BigDecimal with the usual suspects, BigDecimal#to_i,
BigDecimal#to_f, BigDecimal#to_s, and BigDecimal#to_r for Rational. There’s
also a module called bigdecimal/util—requiring that gives you a to_d method
on Integer, Float, Rational, and String that converts to a BigDecimal.

A few special values—Infinity, +Infinity, -Infinity, and NaN—are all valid
values, which you normally trigger by dividing by zero:

​ require ​"bigdecimal"​

​ BigDecimal(​"1.0"​) / BigDecimal(​"0.0"​) ​# => Infinity​

​ BigDecimal(​"0.0"​) / BigDecimal(​"0.0"​) ​# => NaN​

BigDecimal also allows you to control how values are rounded to the number
of significant digits. If you’re like us, you were taught in school to round to
the closest digit, and that the value in the middle—5—rounds up. It turns
out that this is just a convention, and other conventions are also valuable.
You can change the rounding mode globally with
BigDecimal.mode(BigDecimal::ROUND_MODE, [value]), where the value may be
one of the following:

BigDecimal:ROUND_CEILING—Always round toward the higher number.

BigDecimal:ROUND_DOWN—Always round toward zero, so 8.2 rounds to
8.

BigDecimal:ROUND_FLOOR—Always round toward the lower number.

BigDecimal::ROUND_HALF_DOWN—Round to the nearest value; the
midpoint rounds down. So 8.5 rounds to 8, which is different than the

normal default.
BigDecimal::ROUND_HALF_EVEN—Round to the nearest value; the
midpoint rounds to whichever neighbor is an even number. So 8.5

rounds to 8, but 9.5 rounds to 10. This is sometimes called “banker’s
rounding.”

BigDecimal::ROUND_HALF_UP—Round to the nearest value; the midpoint
rounds up. This is the default you were probably taught in school.

BigDecimal:ROUND_UP—Always round away from zero, so 8.2 rounds to
9.

Why Do Bankers Round Differently?

If you’re adding up a very large set of numbers, one thing you
want is for the sum to be essentially the same no matter where
you round the value. Using traditional rounding, the fact that
the midpoint rounds up will tend to result in rounded numbers
having a higher sum than the same set of numbers with the
values just truncated, making the sum less accurate when
rounded. Using banker’s rounding, the midpoint number tends
to go up or down more or less equally, so the rounded number
doesn’t have a biased sum relative to the truncated sum.

Random and SecureRandom
Random numbers are an important part of games and cryptographic
security, and Ruby has a few different ways to get randomness. The easiest
is the method Kernel#rand(max = 0). Because it’s available in Kernel, you can
call rand anytime. If you call rand with no arguments, you get a pseudo-
random float greater than or equal to zero and less than one. If you call rand

with an argument and the argument is an integer one or greater, then you get
a pseudo-random integer greater than or equal to zero and less than the
argument. Note this means that rand(1) will always equal 0.

Non-integer arguments are converted using to_i.abs, meaning that negative
arguments will return positive values and floating-point arguments will be
truncated. If arg.to_i.abs is equal to zero, then rand reverts to its no-argument
behavior.

If the argument is a range, rand returns a value within that range. If both
ends of the range are integers, the result will be an integer. If either end is a
float, the result will also be a float.

Often you may want to have a repeatable sequence of random numbers. In
testing or in debugging it can be useful to know that the random numbers
are consistent from run to run. You can do this in Ruby with the Kernel
method Kernel#srand(number = Random.new_seed). If you call srand without an
argument, it generates a seed based on the operating system’s randomizer,
but if you call it with an integer argument, it uses that number as the seed,
and then it’ll provide a replicable stream of random numbers. Using the
same seed later on will result in the same set of numbers.

Ruby also provides an object-oriented interface to the random number
generator. The Random class provides the same features as rand, but allows
you to have multiple streams. The formatter module, which gets mixed in

with require "random/formatter", gives you a set of methods on Random to
produce structured random output.

You use Random by creating a new instance with Random.new(seed =

Random.new_seed), which takes an optional argument that is the seed, exactly
as described in srand. You can then get new random numbers with rand (and
recover the seed with seed):

​ generator = Random.​new​(1234)

​ generator.​rand​ ​# => 0.1915194503788923​

​

​ another_generator = Random.​new​(generator.​seed​)

​ another_generator.​rand​ ​# => 0.1915194503788923​

The Random#rand(max_or_range = 0) method takes exactly the same arguments
as Kernel#rand. If the argument is a range then you get a random number
whose value is inside the range. You can also get a string of random bytes
with the Random#bytes(size) method, which takes one argument: the length of
the string.

With the line require "random/formatter", you get a number of useful methods
mixed into Random. All of these methods are available as class methods, as
in Random.alphanumeric, or as instance methods, as in x.alphanumeric.

Random#alphanumeric(length = nil)—Returns a randomly generated string
with just the characters A-Z, a-z, and 0-9. The argument is the length,
and if left off, it defaults to 16.

Random#base64(length = nil)—Returns a randomly generated base-64
string using the characters in alphanumeric as well as +, /, and =. The
length is the length in bytes, not in characters, so the resulting string
will be about ⅓ longer than n, since some characters are less than one
byte. A version of this method, called urlsafe_base64, uses - and _

instead of + and /. That method also uses = as padding if a second
argument is passed with the value true.
Random#hex(length = nil)—Returns a random hexadecimal string, so the
characters are 0-9 and a-f. The resulting string is twice as long as the
argument (because the length is in bytes and each character is half a
byte), and the default is still 16 (meaning a 32-character string).

Random#random_bytes(length = nil)—Returns a random binary string. The
length is in bytes, and the default is 16.

Random#uuid—Generates a UUID, with 122 random bits. It
corresponds to version 4 of the UUID specification.

One downside of the main Random class is that it isn’t considered powerful
enough for true cryptographic uses. The cryptographically secure
randomizers are a little slower, so Ruby provides them in a separate class,
called SecureRandom, which you must add to your app with require

"securerandom". The only default method of SecureRandom is called
SecureRandom#bytes(size), but SecureRandom automatically includes the
methods in the formatter, so all the methods presented in the previous list
are available on a SecureRandom instance. There isn’t a way to specify the
seed of a SecureRandom instance—presumably, that would be insecure.

Regexp
The Regexp class is the Ruby representation of a regular expression. We
discussed the basic syntax of regular expressions at length in Chapter 8, ​
Regular Expressions​. Here we focus on the API for the Regexp class itself and
then cover some advanced regular expression syntax.

You can create a regular expression using the literal syntax, which is two
foreword slashes with the regular expression in the middle, such as /.*rb/. (All
the escape sequences and whatnot inside the slashes are discussed in Chapter
8, ​Regular Expressions​. The alternate delimiter %r{...} will also create regular
expressions.

The method, Regexp.new(string, options = 0, timeout: nil) creates a new regular
expression with the string argument as the pattern. The options argument is the
equivalent of the i, m, n, or x options that go at the end of a regular expression
literal, and it can be passed as a string of one or more of those four letters.
Alternatively, each of those letters has a constant. In order they are:
Regexp::IGNORECASE, Regexp::MULTILINE, Regexp::NOENCODING, and
Regexp::EXTENDED.

The constants are encoded as integers, and you can combine them with the
bitwise OR operator, which would look like Regexp.new("*.foo", "im") or
Regexp.new("*.foo", Regexp::IGNORECASE | Regexp::MULTILINE). In practice, we think
this might be one of the few cases in Ruby where the more compact form
might also be more legible. The optional timeout: argument allows you to
override the class-level timeout. If set, the regular expression engine throws an
error if the time is reached before a match resolves. More on that in a bit.

You can copy an existing regular expression with Regexp.new(regexp, timeout:

nil). (You can pass an options argument but it’ll be ignored.) This creates a new
regular expression identical to the old, but it allows you to set a different
timeout value. Regexp.new is also aliased as Regexp.compile.

You can combine multiple regular expressions with Regexp.union(*patterns)—
the patterns can be an array of patterns or just a list of positional arguments.
Each pattern can be an existing Regexp object or a string, in which case the
string is converted to a Regexp using Regexp.new. The resulting pattern matches
a string if any of the subpatterns matches the string. If the patterns argument is
empty, union produces a regular expression that can’t match any string
(specifically, it returns /?!/). According to the official documentation, the
behavior of parenthesized capture groups in a union string is undefined, so you
can only use a union string to determine a match or no match, not to capture
partial matches.

We mentioned the timeout keyword parameter. The purpose of a timeout is to
prevent a regular expression match from stalling your application. This is
potentially a vector for a denial-of-service attack to force your application to
match a complicated regular expression against long strings. You can get and
set a global timeout value in seconds with Regexp.timeout and Regexp.timeout=

(seconds). For an individual regex, you can override this value on creation with
the timeout: key of Regexp.new. There’s no individual setter (at least not yet); if
you want to change the timeout for an existing regexp, you need to convert it
with the regex form of Regexp.new. The default timeout is nil, meaning no
timeout, but if the timeout is set, Ruby will throw an exception if matching the
regular expression to a string takes longer than the timeout value.

The Regexp class provides a few different methods that match the regular
expression against a string. The most recommended ones are
Regexp#match(string, offset = 0) [{|matchdata|}] and Regexp#match?(string, offset = 0).
In both cases, the primary argument is the string to be matched against, and
the optional offset is the index of the string where the match algorithm should
begin. One difference between the two methods is the return value—match?

returns boolean true if there is a match or false otherwise, whereas match

returns a MatchData object (see ​MatchData​) if there is a match or nil otherwise.
If a block is passed to match, then the block is invoked with the MatchData

object and the result of the block is returned. Note that because match returns

nil on a negative result it can be used as a boolean clause, since the nil will
evaluate as falsey.

The =~ operator is implemented as Regex#=~(string) and returns the integer
index of the beginning of the match if there is a match and nil otherwise. The
opposite operator, !~, doesn’t have a separate method definition; Ruby just
reverses the boolean result of =~. Note that =~ and match both update the set of
Ruby global variables that hold the value of the last matched regular
expressions, but match? doesn’t. You can also get the value of that last matched
regular expression with the class method Regexp.last_match.

The Regexp#=== case equality operator essentially behaves like match?. It
returns true if the string matches the regular expression and false otherwise.
The difference is that match? throws an error if the argument isn’t a string and
=== just returns false in that case.

Regular expressions have an equality operator, Regexp#== or Regexp#eql?,
which returns true if both expressions have the same source, optional flags,
and encoding.

A few methods of Regexp allow you to read some information about the
regular expression. You can recover the source string of the expression with
Regexp#source, which returns the string with regular expression escape
characters intact, but with typographical escape characters evaluated. The
methods Regexp#to_s and Regexp#inspect all return slightly different versions of
the source string. The to_s version is specifically designed to be passed back to
Regexp.new. The class method Regexp#escape(string), aliased Regexp#quote,
returns a string that escapes characters that have meaning in a regular
expression:

​ r = ​/ru+by\x10\//ix​

​ r.​source​ ​# => "ru+by\\x10/"​

​ r.​inspect​ ​# => "/ru+by\\x10\\//ix"​

​ r.​to_s​ ​# => "(?ix-m:ru+by\\x10\\/)"​

​ Regexp.​escape​(​"+*?"​) ​# => "\\+*\\?"​

If your regular expression uses named captures, Regexp#names returns an array
of the names of the captures, which can then be used as the keys of any
resulting MatchData objects. The method Regexp#named_captures returns a hash
where the key is the name of the named capture and the value is an array of all
the integer indexes in the regular expression which map to that name. So, the
first named capture in the expression gets the value [1] and so on, with the
array getting multiple elements if the named capture repeats in the regular
expression. In both of these methods, if there are no named captures, the result
is an empty data object.

You can get the option flags from your regular expression with Regexp#options,
which returns an integer of the combined bits of the option flag constants.
Three constants are the most important here: i, m, and x, with a couple of other
ones that match encodings or group behavior. A partial method that converts
those three options to a useful string might look like this:

built_in_data/options.rb

​ ​class​ Regexp

​ OPTION_MAP = {IGNORECASE => ​"i"​, EXTENDED => ​"x"​, MULTILINE => ​"m"​}

​

​ ​def​ ​option_string​

​ option_bits = options

​ OPTION_MAP.​map​ ​do​ |bit, string|

​ ((option_bits & bit) > 0) ? string : ​nil​

​ ​end​.​compact​.​join​

​ ​end​

​ ​end​

MatchData
The MatchData class is what’s returned by a regular expression using match to
compare to a string, and the class contains all the data about the resulting
match. The most commonly used method of MatchData is probably square
bracket access via MatchData[]. The argument inside the bracket is one of the
following:

http://media.pragprog.com/titles/ruby5/code/built_in_data/options.rb

An integer. The index 0 corresponds to the entire matched section of the
string, the index 1 corresponds to the first captured part of the string, and
higher numbers match subsequent captures. If the index is higher than the
number of matches, then nil is returned. Negative indexes work from the
last capture toward the zero index.

A string or symbol name. The returned value is a matching named
capture in the resulting match, or it is nil if no such named capture exists.

Two integers separated by a comma. In this case you get the same start
index and length behavior that you get for strings and arrays. The starting
index can be 0, and the resulting value is no longer than the actual data
(it’s not padded with nil or anything like that).

A range of integers. In this case you get the subset of indexes
corresponding to the indexes of the integers in the range, again, the result
truncates at the length of the actual data.

You can also get the integer or name behavior with MatchData#match(value), but
negative indexes, pairs of integers, and ranges don’t work with match. The
method MatchData#match_length(value) takes an integer, string, or symbol
argument and returns the length of the section of the match data corresponding
to that argument, or it returns nil if no such match exists.

The method MatchData#values_at(*indexes) is more flexible. It takes an arbitrary
number of indexes and returns an array of the matched values at each index.
The arguments can be strings, symbols, integers (including negative integers),
and ranges. The final result is flattened, meaning a range argument doesn’t
result in a sub-array in the output.

There are other ways to get at the data. MatchData#matches returns all the
positional matches as an array, meaning it’s equivalent to match[1..]. This
method is aliased MatchData#deconstruct, which means you can use a MatchData

object as the pattern in a pattern match expression. The other pattern match

API method, MatchData#deconstruct_keys, also exists and returns a hash of all
named captures as symbol keys and their matches as the values. The method
MatchData#to_a returns all the matches as an array including the entire match
that would be in index 0. The method MatchData#size, aliased MatchData#length,
gives the length of the capture array. The method MatchData#to_s gives the
entire match, which means it’s equivalent to match[0]. You can get all the
named captures in a hash with MatchData#named_captures—the keys are the
symbol names of each capture and the value is the associated part of the
match. If you just want the names of the captures, MatchData#names gives that
list.

You can recreate the original match with MatchData#regexp, which returns the
regular expression used to create the match data, and MatchData#string, which
returns the entire original string in the match, including the non-matched parts.
These parts of the original string can be retrieved with MatchData#pre_match,
which returns the part of the original string before the match, and
MatchData#post_match, which returns the part of the string after the match. Both
methods return an empty string if match goes to the boundary of the original
string. So, for a given match data object, match.string = match.pre_match + match[0]

+ match.post_match.

The method MatchData#begin(value = 0) returns the integer index of the
beginning of the match within the original string. If no argument is passed, it
uses the entire match at index 0; otherwise, it uses the submatch corresponding
to the argument. The method MatchData#end(value = 0) returns the integer index
of the end of the match within the original string.

Match data objects define == and eql? as aliases and return true if the two
match datas have the same regular expression and string, and therefore
presumably the same set of matches.

Regular Expression Extensions

Ruby uses the Onigmo regular expression library, which is an extension of the
Oniguruma regular expression engine.[50][51] Onigmo offers a number of
extensions beyond traditional Unix regular expressions. Most of these
extensions are written between the opening characters (? and the closing
character). The parentheses that bracket these extensions are groups, but they
don’t necessarily generate backreferences—meaning that they don’t
necessarily set the values of \1, $1, and so on.

The sequence (?#COMMENT) inserts a comment into the pattern. The content is
ignored during pattern matching. Commenting complex regular expressions
can be as helpful as commenting other complex code.

The notation (?:EXPRESSION) makes the subexpression inside the parenthesis
into a group without generating backreferences. This may be useful when you
need to group a set of constructs but don’t want the group to set the value of $1

or whatever. In the example that follows, both patterns match a date with
either colons or slashes between the month, day, and year. The first form stores
the separator character (which can be a slash or a colon) in $2 and $4, but the
second pattern uses (?: to avoid storing the separator in an external variable:

​ date = ​"12/25/2022"​

​

​ date =~ ​%r{(​​\d​​+)(/|:)(​​\d​​+)(/|:)(​​\d​​+)}​

​ [$1,$2,$3,$4,$5] ​# => ["12", "/", "25", "/", "2022"]​

​

​ date =~ ​%r{(​​\d​​+)(?:/|:)(​​\d​​+)(?:/|:)(​​\d​​+)}​

​ [$1,$2,$3] ​# => ["12", "25", "2022"]​

Using Dynamic Regular Expressions
You’ll sometimes want to match a pattern only if the matched substring is
preceded or followed by some other pattern. That is, you want to set some
context for your match but don’t want to capture that context as part of the
match.

For example, you might want to match every word in a string that is followed
by a comma, but you don’t want the comma to form part of the match. Here
you could use the charmingly named zero-width positive lookahead extension,
which is (?=EXPRESSION). This extension matches EXPRESSION at this point
but doesn’t consume it—you can look forward for the context of a match
without affecting the magic match variables like $&. In this example, we’ll use
String#scan to pick out the words that are followed by a comma:

​ str = ​"red, white, and blue"​

​ str.​scan​(​/[a-z]+(?=,)/​) ​# => ["red", "white"]​

You can also match before the pattern using the zero-width positive
lookbehind, which is (?<=EXPRESSION). This lets you look for characters that
precede the context of a match without affecting $&. The following example
matches the letters dog but only if they are preceded by the letters hot:

​ show_regexp(​"seadog hotdog"​, ​/(?<=hot)dog/​) ​# => seadog hot->dog<-​

It’s worth noting that while these complex regular expressions are definitely
powerful, they can be hard to read, and you can often get similar effects by
combining simpler regular expressions with filtering code.

For the lookbehind extension, EXPRESSION either must be a fixed length or
consist of a set of fixed-length alternatives. So (?<=aa) and (?<=aa|bbb) are valid,
but (?<=a+b) is not.

Both forms have negated versions, (?!EXPRESSION) and (?<!EXPRESSION), which
are true if the context isn’t present in the target string.

The \K sequence is related to backtracking. If included in a pattern, it doesn’t
affect the matching process. But, when Ruby comes to store the entire
matched string in $&, it only stores the text to the right of the \K:

​ show_regexp(​"thx1138"​, ​/[a-z]+\K\d+/​) ​# => thx->1138<-​

Controlling Backtracking

Say you’re given the problem of searching a string for a sequence of X
characters not immediately followed by an O. You know that a string of Xs can
be represented as X+, and you can use a lookahead to check that it isn’t
followed by an O, so you code up the pattern /(X+)(?!O)/. Let’s try it.

This matches:

​ re = ​/(X+)(?!O)/​

​ re.​match​(​"test XXXY"​)[0] ​# => "XXX"​

But, unfortunately, so does this, though with a slightly different match:

​ re = ​/(X+)(?!O)/​

​ re.​match​(​"test XXXO"​)[0] ​# => "XX"​

Why did the second match succeed? Well, the regular expression engine saw
the X+ in the pattern and happily gobbled up all the Xs in the string. It then saw
the pattern (?!O), saying that it shouldn’t now be looking at an O. Unfortunately,
it’s looking at an O, so the match doesn’t succeed. But the engine doesn’t give
up. No sir! Instead it says, “Maybe I was wrong to consume every single X in
the string. Let’s try consuming one less and see what happens.” This is called
backtracking—when a match fails, the engine goes back and tries to match a
different way. In this case, by backtracking past a single character, it now finds
itself looking at the last X in the string (the one before the final O). And that X
isn’t an O, so the negative lookahead succeeds, and the pattern matches. Look
at the output of the previous program: there are three _X_s in the first match
but only two in the second.

But this wasn’t the intent of our regexp. Once it finds a sequence of Xs, those
Xs should be considered as a unit. We don’t want the sequence to have a split
containing all but one of the Xs, with the last of them then being the terminator
of the pattern. We can get that behavior by telling Ruby not to backtrack once
it finds a string of Xs. There are a couple of ways of doing this.

The sequence (?>EXPRESSION) nests an independent regular expression within
the first regular expression. This expression is anchored at the current match

position when the expression is encountered. If it consumes characters, these
will no longer be available to the higher-level regular expression. This
construct, called atomic grouping therefore inhibits backtracking.

Let’s try it with our previous code, making the set of Xs an atomic grouping.

This one still works:

​ re = ​/((?>X+))(?!O)/​

​ re.​match​(​"test XXXY"​)[0] ​# => "XXX"​

But now this one doesn’t:

​ re = ​/((?>X+))(?!O)/​

​ re.​match?​(​"test XXXO"​) ​# => false​

And this finds the second string of Xs:

​ re = ​/((?>X+))(?!O)/​

​ re.​match​(​"test XXXO XXXXY"​)[0] ​# => "XXXX"​

You can also control backtracking by using a third form of repetition. We’ve
already seen a greedy repetition, such as EXPRESSION+, and a lazy repetition,
such as EXPRESSION+?. The third form is called possessive. You code it using a
plus sign after the repetition character, as in EXPRESSION++. It behaves just like
greedy repetition, consuming as much of the string as it can. But once
consumed, that part of the string can never be reexamined by the pattern—the
regular expression engine can’t backtrack past a possessive qualifier. This
means we could also write our code as this:

​ re = ​/(X++)(?!O)/​

​ re.​match​(​"test XXXY"​)[0] ​# => "XXX"​

​ re.​match?​(​"test XXXO"​) ​# => false​

​ re.​match​(​"test XXXO XXXXY"​)[0] ​# => "XXXX"​

Backreferences and Named Matches
Within a pattern, the sequences \n (where n is a number), \k’n’, and \k<n> all
refer to the nth captured subpattern. These references can be used later in the

pattern. Thus, the expression /(...)\1/ matches six characters with the first three
characters captured by (...) being the same as the last three referenced by \1.

Rather than refer to matches by their number, you can give them names and
then refer to those names. A subpattern is named using either one of these
syntaxes: (?<name>...) or (?’name’...). You then refer to these named captures
using either \k<name> or \k’name’.

For example, the following shows different ways of matching a time range (in
the form hh:mm-hh:mm) where the hour is the same on both sides of the
range:

tut_regexp/named_backreference_1.rb

​ same = ​"12:15-12:45"​

​ differ = ​"12:45-13:15"​

​

​ ​# use numbered backreference​

​ same =~ ​/(\d\d):\d\d-\1:\d\d/​ ​# => 0​

​ differ =~ ​/(\d\d):\d\d-\1:\d\d/​ ​# => nil​

​

​ ​# use named backreference​

​ same =~ ​/(?<hour>\d\d):\d\d-\k<hour>:\d\d/​ ​# => 0​

​ differ =~ ​/(?<hour>\d\d):\d\d-\k<hour>:\d\d/​ ​# => nil​

Negative backreference numbers count backward from the place they’re used,
so they are relative, not absolute, numbers.

The following pattern matches four-letter palindromes (words that read the
same forward and backward):

tut_regexp/named_backreference_2.rb

​ ​"abab"​ =~ ​/(.)(.)\k<-1>\k<-2>/​ ​# => nil​

​ ​"abba"​ =~ ​/(.)(.)\k<-1>\k<-2>/​ ​# => 0​

You can invoke a named subpattern using \g<name> or \g<number>. Note that
this reexecutes the match in the subpattern, in contrast to \k<name>, which
matches whatever is matched by the subpattern:

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_backreference_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_backreference_2.rb

tut_regexp/named_backreference_3.rb

​ re = ​/(?<color>red|green|blue) \w+ \g<color> \w+/​

​ re =~ ​"red sun blue moon"​ ​# => 0​

​ re =~ ​"red sun white moon"​ ​# => nil​

You can use \g recursively, invoking a pattern within itself. The following
code matches a string in which braces are properly nested:

​ re = ​/​

​ ​ \A​

​ ​ (?<brace_expression>​

​ ​ {​

​ ​ (​

​ ​ [^{}] # anything other than braces​

​ ​ | # ...or...​

​ ​ \g<brace_expression> # a nested brace expression​

​ ​)*​

​ ​ }​

​ ​)​

​ ​ \Z​

​ ​/x​

We use the x option to allow us to write the expression with lots of space,
which makes it easier to understand. We also indent it, just as we would indent
Ruby code. And we can also use Ruby-style comments to document the tricky
stuff. You can read this regular expression as follows: a brace expression
consists of an open brace, a sequence of zero or more characters or brace
expressions, and then a closing brace.

Nested Groups
The ability to invoke subpatterns recursively means that backreferences can
get tricky. Ruby solves this by letting you refer to a named or numbered group
at a particular level of the recursion—add a +n or -n for a capture at the given
level relative to the current level.

Here’s an example from the Oniguruma cheat sheet that matches palindromes:

​ ​/\A(?<a>|.|(?:(?.)\g<a>\k<b+0>))\z/​

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_backreference_3.rb

That’s pretty hard to read, so let’s spread it out:

tut_regexp/palindrome_re.rb

​ palindrome_matcher = ​/​

​ ​\A​

​ ​ (?<palindrome>​

​ ​ # nothing, or​

​ ​ | . # a single character, or​

​ ​ | (?: # x <palindrome> x​

​ ​ (?<some_letter>.)​

​ ​ \g<palindrome>​

​ ​ \k<some_letter+0>​

​ ​)​

​ ​)​

​ ​\z​

​ ​/x​

​ palindrome_matcher.​match​ ​"madam"​ ​# => madam​

​ palindrome_matcher.​match​ ​"m"​ ​# => m​

​ palindrome_matcher.​match​ ​"adam"​ ​# =>​

A palindrome is an empty string, a string containing a single character, or a
character followed by a palindrome and then that same character. The notation
\k<some_letter+0> means that the letter matched at the end of the inner
palindrome will be the same letter that was at the start of it. But inside the
nesting, a different letter may wrap the interior palindrome.

Conditional Groups
Say you were validating a list of banquet attendees:

​ "Mr Jones and Sally",

​ "Mr Bond and Ms Moneypenny",

​ "Samson and Delilah",

​ "Dr Jekyll and himself",

​ "Ms Hinky Smith and Ms Jones",

​ "Dr Wood and Mrs Wood",

​ "Thelma and Louise"

The rule is that if the first person in the list has a title, then so should the
second. This means that the first and fourth lines in this list are invalid.

http://media.pragprog.com/titles/ruby5/code/tut_regexp/palindrome_re.rb

We can start with a pattern to match a line with an optional title and a name.
We know we’ve reached the end of the name when we find the word and with
spaces around it. Since we’re using the x modifier, the regex engine will
ignore whitespace to allow us to change the layout of the regex, we need to
explicitly identify the spaces that we’re matching.

​ re = ​%r{ (?:(Mrs | Mr | Ms | Dr)​​\s​​)? (.*?) ​​\s​​ and ​​\s​​ }x​

​ ​"Mr Bond and Ms Monneypenny"​.​match​(re).​captures​ ​# => ["Mr", "Bond"]​

​ ​"Samson and Delilah"​.​match​(re).​captures​ ​# => [nil, "Samson"]​

Let’s try again. We’ve defined the regexp with the x (extended) option so we
can include whitespace. We also used the ?: modifier on the group that defines
the optional title followed by a space. This stops that group getting captured
into $1. We do however use a nested group to capture just the title part.

So now we need to match the second name. We can start with the same code
as for the first:

​ re = ​%r{​

​ ​ (?:(Mrs | Mr | Ms | Dr)​​\s​​)? (.*?)​

​ ​ ​​\s​​ and ​​\s​

​ ​ (?:(Mrs | Mr | Ms | Dr)​​\s​​)? (.+)​

​ ​}x​

​ ​"Mr Bond and Ms Monneypenny"​.​match​(re).​captures​ ​# => ["Mr", "Bond", "Ms",​

​ ​# .. "Monneypenny"]​

​ ​"Samson and Delilah"​.​match​(re).​captures​ ​# => [nil, "Samson", nil,​

​ ​# .. "Delilah"]​

Before we go any further, let’s clean up the duplication using a named group:

tut_regexp/attendee_validator_1.rb

​ re = ​%r{​

​ ​ (?:(?<title>Mrs | Mr | Ms | Dr)​​\s​​)? (.*?)​

​ ​ ​​\s​​ and ​​\s​

​ ​ (​​\g​​<title>​​\s​​)? (.+)​

​ ​}x​

​ match_data = re.​match​(​"Mr Bond and Ms Monneypenny"​)

​ match_data[0] ​# => "Mr Bond and Ms Monneypenny"​

​ match_data[​:title​] ​# => "Ms"​

​

http://media.pragprog.com/titles/ruby5/code/tut_regexp/attendee_validator_1.rb

​ second_match = re.​match​(​"Samson and Delilah"​)

​ second_match[0] ​# => "Samson and Delilah"​

​ second_match[​:title​] ​# => nil​

But this code also matches a line where the first name has a title and the
second doesn’t:

tut_regexp/attendee_validator_2.rb

​ re = ​%r{​

​ ​ (?:(?<title>Mrs | Mr | Ms | Dr)​​\s​​)? (.*?)​

​ ​ ​​\s​​ and ​​\s​

​ ​ (​​\g​​<title>​​\s​​)? (.+)​

​ ​}x​

​ match_data = re.​match​(​"Mr Smith and Sally"​)

​ match_data[0] ​# => "Mr Smith and Sally"​

​ match_data[​:title​] ​# => "Mr"​

We need to make the second test for a title mandatory if the first test matches.
That’s where the conditional subpatterns come in.

The syntax (?(n)subpattern) will apply the subpattern match only if a previous
group number n also matched. You can also test named groups using either of
these syntaxes: (?(<name>)subpattern) or (?(’name’)subpattern).

In our case, we want to apply a test for the second title if the first title is
present. That first title is matched by the group named title, so the condition
group looks like (?<title>…):

tut_regexp/attendee_validator_3.rb

​ re = ​%r{​

​ ​ (?:(?<title>Mrs | Mr | Ms | Dr)​​\s​​)? (.*?)​

​ ​ ​​\s​​ and ​​\s​

​ ​ (?(<title>)​​\g​​<title>​​\s​​) (.+)​

​ ​}x​

​ match_data = re.​match​(​"Mr Smith and Sally"​)

​ match_data[0] ​# => "Mr Smith and Sally"​

​ match_data[​:title​] ​# => nil​

http://media.pragprog.com/titles/ruby5/code/tut_regexp/attendee_validator_2.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/attendee_validator_3.rb

This didn’t work—the match succeeded when we expected it to fail. That’s
because the regular expression applied backtracking. It matched the optional
first name, the and, and then it was told to match a second title (because group
1 matched the first). There’s no second title, so the match failed. But rather
than stopping, the engine went back to explore alternatives.

It noticed that the first title was optional, and so it tried matching the whole
pattern again, this time skipping the title. It successfully matched Mr Smith
using the (.*?) group and matched Sally with the second name group. So we
want to tell it never to backtrack over the first name—once it has found a title
there, it has to use it. (?>…) to the rescue:

tut_regexp/attendee_validator_4.rb

​ re = ​%r{​

​ ​ ^(?>​

​ ​ (?:(?<title>Mrs | Mr | Ms | Dr)​​\s​​)? (.*?)​

​ ​ ​​\s​​ and ​​\s​

​ ​)​

​ ​ (?(<title>)​​\g​​<title>​​\s​​) (.+)​

​ ​}x​

​ match_data = re.​match​(​"Mr Smith and Sally"​)

​ match_data ​# => nil​

​

​ successful_match = re.​match​(​"Mr Smith and Ms Sally"​)

​ successful_match[0] ​# => "Mr Smith and Ms Sally"​

​ successful_match[​:title​] ​# => "Ms"​

The match failed, as we expected, but when we add a title to Sally, it succeeds.
Note that the title named group only gets the last of the two values, for our
purposes here, that’s not a big deal, but it might cause an issue in other cases.

Let’s try this on our list:

tut_regexp/validate_attendees.rb

​ NAMES = [

​ ​"Mr Jones and Sally"​,

​ ​"Mr Bond and Ms Moneypenny"​,

​ ​"Samson and Delilah"​,

http://media.pragprog.com/titles/ruby5/code/tut_regexp/attendee_validator_4.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/validate_attendees.rb

​ ​"Dr Jekyll and himself"​,

​ ​"Ms Hinky Smith and Ms Jones"​,

​ ​"Dr Wood and Mrs Wood"​,

​ ​"Thelma and Louise"​

​]

​

​ NAMES.​each​ ​do​ |line|

​ re = ​%r{ ^(?>​

​ ​ (?:(?<title>Mrs | Mr | Ms | Dr)​​\s​​)? (.*?) ​​\s​​ and ​​\s​

​ ​)​

​ ​ (?(<title>)​​\g​​<title>​​\s​​) (.+)​

​ ​ }x​

​ ​if​ line.​match?​(re)

​ puts(​"VALID: ​​#{​line​}​​"​)

​ ​else​

​ puts(​"INVALID: ​​#{​line​}​​"​)

​ ​end​

​ ​end​

Produces:

​ INVALID: Mr Jones and Sally

​ VALID: Mr Bond and Ms Moneypenny

​ VALID: Samson and Delilah

​ INVALID: Dr Jekyll and himself

​ VALID: Ms Hinky Smith and Ms Jones

​ VALID: Dr Wood and Mrs Wood

​ VALID: Thelma and Louise

Alternatives in Conditions
As they say in infomercials, “But wait! There’s more!” Conditional
subpatterns can also have an else clause.

​ (?(group_id) ​true​-pattern | fail-pattern)

If the identified group was previously matched, the true pattern is applied. If it
failed, the fail pattern is applied.

Here’s a regular expression that deals with red and blue balls or buckets. The
deal is that the colors of the ball and bucket must be different.

​ re = ​%r{(?:(red)|blue) ball and (?(1)blue|red) bucket}​

​

​ re.​match?​(​"red ball and blue bucket"​) ​# => true​

​ re.​match?​(​"blue ball and red bucket"​) ​# => true​

​ re.​match?​(​"blue ball and blue bucket"​) ​# => false​

If the first group (the red alternative) matches, then the conditional subpattern
is blue, otherwise it’s red.

Named Subroutines
There’s a trick that allows us to write subroutines inside regular expressions.
Recall that we can invoke a named group using \g<name>, and we define the
group using (?<name>...). Normally, the definition of the group is itself matched
as part of executing the pattern. But, if you add the suffix {0} to the group, it
means “zero matches of this group,” so the group isn’t executed when first
encountered.

In this example, we use that trick to name all our subgroups up front and then
use the named versions to build the final match:

tut_regexp/named_subroutines.rb

​ sentence = ​%r{​

​ ​ (?<subject> cat | dog | gerbil){0}​

​ ​ (?<verb> eats | drinks| generates){0}​

​ ​ (?<object> water | bones | PDFs){0}​

​ ​ (?<adjective> big | small | smelly){0}​

​ ​ (?<opt_adj> (​​\g​​<adjective>​​\s​​)?){0}​

​

​ ​ The​​\s\g​​<opt_adj>​​\g​​<subject>​​\s\g​​<verb>​​\s\g​​<opt_adj>​​\g​​<object>​

​ ​}x​

​

​ md = sentence.​match​(​"The cat drinks water"​)

​ puts ​"The subject is ​​#{​md[​:subject​]​}​​ and the verb is ​​#{​md[​:verb​]​}​​"​

​

​ md = sentence.​match​(​"The big dog eats smelly bones"​)

​ puts ​"The last adjective in the second sentence is ​​#{​md[​:adjective​]​}​​"​

​

​ sentence =~ ​"The gerbil generates big PDFs"​

​ puts ​"And the object in the last sentence is ​​#{​$~[​:object​]​}​​"​

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_subroutines.rb

Produces:

​ The subject is cat and the verb is drinks

​ The last adjective in the second sentence is smelly

​ And the object in the last sentence is PDFs

Setting Options
We saw earlier that you can control the characters matched by \b, \d, \s, and \w

(along with their negations). To do that, we embedded a sequence such as (?u)

in our pattern. That sequence sets an option inside the regular expression
engine.

We also saw at the beginning of this chapter that you can add one or more of
the options i (case insensitive), m (multiline), and x (allow spaces) to the end of
a regular expression literal. You can also set these options within the pattern
itself. They are set using (?i), (?m), and (?x). You can also put a minus sign in
front of these three options to disable them.

Here is the full list of available options:

Option Description
(?adimux) Turns on the corresponding option. If used inside a group, the

effect is limited to that group.

(?-imx) Turns off the i, m, or x option.

(?

adimux:re)

Turns on the option for _re_.

(?-imx:re) Turns off the option for re.

Strings
Strings are probably the most commonly used data type in Ruby, and they
have a powerful and wide-ranging API to prove it. Here are some of the
most useful and most interesting String methods.

Finding Information about a String
The length of a string is accessible with the method String#length or
String#size, which are aliases of each other. The length is in characters and is
determined by the current encoding. You can get the length in bytes with the
method String#bytesize. The method String#empty? returns true if the length of
the string is zero.

If you want to know how many times a given character is used in a string,
you can use String#count(*selectors). This works, as you probably expect, if
you pass in a single character, but it gets a little confusing if you pass in a
longer string or multiple strings, as you can see in the following example:

​ ​"Banana bread"​.​count​(​"b"​) ​# => 1​

​ ​"Banana bread"​.​count​(​"ba"​) ​# => 5​

​ ​"Banana bread"​.​count​(​"bad"​, ​"a"​) ​# => 4​

The argument to count is called a character selector. A multi-character
string selector matches for any of the characters included. For example, ba

as an argument finds the counts for all characters that are b or a. A character
selector can use a hyphen to suggest a range of characters, and a caret to
invert the selection:

​ ​"Banana bread"​.​count​(​"a-d"​) ​# => 6​

​ ​"Banana bread"​.​count​(​"^ba"​) ​# => 7​

The count method can take more than one of these selectors as arguments, in
which case a character needs to be a part of all the selectors in order to be

counted. In our "Banana bread".count("bad", "a") example, bad and a only
overlap with a, so we get the count of a.

Testing the Content of Strings
The most generic way to determine if a string contains a particular content
is with the String#index(substring_or_regex, offset = 0) method. The index

method takes an argument that’s either a string or a regular expression. It
returns the index of the first position in the receiver that matches the
argument or returns nil if no match exists:

​ ​"The pickaxe book"​.​index​(​"ck"​) ​# => 6​

​ ​"The pickaxe book"​.​index​(​/\s/​) ​# => 3​

​ ​"The pickaxe book"​.​index​(​"z"​) ​# => nil​

An optional second argument is an index. If the index is a positive integer,
it returns the first match after that index. If the index is a negative integer,
index still returns the first match after the index, but it counts the index from
the end of the string:

​ ​"The pickaxe book"​.​index​(​"e"​) ​# => 2​

​ ​"The pickaxe book"​.​index​(​"e"​, 4) ​# => 10​

​ ​"The pickaxe book"​.​index​(​"e"​, -7) ​# => 10​

In the last line, the search starts at index -7, which is seven characters from
the end of the string, but then it moves to the end of the string and returns
the index of the second e.

If you want the index of the last element of the string that matches, use the
method String#rindex(substring_or_regex, offset = self.length). The first argument
to rindex behaves exactly the same except the return value is based on the
last match. In the case of a regular expression, last match means “starts as
late in the string as possible” not “ends as late in the string as possible.”

​ ​"The pickaxe book"​.​index​(​"e"​) ​# => 2​

​ ​"The pickaxe book"​.​rindex​(​"e"​) ​# => 10​

​ ​"The pickaxe book"​.​rindex​(​/o.*/​) ​# => 14​

The index arguments for rindex behave a little differently. They delimit the
ending point for the search, which is to say they indicate the maximum
index the result can have before returning nil. A positive argument indicates
the maximum index directly, while a negative argument implies the
maximum index based on adding the negative offset to the length of the
string:

​ ​"The pickaxe book"​.​rindex​(​"e"​) ​# => 10​

​ ​"The pickaxe book"​.​rindex​(​"e"​, 2) ​# => 2​

​ ​"The pickaxe book"​.​rindex​(​"e"​, 4) ​# => 2​

​ ​"The pickaxe book"​.​rindex​(​"e"​, 8) ​# => 2​

​ ​"The pickaxe book"​.​rindex​(​"e"​, -7) ​# => 2​

If all you want is a boolean yes/no about the substring, you can use
String#include?(substring), which only takes a string argument and returns true

if the argument is in the string and false otherwise. For regular expressions,
you use String#match?(regex) for the same behavior:

​ ​"The pickaxe book"​.​include?​(​"e"​) ​# => true​

​ ​"The pickaxe book"​.​include?​(​"z"​) ​# => false​

​ ​"The pickaxe book"​.​match?​(​/o{2}/​) ​# => true​

If you specifically want to test one end or another of a string, use
String#start_with?(*string_or_regex) or String#end_with?(*string). Somewhat
weirdly, these methods take different sets of arguments. The start_with?

method takes one or more strings or regular expressions and returns true if
the start end of the string matches any of the arguments. The end_with? is the
same but doesn’t take regular expression arguments:

​ ​"The pickaxe book"​.​start_with?​(​"e"​) ​# => false​

​ ​"The pickaxe book"​.​start_with?​(​"T"​) ​# => true​

​ ​"The pickaxe book"​.​start_with?​(​/[A-Z]/​) ​# => true​

​ ​"The pickaxe book"​.​end_with?​(​"k"​) ​# => true​

​ ​"The pickaxe book"​.​end_with?​(​"k"​, ​"q"​) ​# => true​

Retrieving Substrings

In Ruby’s library, a substring of a string is sometimes called a slice. The
most common way to retrieve a slice from a string is to use square brackets.
Five kinds of arguments may be used inside the square brackets:

A single integer index, as in "abcdefg"[3] or "abcdefg"[-3]. An index of
zero will return the first character of the string, and a positive number
will return the string at that index from the left, so "abcdefg"[3] is d. A
negative number will return the index from the right, with -1 being the
last character of the string, so "abcdefg"[-3] is e.

A range, as in "abcdefg"[1..3]. This returns the substring that starts at the
index of the beginning of the range and ends at the index of the end of
the range. If both parts of the range are positive, that’s the same as the
indexes that correspond to the numbers in the range. But negative
numbers correspond to indexes from the end of the string, so "abcdefg"

[4..-1] returns "efg", since e is the character at index 4, and g is the
character at index -1, the last character. Halfway ranges also work, so
"abcdefg"[..-2] returns all but the last character, and "abcdefg"[3..] returns
everything from index 3 on. If both ends of the range are outside the
string, the result is an empty string. If the ends of the range are in the
wrong order relative to the string (like 4..2), you also get an empty
string.

Two arguments representing an index and a length, as in "abcdefg"[1, 3].
This gives you the substring starting at the given index, for the given
length, in this case bcd. There are a few special cases. If the length goes
off the end of the string, you just get the characters up to the end of the
string—you don’t get a bunch of whitespace padding or anything like
that. If the length is zero or the index exactly matches the end of the
string, you get an empty string. If the length is negative or if the index
is greater than the length of the string, you get nil.

The argument could be a regular expression, as in "abcdefg"[/d.*/]. In
this case, you get the first match, so the bracket syntax is equivalent to
"abcedfg".match(/d.*/), but the brackets are way more confusing here. If
there’s no match, the return value is nil. A second argument is optional
and it makes the expression return the capture group associated with
the argument, as though you had returned a match object and looked
up that value. If the second argument is a number that doesn’t have a
corresponding capture group, you get nil; if it’s a name that doesn’t
have a corresponding named capture group, you get an IndexError.

The argument can be a string as in "abcdefg"["def"]. In this case, you get
the string in the brackets if that substring exists in the receiving string,
or you get nil, which is the equivalent of "abcdefg.include?("def") ? "def" :

nil.

If you don’t like the bracket syntax, the method is aliased as String#slice()

and takes the same arguments, such as slice(1..3) or whatever. There’s a
destructive version—String#slice!(args)—that returns the substring and
modifies the original string by removing that substring:

​ sample = ​"abcdefg"​

​ sample.​slice!​(1..3) ​# => "bcd"​

​ sample ​# => "aefg"​

Other Substring Retrieval Methods
Some additional patterns of extracting substrings are common enough to
have dedicated methods. The method String#strip returns a new version of
the string with leading and trailing whitespace removed. The variant
String#lstrip removes leading whitespace only, and the variant String#rstrip

removes trailing whitespace only. All three methods have ! variants that
modify the string in place like this: String#strip!, String#lstrip!, and
String#rstrip!. The return values of all three modifying methods are the newly
modified string if the string changed or nil if the string isn’t changed. That’s

a common Ruby pattern for methods that mutate the original. But, if you’re
using the ! variants, you normally aren’t using the return value; you’re just
using the receiving object later in the code.

For the purposes of the strip family of methods, Ruby defines whitespace as:

A space character, Unicode \x20 or " "

A tab character, escaped as \t or Unicode \x09

A newline, or line feed, \n, or Unicode \x0a

A carriage return, \r or Unicode \x0d

A form feed, \f or Unicode \x0c

A vertical tab, \v or Unicode \x0b

Unicode null, x00 or \u0000

Removing the Last Character from a String
When doing text processing, especially from files or command-line input, a
common task is to remove the last character of a string if it’s the end of a
line marker. Ruby adapted a couple of versions of this feature from Perl.

The method String#chop always removes the last character of a string, but if
the last two characters of the string are \r\n (the Windows end-of-line
marker), chop removes both of them.

The similarly named but more useful in practice method called
String#chomp(line_separator = $/) removes the last character if it is a line
separator. By default, that means \r, \n, or \r\n, but the documentation makes
a point of mentioning, not \n\r.

You can pass an argument to chomp. If that argument is an empty string,
chomp will remove a series of \n or \r\n characters at the end of the string. If
the string includes any other character, chomp will remove that character if
it’s the last character of the string.

All these versions with arguments seem likely to be confusing. If you need
this functionality, we recommend using chomp without arguments and
perhaps writing a more explicit version of anything more complex that you
need. Both chop and chomp have modifier versions, String#chop! and
String#chomp!. As with other versions we’ve seen, they return the string if
the string changed and return nil otherwise.

Iterating within Strings
If you want to iterate over different parts of the string, you have a few
options that allow you to split a string up or to perform the iteration without
actually splitting the string.

The method String#chars splits the string up into an array of characters. Ruby
doesn’t actually have a character class, so chars splits the string up into an
array of one-length strings. The method String#each_char [{ |c| block }] takes a
block and calls it with each character in succession. As with other
enumeration methods, if called without a block, the method returns a Ruby
enumerator that can be invoked later or chained to other enumerators.

Similar methods break the string down a little differently. The method
String#bytes returns an array of the numerical bytes that make up each
character, where some characters might be more than one byte long. The
String#codepoints method returns the codepoint for each character in the
current encoding. That array produces one entry for each character. The
iterators String#each_byte [{ |byte| block }] and String#each_codepoint [{ |codepoint|

block }] take blocks or return enumerators and allow you to enumerate over
the bytes or code points. And the method String#each_grapheme_cluster [{

|cluster| block}] allows you to loop over Unicode grapheme clusters.

The method String#lines(line_separator = $/, chomp: false) splits the string into an
array of strings based on line separators. By default, the separator is $/, the
global line separator, but you can pass your own line separator as any

character you want. If the argument is an empty string, lines(”), then the
method acts as a paragraph splitter and splits when there are two or more
line separators in a row. An optional second argument, chomp: true, removes
the last instance of the line separator from each element in the array. The
related method String#each_line(line_separator = $/, chomp: false) [{ |substring|

block }] takes the same argument and returns an enumerator, or takes a block
argument and invokes the block once for each separated line.

The String#scan(string_or_regex) method takes a string or a regular expression
argument and returns an array of all the times the string matches the regular
expression. If the regular expression doesn’t have groups, it’s an array of
the entire matched string. If the regular expression does have groups, it’s an
array of arrays containing the matches:

​ ​"The pickaxe book"​.​scan​(​/w+/​) ​# => []​

​ ​"The pickaxe book"​.​scan​(​/\s.{1}/​) ​# => [" p", " b"]​

​ ​"The pickaxe book"​.​scan​(​/(\s)(.{1})/​) ​# => [[" ", "p"], [" ", "b"]]​

Most generically, the String#split(separator = $; limit = nil) [{ |substring| block }]

method allows you to split a string on an arbitrary value. When called with
no arguments, it splits based on spaces. But you can call it with any string
or regular expression argument. If the last substrings are empty, they aren’t
part of the output:

​ ​"The pickaxe book"​.​split​ ​# => ["The", "pickaxe", "book"]​

​ ​"The pickaxe book"​.​split​(​"e"​) ​# => ["Th", " pickax", " book"]​

​ ​"The pickaxe book"​.​split​(​/\b/​) ​# => ["The", " ", "pickaxe", " ", "book"]​

​ ​"The pickaxe book"​.​split​(​"k"​) ​# => ["The pic", "axe boo"]​

An optional second argument is a limit. If the limit is greater than zero, the
number of elements in the resulting array is limited to that number and the
rest of the string comes together at the end. If the limit is negative, it has no
effect, except that trailing empty substrings are part of the return value:

​ ​"The pickaxe book"​.​split​(​"e"​, 2) ​# => ["Th", " pickaxe book"]​

​ ​"The pickaxe book"​.​split​(​"k"​, -1) ​# => ["The pic", "axe boo", ""]​

The split method can take an optional block, in which case the block is
called once with each substring as an argument and the return values of the
block calls are returned.

A special case of splitting is where you want to split the string exactly once.
The String#partition(string_or_regex) method takes a string or regular
expression as an argument and returns an array with three elements: the part
of the string before the match, the match, and the remainder of the string. If
the argument doesn’t appear in the string, then the result is [string, "", ""]. The
method String#rpartition(string_or_regex) does the same thing, but it finds the
last match in the string, rather than the first:

​ ​"The pickaxe book"​.​partition​(​"e"​) ​# => ["Th", "e", " pickaxe book"]​

​ ​"The pickaxe book"​.​rpartition​(​"e"​) ​# => ["The pickax", "e", " book"]​

Replacing Text in Strings
Ruby strings are mutable, meaning that the value of the string can change
over time.

Partial String Assignment
The most general way to replace an arbitrary part of the string is by using
square bracket syntax, []=. If a string is being accessed with square brackets
on the left side of an assignment statement, the right side of the statement
replaces the referenced part of the string, even if the new part of the string
is a different length than the substring. The return value of the assignment is
the right side of the assignment, but the string itself changes:

​ x = ​"the pickaxe book"​

​ x[12..] = ​"podcast"​

​ x ​# => "the pickaxe podcast"​

This assignment works no matter which form you use inside the square
brackets.

String Insertion

Several other methods change the text in strings, either in place or by
returning a new string. The String#insert(index, other_string) method takes an
index and another string and inserts the new string at that index. This both
returns the original string and mutates it:

​ x = ​"the pickaxe book"​

​ x.​insert​(4, ​"new "​) ​# => "the new pickaxe book"​

​ x ​# => "the new pickaxe book"​

String Deletion
If you just want to delete a known string from within a larger string, use the
String#delete(*selectors) method. The base method takes one or more
character selectors, as shown in ​Finding Information about a String​, and
returns a copy of the string with matching characters removed. The method
String#delete!(*selectors) does the same thing, but mutates the receiving string
and returns the mutated string. Like other mutation string methods, it
returns nil if the string is unchanged:

​ ​"The pickaxe book"​.​delete​(​"k"​) ​# => "The picaxe boo"​

You’re also able to delete the prefixes and suffixes in strings with
String#delete_prefix(prefix) and String#delete_suffix(suffix). These methods take
actual substrings (not selectors) and remove them from the requested end of
the string if that end of the string matches. They return a copy of the string
with the change:

​ ​"The pickaxe book"​.​delete_prefix​(​"The"​) ​# => " pickaxe book"​

​ ​"The pickaxe book"​.​delete_prefix​(​"Banana"​) ​# => "The pickaxe book"​

​ ​"The pickaxe book"​.​delete_suffix​(​"book"​) ​# => "The pickaxe "​

​ ​"The pickaxe book"​.​delete_suffix​(​"podcast"​) ​# => "The pickaxe book"​

Mutator versions of these methods, String#delete_suffix!(suffix) and
String#delete_prefix!(prefix) return either the mutated original string or nil.

String Replacement

It’s quite common to want to change a string by changing a specific
character or pattern to a different character or pattern. Ruby has a couple of
different methods for this.

One family of methods consists of String#sub(pattern, replacement), String#sub!

(pattern, replacement), String#gsub(pattern, replacement), and String#gsub!(pattern,

replacement). The gsub method is the most general and takes two arguments:
a pattern and a replacement. The pattern is a String or a regular expression;
the replacement is a String, a Hash, or a block, in which case the method
signature looks like String#sub(pattern) { |substring| block } for all four methods.

The gsub method returns a copy of the receiving string with all occurrences
of pattern replaced using the replacement value.

The pattern will typically be a Regexp. If it’s a String, then no regular
expression metacharacters will be interpreted (that is, /\d/ will match a digit,
but "\d" will match a backslash followed by a d).

How the replacement value is created depends on the other arguments. If
the replacement is a string, the string is put in place of the pattern:

​ ​"The pickaxe book"​.​gsub​(​"e"​, ​"!"​) ​# => "Th! pickax! book"​

​ ​"The pickaxe book"​.​gsub​(​/[aeiou]/​, ​"y"​) ​# => "Thy pyckyxy byyk"​

If a string is used as the replacement, special variables from the match (such
as $& and $1) cannot be substituted into it because substitution into the
string occurs before the pattern match starts. But the sequences \1, \2, and so
on, may be used to interpolate successive numbered groups in the match,
and \k<_name_> will substitute the corresponding named captures. There are
a couple of other regular expression bits that can be included in the
replacement string (see the full Ruby documentation for details).

If the replacement is a block, the block is called with the matched part of
the string and the value of the block is the replacement:

​ ​"The pickaxe book"​.​gsub​(​/[aeiou]/​) { |str| str.​upcase​ } ​# => "ThE pIckAxE
bOOk"​

If the replacement is a Hash, the keys should be strings, and each matched
text is either replaced by the value associated with that key in the hash or is
removed if no matching key. Note that the keys have to be strings, so we
need hash rocket syntax here.

​ ​"The pickaxe book"​.​gsub​(​/[aeiou]/​, {​"a"​ => ​"b"​, ​"e"​ => ​"f"​}) ​# => "Thf
pckbxf​

​ ​# .. bk"​

The gsub! method has the same behavior as gsub except that it mutates its
receiver.

The sub method is like gsub except that it only replaces the first match in the
string—the “g” in gsub is for “global.” The sub! method is like sub except
that it mutates its receiver.

When you want to replace a specific character with a specific other
character, Ruby provides the String#tr(selector, replacements) method, which
should be faster than gsub for the cases in which it applies. The tr method is
probably most commonly used with two one-character strings as arguments,
and it converts all instances of the first string into the second.

But the method is actually more powerful. The first argument can be any
character selector (as in ​Finding Information about a String​) and the second
argument is a string of replacements. It returns a copy of the receiving
string with the characters in the first argument replaced by the
corresponding characters in the second argument. If the second argument is
shorter than the first argument, it is padded with its last character. Both
strings may use the entire character selector syntax. Here are some
examples:

​ ​"hello"​.​tr​(​"l"​, ​"$"​) ​# => "he$$o"​

​ ​"hello"​.​tr​(​"aeiou"​, ​"*"​) ​# => "h*ll*"​

​ ​"hello"​.​tr​(​"^aeiou"​, ​"*"​) ​# => "*e**o"​

​ ​"hello"​.​tr​(​"el"​, ​"ip"​) ​# => "hippo"​

​ ​"hello"​.​tr​(​"a-y"​, ​"b-z"​) ​# => "ifmmp"​

The related String#tr!(selector, replacements) method has the same behavior
but changes the receiving string in place.

The String#squeeze(*selectors) method takes a list of character selectors (as in ​
Finding Information about a String) and replaces any case where more than
one of the characters happens in a row with a single instance. It’s most
commonly used as squeeze(" ") to clean up extra spaces. The String#squeeze!

(*selectors) method changes the receiver in place.

Formatting Strings
A trio of methods pad a string inside a larger string: String#ljust(size,

padding_string = " "), which left justifies the string; String#rjust(size,

padding_string = " "), which right justifies it; and String#center(size,

padding_string = " "), which places the receiving string inside a larger string.
All three take two arguments: the size of the larger string and an optional
string to pad the space. A space character is the default.

​ ​"book"​.​center​(15) ​# => " book "​

​ ​"book"​.​ljust​(15) ​# => "book "​

​ ​"book"​.​rjust​(15) ​# => " book"​

​ ​"book"​.​center​(15, ​"0"​) ​# => "00000book000000"​

If you want to change the case of a string, Ruby provides these methods:

String#upcase(*options), which makes all the characters uppercase.
String#downcase(*options), which makes them all lowercase.
String#capitalize(*options), which capitalizes the first letter of every
word.
String#swapcase(*options), which swaps the case of every character in the
string.

By default, these methods all use Unicode case mapping, but all three take
optional arguments for :ascii (which limits case behavior to only ASCII a-z
characters) or :turkic (which adapts to the unique case mapping of Turkic
languages). downcase, and downcase alone, takes :fold (which uses Unix case
folding instead of case mapping).

Using Strings and Binary Operators
Strings do respond to some other binary operators. A string plus a string is a
new string concatenating the two strings. Ruby will also concatenate strings
with String#<<. Ruby will even concatenate strings if you put two strings
next to each other with no operator between them:

​ ​"ab"​ + ​"cd"​ ​# => "abcd"​

​ ​"ab"​ << ​"cd"​ ​# => "abcd"​

​ ​"ab"​ ​"cd"​ ​# => "abcd"​

The inverse of concatenation is prepending. If for some reason you need to
use prepending, Ruby provides String#prepend(other), as in "ab".prepend("cd").

A string can be multiplied by a non-negative integer to produce a new string
that repeats the original string that many times:

​ ​"ab"​ * 10 ​# => "abababababababababab"​

Strings respond to the String#<=> and use Comparable, so all your comparison
operators work. The <=> comparison is case-sensitive. A case-insensitive
version is String#casecmp(other). The expression a.casecmp(b) is equivalent to
a.downcase <=> b.downcase. The method casecmp? returns true if the downcased
versions of each string are equal. Strings also define String#=== as an alias
for ==.

We’ve seen String#=~ for regular expression match and String#!~ for non-
regular expression match.

Finally, you can reverse a string with String#reverse, which returns a new
string, or with String#reverse!, which changes the receiving string in place.

Strings also define unary + and unary -. Unary + as in +"foo" returns the
string itself if the string isn’t frozen, or it returns an unfrozen duplicate of
the string if the string is frozen. Unary -, as in -"foo" does the inverse. If the
string is frozen, it returns the string itself; if not, it returns a frozen duplicate
of the string. In the - case, the string will also be “deduped” (also known as
“interned”), meaning that if the string is created multiple times, all instances
will point to the same memory location, potentially saving memory. Unary -
is also aliased as String#dedup.

Unpacking Data
The method String#unpack(template, offset: 0) is the inverse of Array#pack (see ​
Packing Data​). The method takes a template string and decodes the string
(which may contain binary data) according to the format string, and it
returns an array of the extracted values. The directives are the same for the
template and can be found in Table 26, ​Template characters for packed data​
.

​ ​"abc ​​\0\0​​abc ​​\0\0​​"​.​unpack​(​'A6Z6'​) ​# => ["abc", "abc "]​

​ ​"abc ​​\0\0​​"​.​unpack​(​'a3a3'​) ​# => ["abc", " \x00\x00"]​

​ ​"aa"​.​unpack​(​'b8B8'​) ​# => ["10000110", "01100001"]​

​ ​"aaa"​.​unpack​(​'h2H2c'​) ​# => ["16", "61", 97]​

​ ​"​​\xfe\xff\xfe\xff​​"​.​unpack​(​'sS'​) ​# => [-2, 65534]​

​ ​"now=20is"​.​unpack​(​'M*'​) ​# => ["now is"]​

​ ​"whole"​.​unpack​(​'xax2aX2aX1aX2a'​) ​# => ["h", "e", "l", "l", "o"]​

Encoding
The encoding determines how Ruby converts the bytes making up a string
into individual characters. We can verify that Ruby correctly interprets π as
a single character:

​ ​# encoding: utf-8​

​ pi = ​"π"​

​ puts ​"The size of a string containing π is ​​#{​pi.​size​​}​​"​

Produces:

​ The size of a string containing π is 1

Now, let’s get perverse. The two-byte sequence \xcf\x80 represents π in
UTF-8, but it’s not a valid byte sequence in SJIS encoding. Let’s see what
happens if we tell Ruby that this same source file is SJIS encoded.
(Remember, when we do this, we’re not changing the actual bytes in the
string—we’re just telling Ruby to interpret them with a different set of
encoding rules.)

​ ​# encoding: sjis​

​ PI = ​"π"​

​ puts ​"The size of a string containing π is ​​#{​PI.​size​​}​​"​

Produces:

​ prog.rb:

​ prog.rb:2: invalid multibyte char (Windows-31J) (SyntaxError)

​ prog.rb:3: invalid multibyte char (Windows-31J)

This time, Ruby complains because the file contains byte sequences that are
illegal in the given encoding.

Ruby supports an encoding called ASCII-8BIT. Despite the ASCII in the name,
this is intended to be used on data streams that contain binary data. It’s the
default encoding that Ruby uses for reading binary streams. (It also has an
alias of BINARY}.) But you can also use this as an encoding for source files.
If you do, Ruby interprets all characters with codes below 128 as regular
ASCII and all other characters as valid constituents of variable names. This
is a neat hack because it allows you to compile a file written in an encoding
you don’t know—the characters with the high-order bit set will be assumed
to be printable.

​ ​# encoding: ascii-8bit​

​ ​π​ = 3.14159

​ puts ​"π = ​​#{​​π​​}​​"​

​ puts ​"Size of 'π' = ​​#{​​'π'​.​size​​}​​"​

Produces:

​ π = 3.14159

​ Size of 'π' = 2

The last line of output illustrates why ASCII-8BIT is a dangerous encoding
for source files. Because it doesn’t know to use UTF-8 encoding, the π
character looks to Ruby like two separate characters.

Converting Encodings
Strings, symbols, and regular expressions are labeled with their encoding.
You can convert a string from one encoding to another using the encode

method. For example, we can convert the word olé from UTF-8 to ISO-
8859-1:

​ ole_in_utf = ​"olé"​

​ ole_in_utf.​encoding​ ​# => #<Encoding:UTF-8>​

​ ole_in_utf.​bytes​.​to_a​ ​# => [111, 108, 195, 169]​

​

​ ole_in_8859 = ole_in_utf.​encode​(​"iso-8859-1"​)

​ ole_in_8859.​encoding​ ​# => #<Encoding:ISO-8859-1>​

​ ole_in_8859.​bytes​.​to_a​ ​# => [111, 108, 233]​

You have to be careful when using encode—if the target encoding doesn’t
contain characters that appear in your source string, Ruby will throw an
exception. For example, the π character is available in UTF-8 but not in
ISO-8859-1:

​ pi = ​"pi = π"​

​ pi.​encode​(​"iso-8859-1"​)

Produces:

​ from prog.rb:2:in `<main>'

​ prog.rb:2:in `encode': U+03C0 from UTF-8 to ISO-8859-1

​ (Encoding::UndefinedConversionError)

You can override the exceptional behavior, for example supplying a
placeholder character to use when no direct translation is possible.

​ pi = ​"pi = π"​

​ puts pi.​encode​(​"iso-8859-1"​, ​undef: :replace​, ​replace: ​​"??"​)

Produces:

​ pi = ??

The String#encode(destination_encoding, source_encoding = nil, **encoding_options)

method takes a set of keyword options to specify encoding behavior (see
the following table). These options are also available when opening a file or
I/O stream.

Table 22. Options to encode and encode!

Option Meaning
cr_newline: true If true, converts lf to cr. Only one of cr_newline,

crlf_newline, and universal_newline can be true.

crlf_newline: true If true, converts lf to crlf. Only one of cr_newline,
crlf_newline, and universal_newline can be true.

fallback: nil | hash |
method | proc

A fallback value if the replacement value is not
set. This allows a dynamic value to be set based
on the missing value. If the missing value is foo

then the replacement value is hash[foo] or
method(foo) or proc.call(foo).

invalid: nil |
:replace

Replaces invalid characters in the source string
with the replacement string. If :invalid is not

Option Meaning
specified or is set to nil, raises an exception. The
default value is nil.

undef: nil | :replace Replaces characters that are not available in the
destination encoding with the replacement string.
If :undef is not specified or nil, raises an exception.
The default value is nil.

replace: nil | string Specifies the string to use if :invalid or :undef

options are present. If not specified or set to nil,
uFFFD is used for Unicode encodings and ? for
others. The default value is nil.

universal_newline:
true

If true, converts crlf and cr line endings to lf. Only
one of cr_newline, crlf_newline, and universal_newline

can be true.

xml: nil | :text | :attr If the value is nil, which is the default, then no
special processing takes place. Otherwise, after
encoding, escape any characters that would have
special meaning in XML PCDATA or attributes.
In both cases, converts & to &, < to <, > to
>, and undefined characters to a hexadecimal
entity (&#xhh;). For :attr, it also converts " to "

and puts double-quotes around the entire string.

Sometimes you’ll have a string containing binary data and you want that
data to be interpreted as if it had a particular encoding. You can’t use the
encode method for this because you don’t want to change the byte contents

of the string—you’re just changing the encoding associated with those
bytes. Use the String#force_encoding(encoding) method to do this:

​ ​# encoding: ascii-8bit​

​ str = ​"​​\xc3\xa9​​"​ ​# e-acute in UTF-8​

​ str.​encoding​ ​# => #<Encoding:ASCII-8BIT>​

​ str.​force_encoding​(​"utf-8"​)

​ str.​bytes​.​to_a​ ​# => [195, 169]​

​ str.​encoding​ ​# => #<Encoding:UTF-8>​

Finally, you can use encode (with two parameters) to convert between two
encodings if your source string is ASCII-8BIT. This might happen if, for
example, you’re reading data in binary mode from a file and choose not to
encode it at the time you read it. Here we fake that by creating an ASCII-
8BIT string that contains an ISO-8859-1 sequence (our old friend olé). We
then convert the string to UTF-8. To do this, we have to tell encode the
actual encoding of the bytes by passing it a second parameter:

​ ​# encoding: ascii-8bit​

​ original = ​"ol​​\xe9​​"​ ​# e-acute in ISO-8859-1​

​ original.​bytes​.​to_a​ ​# => [111, 108, 233]​

​ original.​encoding​ ​# => #<Encoding:ASCII-8BIT>​

​ new = original.​encode​(​"utf-8"​, ​"iso-8859-1"​)

​ new.​bytes​.​to_a​ ​# => [111, 108, 195, 169]​

​ new.​encoding​ ​# => #<Encoding:UTF-8>​

Symbols
Symbols don’t have a lot of methods in Ruby. We’ve seen Symbol#to_proc as
a shortcut for creating a block. The to_proc method creates a block that is
effectively equivalent to { |receiver, ...| receiver.send(symbol, ...)}. You usually see
it used implicitly with &, but it can be used explicitly, too:

​ proc = ​:split​.​to_proc​

​ proc.​call​(​"The pickaxe book"​) ​# => ["The", "pickaxe", "book"]​

​ proc.​call​(​"The pickaxe book"​, ​"e"​) ​# => ["Th", " pickax", " book"]​

You can also use Symbol#to_s to convert a symbol to a string; the
Symbol#name and Symbol#inspect methods perform basically the same
conversion.

Symbols respond to the following string-like methods, which are effectively
shortcuts for calling to_s so that you don’t have to explicitly convert them to
a string and then back to a symbol.

Symbol#<=>, and all Comparable methods
Symbol#[]

Symbol#=== and Symbol#==

Symbol#=~

Symbol#casecmp and Symbol#casecmp?

Symbol#empty?

Symbol#encoding

Symbol#end_with?

Symbol#length and Symbol#size

Symbol#match and Symbol#match?

Symbol#start_with?

The following string-like methods are shortcuts for converting to a string
and then back to a symbol, as in :foo.to_s.METHOD.to_sym.

Symbol#capitalize

[49]

[50]

[51]

Symbol#downcase

Symbol#swapcase

Symbol#upcase

Ruby also gives you Symbol::all_symbols, which returns an array of all
Symbols Ruby knows about at the time of the call.

Footnotes

https://en.wikipedia.org/wiki/List_of_military_time_zones

https://github.com/k-takata/Onigmo

https://github.com/kkos/oniguruma

Copyright © 2024, The Pragmatic Bookshelf.

https://en.wikipedia.org/wiki/List_of_military_time_zones
https://github.com/k-takata/Onigmo
https://github.com/kkos/oniguruma

Chapter 27

Library Reference: Ruby’s Object
Model

In this chapter, we’ll take a closer look at the classes that make up Ruby’s
object model. The goal is to give you more information about what you can
do with these classes and also to discuss related functions together so that
you can browse and perhaps find a new feature that might help.

This isn’t intended to be a complete listing of every class, method, or
option. For that, please refer to the official Ruby documentation at
https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide
its complete name and signature. The notation Foo.bar indicates a class or
module method, while Foo#bar indicates an instance method. Optional
arguments are indicated with Ruby syntax and their default value, as in
Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with
brace syntax and an indication of what the arguments to the block will be,
as in Foo#bar { |object| block }. An optional block argument will be surrounded
by square brackets, Foo#bar [{block}]. Please note that this description syntax
is slightly different than the official documentation, and that in some cases,
what the official documentation shows as multiple method signatures,
we’ve chosen to show as one signature with default values. Also, parameter

https://docs.ruby-lang.org/

names sometimes differ from the official documentation to make the
naming clearer.

BasicObject
For most purposes in Ruby, you can consider the Object class to be the root of
Ruby’s class hierarchy, and the Kernel module to be mixed into all objects. But
in some specialized classes, you might want a Ruby object that doesn’t have
the basic functionality contained in Object and Kernel. For example, you might
want a very minimal data object, or you might want to experiment with your
own metaprogramming tools or object semantics.

For those cases, you want the class BasicObject which is the real root of Ruby’s
class hierarchy. BasicObject deliberately has just a few methods, allowing it to
be conveniently used as the basis for a number of metaprogramming
techniques.

If you write code in a direct descendent of BasicObject, you won’t have
unqualified access to the methods in Kernel, which normally get mixed into
Object. This example illustrates how to invoke Kernel methods explicitly as
module-level methods:

ref_meta_ruby/basic_object.rb

​ ​class​ SimpleBuilder < BasicObject

​ ​def​ ​initialize​

​ @indent = 0

​ ​end​

​

​ ​def​ ​__indented_puts__​(string)

​ ::Kernel.​puts​ ​"​​#{​​" "​ * @indent​}​​ ​​#{​string​}​​"​

​ ​end​

​

​ ​def​ ​respond_to_missing?​

​ ​true​

​ ​end​

​

​ ​def​ ​method_missing​(name, *args)

​ __indented_puts__(​"<​​#{​name​}​​>"​)

​ @indent += 2

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/basic_object.rb

​ __indented_puts__(args.​join​) ​unless​ args.​empty?​

​ ​yield​ ​if​ ::Kernel.​block_given?​

​ @indent -= 2

​ __indented_puts__(​"</​​#{​name​}​​>"​)

​ ​end​

​ ​end​

​

​ r = SimpleBuilder.​new​

​ r.​person​ ​do​

​ r.​name​(​"Dave"​)

​ r.​address​ ​do​

​ r.​street​(​"123 Main"​)

​ r.​city​(​"Pleasantville"​)

​ ​end​

​ ​end​

Produces:

​ <person>

​ <name>

​ Dave

​ </name>

​ <address>

​ <street>

​ 123 Main

​ </street>

​ <city>

​ Pleasantville

​ </city>

​ </address>

​ </person>

Because this class uses BasicObject, the method_missing method can respond to
all the methods that would be defined in Object, allowing them to be used as
data in this case.

Here is a complete list of the methods defined by BasicObject, suitable for
placing on a notecard:

BasicObject::new returns a new BasicObject. Note that if you type
BasicObject.new into irb, you’ll get a message that the BasicObject doesn’t

support inspect.
BasicObject#! is boolean negation, returns false unless obj is false. Because
it’s in BasicObject, ! is defined for all objects in Ruby.

BasicObject#!=(other) is the inverse of equality.

BasicObject#==(other) is equality. At the BasicObject level, == returns true

only if obj and other_obj are the same object. Typically, this method is
overridden in descendent classes to provide class-specific meaning.

BasicObject#__id__ returns an integer ID specific to each individual object.

BasicObject#__send__(method_name[, args]) sends the instance the method
name and args as a message.

BasicObject#equal?(other) for BasicObject is equivalent to ==.

BasicObject#instance_eval {block} executes block with self set to the object
receiving instance_eval. It has a rarer form where the argument is a string
of Ruby code instead of a block.

BasicObject#instance_exec(args) {block} is similar to instance_eval except that
the arguments to the method are passed through as arguments to the
block.

BasicObject#method_missing(method_name[, args]) is called when a method
isn’t found. It allows for additional processing based on the method
name.

BasicObject#singleton_method_added(method_name),
BasicObject#singleton_method_removed(method_name), and
BasicObject#singleton_method_undefined(method_name) are all callback
methods invoked when methods are added, removed, or undefined in the
receiver’s singleton object.

Some of these methods reflect very commonly used functionality.

The method BasicObject#instance_eval(string, filename = nil, line_number = nil) or
BasicObject#instance_eval { |object| block } evaluates either a string containing
Ruby source code, or the given block, within the context of the receiver. To set
the context, the variable self is set to the receiver object while the code is
executing, giving the code access to the receiver object’s instance variables. In
the version of instance_eval that takes a String, the optional second and third
parameters supply a filename and a starting line number that are used when
reporting compilation errors:

ref_meta_ruby/instance_eval.rb

​ ​class​ Klass

​ ​def​ ​initialize​

​ @secret = 99

​ ​end​

​ ​end​

​ k = Klass.​new​

​ k.​instance_eval​ { @secret } ​# => 99​

The BasicObject#instance_exec(...) method has the same feature of evaluating the
block in the receiver’s context, but it takes arbitrary arguments and passes
them to the block.

BasicObject#method_missing(name, *args) is invoked by Ruby when obj is sent a
message it cannot handle. The name is the symbol for the unhandled method
that was called, and args are any arguments that were passed to it.
method_missing can be used to implement proxies, delegators, and forwarders.
It can also be used to simulate the existence of methods in the receiver, as the
example at the beginning of this section shows. When invoked by a class that
is a subclass of Object, the method respond_to_missing? should also be defined
(see ​Object​).

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/instance_eval.rb

Class
Classes in Ruby are first-class objects—each is an instance of class Class.
Since Class is a subclass of Module, most of the behavior of Class is actually
defined in the class Module (see ​Module​). The Class class itself adds a small
number of new methods.

You can create an anonymous class with Class.new and assign it to a variable
and use it like a regularly defined class. If you assign it to a variable whose
name starts with a capital letter, it’s treated as a constant and behaves
exactly like a regularly defined class.

When a new class is defined (typically using class SomeName ... end), an
object of type Class is created and assigned to a constant (SomeName, in this
case). When SomeName.new is called to create a new object, the new instance
method in Class is run by default, which in turn invokes Class.allocate to
allocate memory for the object before finally calling the new object’s
initialize method.

The class Class has a private instance method called Class#inherited(subclass)

that you can override in your own classes. If defined, the method is
automatically invoked by Ruby when a subclass of the class is created. The
new subclass is passed as a parameter. Here’s an example:

​ ​class​ Top

​ ​def​ self.​inherited​(sub)

​ puts ​"New subclass: ​​#{​sub​}​​"​

​ ​end​

​ ​end​

​

​ ​class​ Middle < Top

​ ​end​

​

​ ​class​ Bottom < Middle

​ ​end​

Produces:

​ New subclass: Middle

​ New subclass: Bottom

The class Class also defines a method called Class#subclasses, which returns a
list of the known subclass objects in an arbitrary order, and a method called
Class#superclass, which returns the superclass of the given Class or, if you
happen to try this with BasicObject.superclass, it returns nil.

Comparable
If you want to be able to compare two objects of the same class in general, all
you need to do is implement the <=> operator and include the Comparable

module:

built_in_data/team.rb

​ ​class​ Team

​ ​include​ Comparable

​ attr_accessor ​:wins​, ​:losses​, ​:name​

​

​ ​def​ ​initialize​(name, wins, losses)

​ @name = name

​ @wins = wins

​ @losses = losses

​ ​end​

​

​ ​def​ ​percentage​ = (wins * 1.0) / (wins + losses)

​

​ ​def​ ​<​=>(other)

​ ​raise​ ArgumentError ​unless​ other.​is_a?​(Team)

​ percentage <=> other.​percentage​

​ ​end​

​

​ ​def​ ​to_s​ = name

​ ​end​

​

​ brewers = Team.​new​(​"Brewers"​, 73, 89)

​ cardinals = Team.​new​(​"Cardinals"​, 86, 76)

​ cubs = Team.​new​(​"Cubs"​, 103, 58)

​ pirates = Team.​new​(​"Pirates"​, 78, 83)

​ reds = Team.​new​(​"Reds"​, 68, 94)

​

​ puts cubs > cardinals

​ puts ​"​​\n​​"​

​ puts cardinals.​between?​(cubs, reds)

​ puts ​"​​\n​​"​

​ puts [brewers, cardinals, cubs, pirates, reds].​sort​

Produces:

http://media.pragprog.com/titles/ruby5/code/built_in_data/team.rb

​ true

​

​ false

​

​ Reds

​ Brewers

​ Pirates

​ Cardinals

​ Cubs

In this case, we’re using the <=> operator to order teams based on their
winning percentage, so using sort on an array of teams gives you the
standings, lowest to highest.

The comparable module defines <, <=, >, >=, and == as methods that can be
used as operators. It also defines Comprable#between?(low, high) as a boolean and
a method called Comparable#clamp(low, high) or Comparable#clamp(range). The call
obj.clamp(low, high) takes two values or a range and returns the object if it’s
between the low and high values, but returns the border value if the clamp
isn’t between the two values. The range version does the same thing for the
endpoints of the range, but also allows for infinite ranges.

​ 7.​clamp​(5..10) ​# => 7​

​ 3.​clamp​(5..10) ​# => 5​

​ 3.​clamp​(5..) ​# => 5​

​ 12.​clamp​(..10) ​# => 10​

​ 7.​clamp​(5, 10) ​# => 7​

​ 3.​clamp​(5, 10) ​# => 5​

​ 12.​clamp​(5, 10) ​# => 10​

Kernel
The Kernel module is included by class Object, so its methods are available in
every Ruby object. One of the reasons for the Kernel module is to allow
methods like puts and gets to be available everywhere and even to look like
global commands. Kernel methods allow Ruby to still maintain an “everything
is an object” semantics. Kernel methods actually use the implicit receivers and
could be written as self.puts and self.gets. As a result, Kernel methods are both
available everywhere and resolve like any other method.

Since Kernel is mixed into Object, there is no practical difference between a
method defined in Kernel and a method defined in Object. Logically, the
distinction is that the methods in Object manage the object-oriented semantics
of Ruby, while the methods in Kernel are a general functionality that Ruby
wants to be available anywhere in the code. You can find more about this
distinction in ​Object​.

In most cases, your code will be inside an object that includes Kernel and these
methods can be invoked like any other instance method. Kernel methods are
typically invoked without an explicit receiver, which makes them look like
commands, as in require, not self.require.

Methods of Kernel that don’t refer to the self object are also made module
methods by calling module_method (see ​Module​). This is to support calling
Kernel methods by using the syntax Kernel.puts, and it’s there to support calling
Kernel methods inside BasicObject instances that don’t include Kernel. You can
see an example of the module method usage in ​BasicObject​.

Here’s a guide to the most useful or interesting methods of Kernel.

Conversion

In ​Standard Protocols and Coercions​, we listed the conversion methods
defined by Kernel for converting values to basic Ruby types—meaning types
that have literal syntax. Kernel also defines a few other conversions as outlined
in the following table:

Table 23. More kernel module conversion methods

Method Description
BigDecimal(value,

digits = 0,

exception: true)

Available after require "bigdecimal" is executed. If value is
a numerical object, it’s converted to a BigDecimal. If
value is a string, it’s parsed to an integer or float and
then converted. Other objects that implement to_str call
that method, and convert the resulting string. Any other
object raises an exception if the exception argument is
true, otherwise, nil is returned. If the digits argument
isn’t 0 and is less than the number of significant digits
in the value, then the resulting BigDecimal is rounded to
that number of significant digits.

JSON(object, *args) If the object is a string or responds to to_str, then this
assumes that you want to convert a JSON string to
Ruby, and it calls JSON.parse and returns the resulting
object. Otherwise, it assumes you have a Ruby object
and want JSON, so it calls JSON.generate with the
object. In either case, the args is passed to the called
method.

Pathname(path) Available after you call require "pathname". It creates a
new Pathname object from the given pathname.

URI(uri) Creates a URI object from the argument, which is a
string or an existing URI

Control Flow
The Kernel module has many methods that affect the control flow of a Ruby
program.

Exiting a Program
One way to affect the control flow of a program is to end it. The method
Kernel#abort(message = nil) terminates execution immediately with an exit code
of 1. The optional message argument, if it exists, is written to the standard error
stream before the program terminates.

The method Kernel#at_exit {block} takes the block object, converts it to a Proc

object and holds on to the object. The block is executed when the program
ends. If multiple at_exit blocks are declared, they are executed in reverse order
—last declared, first executed.

You can also terminate a Ruby process with the methods exit and exit!.
Kernel#exit(status = true) ends a Ruby program and raises a SystemExit exception,
which you can catch in your code and handle. If the exception isn’t handled,
the program runs any at_exit handlers and then terminates. A true status is
reported as successful to the operating system (typically meaning 0), a false

status is reported as unsuccessful (typically meaning 1), and any integer status
is just returned to be interpreted by the underlying operating system.
Kernel#exit!(status = false) behaves similarly except the at_exit handlers are not
called, and the default status is failure.

The difference here is that abort allows you to send a text message out, but
always sends an exit code of 1, while exit allows you to change the exit code,
but doesn’t allow you to send out a message.

If you don’t want to end the program permanently but just want it to rest a
while, Kernel#sleep(seconds = nil) suspends the current thread for the given
number of seconds. The argument can be any numeric object, including a float

or rational with partial seconds. It returns the actual number of seconds slept,
which may be less than that asked for if the thread was interrupted by a
SIGALRM or if another thread calls Thread#run. An argument of zero causes sleep

to return immediately. An argument of nil causes the thread to sleep forever
unless interrupted by another thread.

Exception Handling
A few methods of Kernel control exceptional behavior. The main way of raising
an exception is the method Kernel#raise(*args), which is aliased as Kernel#fail.
There are a couple of different argument patterns that can be passed to raise.
With no arguments, raise raises the exception in $! or, if $! is nil, raises a
RuntimeError. If the argument is a String (or an object that responds to to_str),
raise raises a RuntimeError with the string as a message.

If the argument isn’t a string, the first parameter should be the name of an
Exception class (or an object that returns an Exception when its exception method
is called). The optional second parameter is the message associated with the
exception, the third parameter is an array of callback information, and the
default is the result of the method Exception#backtrace. An optional keyword
argument, cause:, is the cause of the exception; it defaults to $! but you can set
it to an arbitrary Exception object or to nil. See Chapter 10, ​Exceptions​, for more
details on how exceptions are managed in Ruby.

Control Flow
The Kernel#loop {block} method takes a block and invokes that block repeatedly,
with no argument, until the block is exited with break, return, or by raising a
StopIteration error. If loop is called without a block argument, then an
Enumerator is returned.

The Kernel#tap { |x| block} method takes a block and just yields self to the block
and returns self. It took us a little while to see where this is useful. The tap

method allows you to “tap into” a chain of method calls without interfering.

For example, if you had dog.reverse.capitalize but wanted to see the intermediate
object for debugging purposes, you could use tap right in the middle:

​ puts ​"dog"​

​ .​reverse​

​ .​tap​ { |o| puts ​"Reversed: ​​#{​o​}​​"​ }

​ .​capitalize​

Produces:

​ Reversed: god

​ God

The similar method, Kernel#then { |x| block }, aliased as yield_self, also passes the
receiver to the block but returns the result of the block, rather than the original
receiver. This allows for pipelining an object in a method chain. Here’s a
slightly contrived example:

​ result = ​"testfile"​

​ .​then​ { |filename| File.​readlines​(filename) }

​ .​then​ { |lines| lines.​count​ }

​ puts result

Produces:

​ 4

The pair of methods Kernel#catch(tag) { |tag| block } and Kernel#throw(throw_tag,

value) also allow you to manipulate control flow.

The catch method executes its block immediately, passing the tag argument as
a parameter. If a throw method is encountered, Ruby searches up its stack for a
catch block with a tag argument identical to the throw method’s tag argument.
If found, that block is terminated and catch returns the value given as the
second parameter to throw. If there is no matching catch block, then Ruby
raises a NameError.

If throw isn’t called, the block terminates normally, and the value of catch is the
value of the last expression evaluated. catch expressions may be nested, and
the throw call doesn’t need to be in lexical scope.

ref_meta_ruby/catch_throw.rb

​ ​def​ ​routine​(n)

​ print n, ​" "​

​ ​throw​ ​:done​ ​if​ n <= 0

​ routine(n - 1)

​ ​end​

​ ​catch​(​:done​) { routine(4) }

Produces:

​ 4 3 2 1 0

If you want to send a warning, rather than raise an exception, the method
Kernel#warn(*messages, uplevel: nil, category: nil) will send each message in its first
argument to Warning.warn. This does nothing if warnings have been disabled,
but if warnings are enabled, it’ll behave like a deprecation warning. If the
uplevel argument isn’t nil, the warning string will have the file and line location
prepended to it. The category is either :deprecated or :experimental and, if
included, allows the warning system to treat the warning as that type when
choosing if the warning should be displayed.

Evaluation and Loading Code
The method Kernel#eval(string, binding = nil, filename = nil, line_number = nil) takes a
Ruby expression as its first argument and evaluates it. By default, the
expression is evaluated in the current context, but if a Binding object is passed
as the second argument, the expression is evaluated in that context. If the
filename and line_number arguments are passed, they’ll be used to identify the
code when reporting errors.

Local variables assigned within an eval are available after the eval only if they
were defined at the outer scope before the eval executed. In this way, eval has

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/catch_throw.rb

the same scoping rules as blocks.

​ a = 1

​ eval(​"a = 98; b = 99"​)

​ puts a

​ puts b

Produces:

​ puts b

​ ^

​ 98

​ prog.rb:4:in `<main>': undefined local variable or method `b' for main

​ (NameError)

The method Kernel#require(path), which we’ve seen many times in this book,
loads in a Ruby file at the given path.

Ruby tries to load the file at path, returning true if successful. If the path isn’t
an absolute path, it’ll be searched for in the directories listed in $:. If the file
has the extension rb, it’s loaded as a source file. If the extension is so, .o, .dll, or
whatever the default shared library extension is on the current platform, Ruby
loads the shared library as a Ruby extension. Otherwise, Ruby tries adding rb,
.so, and so on, to the name until found. The name of the loaded file is added to
the array in $". A file won’t be loaded if its name already appears in $".‘.

If RubyGems is required, which will be true of most Ruby programs, if the file
isn’t found in the absolute path, the installed gems are also searched for a file
that matches, and the gem that matches the file is added to the load path.

The method Kernel#require_relative(path) works similarly, except that the path is
resolved relative to the file it’s included in, rather than the root of the program.
This also means that gems can’t be installed via require_relative.

Ruby also provides Kernel#load(path, wrap = false), which loads and executes the
Ruby program in the file path. If the filename doesn’t resolve to an absolute
path, the file is searched for in the library directories listed in $:. If the optional

wrap parameter is true, the loaded script will be executed under an anonymous
module, protecting the calling program’s global namespace. In no
circumstance will any local variables in the loaded file be propagated to the
loading environment. The load method differs from require in that if the same
file is referenced again, load will load it again, whereas require will note that it
has already been loaded and not reload the file.

Shortcuts
Several Kernel methods are shortcuts for full methods that exist in other
classes. Here’s a roundup:

Kernel#chomp(string) is equivalent to String#chomp. If no argument is given,
it uses $_ (the result of the most recent line that was received as input).
This is only available when Ruby is invoked with -n or -p looping
command-line flags.

Kernel#chop takes no argument and is equivalent to $_.dup.chop(), except
that if chop performs no action, $_ is unchanged and nil isn’t returned. This
is only available when Ruby is invoked with -n or -p looping command-
line flags.

Kernel#gsub(pattern, replacement) or Kernel#gsub(pattern) { |...| block } is only
available when Ruby is invoked with -n or -p looping command-line flags.
This is equivalent to $_.gsub.

Kernel#j(*objects) and Kernel#jj(*objects) are both shortcuts to puts

JSON.generate and are used to output objects to the console. The j version
prints on a single line, and is equivalent to calling JSON::generate(obj,

:allow_nan => true, :max_nesting => false) on each object argument. The jj
version prints on multilines and is equivalent to calling
JSON::pretty_generate(obj, :allow_nan => true, :max_nesting => false).

Kernel#lambda { block } converts its block into a Proc object with lambda
semantics as described in ​Using Blocks as Objects​.

Kernel#p(*objects) is a shortcut for $stdout.write(object.inspect, "\n") for each
object passed as an argument.

Kernel.pretty_inspect is equivalent to PP.pp(self, "".dup) and only works if
require "pp" has been called.

Kernel#print(*objects) is a shortcut for $stdout.print(*objects).

Kernel#proc { block } converts its block into a Proc object with proc
semantics as described in ​Using Blocks as Objects​.

Kernel#pp(*objects) is shortcut for PP.pp(obj) and returns the pretty-printed
form of the object.

Kernel#puts(*objects) is a shortcut for $stdout.puts(*objects).

Kernel#rand(max = 0) is a shortcut for Random.rand(max).

Kernel#srand(number = Random.new_seed) seeds the random number
generator for future rand usages.

Kernel#sub(pattern, replacement) or Kernel#sub(pattern) { |...| block } is only
available when Ruby is invoked with -n or -p looping command-line flags.
This is equivalent to $_.sub.

Kernel#y(*objects) is equivalent to YAML.dump_stream(*objects) and is used
for formatted output, often in irb.

Formatting
The method Kernel#printf(format_string, *objects), which is aliased as sprintf and
the methods IO#printf and ARGF.printf, all return the string resulting from

applying format_string to any additional arguments. Within the format string,
any characters other than format sequences are copied to the result.

A format sequence consists of a percent sign; followed by optional flags,
width, precision indicators, an optional name, and then terminated with a field
type character. The field type controls how the corresponding sprintf argument
is to be interpreted, and the flags modify that interpretation.

The flag characters are listed in the following table:

Table 24. Format string flag characters

Flag Applies
To

Meaning

␣
(space)

bdEefGgiouXx Leaves a space at the start of positive numbers.

digit$ all Specifies the absolute argument number for this field. Absolute and
relative argument numbers cannot be mixed in a sprintf string.

beEfgGoxX Uses an alternative format. For the conversions b, o, X, and x, prefixes
the result with b, 0, 0X, 0x, respectively. For E, e, f, G, and g, forces a
decimal point to be added, even if no digits follow. For G and g, does not
remove trailing zeros.

+ bdEefGgiouXx Adds a leading plus sign to positive numbers.

- all Left-justifies the result of this conversion.

0
(zero)

bdEefGgiouXx Pads with zeros, not spaces.

* all Uses the next argument as the field width. If negative, left-justifies the
result. If the asterisk is followed by a number and a dollar sign, uses the
indicated argument as the width.

The field width is an optional integer, followed optionally by a period and a
precision. The width specifies the minimum number of characters that will be

written to the result for this field. For numeric fields, the precision controls the
number of decimal places displayed. The number zero is converted to a zero-
length string if a precision of 0 is given. For string fields, the precision
determines the maximum number of characters to be copied from the string.
Thus, the format sequence %10.10s will always contribute exactly ten
characters to the result.

The field type characters are listed in the following table:

Table 25. Format string field characters

Field Conversion
A Same as %a, but uses uppercase X and P.

a Converts a float into hexadecimal representation
0xsignificandpdecimal-exp.

B Converts argument as a binary number (0B0101 if # modifier
used).

b Converts argument as a binary number (0b0101 if # modifier used).

c Argument is the numeric code for a single character.

d Converts argument as a decimal number.

E Equivalent to e but uses an uppercase E to indicate the exponent.

e Converts floating-point argument into exponential notation with
one digit before the decimal point. The precision determines the
number of fractional digits (default six).

f Converts floating-point argument as [␣|-]ddd.ddd, where the
precision determines the number of digits after the decimal point.

Field Conversion
G Equivalent to g but uses an uppercase E in exponent form.

g Converts a floating-point number using exponential form if the
exponent is less than -4 or greater than or equal to the precision, or
in d.dddd form otherwise.

i Identical to d.

o Converts argument as an octal number.

p The value of argument.inspect.

s Argument is a string to be substituted. If the format sequence
contains a precision, at most that many characters will be copied.

u Treats argument as an unsigned decimal number.

X Converts argument to hexadecimal with uppercase letters. Negative
numbers will be displayed with two leading periods (representing
an infinite string of leading FFs).

x Converts argument to hexadecimal. Negative numbers will be
displayed with two leading periods (representing an infinite string
of leading FFs).

Here are some examples of sprintf in action:

ref_meta_ruby/sprintf_1.rb

​ sprintf(​"%d %04x"​, 123, 123) ​# => "123␣007b"​
​ sprintf(​"%08b '%4s'"​, 123, 123) ​# => "01111011␣'␣123'"​
​ sprintf(​"%1$*2$s %2$d %1$s"​, ​"hello"​, 8) ​# => "␣␣␣hello␣8␣hello"​
​ sprintf(​"%1$*2$s %2$d"​, ​"hello"​, -8) ​# => "hello␣␣␣␣-8"​

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/sprintf_1.rb

​ sprintf(​"%+g:% g:%-g"​, 1.23, 1.23, 1.23) ​# => "+1.23:␣1.23:1.23"​

You can pass a hash as the second argument and insert values from this hash
into the string. The notation <name> can be used between a percent sign and a
field-type character, in which case the name will be used to look up a value in
the hash, and that value will be formatted according to the field specification.
The notation {name} is equivalent to <name>s, substituting the corresponding
value as a string. You can use width and other flag characters between the
opening percent sign and the {. Here’s an example:

ref_meta_ruby/sprintf_2.rb

​ sprintf(​"%<number>d %04<number>x"​, ​number: ​123) ​# => "123␣007b"​
​ sprintf(​"%08<number>b '%5{number}'"​, ​number: ​123) ​# => "01111011␣'␣␣123'"​
​ sprintf(​"%6<k>s: %<v>s"​, ​k: ​​"Dave"​, ​v: ​​"Ruby"​) ​# => "␣␣Dave:␣Ruby"​
​ sprintf(​"%6{k}: %{v}"​, ​k: ​​"Dave"​, ​v: ​​"Ruby"​) ​# => "␣␣Dave:␣Ruby"​

Ruby Runtime Information
The Kernel module includes a bunch of methods that return various parts of
internal Ruby information. A few methods in Kernel can tell you where you’re
in the system and what’s available.

A commonly used method is Kernel#block_given?, which returns true if the
current method was passed a block and therefore would execute that block if
yield was invoked.

The method class, when called with an explicit receiver, returns the Class object
of the class of that object.

Kernel#__dir__ returns the path of the directory of the file from which it’s called.
It’s related to __FILE__, which is a globally available value and not a method of
Kernel. The value of __dir__ is equivalent to File.dirname(File.realpath(__FILE__)).

Kernel#__callee__ returns the name of the current method or nil outside the
context of a method. If a method is called by an aliased name, that alias is

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/sprintf_2.rb

returned, not the original name. The Kernel#__method__ returns the current
method and calls the original name if the method is called by an alias.

The flip side of __callee__ is Kernel#caller(start = 1, length = nil) also callable as
Kernel#caller(range). The caller method returns the current execution stack or a
backtrace. It returns strings formatted as file:line: in method (the related method
Kernel#caller_location takes the same arguments but returns an array of Ruby
objects). If it takes start and length arguments, the start parameter is the index
at which the returned array starts (you can think of this as the number of
entries at the top of the stack that are discarded). The length argument limits
the number of entries returned; otherwise, the entire call stack is returned. A
range argument indicates the subset of the call stack that should be returned.

You can get an entire binding with the Kernel#binding method. The binding

returns an object of class Binding that contains all the local variable information
at a current point.

Objects of class Binding encapsulate the execution context at some particular
place in the code and retain this context for future use. Access to the variables,
methods, value of self, and possibly an iterator block accessible in this context
are all retained. The binding object responds to the method local_variables and
returns a list of symbols of defined local variables in the binding. The method
local_variable_get(symbol) returns the value of the local variable in the binding
along with local_variable_set(symbol, obj), which sets the value of the local
variable in the binding. The list of local variables is available directly as
Kernel#local_variables as is a list of global variables as Kernel#global_variables.

System Info
Several methods in Kernel allow you to interact with the underlying operating
system.

Executing System Commands
Several methods allow you to execute operating system commands.

The use of backticks to send a system command, as seen in ​Command
Expressions​, is defined as the method Kernel#‘, which executes the command
and returns a string containing any output that would’ve gone to $stdout. It
also sets the global variable $? to the return status of the command.

The method Kernel#exec(command, *options) replaces the current process by
running the given external command, ending the current process. The behavior
of the command depends on the arguments. There are a few possibilities:

The only argument is a single command string, which doesn’t contain a
new line or any of the meta characters ?*?{}[]<>()~&|$;’". In this case,
Ruby invokes the command without loading an operating system shell.

If the single command string does contain a newline or meta-character,
it’s executed in the default shell, and is subject to shell expansion before
being executed. On Unix system, Ruby does this by prepending sh -c.
Under Windows, it uses the name of a shell in either RUBYSHELL or
COMSPEC.

If multiple arguments are given, the first argument is the command, and
the second and subsequent arguments are passed as parameters to
command with no shell expansion.

If the first argument is a two-element array rather than a string, the first
element is the command to be executed, and the second argument is used
as the argv[0] value, which may show up in process listings.

Any of these versions can have a prepended argument that is a hash (so the
signature is Kernel#exec(hash, command, *options)) and adds to the environment
variables in the subshell. The keys must be strings. An entry with a nil value
clears the corresponding environment variable. Any version can have a final
argument options, if present. It’s a hash that controls the setup of the subshell.

The method Kernel#fork [{ block }] takes an optional block. If the block is given,
it forks a subprocess, executing the block in that subprocess. If a block isn’t
given, fork is run in the operating system twice, the parent process gets a return
value of nil, and the child process gets a process ID. See ​Blocks and
Subprocesses​, for more uses.

The method Kernel#spawn(command, options = "") or Kernel#spawn(environment,

command, options = "") executes the given command and returns its process ID.
The spawn method doesn’t block the Ruby program. If you use it, you should
call Process.wait(pid) if you need to wait for the command to complete. The
environment argument, if given, sets environment variables. There are a lot of
somewhat edge-case options that can affect the execution, please check the
official documentation.

The similar method Kernel#system with the same argument patterns executes
the command in a subshell and waits for the command to complete, returning
true if the command executes successfully, false if it reports a non-successful
exit status, and nil if the command fails without reporting status.

I/O
The method Kernel#gets(sep = $/, limit = nil) or Kernel#gets(limit), when called
without an argument, returns the next line of text from standard input,
meaning all the text until it hits an end-of-line character. In a program that has
command line files specified and placed in ARGV (or otherwise assigns values
to ARGV, gets will read the next line from ARGV instead. An optional argument
specifies a nonstandard line separator. Like other I/O methods, if the argument
is nil it’ll read the entire content of the stream (or, the entire content of the
current ARGV file), and an empty string argument reads until it gets two
consecutive line separators. If the argument is an integer, it limits the number
of bytes read. The method Kernel#readline with the same argument signature is
identical except that it raises an exception if the stream has already ended, and
it takes a keyword argument chomp: that determines if the separator character is
removed. The method Kernel#readlines (again, same argument signature)

returns an array of lines, reading until the end of the input stream is reached. It
has the same arguments as readline plus it takes the same encoding options as
other methods described in Chapter 29, ​Library Reference: Input, Output,
Files, and Formats​.

The flip side of gets is Kernel#puts(*objects), which prints its objects to standard
out. It’s the same as calling $stdout.puts(objects), which is equivalent to
$stdout.print(*objects). The difference between print and puts is covered in ​
Printing Things​.

​ ARGV << ​"testfile"​

​ print ​while​ gets

Produces:

​ This is line one

​ This is line two

​ This is line three

​ And so on...

The method Kernel.open(path, mode = "r", permissions = 0666, **options) [{ |io| ...}],
does a lot of stuff. It has three modes:

If the path is a normal string, that string is assumed to be a file path, and
the behavior is essentially as if you called File.open(path, mode, permissions,

options).

If the path argument is a pipe character followed by a shell command,
then the shell command is run in a new subprocess and a stream is
returned connected to that subprocess. If there’s a block argument, then
the stream is passed to the block and the stream is closed at the end of the
block.

If the path argument is exactly |-, the process forks, the return value to the
parent is a stream connected to the child, and the return value to the child
is nil, so you can tell the two apart. Again, a block argument is passed the
stream, and the stream is automatically closed at the end of the block.

The Kernel module does a lot, and some less commonly used methods have
been omitted. In particular, if you’re doing Unix-specific operating system
interactions, you should check out the official documentation.

Method
A Ruby Method object represents a method that is attached (the technical term
is “bound”) to a specific receiver. You create Method objects via
Object#method(name), which returns the method object for a given name.

Once you have a method object, you can call the method with call(*, **, &),
which forwards the arguments to the method and invokes it with the method
object’s receiver. The call method is aliased as [] and also as ===.

You can compose Ruby methods in a functional programming style with
Method#<<(other_proc), which takes a proc or callable object as the right-hand
side and returns a new proc. The new proc takes arguments, calls other_proc,
and then calls the given method with the result of the call to other_proc. The
flip side of Method#<<(other_proc) is Method#>>(other_proc), which returns a new
proc that calls this method and then passes the result to other_proc. Here’s an
example:

ref_meta_ruby/compose_methods.rb

​ ​class​ Foo

​ ​def​ ​triple​(x)

​ x + x + x

​ ​end​

​ ​end​

​

​ squarer = proc { |x| x * x }

​ foo_instance = Foo.​new​

​ method = foo_instance.​method​(​:triple​)

​

​ pointing_left = (method << squarer)

​ pointing_right = (method >> squarer)

​

​ pointing_left.​call​(5) ​# => 75​

​ pointing_right.​call​(5) ​# => 225​

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/compose_methods.rb

The number of arguments that a method takes is called the arity of the method,
and Method#arity returns that value for the method. If the method has a variable
number of arguments, arity returns the number of required arguments * -1 - 1, so a
method with a signature of (a, b, *c) returns an arity of -3. All keyword
arguments are collectively treated as one argument, which is a required
argument if any of the individual keyword arguments is required. Internal
methods written in C that take variable arguments return -1.

Another functional programming thing you can do with a method is use
Method#curry(arity = nil). Currying is the term for creating a new method with a
lower arity. The curry method returns a new proc. Calling that proc with fewer
than the required number of arguments for the original method returns a new
proc that holds on to those arguments. You can call the new proc again with
more arguments until you finally have enough arguments to match the original
method, at which time the original method is called. If the original method
takes a variable number of arguments, the arity argument is used to say how
many arguments you want the whole deal to take before the original method is
invoked:

ref_meta_ruby/curry.rb

​ ​class​ Currier

​ ​def​ ​add_four_things​(a, b, c, d)

​ a + b + c + d

​ ​end​

​ ​end​

​

​ currier = Currier.​new​

​ add_two_things = currier.​method​(​:add_four_things​).​curry​.​call​(1, 2)

​ add_two_things.​call​(3, 4) ​# => 10​

​

​ add_one_thing = add_two_things.​call​(5)

​ add_one_thing.​call​(7) ​# => 15​

The Method class is useful in debugging or investigating code. In irb or in code
you can acquire a Method object and learn about where it’s defined and how to
call it. You can get the name of the method with Method#name and the original

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/curry.rb

name of an aliased method with Method#original_name. Method#receiver returns
the object the method is bound to, and Method#owner is the class or module
where the method is defined. Method#source_location returns an array of the
filename and line number where the method is defined. Method#inspect shows a
lot of these details in one string.

You can unbind the method with Method#unbind, which returns an
UnboundMethod, see ​Unbound Method​.

Module
The Module class is the class of any module you declare with the module

keyword. Each module is an instance of the class Module. The class Class is a
subclass of the class Module, and so it inherits all the functionality described
here.

You can create an anonymous module with Module.new [{block}], the block body
is the body of the module. You can assign the module to a variable. If that
variable name starts with a capital letter, then it’s a constant and you can treat
it exactly like a module that’s created in the more common way.

Information about Modules
The Module class has a number of methods that allow you to dynamically
access information about a module or class.

Module (and Class) Hierarchy

You can compare two modules to determine the relationship between them.
Modules define the spaceship operator via inclusion, so module <=>

other_module returns -1 if module includes other_module, 0 if module is the same
module as other_module, +1 if module is included by other_module or, nil if
module has no relationship with other_module.

As for the other comparison operators, <, <=, ==, >, and >=, they behave
similarly as a hierarchy query. One module is considered greater than another
if it’s included in (or is a parent class of) the other module. The other operators
are defined accordingly. If there is no relationship between the modules, all
operators return nil.

ref_meta_ruby/module_comp.rb

​ ​module​ ​Mixin​

​ ​end​

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/module_comp.rb

​

​ ​module​ ​Parent​

​ ​include​ Mixin

​ ​end​

​

​ ​module​ ​Unrelated​

​ ​end​

​

​ Parent > Mixin ​# => false​

​ Parent < Mixin ​# => true​

​ Parent <= Parent ​# => true​

​ Parent < Unrelated ​# => nil​

​ Parent > Unrelated ​# => nil​

​

​ Parent <=> Mixin ​# => -1​

​ Parent <=> Parent ​# => 0​

​ Parent <=> Unrelated ​# => nil​

The triple-equal case equality operator, ===, as in User === u, returns true if the
object on the right is an instance of the module or one of the module’s
descendants. This is also useful when the left side is a Class rather than a
Module.

The method ancestors returns an array of all the modules included or prepended
in this module. For classes, ancestors also includes superclasses, so the result is
the method lookup sequence when this module or class is called.

Module (and Class) Attributes
Many Module methods give you access to components of the module. The
name, for example, is accessible with Module#name. The method
Module#singleton_class? returns true if the module is a singleton class, and false
if it’s a regular module.

Class variables are defined with @@, and you can get the list of all known
class variables with the Module#class_variables method. The return value is a list
of the names as symbols, with the @@ prefix attached. You can get the value
of a specific class variable with Module#class_variable_get(name), which takes the
name of the variable as a symbol or string, with the @@ prefix, and returns the

current value. The method Module#class_variable_set(name, value) takes the same
name argument and sets its value to the value argument. The method
Module#class_variable_defined?(name) takes the same name argument and returns
true if the variable is defined, while the method
Module#remove_class_variable(name) takes the same name argument and
undefines the variable at that name.

There’s a similar pattern with constants defined in the module or class. The
method Module#constants(inherit = true) returns an array of the names of all
constants defined in the module as symbols. Constants also have getters and
setters. The Module#const_get(name, inherit=true) method takes the name of the
constant as a symbol or string and returns its current value or raises a
NameError if the constant isn’t defined. In both these methods, if the inherit

argument is true, the search for constants also includes constants defined in
modules that have been included in the current module.

The method Module#const_set(name, value) takes the name of a constant as a
string or symbol and sets its value to the new value. If the constant doesn’t
exist, then it’s created; if the name doesn’t start with a capital letter or is
otherwise not valid, a NameError is raised. If the constant already has a value,
the value will be changed but a warning will be raised.

Constants have two other interesting methods. The method
Module#const_source_location(name, inherit=true) takes a constant name and
returns a two-element array [filename, line_number] of the location in the source
where the constant is defined. If the constant doesn’t exist, it returns nil, but if
the constant exists but doesn’t have a source location, it returns an empty
array. This might happen if the constant is defined in Ruby’s internal C
libraries rather than in Ruby code. The inherit argument has the same meaning
as described earlier.

The method Module#const_missing(name) is similar to method_missing. It’s a hook
invoked when a constant is looked for and not found. The name of the

constant is passed to const_missing as a symbol, and the return value of the
method is returned as the value of the constant.

You can also track down methods with, well, methods.
Module#instance_methods(include_super = true) returns an array of the names of all
the non-private instance methods as symbols. If include_super is false, then
methods from superclasses or other included modules aren’t included.
Module#instance_method(method_name) takes a method name as a symbol and
returns the method as an UnboundMethod object or raises a NameError if the
method doesn’t exist. Module#method_defined?(method_name, inherit=true) returns
true if the method exists in the module as a public or protected method. If
inherit is false then it only looks in the module itself.

There are similar methods that explicitly only return methods of a particular
security level:

private_instance_methods, protected_instance_methods, and
public_instance_methods all take an optional argument include_super=true and
behave the same as instance_method except they only return methods at
that given security level.

private_method_defined?, protected_method_defined?, and
public_method_defined? all take (method_name, inherit=true) and behave the
same as method_defined except they only return true if the method is part
of that security level.

Modifying Modules
Many methods of Module actually change the behavior of the module as it’s
being loaded. We’ve seen a lot of these before. They tend to look like
commands but are actually methods of Module that are generally called inside a
module’s definition with an implicit receiver.

The method Module#alias_method(new_name, old_name) makes the new name a
copy of the method referenced by the old name. The new name points to the
existing method even if the method at the old name is redefined.

We’ve seen the attr family of methods in Chapter 3, ​Classes, Objects, and
Variables​. Module#attr_reader(*names) takes a list of names as symbols or
strings and creates a getter method for each name (aliased as just attr), while
Module#attr_writer(*names) takes the list of names and creates a setter method
for each name, and Module#attr_accessor(*names) creates both getter and setter
methods for each name.

We’ve also seen include and prepend before in Chapter 6, ​Sharing
Functionality: Inheritance, Modules, and Mixins​. They are implemented as
methods of the Module class that take one or more modules as arguments.
Internally, include calls a method named Module#append_feautres(module) that
actually adds the elements of the Module to the call chain. Similarly, prepend

calls a method named Module#prepend_features(module). There is also
Module#included_modules, which returns an array of all the modules included or
prepended in the receiving module or one of its ancestor modules, and
Module#included?(module), which returns true if the argument module has been
included or prepended in the receiving module or one of its ancestor modules.
The method Module#extend_object(obj) is used internally by Object#extend to
handle extensions.

The refinement methods refine and using, as seen and more fully described in ​
Using Refinements​, are also defined as Module methods. Module#refine(module)

{block} takes a class or module as an argument and a block in which new
methods are defined for that class or module. Module#using(module) takes as an
argument a module that does such a refinement and applies the refinement in
the current context.

We’ve also covered method access control, you can see the definitions of the
various levels in ​Specifying Access Control​. Those control features are

implemented as methods of Module: Module#private(*method_names),
Module#protected(*method_names), and Module#public(*method_names). All three
of these methods work the same way. When called with no arguments, they
change the default access level for methods that are defined after the method
call. When called with one or more symbols, or an array of symbols, the
symbols are treated as the names of methods in the module and those
methods’ access levels are changed to match. Since def returns a symbol, you
can do this access setting inline with something like private def foo or protected

def bar.

Several additional methods of Module take one or more method or constant
names and do something to that method or constant. The names can be strings
or symbols:

Module#module_function(*names) makes an existing method that is defined
as an instance method into a module method, meaning it can be called
with Module.method syntax. The module method is a copy, so the original
can change without affecting it. The instance version becomes private. As
with access control methods, if module_function is called with no
arguments, it becomes the default for any methods defined later in the
code.

Module#private_class_method(*names) makes existing class methods private.

Module#private_constant(*symbols) makes existing constants private.

Module#public_class_method(*names) makes existing class methods public.

Module#public_constant(*symbols) makes existing constants public.

Module#remove_method(symbol) removes the method from the module or
class (one argument only).

Module#remove_const(symbol) removes the constant from the module or
class (one argument only).

Module#ruby2_keywords(*names) has the given methods manage positional
and keyword arguments using Ruby 2 semantics, rather than Ruby 3.
This is sometimes useful for compatibility with older code.

Module#undef_method(name) removes the method from the module or class,
but unlike remove_method, subsequent calls to the method won’t look for
the method in superclasses or included modules.

Executing Dynamic Code
Several methods of Module allow you to execute arbitrary code at runtime in
the module’s context.

The method Module#class_eval, aliased as module_eval has two different forms.
The first form is Module#class_eval(string, filename = nil, line_number = nil). This
form evaluates the string in the module’s context. If the filename and line
number are given, those are used if any error is raised while evaluating the text
and are also used as the source location of any method defined in the string.
You can use a heredoc as the string:

ref_meta_ruby/class_eval.rb

​ ​class​ EmptyClass

​ ​end​

​ EmptyClass.​module_eval​ <<-STRING, ​__FILE__​, ​__LINE__​ + 1

​ ​ def greeting()​

​ ​ "Hi There!"​

​ ​ end​

​ STRING

​

​ puts EmptyClass.​new​.​greeting​

Produces:

​ Hi There!

The second form takes a block argument Module#class_eval {|module|} and
evaluates the block in the context of the string, passing the module as an

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/class_eval.rb

argument to the block. In both cases, the return value of the executed code is
the return value of the executed method.

The similar method Module#class_exec(...), aliased as module_exec, takes a block.
Unlike class_eval, arguments passed to class_exec will be passed to the block.
The block will then be executed in the class context and, as with class_eval, can
be used to add class or module methods.

To add instance methods, you use Module#define_method(symbol) {block}. This
method dynamically creates an instance method in the receiving class or
module. The block is the body of the method, and any parameters that the
block takes are expected to be arguments to the new method when called.
Instead of a block, a second argument that is Proc, Method, or UnboundMethod

can be passed.

Event Hooks
Ruby has several callback methods in Module that, if defined, are automatically
called when an event happens, typically but not necessarily, when the code is
loaded:

Module#const_added(constant_name) is called after a new constant is added
to the module. The argument is the name of the new constant.

Module#extended(other_module) is called with the extending module as the
argument after a module is used to extend another module or class with
extend. So, given module Foo; extend Bar; end, the method Bar#extended is
called with Foo as an argument.

Module#included(other_module) is called after the module is included in
another module with the including module as the argument. So, given
module Foo; include Bar; end, the method Bar#included is called with Foo as an
argument.

Module#method_added(method_name) is called after a method is added to the
module or class, with the name of the new method as an argument.

Module#method_removed(method_name) is called after a method is removed
from the module or class, with the name of the method to be removed as
an argument.

Module#method_undefined(method_name) is called after a method is
undefined from the module or class, with the name of the method to be
undefined as an argument.

Module#prepended(other_module) is called after the module is prepended in
another module with the prepending module as the argument. So, given
module Foo; prepend Bar; end, the method Bar#prepended is called with Foo as
an argument.

Object
Object is the parent class of (almost) all classes in Ruby unless a class
explicitly inherits from BasicObject. So, its methods are available to all
objects unless explicitly overridden.

Object mixes in the Kernel module, making the built-in kernel functions
globally accessible (see ​Kernel​). The methods discussed here for the Object

class mostly pertain to Ruby’s object-oriented semantics.

An interesting fact about Ruby’s actual implementation is that even these
methods that are documented here (and in Ruby’s official documentation)
as being part of Object are actually all internally defined in Kernel. You can
prove this by calling owner on any Method object in Object, as in
Object.instance_method(:itself).owner. The official documentation has a special
case in which the documentation for some methods is put in the Object

documentation rather than the Kernel, and we’ve maintained that distinction
here. But by the time you read this, the documentation may have been
changed.

Comparison
The Object class doesn’t, by default, include Comparable, but it does define
the <=> operator, which returns 0 if the two objects are the same and returns
nil if they aren’t. This isn’t useful for sorting or comparing, so your subclass
should redefine <=> and include Comparable if you want that behavior.

There are four different equality methods in Object: ==, ===, eql?, and equal?.
They all behave slightly differently.

==, for Object, returns true if the two things being compared are the
same object in memory. This method is often overridden by subclasses

to have behavior more similar to eql?.
=== is defined to be identical to == for Object, but it’s expected that it’ll
be overridden by subclasses to provide matching behavior in case
statements.

eql? is equivalent to == for instances of Object. Subclasses that override
eql? should also override hash with the same value semantics.

equal? returns true of the two things being compared are the same
object in memory. This shouldn’t be overridden by subclasses.

Ruby provides an Object#object_id or Object#__id__ that is used to determine
if two objects are the same in memory.

Methods and Variables
The Object class allows you access to instance variables and instance
methods.

You can retrieve the value of any instance variable with
Object#instance_variable_get(name) the name is a symbol or string, and it does
have to begin with the @ sign. If the variable hasn’t been defined, it returns
nil, if the name isn’t a valid name, it’ll raise a NameError. Otherwise, it’ll
return the current value of that instance variable. You can set the value with
Object#instance_variable_set(name, object), the name is as in the getter method,
and the instance variable will be created if it doesn’t already exist. You can
get an array of all the currently defined instance variables with
Object#instance_variables and you can get a boolean true/false of whether a
value is defined with Object#instance_variable_defined?(name), again, the name
must start with the @ sign. Notice that this means that even though instance
variable methods are technically private, they are accessible to external
objects if the external object wants it badly enough.

For method, you can get a list of the public and protected instance methods
available to an object with Object#methods(regular = true). If the regular

parameter is false, you get a list of the singleton methods instead of the, I
guess you’d say, regular methods. You can search for a specific method
with Object#method(name) which returns the method as a Method object, the
argument can be a string or a symbol.

You can limit methods by access type with Object#public_methods(all = true),
Object#protected_methods(all = true), Object#private_methods(all = true), and
Object#singleton_methods(all = true). In each case, if the all parameter is false,
then only methods in the receiving object itself are returned as opposed to
the receiving object and all its superclasses. The singleton_methods list will
exclude private singleton methods if, for some reason, you had one.

You can search for individual methods using Object#public_method(name),
Object#protected_method(name), and Object#singleton_method(name). There
doesn’t seem to be an analogous method that only returns private methods.

While we’re talking about singletons, there is also Object#singleton_class

which returns the singleton class of the object as an instance of type Class.
And you can programmatically add a method to the singleton class with
Object#define_singleton_method(symbol) {block} or
Object#define_singleton_method(symbol, proc), the semantics are similar to
Module#define_method, the proc or block is the body of the method and the
symbol is the name, and the method is added to the object’s singleton class.

You can programmatically send a message to an object with
Object#send(name, ...). The name can be a symbol or string, and the method
corresponding to that name is called with any remaining arguments to send

being passed through. The send method is aliased as __send__, which is safer
because some objects may have their own method named send. The send

method can be used to call private methods, if you want to limit the feature
to public methods, then you can use Object#public_send(name, ...).

You can prevent the object from being modified by calling Object.freeze.
Subsequent attempts to modify the object will raise a FrozenError. You can
tell if an object is frozen with Object.frozen?.

You can create a shallow copy of an object with Object#dup – a shallow
copy means that a new object is created, but any referenced objects aren’t
copied.

Query
Some methods allow you to query the object in various ways. For example,
Object#hash returns the integer value that is used for hash comparisons.
Actual Hash objects use this to determine if two objects are identical for the
purpose of being keys in the hash.

You need to override this method in your subclass such that two objects that
are eql? also have the same result when calling hash. Often, this is needed if
your subclass has a definition of equality that is different from “all the
instance values of each object are the same”. (For instance, you might have
an instance value that isn’t relevant for equality). It’s recommended that if
you override the method, you use hash on the class itself and all the values
that you’re combining rather than roll your own function, which would look
like [self.class, first_name, last_name, birth_date].hash.

You can get the internal string representation of an object with
Object#inspect and the external string representation of an object with
Object#to_s.

There are several slightly different mechanisms for a boolean test of
whether an object is related to a class:

Object#instance_of?(class) returns true if the object is exactly an instance
of the class.

Object#is_a?(other_class), aliased as Object#kind_of?(other_class) returns
true if the object is an instance other_class, an instance of a subclass of
other_class, or if other_class is a module included in the class—in other
words, if other_class is in the ancestors list of the object.

Object#respond_to?(name, include_all = false) the name is a string or symbol
representing a method, and respond_to? returns true if the object will
actually respond to the method. Only public methods will be included
unless the include_all parameter is set to true. Before a false result is
returned, Ruby will call a respond_to_missing?(name, include_all = false) if it
exists. This method is supposed to match the behavior of
method_missing for an object such that an object with method_missing

will have respond_to? behavior consistent with how the object actually
behaves.

Ruby also offers Object#nil?, which returns true if the object is nil, and
Object#itself, which returns the receiver. The itself method can be useful as
part of method chains or inside blocks.

Duplication
You can create a shallow copy of an object with Object#dup or
Kernel#clone(freeze: nil). By “shallow copy,” we mean that a new object is
created. The instance variables of the new object are new copies of the
instance variables in the original object. But any object that those instance
variables reference won’t be duplicated; the new copy will continue to point
to the existing object. For example, if your object has an array of instances,
the array will be copied, but the instances in the array won’t. Ruby doesn’t
have a deep copy mechanism, though Ruby on Rails does add one.

The two methods behave slightly differently. The dup method copies the
instance variables representing the state of the object, while clone copies the
instance variables plus the singleton class of the object, plus the frozen state
of the original object (though the freeze argument will set the frozen state of
the clone if the argument is set). One effect of this difference is that a new
object created using dup won’t get any modules that were added to the
original object using extend because those would be in the singleton class. If
the new object is created using clone, those module extensions would also
be copied.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 28

Library Reference: Enumerators
and Containers

In this chapter, we’ll take a closer look at Ruby’s collection classes,
especially those features that are based on the Enumerable module, which is
the basis for the functionality of all container classes in Ruby. The goal is to
give you more information about what you can do with these classes and
also to discuss related functions together so that you can browse and
perhaps find a new feature that might help.

This isn’t intended to be a complete listing of every class, method, or
option. For that, please refer to the official Ruby documentation at
https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide
its complete name and signature. The notation Foo.bar indicates a class or
module method, while Foo#bar indicates an instance method. Optional
arguments are indicated with Ruby syntax and their default value, as in
Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with
brace syntax and an indication of what the arguments to the block will be,
as in Foo#bar { |object| block }. An optional block argument will be surrounded
by square brackets, Foo#bar [{block}]. Please note that this description syntax
is slightly different than the official documentation, and that in some cases,

https://docs.ruby-lang.org/

what the official documentation shows as multiple method signatures,
we’ve chosen to show as one signature with default values. Also, parameter
names sometimes differ from the official documentation to make the
naming clearer.

Array
Arrays are ordered, integer-indexed collections that may contain any Ruby
object. The objects in the array do not need to be of the same type. They can
be created using the literal square bracket syntax discussed in Chapter 4, ​
Collections, Blocks, and Iterators​. The %w delimiter with a space-delimited
list can create an array of strings, and %i can similarly create an array of
symbols. The Array.new(size, default = nil) method creates a new array with the
given size and populated with the default object. The Kernel#Array(object)

method converts its argument into an array if the argument isn’t already an
array.

Arrays implement Array#each [{ |element| block}] and mix in the Enumerable

module, so all methods of Enumerable described in ​Enumerable​, can be
applied to arrays. In this section, we’ll focus on the things Array does above
and beyond what it includes from Enumerable.

Accessing Array Values
Arrays use square brackets for access, and the square brackets can contain
one of four things:

A single integer, as in array[3]. Zero returns the first element of the
array and a positive integer counts forward, so array[1] is the second
element. A negative index counts from the end, with -1 being the last
element, -2 the next to last, and so on. If the index is outside the actual
array, it returns nil.

Two integers separated by a comma, as in array[2, 3]. In this case, you
get the subarray starting at the index represented by the first integer
and the length indicated by the second integer. The first integer is
interpreted the way it would be if it were passed by itself, meaning that

negative numbers count from the end of the array. If the length goes
past the end of the array, you just get the end of the array and don’t get
blank elements or anything like that. If the length is negative, you get
nil, and if the first element is exactly the length of the array, you get an
empty array.
A range. In this case, you get the subarray starting at the index
represented by the first element of the range and ending at the index
represented by the last element of the range. Again, negative numbers
are counted from the end of the array, meaning you can get weird
things like [0, 1, 2, 3][-3..2], which returns [1, 2] because -3 is the third
element from the end, and 2 is farther in the array than that. If the start
of the range is outside the array, you get nil. If the end of the range is
outside the array, you get elements up until the end of the array.
Endless ranges work too, so [...-1] will give you everything but the last
element of the array.

An arithmetic sequence, as returned by Range#step and Numeric#step. In
this case, the return value is based on the entries in the sequence.

All the square bracket behavior is aliased as the method Array#slice. The
single argument behavior also works as the method Array#at(index). The
behavior of both of these methods is to return nil if you completely go
outside the bounds of the array.

If you want different behavior, the Array#fetch(index, default_value = nil) or
Array#fetch(index) { |index| block } method behaves like at, taking a single index
argument, but fetch takes an optional second argument that can either be a
positional argument or a block. If the index is out of range, the behavior of
fetch depends on which argument is used: either the positional argument is
returned or the block is called with the index argument and the block’s
value is returned.

Common use cases have shortcuts: Array#first(n = 1) and Array#last(n = 1)

return the first or last element of the array, respectively. An optional
argument allows you to specify more than one return value. If the optional
argument is 0, you get an empty array in response. The method
Array#values_at(*indexes) takes an arbitrary number of index arguments and
returns a new array of the values at those indexes.

The method Array#dig(index, *more_indexes) takes an arbitrary number of
arguments, takes the value of the array at the first index, then sends to that
result the message dig with the remainder of the arguments, and so on until
we run out of arguments. Here’s an example:

​ array = [1, 2, 3, 4, [5, 6], 7]

​ array[2] ​# => 3​

​ array[-3] ​# => 4​

​ array[1, 3] ​# => [2, 3, 4]​

​ array[2..4] ​# => [3, 4, [5, 6]]​

​ array.​fetch​(10, 100) ​# => 100​

​ array.​fetch​(10) { |i| ​"No value at ​​#{​i​}​​"​ } ​# => "No value at 10"​

​ array.​first​ ​# => 1​

​ array.​first​(3) ​# => [1, 2, 3]​

​ array.​last​ ​# => 7​

​ array.​last​(2) ​# => [[5, 6], 7]​

​ array.​values_at​(2, 4, 6) ​# => [3, [5, 6], nil]​

​ array.​dig​(-2, 1) ​# => 6​

Ruby also allows you to search an array by value. The Array#index(object) or
Array#index { |element| block } method takes an argument or a block. With an
argument, it returns the index of the first element that’s equal to the
argument or nil if there’s no element. With a block, index returns the index of
the first element that causes the block to return a truthy value. If you want
the last element, the method Array#rindex does the same thing but starts from
the end of the array.

Changing Arrays

The Ruby array has lots of options for assigning new values or changing the
array. As with strings, the Array#[]= method replaces whatever subarray
would be returned by the square bracket lookup with the right side of the
assignment, even if the two parts are different lengths. The Array#[]= method
has three forms: Array#[]=(index), Array#[]=(range), and Array#[]=(start, length).

Ruby provides multiple methods for adding and removing elements from an
array that are specialized based on where in the array the change will be
made:

The beginning of the array—Items can be added to the beginning of
the array using the Array#prepend(*objects) method (aliased as unshift),
which takes multiple arguments and adds them to the front of the array.
The method Array#shift(n = 1) returns the first element of the array and
removes it from the array. An optional argument allows you to return
and remove an arbitrary number of elements.

The end of the array—Items can be added to the end of the array with
the Array#<<(object) operator, which takes one argument, or the
Array#append(*objects) method (aliased as push), which takes multiple
arguments and adds them one by one to the end of the array. To
retrieve the last element of the array, the method Array#pop(n = 1) returns
the last element and removes it from the array. An optional argument
allows you to return and remove an arbitrary number of elements.

An arbitrary location in the array—Items can be added at an arbitrary
location with Array#insert(index, *objects). The first argument to insert is
the index, and then any additional arguments are added to the array
one by one at that position. To remove an element at a specific index,
Array#delete_at(index) takes the index, returns the element at that index,
and removes it from the array. The method Array#delete(object) [{ |object|

block }] takes an object argument and removes that object from the array

any time it appears. The optional block argument is the return value if
the object isn’t found in the array; without a block, it’ll return nil.

The combination of push and pop allows you to treat an array as a last-in-
first-out stack, whereas the combination of push and shift gives you a first-
in-first-out queue.

The Array#rotate(count = 1) method, called with no arguments, returns a new
array where the first element of the original array is now the last element of
the new array. With a positive integer argument, it performs that amount of
rotations. If the argument is greater than the size of the array, the effective
final number of elements rotated is argument % array.size. If the argument is
negative, the rotation reverses—the end moves to the beginning:

​ x = [1, 2, 3, 4, 5]

​ x.​rotate​ ​# => [2, 3, 4, 5, 1]​

​ x.​rotate​(2) ​# => [3, 4, 5, 1, 2]​

​ x.​rotate​(-1) ​# => [5, 1, 2, 3, 4]​

​ x.​rotate​(-2) ​# => [4, 5, 1, 2, 3]​

The Array#flatten(level = nil) method returns a new array that converts the
original array to a one-dimensional array. That is, any subarray is replaced
by inserting its original elements. The optional level argument determines
how many levels are flattened. If the argument is nil or negative, all levels
are flattened:

​ [1, [2, 3], 4, [5, 6, [7, 8]]].​flatten​ ​# => [1, 2, 3, 4, 5, 6, 7, 8]​

​ [1, [2, 3], 4, [5, 6, [7, 8]]].​flatten​(1) ​# => [1, 2, 3, 4, 5, 6, [7, 8]]​

A convenient way to convert an array to a string is Array#join(delimiter = $,),
which takes a string delimiter and returns a string by converting each
element of the array using to_s (recursively flattening if the element is itself
an array). If no argument is given for the delimiter, the default is an empty
string (well, the default is technically the global field separator value in $,):

​ [1, [2, 3], 4, [5, 6, [7, 8]]].​join​(​"|"​) ​# => "1|2|3|4|5|6|7|8"​

Ruby offers two ways to access random elements of an array: the
Array#sample(n = 1, random: Random) method and the Array#shuffle(random:

Random) method. The sample method returns a random member of the array,
with an optional argument of how many elements to return. No matter how
big the optional argument is, sample won’t return the same element twice, so
the effective limit on the argument is the size of the array. The duplicate
restriction is by index, not value, which means that if the array contains
duplicate values, so will the sample and in the same proportion.

The shuffle method returns a new array with the elements in a random order;
x.shuffle is effectively equivalent to x.sample(x.size). Both methods take an
optional keyword argument random:, which is expected to contain a Random

instance or something that responds to rand that’s used as the generator for
the random ordering.

Unlike Enumerable but like String, Array implements versions of many of its
methods that add the ! suffix. In these cases, the original method returns a
new array, and the ! version has the same logic but modifies the original
array in place. In most of these cases, the return value is the original array if
it has been modified or nil if it hasn’t.

In general, the ! versions are used for performance reasons. They don’t
create a new array and so might be faster or use less memory. They tend to
be more confusing, so we recommend you use them only when needed.

The following ! methods related to the methods we’ve discussed in this
section or in ​Enumerable​, are all defined:

Array#compact!

Array#filter! (and also Array#select!)
Array#flatten!

Array#map! (and also Array#collect!)
Array#reject!

Array#reverse!

Array#rotate!

Array#shuffle!

Array#slice!

Array#sort!

Array#sort_by!

Array#uniq!

Array Math
In addition to the count method, arrays define Array#length and Array#size,
which are aliases of each other, take no argument, and just return the raw
element count. The Array#empty? method returns true if the size of the array
is zero.

Arrays are Comparable and define the Array#<=> operator. Array comparisons
in Ruby are managed element by element. So, if a[0] <=> b[0] isn’t 0, return
that value, otherwise test a[1] <=> b[1] and so on until one array ends or there
is a non-equal pair. The first non-equal pair is the result of the comparison.
If all the pairs are equal, the shorter array is “less than” the larger array. So,
equality for two arrays means that the arrays are the same size and all their
elements are equal. Here are some examples:

​ [1, 2, 3] <=> [2, 2, 3] ​# => -1​

​ [1, 2, 3] <=> [1, 1, 3] ​# => 1​

​ [1, 2, 3] <=> [1, 2, 3, 4] ​# => -1​

​ [1, 2, 3, 4] <=> [1, 2, 3] ​# => 1​

​ [1, 2, 3] <=> [1, 2, 3] ​# => 0​

Some mathematical operators are defined for arrays. Adding two arrays
returns a new array concatenating the two operands:

​ [1, 2, 3] + [4, 5, 6] ​# => [1, 2, 3, 4, 5, 6]​

Subtracting two arrays returns a new array with every element in the first
array that isn’t in the second array. This is aliased as
Array#difference(*other_arrays):

​ [1, 2, 3, 4, 5, 4, 3, 2] - [2, 4] ​# => [1, 3, 5, 3]​

You can multiply an array with an integer or string. The integer version
returns that many copies of the array concatenated together. The string
version returns each element of the array separated by the string—it’s the
same as join. Multiplying two arrays together to get the cross-product of all
combinations of their elements is done with the Array#product(*other_arrays)

method:

​ [2, 4, 6] * 3 ​# => [2, 4, 6, 2, 4, 6, 2, 4, 6]​

​ [2, 4, 6] * ​", "​ ​# => "2, 4, 6"​

​

​

​ [2, 4, 6].​product​([​"a"​, ​"b"​]) ​# => [[2, "a"], [2, "b"], [4, "a"], [4, "b"],
[6,​

​ ​# .. "a"], [6, "b"]]​

Arrays can also do set operations. The Array#intersection(*other_arrays)

method takes an arbitrary number of other arrays as arguments and returns a
new array of all the elements that are in the original array and all the
arguments. The resulting array will contain no duplicates and will preserve
the order of the elements. If there is only one other array being compared,
you can use the Array#& operator as a shortcut:

​ [1, 2, 3, 4, 5].​intersection​([1, 2, 3, 6], [-2, 2, 4]) ​# => [2]​

​ [1, 2, 3, 4, 5] & [1, 2, 3, 6] ​# => [1, 2, 3]​

Similarly, the Array#union(*other_arrays) method takes an arbitrary number of
array arguments and returns all elements that are in any of the arrays.
Duplicates are removed, and the order of the elements remains the same. If
there is only one other array, you can use Array#| as a shortcut:

​ [1, 2].​union​([3, 5, 1], [12, -3, 2]) ​# => [1, 2, 3, 5, 12, -3]​

​ [1, 2] | [3, 5, 1] ​# => [1, 2, 3, 5]​

Ruby does combinatorics, too! The Array#combination(n) [{ |element| block }]

method takes an integer argument and returns an enumerator that will return

every combination of elements in the array that’s the size of the argument.
If passed a block, it’ll yield the block to each combination. The
Array#permutation(n) [{ |element| block }] method does the same thing for every
permutation—the difference being that the order is significant in each
permutation, but not in each combination:

​ [1, 2, 3].​combination​(2).​to_a​ ​# => [[1, 2], [1, 3], [2, 3]]​

​ [1, 2, 3].​permutation​(2).​to_a​ ​# => [[1, 2], [1, 3], [2, 1], [2, 3], [3, 1],
[3,​

​ ​# .. 2]]​

Both methods have a form—Array#repeated_combination(n) [{ |element| block }]

and Array#repeated_permutation(n) [{ |element| block }]—that allows the
elements of an array to be repeated as the values in the resulting array.

​ [1, 2, 3].​repeated_combination​(2).​to_a​ ​# => [[1, 1], [1, 2], [1, 3], [2, 2],
[2,​

​ ​# .. 3], [3, 3]]​

​ [1, 2, 3].​repeated_permutation​(2).​to_a​ ​# => [[1, 1], [1, 2], [1, 3], [2, 1],
[2,​

​ ​# .. 2], [2, 3], [3, 1], [3, 2], [3,
3]]​

Arrays and Binary Search
Ruby has a binary search feature built into arrays. It isn’t quite math, but it’s
algorithmic, and one day it’ll likely save you a great deal of time. The great
thing about Ruby’s binary search feature is that it’s fast and it handles the
edge cases that make coding a binary search hard. The tricky thing is that
the setup might not be what you expect.

In order for this feature to work, the array has to be sorted, but exactly what
Ruby means by that is a little different from a simple numerical sort.

The Array#bsearch { |element| block } method takes a block. The block takes an
element and returns a value. One of these two cases must be true of the
block and the array:

The block returns true or false. All elements of the array for which the
block returns false must come before any element of the array for
which the block returns true. In this case, bsearch returns the first
element of the array for which the block returns true, or nil if there
aren’t any such elements.

The block returns a numeric value. The numeric values don’t have to
be in order, but all the elements for which the block returns positive
must come first, followed by all the elements for which the block
returns zero and then all the elements for which the block returns
negative. In this case, bsearch will return an element for which the
block returns zero, but it isn’t guaranteed to be the first such element.
Again, it returns nil if there are no elements for which the block returns
zero.

Note that for speed purposes, bsearch doesn’t check that the ordering
matches the constraints presented (because the time to do so would defeat
the purpose of the bsearch method). It’s on you to guarantee the
precondition.

The related method Array#bsearch_index { |element| block } does the same logic
but returns the index of the result rather than the value:

​ sample = (1 .. 10000).​to_a​

​ sample.​bsearch​ { |i| i >= 512 } ​# => 512​

​ sample.​bsearch​ { |i| 512 <=> i } ​# => 512​

The first search is an example of the first condition; the second search is an
example of the second condition.

Packing Data
Ruby has a mechanism for converting arrays into binary strings and back
again, which can be useful for compact custom encoding of data or for
decoding known binary data.

On the array side, the Array#pack(template, buffer: nil) method takes a template
string as an argument and packs the contents of the receiver into a binary
sequence according to the directives in template (see Table 26, ​Template
characters for packed data​). Directives A, a, and Z may be followed by a
count, which gives the width of the resulting field. The remaining directives
also may take a count, indicating the number of array elements to convert.
If the count is an asterisk (*), all remaining array elements will be
converted. The integer directives i, I, l, L, q, Q, s, and S, may be followed by
an underscore (_) or bang (!) to use the underlying platform’s native size for
the specified type; otherwise, they use a platform-independent size. The
integer directives i, I, l, L, q, Q, s, and S may be followed by a less than sign
to signify little endian or greater than sign for big endian. Spaces are
ignored in the template string. Comments starting with # to the next newline
or end of string are also ignored.

​ a = [​"a"​, ​"b"​, ​"c"​]

​ n = [65, 66, 67]

​ a.​pack​(​"A3A3A3"​) ​# => "a␣␣b␣␣c␣␣"​
​ a.​pack​(​"a3a3a3"​) ​# => "a\x00\x00b\x00\x00c\x00\x00"​

​ n.​pack​(​"ccc"​) ​# => "ABC"​

See ​Unpacking Data​ for the inverse operation, String#unpack.

Table 26. Template characters for packed data

Directive Meaning
@ Move to absolute position

A Sequence of bytes, equivalent to a binary string (space
padded, count is width), nil indicates an empty string

a Sequence of bytes, equivalent to a binary string (null
padded, count is width)

Directive Meaning
B Bit string (most significant first)

b Bit string (least significant first)

C Unsigned byte integer

c Signed byte integer

D, d Double-precision float, native format

E Double-precision float, little-endian byte order

e Single-precision float, little-endian byte order

F, f Single-precision float, native format

G Double-precision float, network (big-endian) byte order

g Single-precision float, network (big-endian) byte order

H Hex string (high nibble, or two bytes, first)

h Hex string (low nibble, or two bytes, first)

I Platform default sized unsigned integer, native endian°

i Platform default sized signed integer, native endian°

J 64-bit pointer-width unsigned integer, native endian°

j 64-bit pointer-width signed integer, native endian°

L 32-bit unsigned long integer, native-endian°

Directive Meaning
l 32-bit signed integer, native-endian°

M Quoted printable, MIME encoding (see RFC2045)

m Base64-encoded string; count specifies bytes between
newlines, to nearest multiple of three; "m0" suppresses
linefeeds

N 32-bit long integer, network (big-endian) byte order

n 16-bit short integer network, (big-endian) byte order

P Pointer to a structure (fixed-length string)

p Pointer to a null-terminated string

Q 64-bit unsigned integer, native endian°

q 64-bit signed integer, native-endian°

S Unsigned 16-bit short integer

s Signed 16-bit short integer°

U UTF-8 character

u UU-encoded string

V 32 bit long integer, little-endian byte order

v 16 bit short integer little-endian byte order

w BER-compressed integer. The octets of a BER-compressed
integer represent an unsigned integer in base 128, most

Directive Meaning
significant digit first, with as few digits as possible. Bit eight
(the high bit) is set on each byte except the last (Self-
Describing Binary Data Representation, MacLeod).

X Back up a byte

x Null byte

Z Same as “a,” except a null byte is appended if the * modifier
is given

° Directive can be modified by appending _ or ! to the
directive to use the platform’s native integer size, or with >
to indicate a big-endian integer or < to indicate a little
endian integer.

Enumerable
Ruby’s Enumerable module is the basis for the functionality of all container
classes in Ruby. The most common container classes in use are Array, Hash,
and sometimes Set, but this functionality applies to any other class that
defines an each method and includes the Enumerable module.

In this section, we’ll be talking about features common to all Enumerables.
Other sections in this chapter will talk about how the core implementations
of Array, Hash, and Set add their own features.

Iterating
The Enumerable module looks for a method called each as the building block
for basically all of its functionality. The Enumerable module doesn’t define
each; instead, it depends on any class that includes Enumerable to define each.
The basic contract of each is that it accepts a block and yields each element
of the container in turn to that block. For most Enumerable clients that’s
straightforward—an Array or Set yields each element in the container in
order. Hash#each is slightly different—it yields each key/value pair as a two-
element array in order.

Unless otherwise specified, every method in this section that takes a block
has an alternate form that doesn’t take a block and returns an Enumerator.
(We’ll talk about that form in ​Enumerator​.)

There are a handful of methods that are just slightly different structures of
each, starting with Enumerable#reverse_each [{ |element| block }], where
foo.reverse_each is equivalent to foo.to_a.reverse.each, but the single-method
version is a little faster because it only creates one intermediate structure,
not two.

If you want to call each element through the array more than once, you can
use Enumerable#cycle(n = nil) [{ |element| block }], which takes one argument and
executes that argument’s amount of successive calls to each:

​ result = []

​ arr = [​"a"​, ​"b"​, ​"c"​]

​ arr.​cycle​(3) { |x| result << x } ​# => nil​

​ result ​# => ["a", "b", "c", "a", "b", "c", "a",
"b",​

​ ​# .. "c"]​

If you want to call a block with multiple successive elements of the data
structure, you can do that with Enumerable#each_slice(n) [{ |slice| block }] or
Enumerable#each_cons(n) [{ |cons| block }]. Both of these methods take an
argument that’s the number of elements that each block call gets. The
methods differ in how they generate the list of successive elements.

The each_slice method yields non-overlapping lists. The second call starts
with the element after the end of the first call. The each_cons method yields
overlapping lists. The second call starts with the second element of the list,
and so on:

​ elements = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

​

​ puts ​"each_slice"​

​ elements.​each_slice​(3) { |x, y, z| puts ​"​​#{​x​}​​ ​​#{​y​}​​ ​​#{​z​}​​"​ }

​

​ puts

​ puts ​"each_cons"​

​ elements.​each_cons​(3) { |x, y, z| puts ​"​​#{​x​}​​ ​​#{​y​}​​ ​​#{​z​}​​"​ }

Produces:

​ each_slice

​ 1 2 3

​ 4 5 6

​ 7 8 9

​ 10

​

​ each_cons

​ 1 2 3

​ 2 3 4

​ 3 4 5

​ 4 5 6

​ 5 6 7

​ 6 7 8

​ 7 8 9

​ 8 9 10

It’s quite common to need to hold on to what the index of each successive
element is in the block. You can do this using Enumerable#each_with_index [{

|element, index| block }], which takes a two-element block, the second element
of which is the index, starting at zero:

​ elements = [​"a"​, ​"b"​, ​"c"​, ​"d"​]

​ elements.​each_with_index​ { |x, i| puts ​"​​#{​x​}​​ is at index ​​#{​i​}​​"​ }

Produces:

​ a is at index 0

​ b is at index 1

​ c is at index 2

​ d is at index 3

Accessing
In general, the Enumerable interface isn’t used for arbitrary access—
subclasses like Array and Hash typically override the square bracket operator
to enable this. But a couple of Enumerable methods do allow for access. The
simplest is Enumerable#to_a (aliased to Enumerable#entries), which returns an
array of the successive elements in the container that you can then treat like
any other array.

You can get the first elements of an Enumerable with Enumerable#take(n),
which takes one argument and returns that many elements from the start of
the array. There’s also Enumerable#first(n = 1), which behaves the same except
you can call first with no arguments to get the single first element.

On the other side, the Enumerable#drop(n) method takes an argument and
returns all the elements after that many arguments from the start of the
array:

​ ex = [​"a"​, ​"b"​, ​"c"​, ​"d"​, ​"e"​, ​"f"​, ​"g"​]

​ ex.​first​ ​# => "a"​

​ ex.​take​(2) ​# => ["a", "b"]​

​ ex.​drop​(2) ​# => ["c", "d", "e", "f", "g"]​

Enumerable#drop_while [{ |element| block }]. Each method takes a block and
applies the block to successive elements of the array until the block returns
a falsey value. At that point, take_while returns all the previously processed
elements, while drop_while returns the failing element and all subsequent
elements. Here’s an example:

​ ex = [2, 4, 8, 16, 32, 64]

​ ex.​take_while​ { |x| x < 10 } ​# => [2, 4, 8]​

​ ex.​drop_while​ { |x| x < 10 } ​# => [16, 32, 64]​

Map and Reduce
A common pattern when dealing with data in containers is to process the
data in two steps: a map step, where each element of the container is
transformed, and a reduce step, where the entire container is combined to a
single value. At large scale, the map-reduce pattern is a way to structure big
data manipulations such that they can be easily parallelized. At a smaller
scale, map-reduce is a clean, manageable way to structure data
management. The Ruby Enumerable module provides support for both parts
of the pattern.

The Enumerable#map [{ |element| block }] method (which is aliased to collect for
historical reasons, namely that Smalltalk calls this function collect) takes a
block and applies it to each element in turn, returning a new array with the
block’s return value for each element:

​ x = [1, 2, 3, 4]

​ x.​map​ { |element| element * 11 } ​# => [11, 22, 33, 44]​

The Enumerable#reduce(initial = nil, symbol = nil) [{ |accumulator, element| block }]

method (which is aliased to inject, again for Smalltalk-related historical
reasons) is a way to convert a collection of values into a single value. The
reduce method works in a couple of different ways. The most general way
takes an optional initial value as an argument and a block.

The block takes two arguments: the first is the accumulator and the second
is each element in the list in turn. If the reduce method passed the initial
value as an argument, then that value is used as the value of the
accumulator on the first call to the block. If not, the first call to the block
uses the first element of the list as the accumulator, and the second element
of the list as the element argument.

Inside the block, the idea is to do something to update the accumulator with
the new value and return the new accumulated value, which is then passed
forward to the next iteration of the block:

​ x = [2, 5, 9, 12]

​ x.​reduce​ { |sum, element| sum + element } ​# =>
28​

​

​ words = ​%w(major league baseball)​

​ words.​reduce​(​""​) { |acronym, element| acronym << element[0].​upcase​ } ​# =>
"MLB"​

In the first example, there’s no starter value, so the block is called with
arguments 2 and 5 from the array, resulting in 7. The block is then called
with that 7 as the first argument and the third element of the list—9—as the
next argument. The result is 16, and the next call to the block is 16 and 12, so
the final result is 28.

In the second example, there is a starter value so the first block is called
with "" and "major". The result of that block is "M", so the next call is "M" and
league and so on until the final result is "MLB".

The reduce method also has a form that’s somewhat unusual in the Ruby
libraries. It takes a second argument that’s a symbol, where the symbol is a
method that takes two arguments. It then uses that method as if it were the
body of the block. In other words, the following lines are equivalent:

​ x = [2, 5, 9, 12]

​ x.​reduce​ { |sum, element| sum + element } ​# => 28​

​ x.​reduce​(0, :+) ​# => 28​

​ x.​sum​ ​# => 28​

Here, + is a method that takes two arguments, and so the reduce method
treats it as the body of a block. So, reduce(0, :+) is an older and reduce-
specific way of writing reduce(0, &:+)—the newer version that uses the
to_proc trick is more common in current code.

In fact, the sum pattern is so common that Ruby eventually added a
Enumerable#sum(initial_value = 0) [{ |element| block }] method, as you can see in
the final line. The sum method takes its own optional block, in which case it
sums the return values of the block. In other words, the following lines are
equivalent:

​ x = ​%w[these are all words]​

​ x.​sum​ { |word| word.​length​ } ​# => 16​

​ x.​map​ { |word| word.​length​ }.​sum​ ​# => 16​

Another common pattern for the reduce behavior is to build up a new
container from the data in an existing one, for example, a hash based on the
data in an array. Ruby provides Enumerable#each_with_object(object) [{ |*args,

accumulator| block }] as a shortcut for this pattern:

​ x = ​%w[bananas are the funniest fruit]​

​ result = x.​each_with_object​({}) ​do​ |word, result|

​ initial = word[0]

​ result[initial] ||= []

​ result[initial] << word

​ ​end​

​ puts result

Produces:

​ {"b"=>["bananas"], "a"=>["are"], "t"=>["the"], "f"=>["funniest", "fruit"]}

The basic idea of each_with_object is the same as reduce but there are two
differences: the order of the block arguments is [element, accumulator] rather
than [accumulator, element], and what is passed from iteration to iteration is
the accumulator itself, rather than the return value of the block. In this case,
the two are different, since the return value of the block is the return value
of result[initial] << word.

A few kinds of object-creation techniques are common enough to get their
own methods. The Enumerable#group_by [{ |element| block }] method is a
generalization of what we just did: converting a list to a hash based on the
value of some block. So we could write our initializer like so:

​ x = ​%w[bananas are the funniest fruit]​

​ result = x.​group_by​ { |word| word[0] }

​ puts result

Produces:

​ {"b"=>["bananas"], "a"=>["are"], "t"=>["the"], "f"=>["funniest", "fruit"]}

In this case, the existence of the resulting hash and the accumulation of the
values is handled by group_by.

The Enumerable#partition [{ |element| block }] method takes a block and returns
a two-element array of arrays. The first element of the result is an array of
all entries in the initial list for which the block returns a truthy value. The
second is the entries for which this isn’t so:

​ x = [1, 2, 3, 4, 5]

​ x.​partition​ { |z| z.​even?​ } ​# => [[2, 4], [1, 3, 5]]​

The Enumerable#zip(*other_enums) [{ |element| block }] method combines a list
with one or more other lists to create a new array of arrays, where each

element in the result is made up of the corresponding element of the
original list and all the arguments, like this:

​ foo = [1, 2, 3, 4, 5]

​ bar = [​"a"​, ​"b"​, ​"c"​, ​"d"​, ​"e"​]

​ foo.​zip​(bar) ​# => [[1, "a"], [2, "b"], [3, "c"], [4, "d"], [5, "e"]]​

Filtering
Ruby provides a wide variety of ways to find a particular object or objects
in a collection along with the related task of filtering a collection based on
some arbitrary criteria.

The most basic method is Enumerable#find(proc = nil) [{ |element| block }], aliased
as detect. The find method takes a block and returns either the first object for
which the block returns a truthy value or nil if there is no such object. The
find method takes as an optional argument a proc that’s called and its value
returned in lieu of returning nil if no matching object is found.

If you’d rather have the index of the object, you can call
Enumerable#find_index(object = nil) which can also be Enumerable#find_index() {

|element| block } with the same behavior. The object version returns the index
of the first object in the list that’s == to the argument. The block version
returns the index of the first object for which the block returns a truthy
value. In both cases, the method returns nil if there’s no such object.

Often you may want to return all objects in a list that match a given block,
and Enumerator provides that behavior under three different aliases:
Enumerator#select [{ |element| block }], aliased as filter and find_all. These are all
names for the same behavior, which is to take a block and return every
element of the list for which that block returns a truthy value. The inverse is
Enumerator#reject [{ |element| block }], which returns every element of the
block for which the block returns a falsey value.

The similar method Enumerable#grep(pattern) [{ |element| block }] takes a pattern
argument, not a block, and returns every element of the array that is === to
the argument. It’s inverse, Enumerable#grep_v(pattern) [{ |element| block }]

returns every element of the array that’s not === to the argument. If there’s a
block, then each matching element that would be returned by the method is
passed to the block and the return value of the block is used instead.

​ list = [1, 1, 2, 3, 5, 8, 13, 21]

​ list.​find​ { |i| i.​even?​ } ​# => 2​

​ list.​find​(proc { ​"nope"​ }) { |i| i.​zero?​ } ​# => "nope"​

​

​ list.​find_index​ { |i| i.​even?​ } ​# => 2​

​ list.​find_index​(5) ​# => 4​

​

​ list.​select​ { |i| i.​even?​ } ​# => [2, 8]​

​ list.​reject​ { |i| i.​even?​ } ​# => [1, 1, 3, 5, 13, 21]​

​

​ list.​grep​(4..10) ​# => [5, 8]​

​ list.​grep_v​(4..10) ​# => [1, 1, 2, 3, 13, 21]​

​

​ list.​grep​(4..10) { |x| 10 ** x } ​# => [100000, 100000000]​

Two common filter patterns have their own methods: Enumerable#compact

and Enumerable#uniq. The compact method removes all nil elements from an
array and is particularly useful for cleaning up arrays before passing them
forward to map or sum or something else that might break if passed a nil.

The uniq method removes duplicate elements (based on eql?). Normally uniq

is based on the actual elements of a collection, but with a block, it’ll
compare values based on the return value of the block for each element:

​ [1, 2, ​nil​, 3, ​nil​, 4, 5].​compact​ ​# => [1, 2, 3, 4, 5]​

​ [1, 2, 3, 2, 3, 1].​uniq​ ​# => [1, 2, 3]​

You might want to split an enumerable into sub-lists based on some criteria,
similar to the way split works for strings. For Enumerable, you can do this
with Enumerable#slice_after(pattern = nil) [{ |element| block }],

Enumerable#slice_before(pattern = nil) [{ |element| block }], and
Enumerable#slice_when(pattern = nil) [{ |element| block }]. All three of these
methods return Enumerator instances rather than arrays.

The slice_after method takes a pattern or a block. It tests each element of the
collection in turn. If the element is either === to the argument or causes the
block to return a truthy value, then that element is the end of a slice and a
new slice begins with the next element.

The slice_before method performs the same test but if an element matches,
then it ends the slice before that element and the element is the first element
of the next slice.

If those aren’t flexible enough, the slice_when method takes a block with two
arguments, applies it to overlapping pairs of the list in turn, and splits the
slice between the two elements if the block returns true. For example:

​ list = [1, 1, 2, 3, 5, 8, 13, 21]

​ list.​slice_after​ { |i| i.​even?​ }.​to_a​ ​# => [[1, 1, 2], [3, 5, 8], [13, 21]]​

​ list.​slice_before​ { |i| i.​even?​ }.​to_a​ ​# => [[1, 1], [2, 3, 5], [8, 13, 21]]​

​

​ list = [18, 17, 3, 11, 3, 10]

​ list.​slice_when​ { |a, b| a > b }.​to_a​ ​# => [[18], [17], [3, 11], [3, 10]]​

Querying
The most basic query about a collection is “how big is it?” The Ruby
method here is Enumerable#count [{ |element| block }], which without a block
returns the size of the collection. With a block argument, it returns the
number of elements in the collection for which the block returns a truthy
value. With a positional argument, it returns the count of elements that are
equal to that argument.

The Enumerable#tally(hash = nil) method is a generalization of count. It returns
a Hash whose keys are elements in the list and whose values are the count of

how many times the element appears in the list. If the optional argument is
passed in, that’s the starting point of the tally, and new items are added to
that.

​ sample = [1, 2, 3, 2, 3, 1, 3, 5]

​ sample.​count​ ​# => 8​

​ sample.​count​(2) ​# => 2​

​ sample.​count​ { |x| x.​even?​ } ​# => 2​

​ sample.​tally​ ​# => {1=>2, 2=>2, 3=>3, 5=>1}​

The Enumerable#include?(object) method (aliased as member?) takes an
argument and returns true if there is an element in the collection that’s equal
to that argument.

A series of methods returns true or false based on how many times a block
or pattern is matched by the collection. All of these methods behave the
same way: they take a block or a positional argument. With a positional
argument, the method counts how many elements of the list are === to that
argument. With a block, the method counts how many elements of the list
cause the block to return true. Given that count, these are the results:

Enumerable#none? returns true if and only if the count is zero.
Enumerable#one? returns true if and only if the count is one.
Enumerable#any? returns true if the count is one or more.
Enumerable#all? returns true if the count is the size of the list (all
elements of the list match).

Sorting and Comparing
When you create a new object, you often want to be able to sort a list of
those objects or compare two objects along some default criteria.

The most general feature in Ruby for sorting is the Enumerable#sort [{ |x, y|

block }] method. The receiver of sort is the item to be sorted, which can be
any object that includes the Enumerable module. For our purposes, the most
important class that can respond to sort is Array.

If sort is called without a block, it calls <=> on each element, which means
the following two lines are identical:

​ list_of_users.​sort​ { |a, b| a <=> b }

​ list_of_users.​sort​

The sort method can also take a block. The block takes two elements and
returns the following:

A positive integer if the first argument is, for the purposes of the sort,
greater than the second argument.

A negative integer if the first argument is less than the second
argument.

Zero if the two elements are tied.

Assuming the objects have a numeric height element, both of these lines will
return identical sorts:

​ list_of_users.​sort​ { |a, b| a.​height​ <=> b.​height​ }

​ list_of_users.​sort​ { |a, b| a.​height​ - b.​height​ }

The first line takes advantage of the <=> operator’s behavior, matching the
expected behavior of the block, while the second line takes advantage of
just plain subtraction having the same result. (We’d consider the first line to
be clearer in most contexts.)

Sorting elements in an array based on an attribute of each element is
common enough that Ruby provides Enumerable#sort_by [{ |element| block }] as
a shortcut. The sort_by method takes a block with a single argument and
uses that argument to sort the list.

Given all the ways in Ruby to write a one-expression block, the following
are all equivalent:

​ list_of_users.​sort​ { |a, b| a.​height​ <=> b.​height​ }

​ list_of_users.​sort_by​ { |x| x.​height​ }

​ list_of_users.​sort_by​ { _1.​height​ }

​ list_of_users.​sort_by​(&​:height​)

You’ll likely see the last form most frequently for simple cases like this, but
we kind of hope the next to last form catches on.

If you’re just interested in the upper or lowermost elements rather than the
entire sorted list, Ruby has you covered with Enumerable#min(n = 1) [{ |a, b|

block }] and Enumerable#max(n = 1) [{ |a, b| block }] and their related methods
Enumerable#min_by(n = 1) [{ |element| block }] and Enumerable#max_by(n = 1) [{

|element| block }].

When called without an argument, these methods treat the array exactly like
sort and sort_by, which is to say that min and max use <=> or take a two-
argument block, while min_by and max_by take a one-argument block. The
difference is the return value. The min methods return the lowest element of
the list, and the max methods return the highest element of the list.

If you want more than one element returned, you can pass the number of
elements you want to the method and you’ll receive an array of results
rather than a single scalar result. The method Enumerable#minmax [{ |a, b| block

}] returns a two-element array with the lowest and highest elements of the
list using the same logic as sort. The related Enumerable#minmax_by [{ |element|

block }] uses the same logic as sort_by. Here are some examples:

​ [4, 11, 2, 7] ​# => [4, 11, 2, 7]​

​ [4, 11, 2, 7].​min​ ​# => 2​

​ [4, 11, 2, 7].​max​ ​# => 11​

​ [4, 11, 2, 7].​min​(2) ​# => [2, 4]​

​ [4, 11, 2, 7].​max​(2) ​# => [11, 7]​

​ [4, 11, 2, 7].​minmax​ ​# => [2, 11]​

​ [​"one"​, ​"three"​, ​"eleven"​, ​"four"​].​min_by​(&​:length​) ​# => "one"​

​ [​"one"​, ​"three"​, ​"eleven"​, ​"four"​].​max_by​(&​:length​) ​# => "eleven"​

​ [​"one"​, ​"three"​, ​"eleven"​, ​"four"​].​min_by​(2, &​:length​) ​# => ["one", "four"]​

​ [​"one"​, ​"three"​, ​"eleven"​, ​"four"​].​max_by​(2, &​:length​) ​# => ["eleven",
"three"]​

​ [​"one"​, ​"three"​, ​"eleven"​, ​"four"​].​minmax_by​(&​:length​) ​# => ["one",
"eleven"]​

Other Enumerables
Several other classes in Ruby core or the Ruby standard library respond to
each and include Enumerable in a useful way. Here’s a quick tour:

ARGF is the combination of all files passed to a command-line tool.
ARGF#each iterates over each line in the concatenated set of files—not
each file, but each line in the files one by one.

CSV implements each to iterate over each parsed row in the CSV file.

Dir implements each for the files in the directory, passing each filename
to the block one by one.

ENV, the repository for environment variables at runtime, behaves like
a hash, and each will pass each successive environment variable name
and value as a pair.

IO, the generic input/output class implements each to go line by line
through the item being read. Its subclasses, including File and StringIO

behave similarly.

Net::HTTPHeader contains the values in the header of an HTTP request,
and each takes a block for each entry in the headers as a key/value pair.

Range responds to each as an array would, calling it once for every
element inside the range.

Struct responds to each as a hash would, calling the block once for each
attribute in the struct as a key/value pair.

Enumerator
Nearly every Enumerable method that takes a block argument can also be
called without a block, in which case the method returns an Enumerator.
(There are a few subclasses of Enumerator that you wouldn’t create by hand
but which implement some specialized logic.) In addition to those
Enumerable methods, you can create an enumerator in a few other ways.

Creating Enumerators
Any object can be converted into an Enumerator with the
Object#to_enum(method = :each, *args) method (aliased as enum_for). The first
argument to to_enum is a symbol that’s the name of a method that converts
the object to something enumerable. Any further arguments to to_enum are
passed to the method named in the first argument. You can then treat that
enumerator like any other enumerator. Here’s an example:

​ x = ​"a string with lots of words"​

​ enum = x.​to_enum​(​:split​)

​ enum.​with_index​.​map​ { |word, index| [word.​upcase​, index] } ​# => [["A", 0],​

​ ​# .. ["STRING",
1],​

​ ​# .. ["WITH",
2],​

​ ​# .. ["LOTS",
3],​

​ ​# .. ["OF", 4],​

​ ​# .. ["WORDS",
5]]​

You can create an infinite enumerator using the
Enumerator#produce(initial_value = nil) [{ |previous_value| block}] method, which
takes an optional initial value as an argument and a block. The block takes
an argument, and each time the enumerator is invoked, the previous block
return value is passed to the block and a new value is returned. This is most

useful when combined with Enumerable#lazy or with some kind of find
method. This uses map, select, and take to return the first five even triangular
numbers:

​ triangular_numbers = Enumerator.​produce​([1, 2]) ​do​ |number, count|

​ [number + count, count + 1]

​ ​end​

​

​ triangular_numbers.​lazy​.​map​ { _1.​first​ }.​select​(&​:even?​).​take​(5).​to_a​ ​# =>
[6,​

​ ​# ..
10,​

​ ​# ..
28,​

​ ​# ..
36,​

​ ​# ..
66]​

An enumerator can be created for a series of enumerables with the
Enumerator#product(*enumerables) method, which takes one or more
enumerable objects as arguments and returns a new Enumerator that’s made
up of the Cartesian product of all the arguments:

​ product = Enumerator.​product​(​"a"​..​"c"​, -1..1, [​:x​, ​:y​])

​ product.​to_a​ ​# => [["a", -1, :x], ["a", -1, :y], ["a", 0, :x], ["a", 0, :y],​

​ ​# .. ["a", 1, :x], ["a", 1, :y], ["b", -1, :x], ["b", -1, :y],
["b",​

​ ​# .. 0, :x], ["b", 0, :y], ["b", 1, :x], ["b", 1, :y], ["c",
-1,​

​ ​# .. :x], ["c", -1, :y], ["c", 0, :x], ["c", 0, :y], ["c", 1,
:x],​

​ ​# .. ["c", 1, :y]]​

Using Enumerators
There are a few things you can do with an enumerator. You can cause it to
move through its values externally by calling Enumerator#next. This will
move through any chained logic but isn’t associated with a block, so it

won’t invoke a block. The Enumerator#rewind method puts the enumerator
back to the beginning of the sequence.

You can also use Enumerator#peek to look at the next value in the enumerator
without moving the iterator forward—successive calls to peek will return
the same object:

​ x = [1, 2, 3].​to_enum​.​with_index​

​ x.​next​ ​# => [1, 0]​

​ x.​next​ ​# => [2, 1]​

​ x.​peek​ ​# => [3, 2]​

​ x.​peek​ ​# => [3, 2]​

​ x.​rewind​ ​# => #<Enumerator: #<Enumerator: [1, 2, 3]:each>:with_index>​

​ x.​next​ ​# => [1, 0]​

As shown in this example, enumerators can be chained together. The
Enumerator#with_index(offset = 0) [{ |*arguments, index| block}] method chains the
iterator to a new iterator that includes the index of each object as a second
argument to the block. The related method Enumerator#with_object(object) [{

|*arguments| block}] takes an object (usually a container like an array or a
hash) and creates a new enumerator that passes that object as a second
argument.

You can also use Enumerator#+ to add another enumerable to the end of the
current enumerator, appending those values to the end of what’s already
there.

Using Enumerator#each(*appending_args) [{ |element| block}] with a block causes
the entire enumerator to be invoked. The each method also takes arguments
that might have needed to be passed to earlier parts of the enumerator. In
this case, the string is converted to an enumerator based on the split method,
but the each call passes the argument that determines what the string is split
on:

​ x = ​"a string of words"​.​to_enum​(​:split​)

​ x.​each​(​"o"​).​to_a​ ​# => ["a string ", "f w", "rds"]​

Lazy Enumerators
A lazy enumerator is formed by calling the method Enumerable#lazy. Usually,
it’s the beginning of a chain of enumerator methods, as shown in the produce

example earlier. Once lazy is part of the method chain, it changes the
behavior of the entire chain so that values are passed through the chain one
at a time, rather than all at once.

For example, if you have a chain of calls like
x.map(&:foo).select(&:bar).map(&:baz).take(5), the entire array is mapped, then
filtered, and then mapped again, and then the first five elements are
retrieved. If the original object x is long or if it’s infinite, this chain can be
quite slow, especially because we only want five elements. By making it
lazy, as in x.lazy.map(&:foo).select(&:bar).map(&:baz).take(5), the behavior
changes. The first element of x is mapped, then filtered through select, and,
if it passes, mapped through baz and added to the list for take. This
continues one by one only until the take(5) is completed, meaning that if x is
long, far fewer elements have been processed.

You can un-lazy an enumerator chain by calling eager, which allows you to
convert the lazy enumerator to something that can be returned from a
method or used as an argument to a method that expects an enumerator.

Hash
The Hash, which associates arbitrary indexes to arbitrary values, is the most
flexible basic class in Ruby. Although Hash does implement each and
Enumerable, hashes behave slightly differently than arrays and sets.

Creating Hashes
Hashes have a literal syntax that uses curly braces to associate keys with
values. The original form of separating keys from values uses the =>

symbol, often called a hash rocket:

​ hash = {​"a"​ => 1, ​"b"​ => 2, ​"c"​ => 3}

In general, you want the hash keys to be immutable values, and symbols are
commonly used. If the key is a symbol, then you can use a colon to separate
the key from a value. The colon will also convert strings to symbols. The
keys in this literal are :a, :b, and :c, all symbols:

​ hash = {​a: ​1, ​"b"​: 2, ​c: ​3}

You can use both styles in a single hash literal, but if you use the colon
style, the key must be a string or a bare word. Anything else will result in a
syntax error.

If the key is a symbol, and the symbol has a meaning in the current context,
then you can use just the key and the value will be assumed to be the local
value. So, the following two hashes are equivalent:

​ a = 1

​ b = 2

​ c = 3

​ {​a: ​a, ​b: ​b, ​c: ​c}

​ {a:, b:, c:}

The class Hash also responds to [] to create new hashes, which is a less
frequently used alternative to the literal syntax, Hash[a: 1, b: 2]. The argument
can be key/value pairs, another hash, a list of two-element arrays, or just a
list of arguments, in which case Ruby assumes that the keys and values
alternate.

The method Hash.new(default_value = nil) [{ |hash, key| block}] will create an
empty hash. This method takes an optional argument that acts as the default
value for keys that aren’t in the hash. In this usage, the default value isn’t
duplicated each time it’s used, so you should use an immutable value, like a
scalar, and not a mutable value, like an empty array. So, this won’t do what
you want:

​ sample = Hash.​new​([])

​ sample[​:a​] << ​"alpha"​ ​# => ["alpha"]​

​ sample[​:b​] << ​"beta"​ ​# => ["alpha", "beta"]​

​ sample[​:a​] ​# => ["alpha", "beta"]​

​ sample[​:b​] ​# => ["alpha", "beta"]​

The idea here is to bypass having to create an array for each new key and
just use a default, but in this version, only one array is used for the default,
so adding values to it in different keys only updates the single default value.

Alternatively, you can pass a block, which is invoked when a key that’s not
in the hash is requested. The block takes two arguments—the hash and the
new key—and returns a default value for the key. This enables you to create
a new default object for each key:

​ sample = Hash.​new​ { |hash, key| hash[key] = [] }

​ sample[​:a​] << ​"alpha"​ ​# => ["alpha"]​

​ sample[​:b​] << ​"beta"​ ​# => ["beta"]​

​ sample[​:a​] ​# => ["alpha"]​

​ sample[​:b​] ​# => ["beta"]​

Hash Values
Hash values are accessed using the Hash#[] method:

​ hash = {​a: ​1, ​"b"​: 2, ​c: ​3}

​ hash[​:a​] ​# => 1​

The value associated with the key is returned. Ruby uses eql? (or ==) to
determine the key. Symbol keys aren’t matched by string values (although
you may see this in Ruby on Rails, which has a popular extension to allow
string and symbol keys to overlap).

If there’s no matching key and the hash has a default value, Ruby will
return the default. If there’s no matching key and the hash has a default
block, Ruby will invoke the block and return the resulting value. If the hash
has no defaults, Ruby will return nil.

Ruby does have a way to retrieve values with different semantics. The
Hash#fetch(key, default_value = nil) [{ |key| block }] method takes a key and an
optional default. The default is either a second positional argument or a
block that takes a single argument, the key. If fetch is called with a key that
isn’t in the hash, it returns the default. If there’s no default, fetch raises a
KeyError.

So, we could write our earlier example using fetch like this:

​ sample = {}

​ sample[​:a​] = sample.​fetch​(​:a​, []) << ​"alpha"​

​ sample[​:b​] = sample.​fetch​(​:b​, []) << ​"beta"​

​ sample[​:a​] ​# => ["alpha"]​

​ sample[​:b​] ​# => ["beta"]​

You can change the default value with the setter method Hash#default=(value),
which takes any arbitrary value on the right side and makes it the new
default for missing keys. Similarly, the Hash#default_proc=(proc) method takes
a proc and makes it the new default. As with Hash.new the proc takes two
arguments, the receiving hash, and the key being sought. There are getters,
Hash#default and Hash#default_proc that return the current value of the
defaults.

If you want to retrieve values from multiple keys at the same time, the
Hash#values_at(*keys) method takes multiple keys and returns an array of the
values at those keys, in order, returning nil or the default value for keys that
don’t exist. The Hash#fetch_values(*keys) [{ |key| block }] method does the same
thing, except it takes a block that’s invoked for missing keys, and if there’s
no block, it raises a KeyError:

​ hash = {​a: ​1, ​b: ​2, ​c: ​3, ​d: ​4}

​ hash.​values_at​(​:b​, ​:g​, ​:d​) ​# => [2, nil, 4]​

​ hash.​fetch_values​(​:b​, ​:g​, ​:d​) { |key| key.​to_s​ } ​# => [2, "g", 4]​

Hashes also respond to Hash#dig(key, *identifiers) by looking up the first
argument in the hash and then sending to that result the message dig with
the remainder of the arguments, and so on until we run out of arguments.

If for some reason you want the key value pair, the Hash#assoc(key) method
takes a key and returns the matching key/value pair as a two-element array.

If you have the value and want the matching key, the Hash#key(value) method
returns the first key in the hash that has that value. The Hash#rassoc(value)

method gives you the entire key/value pair as an array (we’ll cover hash
ordering in ​Iterating Hashes​, and some boolean queries for hashes in ​
Querying a Hash​):

​ hash = {​a: ​1, ​b: ​2, ​c: ​3, ​d: ​4}

​ hash.​assoc​(​:b​) ​# => [:b, 2]​

​ hash.​key​(2) ​# => :b​

​ hash.​rassoc​(2) ​# => [:b, 2]​

Setting Values
You set a value in a hash using the Hash#[]= method, which is aliased as the
method Hash#store(key, value). When you call []=, if the key in the brackets
exists in the hash, the value associated with that key is updated. If the key

doesn’t exist in the hash, it’s added with the value, and it’s appended to the
end of the hash for ordering purposes.

To completely remove a key from the hash, the Hash#delete(key) [{ |key| block

}] method takes the key. If the key is in the hash, it removes the key and
returns the associated value, otherwise it returns nil. An optional block is
called with the key if the key isn’t in the hash, and that value is returned:

​ hash = {​a: ​1, ​b: ​2, ​c: ​3, ​d: ​4}

​ hash[​:b​] = 700

​ hash[​:e​] = 5

​ hash.​delete​(​:c​) ​# => 3​

​ hash ​# => {:a=>1, :b=>700, :d=>4, :e=>5}​

A related method, Hash#delete_if [{ |key, value| block }], takes a block with a key
and a value and removes every element from the hash for which the block
returns true:

​ hash = {​a: ​1, ​b: ​2, ​c: ​3, ​d: ​4}

​ hash.​delete_if​ { |key, value| value.​even?​ } ​# => {:a=>1, :c=>3}​

​ hash ​# => {:a=>1, :c=>3}​

If you want to combine two or more hashes, the Hash#merge(*other_hashes)

[{key, old_value, new_value}] method is likely what you want. merge takes one
or more hashes as arguments and an optional block. It returns a new hash,
starting with the original receiving hash, and adds each key value pair from
the arguments one by one. If it encounters a key that already exists in the
hash and there’s no block argument, the new value overwrites the old. If
there’s a block argument, then the block takes three arguments—the key, the
existing value, and the new value—and the result of the block is added to
the hash.

The Hash#merge!(*other_hashes) [{key, old_value, new_value}] (also aliased as
update) behaves the same except that it changes the receiving hash in place,
and also returns that hash:

​ hash_1 = {​a: ​1, ​b: ​2, ​c: ​3}

​ hash_2 = {​c: ​5, ​d: ​4, ​e: ​6}

​ hash_1.​merge​(hash_2) ​# => {:a=>1, :b=>2,
:c=>5,​

​ ​# .. :d=>4, :e=>6}​

​ hash_1.​merge​(hash_2) { |key, old, new| old + new } ​# => {:a=>1, :b=>2,
:c=>8,​

​ ​# .. :d=>4, :e=>6}​

Querying a Hash
There are several ways to query a hash for information. The Hash#length

method, aliased as size, returns the number of key/value pairs in the hash.
The Hash#empty? method returns true if there are no key/value pairs in the
hash.

If you want to find out if a particular key is in the hash, you’d use Hash#key?

(key), which is aliased as has_key?, include?, or member?, but key? is the most
common. It takes one argument and returns true if that argument is in the
list of keys.

Going the other way, if you want to know whether a hash has a particular
value no matter what the key, you’d use the Hash#value?(value) method,
aliased as has_value?.

Hashes also have a separate version of Hash#any?(key_value-array) [{ |key, value|

block }]. The version that doesn’t take a block, takes a two-element array
(that is, a key and a value) and returns true if that key value pair is in the
hash.

Iterating Hashes
When iterating over hashes in Ruby, it’s important to remember that the
order of the hash is consistent and based on the order in which the
key/value pairs were added to the hash. So, the first element to be added

will be first any time you iterate over the hash using any of the hash
iteration methods, the second element added will be second, and so on.

Hashes implement Hash#each [{ |key, value| block }] slightly differently than
arrays in that the block argument to each takes as an argument a two-
element array: the key and the value. As the method signature shows, you
can dereference the array to have it look like two arguments are being
passed to the block. Then the block is called on each key/value pair in turn.
This method is also aliased as Hash#each_pair.

You can iterate with one-argument blocks using Hash#each_key [{ |key| block }],
which iterates over all the keys in order, or Hash#each_value [{ |value| block}],
which iterates over all the values in order. Or you can just get an array of all
the keys in order with Hash#keys or all the values in order with Hash#values.

Hashes respond to the same select and reject methods as other classes that
include Enumerable, but as with each, the block takes an array with two
elements: the key and the value. Also, the Hash version returns a new Hash.
Hashes also define select! and reject!, which modify the original argument in
place rather than returning a new hash.

Comparing Hashes
Two hashes are equal (Hash#==) if they have the same keys and the value at
each key is equal. The order of the keys doesn’t matter; it only matters that
the value matches.

Comparing two hashes is somewhat similar to comparing sets. The Hash

class defines Hash#< as true if the left side is a proper subset of the right,
meaning that every key/value pair on the left side must be on the right side,
and the right side has more pairs. The Hash#<= method is a regular subset
method, so the two hashes can be equal. The Hash#> and Hash#>= methods
work for proper superset and superset.

Hashes don’t implement their own implementation of <=>. Instead, they take
the parent class (Object) implementation. This appears to return true if the
hashes are equal and nil otherwise, which is to say that it’s probably not a
useful way to compare hashes.

Modifying Hashes
There are several methods that work to modify hashes. The Hash#clear

method removes all key/value pairs from the hash. The Hash#compact

method returns a new hash removing all pairs where the value is nil. The
Hash#compact! method has the same behavior but changes the original
argument in place.

Hashes also respond to Hash#shift, which removes and returns the first
key/value pair.

If you want a subset of a hash, you can use the Hash#slice(*keys) method,
which takes an arbitrary number of arguments and returns a new hash
containing only key/value pairs whose keys are in the list of arguments. The
inverse is Hash#except(*keys), which returns a new hash for all the key/value
pairs whose keys aren’t in the list of arguments.

Converting Hashes
Hashes can be converted or transformed in a variety of ways. The Hash#to_a

method converts a hash to an array of two-element [key, value] arrays. If you
want a single-dimensional array, you can use Hash#flatten(level = 1), which is
equivalent to hash.to_a.flatten(level). By default, Hash#flatten doesn’t
recursively flatten values that happen to be arrays—you can do that with an
optional argument that specifies how many levels of sub-array values are
flattened. The default is 1 level of array flattening, and a negative argument
flattens all values no matter how deeply nested they are.

The Hash#to_s method converts to a string, and the only reason to mention it
here is that the string uses key => value syntax no matter which syntax was
used to create the hash.

The Hash#invert method creates a new hash where all values are keys and all
keys are values. If values are shared across multiple keys, the keys that are
later in the hash sequence will replace the earlier keys.

A fun conversion is to_proc. The Hash#to_proc method returns a Proc that
takes arguments and uses those arguments as though they were keys to the
hash, returning the associated value. A side effect of the existence of to_proc

means that the same & trick that we often use for symbols can also be used
for hashes:

​ hash = {​a: ​1, ​b: ​2, ​c: ​3}

​ hash.​to_a​ ​# => [[:a, 1], [:b, 2], [:c, 3]]​

​ hash.​flatten​ ​# => [:a, 1, :b, 2, :c, 3]​

​ hash.​to_s​ ​# => "{:a=>1, :b=>2, :c=>3}"​

​ hash.​invert​ ​# => {1=>:a, 2=>:b, 3=>:c}​

​ hash_proc = hash.​to_proc​

​ hash_proc.​call​(​:a​) ​# => 1​

​ [​:a​, ​:b​, ​:c​].​map​(&hash) ​# => [1, 2, 3]​

The Hash#transform_keys(hash = nil) [{ |key| block}] and Hash#transform_values [{

|value| block }] methods are good alternatives to map if you only want to
change part of the hash. Each takes a block, and transform_keys returns a new
hash where each key/value pair has the same value as the original, but the
key is the result of the block. If the optional hash argument is passed, keys
are looked up there before trying the block. The transform_values method is
similar, but each resulting pair has the same key, and the value is the result
of the block. Both methods have ! forms, transform_keys! and
transform_values!, which modify the original hash in place rather than return
a new hash:

​ hash = {​a: ​1, ​b: ​2, ​c: ​3}

​ hash.​transform_keys​ { |key| key.​upcase​ } ​# => {:A=>1, :B=>2, :C=>3}​

​ hash.​transform_values​ { |value| value ** 3 } ​# => {:a=>1, :b=>8, :c=>27}​

Set
A Ruby Set is somewhere between an Array and a Hash—it’s a collection of
unique items. The Set class is a subclass of Object, and it defines each and
includes Enumerable, so all Enumerable methods described in this chapter
apply to sets. The elements of a Set are ordered the way that Hash keys are
ordered—they preserve the sequence in which the elements were added to
the Set. In other words, iterating over a set multiple times will always result
in the same ordering, but you can’t access arbitrary elements of the set via
an index.

To use Set in versions of Ruby before 3.2, you need to explicitly call require

"set".

Creating Sets
There are several ways to create a Set. The Enumerable class defines
Enumerable#to_set, which converts the collection into a set, removing
duplicates along the way. The Set class has a unique API, where
Set.new(enumerable = nil) [{ |element| block }] takes an Enumerable and converts it
to a set. If you have just a bunch of objects and you want to make a set out
of them, well the Set class implements []:

​ Set.​new​([1, 2, 3]) ​# => #<Set: {1, 2, 3}>​

​ Set[1, 2, 3] ​# => #<Set: {1, 2, 3}>​

If you pass a value to Set.new that isn’t an Enumerable, you’ll get an
ArgumentError. To be honest, it takes a little getting used to the second form.

Set elements are unique, and the unique value is based on Object#hash,
which under normal circumstances is the same as eql?. (It’s the same logic
that Hash uses for unique keys.) You can change that behavior for an

individual set with the compare_by_identity method, which changes the set to
compare elements based on their internal object ID.

Modifying Sets
You can add a single object to a Set with the Set#add(object) method, which
is also aliased as <<. If you want to add more than one item, you use
Set#merge(*enumerables), which takes one or more Enumerable objects as
arguments and adds their elements one by one to the Set. The Set#add?

(object) method takes one argument. If that argument isn’t in the set, the
argument is added and the set is returned. If the argument is already in the
set, nothing happens and the method returns nil. This is a deviation from the
idiomatic Ruby practice of returning literal true or false from a question
mark method.

To remove an object from a set, the Set#delete(object) method removes the
object from the set and returns the updated set. The similar method
Set#delete?(object) removes the object and returns the set if the object is in
the set, otherwise it does nothing and returns nil. If you want to remove
every element in an enumerable from the set, you use the subtract method.
This method is different from the arithmetic methods we’ll see in a bit
because it changes the set in place. The clear method empties the set
entirely.

For conditional deletion, sets define Set#delete_if { |object| block }, which takes
a block and deletes the items for which the block returns a truthy value, and
the inverse Set#keep_if { |object| block }, which takes a block and deletes the
items for which the block returns a falsey value. (Sets also define Set#select!

{ |object| block }, which is equivalent to keep_if, and Set#reject! { |object| block },
which is equivalent to delete_if, except that the bang methods return nil if the
set doesn’t change.)

Comparing Sets

Set comparison is a little bit different than comparisons of other enumerable
types. Two sets are Set#eql?(other) or Set#==(other) if they contain the same
elements and order doesn’t matter. A set is Set#===(other) to an object if the
object is in the set, making sets useful in case statements. The === operator is
aliased as both member? and include?. Sets also define Set#length as the
number of elements in the set, and Set#empty? as true if the set has 0
elements.

Sets implement Comparable and the Set#<=> operator, but the implementation
may not be quite what you’d expect. The <=> operator mimics the behavior
of eql?, meaning that it returns 0 if the two sets have the same elements. The
greater then/less than behavior is based only on the logical relationship
between the two sets, not the values of the elements. If the left set is a
proper subset of the right set, then <=> returns -1. If the right set is a proper
subset of the left set, then <=> returns 1. If the two sets don’t have a
subset/superset relationship, meaning that each set has elements that aren’t
in the other set, then <=> returns nil.

Basically, < is aliased as proper_subset? and <= is aliased as subset?, > is
proper_superset?, and >= is superset?. Sets also define Set#disjoint?(other_set),
which is true if the sets have no common element, and Set#intersect?(other),
which is true if the sets have at least one common element.

​ a = Set[1, 2, 3]

​ b = Set[3, 2, 1]

​ c = Set[2, 1]

​ d = Set[1, 2, 3, 4]

​ e = Set[2, 3, 4, 5]

​

​ a == b ​# => true​

​ b === 3 ​# => true​

​ b === ​"3"​ ​# => false​

​ c <=> b ​# => -1​

​ d <=> c ​# => 1​

​ d < c ​# => false​

​ d > c ​# => true​

​ d <=> e ​# => nil​

​ d.​disjoint?​(e) ​# => false​

​ d.​intersect?​(e) ​# => true​

Set Operations
Sets respond to arithmetic operators similar to the way arrays do:

Set union returns a new set containing all elements from either
operand, with no duplicates. The method is Set#union(other), and it’s
aliased as + and | .

Set intersection returns a new set containing all elements that are in
both operands. The method is Set#intersection(other), and it’s aliased as
& .

Set difference returns a new set with elements in the left operand that
aren’t in the right operand. The method is Set#difference(other), and it’s
aliased as - .

Set xor returns a new set containing all the elements that are in exactly
one of the two operands, and the operator is Set#^ .

You can split a set into subsets based on various criteria with the
Set#classify { |element| block } method, which takes a block and returns a
hash. The keys of the hash are unique values of the block and the value
of the hash is every element of the set that returns the same value.

​ require ​"set"​

​ d = Set[1, 2, 3, 4]

​ e = Set[2, 3, 4, 5]

​ d | e ​# => #<Set: {1, 2, 3, 4, 5}>​

​ d.​union​(e) ​# => #<Set: {1, 2, 3, 4, 5}>​

​ d & e ​# => #<Set: {2, 3, 4}>​

​ d.​intersection​(e) ​# => #<Set: {2, 3, 4}>​

​ d.​difference​(e) ​# => #<Set: {1}>​

​ d - e ​# => #<Set: {1}>​

​ d ^ e ​# => #<Set: {5, 1}>​

​ d.​classify​ { |x| x.​even?​ } ​# => {false=>#<Set: {1, 3}>, true=>#<Set: {2,
4}>}​

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 29

Library Reference: Input, Output,
Files, and Formats

In this chapter, we’ll take a closer look at Ruby’s input and output (I/O)
classes, including reading and writing from files, manipulating files, and
managing file formats. We’ll investigate their API and functionality in
somewhat more detail than we did in Part I of this book. The goal of this
chapter is to give you more information about what you can do with these
classes and also to discuss related functions together so that you can browse
and perhaps find a new feature that might help.

This isn’t intended to be a complete listing of every class, method, or
option. For that, please refer to the official Ruby documentation at
https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide
its complete name and signature. The notation Foo.bar indicates a class or
module method, while Foo#bar indicates an instance method. Optional
arguments are indicated with Ruby syntax and their default value, as in
Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with
brace syntax and an indication of what the arguments to the block will be,
as in Foo#bar { |object| block }. An optional block argument will be surrounded
by square brackets, Foo#bar [{block}]. Please note that this description syntax

https://docs.ruby-lang.org/

is slightly different than the official documentation, and that in some cases,
what the official documentation shows as multiple method signatures,
we’ve chosen to show as one signature with default values. Also, parameter
names sometimes differ from the official documentation to make the
naming clearer.

CSV
Comma-separated data files are often used to transfer tabular information,
especially for importing and exporting spreadsheet and database information.
Ruby’s current CSV library is based on James Edward Gray II’s FasterCSV
gem. The CSV object has possibly the best official documentation in the entire
Ruby library, and it goes beyond what’s discussed here.

Ruby’s CSV library deals with arrays (corresponding to the rows in the CSV
file) and strings (corresponding to the elements in a row). If an element in a
row is missing, it’ll be represented as nil in Ruby.

The generic CSV parsing method is CSV.parse(string_or_io, headers: nil, **options)

[{|row|}] and takes an optional block. The main argument is either a string or an
IO object and potentially a File, but not a filename. A string object is converted
to StringIO (see ​StringIO​).

If there is no block and no headers option, the CSV file is converted to an
array of arrays and returned. If there is a block and no headers option, the
block is called once with the data from each row parsed into an array.

If the headers option is set to an array of strings and there is no block, then the
method returns the data as a CSV::Table, which is a data structure that you can
treat as an array of arrays or an array of hashes. So, you can reference an item
by its header name or its position in the row. If the headers option is set to true,
then the header names will be inferred from the first row of the CSV data.
With a block, each row is converted to a CSV::Row object and passed to the
block.

The remaining options allow you to control the parsing, including row_sep,
col_sep, and quote_char.

Often you’ll have a filename for your object and won’t need to create a File

object. The method CSV.read(source, headers: nil, **options) opens the source

argument to create an IO object and passes it to CSV.parse in one step returning
an array of arrays or a CSV::Table. The method CSV.foreach(source, mode = "r",

**options) {block} takes a block and returns each row to the block as an array or
CSV::Row depending on whether the headers: option is set.

The files used in these examples are as follows:

sl_csv/csvfile.csv

​ 12,eggs,2.89,

​ 2,"shirt, blue",21.45,special

​ 1,"""Hello Kitty"" bag",13.99

sl_csv/csvfile_with_header.csv

​ Count,Description,Price

​ 12,eggs,2.89,

​ 2,"shirt, blue",21.45,special

​ 1,"""Hello Kitty"" bag",13.99

This example reads a file containing CSV data and processes it line by line:

sl_csv/sample_0.rb

​ require ​"csv"​

​ CSV.​foreach​(​"​​#{​__dir__​}​​/csvfile.csv"​) ​do​ |row|

​ qty = row[0].​to_i​

​ price = row[2].​to_f​

​ printf ​"%20s: $%5.2f %s​​\n​​"​, row[1], qty * price, row[3] || ​" ---"​

​ ​end​

Produces:

​ eggs: $34.68 ---

​ shirt, blue: $42.90 special

​ "Hello Kitty" bag: $13.99 ---

In this case, we process a CSV file that contains a header line. Notice that
CSV automatically converts fields that look like numbers:

http://media.pragprog.com/titles/ruby5/code/sl_csv/csvfile.csv
http://media.pragprog.com/titles/ruby5/code/sl_csv/csvfile_with_header.csv
http://media.pragprog.com/titles/ruby5/code/sl_csv/sample_0.rb

sl_csv/sample_1.rb

​ require ​"csv"​

​ total_cost = 0

​ CSV.​foreach​(

​ ​"​​#{​__dir__​}​​/csvfile_with_header.csv"​,

​ ​headers: ​​true​, ​converters: :numeric​

​) ​do​ |data|

​ total_cost += data[​"Count"​] * data[​"Price"​]

​ ​end​

​ puts ​"Total cost is ​​#{​total_cost​}​​"​

Produces:

​ Total cost is 91.57

You can write to a CSV file by creating a new CSV with CSV.new(string_or_io,

**options) or CSV.open(path, mode = "rb", options) [{ |csv| block }]. The open method
passes the new CSV object to a block. You can then add rows to the file by
passing an array to the CSV object with the << operator (aliased as the method
add_row).

This example writes CSV data to an existing open stream, standard out, using |
as the column separator:

sl_csv/sample_2.rb

​ require ​"csv"​

​ csv = CSV.​new​($stdout, ​col_sep: ​​"|"​)

​ csv << [1, ​"line 1"​, 27]

​ csv << [2, ​nil​, 123]

​ csv << [3, ​"|bar|"​, 32.5]

​ csv.​close​

Produces:

​ 1|line 1|27

​ 2||123

​ 3|"|bar|"|32.5

http://media.pragprog.com/titles/ruby5/code/sl_csv/sample_1.rb
http://media.pragprog.com/titles/ruby5/code/sl_csv/sample_2.rb

This example reads and writes from a CSV file being treated as a two-
dimensional table:

sl_csv/sample_3.rb

​ require ​"csv"​

​

​ table = CSV.​read​(

​ ​"​​#{​__dir__​}​​/csvfile_with_header.csv"​,

​ ​headers: ​​true​, ​header_converters: :symbol​

​)

​ puts ​"Row count = ​​#{​table.​count​​}​​"​

​ puts ​"First row = ​​#{​table[0].​fields​​}​​"​

​ puts ​"Count of eggs = ​​#{​table[0][​:count​]​}​​"​

​ table << [99, ​"red balloons"​, 1.23]

​ table[​:in_stock​] = [10, 5, 10, 10]

​ puts ​"​​\n​​After adding a row and a column, the new table is:"​

​ puts table

Produces:

​ Row count = 3

​ First row = ["12", "eggs", "2.89", nil]

​ Count of eggs = 12

​

​ After adding a row and a column, the new table is:

​ count,description,price,,in_stock

​ 12,eggs,2.89,,10

​ 2,"shirt, blue",21.45,special,5

​ 1,"""Hello Kitty"" bag",13.99,10

​ 99,red balloons,1.23,,10

http://media.pragprog.com/titles/ruby5/code/sl_csv/sample_3.rb

Dir
The Dir class is used to interact with directories in the file system. Like many
of Ruby’s file manipulation classes, it has both a lot of class methods and
instance methods, in some cases duplicating functionality.

You create a Dir instance with Dir.new(path), where the path is a string or
something that can be implicitly converted to a string because it implements
to_str (so Pathname objects can be used here). The path is relative to the current
system working directory. There’s an optional keyword argument, encoding:,
which specifies the encoding of the directory as you look at it.

Directories can technically be opened and closed in Ruby; when open, they
stream a list of their children files. The class method Dir.open(path) {|dir|} takes a
path and a block. It passes the new directory as an argument to the block and
closes the directory when the block has completed.

Directory instances implement each, yielding once for each file in the directory
(including the special files . and ..). They also include Enumerable, so all the
methods discussed in ​Enumerable​, can be used on Dir instances.

Dealing with Files
Most of what you want to do with directory objects in Ruby is search their
files. The most flexible and probably most common method for doing so in
Ruby is Dir.glob(pattern, *flags, base: nil, sort: true) [{block}]. The glob method takes
one required parameter: a pattern for matching files. It returns an array of files
in the current directory that match the pattern. The pattern can be a string or an
array of strings. If it’s an array, a file is returned if it matches any of the
elements of the array.

Optionally, glob can take a block argument, in which case, each matching
filename is passed to the block and the method returns nil.

There are three optional parameters to glob. The flags are a positional argument
that can affect the matching (see Table 30, ​File pattern match flags​, for a list).
An optional keyword argument, base:, allows you to change the directory to be
searched and pass it a string relative to the current directory. An optional sort:

keyword argument defaults to true; if false, the resulting matches aren’t sorted.

The pattern matching is what you normally use glob for. It’s not a regular
expression pattern, it’s closer to (but not identical to) the glob pattern used by
a Unix shell. Like a file glob, normal characters match themselves, and special
characters match specific patterns. The table shown describes the special
characters.

Table 27. Glob patterns

Pattern Meaning
* Any sequence of characters in a filename: * will match all files,

c* will match all files beginning with c, *c will match all files
ending with c, and *c* will match all files that have c in their
name.

** Matches zero or more directories (so **/fred matches a file
named fred in or below the current directory).

? Matches any one character in a filename.

[chars] Matches any one of the chars. If the first character in chars is ^,
it matches any character that’s not in the remaining set.

{patt,...} Matches one of the patterns specified between braces. These
patterns may contain other metacharacters.

\ Removes any special significance in the next character.

The glob method is also sort of aliased as []. The main difference is that the
square bracket method can take multiple partners, so Dir["*.x", "*.y"] is
equivalent to passing an array to glob: Dir.glob(["*.x", "*.y"]).

The directory used in the following examples contains two regular files
(config.json and pickaxe.rb), the parent directory (..), and the directory itself (.):

ref_io/dir.rb

​ Dir.​chdir​(​"testdir"​) ​# => 0​

​

​ Dir.​glob​(​"config.?"​) ​# => []​

​ Dir.​glob​(​"*.[a-z][a-z]"​) ​# => ["pickaxe.rb"]​

​ Dir.​glob​(​"*.[^r]*"​) ​# => ["config.json"]​

​ Dir.​glob​(​"*.{rb,json}"​) ​# => ["pickaxe.rb", "config.json"]​

​ Dir.​glob​(​"*"​) ​# => ["config.json", "pickaxe.rb"]​

​ Dir.​glob​(​%w[*.rb *.json]​) ​# => ["pickaxe.rb", "config.json"]​

​ Dir.​glob​(​"*"​, File::FNM_DOTMATCH) ​# => [".", "config.json", "pickaxe.rb"]​

​

​ Dir.​chdir​(​".."​) ​# => 0​

​ Dir.​glob​(​"code/**/fib*.rb"​) ​# => ["code/irb/fibonacci_sequence.rb",​

​ ​# .. "code/rdoc/fib_example.rb",​

​ ​# ..
"code/tut_containers/fibonacci_up_to.rb",​

​ ​# .. "code/tut_threads/fiber_word_count.rb"]​

​ Dir.​glob​(​"**/rdoc/fib*.rb"​) ​# => ["code/rdoc/fib_example.rb"]​

​

​ Dir[​"config.?"​] ​# => []​

​ Dir[​"*.json"​] ​# => ["data.json"]​

​ Dir[​"*.rb"​] ​# => []​

​ Dir[​"*.rb"​, ​"*.json"​] ​# => ["data.json"]​

There is no instance method equivalent for Dir.glob, but you could mostly
manage with Dir#filter.

If you just want a list of all the files in a directory, the class method
Dir.children(path) takes a path and returns an array of all the files in that
directory, excluding the . and .. special file markers. The Dir.entries(path)

http://media.pragprog.com/titles/ruby5/code/ref_io/dir.rb

method does the same thing, but includes the special file markers. The children

method is available on instances, but entries is not.

To iterate over a directory, the class method Dir.each_child(path) {block} takes a
block and executes the block once for each entry in the directory as returned
by children, so it’s effectively equivalent to Dir.children("foo").each. The iteration
method Dir.foreach(path) {block} does the same, but for the result of entries, so it’s
effectively Dir.entries("foo").each. Instances of dir also have Dir#each_child {block},
which skips the special dot file descriptors, and Dir#each {block}, which doesn’t.
Here’s an example:

ref_io/dir_2.rb

​ Dir.​children​(​"testdir"​) ​# => ["pickaxe.rb",​

​ ​# .. "config.json"]​

​ Dir.​entries​(​"testdir"​) ​# => [".", "..",​

​ ​# .. "pickaxe.rb",​

​ ​# .. "config.json"]​

​

​ result = []

​ Dir.​each_child​(​"testdir"​) { |name| result << name } ​# => nil​

​ result ​# => ["pickaxe.rb",​

​ ​# .. "config.json"]​

​

​ instance = Dir.​new​(​"testdir"​)

​ instance.​children​ ​# => ["pickaxe.rb",​

​ ​# .. "config.json"]​

​ instance_result = []

​ instance.​each​ { |name| instance_result << name } ​# => #<Dir:testdir>​

​ instance_result ​# => [".", "..",​

​ ​# .. "pickaxe.rb",​

​ ​# .. "config.json"]​

If the directory has no children, the class method Dir.empty? returns true; if the
directory has children, the method returns false.

You can also externally iterate over a directory with Dir#read. Here’s an
example:

http://media.pragprog.com/titles/ruby5/code/ref_io/dir_2.rb

ref_io/dir_3.rb

​ instance = Dir.​new​(​"testdir"​)

​ instance.​read​ ​# => "."​

​ instance.​read​ ​# => ".."​

Managing the File System with Dir
You can use the Ruby Dir class to manipulate the external environment.

The method Dir.exist?(pathname) returns true if the path already exists in the file
system, relative to where the Ruby code is executing.

The class method Dir.chdir(path) [{block}] takes a string and an optional block.
The no-block version of the method changes the current directory of the
process running the Ruby code. The block version changes the current
directory, runs the block, and then changes the directory back to its original
setting. The instance method chdir changes the directory of the process to the
directory represented by the instance. It only has a no-block form.

The directory can be deleted from the current system’s file structure with the
class method Dir.delete(path), which is also aliased as Dir.rmdir(path) and
Dir.unlink(path). (We’ll also see a FileUtils version.) The directory can be created
with the class method Dir.mkdir(path). There’s an optional second option, which
is an integer that sets the Unix permissions of the new directory. The method
raises SystemCallError if the directory can’t be created for some reason.

The method Dir.tmpdir returns the system’s temporary file path, and you can
create a temporary directory inside with Dir.mktmpdir(prefix_suffix = nil, *rest,

**options) [{ |dir| }]. This takes no required arguments and returns the path of the
temp directory. If it’s passed a block, the new directory is the argument to the
block, the block is executed, and the temporary directory is removed at the end
of the block.

The class methods Dir.pwd and Dir.getwd return the current process working
directory, and Dir.home(username = nil) returns the current home directory of the

http://media.pragprog.com/titles/ruby5/code/ref_io/dir_3.rb

given user (or the current user if no argument is given). Instances will return
their path with path—this will return the path as it was given to the
constructor; it won’t normalize the pathname in any way.

File
The File class in Ruby does two things. First, it’s a subclass of IO, meaning it
handles reading data from and writing data to files. Second, it adds a number
of methods for manipulating files as objects, similar to the Dir class. Since the
reading and writing behavior is mostly managed by methods defined in IO,
we’ll discuss it when we look at IO in ​IO​. Here, we’ll look at file-specific
manipulations.

Most File manipulation methods are class methods, while most of the
read/write methods are instance methods.

Opening a File
You create a File instance with File.new(filename, mode = "r", permissions = 0666,

*options) or File.open(filename, mode = "r", permissions = 0666, *options) [{block}].
(Note that this doesn’t necessarily create the file in the underlying system.)

Both File.new and File.open take the same arguments: a filename, an optional
mode (which defaults to r), an optional Unix permission (which defaults to
0666), and some keyword options.

Both methods open the file named by filename according to mode (the default is
"r") and return a new File object. The mode string contains information about
the way the file is to be opened and optionally on the encodings to be
associated with the file data. Mode strings have the form "file-mode[:external-

encoding[:internal-encoding]]". The file-mode portion is one of the options listed in
the following table. The two encodings are the names (or aliases) of encodings
supported by your interpreter. See ​Encoding​, for more information about
encodings.

Table 28. Mode values

String Description
r Read-only, starts at beginning of file (default mode).

r+ Read/write, starts at beginning of file.

w Write-only, truncates an existing file to zero length or creates a
new file for writing.

w+ Read/write, truncates an existing file to zero length or creates a
new file for reading and writing.

a Write-only, starts at end of file if file exists; otherwise, creates a
new file for writing.

a+ Read/write, starts at end of file if file exists; otherwise, creates a
new file for reading and writing.

b Binary file mode (may appear with any of the key letters listed
earlier). [1.9] As of Ruby 1.9, this modifier should be supplied on all
ports opened in binary mode (on Unix as well as on
DOS/Windows). To read a file in binary mode and receive the data
as a stream of bytes, use the modestring "rb:ascii-8bit".

The new method returns a File instance that you can then read or write from.
The file remains open until close is called on the instance.

The open method takes a block and passes the new file instance to the block.
Inside the block, you can read, write, or manage the file however you want.
The file is automatically closed at the end of the block.

The read and write methods that you would use with a File are methods of the
parent class IO, and are discussed in ​IO​.

The options argument takes any of the following keyword options listed in the
following table:

Table 29. File and I/O open options

Option Description
autoclose: If false, the underlying file will not be closed when this

I/O object is finalized.

binmode: Opens the I/O object in binary mode if true (same as
mode: "b").

encoding: Specifies both external and internal encodings as
"external:internal" (same format used in mode parameter.

external_encoding: Specifies the external encoding.

flags Specifies file open flags. If mode: is also used, the two
values are combined using bitwise OR.

internal_encoding: Specifies the internal encoding.

mode: Specifies what would have been the mode parameter.
For example, File.open("xx", "r:utf-8") is the same as
File.open("xx", mode: "r:utf-8").

path: A string value is used in inspect and as a getter method
called path.

textmode: Opens the file in text mode (the default).

In addition, the options parameter can use these key/value pairs to control
encoding. The encoding pairs are also the same as used in String#encode. See
Table 22, ​Options to encode and encode!​.

If you want to change the operating system mode of the file, you can use
either a class method or an instance method to do so, called
File.chmod(mode_integer, *filenames) or File#chmod(mode_integer). The class
version takes the new mode as an integer (usually an octal integer, such as
0644) and one or more filenames (relative to where the Ruby program started)
as the remaining arguments. The instance method just takes the mode integer
as an argument. In both cases, the underlying system is invoked to change the
file’s execution mode.

Similarly, you can change the owner of a file with the class method
File.chown(owner_int, group_int, *file_names) or the instance method
File#chown(owner_int, group_int). The arguments to the class method chown are
the integer ID of the new owner, the integer ID of the new group, and a list of
filenames. The instance method, because it’s already attached to a file, takes
just the owner and group IDs.

You can delete one or more files with File.delete(*filenames) (aliased as unlink),
which takes a series of filenames and deletes them from the underlying file
system.

You can create a symlink in the underlying operating system with
File.symlink(old_name, new_name). If the underlying operating system doesn’t
have symbolic links, you get a NotImplementedError.

Filenames
The File class has methods that allow you to separate a filename into
component parts. These are all class methods of File. But, if you’re doing more
complicated name logic on a file, you should check out the Pathname class,
which provides a lot more functionality. (See ​Pathname​, for more.)

The File.basename(file_name, suffix = nil) method returns what you would casually
call the “filename.” It’s the last component of the entire path plus the
extension. An optional second argument is a suffix. If the argument is used and
it matches the end of the filename, the suffix is removed from the result—the
suffix doesn’t need to be the same length as the extension, only to match the
end of the string. The special value .* matches any extension.

The File.dirname(file_name, level = 1) method returns everything in the filename
that isn’t the basename—that’s the directory names in the path. An optional
second argument is a level, signifying the number of subdirectory names from
the end of the file to be left off. The default is 1, which causes the filename to
be left off. Using 0 returns the entire path name.

In both cases, the separators between components are the constants
File::SEPARATOR and File::ALT_SEPARATOR, which are operating system–
dependent. (Not all systems will have an alternate separator.)

The File.extname(file_name) method returns just the extension part of the
filename, dot included. If there are multiple extensions (like .rb.old), only the
last one is returned. If the filename starts with a dot (like .gitignore), the
filename isn’t considered an extension; you need to have another dot (like
.my.zsh). If the filename ends with just a dot for some reason, you get a dot on
Windows platforms and an empty string on non-Windows platforms.

All these filenames are just doing string manipulation. They aren’t dependent
on the filename being manipulated actually existing in the file system:

ref_io/filenames.rb

​ File.​basename​(​"/usr/pickaxe/ruby/code.rb"​) ​# => "code.rb"​

​ File.​basename​(​"/usr/pickaxe/ruby/code.rb"​, ​".rb"​) ​# => "code"​

​ File.​basename​(​"/usr/pickaxe/ruby/code.rb"​, ​"e.rb"​) ​# => "cod"​

​ File.​basename​(​"/usr/pickaxe/ruby/code.rb"​, ​".*"​) ​# => "code"​

​

​ File.​dirname​(​"/usr/pickaxe/ruby/code.rb"​) ​# => "/usr/pickaxe/ruby"​

​ File.​dirname​(​"/usr/pickaxe/ruby/code.rb"​, 2) ​# => "/usr/pickaxe"​

http://media.pragprog.com/titles/ruby5/code/ref_io/filenames.rb

​ File.​dirname​(​"/usr/pickaxe/ruby/code.rb"​, 3) ​# => "/usr"​

​

​ File.​extname​(​"/usr/pickaxe/ruby/code.rb"​) ​# => ".rb"​

To go the other way, if you have a series of path names and you want an entire
string, the File.join(*partial_path) method connects the path names using /. Note
that join will use the forward slash no matter what operating system you’re on
and this will work just fine even on Windows systems. Some people find join

more readable than string interpolation when you’re building a filename
dynamically:

​ File.​join​(​"usr"​, ​"pickaxe"​, ​"ruby"​, ​"code.rb"​) ​# => "usr/pickaxe/ruby/code.rb"​

Paths
The File class can also do some manipulation based on the entire path name of
the file.

The class method File.absolute_path(file_name, directory_string = nil) method takes a
presumably partial filename and returns the absolute path. By default, the
filename is assumed to be relative to the current working directory, but an
optional second argument can be used as the base point. The related method
File.absolute_path?(file_name) returns true if the argument is an absolute path.

The method File.expand_path(file_name, directory_string = nil) does the same as
absoulute_path except when the filename argument starts with a tilde ~, such as
~noel, which would indicate a home directory in a Unix system. In the tilde
case, expand_path expands the ~ using the Unix HOME environment variable,
whereas absolute_path just treats that as a regular directory that happens to start
with a tilde.

The File.path(path) method will return the argument converted to a string, which
is only interesting if the argument isn’t a string (for example, it’s a Pathname or
something).

The File.realpath(pathname, directory_string = nil) and File.realdirpath(pathname,

directory_string = nil) will return the absolute pathname—realpath will throw an
error if the file doesn’t exist, while realdirpath will allow the last component of
the path to not exist, but any other component of the path name must exist.

In other words, given a fictional filename nope.rb, the absolute_path and
expand_path methods will happily give you a full path to the nonexistent file,
but realpath will throw an error. The realdirpath will work fine, but if the
argument adds a fictional subdirectory, like File.realdirpath("fake/nope.rb") then
that method will also throw an error.

The method File.identical?(file_one, file_two) takes two different path names or
I/O objects and returns true if they point to the same file.

Times
Files have a lot of time-based stats associated with them. All of these methods
are available as class methods or instance methods:

File.atime(file_name), File#atime: The time the file was last accessed.

File.birthtime(file_name), File#birthtime: The time the file was created.

File.ctime(file_name), File#ctime: The time the file or the directory was last
changed (on Windows this returns the creation time).

File.mtime(file_name), File#mtime: The time the file was last modified.

The class method File.stat(file_name) or instance method File#stat returns an
instance of a class called File::Stat. The File::Stat instance also has instance
methods for all those time attributes, as well as several other attributes such as
size. It’s also worth mentioning that File::Stat defines <=> based on the
modification time of the file, so it can be used to sort files based on most
recently changed.

Booleans
The File class has a lot of boolean predicate methods. These are all class
methods:

File.exist?(file_name) returns true if the filename argument is or resolves to
a path that actually exists in the underlying file system.

File.directory?(file_name) returns true if the argument is or resolves to the
path of a directory or a symbolic link to a directory. If the path isn’t a
directory or doesn’t exist, it returns false.

File.file?(file_name) returns true if the argument is or resolves to the path of
a file or symbolic link to an existing file. If the path doesn’t exist or isn’t
a file, it returns false.

File.symlink?(file_name) returns true if the file path points to an existing
symbolic link in the underlying operating system.

File.executable?(file_name) returns true if the effective user has permission
to execute the file named in the argument. File.executable_real?(file_name) is
the same, but for the real user. Note that Windows systems don’t use
permissions to determine whether a file is executable.

Similarly, File.readable?(file_name), File.readable_real?(file_name),
File.world_readable?(file_name), File.writeable?(file_name), File.writeable_real?

(file_name), and File.world_writable?(file_name) all return true if the file exists
and the permission described by the name of the method is available. The
method File.owned?(file_name) returns true if the file exists and is owned by
the user ID of the calling process.

The size of a file is available via the class method File.size and the instance
method size. The boolean class method File.empty? aliased as zero? returns true
if the file exists and has zero size.

The class method File.fnmatch?(pattner, path, *flags) (aliased as fnmatch) takes a
pattern, a path, and optional flags. The pattern is a glob pattern using the rules
we’ve seen in Table 27, ​Glob patterns​. The path is the filename being
matched, and the optional flags control the pattern matching and are listed in
the following table.

Table 30. File pattern match flags

File::FNM_EXTGLOB Expand braces in the pattern.

File::FNM_NOESCAPE A backslash doesn’t escape special characters in
globs, and a backslash in the pattern must match a
backslash in the filename.

File::FNM_PATHNAME Forward slashes in the filename are treated as
separating parts of a path and so must be explicitly
matched in the pattern.

File::FNM_DOTMATCH If this option isn’t specified, filenames containing
leading periods must be matched by an explicit
period in the pattern. A leading period is one at the
start of the filename or (if FNM_PATHNAME is
specified) following a slash.

File::FNM_CASEFOLD Filename matches are case insensitive.

FileUtils
In addition to the functionality in File, Ruby has an entire module called
FileUtils that defines many module level methods that are basically wrappers
around operating system features or Dir and File features.

To use these methods, you need to use require "fileutils". All the methods here
are defined as module methods and as instance methods, though you would
typically use them as module methods, as in FileUtils.mkdir.

Methods in FileUtils that take paths expect either a string, an object with a
to_path method, or an object with a to_str method. Methods in FileUtils that
are described as working recursively can take directories as arguments and
act on all files in the directory.

Let’s take a quick tour of the FileUtils.

Common Arguments
Several methods in FileUtils have arguments that mean the same thing.
Rather than describe what the arguments mean in each method that uses
them, we’re just defining them here. These descriptions are valid for any
method that has an argument matching any of these names:

dereference_root, if true, allows the source argument to be a symbolic
link.

force controls how the method behaves if it has to override existing file
system behavior. If force is true, then the method’s change carries. If
force isn’t true, then typically an exception is raised.

noop, if true, causes the method to actually not do anything, which is
useful in testing. For example, you can test with verbose: true, noop: true

and see what the command is doing without modifying the file system.
preserve, if true, preserves the timestamp of a file when moving or
changing it.

remove_destination, if true, removes the destination argument before
executing a move or copy.

secure for file removal, if true, securely removes a file by ensuring that
permissions don’t change during the removal process (see the official
Ruby documentation for more information).

verbose, if true, outputs more information to standard out.

Directory Management

FileUtils.mkdir(list, mode: nil, noop: nil, verbose: nil) creates a new entry for
every path in list. If mode isn’t nil, it sets permissions on each new
directory. If multiple subdirectories need to be created or if the
directory already exists, it raises an error.

FileUtils.mkdir_p(list, mode: nil, noop: nil, verbose: nil) is the same, but if
elements in the list require multiple subdirectories to be created, it’ll
create all the subdirectories. It’s aliased as FileUtils.makedirs and
FileUtils.mkpath.

FileUtils.remove_dir(path, force = false) removes the directory entry at path
recursively.

FileUtils.rmdir(list, parents: nil, noop: nil, verbose: nil) removes all directories
in list. If parents is true, it’ll remove parent directories that are made
empty by the removal.

File Management

FileUtils.copy(source, destination, preserve: nil, noop: nil, verbose: nil) copies
the file at source to destination if both the source and the destination are
files. If the source is a file and the destination is a directory, it copies
the source to destination/source. If destination is a directory, source can be
a list of files, in which case all are copied to the destination. It throws
an exception if source is a directory. Aliased as FileUtils.cp. The related
method FileUtils.copy_file(source, destination, preserve = false, dereference =

false) allows the source to be a symbolic link if dereference is true.

FileUtils.cp_r(source, destination, preserve: nil, noop: nil, verbose: nil,

dereference_root: nil, remove_destination: nil) is the recursive version of
copy, meaning that source can be a directory, in which case the entries
in source are recursively copied to destination. FileUtils.copy_entry(source,

destination, preserve = false, dereference_root.= false, remove_destination =

false) behaves similarly but with a slightly different argument pattern.
FileUtils.cp_lr behaves similarly but creates a Unix hard link rather than
a copy using FileUtils.link_entry.

FileUtils.install(source, destination, mode: nil, owner: nil, group: nil, preserve: nil,

noop: nil, verbose: nil) behaves like copy but allows you to set the
permissions and ownership on the destination file. It overwrites the
destination if it already exists.

FileUtils.copy_stream(source, destination) copies the source stream to the
destination.

FileUtils.mv(source, destination, force: nil, noop: nil, verbose: nil, secure: nil)

moves the file at the source path to the destination path if both paths
are files. If the destination is a directory, the source is one or more
paths and they are all moved to destination/source. Aliased as
FileUtils.move.

FileUtils.rm(list, force: nil, noop: nil, verbose: nil) removes all the files in the
list. Aliased as FileUtils.remove. Also FileUtils.remove_file(path, force = false)

and remove_entry_secure(path, force = false), which is used by mv when
secure is true. FileUtils.rm_f(list, noop: nil, verbose: nil) is like rm but with
force: true.

FileUtils.rm_r(list, force: nil, noop: nil, verbose: nil, secure: nil) is the recursive
version of rm, meaning that elements in the list can be directories.
FileUtils.rm_rf(list, noop: nil, verbose: nil) is the same but with force: true.

FileUtils.touch(list, noop: nil, verbose: nil, mtime: nil, nocreate: nil) touches each
file in the list, updating its modification time. If mtime is nil, it uses the
current time; otherwise, it uses the value of mtime. If nocreate is true, it
raises an exception if the path doesn’t exist.

FileUtils.uptodate?(new, old) returns true if the element at new is newer
than all the files in the list of paths in old.

Symbolic Links

FileUtils.ln(source, destination, force: nil, noop: nil, verbose: nil) creates a Unix
hard link at destination pointing to source if both source and destination
are files. If destination is a directory, it creates the link at
destination/source. If source is a list of paths, it creates links for all of
them in destination. Aliased as FileUtils.link.

FileUtils.link_entry(source, destination, dereference_root = false,

remove_destination = false) behaves as FileUtils.ln, but with different
arguments.

FileUtils.ln_s(source, destination, force: nil, relative: false, target_directory: true,

noop: nil, verbose: nil) creates a Unix symbolic link. As with other copy
methods, if both the source and destination are files, it creates the link

at destination pointing to source. If destination is a directory, it creates the
link at destination.source, and if source is a list, it creates links for all the
entries inside destination. If relative is true, the links are relative to the
destination. The target_directory argument appears to be unused.
Aliased as FileUtils.symlink. FileUtils.ln_sf is the same method but with
force: true, and FileUtils.ln_sr is the same method but with relative: true.

Changing Settings

FileUtils.cd(dir, verbose: nil) changes the current directory to dir. Aliased as
FileUtils.chdir.

FileUtils.chmod(permissions, list, noop: nil, verbose: nil) changes the
permissions of all paths to the new permissions. The permissions is an
integer Unix permission number or a string Unix permission string,
and the list is one or more paths. The method FileUtils.chmod_R does the
same thing but works recursively and has a force: argument.

FileUtils.chown(user, group, list, noop: nil, verbose: nil) changes the owner of
each path in list to the given user and group. If user or group is nil, the
path isn’t changed. FileUtils.chown_R is the recursive version, and also
takes a force: argument.

Queries

FileUtils.compare_file(a, b) returns true if the contents of the two files at a
and b are identical. Aliased as FileUtils.identical? and FileUtils.cmp. The
related method FileUtils.compare_streams(a, b) works on streams.

FileUtils.pwd or FileUtils.getwd return the current working directory.

IO
Class IO is the basis for all input and output in Ruby. An I/O stream may be
duplexed (that is, bidirectional) and so may use more than one native operating
system stream. Many of the examples in this section use class File, which is the
only standard subclass of IO. The two classes are closely associated.

As used in this section, portname may take any of the following forms:

A plain string represents a filename suitable for the underlying operating
system.

A string starting with | indicates a subprocess. The remainder of the string
following | is invoked as a process with appropriate input/output channels
connected to it.

A string equal to |- will create another Ruby instance as a subprocess.

The IO class uses the Unix abstraction of file descriptors (fds), which are small
integers that represent open files. Conventionally, standard input has an fd of
0, standard output has an fd of 1, and standard error has an fd of 2.

Ruby will convert path names between different operating system conventions
if possible. For instance, on Windows (non-WSDL) the filename
/gumby/ruby/test.rb will be opened as \gumby\ruby\test.rb. When specifying a
Windows-style filename in a double-quoted Ruby string, remember to escape
the backslashes, as in "c:\\gumby\\ruby\\test.rb".

Note that our examples here use the Unix-style forward slashes; to get the
platform-specific separator character, use File::SEPARATOR.

I/O ports may be opened in any one of several different modes, which are
shown in this section as mode. This mode string must be one of the values
listed in Table 28, ​Mode values​. The mode may also contain information on

the external and internal encoding of the data associated with the port. If an
external encoding is specified, Ruby assumes the data it received from the
operating system uses that encoding. If no internal encoding is given, strings
read from the port will have this encoding. If an internal encoding is given,
data will be transcoded from the external to the internal encoding, and strings
will have that encoding. The reverse happens on output.

Creating, Opening, and Closing Streams
You can create I/O streams with new or open. Unlike File objects, the first
argument to IO.new(fd, mode="r", **opts) or IO.open(fd, mode="r", **opts) is an
integer file descriptor, not the name of a file. Like the File methods, the second
argument is a mode string, defined in Table 28, ​Mode values​, followed by the
options defined in Table 29, ​File and I/O open options​ and Table 22, ​Options
to encode and encode!​. Like File, the open method takes a block, passes the
new IO object to the block, and opens the stream for the duration of the block.
The new method requires you to explicitly close the string with the close

method.

You can convert a filename or path to a file descriptor with File.sysopen(path,

mode = "r", permissions = 0666), which takes a filename, an optional mode string,
and an optional Unix permissions, and then opens the file and returns the
integer file descriptor. If the file doesn’t exist, it’s created if the mode is for
writing, or an error is thrown if the mode is for reading.

The method IO.pipe(external_encoding = nil, internal_encoding = nil, **options) [{

|read_io, write_io} block] creates a pair of pipe endpoints that are connected to
each other and returns them as a two-element array of IO objects as in [read_io,

write_io]. The write_io endpoint is automatically placed into sync mode. It’s not
available on all platforms.

Encodings for the pipes can be specified as a string ("external" or
"external:internal") or as two arguments specifying the external and internal
encoding names (or encoding objects). If both external and internal encodings

are present, keyword arguments specify conversion options (see Table 22, ​
Options to encode and encode!​).

The method takes an optional block, in which case the two I/O streams are
opened and sent to the block. The two streams are then closed at the end of the
block, and the method returns the return value of the block.

The IO class also allows you to run arbitrary command-line commands and
manage I/O via the method IO.popen(environment = {}, command, mode = "r", **opts)

with an optional block argument.

The popen method runs the specified command string as a subprocess. In the
non-block version of the method, the subprocess’s standard input and output
will be connected to the returned IO object.

The parameter command may be a string or an array of strings. In the latter
case, the array is used as the argv parameter for the new process, and no
special shell processing is performed on the strings. In addition, if the array
starts with a hash, it’ll be used to set environment variables in the subprocess.
If it ends with a hash, the hash will be used to set execution options for the
subprocess.

See Kernel#spawn for more options. If command is a string, it’ll be subject to
shell expansion. If the command string starts with a minus sign (-) and the
operating system supports fork, then the current Ruby process is forked. The
default mode for the new file object is r, but mode may be set to any of the
modes listed in Table 28, ​Mode values​.

If a block is given, Ruby will run the command as a child connected to Ruby
with a pipe. Ruby’s end of the pipe will be passed as a parameter to the block.
In this case, popen returns the value of the block.

If a block is given with a command of just "-", the block will be run in two
separate processes: once in the parent and once in a child. The parent process
will be passed the pipe object as a parameter to the block, the child version of

the block will be passed nil, and the child’s standard in and standard out will be
connected to the parent through the pipe. It’s not available on all platforms.
Here’s an example:

ref_io/io_popen.rb

​ pipe = IO.​popen​(​"uname"​)

​ p(pipe.​readlines​)

​ puts ​"Parent is ​​#{​Process.​pid​​}​​"​

​ IO.​popen​(​"date"​) { |pipe| puts pipe.​gets​ }

​ IO.​popen​(​"-"​) { |pipe| $stderr.​puts​(​"​​#{​Process.​pid​​}​​ is here, pipe=​​#{​pipe​}​​"​) }

​ Process.​waitall​

Produces:

​ ["Darwin\n"]

​ Parent is 43752

​ Thu Nov 2 17:16:42 CDT 2023

​ 43752 is here, pipe=#<IO:0x0000000100528f40>

​ 43767 is here, pipe=

Here’s a different example that merges standard error and standard output into
a single stream (note that buffering means that the error output comes back
ahead of the standard output):

ref_io/io_popen_2.rb

​ pipe = IO.​popen​([​"bc"​, {$stderr => $stdout}], ​"r+"​)

​ pipe.​puts​ ​"1 + 3; bad_function()"​

​ pipe.​close_write​

​ puts pipe.​readlines​

Produces:

​ Runtime error: undefined function: bad_function()

​ Function: (main)

​

​ 4

Reading and Writing Streams

http://media.pragprog.com/titles/ruby5/code/ref_io/io_popen.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/io_popen_2.rb

The IO class has read and write methods at both the class level and the instance
level.

Class Method Reading and Writing
You can read an entire I/O stream with the class method
IO.read(command_or_path, length = nil, offset = 0, **opts). If the first argument is a
path string, it reads the file at the path and returns the entire file as a string. If
the first argument starts with a pipe character (|), the argument is interpreted as
a command. In that case, the command is executed in a subprocess and
anything the command sends to standard output is returned as a single string.
If the length argument is set, then only that number of bytes are read starting at
the beginning of the string, unless offset is also set, in which case the reading
starts that many bytes into the string. The keyword options are the same file
opening and encoding options available for File.open (see ​Opening a File​).

The method IO.binread takes the same options but treats the result as a binary
string encoded with Ruby’s ASCII-8BIT binary encoding.

The method IO.readlines(command_or_path, separator = $/, limit = nil, **opts) takes
similar arguments plus an optional line separator and returns the string split
into lines. The default line separator is \n—the global Ruby line separator. In
this method, the limit argument is the maximum number of lines returned. The
keyword options are the same as those used in File.open. If the separator is nil,
no separation is performed. If the separator is an empty string, the separator is
a paragraph spacer, meaning two consecutive line separators.

You can write from a class method with IO.write, which has two forms:
IO.write(path, data, offset = 0, **opts) and IO.write(command, data, **opts). As with the
read method, a command is denoted because it starts with a pipe character (|).
The optional arguments are the same as for File.new.

By default, the path version replaces the contents of the file at path with the
data. If the offset argument isn’t zero, it starts writing the data an offset number

of bytes from the beginning, which results in the latter part of the file being
overwritten. If the offset is bigger than the file, Unicode null characters are
used as padding.

The command version executes the command in a shell and writes the data

argument to standard input. In both cases, the return value is the length of the
data string in bytes.

The binwrite command has the same arguments but opens the stream in binary
mode using Ruby’s ASCII-8BIT encoding.

Instance Method Reading and Writing
Once you have an instance (either by using IO.new or inside the block
argument to IO.open), you can read or write to that instance. These methods
also work on files.

To read from an I/O stream or file, the file must have been opened in a read
mode (see Table 28, ​Mode values​).

The most general method is IO#read(max_length = nil, out_string = nil). If the
max_length argument is nil, it reads all the remaining data in the stream.
Otherwise, you get the next max_length bytes of the stream, and the stream
remembers the position for the next read. If the out_string argument is
specified, that variable is also set to the same value that’s returned by the read

method.

The following read methods just return the next available thing in the stream.
These methods all raise EOFError if the stream is at the end:

IO#readbyte returns the integer of the next byte in the stream. The
IO#getbyte method is similar but returns nil at the end of the stream rather
than raise an error.

IO#readchar returns the next character in a text stream as a one-character
string. The IO#getc method is similar but returns nil at the end of the
stream rather than raise an error.

IO#readline(separator = $/, limit = 1, chomp: false), aliased as IO#gets, returns
the next line. If separator is specified, it uses that value as the separator
(including the special values of nil and empty string). If limit is specified,
that number is the maximum number of bytes returned in the line (not the
number of lines), and if chomp is true, the line separator is removed from
the return value. IO#readlines with the same arguments returns an array of
all remaining lines in the stream.

IO#readpartial(max_length, out_string = nil) returns the next max_length bytes
both as a return value and as the value of the variable passed in as
out_string. The encoding is binary ASCII-8BIT if out_string isn’t specified, or
the encoding of out_string if it’s. This method blocks only when the
stream is currently empty but not at the end of the stream. The related
method IO#read_nonblock takes the same options but is non-blocking.

IO#pread(max_length, offset = 0, out_string = nil) has similar behavior to
IO#readpartial but doesn’t move the read position of the stream. It reads
max_length bytes starting at the offset position of the string. This method is
thread-safe because it doesn’t change the read position of the stream. The
main instance method for writing to a stream that has been opened in
writing mode is IO#write(*objects), which takes an array of items that are
then converted to strings via the to_s method and written one by one to
the stream.

If you just want to write a single string, you can use the push operator << as in
stream << "write this!". This will also convert the argument using to_s.

The related method IO#print(*objects) also writes each object to the string but
separates the objects with the global field separator, which is in the global

variable $, or $OUTPUT_FIELD_SEPARATOR. After the last object, the method adds
the value of the global record separator, which is the global variable $/ or
$OUTPUT_RECORD_SEPARATOR. If there is no argument, it writes the value of the
global variable $_, which is the last variable assigned, as in the following
example:

​ File.​open​(​"foo.txt"​, ​"w+"​) ​do​ |f|

​ gets

​ f.​print​

​ ​end​

When you’re done reading or writing an instance, you call close to close the
stream. If you have been writing to the file, closing the file may be required to
flush the operating system’s I/O buffer and send any remaining data over the
stream.

The IO class also has a printf method that behaves the same as the Kernel#printf

method.

Iteration
I/O streams implement each and import Enumerable. The each method reads one
line at a time and passes it to the block argument. If no arguments are passed,
lines are delimited by the global line separator $/, which is usually \n. The each

method takes arguments similar to other line-based methods. You can pass a
separator as an argument to be used instead of $/. An integer argument limits
the number of bytes returned in each line, and a keyword argument chomp:

removes the line delimiter if it’s true. This method is aliased as each_line.

You can get similar behavior from the class method IO.foreach(command,

separator = $/, limit = nil, **options) [{ |line| block}], which takes an initial string
argument that’s either a path name or a command starting with the pipe
character. The remaining arguments are the same as for IO#each. The class
method, if called with a path, reads from that path and sends each line to the

block argument in turn. If called with a command, it executes that command
and passes each line of the resulting output to the block.

You can iterate over a stream at a different level with the instance methods
File#each_byte [{byte}], File#each_char [{char}], and File#each_codepoint [{codepoint}],
all of which pass one element at a time to their associated block.

External File Encodings
Playing around with encodings within a program is all very well, but in most
code, we’ll want to read data from and write data to external files. And often
that data will be in a particular encoding.

Ruby’s I/O objects support both encoding and transcoding of data. What does
this mean?

Every I/O object has an associated external encoding. This is the encoding of
the data being read from or written to the outside world. With a little bit of
magic that we’ll describe in ​Default External Encoding​, all Ruby programs
run with the concept of a default external encoding. This is the external
encoding that will be used by I/O objects unless you override it when you
create the object (for example, by opening a file).

Now, your program may want to operate internally in a different encoding. For
example, some of my files may be encoded with ISO-8859-1, but we want our
Ruby program to work internally using UTF-8. Ruby I/O objects manage this
by having an optional associated internal encoding. If set, then input will be
transcoded from the external to the internal encoding on read operations, and
output will be transcoded from internal to external encoding on write
operations.

Let’s start with the simple cases. On our MacOS box, the default external
encoding is UTF-8. If we don’t override it, all our file I/O will therefore also
be in UTF-8. We can query the external encoding of an I/O object using the
external_encoding method:

ref_io/encoding_simple.rb

​ f = File.​open​(​"/etc/passwd"​)

​ puts ​"File encoding is ​​#{​f.​external_encoding​​}​​"​

​ line = f.​gets​

​ puts ​"Data encoding is ​​#{​line.​encoding​​}​​"​

Produces:

​ File encoding is UTF-8

​ Data encoding is UTF-8

Notice that the data is tagged with a UTF-8 encoding even though it
(presumably) contains just 7-bit ASCII characters. Only literals in your Ruby
source files have the “change encoding if they contain 8-bit data” rule.

You can force the external encoding associated with an I/O object when you
open it—simply add the name of the encoding, preceded by a colon, to the
mode string. Note that this in no way changes the data that’s read; it simply
tags it with the encoding you specify:

ref_io/encoding_external.rb

​ f = File.​open​(​"/etc/passwd"​, ​"r:ascii"​)

​ puts ​"File encoding is ​​#{​f.​external_encoding​​}​​"​

​ line = f.​gets​

​ puts ​"Data encoding is ​​#{​line.​encoding​​}​​"​

Produces:

​ File encoding is US-ASCII

​ Data encoding is US-ASCII

You can force Ruby to transcode—change the encoding—of data it reads and
writes by putting two encoding names in the mode string, again with a colon
before each. For example, the file iso-8859-1.txt contains the word olé in ISO-
8859-1 encoding, so the e-acute (é) character is encoded by the single byte
\xe9. I can view this file’s contents in hex using the od command-line tool.
(Windows users can use the d command in debug to do the same.)

http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_simple.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_external.rb

​ 0000000 6f 6c e9 0a

​ 0000004

If we try to read it with our default external encoding of UTF-8, we’ll
encounter a problem:

ref_io/encoding_transcode_problem.rb

​ f = File.​open​(​"​​#{​__dir__​}​​/iso-8859-1.txt"​)

​ puts f.​external_encoding​.​name​

​ line = f.​gets​

​ puts line.​encoding​

​ puts line

Produces:

​ UTF-8

​ UTF-8

​ ol?

The problem is that the binary sequence for the e-acute isn’t the same in ISO-
8859-1 and UTF-8. Ruby just assumed the file contained UTF-8 characters,
tagging the string it read accordingly.

We can tell the program that the file contains ISO-8859-1:

ref_io/encoding_transcode_problem_2.rb

​ f = File.​open​(​"​​#{​__dir__​}​​/iso-8859-1.txt"​, ​"r:iso-8859-1"​)

​ puts f.​external_encoding​.​name​

​ line = f.​gets​

​ puts line.​encoding​

​ puts line

Produces:

​ ISO-8859-1

​ ISO-8859-1

​ ol?

This doesn’t help us much. The string is now tagged with the correct
encoding, but our operating system is still expecting UTF-8 output.

http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_transcode_problem.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_transcode_problem_2.rb

The solution is to map the ISO-8859-1 to UTF-8 on input:

ref_io/encoding_transcode.rb

​ f = File.​open​(​"​​#{​__dir__​}​​/iso-8859-1.txt"​, ​"r:iso-8859-1:utf-8"​)

​ puts f.​external_encoding​.​name​

​ line = f.​gets​

​ puts line.​encoding​

​ puts line

Produces:

​ ISO-8859-1

​ UTF-8

​ olé

If you specify two encoding names when opening an I/O object, the first is the
external encoding, and the second is the internal encoding. Data is transcoded
from the former to the latter on reading and the opposite way on writing.

Binary Files
If you want to open a file containing binary data in Ruby, you must now
specify the binary flag, which will automatically select the 8-bit clean ASCII-
8BIT encoding. To make things explicit, you can use “binary” as an alias for
the encoding:

ref_io/encoding_binary.rb

​ f = File.​open​(​"​​#{​__dir__​}​​/iso-8859-1.txt"​, ​"rb"​)

​ puts ​"Implicit encoding is ​​#{​f.​external_encoding​.​name​​}​​"​

​ f = File.​open​(​"​​#{​__dir__​}​​/iso-8859-1.txt"​, ​"rb:binary"​)

​ puts ​"Explicit encoding is ​​#{​f.​external_encoding​.​name​​}​​"​

​ line = f.​gets​

​ puts ​"String encoding is ​​#{​line.​encoding​.​name​​}​​"​

Produces:

​ Implicit encoding is ASCII-8BIT

​ Explicit encoding is ASCII-8BIT

​ String encoding is ASCII-8BIT

http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_transcode.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/encoding_binary.rb

Default External Encoding
If you look at the text files on your computer, chances are they all use the
same encoding, probably UTF-8. But whatever encoding you use, chances are
good that you’ll stick with it for the majority of your work. In fact, you
probably don’t think about it much.

On Unix-like boxes, including MacOS, you may find you have the LANG

environment variable set. These days MacOS has the value en_US.UTF-8 by
default, which says that we’re using the English language in the U.S. territory
and the default code set is UTF-8. On startup, Ruby looks for this environment
variable and, if present, sets the default external encoding from the last part of
this value.

If instead we were in Japan and the LANG variable were set to ja_JP.sjis, the
encoding would be set to Shift JIS. We can look at the default external
encoding by querying the Encoding class. While we’re at it, we’ll experiment
with different values in the LANG environment variable:

​ ​$ ​​echo​​ ​​$LANG​

​ en_US.UTF-8

​ ​$ ​​ruby​​ ​​-e​​ ​​'p Encoding.default_external.name'​

​ "UTF-8"

​ ​$ ​​LANG=ja_JP.sjis​​ ​​ruby​​ ​​-e​​ ​​'p Encoding.default_external.name'​

​ "Windows-31J"

​ ​$ ​​LANG=​​ ​​ruby​​ ​​-e​​ ​​'p Encoding.default_external.name'​

​ "US-ASCII"

The encoding set from the environment doesn’t affect the encoding that Ruby
uses for source files—it affects only the encoding of data read and written by
your programs.

Finally, you can use the -E command-line option (or the long-form --encoding)
to set the default external encoding of your I/O objects, as shown in the
following commands:

​ ​$ ​​ruby​​ ​​-E​​ ​​utf-8​​ ​​-e​​ ​​'p Encoding.default_external.name'​

​ "UTF-8"

​ ​$ ​​ruby​​ ​​-E​​ ​​sjis​​ ​​-e​​ ​​'p Encoding.default_external.name'​

​ "Windows-31J"

​ ​$ ​​ruby​​ ​​-E​​ ​​sjis:iso-8859-1​​ ​​-e​​ ​​'p Encoding.default_internal.name'​

​ "ISO-8859-1"

Encoding Compatibility
Before Ruby performs operations involving strings or regular expressions, it
first has to check that the operation makes sense. For example, it’s valid to
perform an equality test between two strings with different encodings, but it
isn’t valid to append one to the other. The basic steps in this checking are as
follows:

1. If the two objects have the same encoding, the operation is valid.

2. If the two objects each contain only 7-bit characters, the operation is
permitted regardless of the encodings.

3. If the encodings in the two objects are compatible (which we’ll discuss
next), the operation is permitted.

4. Otherwise, an exception is raised.

Let’s say you have a set of text files containing markup. In some of the files,
authors used the sequence &hellip; to represent an ellipsis. In other files,
which have UTF-8 encoding, authors used an actual ellipsis character (\u2026).
We want to convert both forms to three periods.

We can start off with a simplistic solution:

​ ​while​ (line = gets)

​ result = line.​gsub​(​/…/​, ​"..."​)

​ .​gsub​(​/\u2026/​, ​"..."​) ​# unicode ellipsis​

​ puts result

​ ​end​

In my environment, the content of files is by default assumed to be UTF-8.
Feed our code ASCII files and UTF-encoded files, and it works just fine. But

what happens when we feed it a file that contains ISO-8859-1 characters?

​ dots.​rb​:4​:in​ ​̀gsub': broken UTF-8 string (ArgumentError)​

Ruby tried to interpret the input text, which is ISO-8859-1 encoded, as UTF-8.
Because the byte sequences in the file aren’t valid UTF, it failed.

There are three solutions to this problem. The first is to say that it makes no
sense to feed files with both ISO-8859 and UTF-8 encoding to the same
program without somehow differentiating them. That’s perfectly true. This
approach means we’ll need some command-line options, liberal use of
force_encoding, and code to delegate the pattern matching to different sets of
patterns depending on the encoding of each file.

A second hack is to simply treat both the data and the program as ASCII-8BIT
and perform all the comparisons based on the underlying bytes. This isn’t
particularly reliable, but it might work in some circumstances.

The third solution is to choose a master encoding and transcode strings into it
before doing the matches. Ruby provides built-in support for this with the
default_internal encoding mechanism.

Default Internal Encoding
By default, Ruby performs no automatic transcoding when reading and writing
data. But two command-line options allow you to change this.

We’ve already seen the -E option, which sets the default encoding applied to
the content of external files. When you say -E _xxx_, the default external
encoding is set to _xxx_. But -E takes a second option. In the same way that you
can give open both external and internal encodings, you can also set a default
internal encoding using the option -E _external:internal_.

Thus, if all your files are written with ISO-8859-1 encoding, but you want
your program to have to deal with their content as if it were UTF-8, you can
use this:

​ ​$ ​​ruby​​ ​​-E​​ ​​iso-8859-1:utf-8​

You can specify just an internal encoding by omitting the external option but
leaving the colon:

​ ​$ ​​ruby​​ ​​-E​​ ​​:utf-8​

Because UTF-8 is probably the best of the available transcoding targets, Ruby
has the -U command-line option, which sets the internal encoding to UTF-8.

You can query the default internal encoding in your code with the
default_internal method. This returns nil if no default internal encoding has been
set.

One last note before we leave this section: if you compare two strings with
different encodings, Ruby doesn’t normalize them. Thus, "é" tagged with a
UTF-8 encoding will not compare equal to "é" tagged with ISO-8859-1
because the underlying bytes are different.

JSON
JSON[52] is a language-independent data interchange format based on
key/value pairs (hashes in Ruby) and sequences of values (arrays in Ruby).
JSON is frequently used to exchange data between JavaScript running in
browsers and server-based applications. JSON isn’t a general-purpose, object
marshaling format.

Ruby makes JSON methods available with require "json".

Parsing JSON
The general Ruby method for parsing JSON is JSON.parse(source, options = {}).
The source is a JSON string. The output is a Ruby object. If the JSON is an
object, you get a Ruby hash. If the JSON string is an array, you get a Ruby
array. If the JSON is a scalar, you get a Ruby object of the matching type, and
that’s true recursively of sub-objects as well. The commonly used option
symbolize_names: true ensures that the keys in the returned hash are symbols
rather than strings; other options are less commonly used.

If you have a filename, then JSON.load_file(path, options={}) is a shortcut for
JSON.parse(File.read(path), options). More generally, if you have a file or other
source for the JSON rather than the JSON data, you can save yourself a step
with JSON.load(source, proc = nil, options = {}). A value based on the source

argument is passed to parse. If source responds to to_str, then that value is
parsed. If source responds to to_io, then source.to_io.read is parsed. If the source
responds to open—meaning a file or a URI—then source.read is parsed.

Generating JSON
If you have a Ruby object and want to turn it into JSON, you can use the
default Ruby libraries. We note that there are many third-party alternatives
here that may provide you with more flexibility or an easier API.

The method JSON.generate(object, options = nil) converts the object into JSON.
The related method fast_generate does the same thing but doesn’t check for
circular references. The method pretty_generate returns a string that’s formatted
to be more human readable. Most objects in Ruby will have a to_json method
that does the same thing.

In all these cases, the resulting JSON string depends on the object:

If the object is a Hash, it creates a JSON object, recursively generating
JSON for all the keys and values.

If the object is an array, it creates a JSON array, again recursively
generating JSON for all the values.

A Ruby string is converted to a JSON string.

An integer or float results in a string representing the number.

Boolean or nil results in the corresponding JSON token: true, false, or null.

Any other object can have a custom representation by defining the
method to_json.

Note that many classes in Ruby have JSON extensions that must be explicitly
required. The file pattern is json/add/bigdecimal, and the available extensions are
for “bigdecimal”, “complex”, “date”, “date_time”, “exception”, “ostruct”,
“range”, “rational”, “regexp”, “set”, “struct”, “symbol”, and “time”.

This sample writes JSON data to a file:

ref_io/write_json.rb

​ require ​"json"​

​ data = {​name: ​​"dave"​, ​address: ​​%w[tx usa]​, ​age: ​17}

​ serialized = data.​to_json​

​ serialized ​# => {"name":"dave","address":["tx","usa"],"age":17}​

​ File.​open​(​"data.json"​, ​"w"​) { |f| f.​puts​ serialized }

http://media.pragprog.com/titles/ruby5/code/ref_io/write_json.rb

This sample reads the serialized data from the file and reconstitutes it:

ref_io/read_json.rb

​ require ​"json"​

​ data = JSON.​load_file​(​"data.json"​)

​ data ​# => {"name"=>"dave", "address"=>["tx", "usa"], "age"=>17}​

http://media.pragprog.com/titles/ruby5/code/ref_io/read_json.rb

Pathname
A Pathname represents the absolute or relative name of a file. It has two distinct
uses. First, it allows manipulation of the parts of a file path (extracting
components, building new paths, and so on). Second, it acts as a facade for
some methods in the Dir and File classes and the FileTest module, forwarding on
calls for the file named by the Pathname object.

The class Pathname is part of the Ruby Standard Library, meaning it ships with
Ruby but is only available to code that explicitly requires it using require
"pathname".

You create a pathname with Pathname.new(path), which takes a string argument.
The method Pathname.pwd returns the current working directory as a path, and
the method Pathname.glob is essentially a wrapper around Dir.glob.

Path instances have a limited ability to be treated like strings, files, I/O
streams, or directories. You can append to a pathname with + (the right
argument is converted to a Pathname before it’s added). The addition
argument is aliased as /, which might seem odd but lets you write something
like this (which looks a little like file manipulation):

ref_io/pathname_concat.rb

​ require ​"pathname"​

​ dir_name = Pathname.​new​(​"/usr/bin"​)

​ dir_name / ​"ruby"​ ​# => #<Pathname:/usr/bin/ruby>​

Most of the methods in Pathname are just wrappers around File, Dir, or IO.
(Check out the Ruby documentation for a complete list.) Here’s a sample:

ref_io/pathname_1.rb

​ require ​"pathname"​

​

​ p1 = Pathname.​new​(​"/usr/bin"​)

http://media.pragprog.com/titles/ruby5/code/ref_io/pathname_concat.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/pathname_1.rb

​ p2 = Pathname.​new​(​"ruby"​)

​ p3 = p1 + p2

​ p4 = p2 + p1

​ p3.​parent​ ​# => #<Pathname:/usr/bin>​

​ p3.​parent​.​parent​ ​# => #<Pathname:/usr>​

​ p1.​absolute?​ ​# => true​

​ p2.​absolute?​ ​# => false​

​ p3.​split​ ​# => [#<Pathname:/usr/bin>, #<Pathname:ruby>]​

ref_io/pathname_2.rb

​ require ​"pathname"​

​ p5 = Pathname.​new​(​"testdir"​)

​ puts p5.​realpath​

​ puts p5.​children​

Produces:

​ /Users/noel/projects/pragmatic/ruby5/Book/testdir

​ testdir/pickaxe.rb

​ testdir/config.json

ref_io/pathname_3.rb

​ require ​"pathname"​

​

​ p1 = Pathname.​new​(​"/usr/bin/ruby"​)

​ p1.​file?​ ​# => true​

​ p1.​directory?​ ​# => false​

​ p1.​executable?​ ​# => true​

​ p1.​size​ ​# => 167952​

​

​ p2 = Pathname.​new​(​"testfile"​) ​# => #<Pathname:testfile>​

​

​ p2.​read​ ​# => "This is line one\nThis is line two\nThis
is​

​ ​# .. line three\nAnd so on...\n"​

​ p2.​readlines​ ​# => ["This is line one\n", "This is line
two\n",​

​ ​# .. "This is line three\n", "And so on...\n"]​

http://media.pragprog.com/titles/ruby5/code/ref_io/pathname_2.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/pathname_3.rb

StringIO
In some ways, the distinction between strings and file contents is artificial: the
contents of a file are basically a string that happens to live on disk, not in
memory. The StringIO class, available by using require "stringio", aims to unify
the two concepts, making strings act as if they were opened IO objects. Once a
string is wrapped in a StringIO object, it can be read from and written to as if it
were an open file. This can make unit testing a lot easier.

The StringIO class isn’t a subclass of IO, it just implements many of the same
read/write methods. Using StringIO lets you pass strings into classes and
methods that were originally written to work with files. StringIO objects take
their encoding from the string you pass in—if no string is passed, the default
external encoding is used.

You create a StringIO with either the method StringIO.new(string = "", mode = "r+")

or the method StringIO.open(string = "", mode = "r+"). In both cases, the string
argument is the initial value of the StringIO and the mode still controls whether
you can read or write to the value the same way it does for files (see Table 28, ​
Mode values​). The open method takes a block and passes the new StringIO to
the block. The new method returns the new StringIO. You can then do most of
your file or I/O processing on the new object. Here’s an example:

ref_io/string_io.rb

​ require ​"stringio"​

​

​ sio = StringIO.​new​(​"time flies like an arrow"​)

​ sio.​read​(5) ​# => "time "​

​ sio.​read​(5) ​# => "flies"​

​ sio.​pos​ = 19

​ sio.​read​(5) ​# => "arrow"​

​ sio.​rewind​ ​# => 0​

​ sio.​write​(​"fruit"​) ​# => 5​

​ sio.​pos​ = 16

​ sio.​write​(​"a banana"​) ​# => 8​

http://media.pragprog.com/titles/ruby5/code/ref_io/string_io.rb

​ sio.​rewind​ ​# => 0​

​ sio.​read​ ​# => "fruitflies like a banana"​

And here’s an example of testing using a StringIO to test CSV processing:

ref_io/string_io_test.rb

​ require ​"stringio"​

​ require ​"csv"​

​ require ​"minitest/autorun"​

​

​ ​class​ TestCSV < Minitest::Test

​ ​def​ ​test_simple​

​ StringIO.​open​ ​do​ |op|

​ CSV(op) ​do​ |csv|

​ csv << [1, ​"line 1"​, 27]

​ csv << [2, ​nil​, 123]

​ ​end​

​ assert_equal(​"1,line 1,27​​\n​​2,,123​​\n​​"​, op.​string​)

​ ​end​

​ ​end​

​ ​end​

Produces:

​ Run options: --seed 40457

​ # Running:

​

​ .

​ Finished in 0.000287s, 3484.3209 runs/s, 3484.3209 assertions/s.

​

​ 1 runs, 1 assertions, 0 failures, 0 errors, 0 skips

http://media.pragprog.com/titles/ruby5/code/ref_io/string_io_test.rb

Tempfile
Class Tempfile creates managed temporary files. Although they behave the
same as any other IO objects, temporary files are automatically deleted when
the Ruby program terminates. Once a Tempfile object has been created, the
underlying file may be opened and closed a number of times in succession.

Tempfile doesn’t directly inherit from IO. Instead, it delegates calls to a File
object. From the programmer’s perspective, apart from the unusual new, open,
and close semantics, a Tempfile object behaves as if it were an IO object.

If you don’t specify a directory to hold temporary files when you create them,
the Dir.tmpdir location will be used to find a system-dependent location. Here’s
an example:

ref_io/tempfile.rb

​ require ​"tempfile"​

​ tf = Tempfile.​new​(​"afile"​)

​ tf.​path​ ​# =>
"/var/folders/lw/ybl1dt397hn5t38r2f70_bv00000gn/T/afile20231102-4​

​ ​# .. 3981-pxovuj"​

​ tf.​puts​(​"Cosi Fan Tutte"​)

​ tf.​close​

​ tf.​open​

​ tf.​gets​ ​# => "Cosi Fan Tutte\n"​

​ tf.​close​(​true​)

​ tf.​unlink​ ​# => nil​

If you create a Tempfile, it’s deleted when the application ends. But it’s useful
to explicitly close it with close and delete it with unlink, especially if you’re
creating a lot of Tempfile objects, so as not to take up extra space.

The method Tempfile.create takes a block, passes the tempfile to the block, and
closes and removes the file at the end of the block.

ref_io/tempfile_block.rb

http://media.pragprog.com/titles/ruby5/code/ref_io/tempfile.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/tempfile_block.rb

​ require ​"tempfile"​

​ Tempfile.​create​(​"afile"​) ​do​ |tf|

​ tf.​path​

​ tf.​puts​(​"Cosi Fan Tutte"​)

​ tf.​gets​

​ ​end​

URI
URI encapsulates the concept of a Uniform Resource Identifier (URI), a way of
specifying some kind of (potentially networked) resource. URIs are a superset
of URLs. URLs (such as the addresses of web pages) allow specification of
addresses by location, and URIs also allow specification by name. The URI

classes are available with require "uri".

The URI class can be used to do the following:

Parse URIs into component parts.
Open a stream to the network location referred to by the URI.
Manage encoding and decoding of strings to be safe for use in URLs.

URIs consist of a scheme (such as http, mailto, ftp, and so on), followed by
structured data identifying the resource within the scheme.

Parsing is managed with the method URI.parse(string), which takes in a string
URI and returns a parsed object in a subclass of a URI specific to the scheme.
The library explicitly supports the file, ftp, http, https, ldap, mailto, ws, and wss

schemes; others will be treated as generic URIs.

The class Net::HTTP accepts URI objects where a URL parameter is expected.

ref_io/uri.rb

​ require ​"uri"​

​

​ uri = URI.​parse​(​"http://pragprog.com:1234/mypage.cgi?q=ruby"​)

​ uri.​class​ ​# => URI::HTTP​

​ uri.​scheme​ ​# => "http"​

​ uri.​host​ ​# => "pragprog.com"​

​ uri.​port​ ​# => 1234​

​ uri.​path​ ​# => "/mypage.cgi"​

​ uri.​query​ ​# => "q=ruby"​

​

​ uri = URI.​parse​(​"mailto:ruby@pragprog.com?Subject=help&body=info"​)

http://media.pragprog.com/titles/ruby5/code/ref_io/uri.rb

​ uri.​class​ ​# => URI::MailTo​

​ uri.​scheme​ ​# => "mailto"​

​ uri.​to​ ​# => "ruby@pragprog.com"​

​ uri.​headers​ ​# => [["Subject", "help"], ["body", "info"]]​

​

​ uri = URI.​parse​(​"ftp://dave@anon.com:/pub/ruby;type=i"​)

​ uri.​class​ ​# => URI::FTP​

​ uri.​scheme​ ​# => "ftp"​

​ uri.​host​ ​# => "anon.com"​

​ uri.​port​ ​# => 21​

​ uri.​path​ ​# => "pub/ruby"​

​ uri.​typecode​ ​# => "i"​

The module also has convenience methods to escape and unescape URIs.

The method URI.open(uri, *args, &block) opens a generic URI. The first argument
is either an object that responds to open or a string that can be parsed by
URI.parse and converts to an object that responds to open—all URI subclasses
do. That object is sent an open message with any remaining args. The resulting
I/O stream is sent to the block and can be treated like any I/O stream. The
stream is then closed at the end of the block.

The module also has convenience methods to escape and unescape URIs.
There are three pairs of methods and they are similar.
URI.encode_www_form_component(string, encoding = nil) and
URI.decode_www_form_component(string, encoding = nil) convert a string to URL
formatting. Characters in the ranges "a".."z", "A".."Z", "0".."9" are preserved as-is,
along with the characters "*", ".", "-", and "_". Spaces are converted to +. All
other characters are converted to the format "%" followed by the ord value of
the character as a hexadecimal number. The resulting string is in UTF-8

encoding unless an encoding is specified. The decode_www_form_component

does the reverse: It takes an encoded string, puts the spaces back, and converts
the % back to regular characters.

The pair URI.encode_uri_component(string, encoding = nil) and
URI.decode_uri_component(string, encoding = nil) are exactly the same except that
spaces are converted to "%20".

The method URI.encode_www_form(enumerable, encoding = nil) converts a list of
items to a format that can be used as HTTP form data in a query string. In the
normal case, the enumerable is a hash, and each element is converted to a
string key=value. If the value is an array with multiple elements, each element
is matched to the key separately. The individual elements are joined by an
ampersand (&). Here’s an example:

ref_io/uri_encode_1.rb

​ require ​"uri"​

​ URI.​encode_www_form​({​first: ​​"not"​, ​homes: ​[​"earth"​, ​"other earth"​]}) ​# =>
"first​

​ ​# ..
=not&h​

​ ​# ..
omes=e​

​ ​# ..
arth&h​

​ ​# ..
omes=o​

​ ​# ..
ther+e​

​ ​# ..
arth"​

Alternatively, each element of the argument can be a two-element array[name,

value] and that element is converted into a string name=value:

ref_io/uri_encode_2.rb

​ require ​"uri"​

​ URI.​encode_www_form​([​%w[first jennifer]​, ​%w[last weaver]​]) ​# =>
"first=jennifer&​

​ ​# .. last=weaver"​

If the individual element is a one-element array or just a single element, that
name is used directly:

ref_io/uri_encode_3.rb

​ require ​"uri"​

http://media.pragprog.com/titles/ruby5/code/ref_io/uri_encode_1.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/uri_encode_2.rb
http://media.pragprog.com/titles/ruby5/code/ref_io/uri_encode_3.rb

​ URI.​encode_www_form​([​%w[first jennifer]​, [​"admin"​]]) ​# =>
"first=jennifer&admin"​

The associated method URI.decode_www_form(string, encoding = UTF-8, separator:

"&", use__charset_: false, isindex: false) takes a string and converts it back to the set
of key/value pairs:

ref_io/uri_decode.rb

​ require ​"uri"​

​ URI.​decode_www_form​(​"first=not&homes=earth&homes=other+earth"​) ​# => [["first",​

​ ​# .. "not"],​

​ ​# .. ["homes",​

​ ​# .. "earth"],​

​ ​# .. ["homes",​

​ ​# .. "other​

​ ​# .. earth"]]​

Similar encoding and decoding is provided by the CGI module. CGI.escape(string)

and CGI.escapeURIComponent(sting) encodes an arbitrary string using the same
rules as URI.encode_www_form_component and URI.encode_uri_component, while
CGI.escapeHTML(string) escapes the special HTML characters &, <, and >. The
encodings can be reversed with CGI.unescape, CGI.unescapeURIComponent, and
CGI.unescapeHTML.

http://media.pragprog.com/titles/ruby5/code/ref_io/uri_decode.rb

YAML
The YAML library, available with require "yaml", serializes and deserializes
Ruby object trees to and from an external, readable, plain-text format. YAML
can be used as a portable object marshaling scheme, allowing objects to be
passed in plain text between separate Ruby processes. In some cases, objects
may also be exchanged between Ruby programs and programs in other
languages that also have YAML support.

The YAML module in Ruby is an alias to Psych, which is the name of the YAML
parser being used. We mention this because it may be easier to find further
documentation searching for Psych rather than YAML.

Writing YAML
YAML can be used to store an object tree in a string. The API call is
YAML.dump(object, io = nil, options = {}). The object is the object being converted to
YAML. The io parameter is an optional IO argument, potentially a File or
StringIO. The options argument is a hash with the following keys:

:cannonical, default false. If true, prints a more verbose and formal YAML
structure.

:header, default false. If true, adds %YAML <version> at the top of the
document.

:indentation, default 2. The number of spaces used for line indentation.
Only values between 0 and 9 can be used.

:line_width, default 0. Maximum line width. If exceeded, the library will
split lines. The default of 0 is equivalent to 80.

If no io argument is provided, the resulting YAML is returned as a string. If an
io argument is provided, the IO object is returned. This code uses the io form to

write the YAML directly to an open file.

ref_io/yaml_store.rb

​ require ​"yaml"​

​ tree = {

​ ​name: ​​"ruby"​,

​ ​uses: ​​%w[scripting web testing etc]​

​ }

​

​ File.​open​(​"tree.yml"​, ​"w"​) { |f| YAML.​dump​(tree, f) }

The class Object defines Object#to_yaml(options = {}), which is a shortcut to
YAML.dump(self, options).

The similar method YAML.safe_dump(object, io = nil, options = {}) behaves almost
identically but limits the set of classes that can be dumped.

By default, the safe set of classes are: Array, Integer, FalseClass, Float, Hash,
NilClass, String, and TrueClass. You can add other classes to the safe list with the
option permitted_classes:. Any classes in that list will be added to the list of safe
classes, as in permitted_classes: [Symbol, Time]. If the data to be dumped contains
an instance of a class that isn’t in the safe list, a Psych::DisallowedClass exception
is thrown.

Reading YAML
The YAML module provides methods to read from a string or a file, and also for
safe and unsafe reading.

Loading involves two steps: parsing the YAML file and then converting
YAML data structures to Ruby objects. The most generic method is load,
which has a long method signature with keyword options: YAML.load(yaml,

permitted_classes: [Symbol], permitted_symbols: [], aliases: false, filename: false, fallback:

nil, symbolize_names: false, freeze: false, strict_integer: false). The return value is a
Ruby object loaded from the YAML data.

http://media.pragprog.com/titles/ruby5/code/ref_io/yaml_store.rb

The yaml is a string of YAML or an I/O object containing YAML. The various
keyword arguments, in alphabetical order, are the following:

aliases: If true, then YAML alias syntax is allowed. If false, and the
YAML contains aliases, a Psych::AliasesNotEnabled error is raised.

fallback: If the source yaml is empty, then the fallback value is returned.

filename: Not the source of the string, just used as a filename to report
errors if there is a parsing error.

freeze: If true, then freeze is called on the resulting Ruby object before it’s
returned.

permitted_classes: As with this option for dump, a list of classes that are
allowed to be loaded. The default list is the same as for dump plus load

adds Symbol to that list.

permitted_symbols: If this list isn’t empty, then any symbol that’s loaded is
compared against this list. If the symbol isn’t on the list, then a
Psych::DisallowedClass exception is thrown.

strict_integer: If true, the YAML parser uses a stricter definition of integer
when parsing.

symbolize_names: If true, any hash object in the YAML resolves to have
symbols as keys instead of strings.

If there’s a syntax error in the YAML, a Psych::SyntaxError exception is raised.

ref_io/yaml_read.rb

​ require ​"yaml"​

​ tree = YAML.​load_file​(​"tree.yml"​)

​ tree[​:uses​][1] ​# => "web"​

http://media.pragprog.com/titles/ruby5/code/ref_io/yaml_read.rb

There are a few variants of this method. YAML.load_file(filename, **kwargs) is a
convenience method that opens the file at filename, then calls YAML.load with
the open file as the yaml argument (the filename as the filename: argument), and
passes along any of the other keyword arguments. The method YAML.safe_load

has the exact arguments as YAML.load except that it doesn’t include Symbol as a
permitted class.

If you don’t want the safety of limiting classes (which, to be clear, is a
protection against malicious YAML documents), you can use
YAML.unsafe_load(yaml, filename: nil, fallback: false, symbolize_names: false, freeze:

false, strict_integer: false), where all the arguments have the same meaning as in
load and safe_load, but there are no type checks. There’s also
YAML.unsafe_load_file(filename, **kwargs), which has the same behavior as load_file

except for the lack of type checks.

Using YAML
The YAML format is also a convenient way to store configuration information
for programs. Because it’s readable, it can be maintained by hand using a
normal editor and then read as objects by programs. For example, a
configuration file may contain the following:

ref_io/config.yml

​ ​---​

​ username: ​dave​

​ prefs:

​ background: ​dark​

​ foreground: ​cyan​

​ timeout: ​30​

We can use this in a program:

ref_io/yaml_config.rb

​ require ​"yaml"​

​

​ config = YAML.​load_file​(​"​​#{​__dir__​}​​/config.yml"​)

http://media.pragprog.com/titles/ruby5/code/ref_io/config.yml
http://media.pragprog.com/titles/ruby5/code/ref_io/yaml_config.rb

[52]

​ puts config[​"username"​]

​ puts config[​"prefs"​][​"timeout"​] * 10

Produces:

​ dave

​ 300

Footnotes

https://www.json.org

Copyright © 2024, The Pragmatic Bookshelf.

https://www.json.org/

Chapter 30

Library Reference: Ruby on Ruby

In this chapter, we’ll take a closer look at some useful classes in Ruby that
you might use for metaprogramming or observation. We’ll investigate their
API and functionality in somewhat more detail than we did in Part I of this
book. The goal of this chapter is to give you more information about what
you can do with these classes and also to discuss related functions together
so that you can browse and perhaps find a new feature that might help.

This isn’t intended to be a complete listing of every class, method, or
option. For that, please refer to the official Ruby documentation at
https://docs.ruby-lang.org.

In this chapter, when a method is mentioned for the first time, we provide
its complete name and signature. The notation Foo.bar indicates a class or
module method, while Foo#bar indicates an instance method. Optional
arguments are indicated with Ruby syntax and their default value, as in
Foo#bar(name, size = 0). Dynamically sized arguments are indicated with splat
syntax, as in Foo#bar(*files, **options). Block arguments are indicated with
brace syntax and an indication of what the arguments to the block will be,
as in Foo#bar { |object| block }. An optional block argument will be surrounded
by square brackets, Foo#bar [{block}]. Please note that this description syntax
is slightly different than the official documentation, and that in some cases,
what the official documentation shows as multiple method signatures,
we’ve chosen to show as one signature with default values. Also, parameter

https://docs.ruby-lang.org/

names sometimes differ from the official documentation to make the
naming clearer.

Benchmark
The Benchmark module allows code execution to be timed and the results
tabulated. Benchmark is easier to use if you include it in your top-level
environment.

The most useful method of Benchmark is Benchmark.bm(label_width = 0, *labels) {

|report| ...}. The bm method passes a report object to the block. Inside the block,
you call report(caption) on that object one or more times, passing a block each
time. Ruby will execute each block and emit a table with an entry for each
block listing the time spent by the CPU executing code (user time), the CPU
time spent by the system during the block (system time), the total of those two
(total), and the amount of clock time that passed during the block.

This example compares the costs of four kinds of method dispatch:

ref_meta_ruby/benchmark_1.rb

​ require ​"benchmark"​

​ string = ​"Stormy Weather"​

​ m = string.​method​(​:length​)

​ Benchmark.​bm​(6) ​do​ |x|

​ x.​report​(​"direct"​) { 100_000.​times​ { string.​length​ } }

​ x.​report​(​"call"​) { 100_000.​times​ { m.​call​ } }

​ x.​report​(​"send"​) { 100_000.​times​ { string.​send​(​:length​) } }

​ x.​report​(​"eval"​) { 100_000.​times​ { eval(​"string.length"​) } }

​ ​end​

Produces:

​ user system total real

​ direct 0.002317 0.000000 0.002317 (0.002337)

​ call 0.004806 0.000000 0.004806 (0.004806)

​ send 0.005009 0.000000 0.005009 (0.005008)

​ eval 0.205992 0.002032 0.208024 (0.210398)

The Benchmark module offers the Benchmark#bmbm(width = 0) method, which
does a test run of all the blocks being benchmarked before doing the actual

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/benchmark_1.rb

benchmark. This is an attempt to ensure that the memory garbage collector is
stable before the benchmark, which can make the results more consistent and
accurate.

Which is better: reading all of a dictionary and splitting it or splitting it line by
line? This example uses bmbm to run a rehearsal before doing the timing:

ref_meta_ruby/benchmark_2.rb

​ require ​"benchmark"​

​ Benchmark.​bmbm​(6) ​do​ |x|

​ x.​report​(​"all"​) ​do​

​ str = File.​read​(​"/usr/share/dict/words"​)

​ words = str.​scan​(​/[-\w']+/​)

​ ​end​

​ x.​report​(​"lines"​) ​do​

​ words = []

​ File.​foreach​(​"/usr/share/dict/words"​) ​do​ |line|

​ words << line.​chomp​

​ ​end​

​ ​end​

​ ​end​

Produces:

​ Rehearsal --

​ all 0.076054 0.006898 0.082952 (0.083685)

​ lines 0.048711 0.003024 0.051735 (0.068264)

​ --------------------------------- total: 0.134687sec

​

​ user system total real

​ all 0.067480 0.003470 0.070950 (0.071092)

​ lines 0.040801 0.001468 0.042269 (0.042386)

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/benchmark_2.rb

Data
Ruby provides the Data class to be used as an immutable data object. The
intent of Data is to create an object similar to a Struct, but whose attributes
cannot be changed (see ​Struct​).

You create new Data classes with the define method. As with Struct, you can
then create new instances with either positional or keyword arguments, and
you can read those arguments:

ref_meta_ruby/data_1.rb

​ Classroom = Data.​define​(​:name​, ​:capacity​)

​ auditorium = Classroom.​new​(​"auditorium"​, 1000)

​ math = Classroom.​new​(​name: ​​"X 206"​, ​capacity: ​30)

​

​ auditorium.​capacity​ ​# => 1000​

Unlike Struct, you can’t write the attributes of a Data object, but you can create
new instances using with. The with method takes keyword arguments and
returns a new data object. That data object is a copy of the original, but any
attributes passed as arguments to with are set to those new values. The original
instance continues to exist unchanged.

ref_meta_ruby/data_2.rb

​ LightBulb = Data.​define​(​:brightness​, ​:watts​, ​:color​)

​ cool_bulb = LightBulb.​new​(1600, 15, 4000)

​ warmer_bulb = cool_bulb.​with​(​color: ​2700)

​

​ cool_bulb.​to_h​ ​# => {:brightness=>1600, :watts=>15, :color=>4000}​

​ warmer_bulb.​to_h​ ​# => {:brightness=>1600, :watts=>15, :color=>2700}​

Objects created via Data respond to a minimal set of other methods, including
== for equality, and to_h to convert to a hash. Notably, Data objects don’t
respond to each or dig but they do respond to deconstruct and deconstruct_keys, so
they can be used in pattern matching:

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/data_1.rb
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/data_2.rb

ref_meta_ruby/data_3.rb

​ LightBulb = Data.​define​(​:brightness​, ​:watts​, ​:color​)

​ bulb = LightBulb.​new​(1600, 15, 5000)

​

​ ​case​ bulb

​ ​in​ {brightness:, ​color: ​5000}

​ puts ​"a daylight bulb with ​​#{​brightness​}​​ lumens"​

​ ​in​ {brightness:, ​color: ​2700}

​ puts ​"a warm bulb with ​​#{​brightness​}​​ lumens"​

​ ​else​

​ puts ​"a different bulb"​

​ ​end​

Produces:

​ a daylight bulb with 1600 lumens

Data objects can be created with a block, which allows for instance methods to
be defined for the data object:

ref_meta_ruby/data_4.rb

​ LightBulb = Data.​define​(​:brightness​, ​:watts​, ​:color​) ​do​

​ ​def​ ​warmth​

​ (color < 4500) ? ​"cool"​ : ​"warm"​

​ ​end​

​ ​end​

​

​ bulb = LightBulb.​new​(1600, 15, 5000)

​ puts bulb.​warmth​

Produces:

​ warm

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/data_3.rb
http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/data_4.rb

Delegator and SimpleDelegator
Object delegation is a way of composing objects—extending an object with
the capabilities of another—at runtime. The Ruby Delegator class implements a
simple but powerful delegation scheme, where requests are automatically
forwarded from a master class to delegates or their ancestors and where the
delegate can be changed at runtime with a single method call. The class
SimpleDelegator is an implementation of Delegator that’s good enough for most
purposes.

The typical use of SimpleDelegator is as a decorator. You create a class as a
subclass of SimpleDelegator. You create new instances of the simple delegator
class by passing it an existing instance of another class. When you call a
method on the delegator, it’ll automatically pass methods that the delegator
doesn’t define over to the original object. Here’s an example:

ref_meta_ruby/simple_delegator.rb

​ require ​'delegate'​

​

​ ​class​ User

​ attr_accessor ​:first_name​, ​:last_name​

​

​ ​def​ ​initialize​(first_name, last_name)

​ @first_name = first_name

​ @last_name = last_name

​ ​end​

​ ​end​

​

​ ​class​ SortableUser < SimpleDelegator

​ ​def​ ​sort_name​

​ ​"​​#{​last_name​}​​, ​​#{​first_name​}​​"​

​ ​end​

​ ​end​

​

​ fozzie = User.​new​(​"Fozzie"​, ​"Bear"​)

​ sortable_user = SortableUser.​new​(fozzie)

​

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/simple_delegator.rb

​ p sortable_user.​first_name​

​ p sortable_user.​sort_name​

Produces:

​ "Fozzie"

​ "Bear, Fozzie"

In this case, the SortableUser defines sort_name but any other method called on a
SortableUser instance will be delegated to the original object.

You can get the underlying object from a SimpleDelegator with
SimpleDelegator#__getobj__ and change it with
SimpleDelegator#__setobj__(new_object).

For simple cases where the class of the delegate is fixed, make the new class a
subclass of DelegateClass, passing the name of the class to be delegated as an
argument in the class declaration. In the new class’s initialize method, call super
with the object that’s being delegated, which must be of the type passed in the
class definition. Here’s an example:

ref_meta_ruby/delegate_class.rb

​ require ​"delegate"​

​

​ ​class​ Words < DelegateClass(Array)

​ ​def​ ​initialize​(list = ​"/usr/share/dict/words"​)

​ words = File.​read​(list).​split​

​ ​super​(words)

​ ​end​

​ ​end​

​

​ words = Words.​new​

​ words[9999] ​# => "anticonscience"​

​ words.​size​ ​# => 235976​

​ words.​grep​(​/matz/​) ​# => ["matzo", "matzoon", "matzos", "matzoth"]​

In this case, the Words class will delegate any instance variables that it doesn’t
know to Array. This is extremely close to just subclassing from Array.

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/delegate_class.rb

The Delegator class gives you more control over the delegation (SimpleDelegator

and DelegateClass are defined in terms of Delegator). To use Delegator you would
create a class that inherits from it and implements __getobj__ and __setobj__ to
determine the object to delegate to.

Logger
Ruby has a Logger class that’s accessible with require "logger". It writes log
messages to a file or stream and supports automatic time- or size-based rolling
of log files. Messages can be assigned severities, and only those messages at
or above the logger’s current reporting level will be logged.

A new logger is created with Logger.new(location, shift_age = 0, shift_size = 1048576,

**options).

The location is one of the following:

A string, which is interpreted as a filename; log entries are appended to
the file.

An IO stream, in which case log entries are written to the stream. The
stream can be an open File object or any of Ruby’s global streams, like
$stdout, but any stream will work.

nil (or File::NULL), in which case log entries are ignored.

Valid keyword arguments for the options hash include level to set the log’s
severity level and progname to set the default program name. Entries that are
less severe than the level are ignored. The default is Logger::DEBUG, which is
the lowest level.

Levels can be defined using the provided constants or by corresponding
strings. In order, from the least severe to the most severe, the defined logger
severities are:

Logger::DEBUG, aka debug

Logger::INFO, aka info

Logger::WARN, aka warn

Logger::ERROR, aka error

Logger::FATAL, aka fatal

Logger::UNKNOWN, aka unknown

You add new entries to the log with Logger#add(severity, message = nil, progname =

nil), aliased as log. The severity is one of the seven constants or strings listed
above, the message is what is sent to the logger, and the program name is an
optional prefix. The message is a string, which is used as-is, an Exception, in
which case the .message attribute of the exception is used, or anything else, in
which case inspect is called to convert it to a string.

For each severity level, there are three convenience functions:

The level name (debug, info, warn, and so on), which takes a message
argument and adds a log entry at that severity.

A predicate method (debug?, info?, and so on), which returns true if the
level of the logger matches the method name. You can also get the level
with Logger#level.

A bang method (debug!, info!, and so on), which sets the level of the log
going forward based on the method name. You can also set the level with
Logger#level=.

You can see the default message pattern in this code:

ref_meta_ruby/logger.rb

​ require ​"logger"​

​

​ log = Logger.​new​($stdout, ​level: ​Logger::DEBUG)

​ log.​info​(​"Application starting"​)

​ 3.​times​ ​do​ |i|

​ log.​debug​(​"Executing loop, i = ​​#{​i​}​​"​)

​ temperature = some_calculation(i) ​# defined externally​

​ ​if​ temperature > 50

​ log.​warn​(​"Possible overheat. i = ​​#{​i​}​​"​)

​ ​end​

​ ​end​

​

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/logger.rb

​ log.​info​(​"Application terminating"​)

Produces:

​ I, [2023-11-02T17:16:45.716996 #44233] INFO -- : Application starting

​ D, [2023-11-02T17:16:45.717020 #44233] DEBUG -- : Executing loop, i = 0

​ D, [2023-11-02T17:16:45.717025 #44233] DEBUG -- : Executing loop, i = 1

​ D, [2023-11-02T17:16:45.717028 #44233] DEBUG -- : Executing loop, i = 2

​ W, [2023-11-02T17:16:45.717030 #44233] WARN -- : Possible overheat. i = 2

​ I, [2023-11-02T17:16:45.717033 #44233] INFO -- : Application terminating

Ruby will automatically rotate the log files based on the shift_size and shift_age

parameters. If both parameters are positive integers, then the rotation is based
on file size. When the log first reaches the shift_size, the file is closed and
renamed with a .0 extension and a new log file is opened. If there is an existing
log with the .0 extension, it’s moved to .1 and so on. The shift_age parameter is
the maximum number of files to keep; files over that number are removed. If
the shift_age is a string, then the rotation is based on time, and the parameter
can have the value daily, weekly, monthly, everytime, or now. When the time
period ends, the existing file is renamed based on the timestamp and a new file
is opened. If the parameter is everytime or now, a new file is created on each
new log entry.

ObjectSpace
The ObjectSpace module contains a number of routines that interact with the
garbage collection facility and allow you to traverse all living objects with
an iterator.

ObjectSpace also provides support for object finalizers. These are procs that
will be called when a specific object is about to be destroyed by garbage
collection. Typically, you either call ObjectSpace methods as module
methods as in ObjectSpace.count_objects or you include ObjectSpace as a
module in another class and call the methods directly.

This is just a glance at what ObjectSpace can do; there’s more in the official
documentation.

The method ObjectSpace.define_finalizer(object, proc = proc()) adds proc as a
finalizer, called automatically when object is about to be destroyed. If you
use lambda to create the proc object, you must remember to include a
parameter with the block. If you don’t, the invocation of the lambda will
silently fail when the finalizer is called because of a mismatch in the
expected and actual parameter count. Finalization of an object is never
guaranteed and may not happen until program exit.

The method ObjectSpace.each_object(module = nil) [{block}] calls the block once
for each living object in this Ruby process that’s not an “immediate” object.
An immediate object is an object that’s stored directly as its value, rather
than as a pointer in memory to its value. In Ruby, small enough Integer

objects, symbols, true, false, and nil are considered immediate objects,
though the exact definition is implementation-dependent. If module is
specified, each_object calls the block for only those classes or modules that
match (or are a subclass of) module. The return value is the number of
objects found. In the following example, each_object returns the large integer

we defined and several numeric constants defined elsewhere in Ruby. If you
don’t provide a block, an Enumerator is returned. Here’s an example:

​ a = 98.6

​ b = ​"banana"​

​ c = 123456789876543216723123412412341234124

​ d = 12

​ count = ObjectSpace.​each_object​(Numeric) {|x| p x }

​ puts ​"Total count: ​​#{​count​}​​"​

Produces:

​ NaN

​ Infinity

​ 1.7976931348623157e+308

​ 2.2250738585072014e-308

​ (0+1i)

​ 9223372036854775807

​ 123456789876543216723123412412341234124

​ Total count: 7

Observable
The Observer pattern, also known as Publish/Subscribe, provides a simple
mechanism for one object (the source) to inform a set of interested third-party
objects when its state changes. In the Ruby implementation, the notifying class
mixes in the module Observable, which provides the methods for managing the
associated observer objects. The observers must implement the update method
to receive notifications.

The way this works is that the class that’s sending the notifications adds include

Observable. To add subscribers to the notifications, you call
Observable#add_observer(observer, method = :update). The observer is an object
that receives a notification, and method is the method that’s automatically
called when a notification is triggered.

To send a notification, the publishing object calls Observable#changed(state=true)

to mark that the object has changed and then calls
Observable#notify_observers(*args), which goes through each subscriber and calls
the method registered when add_observer was invoked. You need to call changed

again before you call notify_observers again. You can see the status of that with
Observable#changed?. Any arguments passed to notify_observers are passed
through to the update method. Here’s an example:

ref_meta_ruby/observable.rb

​ ​class​ Temperature

​ @p = [83, 75, 90, 134, 134, 112, 79]

​ ​def​ self.​fetch​

​ exit ​if​ @p.​empty?​

​ @p.​shift​

​ ​end​

​ ​end​

​ require ​"observer"​

​

​ ​class​ CheckWaterTemperature ​# Periodically check the water​

​ ​include​ Observable

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/observable.rb

​

​ ​def​ ​run​

​ last_temp = ​nil​

​ ​loop​ ​do​

​ temp = Temperature.​fetch​ ​# external class...​

​ puts ​"Current temperature: ​​#{​temp​}​​"​

​ ​if​ temp != last_temp

​ changed ​# notify observers​

​ notify_observers(Time.​now​, temp)

​ last_temp = temp

​ ​end​

​ ​end​

​ ​end​

​ ​end​

​

​ ​class​ Warner

​ ​def​ ​initialize​(&limit)

​ @limit = limit

​ ​end​

​

​ ​def​ ​update​(time, temp) ​# callback for observer​

​ ​if​ @limit.​call​(temp)

​ puts ​"--- ​​#{​time​}​​: Temperature outside range: ​​#{​temp​}​​"​

​ ​end​

​ ​end​

​ ​end​

​

​ checker = CheckWaterTemperature.​new​

​ checker.​add_observer​(Warner.​new​ { |t| t < 80 })

​ checker.​add_observer​(Warner.​new​ { |t| t > 120 })

​ checker.​run​

Produces:

​ Current temperature: 83

​ Current temperature: 75

​ --- 2023-11-02 17:16:45 -0500: Temperature outside range: 75

​ Current temperature: 90

​ Current temperature: 134

​ --- 2023-11-02 17:16:45 -0500: Temperature outside range: 134

​ Current temperature: 134

​ Current temperature: 112

​ Current temperature: 79

​ --- 2023-11-02 17:16:45 -0500: Temperature outside range: 79

The publishing object has access to Observable#count_observers, which returns
the number of current observers, and Observable.delete_observer(object), which
removes a specific observer. You can remove all observers with
Observable.delete_observers.

OpenStruct
If Data is the most immutable way to get a small object, OpenStruct is the
most flexible. An OpenStruct isn’t a class generator, rather, it’s more a way to
allow you to have hash-like data with attribute-like syntax.

You create an OpenStruct with new method, taking either a hash argument or
an arbitrary set of keyword arguments. After that, you can read, write, and
create attributes just by using them, and you can also use hash syntax:

​ require ​"ostruct"​

​

​ bulb = OpenStruct.​new​(​brightness: ​1600, ​watts: ​15, ​color: ​2500)

​ bulb.​color​ ​# => 2500​

​ bulb[​:watts​] ​# => 15​

​ bulb.​shape​ = ​"A19"​

​ bulb.​to_h​ ​# => {:brightness=>1600, :watts=>15, :color=>2500,
:shape=>"A19"}​

Internally OpenStruct uses method_missing, which means it’s very flexible, but
also quite slow. We’d recommend trying Struct or Data for production code,
though OpenStruct is nice for test data. It’s possible that you might overwrite
existing Object or Kernel methods with your attribute, in which case you can
access the underlying method by appending it with a !.

The OpenStruct class defines == for equality tests and each_pair for use in
loops, and it also implements dig but doesn’t implement the pattern-
matching methods.

PP
PP uses the PrettyPrint library to format the results of inspecting Ruby objects.
In addition to the methods in the class, it defines a global function, pp, which
works like the existing p method but formats its output.

PP has a default layout for all Ruby objects. But you can override the way it
handles a class by defining the method pretty_print, which takes a PP object as
a parameter. It should use that PP object’s methods (text, breakable, nest, group,
and pp) to format its output:

ref_meta_ruby/pretty_print.rb

​ require ​'pp'​

​

​ Customer = Struct.​new​(​:first_name​, ​:last_name​, ​:dob​, ​:country​)

​ cust = Customer.​new​(​"Walter"​, ​"Wall"​, ​"12/25/1960"​, ​"Niue"​)

​

​ puts ​"Regular print"​

​ p cust

​

​ puts ​"​​\n​​Pretty print"​

​ pp cust

Produces:

​ Regular print

​ #<struct Customer first_name="Walter", last_name="Wall", dob="12/25/1960",

​ country="Niue">

​

​ Pretty print

​ #<struct Customer

​ first_name="Walter",

​ last_name="Wall",

​ dob="12/25/1960",

​ country="Niue">

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/pretty_print.rb

Prism

Prism is a new parsing gem in Ruby 3.3 that’s likely to be the future parsing
library for Ruby and Ruby tooling. Prism can be used as a stand-alone gem; it
is also included with the Ruby standard library. You can use it with require

"prism".

Prism is designed to be a common parser across Ruby implementations, and as
of this writing, it’s also integrated into Ruby and TruffleRuby, among others.
It’s also used by the ruby-lsp language server.

Prism is designed to be tolerant to errors. For example, if you’re typing a file
in your editor, Prism tries not to let syntax errors in one part of the file affect
the parsing of the rest of the file, making for a much better development
experience while typing.

Prism includes an API that you can use directly:

ref_meta_ruby/prism_1.rb

​ require ​"prism"​

​

​ content = ​"a=1;b=2;puts a+b"​

​

​ puts

​ p ​"Lexical analysis"​

​ pp Prism.​lex​(content)

​ puts

​ p ​"Parsing"​

​ pp Prism.​parse​(content)

Produces:

​ "Lexical analysis"

​ #<Prism::ParseResult:0x00000001031c8d98

​ @comments=[],

​ @errors=[],

​ @magic_comments=[],

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/prism_1.rb

​ @source=

​ #<Prism::Source:0x00000001030cbaf8 @offsets=[0], @source="a=1;b=2;puts a+b">,

​ @value=

​ [[IDENTIFIER(1,0)-(1,1)("a"), 32],

​ [EQUAL(1,1)-(1,2)("="), 1],

​ [INTEGER(1,2)-(1,3)("1"), 2],

​ [SEMICOLON(1,3)-(1,4)(";"), 1],

​ [IDENTIFIER(1,4)-(1,5)("b"), 32],

​ [EQUAL(1,5)-(1,6)("="), 1],

​ [INTEGER(1,6)-(1,7)("2"), 2],

​ [SEMICOLON(1,7)-(1,8)(";"), 1],

​ [IDENTIFIER(1,8)-(1,12)("puts"), 32],

​ [IDENTIFIER(1,13)-(1,14)("a"), 1026],

​ [PLUS(1,14)-(1,15)("+"), 1],

​ [IDENTIFIER(1,15)-(1,16)("b"), 1026],

​ [EOF(1,16)-(1,16)(""), 1026]],

​ @warnings=[]>

​

​ "Parsing"

​ #<Prism::ParseResult:0x0000000103165568

​ @comments=[],

​ @errors=[],

​ @magic_comments=[],

​ @source=

​ #<Prism::Source:0x00000001034a18f8 @offsets=[0], @source="a=1;b=2;puts a+b">,

​ @value=

​ @ ProgramNode (location: (1,0)-(1,16))

​ ├── locals: [:a, :b]

​ └── statements:

​ @ StatementsNode (location: (1,0)-(1,16))

​ └── body: (length: 3)

​ ├── @ LocalVariableWriteNode (location: (1,0)-(1,3))

​ │ ├── name: :a

​ │ ├── depth: 0

​ │ ├── name_loc: (1,0)-(1,1) = "a"

​ │ ├── value:

​ │ │ @ IntegerNode (location: (1,2)-(1,3))

​ │ │ └── flags: decimal

​ │ └── operator_loc: (1,1)-(1,2) = "="

​ ├── @ LocalVariableWriteNode (location: (1,4)-(1,7))

​ │ ├── name: :b

​ │ ├── depth: 0

​ │ ├── name_loc: (1,4)-(1,5) = "b"

​ │ ├── value:

​ │ │ @ IntegerNode (location: (1,6)-(1,7))

​ │ │ └── flags: decimal

​ │ └── operator_loc: (1,5)-(1,6) = "="

​ └── @ CallNode (location: (1,8)-(1,16))

​ ├── receiver: ∅

​ ├── call_operator_loc: ∅

​ ├── message_loc: (1,8)-(1,12) = "puts"

​ ├── opening_loc: ∅

​ ├── arguments:

​ │ @ ArgumentsNode (location: (1,13)-(1,16))

​ │ ├── arguments: (length: 1)

​ │ │ └── @ CallNode (location: (1,13)-(1,16))

​ │ │ ├── receiver:

​ │ │ │ @ LocalVariableReadNode (location: (1,13)-(1,14))

​ │ │ │ ├── name: :a

​ │ │ │ └── depth: 0

​ │ │ ├── call_operator_loc: ∅

​ │ │ ├── message_loc: (1,14)-(1,15) = "+"

​ │ │ ├── opening_loc: ∅

​ │ │ ├── arguments:

​ │ │ │ @ ArgumentsNode (location: (1,15)-(1,16))

​ │ │ │ ├── arguments: (length: 1)

​ │ │ │ │ └── @ LocalVariableReadNode (location:

​ (1,15)-(1,16))

​ │ │ │ │ ├── name: :b

​ │ │ │ │ └── depth: 0

​ │ │ │ └── flags: ∅

​ │ │ ├── closing_loc: ∅

​ │ │ ├── block: ∅

​ │ │ ├── flags: ∅

​ │ │ └── name: :+

​ │ └── flags: ∅

​ ├── closing_loc: ∅

​ ├── block: ∅

​ ├── flags: ∅

​ └── name: :puts,

​ @warnings=[]>

In addition to Prism.lex(source, filepath=nil), which takes a source string, there is
also Prism.lex_file(filepath), which takes the file directly. Similarly,
Prism.parse(source, filepath=nil) includes a related Prism.parse_file(filepath). There
are also other more specialized methods, including compatibility with Ripper.

Ripper
The ripper library, available with require "ripper", gives you access to Ruby’s
parser. It can tokenize input, meaning it can convert a string of Ruby code into
a series of semantic elements called tokens. It can return a lexical analysis of
those tokens and what they mean to Ruby. And it can return a nested S-
expression, which is a tree-like structure that represents the relationship
between the tokens in the code. Ripper also supports event-based parsing.

Here’s an example that shows the possibilities on a single string of Ruby code:

ref_meta_ruby/ripper_1.rb

​ require ​"ripper"​

​

​ content = ​"a=1;b=2;puts a+b"​

​

​ p ​"Tokens"​

​ p Ripper.​tokenize​(content)

​ puts

​ p ​"Lexical analysis"​

​ pp Ripper.​lex​(content)[0,5]

​ puts

​ p ​"S-Expressions"​

​ pp Ripper.​sexp​(content)

Produces:

​ "Tokens"

​ ["a", "=", "1", ";", "b", "=", "2", ";", "puts", " ", "a", "+", "b"]

​

​ "Lexical analysis"

​ [[[1, 0], :on_ident, "a", CMDARG],

​ [[1, 1], :on_op, "=", BEG],

​ [[1, 2], :on_int, "1", END],

​ [[1, 3], :on_semicolon, ";", BEG],

​ [[1, 4], :on_ident, "b", CMDARG]]

​

​ "S-Expressions"

​ [:program,

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/ripper_1.rb

​ [[:assign, [:var_field, [:@ident, "a", [1, 0]]], [:@int, "1", [1, 2]]],

​ [:assign, [:var_field, [:@ident, "b", [1, 4]]], [:@int, "2", [1, 6]]],

​ [:command,

​ [:@ident, "puts", [1, 8]],

​ [:args_add_block,

​ [[:binary,

​ [:var_ref, [:@ident, "a", [1, 13]]],

​ :+,

​ [:var_ref, [:@ident, "b", [1, 15]]]]],

​ false]]]]

The method signatures for tokenize, lex, and, sexp are all the same (source,

filename = "-", line_number = "1", **kwargs). They all basically ignore filename, but
the line_number is used in the output, and sexp has a keyword argument called
raise_errors: false which, if true, raises a SyntaxError if the source has an error.

As an example of event-based lexical analysis, here’s a program that finds
class definitions and their associated comment blocks. For each, it outputs the
class name and the comment. It might be considered the zeroth iteration of an
RDoc-like program.

The parameter to parse is an accumulator—it’s passed between event handlers
and can be used to construct the result:

ref_meta_ruby/rdoc.rb

​ require ​"ripper"​

​

​ ​# This class handles parser events, extracting​

​ ​# comments and attaching them to class definitions​

​ ​class​ BabyRDoc < Ripper::Filter

​ ​def​ ​initialize​(*)

​ ​super​

​ reset_state

​ ​end​

​

​ ​def​ ​on_default​(event, token, output)

​ reset_state

​ output

​ ​end​

​

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/rdoc.rb

​ ​def​ ​on_sp​(_token, output)

​ output

​ ​end​

​ ​alias_method​ ​:on_nil​, ​:on_sp​

​

​ ​def​ ​on_comment​(comment, output)

​ @comment << comment.​sub​(​/^\s*#\s*/​, ​" "​)

​ output

​ ​end​

​

​ ​def​ ​on_kw​(name, output)

​ @expecting_class_name = (name == ​"class"​)

​ output

​ ​end​

​

​ ​def​ ​on_const​(name, output)

​ ​if​ @expecting_class_name

​ output << ​"​​#{​name​}​​:​​\n​​"​

​ output << @comment

​ ​end​

​ reset_state

​ output

​ ​end​

​

​ ​private​

​

​ ​def​ ​reset_state​

​ @comment = ​""​

​ @expecting_class_name = ​false​

​ ​end​

​ ​end​

​

​ BabyRDoc.​new​(File.​read​(​__FILE__​)).​parse​($stdout)

Produces:

​ BabyRDoc:

​ This class handles parser events, extracting

​ comments and attaching them to class definitions

Singleton
The Singleton design pattern ensures that only one instance of a particular
class may be created for the lifetime of a program.

The Singleton module makes this simple to implement. Mix the Singleton
module into each class that’s to be a singleton, and that class’s new method
will be made private. In its place, users of the class call the method instance,
which returns a singleton instance of that class.

Ruby overrides a few other methods of the class when Singleton is mixed in:
inherited, clone, _load, and dup, all of which are changed to prevent multiple
instances of the class from existing.

In this example, the two instances of MyClass are the same object:

ref_meta_ruby/singleton.rb

​ require ​"singleton"​

​

​ ​class​ MyClass

​ attr_accessor ​:data​

​ ​include​ Singleton

​ ​end​

​

​ a = MyClass.​instance​ ​# => #<MyClass:0x00000001011e0300>​

​ b = MyClass.​instance​ ​# => #<MyClass:0x00000001011e0300>​

​ a.​data​ = 123 ​# => 123​

​ b.​data​ ​# => 123​

​ a.​object_id​ ​# => 60​

​ b.​object_id​ ​# => 60​

http://media.pragprog.com/titles/ruby5/code/ref_meta_ruby/singleton.rb

Struct
Sometimes you want to create a small object to hold data that has little to no
behavior of its own, and a Ruby class seems like too much structure to
bother with.

Ruby has a few lightweight ways to create classes that have little to no
behavior.

The most commonly used is probably Struct. You can use Struct to create
instance-like objects that have attributes and can respond to messages that
you define.

Using Struct creates a class that you then create instances of. Let’s say you
want to represent a classroom that has a name and a capacity. You use
Struct.new to create a Classroom class, with the desired attribute names as
arguments. You can then use Classroom.new to create new classrooms. The
positional arguments in new match the order of the arguments to the original
Struct call, or you can use keyword arguments. If you pass the original Struct

call the argument keyword_init: true, then the resulting class must use
keyword arguments in its constructor.

Once the struct instance has been built, you can access the attributes to read
and write, both as attributes and as hashes:

​ Classroom = Struct.​new​(​:name​, ​:capacity​)

​ small = Classroom.​new​(​"Room 203"​, 25)

​ small.​name​ ​# => "Room 203"​

​ small.​name​ = ​"Room 205"​

​

​ large = Classroom.​new​(​name: ​​"Auditorium"​, ​capacity: ​1000)

​ large[​:capacity​] ​# => 1000​

In other words, the Struct single line is more or less equivalent to this,
except that the resulting Struct version can take either positional or keyword
arguments:

​ ​class​ Classroom

​ attr_accessor ​:name​, ​:capacity​

​ ​def​ ​initialize​(name:, capacity:)

​ @name = name

​ @capacity = capacity

​ ​end​

​ ​end​

A Struct can even get instance methods. Passing a block to Struct.new gives
you a chance to define methods that can be called on the created instances
of the struct. Technically, the new struct class is passed to the block as an
argument, so methods defined inside it are added as instance methods:

​ Classroom = Struct.​new​(​:name​, ​:capacity​) ​do​

​ ​def​ ​full_name​

​ ​"Classroom: ​​#{​name​}​​, capacity: ​​#{​capacity​}​​"​

​ ​end​

​ ​end​

​ small = Classroom.​new​(​"Room 203"​, 25)

​ small.​full_name​ ​# => "Classroom: Room 203, capacity: 25"​

The main thing you can’t do is have an inheritance hierarchy of Structs or
include other modules inside the block. The Struct class also gives the
structs you create some default behavior for free. These are some of the
most useful behaviors:

== returns true if all the attributes are equal.

to_a, to_h, and to_s.

deconstruct and deconstruct_keys so that you can use pattern matching
against a Struct as though it were a Hash.

each_pair, which takes a block with the name and value of each
attribute and applies the block in turn. Also each, which just passes the
block each value.

Also, Struct objects respond to dig, so you can treat them like hashes or
arrays in a dig call.

If all you have is some data and a couple of methods on that data, a Struct

can be a succinct way of defining that data.

One potential downside of a Struct is that the data inside a struct can be
changed. In some situations, you want to be clear that an object’s value
won’t change. This can be particularly important for applications sharing
data across multiple threads.

Unbound Method
UnboundMethod is a method that’s not currently attached to an instance,
which means it can’t yet be called. UnboundMethod instances are created by
Module methods such as instance_method and can also be created by calling
unbind on a Method object.

To use an UnboundMethod, you must bind it to an object using
UnboundMethod#bind(object), which returns a Method that can be called. The
object must be a member of the class that the unbound method came from or
a subclass of that class. You can get that class with UnboundMethod#owner.
It’s pretty common to call the method immediately so the shortcut method
UnboundMethod#bind_call(object, ...) is equivalent to bind(object).call(...) but with
a performance improvement because it doesn’t create an intermediate
Method object.

Otherwise, UnboundMethod has much the same attributes as Method (see ​
Method​), including arity, name, original_name, and parameters.

Copyright © 2024, The Pragmatic Bookshelf.

Part 6
Appendixes

Included in the appendixes is information on
troubleshooting misbehaving Ruby code, a collection of
Ruby symbols and their meanings that might be hard to look
up, a more detailed introduction to using a command line,
information about Ruby runtimes, and a list of significant
changes made to Ruby in each version since 2.0.

Appendix 1

Troubleshooting Ruby

You’ve read through this entire book, you start to write your very own Ruby
program, and…it doesn’t work. Here’s a list of common gotchas and other
tips to help get you back up and running.

Common Issues

In Ruby, unlike in JavaScript and Python, a method name with no
parentheses calls the method with no arguments. It doesn’t return the
method as an object to be used later. To get the method object, use the
method named method.

In Ruby, calling a class as if it were a method, as in Classname(), is an
error. To create a new instance, you need to call Classname.new().

If you happen to forget a comma (,) in an argument list—especially to
print—you can produce some very odd error messages.

Ruby allows you to have a trailing comma at the end of an array or
hash literal, method call, or block method list, but not at the end of the
parameter list of a method definition.

If Ruby is telling you that the number of arguments being passed to a
method is incorrect, this is often due to a mismatch in which
arguments are meant to be keyword arguments and to be positional.

If an attribute setter is not being called, it may be because within a
class definition, Ruby will parse setter = as an assignment to a local
variable, not as a method call. Use the form self.setter= to indicate the
method call. Here’s an example:

​ ​class​ Incorrect

​ attr_accessor ​:one​, ​:two​

​ ​def​ ​initialize​

​ one = 1 ​# incorrect - sets local variable​

​ self.​two​ = 2

​ ​end​

​ ​end​

​

​ obj = Incorrect.​new​

​ obj.​one​ ​# => nil​

​ obj.​two​ ​# => 2​

Objects that don’t appear to be properly set up may have been victims
of an incorrectly spelled initialize method:

​ ​class​ Incorrect

​ attr_reader ​:answer​

​ ​def​ ​initialise​ ​# <-- spelling error​

​ @answer = 42

​ ​end​

​ ​end​

​

​ ultimate = Incorrect.​new​

​ ultimate.​answer​ ​# => nil​

If you misspell an instance variable name, you don’t get a runtime
error; instead, the uninitialized variable has a nil value:

​ ​class​ Incorrect

​ attr_reader ​:answer​

​ ​def​ ​initialize​

​ @anwser = 42 ​#<-- spelling error​

​ ​end​

​ ​end​

​

​ ultimate = Incorrect.​new​

​ ultimate.​answer​ ​# => nil​

A parse error at the last line of the source often indicates a missing end

keyword, and sometimes that missing keyword is quite a bit earlier.
The Ruby interpreter will try to make a good guess about where the
actual issue is.

This message—syntax error, unexpected $end, expecting keyword_end—
means you have an end missing somewhere in your code. (The $end in
the message means end-of-file, so the message means that Ruby hit the
end of your code before finding all the end keywords it was expecting.)

Try running the file with the -w option, which will warn you when it
finds ends that aren’t aligned with their opening if/while/class.
Watch out for precedence issues, especially when using {...} instead of
do…end. Use parentheses to remove potential parser ambiguity.

​ ​def​ ​one​(arg)

​ ​if​ block_given?

​ ​"block given to 'one' returns ​​#{​​yield​​}​​"​

​ ​else​

​ arg

​ ​end​

​ ​end​

​

​ ​def​ ​two​

​ ​if​ block_given?

​ ​"block given to 'two' returns ​​#{​​yield​​}​​"​

​ ​end​

​ ​end​

​

​ result1 = one two {

​ ​"three"​

​ }

​

​ result2 = one two ​do​

​ ​"three"​

​ ​end​

​

​ result3 = one(two) { ​"three"​ }

​

​ result4 = one(two) ​do​ ​"three"​ ​end​

​

​ puts ​"With braces, result = ​​#{​result1​}​​"​

​ puts ​"With do/end, result = ​​#{​result2​}​​"​

​ puts ​"With braces and parens, result = ​​#{​result3​}​​"​

​ puts ​"With do/end and parens, result = ​​#{​result4​}​​"​

Produces:

​ With braces, result = block given to 'two' returns three

​ With do/end, result = block given to 'one' returns three

​ With braces and parens, result = block given to 'one' returns three

​ With do/end and parens, result = block given to 'one' returns three

The difference here is which method gets called if there are no parentheses.
In the result1 line, the braces bind tightly and are considered an argument to
the method two. In the do/end line, the braces bind after a method call, so the
parser interprets it as a call to the method one with two and the block as
arguments.

If numbers don’t come out right, perhaps they’re strings. Text read
from a file will be a String and will not be automatically converted to a
number by Ruby. A call to Integer will work wonders (and will throw
an exception if the input isn’t a well-formed integer). The following is
an example of the issue:

​ ​while​ line = gets

​ num1, num2 = line.​split​(​/,/​)

​ ​# ...​

​ ​end​

num1 and num2 are strings. You can rewrite this using map:

​ ​while​ line = gets

​ num1, num2 = line.​split​(​/,/​).​map​ { |val| Integer(val) }

​ ​# ...​

​ ​end​

Unintended aliasing can be a concern. If you’re using an object as the
key of a hash, make sure it doesn’t change its hash value (or arrange to
call rehash if it does):

​ arr = [1, 2]

​ hash = {arr => ​"value"​}

​ hash[arr] ​# => "value"​

​ arr[0] = 99

​ hash[arr] ​# => nil​

​ hash.​rehash​ ​# => {[99, 2]=>"value"}​

​ hash[arr] ​# => "value"​

Make sure your method names start with a lowercase letter and class
and constant names start with an uppercase letter.

Make sure the opening parenthesis of a method’s parameter list butts
up against the end of the method name with no intervening spaces.
Otherwise, the parser will not interpret the parenthesized list as the
parameters to the method.

Debugging Tips

Read the error message! Ruby error messages have a lot of
information, including the type of error, the location of the error, and
the entire sequence of method calls that lead to the error. If the error is
because a method name wasn’t found, Ruby will suggest similarly
named methods that actually exist. If the error is potentially at several
points along a line, Ruby will attempt to show you where along the
line the error happened.

Running your scripts with warnings enabled (the -w command-line
option) can give you insight into potential problems.

If you cannot figure out where a method is defined, you can access the
source location with obj.method(:method_name).source_location. This will
return a two-element array with the filename and line number where
the method was defined. This works even if the method was defined
dynamically with define_method or implicitly with method_missing.

Output written to a terminal may be buffered. This means you may not
see a message you write immediately. In addition, if you write
messages to both STDOUT and STDERR, the output may not appear in the
order you were expecting. Always use nonbuffered I/O (set sync=true)
for debug messages.

Make sure the class of the object you’re using is what you think it is. If
in doubt, check with puts my_obj.class.

Use irb and the debugger.

Use freeze. If you suspect that some unknown portion of code is setting
a variable to a bogus value, try freezing the variable. The culprit will

then be caught by raising an exception during the attempt to modify
the variable.
Modern editors have increasingly powerful tools to identify Ruby
errors in the editor. Using YARD or RBS can increase the ability of
these editors to infer issues from your code.

One major technique makes writing Ruby code both easier and more
fun. Develop your applications incrementally. Write a few lines of
code, and then write tests. Write a few more lines of code, and then
exercise them. One of the major benefits of a dynamically typed
language is that things don’t have to be complete before you use them.

Copyright © 2024, The Pragmatic Bookshelf.

Appendix 2

I Can’t Look It Up!

Ruby has a lot of notation and typography that is called by a name that isn’t
necessarily obvious, making it hard to search for the meaning of a particular
line of code. Here are a few particularly important symbols:

Symbol Name Functionality

||= Or-equals Is like other Ruby operate and assign
operators. x ||= y is equivalent to x = x ||

y. Because of Ruby’s short circuit of
boolean operators, the expression
means that if x is nil, the new value is
y, and if x isn’t nil, then x’s value
remains the same. Is often used as a
shortcut to set a default value.

=~ !~ Match
operators

With a string on one side of the
operator and a regular expression on
the other, =~ returns true if the string
matches the regular expression, and !~
returns true if the string doesn’t match
the regular expression.

Symbol Name Functionality

%i() Symbol
delimiter,
symbol percent
literals

Takes a set of barewords and converts
them to an array of symbols. For
example, %i[a b c] becomes [:a, :b, :c].
The delimiter after the %i is arbitrary,
and the array continues until the
matching delimiter is encountered at
the end of the expression.

%w() Array
delimiter, array
percent literals

Takes a set of barewords and converts
them to an array of strings. For
example, %w[a b c] becomes ["a", "b",

"c"]. The delimiter after the %w is
arbitrary, the array continues until the
matching delimiter is encountered at
the end of the expression.

%q() or %Q() String
delimiter, string
percent literals

Acts as a literal string delimiter.
Lowercase q acts as a single quote
string, uppercase Q acts as a double
quote string. Usually used to avoid
escaping if the quote mark is part of
the string. The delimiter is arbitrary,
the string continues until the matching
delimiter is encountered.

Symbol Name Functionality

%r() Regular
expression
delimiter,
regular
expression
percent literals

Acts as a literal regular expression
delimiter. Usually used to avoid
escaping if the / is part of the regular
expression. The delimiter after the r is
arbitrary, and the string continues until
the matching delimiter is encountered.

Array(),
Integer()

Conversion
methods or
conversion
wrappers

Converts the argument to the stated
type.

<< Shovel Used by a lot of different classes,
including ‘String‘, ‘Array‘, and ‘File‘,
to append a value to the end of the
existing value.

class << foo Singleton
operator

Allows access to the singleton class of
object foo. Most often it used with a
class name to define class methods.

&. Safe navigation
or lonely
operator

In a method call such as foo&.bar, if the
left side of the safe navigation operator
is nil, allows the method call to proceed
and return nil rather than throw an
error.

<=> Spaceship
operator

In x <=> y, if x is less than y, returns -1,
if x is greater than y, returns 1, and if
they are equal, returns 0.

Symbol Name Functionality

#

{EXPRESSION}

String
interpolation

Inside a double-quoted string,
evaluates the expression, converts it to
a string, and inserts it in the string.

x ? y : z Ternary
operator

If x is true, returns y and otherwise
(else) returns z

(ARGS) -> {

EXPR }

Stabby lambda Creates a lambda equivalent to lambda {

|ARGS| EXPR }.

:: Scope
resolution

Looks up a constant value inside a
module or class, as in Foo::Bar. If
nothing exists on the left of the
operator, like ::Foo, forces a lookup in
the top-level global scope, which can
be useful if you’re doing a lookup
from inside a nested set of modules.

* Splat In a method call, as in thing(*[1, 2, 3]),
converts an array to a series of
positional arguments in the method. In
a method definition, converts an
arbitrary number of optional arguments
to an array.

** Double splat In a method call, converts a hash to a
set of keyword arguments in the
method. In a method definition,
converts an arbitrary number of
keyword arguments to a hash.

Symbol Name Functionality

&,
specifically
&:foo

Proc operator In a method call, converts a proc or
lambda passed as an explicit argument
to the implicit block argument of the
method. If the parameter decorated
with the & isn’t a Proc, Ruby will try to
convert it to one by calling the method
to_proc. For example, thing(&:foo) will
call to_proc on the symbol :foo. In a
method definition, captures the
implicit block argument and converts it
to a Proc that can be referred to in the
method.

... Argument
Forwarding

Passes all the arguments of a given
method to a new method, whether they
are positional arguments, keyword
arguments, or block arguments. The
outer method needs to define the
arguments as something like def

outer(...), and the inner call has to also
use the three dots: user.inner(...).

{x:, y:} Hash shortcut
syntax,
shorthand hash
syntax, or
"punning"

Adds a key/value pair to a hash literal
by only referencing the key. The value
will come from a value in the current
binding with the same name as the key.
Also works for keyword arguments in
method calls.

Symbol Name Functionality

_1, _2 Numbered
block
parameter

In a block, _1 through _9 reference the
positional arguments passed to that
block, with the first argument being _1,
the second being _2, and so on.

\1, \2 Numbered
match captures

In a regular expression, can be used to
refer to text captured by a
parenthesized group elsewhere in the
expression, with \1 being the first
group, \2 being the second, and so on.

Copyright © 2024, The Pragmatic Bookshelf.

Appendix 3

Command-Line Basics

Although great support exists for Ruby in IDEs, you’ll probably still end up
spending a lot of time at your system’s command prompt, also known as a
shell prompt or just plain prompt. The most popular IDEs also provide their
own shell prompts in another window right next to your code.

The Command Prompt
If you’re a Linux user, you’re probably already familiar with the command
prompt. If you don’t already have a desktop icon for it, hunt around for an
application called Terminal or xterm.

On macOS, run Applications → Utilities → Terminal.app. (We also
recommend the excellent iTerm2[53] on macOS.)

On Windows, you can install Windows Subsystem for Linux[54] and have a
shell that behaves like the Linux or MacOS shells, or you can use the
default Windows Power Shell, which, as we’ll see, behaves a little
differently. On Windows, we recommend installing Windows Terminal
(https://docs.microsoft.com/en-us/windows/terminal/install), which makes
it easier to use other shell type.

When you run the application, a fairly empty window pops up that contains
a banner and a prompt. Try typing echo hello at the prompt and hitting Enter
(or Return, depending on your keyboard). You should see hello echoed back,
and another prompt should appear.

https://docs.microsoft.com/en-us/windows/terminal/install

Folders, Directories, and Navigation
If you’re used to a GUI tool such as Explorer on Windows or Finder on
MacOS for navigating to your files, then you’ll be familiar with the idea of
folders—locations on your hard drive that can hold files and other folders.

When you’re at the command prompt, you have access to these same
folders. But at the prompt, these folders are usually called directories
(because they contain lists of other directories and files). These directories
are organized into a strict hierarchy. On Unix-based systems (including
macOS and WSL), there’s one top-level directory, called / (a forward slash).
On plain Windows, there is a top-level directory for each drive on your
system, so you’ll find the top level for your C: drive at C:\ (that’s the drive
letter C, a colon, and a backslash).

The path to a file or directory is the set of directories that you have to
traverse to get to it from the top-level directory, followed by the name of the
file or directory itself. Each component in this name is separated by a
forward slash (on Unix) or a backslash (on Windows). For example, if you
organized your projects in a directory called projects under the top-level
directory, and if the projects directory had a subdirectory for your
time_planner project, the full path to the README file would be
/projects/time_planner/readme.txt on Unix and
C:\projects\time_planner\readme.txt on Windows.

Spaces in Directory Names and Filenames
Operating systems allow you to create folders with spaces in their names. This is great
when you’re working at the GUI level. But, from the command prompt, spaces can be
a headache because the shell that interprets what you type will treat the spaces in file
and folder names as being parameter separators and not as part of the name. You can
get around this (typically by putting the entire filename in quotation marks), but it

generally isn’t worth the hassle. If you’re creating new folders and files, it’s easiest to
avoid spaces in their names.

To navigate to a directory, use the cd command. (Because the Unix prompt
varies from system to system, we’ll just use a single dollar sign to represent
it here.)

​ ​$ ​​cd​​ ​​/projects/time_planner​​ ​​(on​​ ​​Unix)​

​ ​C:\>​​ ​​cd​​ ​​\projects\time_planner​​ ​​(on​​ ​​Windows)​

On Unix systems, the parent directory is represented as .. (two dots) and the
current directory is . (a single dot). So, cd .. takes you up one level, and cd ..\..

takes you up two levels. (Some Unix shell programs have more shortcuts
available. For example, in ZShell, cd - takes you back to the previous
directory.)

On Unix systems, you usually don’t want to be creating top-level
directories. Instead, Unix gives each user their own home directory. So, if
your username is dave, your home directory might be located in /usr/dave,
/home/dave, or /Users/dave. At the shell prompt, the special character ~ (a
single tilde) stands for the path to your home directory. You can always
change directories to your home directory using cd ~.

To find out the directory you’re currently in, you can type pwd (on Unix) or
cd on Windows. For example, on Unix you could type this:

​ ​$ ​​cd​​ ​​/projects/time_planner​

​ ​$ ​​pwd​

​ /projects/time_planner

​ ​$ ​​cd​

​ ​$ ​​pwd​

​ /Users/dave

On Windows, the commands are similar:

​ ​C:\>​​ ​​cd​​ ​​\projects\time_planner​

[53]

[54]

​ ​C:\projects\time_planner>​​ ​​cd​​ ​​\projects​

​ ​C:\projects>​​ ​​cd​​ ​​%userprofile%​

In Unix, you can create a new directory under the current directory using
the mkdir command:

​ ​$ ​​cd​​ ​​/projects​

​ ​$ ​​mkdir​​ ​​expense_tracker​

​ ​$ ​​cd​​ ​​expense_tracker​

​ ​$ ​​pwd​

​ /projects/expense_tracker

Notice that to change to the new directory, you can just give its name
relative to the current directory. You don’t have to enter the full path.

We suggest you create a directory called pickaxe to hold the code you write
while reading this book:

​ ​$ ​​mkdir​​ ​​~/pickaxe​​ ​​(on​​ ​​Unix)​

​ ​C:\>​​ ​​mkdir​​ ​​\pickaxe​​ ​​(on​​ ​​Windows)​

It’s helpful to get into the habit of changing into that directory before you
start your work:

​ ​$ ​​cd​​ ​​~/pickaxe​​ ​​(on​​ ​​Unix)​

​ ​C:\>​​ ​​cd​​ ​​\pickaxe​​ ​​(on​​ ​​Windows)​

Footnotes

https://iterm2.com

https://learn.microsoft.com/en-us/windows/wsl/about

Copyright © 2024, The Pragmatic Bookshelf.

https://iterm2.com/
https://learn.microsoft.com/en-us/windows/wsl/about

Appendix 4

Ruby Runtimes

Ruby code is converted to executable code using an interpreter. The current
default interpreter is called YARV (Yet Another Ruby VM) and has been the
standard since Ruby 1.9, replacing the original interpreter, which was
known as CRuby or MRI (Matz’s Ruby Interpreter). You’ll actually still see
the names CRuby and MRI used interchangeably with YARV for the current
version of the interpreter.

The interpreter makes dozens of choices about how to convert Ruby code to
machine code, such as how to store objects, associate objects with their
methods, and so on. Each of these choices has implications for the runtime
performance of Ruby.

Not all uses of Ruby are equal. A one-off script could be optimized for a
quick startup even if that might cause performance issues later—a short
script might not have a “later.” Conversely, a long-running web server may
be willing to trade a longer start-up time for better performance later.

Several options for Ruby interpreters are available. Some, like the just-in-
time compilers, are options that ship with core Ruby. Others, like
TruffleRuby, are third-party solutions with different speed characteristics.
And yet others, like JRuby, also give Ruby access to other runtime libraries.

Let’s go on a tour of the various available interpreters.

Just-in-Time Compilers
Historically, computer languages are translated in one of two different
ways. A language might use a compiler to convert the program code directly
to machine language. This compilation happens in a separate step before the
code is executed and produces machine-language artifacts. When it’s time
to run the code, the machine-language version is run, and the original
source code isn’t used.

Ruby typically uses a different tool called an interpreter. An interpreter
converts the source code to machine language at runtime, generally without
creating an intermediate machine-language artifact. In an interpreted
language, you typically use the original source code at runtime.

That said, the line between compilers and interpreters is blurry. A common
technique, used by Java among languages, is to compile to a machine-
independent byte code and then use a machine-specific runtime interpreter
to execute the code. An advantage of this technique is that the machine-
specific part of the translation is minimized, making it easier to port the
languages to different operating systems. (In fact, YARV internally
compiles to a byte code at runtime before interpreting it, but this byte code
version is typically for internal use only.)

Another way of blurring the distinction is by using a just-in-time compiler
(JIT). A JIT compiler operates at runtime and starts as an interpreter but can
then compile frequently used code as it executes from Ruby’s byte code to
machine code. Typically, this increases initial startup cost because of the
extra compilation step, but if parts of the code are executed repeatedly in a
long-lived process, the machine-compiled versions will eventually be faster.

Ruby ships with two different JIT implementations: RJIT and YJIT.

RJIT

RJIT—the “r” stands for “ruby”—is a Ruby implementation of a JIT
compiler that was added in Ruby 3.3. Older versions of Ruby had a
different JIT implementation called MJIT. You can enable RJIT on your
Ruby execution by using --rjit when you call Ruby:

​ ​$ ​​ruby​​ ​​options.foo​​ ​​--rjit​

RJIT is meant to be experimental and is not for use in production code.

RJIT will watch for methods that are called frequently in your code and
compile methods that it sees as being highly used. RJIT is written in Pure
Ruby.

From your perspective as a Ruby developer, RJIT should run just like
YARV, but with some kind of performance boost. Exactly how much of a
boost depends on your application parameters (and there aren’t a lot of solid
Ruby 3.3 benchmarks to choose from at this point).

A handful of command-line options change how RJIT works; but most of
these are for testing purposes if you were actually working on RJIT, rather
than just writing Ruby:

--rjit-call-

threshold=num

Notes the number of calls to a method needed to
trigger RJIT compilation. The default is 10.

--rjit-exec-mem-

size=num

The size of an executable memory block in RJIT, the
default is 64.

--rjit-stats Allows for collection of RJIT statistics.

YJIT

A second JIT compiler ships with Ruby that takes a significantly different
approach to compilation. YJIT (yet another Yet Another acronym) is a
complete compiler on its own, and as of Ruby 3.2, it’s also implemented in
Rust. YJIT uses a mechanism called “lazy basic block versioning” for
compilation, which means it compiles sections of code based on chunks of
code that are smaller than methods, such as loops.

YJIT also takes advantage of runtime type information to optimize
compilation for known types. If it sees that a chunk of code is called with
integer values, it will optimize the compiled steps for integer values. If the
chunk is called often enough with a different type of value, then different
compiled code is generated. That’s the “versioning” part of basic block
versioning—YJIT creates different compiled versions of blocks based on
input values. The “lazy” part is that YJIT only generates versions for blocks
that it sees on the fly during runtime. The combination means that YJIT can
generate fast-compiled code without compromising on Ruby’s flexibility.

YJIT is installed along with Ruby, provided that you have the Rust
language version 1.58 or higher installed on your computer when Ruby is
installed. Rust installation instructions can be found at https://www.rust-
lang.org/tools/install.

YJIT can be executed as part of the ruby runtime by adding --yjit to the call:

​ ruby options.​foo​ --yjit

YJIT can also be enabled by setting the environment variable
RUBY_YJIT_ENABLE to true.

Using YJIT can provide a significant performance boost for long-running
processes. Because YJIT only compiles methods after they have been
repeated several times—the default is 30—you likely won’t see a benefit in
shorter scripts or in unit tests. The current Rust version of YJIT is brand-

https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install

new in the wild, so there aren’t a lot of use cases to check, but one early test
suggests that performance on benchmarks can double using YJIT.[55]

YJIT has some additional command-line options that tweak the behavior
and allow for more debugging information if you’re actually working on
YJIT itself. Note that some of the debugging information depends on
having a version of Ruby compiled to produce YJIT stats.

--yjit-call-

threshold=num

The number of times a method is called before YJIT
optimizes it by compiling. The default is 30.

--yjit-exec-mem-

size=num

The size, in MiB, of the memory dedicated to
executable code. The default is 128.

--yjit-greedy-

versioning

If set, enables greedy versioning mode, which may
increase the size of the compiled code.

--yjit-max-

versions=N

The maximum number of versions of a compiled
block YJIT will generate for different type
information. The default is 4.

--yjit-stats If enabled, stats about YJIT usage are displayed at the
end of the program.

--yjit-trace-exits Produces a stack trace when YJIT exits compile
mode. Also enables --yjit-stats.

TruffleRuby
Now we move away from runtime engines that ship with the Ruby virtual
machine and toward Ruby implementations that run in various other
environments. In general, these implementations offer performance
improvements at the cost of lagging behind new features in Ruby and also
limiting access to the Ruby ecosystem, since not all gems can run in the
other environments.

GraalVM[56] is a virtual machine environment implemented in Java and
designed to be a high-performance, cross-language, virtual environment.
TruffleRuby,[57] created by Chris Seaton, is a Ruby implementation built on
top of GraalVM. TruffleRuby provides very high performance relative to
the standard Ruby implementations, but it’s not completely compatible with
standard Ruby.

If you use a Ruby version manager to install Ruby, it likely includes
TruffleRuby as one of its downloadable options. This is true of rbenv, which
is the recommended setup in this book, as well as the other commonly used
version managers such as RVM, asdf, and chruby. The current version is
23.1.1, but new versions come out on a regular schedule.

In rbenv, you can install TruffleRuby just as you would any other Ruby
implementation (rbenv install truffleruby-23.1.1 or rbenv install truffle

ruby+graalvm-23.1.1). In the default version, TruffleRuby has already been
compiled to a native executable. The +graalvm version runs inside the Graal
Java virtual machine at runtime, just like any other Java application. The
GraalVM version gives you better compatibility with other language tools
at the cost of some short-term performance degradation. The TruffleRuby
team recommends the native configuration for shorter-running programs,
smaller memory use, or any situation where startup time is important. The

GraalVM version is recommended for better performance in a long-lived
process.

Once you have TruffleRuby installed, it runs just like regular Ruby. All the
CLI commands for normal Ruby apply, except for ones that cover things
like JIT compilers that don’t exist in TruffleRuby.

A great feature of TruffleRuby is that it tries to re-implement the core
library in Ruby. (Most of the core library in the main runtime is written in
C.) The idea is that TruffleRuby is better off having the core in Ruby where
the same optimizations can be used as opposed to having them outsourced
to a nominally faster language. You can find those definitions at
https://github.com/oracle/truffleruby/tree/master/src/main/ruby/truffleruby/c
ore, and they can be helpful in understanding how some of Ruby’s core
methods work.

One downside of using a third-party Ruby runtime is that it’s not
guaranteed to be compatible with the current versions of CRuby.
TruffleRuby 22.3.0 is based on Ruby 3.2.2, and according to one
comparison of Ruby runtimes,[58] it passes 97% of the ruby-spec test suite,
with most of the failures being related to the CLI or edge cases in the
language. If you’re going to try to use TruffleRuby in your application, you
should have good test coverage and make sure that TruffleRuby passes your
tests.

TruffleRuby can offer a substantial performance improvement. One set of
benchmarks[59] suggests a six times improvement over Ruby 3.1, and while
Ruby 3.2 is somewhat faster, TruffleRuby seems worth considering for
long-running processes that are particularly performance intensive and
which aren’t dependent on those parts of Ruby that TruffleRuby doesn’t
handle.

https://github.com/oracle/truffleruby/tree/master/src/main/ruby/truffleruby/core
https://github.com/oracle/truffleruby/tree/master/src/main/ruby/truffleruby/core

JRuby
JRuby is the older and more established Java runtime version of Ruby. After
several years of falling behind core Ruby, the November 2022 release
(JRuby 9.4) brought JRuby to parity with Ruby 3.1, with Ruby 3.2 support
expected in the near future. There are some substantial limitations in
JRuby’s support as of this writing.

Ruby’s threading constructs aren’t completely supported, specifically
Ractors and the thread scheduler aren’t supported yet. But you can
interoperate with Java thread-safe data.

The readme for this version says “Nearly all features from CRuby’s
NEWS file have been implemented.” Again, we recommend making
sure your tests continue to run if you’re considering switching to
JRuby.

Rails support for most databases is incomplete.

Improvement on all these fronts is in progress, and by the time you read
this, it’s possible the situation has improved.

JRuby is also available via most Ruby version managers, and rbenv install

jruby-9.4.4.0 will do it if you’ve been following along with this book’s
defaults. You can also get standalone download installers at
https://www.jruby.org/download. You need to have a Java Standard Edition
runtime installed for the standalone versions[60], but there’s a decent chance
your computer already has one installed.

You can use the installed standalone JRuby to run a file with jruby

<filename>, and you can run irb with jirb. If you install it using rbenv, then the
regular ruby and irb commands work. In the standalone mode, if you’re
running a Ruby-based command-line tool like rake, the recommendation is

https://www.jruby.org/download

to use jruby -S <COMMAND> to ensure that JRuby is actually executing the
command.

Ruby gems that compile to C won’t work with JRuby.

When using JRuby, you can import any Java library in your Java class path.
If you add require "java" to your file, you can access Java classes via their
fully qualified class names. JRuby will convert method names from Ruby-
style underlines to Java-style CamelCase, so calling JavaClass.do_a_thing will
reference the Java method doAThing. Similarly, Java getters and setters will
be converted to Ruby getter and setter methods, so a JavaClass.getFoo() and
JavaClass.setFoo() will be accessible as instance.foo and instance.foo = value.
JRuby will convert Ruby strings, booleans, and numbers to the appropriate
Java types and vice versa. Arrays need to call the method to_java in order to
be passed back and forth. See the JRuby[61] documentation for full details.

If you’re able to use JRuby, meaning that your code is compliant with Ruby
3.1 and doesn’t use gems that use native C code (like Nokogiri), you can get
a significant (two to three times) performance boost. If you’re working in
an environment that already has a Java backend, access to the Java libraries
and resources can be a big win. (Be careful, though: one of us once worked
on a JRuby project that had two User classes that both backed to the same
database table, one using Ruby and ActiveRecord, the other using Java and
Hibernate. This wasn’t helpful.)

mRuby
mRuby (Minimalist Ruby) is an offshoot of official Ruby and is led by
many of the same developers. It implements a subset of Ruby that’s
designed for a minimal memory footprint and for use embedded inside C
programs where memory might be tight, such as inside devices. The idea is
to allow hardware developers access to Ruby as a scripting language.

You can install mRuby via your ruby version manager (rbenv install mruby-

3.1.0), or you can install it standalone from the download site.[62] If you
install it via a version manager, you can run it using ruby; if you install it
standalone, the command is mruby.

[55]

[56]

[57]

Other Runtimes
Other attempts to create Ruby runtimes that are in progress, aren’t used
much, or have been abandoned.

Artichoke Ruby
Artichoke Ruby is an attempt to build a CRuby-compliant Ruby runtime in
Rust. It’s currently in pre-production.

Opal
Opal is a Ruby-to-JavaScript compiler.

MagLev
MagLev is a Ruby runtime built on top of the GemStone Smalltalk runtime.
It appears to have had very little development since 2016.

Rubinius
Rubinius is an attempt to build a Ruby runtime in Ruby, partially for use as
a reference implementation. It appears to have had little development since
2020.

Iron Ruby
Iron Ruby was a .NET implementation of Ruby that appears to have had
little development since 2011.

Footnotes

https://www.solnic.dev/p/benchmarking-ruby-32-with-yjit

https://www.graalvm.org

https://www.graalvm.org/ruby

https://www.solnic.dev/p/benchmarking-ruby-32-with-yjit
https://www.graalvm.org/
https://www.graalvm.org/ruby

[58]

[59]

[60]

[61]

[62]

https://eregon.me/rubyspec-stats

https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.xhtml

https://www.oracle.com/java/technologies/downloads

https://github.com/jruby/jruby/wiki/CallingJavaFromJRuby

https://mruby.org/downloads

Copyright © 2024, The Pragmatic Bookshelf.

https://eregon.me/rubyspec-stats
https://eregon.me/blog/2022/01/06/benchmarking-cruby-mjit-yjit-jruby-truffleruby.xhtml
https://www.oracle.com/java/technologies/downloads
https://github.com/jruby/jruby/wiki/CallingJavaFromJRuby
https://mruby.org/downloads

Appendix 5

Ruby Changes

For most of this book, we assume you’re using the most current Ruby
version, which is version 3.3. With a couple of exceptions, we don’t specify
when particular features were added to Ruby, as we find that makes the
main text more confusing.

This appendix covers changes to Ruby that involve features that are
mentioned in this book. There are many more changes in each version,
many having to do with core library and gem methods that aren’t covered
here. Ruby’s documentation[63] contains a listing of what was added to each
version since 1.8.7. The Ruby Evolution site,[64] maintained by Victor
Shepelev, contains more details about the changes. This appendix is only
here to tell you when major changes first appeared, starting with version
2.0. (Older versions are covered by previous versions of this book and were
on a different numbering scheme.)

Version 2.0

Module#prepend is introduced.

Default source encoding changes to UTF-8.

Refinements are added.

Keyword arguments are added, but a default value is always required,
and the internal implementation still overlaps with positional
arguments.

%i is added as a delimiter for a list of symbols.

Lazy enumerators are added.

to_h and Kernel#Hash are added as the convention to convert to Hash
objects.

TracePoint is added.

Numeric values are frozen.

Version 2.1
Keyword arguments without a default are now allowed.
def now returns the symbol name of the method.
Literal syntax for rational and complex numbers is added.
Array and Enumerable get a default to_h.

Version 2.2
The method Object#itself is added, returning the receiving object.
Unusual symbols are allowed as Hash keys as a string with a trailing
colon, as in {"unusual symbol": 1}.

Version 2.3

The safe navigation operator, &., is added.

dig is added to Array, Hash, and Struct.

Heredoc with ~ that removes leading spaces, allowing for indented
text, is added.

Hash#to_proc is added.

Version 2.4

Using return at the top level exits the program.

All integers are now of class Integer. Previously, smaller integers were
Fixnum and bigger ones were Bignum.

Boolean methods for regular expression matches, match? are added.

Refinements can be used in send and Symbol#to_proc.

Version 2.5
Structs can be initialized with keywords.
Exception rescue is allowed inside a block.

Version 2.6
Object#then is added to allow chained functions.
Ranges without ending values are allowed.

Version 2.7

Experimental support for pattern matching is added.

Blocks now support numbered parameters to match positional
arguments, as in [1, 2, 3].map { _1 * _1}.

Safety concepts are deprecated. They aren’t covered in this book, but
they were covered in the previous edition.

Private methods are now accessible with self as the receiver.
Previously, this had been an error.

Keyword and positional arguments are differentiated internally, but old
semantics aren’t removed.

The ability to forward arguments with ... is added.

The Enumerator#produce method is added.

Ranges without beginning values are allowed.

Version 3.0

Class variables can no longer be overridden in subclasses or including
modules.

One-line “endless” syntax for method definition is added.

Keyword and positional arguments are now completely separated.
Previously, def foo(*arg) would capture keyword arguments in arg.

RBS is added for type definitions.

Rightward assignment => is added via pattern matching. The in
operator for pattern matching becomes a boolean check.

The pattern matching find pattern, [*start, pattern, *rest], is added.

Argument forwarding with ... now allows specific arguments before the
....

Non-blocking Fibers and the Fiber scheduling API are added.

Version 3.1

The pattern-matching pin operator ^ allows expressions and variables
that have a sigil.

Values in keywords and hashes where the key is already a name in the
local binding can be omitted. {x:} if x has a value.

Block arguments can be received anonymously with &.

Ractors are added.

Major updates are made to IRB.

Major updates are made to the internal debugging tool.

Version 3.2
Set is added to the core library.
Anonymous positional and keyword arguments can be passed through
with * and **.
Data object is added to the core library.
Struct no longer requires keyword_init: true to be used with keyword
arguments.
The Rust implementation of YJIT is considered production-ready.

[63]

[64]

Version 3.3
The Prism parser is added as a way to work with parsing Ruby code.
MJIT is replaced with RJIT.
YJIT gets substantial performance improvements.
In Ruby 3.4, the keyword it is expected to be enabled as a synonym for
_1. In Ruby 3.3, a use of it that might conflict with this future usage
will result in a warning.

Footnotes

https://docs.ruby-lang.org/en

https://rubyreferences.github.io/rubychanges/evolution.xhtml

Copyright © 2024, The Pragmatic Bookshelf.

https://docs.ruby-lang.org/en
https://rubyreferences.github.io/rubychanges/evolution.xhtml

Thank you!
We hope you enjoyed this book and that you’re already thinking about what you
want to learn next. To help make that decision easier, we’re offering you this gift

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2024 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose a
writing idea to us? After all, many of our best authors started off as our readers,
just like you. With up to a 50% royalty, world-class editorial services, and a
name you trust, there’s nothing to lose. Visit https://pragprog.com/become-an-
author/ today to learn more and to get started.

We thank you for your continued support, and we hope to hear from you again
soon!

The Pragmatic Bookshelf

https://pragprog.com/
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

Agile Web Development with Rails 7
Rails 7 completely redefines what it means to
produce fantastic user experiences and provides a
way to achieve all the benefits of single-page
applications – at a fraction of the complexity.
Rails 7 integrates the Hotwire frameworks of
Stimulus and Turbo directly as the new defaults,
together with that hot newness of import maps.
The result is a toolkit so powerful that it allows a

single individual to create modern applications upon which they can
build a competitive business. The way it used to be.

Sam Ruby

(474 pages) ISBN: 9781680509298 $59.95

Ruby Performance Optimization
You don’t have to accept slow Ruby or Rails
performance. In this comprehensive guide to
Ruby optimization, you’ll learn how to write
faster Ruby code—but that’s just the beginning.
See exactly what makes Ruby and Rails code
slow, and how to fix it. Alex Dymo will guide
you through perils of memory and CPU
optimization, profiling, measuring, performance

You May Be Interested In…
Select a cover for more information

http://pragmaticprogrammer.com/titles/rails7
http://pragmaticprogrammer.com/titles/rails7
http://pragmaticprogrammer.com/titles/adrpo
http://pragmaticprogrammer.com/titles/adrpo

testing, garbage collection, and tuning. You’ll find that all those “hard”
things aren’t so difficult after all, and your code will run orders of
magnitude faster.

Alexander Dymo

(200 pages) ISBN: 9781680500691 $36

Metaprogramming Ruby 2
Write powerful Ruby code that is easy to
maintain and change. With metaprogramming,
you can produce elegant, clean, and beautiful
programs. Once the domain of expert Rubyists,
metaprogramming is now accessible to
programmers of all levels. This thoroughly
revised and updated second edition of the
bestselling Metaprogramming Ruby explains

metaprogramming in a down-to-earth style and arms you with a practical
toolbox that will help you write your best Ruby code ever.

Paolo Perrotta

(276 pages) ISBN: 9781941222126 $38

Programming Ruby 1.9 & 2.0 (4th edition)
Ruby is the fastest growing and most exciting dynamic language out
there. If you need to get working programs delivered fast, you should add
Ruby to your toolbox. This book is the only complete reference for both
Ruby 1.9 and Ruby 2.0, the very latest version of Ruby.

http://pragmaticprogrammer.com/titles/ppmetr2
http://pragmaticprogrammer.com/titles/ppmetr2

Dave Thomas, with Chad Fowler and Andy Hunt

(886 pages) ISBN: 9781937785499 $50

A Common-Sense Guide to Data Structures and Algorithms
in Python, Volume 1

If you thought data structures and algorithms
were all just theory, you’re missing out on what
they can do for your Python code. Learn to use
Big O notation to make your code run faster by
orders of magnitude. Choose from data structures
such as hash tables, trees, and graphs to increase
your code’s efficiency exponentially. With simple
language and clear diagrams, this book makes

this complex topic accessible, no matter your background. Every chapter
features practice exercises to give you the hands-on information you need
to master data structures and algorithms for your day-to-day work.

Jay Wengrow

(502 pages) ISBN: 9798888650356 $57.95

Text Processing with JavaScript
You might think of regular expressions as the holy grail of text
processing, but are you sure you aren’t just shoehorning them in where
standard built-in solutions already exist and would work better?

http://pragmaticprogrammer.com/titles/ruby4
http://pragmaticprogrammer.com/titles/ruby4
http://pragmaticprogrammer.com/titles/jwpython
http://pragmaticprogrammer.com/titles/jwpython

JavaScript itself provides programmers with
excellent methods for text manipulation, and
knowing how and when to use them will help
you write more efficient and performant code.
From extracting data from APIs to calculating
word counts and everything in between, discover
how to pick the right tool for the job and make
the absolute most of it every single time.

Faraz K. Kelhini

(240 pages) ISBN: 9798888650332 $51.95

From Objects to Functions
Build applications quicker and with less effort
using functional programming and Kotlin. Learn
by building a complete application, from
gathering requirements to delivering a
microservice architecture following functional
programming principles. Learn how to
implement CQRS and EventSourcing in a
functional way to map the domain into code

better and to keep the cost of change low for the whole application life
cycle. If you’re curious about functional programming or you are
struggling with how to put it into practice, this guide will help you
increase your productivity composing small functions together instead of
creating fat objects.

Uberto Barbini

http://pragmaticprogrammer.com/titles/fkjavascript
http://pragmaticprogrammer.com/titles/fkjavascript
http://pragmaticprogrammer.com/titles/uboop
http://pragmaticprogrammer.com/titles/uboop

(468 pages) ISBN: 9781680508451 $47.95

Functional Programming in Java, Second Edition
Imagine writing Java code that reads like the
problem statement, code that’s highly expressive,
concise, easy to read and modify, and has
reduced complexity. With the functional
programming capabilities in Java, that’s not a
fantasy. This book will guide you from the
familiar imperative style through the practical
aspects of functional programming, using plenty

of examples. Apply the techniques you learn to turn highly complex
imperative code into elegant and easy-to-understand functional-style
code. Updated to the latest version of Java, this edition has four new
chapters on error handling, refactoring to functional style, transforming
data, and idioms of functional programming.

Venkat Subramaniam

(274 pages) ISBN: 9781680509793 $53.95

http://pragmaticprogrammer.com/titles/vsjava2e
http://pragmaticprogrammer.com/titles/vsjava2e

	Preface
	Why Ruby?
	A Word about Ruby Versions
	Notation Conventions
	Road Map
	Resources

	Acknowledgments
	Part I. Facets of Ruby
	1. Getting Started
	Installing Ruby
	Installing Ruby for Windows
	Running Ruby
	Creating Ruby Programs
	Getting More Information about Ruby
	What’s Next

	2. Ruby.new
	Ruby Is an Object-Oriented Language
	Some Basic Ruby
	Arrays and Hashes
	Symbols
	Control Structures
	Regular Expressions
	Blocks
	Reading and ‘Riting
	Command-Line Arguments
	Commenting Ruby
	What’s Next

	3. Classes, Objects, and Variables
	Defining Classes
	Objects and Attributes
	Classes Working with Other Classes
	Specifying Access Control
	Variables
	Reopening Classes
	What’s Next

	4. Collections, Blocks, and Iterators
	Arrays
	Hashes
	Digging
	Word Frequency: Using Hashes and Arrays
	Blocks and Enumeration
	What’s Next

	5. More about Methods
	Defining a Method
	Calling a Method
	What’s Next

	6. Sharing Functionality: Inheritance, Modules, and Mixins
	Inheritance and Messages
	Modules
	Inheritance, Mixins, and Design
	What’s Next

	7. Basic Types: Numbers, Strings, and Ranges
	Numbers
	Strings
	Ranges
	What’s Next

	8. Regular Expressions
	What Regular Expressions Let You Do
	Creating and Using Regular Expressions
	Regular Expression Patterns
	Regular Expression Syntax
	What’s Next

	9. Expressions
	Operator Expressions
	Command Expressions
	Assignment
	Conditional Execution
	Loops and Iterators
	Pattern Matching
	What’s Next

	10. Exceptions
	The Exception Class
	Handling Exceptions
	Raising Exceptions
	Using Catch and Throw
	What’s Next

	11. Basic Input and Output
	What Is an I/O Object?
	Opening and Closing Files
	Reading and Writing Files
	Talking to Networks
	What’s Next

	12. Threads, Fibers, and Ractors
	Multithreading with Threads
	Running Multiple External Processes
	Creating Fibers
	Understanding Ractors
	What’s Next

	13. Testing Ruby Code
	Why Unit Test?
	Testing with Minitest
	Structuring Tests
	Creating Mock Objects in Minitest
	Organizing and Running Tests
	Testing with RSpec
	What’s Next

	Part II. Ruby in Its Setting
	14. Ruby from the Command Line
	Calling the Ruby Command
	Ruby Command-Line Options
	Making Your Code an Executable Program
	Processing Command-Line Arguments to Your Code
	Accessing Environment Variables
	Where Ruby Finds Its Libraries
	Using the Rake Build Tool
	The Build Environment
	What’s Next

	15. Ruby Gems
	Installing and Managing Gems
	Using Bundler to Manage Groups of Gems
	Writing and Packaging Your Own Code into Gems
	Organizing Your Source Code
	Distributing and Installing Your Code
	What’s Next

	16. Interactive Ruby
	Using irb
	Navigating irb
	Configuring irb
	What’s Next

	17. Debugging Ruby
	Printing Things
	The Ruby Debugger
	Pry
	Debugging Performance Issues with Benchmark
	What’s Next

	18. Typed Ruby
	What’s a Type?
	Official Ruby Typing with RBS
	Ruby Typing with Sorbet
	What’s Next

	19. Documenting Ruby
	Documenting with RDoc
	Adding RDoc to Ruby Code
	Running RDoc
	Documenting with YARD
	What’s Next

	Part III. Ruby Crystallized
	20. Ruby and the Web
	Ruby’s Web Utilities
	Templating with ERB
	Serving Ruby Code to the Web
	Ruby in the Browser with Web Assembly
	What’s Next

	21. Ruby Style
	Written Ruby Style
	Using RuboCop
	Using Standard
	Ruby Style in the Large
	Duck Typing
	What’s Next

	22. The Ruby Object Model and Metaprogramming
	Understanding Objects and Classes
	Defining Singleton Methods
	Inheritance and Visibility
	Modules and Mixins
	Metaprogramming Class-Level Macros
	Using instance_eval and class_eval
	Using Hook Methods
	A Metaprogramming Example
	Top-Level Execution Environment
	What’s Next

	23. Reflection and Object Space
	Looking at Objects
	Looking at Classes
	Calling Methods Dynamically
	System Hooks
	Tracing Your Program’s Execution
	Behind the Curtain: The Ruby VM
	Marshaling and Distributed Ruby
	What’s Next

	Part IV. Ruby Language Reference
	24. Language Reference: Literal Types and Expressions
	Source Layout
	Ruby Literals
	Regular Expressions
	Names
	Values, Variables, and Constants
	Expressions, Conditionals, and Loops

	25. Language Reference: Objects and Classes
	Method Definition
	Invoking a Method
	Aliasing
	Defining Classes
	Defining Modules
	Access Control
	Blocks, Closures, and Proc Objects
	Exceptions
	Catch and Throw
	Typed Ruby

	Part V. Ruby Library Reference
	26. Library Reference: Core Data Types
	Dates and Times
	Math
	Numbers
	Random and SecureRandom
	Regexp
	Strings
	Symbols

	27. Library Reference: Ruby’s Object Model
	BasicObject
	Class
	Comparable
	Kernel
	Method
	Module
	Object

	28. Library Reference: Enumerators and Containers
	Array
	Enumerable
	Enumerator
	Hash
	Set

	29. Library Reference: Input, Output, Files, and Formats
	CSV
	Dir
	File
	FileUtils
	IO
	JSON
	Pathname
	StringIO
	Tempfile
	URI
	YAML

	30. Library Reference: Ruby on Ruby
	Benchmark
	Data
	Delegator and SimpleDelegator
	Logger
	ObjectSpace
	Observable
	OpenStruct
	PP
	Prism
	Ripper
	Singleton
	Struct
	Unbound Method

	Part VI. Appendixes
	A1. Troubleshooting Ruby
	Common Issues
	Debugging Tips

	A2. I Can’t Look It Up!
	A3. Command-Line Basics
	The Command Prompt
	Folders, Directories, and Navigation

	A4. Ruby Runtimes
	Just-in-Time Compilers
	TruffleRuby
	JRuby
	mRuby
	Other Runtimes

	A5. Ruby Changes
	Version 2.0
	Version 2.1
	Version 2.2
	Version 2.3
	Version 2.4
	Version 2.5
	Version 2.6
	Version 2.7
	Version 3.0
	Version 3.1
	Version 3.2
	Version 3.3

