Tt
Prag]ennhc

Ogramnumers

The Pragmatic Programmers’ Guide

Noel Rappin
with Dave Thomas
Edited by Katharine Dvoralk

‘ : P — -
The Facets 7 of Ruby Series

Pr nntlc

‘Ograimuiners

The Pragmatic Programmers’ Guide

Noel Rappin
with Dave Thomas
Edited by Katharine Dvoralk

The Facets 5 of Ruby Series

Programming Ruby 3.3

The Pragmatic Programmers’ Guide
by Noel Rappin, with Dave Thomas

Version: P1.0 (January 2024)

Copyright © 2024 The Pragmatic Programmers, LLC. This book is licensed to the individual who
purchased it. We don't copy-protect it because that would limit your ability to use it for your own
purposes. Please don't break this trust—you can use this across all of your devices but please do not
share this copy with other members of your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.
The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

About the Pragmatic Bookshelf

The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to improve the
lives of developers. We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us

at http:/pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it’s still being written,
and provide feedback to the author to help make a better book for everyone. Free resources for all
purchasers include source code downloads (if applicable), errata and discussion forums, all available on
the book's home page at pragprog.com. We’re here to make your life easier.

New Book Announcements

Want to keep up on our latest titles and announcements, and occasional special offers? Just create an
account on pragprog.com (an email address and a password is all it takes) and select the checkbox to
receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats

If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via
Dropbox. You get free updates for the life of the edition. And, of course, you can always come back and
re-download your books when needed. Ebooks bought from the Amazon Kindle store are subject to
Amazon's polices. Limitations in Amazon's file format may cause ebooks to display differently on
different devices. For more information, please see our FAQ at pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to https://pragprog.com/book/ruby3, the book's
homepage.

Thanks for your continued support,
The Pragmatic Bookshelf

The team that produced this book includes: Dave Thomas (Publisher), Janet Furlow (COO),
Tammy Coron (Managing Editor), Katharine Dvorak (Development Editor),
Corina Lebegioara (Copy Editor), Potomac Indexing, LLC (Indexing), Gilson Graphics (Layout)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/ruby5
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

Preface
Why Ruby?
A Word about Ruby Versions
Notation Conventions
Road Map

Resources

Acknowledgments

Part 1. Facets of Ruby

1. Getting Started
Installing Ruby

Installing Ruby_for Windows

Running Ruby

Creating Ruby_Programs

Getting More Information about Ruby
What’s Next

2. Ruby.new
Ruby Is an Object-Oriented [Language

Some Basic Ruby

Arrays and Hashes
Symbols

Control Structures
Regular Expressions
Blocks

Reading and ‘Riting

Command-Line Arguments

Commenting Ruby
What’s Next

3. Classes, Objects, and Variables

Defining Classes

Objects and Attributes
Classes Working with Other Classes

Specifying Access Control
Variables

Reopening Classes
What’s Next

4. Collections, Blocks, and Iterators

Arrays

Hashes

Digging

Blocks and Enumeration
What’s Next

5. More about Methods
Defining a Method

Calling a Method
What’s Next

Sharing Functionality: Inheritance, Modules, and Mixins

Inheritance and Messages
Modules

Inheritance, Mixins, and Design
What’s Next

Basic Types: Numbers, Strings, and Ranges

Numbers
Strings
Ranges
What’s Next

Regular Expressions

What Regular Expressions Let You Do
Creating and Using Regular Expressions
Regular Expression Patterns

Regular Expression Syntax

What’s Next

Expressions

Operator Expressions
Command Expressions
Assignment
Conditional Execution

Loops and Iterators

Pattern Matching

10.

11.

12.

13.

What’s Next

Exceptions

The Exception Class
Handling Exceptions
Raising Exceptions
Using Catch and Throw
What’s Next

Basic Input and Output

What Is an I/O Object?
Opening and Closing Files

Reading and Writing Files

Talking to Networks
What’s Next

Threads, Fibers, and Ractors
Multithreading with Threads

Running Multiple External Processes

Creating Fibers
Understanding Ractors
What’s Next

Testing Ruby Code
Why Unit Test?
Testing with Minitest

Structuring Tests
Creating Mock Objects in Minitest

Organizing and Running Tests

Testing with RSpec
What’s Next

Part I1. Ruby in Its Setting

14. Ruby from the Command Line

Calling the Ruby Command
Ruby Command-Line Options

Making Your Code an Executable Program

Processing Command-Line Arguments to Your Code
Accessing Environment Variables

Where Ruby Finds Its Libraries

Using the Rake Build Tool

The Build Environment

What’s Next

15. Ruby Gems

Installing and Managing Gems

Using Bundler to Manage Groups of Gems

Writing and Packaging Your Own Code into Gems

Organizing Your Source Code

Distributing and Installing Your Code
What’s Next

16. Interactive Ruby

Using irb
Navigating irb

Configuring itb

What’s Next

17. Debugging Ruby
Printing Things
The Ruby Debugger
Pry,
Debugging Performance Issues with Benchmark
What’s Next

18. Typed Ruby
What’s a Type?
Official Ruby Typing with RBS

Ruby Typing with Sorbet
What’s Next

19. Documenting Ruby

Documenting with RDoc
Adding RDoc to Ruby Code
Running RDoc¢
Documenting with YARD
What’s Next

Part I11. Ruby Crystallized

20. Ruby and the Web
Ruby’s Web Utilities
Templating with ERB
Serving Ruby Code to the Web

Ruby in the Browser with Web Assembly,
What’s Next

21. Ruby Style
Written Ruby Style

Using RuboCop
Using Standard
Ruby Style in the Large

Duck Typing
What’s Next

22. The Ruby Object Model and Metaprogramming
Understanding Objects and Classes

Defining Singleton Methods

Inheritance and Visibility
Modules and Mixins

Metaprogramming Class-L.evel Macros

Using instance_eval and class_eval
Using Hook Methods

A Metaprogramming Example

Top-Level Execution Environment
What’s Next

23. Reflection and Object Space
Looking at Objects
Looking at Classes

Calling Methods Dynamically
System Hooks

Tracing Your Program’s Execution

Behind the Curtain: The Ruby VM
Marshaling and Distributed Ruby
What’s Next

Part I'V. Ruby Language Reference

24. Language Reference: Literal Types and Expressions

Source Layout
Ruby Literals
Regular Expressions
Names

Values, Variables, and Constants

25. Language Reference: Objects and Classes
Method Definition

Invoking a Method

Aliasing
Defining Classes
Defining Modules

Access Control

Blocks, Closures, and Proc Objects
Exceptions
Catch and Throw

Typed Ruby

Part V. Ruby Library Reference

26. Library Reference: Core Data Types

Dates and Times

Math

Numbers

Random and SecureRandom
Regexp

Strings

Symbols

27. Library Reference: Ruby’s Object Model

BasicObject
Class

Comparable
Kernel
Method
Module
Object

28. Library Reference: Enumerators and Containers

Array,
Enumerable
Enumerator
Hash

et

N

29. Library Reference: Input, Output, Files, and Formats
CSV

1r

)

=]

ile
FileUtils
10

JSON
Pathname

StringlO

Tempfile
URI
YAML

30. Library Reference: Ruby on Ruby

Benchmark

Data

Delegator and SimpleDelegator
Logger

ObjectSpace

Observable

OpenStruct

PP

Prism

Ripper

Singleton

Struct

Unbound Method

Part VI. Appendixes

Al.

A2.

A3.

A4.

AS.

Troubleshooting Ruby

Common Issues

Debugging Tips

I Can’t Look It Up!

Command-Line Basics

The Command Prompt

Folders, Directories, and Navigation

Ruby Runtimes

Just-in-Time Compilers
TruffleRuby

JRuby

mRuby
Other Runtimes

Ruby Changes

Version 2.0
Version 2.1
Version 2.2
Version 2.3
Version 2.4
Version 2.5
Version 2.6

Version 2.7
Version 3.0
Version 3.1
Version 3.2

Version 3.3

Early Praise for Programming Ruby

3.3: The Pragmatic Programmers’
Guide

The book has such breadth and depth, making it a useful long-term
companion. I’d say this is a big win for the Ruby community.

— Stefan Magnuson
Software Developer

Programming Ruby 3.3: The Pragmatic Programmers’ Guide is a
valuable resource to anyone looking to get started with developing
software tools and systems in Ruby. Thanks to thorough technical
explanations accompanied by demonstrative code examples, this book
will equip you with a mastery of all the building blocks of Ruby and
help you unlock its full power.

— Nishant Roy
Engineering Manager

I’m ecstatic to see the book that inspired an entire generation of
Rubyists revived. I’'m excited to see—and use—what the next
generation of readers builds thanks to this.

— Kevin Murphy
Software Developer

Preface

This 1s the fifth edition of Programming Ruby, which many Ruby
developers call “The Pickaxe Book.” It covers Ruby up to and including
Ruby 3.3.

Since the previous edition of this book, Ruby has continued to grow and
evolve. New syntax has been added; old syntax has been refined. Major
new features, such as pattern matching and type signatures, are now part of
the language. Tools that didn’t exist or were in their early stages of
development then are now in constant use by Ruby developers around the
world. The entire ecosystem is thriving.

The Pickaxe Book continues to be your guide to learning Ruby the
language and understanding how Ruby’s parts work together and how you
can use the most popular and important Ruby tools.

Why Ruby?

When Dave Thomas and Andy Hunt wrote the first edition, they explained
the appeal of Ruby. Among other things, they wrote, “When we discovered
Ruby, we realized that we’d found what we’d been looking for. More than
any other language with which we have worked, Ruby stays out of your
way. You can concentrate on solving the problem at hand, instead of
struggling with compiler and language issues. That’s how it can help you
become a better programmer: by giving you the chance to spend your time
creating solutions for your users, not for the compiler.”

That belief is even stronger today. More than thirty years after Ruby’s first
release on February 24, 1993, Ruby still enables developers to focus on
their solutions—from the smallest utility script to the services of companies
with billions of dollars in revenue. Ruby can support it all.

A Word about Ruby Versions

This edition of The Pickaxe Book documents Ruby up to and including
Ruby 3.3. New Ruby version releases come out annually on December 25.
The book’s code was developed against Ruby 3.3, preview 2, but we don’t
expect substantial changes in the released version of Ruby 3.3.

In this book, we don’t typically note what version of Ruby introduced a new
feature, but you can find a brief list of the largest changes in Appendix 5,
Ruby Changes. We recommend referring to the Ruby Evolution page by
Victor Shepelev at
https://rubyreferences.github.io/rubychanges/evolution.xhtml for a full
listing of the changes implemented since Ruby 2.0.

Exactly what version of Ruby did we use to write this book? Let’s ask
Ruby:

$ ruby -v
ruby 3.3.0dev (2023-11-01T17:47:26Z master 909afcb4fc) [arm64-darwin23]

This illustrates an important point. Most of the code samples you see in this
book are executed each time we format the book. When you see output
from a program, that output was produced by running the code and inserting
the results into the book.

https://rubyreferences.github.io/rubychanges/evolution.xhtml

Notation Conventions
Literal code examples are shown using a sans-serif font:

class SampleCode
def run
end

end

In this book, a class name followed by a hash followed by a method name,
as in Fred#do_something, 1s a reference to an instance method (in this case,

the method do_something of class Fred). Class methods are written with a dot
as in Fred.new, and Fred.EOF is a class constant. In other Ruby
documentation, you may see class methods written as Fred::new. This is
perfectly valid Ruby syntax; we just happen to think that Fred.new is less
distracting to read and is much more common to see in practice.

The decision to use a hash character to indicate instance methods was a
tough one. It isn’t valid Ruby syntax, but we thought that it was important
to differentiate between the instance and class methods of a particular class.
When you see us use File.read, you know we’re talking about the class
method read. When, instead, we use File#read, we’re referring to the instance
method read. This convention is standard in most Ruby discussions and
documentation.

When discussing various commands or Ruby snippets, we’ll refer to
variable parts of the commands by including them in angle brackets. So, if
we say rbenv global <VERSION>, that means the section in the brackets is not a
literal part of the command, and you’d replace it with the actual value you
wanted to use, for example, rbenv global 3.3.0.

This book contains many snippets of Ruby code. Where possible, we’ve
tried to show what happens when they run. In some cases, we show the

value of expressions on the same line as the expression. Here’s an example:
a=1
a+b # => 3

Here, you can see that the result of evaluating a + b 1s the value 3, shown in
a comment at the end of the line, # => 3. If you typed this fragment of code

into a file and executed it using Ruby, you wouldn’t see the value 3 output
—you’d need to use a method such as puts to have the values written to the

program’s output.

a=1 #=>1
a+ 2 #=>3

If the program produces more complex output, we show it after the program
code:

3.times { puts "Hello!" }
Produces:

Hello!
Hello!
Hello!

In some of the library documentation, we wanted to show where spaces
appear in the output. You’ll see these spaces as , , characters.

Unless we’re trying to make a point or highlight a specific language feature,
Ruby code examples have been formatted to match the rules of the Standard
gemH,

Command-line invocations are shown with literal text in a regular font, and
the parameters you supply are shown in an italic font. Optional elements are
shown in brackets.

ruby <flags>" progname <arguments>"
In keeping with the style of previous editions of the book, we use the word
we when referring to the authors collectively in the body of the book. Many
of the words come from the first four editions, and I (Noel) don’t want to
claim any credit for Dave Thomas’s, Andy Hunt’s, and Chad Fowler’s
previous work. That said, opinions on recent Ruby features, even when
prefaced by “we,” are just my (Noel’s) opinions and are not an attempt to
put words in the mouths of the previous authors.

Road Map

The main text of this book is divided into five parts, each with its own
personality and each addressing different aspects of the Ruby language.

Part I, Facets of Ruby, is a Ruby tutorial. It starts with notes on getting
Ruby running on your system followed by a short chapter on the
terminology and concepts that are unique to Ruby. The initial chapter also
includes enough basic syntax so that the other chapters will make sense.
The rest of the tutorial is a top-down look at Ruby. There we talk about
classes and objects, types, expressions, and all the other things that make up
the language. We end with a chapter on unit testing.

Part I, Ruby in Its Setting, investigates one of the great things about Ruby,
which is how well it integrates with its environment. Here you’ll find
practical information on using Ruby: using the interpreter options, working
with irb, documenting your Ruby code, type checking, and packaging your
Ruby gems so that others can enjoy them.

Part III, Ruby Crystallized, contains more advanced material. Here you’ll
find all the details about using Ruby for the web, Ruby style, the concept of
duck typing, the object model, metaprogramming, reflection, and object
space. You could probably speed-read this the first time through, but we
think you’ll come back to it as you start to use Ruby in earnest.

Part 1V, Ruby Language Reference, includes more complete notes on syntax
and fuller documentation of language features discussed in the first three
parts.

Part V, Ruby Library Reference, isn’t a complete reference of the entire
Ruby library—that’s much more readily available at https://docs.ruby-
lang.org/en—but it’s a map to the most commonly used and most useful
features of the library.

https://docs.ruby-lang.org/en
https://docs.ruby-lang.org/en

How should you read this book? Well, depending on your level of expertise
with programming in general and object-oriented programming in
particular, you may initially want to read just a few portions of the book.
Here are our recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part
I. Keep the library reference close at hand as you start to write programs.
Get familiar with the basic classes such as Array, Hash, and String. As you
become more comfortable in the environment, you may want to investigate
some of the more advanced topics in Part III.

If you’re already comfortable with JavaScript, Python, or Java, then we
suggest reading Chapter 1, Getting Started, which talks about installing and
running Ruby, followed by the introduction in Chapter 2, Ruby.new. From
there, you may want to take the slower approach and keep going with the
tutorial that follows, or you can skip ahead to the details starting in Part III,
followed by the language reference in Part IV and the library reference in
Part V.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive
straight into the language reference in Chapter 24, Language Reference:

Literal Types and Expressions, skim through the library reference, and then
use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with starting at the beginning and working your
way through page by page.

And don’t forget: if you run into a problem that you can’t figure out, help is
available. For more information, see Appendix 1, Troubleshooting Ruby,.

Resources

Visit the Ruby website at http://www.ruby-lang.org to see what’s new. You
can find a list of community resources, including the official mailing list
and Discord server, at https://www.ruby-lang.org/en/community.

And we’d certainly appreciate hearing from you. Comments, suggestions,
errors in the text, and problems in the examples are all welcome. Email us
at rubybook@pragprog.com.

If you find errors in the book, you can add them to the errata page at
https://devtalk.com/books/programming-ruby-3-2-5th-edition/errata. If
you’re reading the PDF version of the book, you can also report an erratum
by clicking the link in the page footers.

You’ll find links to the source code for almost all of the book’s code
examples at https://www.pragprog.com/titles/rubysS.

With all that out of the way, let’s start learning about Ruby.

Footnotes

(1l https://github.com/testdouble/standard

Copyright © 2024, The Pragmatic Bookshelf.

http://www.ruby-lang.org/
https://www.ruby-lang.org/en/community
https://devtalk.com/books/programming-ruby-3-2-5th-edition/errata
https://www.pragprog.com/titles/ruby5
https://github.com/testdouble/standard

Acknowledgments

In January 2001, I bought myself a programming book as a birthday
present. It had a pickaxe on the cover, and it was written by the two people
who wrote The Pragmatic Programmer. It was about this new
programming language from Japan that [had heard about on the Extreme
Programming mailing list, and which sounded very interesting.

I can’t thank Dave Thomas and Andy Hunt enough. It’s hard to even begin
to list what I’ve gained from purchasing that initial book and from my
association with The Pragmatic Bookshelf. Thanks also to Chad Fowler for
his work on subsequent versions of the book. I inherited a great book from
the three of you, and I hope this version will continue to bring people into
the Ruby language and the Ruby community.

The path from buying a book on a whim to being the person updating that
book more than 20 years later doesn’t happen without a lot of help.

As much as I love Ruby the language, I also love Ruby the community and
the many, many people who I’ve come to know through Ruby. The risk of
starting to list people is that I'm sure I will inadvertently leave somebody
out, but I want to particularly thank Gregg Pollack, Jason Seifer, Avdi
Grimm, James Edward Gray 11, Betsy Haibel, Justin Searls, Marty Haught,
Kerri Miller, Brian Hogan, Ray Hightower, Fable Tales, Matt Polito, Even
Light, Allison McMillan, and Jim Remsik. There are many more I could list
—thank you to all of you.

Mark Guzdial was my graduate advisor and the person who encouraged me
to write about programming and teach programming.

This is somehow the seventh title I’ve worked on with Katharine Dvorak as
the editor. As always, she makes working on the book easier and helps
structure the book into its most coherent form. Dave Rankin at The
Pragmatic Bookshelf was the person who agreed to let me work on this
book. Thanks so much for the opportunity and the vote of confidence.

The following people reviewed all or part of the book, and their feedback
and knowledge have made this a better and more accurate book: Jean
Boussier, Avdi Grimm, Chris Houhoulis, Gabi Jack, Bernard Kaiflin, Brian
Lesperance, Stefan Magnuson, Kevin Murphy, Ryan Prinz, Nishant Roy,
Victor Shepelev, and Brandon Weaver.

Everything in my life is better because of my family. Thanks to my
children, Amit and Elliot, who have enriched my life in so many ways. And
something beyond thanks to my wife Erin, these small sentences can’t
express how much I love you and how much your love and support mean to
me.

Copyright © 2024, The Pragmatic Bookshelf.

Part 1
Facets of Ruby

Welcome to Ruby! Part I is a tutorial covering all the Ruby
you’ll need to be able to understand a good-sized Ruby
application. We’ll explore the most important parts of the
syntax and the standard library, and go beyond the basics in

a couple of places where Ruby has a particularly interesting
or powerful tool at hand.

Chapter 1

Getting Started

We’re going to spend a lot of time in this book talking about the Ruby
language. Before we do, we want to make sure you can get Ruby installed
and running on your computer. That way, you can try the sample code and
experiment on your own as you read along. If you want to learn Ruby you
should get into the habit of writing code as you’re reading.

If you aren’t comfortable with using a command line, we can help. Please
turn to Appendix 3, Command-Line Basics, and we’ll give you all the
information you need to get started.

Installing Ruby

There 1s a good chance your operating system already has Ruby installed.
Try typing ruby --version at a command prompt—you may be pleasantly
surprised. But you’re likely to find that the Ruby version is out of date. For
example, at the time of this writing, MacOS ships with Ruby 2.6.10, which
is multiple versions behind the current Ruby.

The examples in this book are written against Ruby 3.3. While most of the
code will work in older versions of Ruby, for performance and security
reasons you should try to get on the most current version. Refer to
Appendix 5, Ruby Changes, for a listing of the features added and changes
made to Ruby at each iteration.

You can install Ruby in a variety of different ways, so providing general
installation instructions becomes a little bit of a choose-your-own-adventure
story. Most of the examples in this book assume you’re using a Linux- or
Unix-style system that responds to Linux-style commands. This includes all
Linux distributions, macOS, Windows systems running Windows
Subsystem for Linux (WSL),#! and most Docker™® containers as well as
cloud-based development environments such as Replit.™

That said, Ruby does run on Windows. The process for managing a Ruby
installation on Windows is different, and we’ll cover it in full detail later in
this chapter.

Please note that the tooling for Ruby’s installation does change frequently,
and some of the specific instructions might be out of date or replaced by
newer tools.

Opting Out of Installation

If you don’t want to install anything on your computer for some
o reason, you can take advantage of cloud-based development
environments such as Replit or GitHub Codespaces. These
environments enable you to write your code in a browser and
run it against a cloud-based virtual machine.

Installing Ruby with the rbenv Version Manager

To facilitate our installation of Ruby, we’ll use a version manager, which is
a tool that allows you to install and switch between multiple Ruby versions
on the same machine. There are many reasons to use a version manager to
handle your Ruby installation. Being able to easily switch between multiple
versions of Ruby gives you the flexibility to work with multiple projects
that might have been written at different times. In addition, the version
managers have been created for easy installation, so installing multiple
Ruby versions with a version manager is easier than installing a single
version by itself. More powerful and easier to use 1s a hard combination to
beat. If you’re interested in downloading only one version of Ruby, you can
find system-by-system instructions at https://www.ruby-
lang.org/en/documentation/installation.

The tool we’ll use in this book is called rbenv.”) Rbenv isn’t the only Ruby
version manager, but it’s probably the most commonly used these days.
Other commonly used version managers are RVMY and chruby.Z (And yes,
having competing tools named “RVM” and “rbenv” is confusing.) If you’re
using version management for multiple languages, you might want to look
at a project called asdf, which unifies different languages’ version
managers,® and is rapidly becoming more popular within Ruby.

https://www.ruby-lang.org/en/documentation/installation
https://www.ruby-lang.org/en/documentation/installation

We’ll install rbenv through the conveniently provided rbenv-installer
program. If executing somebody else’s shell script makes you nervous, you
can inspect the script at https://github.com/rbenv/rbenv-
installer/blob/main/bin/rbenv-installer before you run it.

From a command terminal, enter this command all on one line (the line is
split here for page-width reasons):

$ curl -fsSL
https://github.com/rbenv/rbenv-installer/raw/HEAD/bin/rbenv-installer |
bash

Curl 1s a command-line tool for accessing URLs and doing something
useful with the return value—in this case, retrieving a shell script from the
rbenv GitHub repo and passing it along to a bash shell to be executed.

This script will install rbenv using the appropriate package manager for
your system, and will also install a helper program called ruby-build that
will manage the download and installation of different Ruby versions.

The installation command might produce a lot of output—especially if
you’re on a MacOS system that uses the Homebrew package manager. On a
Mac, it should end with the following (a Windows user under WSL might
see something different):

All done! Note that this installer does NOT edit your shell configuration Files: 1. Run
‘rbenv init’ to view instructions on how to configure rbenv for your shell. 2. Launch a

new terminal window after editing shell configuration Files.

Following instructions, run rbenv init. This is the output on a Mac running
zshell (your instructions may be different):

$ rbenv init
Load rbenv automatically by appending
the following to ~/.zshrc:

https://github.com/rbenv/rbenv-installer/blob/main/bin/rbenv-installer
https://github.com/rbenv/rbenv-installer/blob/main/bin/rbenv-installer

eval "$(rbenv init - zsh)"

No matter what your setup is, what you should get in this instruction is:

e The file that contains the shell configuration you need to update
e The text you need to put at the end of the file

You need to put the suggested line of text at the end of your configuration
file and open a new terminal window. The change only takes effect when a
window is loaded, so the easiest way to get rbenv started is to open a new
terminal window. If you have any questions about how to use the terminal,
see Appendix 3, Command-Line Basics.

Now, let’s install a specific Ruby version.

Installing Rubies with rbenv

Rbenv allows you to see a list of the Ruby versions you’ll most likely want
to install with the command rbenv install -l. Here’s the current list (as I write

this, 3.3.0 is not fully released):

$ rbenv install -1

2.7.8

3.0.6

3.1.4

3.2.2

jruby-9.4.2.0

mruby-3.2.0

picoruby-3.0.0
truffleruby-22.3.1
truffleruby+graalvm-22.3.1

Only latest stable releases for each Ruby implementation are shown.
Use 'rbenv install --1list-all / -L' to show all local versions.

This list has the most up-to-date patch versions of various Ruby
implementations. You can see the current minor versions for the major
Ruby versions 2.7, 3.0, 3.1, 3.2, and 3.3. (When talking about different
Ruby implementations, the main one is sometimes called CRuby and other

times called MRI, for “Matz’s Ruby Interpreter.”) There are also other
versions we’re not going to talk about much here. JRuby™ is a Ruby
version that runs on the Java Virtual Machine. Mruby is a special limited
build of Ruby for running on embedded hardware. TruffleRuby"? is an
implementation of the language that is focused on high performance.

Our interest right now is Ruby 3.3.0, which we can install with the
command rbenv install 3.3.0. (If Ruby 3.3.0 isn’t out as you read this, you can
use 3.2.2 or 3.3.0-dev.) If you don’t see the most current version of Ruby on
the list, and you’ve installed rbenv previously, you may get instructions on
how to update ruby-build to get newer Ruby versions in your list. Note that
none of the rbenv commands require us to have superuser access or to use
sudo. One of the joys of the Ruby version managers, including rbenv, is that
they do everything inside your home directory—you don’t have any special
system privileges to install or use new Ruby versions.

$ rbenv install 3.3.0

To follow progress, use

"tail -f <REDACTED>'

or pass --verbose

Installing openssl-3.1.0...

Installed openssl-3.1.0 to /Users/noel/.rbenv/versions/3.3.0

Installing ruby-3.3.0...

ruby-build: using readline from homebrew

ruby-build: using gmp from homebrew

Installed ruby-3.3.0 to /Users/noel/.rbenv/versions/3.3.0

Your output may be slightly different, depending on the exact version
number and whether you’re re-installing the Ruby version.

We can verify that the Ruby version has been installed with rbenv versions,
for example:

$ rbenv versions
* system
3.3.0

The system here is the pre-defined Ruby for the operating system if such a
thing exists, and the asterisk shows which version is currently active.

Right now, the system Ruby is still active. Let’s change that.

Switching Rubies with rbenv

This is where we start to see the payoff. Once different Ruby versions are
installed, rbenv allows us multiple ways to switch the Ruby version we’re
using.

The command rbenv local <version> changes the Ruby version for the
directory you’re in:

$ ruby --version
ruby 2.6.10p210 (2022-04-12 revision 67958) [universal.armé64e-darwin22]

$ rbenv local 3.3.0

$ ruby --version
ruby 3.3.0 (2023-11-02T22:34:587 master ac8ec004e5) [arm64-darwin23]

If the new Ruby you think you’ve installed doesn’t seem to be available,
you may need to run the command rbenv rehash. This command produces no
output, but it does enable rbenv to use the newly installed Ruby.

This setting for the directory persists even if you leave the directory and
come back. (If you don’t want the change to persist beyond the current
session, you can use rbenv shell <VERSION> instead of rbenv local.)

$Sad..
$ cd test

$ ruby --version
ruby 3.3.0 (2023-11-02T22:34:587 master ac8ec004e5) [arm64-darwin23]

Rbenv accomplishes this by putting a file in the directory called .ruby-
version, which only contains the version number of the Ruby you’ve set for
that directory.

% cat .ruby-version
3.3.0

This file also works in reverse. If you have rbenv installed and you change
to a directory that contains a .ruby-version file, one of two things will happen.
Rbenv will either automatically change to that Ruby version if it’s installed
or warn you that the directory expects an uninstalled Ruby if it isn’t. Many
Ruby projects use a .ruby-version file to specify their Ruby version, and it’s
respected by all the Ruby version managers.

If you want to set a default Ruby version for directories that don’t specify
their own, you can do so with rbenv global <versions.

This may be more work than you were expecting to install Ruby. If all you
ever wanted to do was use a single version of Ruby, we’d agree. But what
you’ve done here is give yourself an incredible amount of flexibility.
Maybe in the future, a project comes along that uses Ruby 2.7.5, per its
.ruby-version file. That’s not a problem—use rbenv install 2.7.5, and rbenv will

automatically pick up the version from the .ruby-version file.

What Is rbenv Actually Doing?
Rbenv attempts to provide its dynamic behavior with as little change to your regular
terminal environment as possible.

A Unix terminal uses a global environment variable called PATH to determine what
directories it looks in for executable programs when you type a command. If you look
in your configuration file for your terminal, you'll likely see the PATH variable being
modified.

When the rbenv init command is executed as part of your terminal setup, it inserts a
directory at the front of your PATH, so that your operating system will look in the rbenv
directory before looking anyplace else. That directory has a set of what rbenv calls
shims—small programs that match all the executable commands in all your Ruby

versions. (The reason why you may need to run rbenv rehash after installing a new
Ruby is to refresh this directory.) When you call a Ruby command like ruby or (as
you’ll see in a minute) irb, the rbenv shim is encountered first, and it dynamically
chooses which Ruby is active, usually based on the presence of a .ruby-version file.
Then the command is handed off to the actual executable program in that current
version. You can see these actual versions, they live in your home directory at
~/.rbenv/versions.

Installing Ruby for Windows

Ruby isn’t available as a default option in Windows the way it’s in Unix
distributions or MacOS, but it can be installed and used and can interact
with the underlying environment to automate Windows-specific resources.

We’re going to focus on two ways to install Ruby on Windows: using the
Windows Subsystem for Linux (WSL)!, which allows you to run a Linux
command-line terminal in your Windows system, and using
Rubylnstaller"® to install a Windows application that lets you execute Ruby
programs.

The two different kinds of Ruby can both be installed on the same machine
and have different purposes. Using WSL gives you a command shell that’s
effectively a Linux distribution, allowing you to seamlessly use any of the
other Ruby tooling in this book. Using Rubylnstaller gives you access to
Ruby from within a regular Windows PowerShell prompt, allowing you to
execute Ruby programs from File Explorer, and giving you access to
Windows-specific libraries.

No matter which way you want to run Ruby, you should also install
Windows Terminal so that you have a fully-featured terminal program
available. You can download Windows Terminal at
https://docs.microsoft.com/en-us/windows/terminal/install, where you’ll
also find instructions on how to make it your default terminal program.
From Windows Terminal, you can set up new command-line sessions using
either Microsoft’s PowerShell or the WSL shell. (You can also use Visual
Studio Code’s terminal to run either kind of command line.)

Also, if you need a brief tutorial on how Unix command lines work, see
Appendix 3, Command-Line Basics.

Using Windows Subsystem for Linux

https://docs.microsoft.com/en-us/windows/terminal/install

Windows Subsystem for Linux (WSL) allows you to run a Linux
distribution binary inside your Windows setup without incurring the
performance penalty of using a virtual machine or Docker container. WSL
defines the wiring between the Linux OS commands and the Windows OS,
allowing you to run your favorite Linux distribution from a command line
transparently without having to deal with the Windows part at all. You can
also have editing tools like Visual Studio Code or RubyMine interact with
WSL as they run your Ruby code.

We’re going to cover the basics of how to use WSL here, but if you need
more information, the official documentation is available from Microsoft."¥

Installing WSL

The first step in using Ruby with WSL is installing WSL itself. According
to the WSL website, you need to be running Windows 10 version 2004 and
higher (Build 19041 and higher) or Windows 11 for this to work. We’re
installing WSL version 2 here.

You need to open an administrator Windows command terminal—it doesn’t
matter whether it’s PowerShell or the regular terminal, but it does have to
be an administrator shell. In Windows 11, the easiest way to get an admin
shell is to right-click on the start menu and select the “Windows Terminal
(Administrator)” option, which will open Windows Terminal in an admin
shell. Depending on your Windows version, you may get prompted to say
whether you’ll allow the program to make changes to your system. Say yes.

From the admin shell, type the command wsl —install. This will give us the
default Linux installation, which is Ubuntu. The session looks like this
when it’s through, but it may take a little time to get through the download
and installation process.

PS C: \Users\noelr> wsl --install
Installing: Virtual Machine Platform
Virtual Machine Platform has been installed.
Installing: Windows Subsystem for Linux

Windows Subsystem for Linux has been installed.
Downloading: WSL Kernel

Installing: WSL Kernel

WSL Kernel has been installed.

Downloading: GUI App Support

Installing: GUI App Support

GUI App Support has been installed.

Downloading: Ubuntu

The requested operation is successful.

Changes will not be effective until the system is rebooted

Reboot the system. This may take some time.

When the system comes back up, open Windows Terminal. The pull-down
menu in the tab bar should now give you the option of an Ubuntu prompt.
You may get prompted to do a sudo apt-get update to update programs in the
Ubuntu distribution.

You’ll then get prompted to create a Unix account for WSL:

Installing, this may take a few minutes.

Please create a default UNIX user account.

The username does not need to match your Windows username
For more information visit: httos://aka.ms/wslusers

Enter new UNIX username:

The username isn’t in any way connected to your Windows account—it’s a
brand-new account for the Linux distribution you’ve installed using WSL.
After you enter the username, you’ll be prompted for the password. You
won’t get challenged for the password every time you open a WSL
terminal, but you should write it down just in case because someday you
may want to sudo something, and you’ll get asked for your password before
getting superuser rights. (Ask us how we know.) That said, don’t depend on
this password being super-secure by default; the root WSL user has no

password.

At this point, you can use Windows Terminal to open a WSL terminal by
clicking the downward arrow next to the + in the tab bar and selecting

Ubuntu from the menu.

Installing Ruby under WSL

We’re partway there, but the default Ubuntu installation doesn’t include
Ruby or a version manager. These instructions are adapted from
https://gorails.com/setup/windows/10#linux-subsystem.

The Ubuntu distribution uses a package manager called apt-get to distribute
its applications. We need to install some dependencies:

sudo apt-get update

sudo apt-get install git-core curl

sudo apt-get install zlibilg-dev build-essential libssl-dev

sudo apt-get install libreadline-dev libyaml-dev libsqlite3-dev sqlite3
sudo apt-get install libxml2-dev libxslti-dev libcurl4-openssl-dev

sudo apt-get install software-properties-common libffi-dev

“v N nnn n

The first line updates apt-get itself so you can get the most current version
of everything, and the following lines install the packages that Ruby will
need. Note that you can do all those installs on a single line (we’re splitting
it up here for page-width purposes).

At this point, you should be able to install the rbenv version manager using
the instructions in [nstalling Ruby with the rbenv Version Manager. The
GoRails site mentioned before has slightly different rbenv instructions, they
should both work.

Using WSL and Ruby

You should be good to go, as you can confirm by opening up a new WSL
terminal and typing irb. Within WSL, you can use any of the Unix tools that

we’ve described elsewhere in this book.

Ruby programs can be invoked using ruby from the WSL command line as

we’ll discuss in Chapter 14, Ruby from the Command Line. Where it gets a
little bit tricky is in sharing files. WSL sets up what is, in effect, its own file

https://gorails.com/setup/windows/10#linux-subsystem

system. For performance reasons, you’re encouraged to keep all the files
you use in WSL code in the WSL file system (as apparently file read and
write between the two systems is expensive).

That said, it is possible to share files. Windows files are set up in WSL
under the mnt directory (short for “mount point”). Your C: drive is /mnt/c.
You can access Windows files using that path as a prefix. Other drives, like
network drives, can also be connected to a mount point, but it doesn’t
happen by default.

From the Windows side, WSL files show up in File Explorer under their
own “Linux” heading. You can right-click those files and open them in a
Windows editor, but you can’t directly invoke them in WSL from the
Windows file system. (You could, in theory, create a shortcut that invokes a
terminal and a single bash command to run a WSL file.)

Visual Studio Code has a WSL extension that you can install that allows
you to load a WSL directory from the regular Windows version of Visual
Studio Code. Run that directory using the WSL ruby, and use the WSL
terminal as a prompt. Similarly, RubyMine allows you to connect to WSL
as a remote interpreter, open a WSL project, and run it using the WSL Ruby.

Using Rubylnstaller

Although WSL is nice, and it’s great to be able to seamlessly integrate with
existing Ruby tooling, from the point of view of a Windows user, it does
have some drawbacks. WSL has some performance overhead, including
taking up a lot of memory. It also doesn’t integrate with the Windows
system directly, meaning that you can’t do Windows-specific things.

A native Ruby installation is available for Windows, and it’s simply called
Rubylnstaller.H¥ RubylInstaller is a regular Windows installer that gives you
a regular Windows executable Ruby interpreter that you can use to run
Ruby code.

Installing Ruby with RubylInstaller

You can download RubylInstaller from https://rubyinstaller.org, where you
can find versions corresponding to each Ruby patch version for both x64
and x86 machines. There are versions both with and without Devkit, which
1s an add-on that allows Ruby gems that have native C-language extensions
to be compiled. A couple of prominent Ruby gems have extensions, so we
recommend the Devkit version.

Once the installer has downloaded, run it and you’ll get a standard
Windows installer. You’ll have options to “Add Ruby executables to your
PATH” and “Associate .rb and .rbw files with this Ruby installation,” both
of which we recommend. You’ll then have the option to install “Ruby RI
and HTML documentation” and the “MSYS2 development toolchain,”
which again, we recommend. At the end, you’ll be asked to run “ridk
install” to set up the development toolchain. Doing so will give you a pop-
up window that will ask you which MSYS2 components to install and to
confirm the defaults are what you want (which they are, so keep them).
Press ENTER to start the MSYS2 installation. After the installation finishes
that phase, it’ll prompt you again. If the brackets in the prompt are empty,
pressing ENTER will finish the installation.

Using Ruby with RubylInstaller

At this point, from a regular Windows terminal, you can run ruby and irb
with the same options as we’ll discuss in Chapter 14, Ruby from the
Command Line, and Chapter 16, [nteractive Ruby,.

You’ll find two versions of the Ruby interpreter in the RubylInstaller
distribution. The ruby version is meant to be used at a command prompt
(DOS shell or PowerShell), as in the Unix version. For applications that
read and write to the standard input and output, this is fine. This means that
any time you run ruby, you’ll get a DOS shell even if you don’t want one—
Windows will create a new command prompt window and display it while
Ruby is running.

https://rubyinstaller.org/

This may not be appropriate behavior if, for example, you double-click a
Ruby script that uses a graphical interface or if you’re running a Ruby script
as a background task or from inside another program. In these cases, you’ll
want to use rubyw. This is the same as ruby except that it doesn’t provide
standard 1n, standard out, or standard error and doesn’t launch a DOS shell
when run.

On Windows 11, you can also run Ruby code by right-clicking Ruby files in
File Explorer.

Running Ruby

Now that Ruby is installed, you’d probably like to run some programs.
Unlike compiled languages, you have two ways to run Ruby: you can type
in code interactively, or you can create program files and run them. Typing
in code interactively is a great way to experiment with the language, but for
code that’s more complex or code that you’ll want to run more than once,
you’ll need to create program files and run them. But, before we go any
further, let’s test to see whether Ruby is installed. Bring up a fresh
command prompt, and type this:

$ ruby --version
ruby 3.3.0dev (2023-11-01T17:47:26Z master 909afcb4fc) [arm64-darwin23]

Technically, you can run Ruby interactively by typing ruby at the shell

prompt. You’ll get a blank line in response, and you can type your Ruby
code there.

$ ruby

puts "Hello, world!"
~D

Hello, world!

In this example, we typed in a single line of Ruby. That line consists of two
parts. The first part, puts, is the name of a method. A method is a pre-

defined chunk of code. In this case, the puts method is one of several
methods defined for us by Ruby. The second part, "Hello, world!", is text

surrounded by double quotes, which is called a string. Combining the two,
the Ruby code puts "Hello, world!" calls the method puts with the argument

"Hello, world!". The puts method then outputs that argument back to the
terminal—puts is short for “outPUT String”.

On the next line, we typed an end-of-file character (Ctrl+D on our system),
which exited the program and caused what we typed to be evaluated. Using

Ruby like this works, but it only shows responses if you explicitly print
them out. Also, it’s painful if you make a typo, and you can’t see what’s
going on as you type.

Happily, there’s a better way to interact with Ruby.

Interactive Ruby, or irb, is the tool of choice for executing Ruby
interactively. Irb is a complete Ruby shell, with command-line history, line-
editing capabilities, and job control. (In fact, it has its own chapter in this
book: Chapter 16, Interactive Ruby.) You run irb from the command line.

Once it starts, type in Ruby code. It will show you the value of each
expression as it evaluates it. Exit an irb session by typing exit or Ctrl+D.

Here’s a sample session:

$ irb

irb(main):001:1* def sum(nl, n2)
irb(main):002:1* nl1 + n2
irb(main):003:0> end

=> :sum

irb(main):004:0> sum(3, 4)

= 7

irb(main):005:0> sum("cat", "dog")
=> "catdog"

irb(main):006:0> exit

In the first three lines of this session, we’re defining a method called sum.
The act of defining that method returns a value called :sum, which is a Ruby
symbol matching the name of the method. We’ll talk more about symbols
and method names later. In line 4 of the input, we’re calling the method,
first with arguments 3 and 4, returning 7, then in line 5 with arguments "cat"
and "dog”. In Ruby, adding strings concatenates them, so the line returns the
string "catdog". Then we exit on line 6.

If you try this in Ruby 3.1 or higher, you’ll notice that irb attempts to offer
autocompletion of variable names or commands, and also color codes,

neither of which is easy to show in a book.

We recommend that you get familiar with irb—it’s a great way to explore
Ruby concepts and debug your code, and it’ll make your experience with
Ruby more fun.

What about Docker?
If you're using Ruby on a larger project or with a larger team, there’s a good chance
that Docker is part of your development environment. Docker is a tool that allows you
to define and run containers. A container is a way to package all the dependencies
needed to run code—it’s a virtual operating system inside your computer. Using
Docker, you can simulate a Linux environment no matter what operating system you're
running.

A full description of Docker is out of this book’s scope. But, if you're already familiar
with Docker in general, it's worth mentioning that Docker maintains images with
different Ruby versions pre-installed. You can always get to the latest released version
with ruby:latest, and you can go straight to a Dockerized irb prompt with docker run -
it ruby irb. Running external Ruby files in the Docker container is doable as well but
requires a little more Docker knowledge.

Creating Ruby Programs

The most common way to write Ruby programs is to put the Ruby code in one
or more text files. You’ll use a text editor or an Integrated Development
Environment (IDE) to create and maintain these files—many popular editors,
including Visual Studio Code, vim, Sublime Text, and RubyMine, feature
Ruby support. You’ll then run the files either from within the editor or from
the command line. Both techniques are useful. You might run single-file
programs from within the editor and more complex programs from the
command line.

Let’s create a short Ruby program and run it. Open a terminal window and
create an empty directory somewhere, perhaps you could call it pickaxe.

Then, using your editor of choice, create the file myprog.rb, containing the
following text:

pickaxe/myprog.rb

puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

Note that the second string contains the text Time.now between curly braces,
not parentheses.

You can run a Ruby program from a file as you would any other shell script or
program in another scripting language like Python. Run the Ruby interpreter,
giving it the script name as an argument:

$ ruby myprog.rb
Hello, Ruby Programmer
It is now 2023-11-02 17:15:44 -0500

On Unix systems, you can use the “shebang” notation as the first line of the
program file. If your system supports it, you can avoid hard-coding the path to

http://media.pragprog.com/titles/ruby5/code/pickaxe/myprog.rb

Ruby in the “shebang” line by using #!/usr/bin/env ruby, which will search your
path for ruby and then execute it.

#!/usr/bin/env ruby
puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

If you make this source file executable (using, for instance, chmod +x
myprog.rb), Unix lets you run the file as a program:

$./myprog.rb
Hello, Ruby Programmer
It i{s now 2023-11-02 17:15:44 -0500

You can do something similar under Microsoft Windows using file
associations, and you can run Ruby GUI applications by double-clicking their
names in Windows Explorer.

Getting More Information about Ruby

As the volume of the Ruby libraries has grown, it has become impossible to
document them all in one book; the standard library that comes with Ruby
now contains more than 9,000 methods. The official Ruby documentation is
at https://docs.ruby-lang.org, with official pages for the different versions of
the core and standard library located there. irb will also give you
documentation of standard method names as you type.

Much of this documentation is generated from comments in the source code
using a tool called RubyDoc, which we’ll look at in Chapter 19,
Documenting Ruby. The RubyDoc site at https://www.rubydoc.info contains
documentation for Ruby projects that use RubyDoc. Third-party libraries in
the Ruby world are called gems, and the official listing of Ruby gems is at
https://rubygems.org. We’ll talk lots more about gems in Chapter 15, Ruby
Gems.

There is also a command-line tool for the Ruby core documentation called
ri. To find the documentation for a class, type ri <classname>. For example,
the following is the beginning of the summary information for the String
class. If you type ri with no arguments, you get a prompt asking you for a
class.

= String < Object

= Includes:
Comparable (from ruby core)

(from ruby core)

A String object has an arbitrary sequence of bytes, typically
representing text or binary data. A String object may be created using
String::new or as literals.

https://docs.ruby-lang.org/
https://www.rubydoc.info/
https://rubygems.org/

String objects differ from Symbol objects in that Symbol objects are
designed to be used as identifiers, instead of text or data.

It goes on to list all the methods of String.

You can also try a method name:
$ ri strip
= .strip

(from ruby core)
=== Implementation from String

str.strip -> new_str

Returns a copy of the receiver with leading and trailing whitespace
removed.

Whitespace is defined as any of the following characters: null,
horizontal tab, line feed, vertical tab, form feed, carriage return,
space.

" hello ".strip #=> "hello”
"\tgoodbye\r\n".strip #=> "goodbye”
"\x00\t\n\v\f\r ".strip #=> ""
"hello".strip #=> "hello"

You can then exit the listing by typing q.

What’s Next

Now that you’re up and running, it’s time to learn how Ruby works. First,
we’ll do a quick overview of the main features of the language.

Footnotes

(21 https://docs.microsoft.com/en-us/windows/wsl/install

(31 https://www.docker.com

(4] https://replit.com

[3] https://github.com/rbenv/rbenv

(6] https://rvm.io

(7] https://github.com/postmodern/chruby,

(8] https://asdf-vim.com

(2] https://www.jruby.org

[10] https://github.com/oracle/truffleruby

Ll https://docs.microsoft.com/en-us/windows/wsl

[12] https:/rubyinstaller.org

[13] https://docs.microsoft.com/en-us/windows/wsl

[14] " https://rubyinstaller.org

Copyright © 2024, The Pragmatic Bookshelf.

https://docs.microsoft.com/en-us/windows/wsl/install
https://www.docker.com/
https://replit.com/
https://github.com/rbenv/rbenv
https://rvm.io/
https://github.com/postmodern/chruby
https://asdf-vm.com/
https://www.jruby.org/
https://github.com/oracle/truffleruby
https://docs.microsoft.com/en-us/windows/wsl
https://rubyinstaller.org/
https://docs.microsoft.com/en-us/windows/wsl
https://rubyinstaller.org/

Chapter 2

Ruby.new

Many books on programming languages look about the same. They start
with chapters on basic types: integers, strings, and so on. Then they look at
expressions like 2 + 3 before moving on to if and while statements and loops.
Then, perhaps around Chapter 7 or 8, they’ll start mentioning classes. We
find that somewhat tedious.

Instead, when we designed this book, we had a grand plan. We wanted to
document the language from the top down, starting with classes and objects
and ending with the nitty-gritty syntax details. It seemed like a good idea at
the time. After all, most everything in Ruby is an object, so it made sense to
talk about objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language top-down. If
you haven’t covered strings, if statements, assignments, and other details,
it’s difficult to write examples of classes. Throughout our top-down
description, we kept coming across low-level details we needed to cover so
that the example code would make sense.

So we came up with another grand plan (they don’t call us pragmatic for
nothing). We’d still describe Ruby starting at the top. But before we did
that, we’d add a short chapter that described all the common language
features used in the examples along with the special vocabulary used in

Ruby—a mini-tutorial to bootstrap us into the rest of the book. And that
mini-tutorial is this chapter.

Ruby Is an Object-Oriented Language

Let’s say it again. Ruby is an object-oriented language. In programming terms,
an object is a thing that combines data with the logic that manipulates that
data, and a language is “object-oriented” if it provides language constructs that
make it easy to create objects. Typically, object-oriented languages allow their
objects to define what their data is, define their functionality, and provide a
common syntax to allow other objects to access that functionality.

Many languages claim to be object-oriented, and those languages often have a
different interpretation of what object-oriented means and a different
terminology for the concepts they employ. Unlike other object-oriented
languages such as Java, JavaScript, and Python, all Ruby types are objects,
and there are no non-object basic types that behave differently.

Before we get too far into the details, let’s briefly look at the terms and
notations that we’ll be using to talk about Ruby.

When you write object-oriented programs, you’re looking to model concepts
from the outside world or from your logical domain. During this modeling
process, you’ll discover categories of related data and behavior that need to be
represented in code. In a system representing a jukebox, the concept of a
“song” could be such a category. A song might combine state (for example, the
name of the song) and methods that use that state (perhaps a method to play
the song). In Ruby, you’d define a class called Song to represent the general

case of what songs do.

Once you have these classes, you’ll typically want to create a number of
separate instances of each. For the jukebox system containing a class called
Song, you’d have separate instances for popular hits with different names such
as “Ruby Tuesday,” “Enveloped in Python,” “String of Pearls,” “Small Talk,”
and so on. Each of these instances has its own state but shares the common
behavior of the class. The word object is often used interchangeably with
instance.

In Ruby, instances are created by calling a constructor, which is a special
method associated with a class. The standard constructor is called new. As

we’ll see later in Chapter 3, Classes, Objects,_and Variables, the new method is

defined for you by Ruby, and you don’t need to define it on your own. You
might create instances like this:

songl = Song.new("Ruby Tuesday")
song2 = Song.new("Enveloped in Python")
and so on

These instances are both derived from the same class, but they each have
unique characteristics. Every object has a unique object identifier (abbreviated
as object id), accessible via the property object_id. In this example, if you were
to check song1.object_id and song2.object_id, you’d find they have different
values.

For each instance, you can define instance variables, variables with values
that are unique to that instance. These instance variables hold an object’s state.
Each of our songs, for example, will have an instance variable that holds that
song’s title.

Within each class, you can define instance methods. Each method is a chunk
of functionality that may be called in the context of the class and usually from
outside the class, although you can set constraints on what methods can be
used externally. These instance methods have access to the object’s instance
variables and hence to the object’s state. A Song class, for example, might
define an instance method called play. If a variable referenced a particular Song
instance, you’d be able to call that instance’s play method and play that song.

Syntactically, a method is invoked using dot syntax, here are some examples:

intro/puts_examples.rb

"gin joint".length # => 9
"Rick".index("c") # => 2
42 .even? # => true
sam.play(song) # => "duh dum, da dum de dum ..."

http://media.pragprog.com/titles/ruby5/code/intro/puts_examples.rb

Each line shows a method being called. The item before the dot is called the
receiver of the method, and what comes after the period is the name of the
method to be invoked. The first example asks the string "gin joint" for its
length. The second asks a different string to find the index within it of the
letter c. The third line asks the number 42 if it’s even (the question mark is part
of the method name even?). Finally, we ask an object called sam to play us a
song (assuming there’s an existing variable called sam that references an
appropriate object which we’ve defined elsewhere).

When we talk about methods being sent, we often say that we send a message
to the object. The message contains the method’s name along with any
arguments the method may expect. The object responds to the message by
invoking the method with that name. This idea of expressing method calls in
the form of messages to objects comes from the programming language
Smalltalk. When an object receives a message, it looks into its own class for a
corresponding method. If found, that method is executed. If the method isn ¥
found, Ruby goes off to look for it—we’ll get to that in Method Lookup.

It’s worth noting here a major difference between Ruby and other object-
oriented languages. In Java, for example, you’d find the absolute value of
some number by calling a separate function and passing in that number. You
could write this:

num = Math.abs(num); // Java code

In Ruby, the ability to determine an absolute value is built into the numbers
class which takes care of the details internally. You send the message abs to a

number object and let it do the work:

num = -1234 # => -1234
positive = num.abs # => 1234

The same applies to all Ruby objects. In Python, you’d write len(name), but in
Ruby, it would be name.length, and so on. This consistency of behavior is what
we mean when we say that Ruby is a pure object-oriented language with no
basic types.

Some Basic Ruby

Not everybody likes to read heaps of boring syntax rules when they’re picking
up a new language, so we’re going to cheat. In this section, we’ll hit the
highlights—the stuff you’ll need to know if you’re going to write Ruby

gory details.

Let’s start with a short Ruby program. We’ll write a method that returns a
personalized greeting. We’ll then invoke that method a couple of times:

intro/hello1.rb

def say_hello_goodbye(name)
result = "I don't know why you say goodbye,
return result

end

" "

+ name + ", I say hello”

call the method
puts say_hello_goodbye("John")
puts say_hello_goodbye("Paul")

Produces:

I don't know why you say goodbye, John, I say hello
I don't know why you say goodbye, Paul, I say hello

As the example shows, Ruby syntax is uncluttered. You don’t need semicolons
at the ends of statements as long as you put each statement on a separate line.
Ruby comments start with a # character and run to the end of the line. Code

layout is up to you; indentation isn’t significant. That said, two-character
indentation—spaces, not tabs—is the overwhelming choice of the Ruby
community.

Methods are defined with the keyword def, followed by the method name—in
this case, the name is say_hello_goodbye—and then the method’s parameters
between parentheses. (In fact, the parentheses are optional, but we recommend

http://media.pragprog.com/titles/ruby5/code/intro/hello1.rb

you use them.) Ruby doesn’t use braces to delimit the bodies of compound
statements and definitions. Instead, you finish the body with the keyword end.
Our method’s body is pretty short. The first line concatenates the literal string
"I don’t know why you say goodbye, " and the parameter name and the literal string
", Isay hello" and assigns the result to the local variable result. The next line
returns that result to the caller. Note that we didn’t have to declare the variable
result; it sprang into existence when we assigned a value to it.

Having defined the method, we invoke it twice. In both cases, we pass the
result to the method puts, which simply outputs its argument followed by a
newline (moving on to the next line of output):

I don't know why you say goodbye, John, I say hello
I don't know why you say goodbye, Paul, I say hello

The line puts say_hello_goodbye("John") actually contains two method calls: one
to the method say_hello_goodbye with the argument “John” and the other to the
method puts whose argument is the result of the call to say_hello_goodbye . Why
does one call have its arguments in parentheses while the other doesn’t? In this
case, it’s purely a matter of taste—the puts method is available to all objects
and 1s often written without parentheses around its argument. Ruby doesn’t
require parentheses unless they are directly needed for the interpreter to parse
the statement the way you want. The following lines are equivalent:

puts say_hello_goodbye("John")
puts(say_hello_goodbye("John"))

Life isn’t always simple, and precedence rules can make it difficult to know
which argument goes with which method invocation. So, we recommend
using parentheses in all but the simplest cases. You’ll see that Ruby programs
often omit the parentheses when the method doesn’t have an explicit receiver
and only has one argument.

This example also shows Ruby string objects. Ruby has many ways to create a
string object, but the most common is to use string literals, which are
sequences of characters between single or double quotation marks. The two

forms differ in the amount of processing Ruby does on the string while
constructing the literal. In the single-quoted case, Ruby does very little. With a
few exceptions, what you enter in the string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for
substitution sequences that start with a backslash character and replaces them
with some binary value. The most common of these substitutions is \n, which

is replaced with a newline character. When a string containing a newline is
output, that newline becomes a line break:

puts "Hello and goodbye to you, \nGeorge"
Produces:

Hello and goodbye to you,
George

The second thing that Ruby does with double-quoted strings is expression
interpolation. Within the string, the sequence #{EXPRESSION} is replaced by the

value of EXPRESSION. We could use this to rewrite our previous method:

def say_hello_goodbye(name)
result = "I don't know why you say goodbye, #{name}, I say hello"
return result

end

puts say_hello_goodbye("Ringo")

Produces:
I don't know why you say goodbye, Ringo, I say hello

When Ruby constructs this string object, it looks at the current value of name
and substitutes it into the string. Arbitrarily complex expressions are allowed
in the #{...} construct. In the following example, we invoke the capitalize
method, defined for all strings, to output our parameter with a leading
uppercase letter:

def say_hello_goodbye(name)
result = "I don't know why you say goodbye, #{name.capitalize}, I say hello”

return result
end
puts say_hello_goodbye("john")
Produces:

I don't know why you say goodbye, John, I say hello

For more information on strings and the other Ruby standard types, see
Chapter 7, Basic Types: Numbers, Strings, and Ranges.

We could simplify our say_hello_goodbye method some more. In the absence of
an explicit return statement, the value returned by a Ruby method is the value

of the last expression evaluated, so we can get rid of the temporary variable
and the return statement altogether.

def say_hello_goodbye(name)

"T don't know why you say goodbye, #{name}, I say hello"”
end
puts say_hello_goodbye("Paul")

Produces:
I don't know why you say goodbye, Paul, I say hello

This version i1s considered more idiomatic, by which we mean that it’s more in
line with how expert Ruby programmers have chosen to write Ruby programs.
Idiomatic Ruby tends to lean into Ruby’s shortcuts and specific syntax. A good
clearinghouse for the guidelines for idiomatic Ruby style can be found in the
documentation for the Standard gem at https://github.com/testdouble/standard,
which has been used for the code in this book (except where we deliberately
break its rules to make a point).

We promised that this section would be brief. We have one more topic to
cover: Ruby names. For brevity, we’ll be using some terms (such as class
variable) that we aren’t going to define here. But, by talking about the rules
now, you’ll be ahead of the game when we actually come to discuss class
variables and the like later.

https://github.com/testdouble/standard

Ruby uses a convention that may seem strange at first: the first characters of a
name indicate how broadly the variable is visible. Local variables, method
parameters, and method names should all start with a lowercase letter or an
underscore (Ruby itself has a couple of methods that start with a capital letter,
but in general this isn’t something to do in your own code).

Global variables are prefixed with a dollar sign, $, and instance variables begin
with an “at” sign, @. Class variables start with two “at” signs, @@. Although
we talk about global and class variables here for completeness, you’ll find
they are rarely used in Ruby programs. There’s a lot of evidence that global
variables make programs harder to maintain. Class variables aren’t as
dangerous as global variables, but they are still tricky to use safely—people
tend not to use them much because they often use easier ways to get similar
functionality. Finally, class names, module names, and other constants must
start with an uppercase letter. Samples of different names are given in Table 1,
Example variable, class,_and constant names.

Table 1. Example variable, class, and constant names

Local Variable: name fish and chips x axis thx1138 x 26

Instance @name @point 1 @X @_ (@plan9
Variable:

Class Variable: @@total @@symtab @@N @@x pos
@@SINGLE

Global Variable: $debug $CUSTOMER § S$plan9 $Global

Class Name: String ActiveRecord MyClass

Constant Name: FEET PER MILE DEBUG

Following this initial character, a name can contain any combination of letters,
digits, and underscores, with the exception that the character following an @
sign may not be a digit. But, by convention, multiword instance variables are
written with underscores between the words, like first_name or zip_code, and
multiword class names are written in MixedCase (sometimes called
CamelCase) with each word capitalized, like FirstName or ZipCode. Constant
names are written in all caps, with words separated by underscores, like
FIRST_NAME or zIP_CODE. Method names may end with the characters 2, !, and =.

Arrays and Hashes

Ruby provides a few different ways to combine objects into collections.
Most of the time, you’ll use two of them: Arrays and Hashes. An Array is a
linear list of objects, you retrieve them via their index, which is the number
of their place in the array, starting at zero for the first slot. A Hash is an
association, meaning it’s a key/value store where each value has an
arbitrary key, and you retrieve the value via that key. Both arrays and
hashes grow as needed to hold new elements. Any particular array or hash
can hold objects of differing types; you can have an array containing an
integer, then a string, then a floating-point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set
of elements between square brackets. Given an array object, you can access
individual elements by supplying an index between square brackets, as the
next example shows. Note that Ruby array indices start at zero.

a=1[1, 'cat', 3.14] # array with three elements
puts "The first element is #{a[0]}"

set the third element

a[2] = nil

puts "The array is now #{a.inspect}”

Produces:

The first element is 1
The array is now [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In
many languages, the concept of nil (or null) means “no object.” In Ruby,
that’s not the case; nil is an object, just like any other. It’s an object that

represents the concept of nothing. Anyway, let’s get back to arrays and
hashes.

Ruby hash syntax is similar to array syntax. A hash literal uses braces rather
than square brackets. The literal must supply two objects for every entry:
one for the key and the other for the value. Most generically, the key and
value are separated by =>, but we’ll see that a shortcut syntax is commonly

used.

For example, you could use a hash to map musical instruments to their
orchestral sections.

instrument_section = {
"cello" => "string",
"clarinet" => "woodwind",
"drum" => "percussion",
"oboe" => "woodwind",
"trumpet" => "brass",
"violin" => "string"

}

The thing to the left of the => is the key, and the thing to the right is the
corresponding value. Keys in a particular hash must be unique; you can’t
have two entries for “drum.” The keys and values in a hash can be arbitrary
objects. You can have hashes where the values are arrays, other hashes, and
so on. The order of the keys in the hash is stable and will always match the
order in which the keys were added to the hash. If you assign a new value to
a key, the old value is erased.

Hashes are indexed using the same square bracket notation as arrays.

instrument_section["oboe"] # => "woodwind"
instrument_section["cello”] # => "string"
instrument_section["bassoon"] # => nil

The default behavior of a hash when indexed by a key it doesn’t contain is
to return nil, representing the absence of a value.

Sometimes you’ll want to change this default behavior. For example, if
you’re using a hash to count the number of times each different word occurs

in a file, it’s convenient to have the default value be zero. Then you can use
the word as the key and increment the corresponding hash value without
worrying about whether you’ve seen that word before. This can be done by
specifying a default value when you create a new, empty hash:

histogram = Hash.new(0) # The default value is zero
histogram["ruby"] # => 0

histogram["ruby”] = histogram["ruby”] + 1

histogram["ruby"] # => 1

Symbols

Often, when programming, you need to use the same string over and over.
Perhaps the string is a key in a Hash, or maybe the string is the name of a
method. In that case, you’d probably want the access to that string to be
immutable so its value can’t change, and you’d also want accessing the string
to be as fast and use as little memory as possible.

This brings us to Ruby’s symbols. Symbols aren’t exactly optimized strings,
but for most purposes, you can think of them as special strings that are
immutable, are only created once, and are fast to look up. Symbols are meant
to be used as keys and identifiers, while strings are meant to be used for data.

A symbol literal starts with a colon and is followed by some kind of name:

walk(:north)
look(:east)

In this example, we’re using the symbols :north and :east to represent constant
values in the code. We don’t need to declare the symbols or assign them a
value—Ruby takes care of that for you. The value of a symbol is equivalent to
its name.

Ruby also guarantees that no matter where they appear in your program,
symbols with the same name will have the same value—indeed, they’ll be the
same internal object. As a result, you can safely write the following:

def walk(direction)
if direction == :north
end

end

Because their values don’t change, symbols are frequently used as keys in
hashes. We could write our previous hash example using symbols as keys:

intro/hash_with_symbol_keys.rb

http://media.pragprog.com/titles/ruby5/code/intro/hash_with_symbol_keys.rb

instrument_section = {

:cello => "string",

:clarinet => "woodwind",

:drum => "percussion”,

:oboe => "woodwind",

strumpet => "brass",

:violin => "string"
}
instrument_section] :oboe] # => "woodwind"
instrument_section[:cello] # => "string"
Note that strings aren"t the same as symbols. ..
instrument_section["cello"] # => nil

Note from the last line that a symbol key is different from a string key, and
access via one won’t result in a value associated with the other.

Symbols are so frequently used as hash keys that Ruby has a shortcut syntax.
You can use name: value pairs to create a hash instead of name => value if the key
is a symbol:

intro/hash_with_symbol_keys_19.rb

instrument_section = {
cello: "string",
clarinet: "woodwind",
drum: "percussion”,
oboe: "woodwind",
trumpet: "brass",
violin: "string"

puts "An oboe i1s a #{instrument_section[:oboel} instrument"
Produces:
An oboe is a woodwind instrument

This syntax was added, in part, for programmers familiar with JavaScript and
Python, both of which use a colon as a separator in key/value pairs.

http://media.pragprog.com/titles/ruby5/code/intro/hash_with_symbol_keys_19.rb

Control Structures

Ruby has all the usual control structures, such as if statements and while loops.
Java or JavaScript programmers may be surprised by the lack of braces around
the bodies of these statements. Instead, Ruby uses the keyword end to signify
the end of a body of a control structure:

intro/weekdays.rb

today = Time.now

if today.saturday?

puts "Do chores around the house"
elsif today.sunday?

puts "Relax”

else
puts "Go to work"
end
Produces:
Go to work

One thing you might find unusual is that in the second clause Ruby uses the
keyword elsif—one word, missing an “e”—to indicate “else if”’. Breaking that

keyword up into else if would be a syntax error.

Similarly, while statements are terminated with end and loop as long as the
condition on the line with the while is true:

num_pallets = 0

weight = 0

while weight < 100 && num_pallets <= 5
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

http://media.pragprog.com/titles/ruby5/code/intro/weekdays.rb

Most lines that look like statements in Ruby are actually expressions that
return a value, which means you can use those expressions as conditions. For
example, the Kernel method gets returns the next line from the standard input

stream or nil when the end of the file is reached. Because Ruby treats nil as a

false value in conditions, you could write the following to process the lines in
a file:

while (line = gets)
puts line.downcase
end

The assignment statement sets the variable line to the result of calling gets,
which will either be the next line of text or nil. Then the while statement tests

the value returned by the assignment statement, which is the value assigned.
When the value is nil, that means the output has no further lines and the while

loop terminates.

Ruby statement modifiers are a useful shortcut if the body of an if or while
statement is a single expression. Write the expression, followed by if or while
and the condition. For example, here’s a single-line if statement:

if radiation > 3000
puts "Danger, Will Robinson"
end

Here it is again, rewritten using a statement modifier:
puts "Danger, Will Robinson" if radiation > 3000
Similarly, this while loop:
square = 4
while square < 1000
square = square * square
end

becomes this more concise version:

square = 4

square = square * square while square < 1000

The if version of these modifiers is perhaps most commonly used as a guard
clause at the beginning of a method, as in return nilif user.nil?. The while version
1s much less commonly used.

Regular Expressions

Most of Ruby’s built-in types will be familiar to all programmers. A
majority of languages have strings, integers, floats, arrays, and so on. But
not all languages have built-in support for regular expressions the way that
Ruby or JavaScript do. This is a shame because regular expressions,
although cryptic, are a powerful tool for working with text. And having
them built in rather than tacked on through a library interface, makes a big
difference.

Entire books have been written about regular expressions (for example,
Mastering Regular Expressions by Jeffrey Friedl), so we won’t try to cover
everything in this short section. Instead, we’ll look at a few examples of
regular expressions in action. You’ll find more coverage of regular
expressions in Chapter 8, Regular Expressions.

A regular expression is a way of specifying a pattern of characters to be
matched in a string. In Ruby, you typically create a regular expression by
writing a pattern between slash characters (/pattern/). And, Ruby being
Ruby, regular expressions are objects and can be manipulated as such.

For example, you could write a pattern that matches a string containing the
text Ruby or the text Rust using the following regular expression:

J/Ruby[Rust/

The forward slashes delimit the pattern, which consists of the two things
we’re matching, separated by a pipe character (|). In regular expressions,
the pipe character means “either the thing on the right or the thing on the
left,” in this case either Ruby or Rust. You can use parentheses within
patterns, just as you can in arithmetic expressions, so this pattern matches
the same set of strings:

/Ru(by[st)/

You can also specify repetition within patterns. /ab+c/ matches a string

containing an a followed by one or more b_s, followed by a c. Change the
plus to an asterisk, and /ab*c/ creates a regular expression that matches one

a, zero or more b_s, and one _c.

You can also match one of a group of characters within a pattern. Some
common examples are character classes such as \s, which matches a

whitespace character (space, tab, newline, and so on); \d, which matches
any digit; and \w, which matches any character that may appear in a typical
word. A dot (.) matches (almost) any character. A table of these character
classes appears in Table 2, Character class abbreviations.

We can put all this together to produce some useful regular expressions:

/\d\d:\d\d: \d\d/ # a time such as 12:34:56

/Ruby. *Rust/ # Ruby, zero or more other chars, then Rust

/Ruby Rust/ # Ruby, exactly one space, and Rust

/Ruby *Rust/ # Ruby, zero or more spaces, and Rust

/Ruby +Rust/ # Ruby, one or more spaces, and Rust

/Ruby|s+Rust/ # Ruby, one or more whitespace characters, then Rust

/Java (Ruby|Rust)/ # Java, a space, and either Ruby or Rust

Once you’ve created a pattern, it seems a shame not to use it. The match
operator =~ can be used to match a string against a regular expression. If the

pattern is found in the string, =~ returns its starting position; otherwise, it
returns nil. This means you can use regular expressions as conditions in if
and while statements. For example, the following code fragment writes a
message if a string contains the text Ruby or Rust:

line = gets
if 1line =~ /Ruby/Rust/

puts "Programming language mentioned: #{line}"
end

Both strings and regular expressions have a match? method which is
synonymous with the =~ operator:

line = gets
if line.match?(/Ruby/Rust/)

puts "Scripting language mentioned: #{line}"
end

The match? form is probably more common in modern Ruby.

The part of a string matched by a regular expression can be replaced with
different text using one of Ruby’s substitution methods:

line = gets

newline = line.sub(/Python/, 'Ruby") # replace first 'Python' with
'"Ruby’

newerline = line.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby'’

You can replace every occurrence of JavaScript and Python with Ruby
using this:

line = gets
newline = line.gsub(/JavaScript/Python/, 'Ruby’)

We’ll have a lot more to say about regular expressions as we go through the
book.

Blocks

This section briefly describes one of Ruby’s particular strengths—blocks. A
code block is a chunk of code you can pass to a method, as if the block were
another parameter. This is an incredibly powerful feature, allowing Ruby
methods to be extremely flexible. One of this book’s early reviewers
commented at this point: “This is pretty interesting and important, so if you
weren’t paying attention before, you should probably start now.” We still
agree.

Syntactically, code blocks are chunks of code that can be delimited one of two
ways: between braces or between do and end. This is a code block at the end of
a message call:

foo.each { puts "Hello" }
This is also a code block at the end of a message call:

foo.each do
club.enroll(person)
person.socialize
end

The two kinds of block delimiters have different precedence: the braces bind
more tightly than the do/end pairs, a fact that will almost never make a

difference in your code. In practice, the standard you’ll most often see is
braces used for single-line blocks and do/end used for multiline blocks.

You can pass a block as an argument to any method call even if the method
doesn’t do anything with the block. You do this by starting the block at the end
of the method call, after any other parameters. For example, in the following
code, the block containing puts "Hi" is associated with the call to the method
greet (which we don’t show here):

greet { puts "Hi" }

If the method has parameters, they appear before the block, and you can only
pass one block per method call. In Blocks and Enumeration, we’ll see other
ways to manage blocks and arbitrary chunks of code.

verbose_greet("Dave”, "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the
Ruby yield statement. The yield statement invokes the block that was passed to
the method, passing control to the code inside the block.

The following example shows a block call in action. We define a method that
calls yield twice. We then call this method, putting a block on the same line
after the call, and after any arguments to the method. You can think of the
association of a block with a method as a kind of argument passing. This
works on one level, but it isn’t really the whole story. The block is effectively
an entire other method that can be invoked or passed forward as an argument
to another method. For example:

intro/block_example.rb

def call_block
puts "Start of method"
yield
yield
puts "End of method"
end

call_block { puts "In the block" }
Produces:

Start of method

In the block

In the block
End of method

In this example, the code in the block (puts "In the block") is executed twice,
once for each call to yield passing control to the block.

http://media.pragprog.com/titles/ruby5/code/intro/block_example.rb

You can provide arguments to yield, and they’ll be passed to the block. Within
the block, you list the names of the parameters to receive these arguments
between vertical bars (|params...|). The following example shows a method
calling its associated block twice, passing the block two arguments each time:

intro/block_example2.rb

def who_says_what
yield("Dave"”, "hello")
yield("Andy", "goodbye™)
end

who_says_what { |person, phrase| puts "#{person} says #{phrase}" }
Produces:

Dave says hello
Andy says goodbye

You can use code blocks to package code to implement a later callback. Code
blocks can be used to pass around chunks of code. They are used throughout
the Ruby standard library to allow methods to perform an action on successive
elements from a collection such as an array. The act of doing something
similar to all objects in a collection is called enumeration in Ruby; other
languages call this iteration.

" "

animals = ["ant", "bee", "cat", "dog"] # create an array
animals.each { |animal| puts animal } # iterate over the contents

Produces:

ant
bee
cat
dog

Many of the looping constructs that are built into languages such as Java and
JavaScript are method calls in Ruby, with the methods invoking an associated
block zero or more times:

http://media.pragprog.com/titles/ruby5/code/intro/block_example2.rb

["cat”, "dog", "horse"].each { |name| print name, " " }
5.times { print "*" }

3.upto(6) { |i| print 1 }

("a".."e").each { |char| print char }

("a".."e").each { print _1 }

Produces:
cat dog horse *****3456abcdeabcde

In the first line, we ask an array to call the block once for each of its elements.
Next, the object 5 calls a block five times, printing * each time. Rather than
use for loops, the third example shows that in Ruby we can ask the number 3
to call a block, passing in successive values until it reaches 6. Finally, we use
Ruby’s literal syntax for ranges of values to have the range of characters from
a to e invoke a block using the method each. We show that example twice:
once using Ruby’s normal block parameter syntax and once using Ruby’s
shortcut for block parameters, which we’ll see in Blocks.

Reading and ‘Riting

Ruby comes with a comprehensive library to manage input and output
(I/O). But, in most of the examples in this book, we’ll stick to a few simple
methods. We’ve already come across methods that write output: puts writes
its arguments with a newline after each; p also writes its arguments but will
produce more debuggable output. Both can be used to write to any I/O
object, but, by default, they write to the standard output stream.

You can read input into your program in many ways. Probably the most
traditional one is to use the method gets—short for “get string”—which
returns the next line from your program’s standard input stream:

line = gets
print line

Because gets returns nil when it reaches the end of input, you can use its
return value in a loop condition. Notice that in the following code the
condition to the while is an assignment. We store whatever gets returns into
the variable line and then test to see whether that returned value was nil or
false before continuing:

while (line = gets)
print line
end

In Chapter 11, Basic Input and Qutput, we’ll talk more about how to read
and write from a file or other data source.

Command-Line Arguments

When you run a Ruby program from the command line, you can pass in
arguments. These are accessible from your Ruby code in two different
ways.

First, the global array ARGV contains each of the arguments passed to the
running program. Create a file called cmd_line.rb that contains the following:

puts "You gave #{ARGV.size} arguments”
p ARGV

When we run it with arguments, we can see that they get passed in:

$ ruby cmd_line.rb ant bee cat dog
You gave 4 arguments
[Ilantll’ llbeell’ "Cat", lldogll]

Often, the arguments to a program are the names of files that you want to
process. In this case, you can use a second technique: the variable ARGF is a
special kind of I/O object that acts like all the contents of all the files whose
names are passed on the command line (or standard input if you don’t pass
any filenames). We’ll look at that some more in ARGF'.

Commenting Ruby

Ruby has two ways of adding comments to source code, one of which
you’ll use, and the other you’ll almost certainly not use. The common one is
the # symbol—anything after that symbol until the end of the line is a

comment and is ignored by the interpreter. If the next line continues the
comment, it needs its own # symbol.

Ruby also has a rarely used multiline comment, where the first line starts
with =begin and everything is a comment until the code reaches =end. Both

the =begin and =end must be at the very beginning of the line, they cannot be
indented.

While we did just say that Ruby ignores comments, Ruby uses a small
number of “magic comments” for configuration options on a per-file basis.
These comments have the form of # directive: value and must appear in the
file before the first line of the actual Ruby code.

The most commonly used magic comment is # frozen_string_literal: true. If
this directive is true, then every string literal that doesn’t have an
interpolation inside it’ll automatically be frozen, as though freeze was called
on it.

You might also see an # encoding: VALUE directive, which specifies the
encoding for string and regular expression literals inside that particular file.
Ruby also has a # warn_indent: BOOLEAN flag that will throw code warnings if

a file’s indentation is mismatched. There’s an experimental directive called
sharable_constant_value: which affects how values are shared using the

Ractor multithreading tools.

What’s Next

We finished our lightning-fast tour of some of the basic features of Ruby.
We took a look at objects, methods, strings, containers, and regular
expressions. We saw some simple control structures and looked at some
rather nifty iterators. We hope this chapter has given you enough
ammunition to be able to attack the rest of this book.

It’s time to move on and move up—up to a higher level. Next, we’ll be
looking at classes and objects, things that are at the same time both the
highest-level constructs in Ruby and the essential underpinnings of the
entire language.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 3

Classes, Objects, and Variables

From the examples we’ve shown so far, you may be wondering about our
earlier assertion that Ruby is an object-oriented language. Well, here is
where we justify that claim. We’re going to be looking at how you create
classes and objects in Ruby and at some of the ways that Ruby is more
flexible than other object-oriented languages.

In Ruby Is an Object-Oriented Language, we state that everything we

manipulate in Ruby is an object. And every object in Ruby was instantiated
either directly or indirectly from a class. In this chapter, we’ll look in more
depth at creating and manipulating those classes.

Defining Classes

Let’s give ourselves a simple problem to solve. Suppose we’re running a
secondhand bookstore. Every week, we do stock control. A gang of clerks uses
portable bar-code scanners to record every book on our shelves. Each scanner
generates a comma-separated value (CSV) file containing one row for each
book scanned. The row contains (among other things) the book’s ISBN and
price. An extract from one of these files looks something like this:

tut_classes/stock_stats/data.csv

"Date","ISBN","Price"

"2013-04-12","978-1-9343561-0-4",39.45
"2013-04-13","978-1-9343561-6-6",45.67
"2013-04-14","978-1-9343560-7-4",36.95

Our job is to take all the CSV files and work out how many of each title we
have, as well as the total list price of the books in stock.

Whenever you’re designing an Object-Oriented system, a good first step is to
identify the domain concepts you’re dealing with. Typically the domain
concepts—which could represent a physical object, a process, or some other
kind of entity—become classes in your final program, and then individual
examples of those concepts are instances of these classes.

It seems pretty clear that we’ll need something to represent each data reading
captured by the scanners. Each instance of this class will represent a particular
row of data, and the collection of all of these objects will represent all the data
we’ve captured.

Let’s call this class BookinStock. (Remember, class names start with an

uppercase letter, and method names normally start with a lowercase letter.)
Here’s how we declare that class in Ruby using the keyword class:

class BookInStock
end

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/data.csv

As we saw in the previous chapter, we can create new instances of this class
using the method ‘new*:

a_book = BookInStock.new
another_book = BookInStock.new

After this code runs, we’d have two distinct objects, both instances of class
BooklInStock. But there’s nothing to distinguish one instance from the other,
aside from the fact that they have different internal object IDs. Worse, these
objects don’t yet hold any of the information we need them to hold.

The best way to fix this is to provide the class with an initialize method. This
method lets us set the state of each object as it’s constructed. We store this
state in instance variables inside the object. (Remember instance variables?
They’re the ones that start with an @ sign.) Because each object in Ruby has
its own distinct set of instance variables, each object can have its own unique
state.

Here’s our updated class definition:

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)
end
end

The initialize method is special in Ruby programs. When you call
BooklInStock.new to create a new object, Ruby allocates some memory to hold
an uninitialized object and then calls that object’s initialize method, passing
through all arguments that were passed to new. This gives you a chance to
write code that sets up your object’s state.

For class BookInStock, the initialize method takes two parameters. These
parameters act like local variables within the method, so they follow the local
variable naming convention of starting with a lowercase letter. But, as local
variables, they’d just evaporate once the initialize method returns, so we need to

transfer them into instance variables. This is common behavior in an initialize
method—the intent is to have our object set up and usable by the time initialize
returns.

This method also illustrates something that often trips up newcomers to Ruby.
Notice how we say @isbn =isbn. It’s easy to imagine that the two variables
here, @isbn and isbn, are somehow related. It looks like they have the same
name, but they don’t. The former is an instance variable, and the “at” sign is
actually part of its name.

Finally, this code illustrates a basic piece of validation. The Float method takes
its argument and converts it to a floating-point number, terminating the
program with an error if that conversion fails. Later in the book, we’ll see
other, more resilient, ways to handle these exceptional situations. (We know
that we shouldn’t be holding prices in inexact old floats. Ruby has classes that
hold fixed-point values exactly, but we want to look at classes, not arithmetic,
in this section.)

What we’re doing here is saying that we want to accept any object for the price
parameter as long as that parameter can be converted to a float. We can pass in
a float, an integer, or even a string containing the representation of a float, and
it’ll work. Let’s try this now. We’ll create three objects, each with a different
initial state. The p method prints out an internal representation of an object.
Using it, we can see that in each case our parameters got transferred into the
object’s state, ending up as instance variables:

tut_classes/stock_stats/book_in_stock_1.rb

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)
end
end

b1 = BookInStock.new("isbn1", 3)
p b1

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_1.rb

b2 = BookInStock.new("isbn2", 3.14)
p b2

b3 = BookInStock.new("isbn3", "5.67")
p b3

Produces:

#<BookInStock:0x0000000102f99720 @isbn="1isbn1", @price=3.0>
#<BookInStock:0x0000000102f99180 @isbn="1isbn2", @price=3.14>
#<BookInStock:0x0000000102f98fad @isbn="1isbn3", @price=5.67>

Why did we use the p method to write out our objects, rather than puts? Well,
let’s repeat the code using puts:

tut_classes/stock_stats/book_in_stock_1a.rb

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)
end
end

b1 = BookInStock.new("isbn1", 3)
puts b1

b2 = BookInStock.new("isbn2", 3.14)
puts b2

b3 = BookInStock.new("isbn3", "5.67")
puts b3

Produces:

#<BookInStock:0x0000000104739628>
#<BookInStock:0x0000000104739150>
#<BookInStock:0x0000000104738fe8>

Remember, puts writes strings to your program’s standard output. When you
pass it an object based on a class you wrote, it doesn’t know what to do with
the object yet, so it uses a simple expedient: it writes the name of the object’s

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_1a.rb

class, followed by a colon and the object’s unique object identifier, which is a
hexadecimal number. It puts the whole lot inside #-<...>.

Our experience tells us that during development we’ll be printing out the
contents of a BookInStock object many times, and the default formatting leaves
something to be desired. Fortunately, Ruby has a standard message, to_s, that it
sends to any object it wants to render as a string. The default behavior of to_s,
defined in the Object class, is the ClassName, then the colon, and then the
object ID behavior we just described. So, when we pass one of our BookInStock
objects to puts, the puts method calls to_s in that object to get its string
representation.

If we want a different behavior, we can override the default implementation of
to_s to give us a better rendering of our objects (we’ll talk more about how this

works in Chapter 6, Sharing Functionality: Inheritance,_ Modules,_and Mixins

):

tut_classes/stock_stats/book_in_stock_2.rb

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
def to_s
"ISBN: #{@isbn}, price: #{@price}"
end
end

b1 = BookInStock.new("isbn1", 3)

puts b1

b2 = BookInStock.new("isbn2", 3.14)
puts b2

b3 = BookInStock.new("isbn3", "5.67")
puts b3

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_2.rb

ISBN: isbnl, price: 3.0
ISBN: isbn2, price: 3.14
ISBN: isbn3, price: 5.67

The p method actually has a different method it calls on objects, and that
method is named inspect. The difference is that inspect is designed to produce a
representation that’s useful to a developer when debugging, and to_s is
supposed to produce a human-readable one for more general output.

Something’s going on here that’s both trivial and profound. See how the
values we set into the instance variables @isbn and @price in the initialize
method are subsequently available in the to_s method? That shows how
instance variables work—they’re stored with each object and available to all
the instance methods of those objects.

Objects and Attributes

The BookinStock objects we’ve created so far have an internal state (the ISBN

and price). That state is private to those objects—no other object can access an
object’s instance variables. In general, this is a Good Thing. It means that the
object 1is solely responsible for maintaining its own consistency. (We feel
obligated to note here that there’s no such thing as perfect privacy in Ruby,
and you shouldn’t depend on Ruby’s language privacy for security purposes.)

A totally secretive object is pretty useless—you can create it, but then you
can’t do anything with it. You’ll normally define methods that let you access
and manipulate the state of an object, allowing the outside world to interact
with the object. These externally visible facets of an object are called its
attributes.

For our BookInStock objects, the first thing we may need is the ability to find

out the ISBN and price (so we can count each distinct book and perform price
calculations). One way of doing that is to write accessor methods:

tut_classes/stock_stats/book_in_stock_3.rb

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)
end

def isbn
@isbn
end

def price
@price
end
7 ..
end

book = BookInStock.new("isbn1", 12.34)

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_3.rb

puts "ISBN #{book.isbn}"
puts "Price = #{book.price}"

Produces:

ISBN isbn1
Price = 12.34

Here we’ve defined two accessor methods to return the values of the two
instance variables. The method isbn, for example, returns the value of the
instance variable @isbn because the last (and only) thing executed in the
method is the expression that evaluates the @isbn variable. Later, in Method
Bodies, we’ll look at a shorter syntax for declaring one-line methods.

As far as other objects are concerned, there’s no difference between calling
these attribute accessor methods or calling any other method. This is great

because it means that the internal implementation of the object can change
without the other objects needing to be aware of the change.

Because writing accessor methods is such a common idiom, Ruby provides
convenient shortcuts.

The method attr_reader creates these attribute reader methods for you:

tut_classes/stock_stats/book_in_stock_4.rb

class BookInStock
attr_reader :isbn, :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

#o..
end

book = BookInStock.new("isbn1", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_4.rb

Produces:

ISBN = isbnil
Price = 12.34

This is the first time we’ve used symbols in this chapter. As we discussed in
Symbols, symbols are a convenient way of referencing a name. In this code,
you can think of :isbn as meaning the name isbn and of plain isbn as meaning
the value of the variable. In this example, we named the accessor methods isbn
and price. The corresponding instance variables are @isbn and @price. These
accessor methods are identical to the ones we wrote by hand earlier—they’ll
return the value of the instance variable whose name matches the name of the
accessor method. These methods only allow you to read the attribute, but not
to change it.

There’s a common misconception that the attr_reader declaration actually
declares instance variables. It doesn’t. It creates the accessor methods, but the
variables themselves don’t need to be declared. An instance variable pops into
existence when you assign a value to it, and any instance value that hasn’t
been assigned a value returns nil when accessed. Ruby completely decouples
instance variables and accessor methods, as we’ll see 1n Attributes Are Just

Methods without Arguments.

Writing to Attributes

Sometimes you need to be able to set an attribute from outside the object. For
example, let’s assume that we have to discount the price of some titles after
reading in the raw scan data.

In other languages like C# and Java that restrict access to instance variables,
you’d do this with setter functions:

// Java code
class JavaBookInStock {
private double _price;
public double getPrice() {
return _price;

}

public void setPrice(double newPrice) {
_price = newPrice;

}
b = new JavaBookInStock(....);
b.setPrice(calculate_discount(b.getPrice()));

In Ruby, the attributes of an object can be accessed via the getter method, and
that access looks the same as any other method. We saw this earlier with
phrases such as book.isbn. So, it seems natural that setting an attribute’s value
looks like a normal variable assignment such as book.isbn = "new isbn". You
enable that assignment by creating a Ruby method whose name ends with an
equals sign. A method so named can be used as the target of assignments:

tut_classes/stock_stats/book_in_stock_5.rb

class BookInStock
attr_reader :isbn, :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price=(new_price)
@price = new_price

end

end

book = BookInStock.new("isbn1", 33.80)

puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"”
book.price = book.price * 0.75 # discount price

puts "New price = #{book.price}"

Produces:
ISBN = isbn1l
Price = 33.8

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_5.rb

New price = 25.349999999999998

The assignment book.price = book.price * 0.75 invokes the method price= in the
book object, passing it the discounted price as an argument. If you create a
method whose name ends with an equals sign, that name can appear on the left
side of an assignment. (The Ruby parser will ignore whitespace between the
end of the name and the equals sign, which is how book.price = gets parsed to
the method named price=.) You can even treat the setter method like a regular
method invocation if you want—book.price = 1.50 1s identical to the somewhat

odder-looking book.price=(1.50).

Again, Ruby provides a shortcut for creating these simple attribute-setting
methods. If you want a write-only accessor, you can use the form attr_writer,
but that’s fairly rare. You’re far more likely to want both a reader and a writer
for a given attribute, so you’ll use the handy-dandy attr_accessor method:

tut_classes/stock_stats/book_in_stock_6.rb

class BookInStock
attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)
end
...
end

book = BookInStock.new("isbn1", 33.80)

puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price

puts "New price = #{book.price}"

Produces:
ISBN = isbn1l
Price = 33.8

New price = 25.349999999999998

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_6.rb

In this example, the line attr_accessor :price creates both the getter method that
allows you to write puts book.price and the setter method that allows you to
write book.price = book.price * 0.75

Attributes Are Just Methods without Arguments

These attribute-accessing methods don’t have to be just mere wrappers around
an object’s instance variables. For example, you may want to access the price
as an exact number of cents rather than as a floating-point number of dollars.

tut_classes/stock_stats/book_in_stock_7.rb

class BookInStock
attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price_in_cents
(price * 100).round
end
...
end

book = BookInStock.new("isbn1", 33.80)
puts "Price = #{book.price}"
puts "Price in cents = #{book.price_in_cents}"

Produces:

Price 33.8
Price in cents = 3380

We multiply the floating-point price by 100 to get the price in cents and then
use the round method to convert it to an integer. Why? Because floating-point

numbers don’t always have an exact internal representation. When we
multiply 33.8 by 100, we get 3379.99999999999954525265. The Integer

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_7.rb

method would truncate this to 3379. Calling round ensures we get the best

integer representation. This i1s a good example of why you want to use
BigDecimal, not Float, in financial calculations. See Chapter 26, Library

Reference: Core Data Tjpes, for more on BigDecimal.

We can take this even further and create a writing method parallel to the reader
method, mapping the value to the instance variable internally:

tut_classes/stock_stats/book_in_stock_8.rb

class BookInStock
attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price_in_cents
(price * 100).round
end

def price_in_cents=(cents)
@price = cents / 100.0
end
...
end

book = BookInStock.new("isbn1", 33.80)

puts "Price = #{book.price}"

puts "Price in cents = #{book.price_in_cents}"
book.price_in_cents = 1234

puts "Price = #{book.price}"

puts "Price in cents = #{book.price_in_cents}"

Produces:
Price = 33.8
Price in cents = 3380
Price = 12.34
Price in cents = 1234

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock_8.rb

Here we’ve used attribute methods to create a virtual instance variable. To the
outside world, price_in_cents seems to be an attribute like any other. Internally,

though, it has no corresponding instance variable.

This is more than a curiosity. In his landmark book, Object-Oriented Software
Construction, Bertrand Meyer calls this the Uniform Access Principle. By
hiding the difference between instance variables and calculated values, you’re
shielding the rest of the world from the implementation of your class. You’re
free to change how things work in the future without impacting the millions of
lines of code that use your class—for example, you could switch from a float
to a BigDecimal and the users of this class would never need to know. This is a

big win.

Attributes, Instance Variables, and Methods

The previous section’s description of attributes may leave you thinking that
they’re nothing more than methods—why’d we need to invent a fancy name
for them? In a way, that’s absolutely right. An attribute is just a method.
Sometimes an attribute simply returns the value of an instance variable.
Sometimes an attribute returns the result of a calculation. And sometimes
those funky methods with equals signs at the end of their names are used to
update the state of an object. So, the question is, where do attributes stop and
regular methods begin? What makes something an attribute and not just a
plain old method? Ultimately, that’s one of those “how many angels can fit on
the head of a pin” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also how
that state is to appear on the outside to users of your class. The internal state is
held in instance variables. The external state is exposed through methods
we’re calling attributes. And the other actions your class can perform are just
regular methods. It isn’t a crucially important distinction, but by calling the
external state of an object its attributes, you’re helping clue people in on how
they should view the class you’ve written.

Classes Working with Other Classes

Our original challenge was to read in data from multiple CSV files and
produce various simple reports. So far, all we have is BooklnStock, a class that

represents the data for one book.

During object-oriented design, you identify external things and make them
classes in your code. But there’s another source of classes in your designs—
the classes that correspond to things inside your code itself. For example, we
know that the program we’re writing will need to consolidate and summarize
CSV data feeds. But that’s a passive statement. Let’s turn it into a design by
asking ourselves what does the summarizing and consolidating. And the
answer (in our case) is a CSV reader. Let’s make it into a class as follows:

class CsvReader
def initialize
end

def read_in_csv_data(csv_file_name)
end

def total_value_in_stock
end

def number_of_each_isbn
end
end

We’d call it using something like this:
reader = CsvReader.new
reader.read_in_csv_data("filel.csv")

reader.read_1in_csv_data("file2.csv")

puts "Total value in stock = #{reader.total_value_in_stock}"

We need to be able to handle multiple CSV files, so our reader object needs to
accumulate the values from each CSV file it is fed. We’ll do that by keeping
an array of values in an instance variable. And how shall we represent each
book’s data? Well, we just finished writing the BookinStock class, so that
problem is solved. The only other question is how we parse data in a CSV file.
Fortunately, Ruby comes with a good CSV library, which we’ll cover in detail
in Chapter 29, Library Reference. Input, Qutput, Files, and Formats. Given a
CSV file with a header line, we can iterate over the remaining rows and

extract values by name:

tut_classes/stock_stats/csv_reader.rb

class CsvReader
def initialize
@books_1in_stock = []
end

def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row|
@books_in_stock << BookInStock.new(row["ISBN"], row["Price"])
end
end
end

Because you’re probably wondering what’s going on, let’s dissect that
read_in_csv_data method. On the first line, we tell the CSV library to open the
file with the given name. The headers: true option tells the library to do two

things. One is to parse the first line of the file as the names of the columns.
The other is to parse each row into a hash with the column names as the keys
and the row values as the values.

The library then reads the rest of the file, passing each row in turn to the block
(the code between do and end). Inside the block, we extract the data from the
ISBN and Price columns and use that data to create a new BookinStock object.
We then append that object to an instance variable called @books_in_stock (the
<< operator does different things in Ruby, in this case, it means “append to an

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/csv_reader.rb

array”’). And where does that variable come from? It’s an array that we created
in the initialize method.

Again, this is the pattern you want to aim for. Your initialize method sets up an
environment for your object, leaving it in a usable state. Other methods then
use that state.

If you encounter an error along the lines of “‘Float’: can’t convert nil into
Float (TypeError)” when you run this code, you likely have extra spaces at the
end of the header line in your CSV data file. The CSV library is pretty strict
about the formats it accepts.

Let’s turn this from a code fragment into a working program. We’re going to
organize our source into three files. The first, book_in_stock.rb, will contain the
definition of the class BookinStock. The second, csv_reader.rb, is the source for
the CsvReader class. Finally, a third file, stock_stats.rb, is the main driver
program. We’ll start with book_in_stock.rb:

tut_classes/stock_stats/book_in_stock.rb

class BookInStock
attr_reader :isbn, :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price_in_cents
(price * 100).round
end
end

We’re keeping the price_in_cents method so we can do money arithmetic
without accumulating floating-point errors.

Here’s the csv_reader.rb file. The CsvReader class has two external dependencies,
which are the standard CSV library and the BookinStock class that’s in the file

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/book_in_stock.rb

book_in_stock.rb. Ruby has a couple of helper methods that let us load external
files.

tut_classes/stock_stats/csv_reader.rb

require "csv”
require_relative "book_in_stock"

class CsvReader
def initialize
@books_in_stock = []
end

def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row|
@books_1in_stock << BookInStock.new(row["ISBN"], row["Price"])
end
end

def total_value_in_stock
later we'll see easier ways to sum a collection
sum = 0.0
@books_1in_stock.each { |book| sum += book.price_in_cents }
sum / 100.0
end

def number_of_each_1isbn
...
end
end

In this file, we use the require method to load in the Ruby CSV library from the
Ruby standard library. We also use require_relative to load in the book_in_stock
file we wrote. We use require_relative for this because the location of the file

we’re loading is easiest to define relative to the file we’re loading it from—
they’re both in the same directory.

We’re using price_in_cents to compute the total value.

And finally, here’s our main program, in the file stock_stats.rb:

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/csv_reader.rb

tut_classes/stock_stats/stock_stats.rb

require_relative "csv_reader”
reader = CsvReader.new

ARGV.each do |csv_file_name|
$stderr.puts "Processing #{csv_file_name}"
reader.read_in_csv_data(csv_file_name)

end

puts "Total value = #{reader.total_value_in_stock}"

Again, this file uses require_relative to bring in the library it needs (in this case,
the csv_reader.rb file). It uses the ARGV variable to access the program’s

command-line arguments, loading CSV data for each file specified on the
command line.

We can run this program using the CSV data that we used in the code:

$ ruby stock_stats.rb data.csv
Processing data.csv
Total value = 122.07

Do we need three source files for this? Not necessarily. But as your programs
grow (and almost all programs grow over time), you’ll find that large files
start to get cumbersome. You’ll also find it harder to write automated tests
against the code if it’s in a monolithic chunk. Finally, you won’t be able to
reuse classes if they’re all bundled into the final program. As a result, it’s
fairly common to only have one Ruby class per individual file.

Let’s get back to our discussion of classes.

http://media.pragprog.com/titles/ruby5/code/tut_classes/stock_stats/stock_stats.rb

Specifying Access Control

When designing the interface for a class, it’s important to consider how
much of your class you’ll expose to the outside world. Allow too much
access into your class, and you risk increasing the amount that different
classes depend on each other’s internal implementation, which is called
coupling. Users of your class will be tempted to rely on details of your
class’s implementation rather than on its logical interface. The good news is
that the only easy way to change an object’s state in Ruby is by calling one
of its methods. If you control access to the methods, you control access to
the object. A good rule of thumb is never to expose methods that could
leave an object in an invalid state.

Ruby gives you three levels of access control:

e Public methods can be called by anyone—no access control is
enforced. Methods are public by default (except for initialize, which is

always private).

e Protected methods can be invoked only by objects of the defining class
and its subclasses. Access 1s kept within the family. We’ll talk more
about subclasses in Chapter 6, Sharing Functionality: Inheritance,
Modules, and Mixins.

e Private methods cannot be called with an explicit receiver—the
receiver is always the current object, also known as self. This means
that private methods can be called only in the context of the current
object, and with self as the explicit receiver or with the implicit
receiver. You can’t invoke another object’s private methods with
normal dot syntax. (But there are ways around this using
metaprogramming tools that we’ll discuss in Chapter 22, The Ruby
Object Model and Metaprogramming)

The difference between “protected” and “private” is fairly subtle and is
different in Ruby than in other common object-oriented languages. If a
method is protected, it may be called by any instance of the defining class
or its subclasses. If a method is private, it may be called only within the
context of the calling object—it’s never possible to access another object’s
private methods directly, even if the object is of the same class as the caller.
In practice, 1t’s somewhat rare to see “protected” in use.

Access control in Ruby is determined dynamically, as the program runs, not
statically when the program i1s compiled or interpreted. You’ll get an access
violation only when the code attempts to execute the restricted method.

You specify access levels to methods within the class or module definitions
using one or more of the three access methods: public, protected, and private.

You can use each function in three different ways.

If called with no arguments, the three functions set the default access
control of subsequently defined methods. This is probably familiar behavior
if you’re a C# or Java programmer, where you’d use keywords such as
public to achieve the same effect. Although this usage looks like a keyword,

in Ruby, the access control is actually a method.

class MyClass
default is "public"
def method1
This method is public
end

protected
subsequent methods will be "protected"
def method2
This method is protected
end

private
subsequent methods will be private"”
def method3

This method is private
end

public
subsequent methods will be "public"”
def method4
this method is public
end
end

Since the default access for methods is public, it’s rare to use public explicitly
to denote access control.

As a matter of style, the methods after the call to an access method like
public are typically not indented—you aren’t defining a block, only the
access status of subsequent methods.

Alternatively, you can set access levels of named methods by listing them
as arguments to the access control functions:

class MyClass
def methodi
end

def method2
end
... and so on

public :method1, :method4
protected :method2
private :method3

end

This mechanism is somewhat rare in practice, but it does enable the third
way to declare access in Ruby.

We’ve mentioned that most statements in Ruby return a value. In particular,
defining a method with def returns a value—the name of the new method as

a symbol. As a result, you can declare access directly preceding a method
definition.

class MyClass
def method1
This method is public
end

protected def method2
This method is protected
end

private def method3
This method is private
end

public def method4
This method is public
end
end

What’s happening here is that the def method2 statement is returning the
value :method2, which is immediately passed as an argument to protected,
resulting in protected :method2, and making that method, and only that
method, protected. Access declared this way doesn’t propagate down the
file, it only applies to the method that the access modifier directly precedes.

We prefer this last form because it’s much more explicit about the access
level of each method. That said, the first form is older, and currently more
common in code you’re likely to see.

It’s time for some examples. Perhaps we’re modeling an accounting system
where every debit has a corresponding credit. Because we want to ensure
that no one can break this rule, we’ll make the methods that do the debits
and credits private, and we’ll define our external interface in terms of
transactions.

class Account

attr_accessor :balance

def initialize(balance)
@balance = balance
end
end

class Transaction
def initialize(account_a, account_b)
@account_a = account_a
@account_b = account_b
end

def transfer(amount)
debit(@account_a, amount)
credit(@account_b, amount)
end

private def debit(account, amount)
account.balance -= amount
end

private def credit(account, amount)
account.balance += amount
end
end

savings = Account.new(100)
checking = Account.new(200)

transaction = Transaction.new(checking, savings)
transaction.transfer(50)

Protected access is used when objects need to access the internal state of
other objects of the same class. For example, we may want to allow two
individual Account objects to compare their balances directly but to hide
those balances from the rest of the world (perhaps because we present them
in a different form):

class Account

protected attr_reader :balance # accessor method 'balance' but make it
protected

def greater_balance_than?(other)
@balance > other.balance
end
end

Because balance 1s protected, it’s available only within Account objects.

Variables

Now that we’ve gone through the trouble of creating all these objects, let’s
make sure we don’t lose them. Variables are used to keep track of objects;
each variable holds a reference to an object. Let’s confirm this with some
code:

person = "Tim"

puts "The object in 'person' is a #{person.class}"”
puts "The object has an id of #{person.object_id}"
puts "and a value of '#{person}'"

Produces:

The object in 'person' is a String
The object has an id of 60
and a value of 'Tim'

On the first line, Ruby creates a new string object with the value Tim. A
reference to this object is placed in the local variable person. A quick check

shows that the variable has indeed taken on the personality of a string, with
a class, an object ID, and a value.

So, 1s a variable an object? In Ruby, the answer is “no.” A variable is simply
a reference to an object. Objects float around in a big pool somewhere (the
operating system’s heap, most of the time) and are pointed to by variables.
Let’s make the example slightly more complicated:

personl = "Tim"

person2 = personl

personl[0] = 'J’'

puts "personi is #{personi}"”
puts "person2 is #{person2}"

Produces:

personl is Jim
person2 is Jim

What happened here? We changed the first character of person1 (Ruby
strings are mutable, unlike Java’s), but both person1 and person2 changed
from Tim to Jim.

It all comes back to the fact that variables hold references to objects, not the
objects themselves. Assigning person1 to person2 doesn’t create any new
objects; it simply copies person1’s object reference to person2 so that both
person1 and person2 refer to the same object, as shown in the illustration.

persont

String
person2 = personi >

person2
person1[0] ="J >
person2

Assignment aliases objects, potentially giving you multiple variables that
reference the same object.

Can’t this cause problems in your code? It can, but not as often as you’d
think (objects in Java, for example, work exactly the same way). In the
previous example, for instance, you could avoid aliasing by using the dup

method of String, which creates a new string object with identical contents:

personl = "Tim"

person2 = personl.dup
personi[@] = "J"

puts "personi is #{personi}"”
puts "person2 is #{person2}"

Produces:

personl is Jim
person2 is Tim

You can also prevent anyone from changing a particular object by freezing
it. Attempt to alter a frozen object, and Ruby will raise a RuntimeError

exception:
personl = "Tim"
person2 = personl
personl.freeze # prevent modifications to the object

person2[0] = "J"
Produces:

from prog.rb:4:in “<main>'
prog.rb:4:in "[]=': can't modify frozen String: "Tim" (FrozenError)

Numbers and symbols are always frozen in Ruby, so those values are
always immutable.

Reopening Classes

While we’re talking about classes in Ruby, we feel like we should at least
mention one of the most unique features of Ruby’s class structure: the
ability to reopen a class definition and add new methods or variables to it at
any time, even classes that are part of the third-party tools or the standard
library.

In other words, if you have something like this in Ruby:

class Book
attr_accessor :title

and a bunch of other stuff
end

Later, you can do this:

class Book
def uppercase_title
title.upcase
end
end

If you declare class Book and a Book class already exists, Ruby won’t give an
error, and the new definitions in the second declaration will be added to the
existing class. This is true even if the existing class is part of Ruby itself.
This process of reopening classes to add or change methods is colloquially
known as monkey-patching.

Typically, you’d only extend a class like this if the original class isn’t part
of your code, but it’s reasonably common in Ruby to use this method to add
utility functions to core classes or the standard library. Ruby on Rails, for
example, does this a lot.

To give an example, Ruby on Rails defines a method called squish, which
clears excessive whitespace in a string, so if you have this:

"This string has whitespace"

It becomes "This string has whitespace." By monkey-patching, Rails can define
the method like this:

class String
def squish
implementation
end
end

And then call it using str.squish like any other method.

The alternative, which many other languages use, is to define a utility class
or classes and define a class method on them, which looks like this:

class StringUtilities
def self.squish(str)
implementation
end
end

Which you would then call with StringUtilities.squish(str).

This example shows the advantage of allowing classes to reopen—the
ability to add and easily use utility methods is convenient. It’s nice to not
have to know which methods are defined by Rails and which of the many
possible utility classes a method might be in.

That said, this is something to be done with caution—many teams don’t
allow it in their own code without a clear reason. And you should be wary
of using monkey-patching to change the behavior of existing methods,
rather than adding new methods as we did here. Monkey-patching can make
the behavior of code unpredictable. It can be hard to tell where behavior is
defined, and these changes are global, meaning that if two files define the

same method, the last defined one will win, leading to potentially hard-to-
find bugs.

Later in Chapter 22, The Ruby, Object Model and Metaprogramming, we’ll
talk about refinements, a Ruby feature that gives you the benefit of
reopening classes, but also limits the scope of your changes.

What’s Next

There’s more to say about classes and objects in Ruby. We still have to look
at class methods and concepts such as mixins and inheritance. We’ll do that
But, for now, know that everything you manipulate in Ruby is an object and
that objects start their lives as instances of classes. And one of the most
common things we do with objects is to create collections of them. But
that’s the subject of our next chapter.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 4

Collections, Blocks, and Iterators

Most real programs have to manage collections of data: the people in a
course, the songs in your playlist, the books in the store, and so on. Ruby
comes with two classes that are commonly used to handle these collections:
arrays and hashes. A Ruby array is an ordered collection of data. A Ruby
hash is a key/value pair, equivalent to a Python dictionary, a Java Map, or a
JavaScript object. Mastery of these two classes, and their large interfaces, is
an important part of being an effective Ruby programmer.

But it isn’t only these two classes that give Ruby its power when dealing
with collections. Ruby also has a block syntax that lets you encapsulate
chunks of code. When paired with collections, these blocks can build
powerful iterator constructs. In this chapter, we’ll look at the two collection
classes as well as the blocks and iterators.

Arrays

The class Array holds a collection of object references. Each object reference
occupies a position in the array, identified by an integer index. You can
create arrays by using literals or by explicitly creating an Array object. A
literal array is a comma-delimited list of objects between square brackets:

a = [3.14159, "pie", 99]
a.class # => Array
a.length # => 3

a[o] # => 3.14159
a[1] # => "pie”
a[2] # => 99

a[3] # => nil

You can create an empty array with either [] or by directly calling Array.new:

b = Array.new

b.class # => Array

b.length # => 0

b[0] = "second"

b[1] = "array"

b # => ["second", "array"]

As the example shows, array indices start at zero. Index an array with a
non-negative integer, and it returns the object at that position, or it returns
nil if nothing is there. Index an array with a negative integer, and it counts
from the end, with -1 being the last element of the array.

a=1[1,3,5,7, 9]
al[-1] #=>9
a[-2] #=>7
a[-99] # => nil

The following diagram shows array access in a different way:

pgsiﬁue — 0 1 2 3 4 5 6
negative |—> -7 -6 -5 -4 -3 -2 -1

a = ["ant", "bat", "cat", = '"dog", "elk", "fly", "gnu"]
a[2] — "cat"
a[-3] —» "elk"
a[1.3] — ["bat", ‘cat", "dog"]
af1..3] — ["pat', “cat']
al-3..-1] —» ["elk", "fly", "gnu"]
a[4.-2] —» ["elk’, “fly"]

Arrays are accessed using the [] operator. As with most Ruby operators, this

operator is implemented as a method, specifically, an instance method of
class Array. The last two lines of this example are equivalent:

a = [3.14159, "pie", 99]
a[o] # => 3.14159
a.[1(0) # => 3.14159

The last line of code treats [] as a normal method. In practice, you wouldn’t
write code like the last line, we just wanted to show how flexible Ruby is.

You can index arrays with a pair of numbers, [start, count]. This returns a

new array consisting of references to count the number of objects starting at
position start:

a=1[1, 3,5, 7, 9]

a[1, 3] # => [3, 5, 7]
a[3, 11 # => [7]

a[-3, 2] # => [5, 7]

You can also index arrays using ranges, in which the start and end positions
are separated by two or three dots. The two-dot form includes the end
position; the three-dot form doesn’t. We’ll talk more about ranges in
Chapter 7, Basic Types: Numbers, Strings,_and Ranges.

a=1[1,3,5,7, 9]
a[1..3] #=>[3, 5, 7]

a[1...3] # =>[3, 5]
a[3..3] #=>[7]
a[-3..-1]1 # => [5, 7, 9]

The [] operator has a corresponding []= operator, which lets you set elements
in the array. If used with a single integer index, the element at that position
is replaced by whatever is on the right side of the assignment. Any gaps that
result will be filled with nil:

a=1[1, 3,5, 7, 9] #=> [1, 3, 5, 7, 9]

a[1] = 'bat’ #=> [1, "bat", 5, 7, 9]

a[-3] = 'cat’ #=> [1, "bat", "cat", 7, 9]

a[3] = [9, 8] #=> [1, "bat", "cat", [9, 8], 9]

a[6] = 99 #=> [1, "bat", "cat", [9, 8], 9, nil, 99]

Again, []= is a regular method, and you could write it as a.[]=(index,

new_value).

If the index to []= is two numbers (a start and a length) or a range, then
those elements in the original array are replaced by whatever is on the right
side of the assignment. If the length of the selected elements on the left is
zero, the right side is inserted into the array before the start position; no
elements are removed. If the right side is itself an array, its elements are
used in the replacement. The array size is automatically adjusted if the
index selects a different number of elements than are available on the right
side of the assignment.

a=1[1, 3,5, 7, 9] #=> [1, 3, 5, 7, 9]

a[2, 2] = "cat" #=> [1, 3, "cat", 9]

a2, 0] = "dog" #=> [1, 3, "dog", "cat", 9]

a[1, 1] = [9, 8, 7] #=> [1, 9, 8, 7, "dog", "cat", 9]
alo0..3] = [] #=> ["dog", "cat", 9]

a[5..6] = 99, 98 #=> ["dog", "cat", 9, nil, nil, 99, 98]

In the line a[2, 2] = "cat", the subarray starting at index 2 and of length 2,
which is [5, 7], 1s replaced by cat. In the next line, the subarray [2, 0] is of
length 0, so dog is inserted at index 2. Then the subarray represented by [1,

1], which is [3], is replaced by [9, 8, 7] being inserted in the array. Notice that
the entire right-side array isn’t inserted as one element, rather each element
in the right-hand side is inserted individually. The last two lines are similar,
but they use ranges instead of a start and a length.

It’s common to create arrays of short words, but that can be a pain, what
with all the quotes and commas. Fortunately, Ruby has a shortcut, %w,

which does just what we want:

Instead of this:

a = [”Gnt”, ”bee”, ”Cat”, "dog", Nelku]
alo] # => "ant"
a[3] #=> udogu

You can use %w followed by a delimiter and then by space-separated
individual words.

a = %w[ant bee cat dog elk]
alo] # => "ant"
a[3] # => "dog"

You can use any character after %w as the delimiter. If it’s something with a
pair, like a bracket or parenthesis, then the array will continue until the
other side of the pair. If you don’t use a pair, the array will continue until it
reaches the same character again.

If you want an array of symbols instead of strings, Ruby has a similar %i
shortcut:

a = %i[ant bee cat dog elk]
a[o] # => :ant
a[3] # => :dog

Arrays have a large number of other useful methods. Using them, you can
treat arrays as stacks, sets, queues, dequeues, and first-in-first-out (FIFO)

queues. (Ruby also has a dedicated Set class, which we’ll cover in Chapter
28, Library Reference: Enumerators and Containers.)

For example, push and pop add and remove elements from the end of an
array, so you can use the array as a stack:

stack = []

stack.push "red”

stack.push "green”

stack.push "blue”

stack # => ["red", "green", "blue"]

stack.pop # => "blue"
stack.pop # => "green"”
stack.pop # => "red”
stack #=>[]

Similarly, unshift and shift add and remove elements from the beginning of
an array. Combine shift and push, and you have a first-in-first-out (FIFO)
queue.

queue = []

queue.push "red”
queue.push "green”
queue.shift # => "red”
queue.shift # => "green”

The Ffirst and last methods return (but don’t remove) the » entries at the head
or end of an array. If you don’t pass an argument, the default number is one.

array = [1, 2, 3, 4, 5, 6, 7]

array.first #=>1
array.first(4) # => [1, 2, 3, 4]
array.last #=>7

array.last(4) # => [4, 5, 6, 7]

We’ll look at more array methods later on in Array.

Hashes

Hashes (sometimes known as associative arrays, maps, or dictionaries) are
similar to arrays in that they are indexed collections of object references.
But, while you index arrays with integers, you index a hash with objects of
any type, most often symbols and strings but also regular expressions or

anything else in Ruby. When you store a value in a hash, you actually
supply two objects: the index, which is called the key, and the value, or
entry, to be stored with that key. You can subsequently retrieve the entry by
indexing the hash with the same key value that you used to store it.

Why Are They Called Hashes?

i

The data structure that Ruby calls a Hash—where an arbitrary
key is an index to an arbitrary value—has different names in
different programming languages. The most generic term is
probably key-value store. You’ll also see them called
dictionaries (because the values are looked up based on the
keys), maps (because the individual keys are mapped to
individual values), or associative arrays (because they associate
keys with values).

The name “Hash” (or the related Java term “HashMap”) is
named after an implementation detail. The keys are stored in
memory based on a function that returns a (hopefully) unique
value for each object. Because the location of each key can be
found without referring to the entire object, lookup i1s fast. The
function that returns the unique value is called a hashing
function and so the data structure is called a Hash.

The example that follows uses hash literals (a list of key/value pairs
between braces), and then it uses square bracket syntax to access the value
at each key for both retrieving and setting the value:

h = {"dog" => "canine", "cat" => "feline", "bear" => "ursine"

h.length # => 3
h["dog"] # => "canine"
h["cow"] = "bovine"
h[12] = "dodecine”
h["cat"] = 99
h # => {"dog"=>"canine", "cat"=>99, "bear"=>"ursine",
"cow"=>"bovine",
.. 12=>"dodecine"}

In the previous example, the hash keys were strings, and the hash literal
used => to separate the keys from the values. (The => is sometimes called a
hashrocket.) If the keys are symbols, then you can use a shortcut. You can
still use => to separate symbol keys from values:

h = {:dog => "canine", :cat => "feline", :bear => "ursine"

You can also write the literal by moving the colon to the end of the symbol
and dropping the =>.

h = { dog: "canine", cat: "feline", bear: "ursine"

Because the value of a symbol doesn’t change, symbols are often used as
hash keys, and so this shortcut is very common.

You can use an even shorter shortcut. Often when creating a new hash,
you’re using existing data stored in variables that share the same name as
the key that the variable will be indexed under in the hash. Something like
this:

firstname = "Fred”

lastname = "Flintstone”

user = {firstname: firstname, lastname: lastname}
puts user

Produces:
{:firstname=>"Fred", :lastname=>"Flintstone"}

You don’t need to duplicate the key and the value if they have the same
name:

firstname = "Fred”
lastname = "Flintstone"
user = {firstname:, lastname:}
puts user
Produces:
{:firstname=>"Fred", :lastname=>"Flintstone"}

Ruby will infer that the value should come from a variable with the same
name as the key. If you try to use a key shortcut and no such local variable
exists, Ruby will throw an error.

Compared with arrays, hashes have one significant advantage: they can use
any object as an index. And you’ll find something that might be surprising:
Ruby remembers the order in which you add items to a hash. When you
subsequently iterate over the entries, Ruby will return them in that order.

You’ll find that hashes are one of the most commonly used data structures
in Ruby. Later, Chapter 5, More about Methods, lists more of the methods
implemented by class Hash.

Digging

Often data isn’t simply a single hash or array but comes in a complex
package that combines hashes and arrays. Accessing data in a complicated
structure can be a pain, but Ruby provides a shortcut with the dig method.

The dig method, which is defined for Array, Hash, and Struct, allows you to
“dig” through a complicated data structure in a single command.

data = {
mcu: [
{name: "Iron Man", year: 2010, actors: ["Robert Downey Jr.", "Gwyneth
Paltrow"]}
1,
starwars: [
{name: "A New Hope", year: 1977, actors: ["Mark Hamill", "Carrie Fisher'

!

13
]

}
data[:mcu][0][:actors][1] # => "Gwyneth Paltrow"

data.dig(:mcu, 0, :actors, 1) # => "Gwyneth Paltrow"

The biggest advantage of using dig is that if an element isn’t in the data
structure, the method returns nil and doesn’t raise an exception.

Word Frequency: Using Hashes and Arrays

Let’s round out this discussion of hashes and arrays with a program that
calculates the number of times each word occurs in some text. (So, for
example, in this sentence, the word the occurs two times.)

The problem breaks down into two parts. First, given some text as a string,
return a list of words. That sounds like an array. Then, build a count for each
distinct word. That sounds like a use for a hash—we can index it with the
word and use the corresponding entry to keep a count.

Let’s start with the method that splits a string into words:

tut_containers/word_freq/words_from_string.rb

def words_from_string(string)
string.downcase.scan(/[\w']+/)
end

This method uses two useful string methods: downcase, which returns a
lowercase version of a string, and scan, which returns an array of substrings
that match a given pattern. In this case, the pattern is [\w']+, which matches
sequences containing “word characters” and single quotes.

We can play with this method. Notice how the result is an array, and notice
that the words are in lowercase and the punctuation is gone:

p words_from_string("I like Ruby, it is (usually) optimized for programmer
happiness")

Produces:

["i", "like", "ruby", "it", "is", "usually", "optimized", "for", "programmer",
"happiness"]

Our next task is to calculate word frequencies. To do this, we’ll create a hash
object indexed by the words in our list. Each entry in this hash stores the

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/words_from_string.rb

number of times that word occurred. Let’s say we’ve already read part of the
list, and we’ve seen the word the already. Then we’d have a hash that
contained this data:

{..., "the" => 1, ...}

If the variable next_word contains the word the, then incrementing the count is
as simple as setting the hash to increment the value at that key:

counts[next_word] += 1
We’d then end up with a hash containing the following:
{..., "the" =>2, ...}

Our only problem is what to do when we encounter a word for the first time. If
we try to increment the entry for that word, there won’t be one, so our
program will fail. This problem has several solutions. One is to check whether
the entry exists before doing the increment:

if counts.key?(next_word)
counts[next_word] += 1
else
counts[next_word] = 1
end

But there’s a tidier way. If we create a hash object using Hash.new(0), the
parameter, 0 in this case, will be used as the hash’s default value—it’ll be the
value returned if you look up a key that isn’t yet in the hash. Using that, we
can write our count_frequency method:

tut_containers/word_freq/count_Ffrequency.rb

def count_frequency(word list)
counts = Hash.new(0)
word_list.each do |word|
counts[word] += 1
end
counts
end

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/count_frequency.rb

p count_frequency(["sparky"”, "the", "cat", "sat", "on", "the", "mat"])
Produces:
{"Sparky"=>1, "the"=>2, "Cat"=>1, "Sat"=>1, |lon||=>1, ||mat|l=>1}

We haven’t talked about loops or blocks yet, but each takes a block argument
and executes the code inside the block once for each element in the array, in
this case, checking the hash for each word and incrementing the count
associated with that word.

We have one little job left. The hash containing the word frequencies is
ordered based on the first time it sees each word. It would be better to display
the results based on the frequencies of the words. We can do that using the
hash’s sort_by method. When you use sort_by, you give it a block that tells the
sort what to use when making comparisons. In our case, we’ll use the count.
The result of the sort is an array containing a set of two-element arrays, with
each subarray corresponding to a key/entry pair in the original hash. This
makes our whole program look like this:

tut_containers/word_freq/ugly_word_count.rb

require_relative "words_from_string”
require_relative "count_frequency"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count.”

word_list = words_from_string(raw_text)

counts = count_frequency(word_list)

sorted = counts.sort_by { |word, count| count }
top_five = sorted.last(5)

top_five.reverse_each do |word, count]|
puts "#{word}: #{count}"

end

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/ugly_word_count.rb

a: 6

the: 3
that: 2
sounds: 2
like: 2

Note that the sorted array is low to high, so we use last to take the last five

elements of the array, meaning the one with the highest count, and then we use
reverse_each to iterate them highest to lowest.

At this point, a quick test may be in order to validate our code. These tests are
going to be valuable in a moment because we’re going to change that code
into a more commonly used Ruby and we want to make sure the behavior
doesn’t change.

To do this, we’re going to use a testing framework called Minitest that comes
with the standard Ruby distributions. We won’t describe it fully yet (we’ll do
that in Chapter 13, Testing Ruby Code). For now, we’ll say that the class

MiniTest:Test brings in testing functionality, including the method assert_equal,

which checks that its two parameters are equal and complains bitterly if they
aren’t. We’ll use assertions to test our two methods, one method at a time.
(That’s one reason why we wrote them as separate methods—it makes them
testable in isolation.)

Here are some tests for the word_from_string method:

tut_containers/word_freq/test_words_from_string.rb

require_relative "words_from string"”
require "minitest/autorun”

class TestWordsFromString < Minitest::Test
def test_empty_string
assert_equal([], words_from_string(""))
assert_equal([], words_from_string("”)]
end

def test_single_word
assert_equal(["cat"], words_from_string("cat"))

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/test_words_from_string.rb

assert_equal(["cat"], words_from_string("” cat)]
end

def test_many_words
assert_equal(
["the", "cat", "sat", "on", "the", "mat"],
words_from_string("the cat sat on the mat")

)

end

def test_ignores_punctuation
assert_equal(
["the", "cat's", "mat"],
words_from_string("<the!> cat's, -mat-")

)
end
end

Produces:
Run options: --seed 39197
Running:
Finished in 0.000420s, 9523.8109 runs/s, 14285.7164 assertions/s.
4 runs, 6 assertions, 0 failures, 0 errors, 0 skips

The test starts by requiring the source file containing our words_from_string
method, along with the unit test framework itself. It then defines a test class.
Within that class, any methods whose names start with test are automatically
run by the testing framework. The results show that four test methods ran,
successfully executing six assertions.

We can also test that our count of word frequency works:

tut_containers/word_freq/test_count_frequency.rb

require_relative "count_frequency"
require "minitest/autorun”

class TestCountFrequency < Minitest::Test

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/test_count_frequency.rb

def test_empty_list
assert_equal({}, count_frequency([]))
end

def test_single_word
assert_equal({"cat" => 1}, count_frequency(["cat"]))
end

def test_two_different_words
assert_equal({"cat" => 1, "sat" => 1}, count_frequency(["cat”, "sat"]))
end

def test_two_words_with_adjacent_repeat
assert_equal({"cat" => 2, "sat" => 1}, count_frequency(["cat”,

n n

cat", "sat"

m

end

def test_two_words_with_non_adjacent_repeat
assert_equal({"cat” => 2, "sat" => 1}, count_frequency(["cat"”,

" "

sat", "cat"

D)

end
end

Produces:

Run options: --seed 56174
Running:

Finished in 0.000503s, 9940.3581 runs/s, 9940.3581 assertions/s.
5 runs, 5 assertions, 0 failures, 0 errors, 0 skips

In previous editions of the book, we stopped here. But, since then, the Ruby
Standard Library has evolved, and the Array class now has a tally method that

does exactly what our count_frequency method does. We can use tally instead:

tut_containers/word_freq/better_word_count.rb

require_relative "words_from_string"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/better_word_count.rb

a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count."”

word_list = words_from_string(raw_text)

counts = word_list.tally

sorted = counts.sort_by { |word, count| count }
top_five = sorted.last(5)

top_five.reverse_each do |word, count]|
puts "#{word}: #{count}"”
end

Produces:

a: 6

the: 3
that: 2
sounds: 2
like: 2

And we get the same answer.

Blocks and Enumeration

In our program that wrote out the results of our word frequency analysis, we
had the following loop:

top_five.reverse_each do |word, count|
puts "#{word}: #{count}"
end

The method reverse_each is an example of an iferator—a general term for a

method that invokes a block of code repeatedly. Ruby also uses the term
enumerator for such a method.

The most general iterator in Ruby is each, which takes a block and invokes the

block once for each element in the collection. In this case, we’re using
reverse_each, a shortcut method that invokes the block once for each element of

the list, but in reverse order.

Enumerator methods can have different behaviors beyond just executing the
block of code. A Ruby programmer might use a different enumerator method
called map to write the code more compactly. For example:

puts top_five.reverse.map { |word, count| "#{word}: #{count}" }

The map applies its block to each element of the array in turn, returning a new
array made up of the result of each invocation of the block.

Now the whole example looks like this:

tut_containers/word_freq/best_word_count.rb

require_relative "words_from_string"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count."

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/best_word_count.rb

word_list = words_from_string(raw_text)

counts = word_list.tally

sorted = counts.sort_by { |word, count| count }

top_five = sorted.last(5)

puts top_five.reverse.map { |word, count| "#{word}: #{count}" }

Produces:

a: 6

the: 3
that: 2
sounds: 2
like: 2

The map method is now taking each element of our top_five array and

converting it to a new array made of the strings that come as the result of
executing the block.

Because each local variable is only used as the receiver of the next message,
you could chain all the values together and get something like this:

tut_containers/word_freq/bester_word_count.rb

require_relative "words_from string"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count."”

puts words_from_string(raw_text)
.tally
.sort_by { |word, count| count }
.last(5)
.reverse
.map { |word, count| "#{word}: #{count}" }

Produces:
the: 3

that: 2
sounds: 2

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/bester_word_count.rb

like: 2

In this example, each message returns a new collection of data that’s processed
by the next message until we finally return the list of strings that’s sent to puts.

You may wonder how to debug that long chain of methods if something isn’t
working and you want to determine what each individual step is. Ruby
provides a method called tap that’s designed to allow you to “tap into” this
kind of method pipeline. All tap does is take a block, pass the receiver into the
block, and then return the original receiver of the method. (From the
perspective of the method pipeline, this does nothing—the receiver calls tap,
and then the same object is returned to receive the next method in the chain.)
So tap is a no-op, except that it does invoke a block.

That block could have a side effect, such as printing a value to the console for
debugging purposes:

tut_containers/word_freq/bester_word_count_with_tap.rb

require_relative "words_from string"

raw_text = "The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count."”

puts words_from_string(raw_text)
.tally
.sort_by { |word, count| count }
.tap { |result]| puts "sorted tally: #{result}|n|n" }
.last(5)
.tap { |result]| puts "only the last five: #{result}|n|n" }
.reverse
.tap { |result]| puts "reversed: #{result}|n|n" }
.map { |word, count| "#{word}: #{count}" }

Produces:

sorted tally: [["words", 1], ["an", 1], ["array", 1], ["then", 1], ["build",
11,

http://media.pragprog.com/titles/ruby5/code/tut_containers/word_freq/bester_word_count_with_tap.rb

["each", 1], ["distinct", 1], ["hash", 1], ["we", 1], ["can", 1], ["index", 1],
["it", 11, ["with", 1], ["and", 1], ["corresponding", 1], ["entry", 1], ["to",
1], ["keep", 1], ["problem", 1], ["breaks", 1], ["down", 1], ["of", 1],
["list",

1], ["return", 1], ["string", 1], ["into", 1], ["two", 1], ["parts", 1], ["as",
1], ["first", 1], ["given", 1], ["text", 1], ["some", 1], ["use", 2], ["word",
2], ["for", 2], ["count", 2], ["like", 2], ["sounds", 2], ["that", 2], ["the",
3], ["a", 6]]

only the last five: [["like", 2], ["sounds", 2], ["that", 2], ["the", 3], ["a",
6]1]

reversed: [["a", 6], ["the", 3], ["that", 2], ["sounds", 2], ["like", 2]]

a: 6

the: 3
that: 2
sounds: 2
like: 2

It’s worth briefly mentioning that Ruby does have traditional for loops, and
you could start the code with something like foriin 0...5. But the for loop is too
knowledgeable about the array; it magically knows that we’re iterating over
five elements, and it retrieves values in turn from the array. To do this, it has to
know that the structure it’s working with is an array of two-element subarrays.
All that knowledge makes the code brittle—subject to breaking if the

underlying data changes. The enumeration construction is more robust and
flexible.

However you use them, enumeration and code blocks are among the more
interesting features of Ruby, so let’s spend a while looking into them.

Blocks

A block 1s a chunk of code enclosed either between braces or between the
keywords do and end. The two forms are identical except for precedence,
which is rarely an issue in practice. Ruby style favors using braces for blocks
that fit on one line and do/end when a block spans multiple lines. Ruby style

also has spaces between the brace and the code to distinguish a block from a
Hash literal.

some_array.each { |value| puts value * 3 }

sum = 0

other_array.each do |value]|
sum += value
puts value / sum

end

You can think of a block as being somewhat like the body of an anonymous
method. Like a method, the block can take parameters (but, unlike a method,
those parameters appear at the start of the block between vertical bars). Both
blocks in the preceding example take a single parameter, value. And, like a
method, the body of a block isn’t executed when Ruby first sees it. Instead, the
block is saved away to be called later.

Blocks can appear in Ruby source code only immediately after the invocation
of a method. If the method takes parameters, the block appears after these
parameters. You can think of the block as being an extra parameter passed to
that method. Let’s look at an example that sums the squares of the numbers in
an array:

sum = 0

[1, 2, 3, 4].each do |value]
square = value * value
sum += square

end

puts sum

Produces:
30

The block is called by the each method once for each element in the array, with
each element passed to the block as the value parameter in turn. But there’s
something else going on. Take a look at the sum variable. It’s declared outside

the block, updated inside the block, and then passed to puts after the each
method returns.

This example illustrates an important rule: the block has access to the variable
scope outside the block, and doesn’t, by default, create new variables with
existing names. There’s only one variable sum in the preceding program. (You
can override this behavior, as we’ll see later.)

If a variable appears only inside a block, then that variable is local to the
block. In the preceding program, we couldn’t have written the value of square
in the puts statement at the end of the code because square is no longer defined
at that point. It’s defined only inside the block itself.

This scoping behavior can lead to unexpected problems. For example, say our
program was dealing with drawing different shapes. We might have this:

assume Shape is defined elsewhere
square = Shape.new(sides: 4)

.. lots of code

sum = 0

[1, 2, 3, 4].each do |value]
square = value * value
sum += square

end

puts sum

square.draw # Error! Square is a number now...

This code will fail because the variable square, which originally held a Shape

object, will have been overwritten inside the block and will hold a number by
the time the each method returns. This problem doesn’t happen often, but when

it does, it can be confusing.
Fortunately, Ruby has a couple of answers.

Parameters to a block are always local to that block, even if they have the
same name as variables in the surrounding scope. (You’ll get a warning

message when you do this if you run Ruby with the -w option.)

In this example, declaring thing as a parameter of the block means that the
block gets its own version of thing and the value outside the block is
undisturbed by the rest of the block:

thing = "some shape”
[1, 2].each { |thing| puts thing }
puts thing

Produces:

1
2
some shape

Second, you can define block-local variables by putting them after a
semicolon in the block’s parameter list. So, in our sum-of-squares example,
we should have indicated that the square variable was block-local by writing it

as follows:

square = "some shape"

sum = 0

[1, 2, 3, 4].each do |value; square|
square = value * value # this is a different variable
sum += square

end

puts sum

puts square
Produces:

30
some shape

To be fair, this syntax is pretty rare in actual Ruby code.

By making square block-local, values assigned inside the block won’t affect
the value of the variable with the same name in the outer scope.

Ruby also offers a shortcut way to access the arguments to a block based on
their numerical position. Before we wrote our block like this:

[1, 2].each { |thing| puts thing }

You can instead use the special variable _1 to indicate the first positional
argument to the block, meaning you can write this as:

[1, 2].each { puts _1 }

If the block had more arguments, you could reference them as _2, _3, and so
on. We think that if this goes past _1, you’re probably better off giving the
block variables their own names.

This version is shorter but can be harder to read if the name of the argument
was conveying important information. Later, we’ll see another common
shortcut for simple block invocations.

Iterators

A method that can invoke a block of code repeatedly for one or more elements
is sometimes called an iterator or an enumerator. We said earlier that a block
may appear only in the source adjacent to a method call and that the code in
the block isn’t executed at the time it’s encountered. Instead, Ruby remembers
the context in which the block appears (the local variables, the current object,
and so on—Ruby refers to all of this information as a binding) and then enters
the method that was called. This 1s where the magic starts.

Within the method, the block may be invoked, almost as if it were a method
itself, using the yield statement. Whenever a yield is executed, it invokes the
code in the block passed to the method. If there is no block, Ruby throws an
error. When the block exits, control picks back up immediately after the yield.
Let’s start with a trivial example:

Why "yield"?

keyword yield was chosen to echo the yield function in Liskov’s

o Programming-language buffs will be pleased to know that the

language CLU, a language that’s more than forty years old and yet
contains features that still haven’t been widely exploited by the
CLU-less.

def two_times
yield
yield
end
two_times { puts "Hello" }

Produces:

Hello
Hello

The block (the code between the braces) is part of the call to the two_times
method. Within this method, yield is called two times. Each time, it invokes the
code in the block, and a cheery greeting is printed.

What makes blocks interesting is that you can pass parameters to them and
receive values from them. For example, we could write a simple function that
calculates members of the Fibonacci series up to a certain value. (The basic
Fibonacci series is a sequence of integers, starting with two 1s, in which each
subsequent term is the sum of the two preceding terms. The series is
sometimes used in sorting algorithms and in analyzing natural phenomena.)

Continuing the example, let’s say we want the method to be able to do
something arbitrary with each new Fibonacci number. We can allow that by
passing a block to the method and then yielding to the block each time we
identify a new Fibonacci number.

tut_containers/fibonacci_up_to.rb

def fibonacci_up_to(max)
parallel assignment (i1 = 1 and 12 = 1)
i1, 12 =1, 1
while 11 <= max
yield i1
i1, 12 = 12, 11 + 12
end
end

fibonacci_up_to(1000) { |f| print f, " " }
puts

Produces:
112358 13 21 34 55 89 144 233 377 610 987

In this example, the yield statement has an argument. This value is passed to

the associated block, which tells the method what to do with each successive
element.

In the definition of the block, the parameter list appears between vertical bars.
In this instance, the variable f receives the value passed to yield in the
statement yield i1 and then passed from the yield statement to the block, so the
block prints successive members of the series. (This example also shows
parallel assignment in action. We’ll come back to this later in Parallel
Assignment.) Using the shortcut syntax we saw earlier, this block could also
have been written as { print _1,""}.

Although it’s common to pass only one value to a block, this isn’t a
requirement; a block may have any number of arguments. Blocks can use any
of the argument patterns that methods use, including keyword arguments, *
and ** splats, and & arguments. These patterns are discussed further in Chapter
5, More about Methods.

Ruby provides many iterators that are available to all Ruby collections. Let’s
look at three: each, find, and map.

http://media.pragprog.com/titles/ruby5/code/tut_containers/fibonacci_up_to.rb

The each method is probably the simplest iterator—all it does is yield
successive elements of its collection:

[1, 3, 5, 7, 9].each { |i]| puts 1 }

Produces:

O N U W

The each iterator has a special place in Ruby. We’ll describe how it’s used as
the basis of the language’s for loop in for ... in, and we’ll see how all the other
enumerable methods are defined in terms of each in lterators and the

Enumerable Module. Just defining an each method can add a whole lot more

functionality to your classes.

A block returns a value to the method that yields to it. The value of the last
expression evaluated in the block is passed back to the method as the value of
the yield expression. This is how the find method used by class Array works.
(The find method is actually defined in module Enumerable, which is mixed into
class Array.) Its implementation would look something like the following:

class Array
def find
each do |value|
return value if yield(value)
end
nil
end
end

[1, 3, 5, 7, 9].find { |number| number * number > 30 } # => 7

Let’s break this down. The find method 1s defined here as an instance method
of Array. The last line of code creates a literal array, [1, 3, 5, 7, 9], and sends it the
find method.

The find method uses each to pass successive elements of the array to the
associated block. You can assume that the each method here is being called as
if on the same array instance (as if it was [1, 3, 5, 7, 9].each). We’ll talk about
why that’s so in Method Receiver.

So, each takes its own block and passes values to that block in succession. On
the first iteration, that’ll be the first element of the array, or 1. We then get to
the line return value if yield(value). The first part evaluated is yield(value), which
passes control of the block argument to find, namely { |number| number * number >
30}. With 1 as the argument, that’s 1 * 1> 30, which is false. Because the if
clause value is false, the return value part of that line isn’t evaluated, and the
each method goes on to the next value in the array, which in this case is 3.

If the block returns true (that is, a value other than nil or false), the method
exits, returning the corresponding element, which is the return value part. In
this case, that return will happen when the block gets to the element 7. If the

method goes through the entire array and no element matches, the method
goes to the expression after the each and returns nil—methods and blocks both

return the value of their last expression.

There’s a not-so-obvious piece of control flow here: when you return from
inside a block, the return also acts as a return on the associated method. So
when the return value finally does execute inside the each block, that value is
also returned from the entire find method.

The example shows the benefit of Ruby’s approach to iterators. The Array class

does what it does best, accessing array elements, and leaves the application
code to concentrate on its particular requirement (in this case, finding an entry
that meets some criteria).

Another common iterator is map (also sometimes known as collect), which
takes each element from the collection and passes it to the block. The results

returned by the block are used to construct a new array. The following
example uses the String#succ method, which increments a string value:

[”H”’ VIA”, HL H].map { |X| X.Succ } # => [HIH’ IIB”’ ”MH]
The implementation of map looks something like this:

class Array
def map
result = []
each do |value]
result << yield(value)
end
result
end
end

We start off with an empty result array. For each element in the array, yield is

invoked on the block, and the resulting value is appended to the array. At the
end of the method, the result, now containing all the individual values that
have been returned by blocks, is itself returned.

[terators aren’t limited to accessing existing data in arrays and hashes. As we
saw in the Fibonacci example, an iterator can return derived values. This
capability is used by Ruby’s input and output classes, which implement an
iterator interface that returns successive lines (or bytes) in an I/O stream. In
other words, they implement an each method that invokes its block once for
each line in the file, so you can iterate through a file like so:

f = File.open("testfile")
f.each do |line|

puts "The line is: #{line}"
end
f.close

Produces:
The 1line is: This is line one

The 1ine is: This is 1line two
The 1line is: This is line three

The 1ine is: And so on...

Sometimes you want to keep track of how many times you’ve been through
the block. The with_index method is your friend. You can use with_index as a

method call after an iterator, it adds a sequence number to each value returned

by that iterator. The original value and that sequence number are then passed
to the block:

f = File.open("testfile")

f.each.with_index do |line, index|
puts "“Line #{index} is: #{line}"

end

f.close

Produces:

Line 0 is: This is 1line one
Line 1 is: This is line two
Line 2 is: This is line three
Line 3 is: And so on...

The cool thing about with_index is that if the receiving object properly defines
each, then with_index can be chained to any iterator method, you can do
map.with_index or find.with_index or whatever.

Let’s look at one more useful iterator. The reduce method (which can also be
referred to as inject for historical reasons) lets you accumulate a value across
the members of a collection. It lets you reduce an array to a single scalar
value. For example, you can sum all the elements in an array or find their
product using code such as this:

[1,3,5,7].reduce(0) { |sum, element| sum + element } # => 16
[1,3,5,7].reduce(1) { |product, element| product * element } # => 105

Here’s how reduce works: the first time the associated block is called, the first
argument to the block is set to the first argument passed to reduce and the

second argument to the block is set to the first element in the collection. In this
case, for sum, the first time through the block, sum is 0 (the argument) and

element is 1 (from the collection). The block performs sum + element, returning
1.

The second and subsequent times the block is called, the first block argument
is set to the value returned by the block on the previous call, while the second
argument continues to be passed successive items from the collection. So, the
next time through the block, sum is 1 and the element is 3, so the block returns
4. The next time, sum is 4 and the element is 5, which returns 9, and the next
time, 9 and 7 returns 16. The final value of reduce is the value returned by the
block the last time it was called.

If reduce is called with no parameter, it uses the first element of the collection

as the initial value and starts the iteration with the second value. This means
that we could’ve written the previous examples like this:

[1,3,5,7].reduce { |sum, element| sum + element } # => 16
[1,3,5,7].reduce { |product, element| product * element } # => 105

To make things shorter, instead of a block, you can pass it the name of the
method you want to apply to successive elements of the collection. These
examples work because, in Ruby, addition and multiplication are simply
methods defined on the classes that represent numbers, and :+ is the symbol

corresponding to the method +:

[1,3,5,7].reduce(:+) # => 16
[1,3,5,7].reduce(:*) # => 105

But for one of these examples, there’s a shortcut:
[1,3,5,7].sum # => 16

(Array#product is also a method, but it does something different, it returns the
cross-product of two arrays...)

[1,3,5,7].product([2, 4, 6]) # => [[1, 2], [1, 4], [1, 6], [3, 2], [3, 4], [3,
#..6], [5 2], [5 4], [5 6], [7, 2], [7, 4],
[7,
.. 6]]

Using Blocks for Transactions

Although blocks are often used as the target of an iterator, they have other
uses. Let’s look at a few.

You can use blocks to define a chunk of code that must be run as part of some
kind of transaction. For example, you’ll often open a file, do something with
its contents, and then need to ensure that the file is closed when you finish.
Opening and closing the file is a transaction that you want to happen together
regardless of what you do with the contents. Although you can manage a
transaction using conventional linear code, a version using blocks is simpler
and turns out to be less error-prone. A naive implementation (ignoring error
handling) could look something like the following:

class File
def self.open_and_process(*args)
f = File.open(*args)
yield f
f.close()
end
end

File.open_and_process("testfile”, "r") do |file]|
while line = file.gets
puts line
end
end

Produces:

This is line one
This is line two
This is line three
And so on...

The method open_and_process 1s a class method—its receiver is the class itself,
and it may be called independently of any particular file object. We’ll discuss
class methods more in Chapter 5, More about Methods. We want

open_and_process to take the same arguments as the conventional File.open
method, but we want to pass them through no matter what the arguments are.

So, we’ve specified the parameter list as *args meaning “collect the positional
parameters passed to the method into an array named args”. We then call
File.open, passing it *args as an argument. This expands the array back into
individual parameters. The net result is that open_and_process transparently
passes its non-block arguments to File.open.

Once the file has been opened, open_and_process calls yield, passing the open
file object to the block. When the block returns, the file is closed. In this way,
the responsibility for closing an open file has been shifted from the users of
file objects to the file objects themselves.

The technique of having files manage their own life cycle is so useful that the
class File supplied with Ruby supports it directly. If File.open has an associated
block, then that block will be invoked with a file object, and the file will be
closed when the block terminates. This is interesting because it means that
File.open has two different behaviors. When called with a block, it executes the
block and closes the file. When called without a block, it just returns the file
object. This i1s made possible by the method block_given?, which returns true if a
block is associated with the current method. Using this method, you could
implement something similar to the standard File.open (again, ignoring error
handling) using the following:

class File
def self.my_open(*args)
file = File.new(*args)
return file unless block_given?
result = yield file
file.close
result
end
end

In this version, we use the guard clause return file unless block_given? to exit the
method early if block_given? is false. Otherwise, we proceed with the same yield
and then close as in our previous code.

This code has one last missing piece: in the previous examples of using blocks
to control resources, we didn’t address error handling. If we wanted to
implement these methods properly, we’d need to ensure that we closed a file
even if the code processing that file somehow aborted. We do this using
exception handling, which we’ll talk about later in Chapter 10, Exceptions.

Using Blocks as Objects

Blocks are like anonymous methods, but there’s more to them than that. You
can also store a block in a variable, pass it as an argument to a function, and
then invoke its code later.

Remember we said that you can think of blocks as an extra implicit argument
that’s passed to a method? Well, you can make that argument explicit. If the
last parameter in a method definition is prefixed with an ampersand (such as
&action), Ruby looks for a code block whenever that method is called. That
code block is converted to an object of class Proc and assigned to the
parameter. You can then treat the parameter as any other variable.

Here’s an example where we create a Proc object in one instance method and

store it in an instance variable. We then invoke the proc from a second
instance method.

class ProcExample
def pass_1in_block(&action)
@stored_proc = action
end

def use_proc(parameter)
@stored_proc.call(parameter)
end
end

eg = ProcExample.new
eg.pass_in_block { |param| puts "The parameter is #{param}" }

eg.use_proc(99)

Produces:

The parameter is 99

Do you see how the call method on a proc object invokes the code in the
original block?

Many Ruby programs store and later call blocks in this way—it’s a great way
of implementing callbacks, dispatch tables, and so on. But you can go one step
further. If a block can be turned into an object by adding an ampersand
parameter to a method, what happens if that method then returns the Proc

object to the caller? What can you do with that Proc object?

Well, you can call it, for one thing...

def create_block_object(&block)
block
end

bo = create_block object { |param| puts "You called me with #{param}" }

bo.call(99)
bo.call("cat")

Produces:

You called me with 99
You called me with cat

The create_block_object method converts its block argument to the variable
named block and then returns it. The returned value is a Proc object and can be
called with the call method.

Creating a variable with a block value is so useful that Ruby provides multiple
ways to do so. The one you might see the most in newer code is the “stabby
lambda” syntax, where the -> operator declares that a block is coming:

bo = ->(param) { puts "You called me with #{param}" }
bo.call(99)
bo.call("cat")

Produces:

You called me with 99
You called me with cat

The stabby lambda is a shortcut for the Ruby Kernel method lambda:

bo = lambda { |param| puts "You called me with #{param}" }
bo.call 99
bo.call "cat”

Produces:

You called me with 99
You called me with cat

There’s a related Kernel method called proc:

bo = proc { |param| puts "You called me with #{param}" }
bo.call 99
bo.call "cat”

Produces:

You called me with 99
You called me with cat

Both proc and lambda invoke the new method of the Proc class, although the
current style prefers using one of the previous mechanisms to using Proc.new
directly:

bo = Proc.new { |param| puts "You called me with #{param}" }

bo.call 99

bo.call "cat”

Produces:

You called me with 99
You called me with cat

There are slight differences between the behavior of the resulting object based
on the lambda calls versus the proc calls. Specifically, the lambda values return

an error if called with the wrong number of arguments, while proc will allow
the call, and either truncate extra arguments or assign nil to unspecified
arguments. Also, using return inside a proc will return from the method the
proc is inside, whereas using return inside a lambda will not.

Blocks Are Closures

We said earlier that a block can use local variables from the surrounding
scope. Let’s look at a slightly different example of a block doing simply that:

def n_times(thing)
->(n) { thing * n }
end

pl = n_times(23)

pl.call(3) # => 69

pl.call(4) # => 92

p2 = n_times("Hello ")

p2.call(3) # => "Hello Hello Hello "

The method n_times uses stabby lambda syntax to return a Proc object that
references the method’s parameter, thing. Even though that parameter is out of
scope by the time the block is called outside the method, the parameter
remains accessible to the block. This is called a closure—variables in the
surrounding scope that are referenced in a block remain accessible for the life
of that block and the life of any Proc object created from that block.

Here’s another example—a method that returns a Proc object that returns
successive powers of 2 when called:

def power_proc_generator
value = 1
-> { value += value }
end

power_proc = power_proc_generator

puts power_proc.call
puts power_proc.call

puts power_proc.call

Produces:

Stabby Lambdas

Let’s look at that lambda syntax a little more. You can write the following:

-> (params) { ... }

As a shortcut to:

lambda { |params| ... }
Why ->?

Let’s start by getting something out of the way. Why ->? For

o compatibility across all the different source file encodings, Matz
is restricted to using pure 7-bit ASCII for Ruby operators, and the
choice of available characters is severely limited by the
ambiguities inherent in the Ruby syntax. He felt that -> was (kind
of) reminiscent of a Greek lambda character A.

The parentheses around the parameters are optional. Here are some examples:

procl = -> arg { puts "In procl with #{arg}" }
proc2 = -> argl, arg2 { puts "In proc2 with #{argl} and #{arg2}" }
proc3 = ->(argl, arg2) { puts "In proc3 with #{argl} and #{arg2}" }

procl.call "ant”
proc2.call "bee"”, "cat"

proc3.call "dog"”, "elk"

Produces:

In procl with ant
In proc2 with bee and cat
In proc3 with dog and elk

The -> form is more compact than using lambda and is especially useful when
you want to pass one or more Proc objects to a method:

def my_1if(condition, then_clause, else_clause)
if condition
then_clause.call
else
else clause.call
end
end

5.times do |val|
my_1if(
val < 2,
-> { puts "#{val} is small" },
-> { puts "#{val} is big" }
)

end
Produces:

is small
is small
is big
is big
is big

A W DN RO

One good reason to pass blocks to methods is that you can reevaluate the code
in those blocks at any time.

Here’s an example of reimplementing a while loop using a method. Because
the condition is passed as a block, it can be evaluated each time around the
loop:

def my_while(cond, &body)
while cond.call
body.call
end

end

a=0

my_while(-> { a < 3 }) do
puts a
a+=1

end

Produces:

Block Parameter Lists

When you’re using the -> syntax, you declare the parameters in a separate list
before the block body, similar to a method definition. Blocks written using the
other syntax forms declare their parameter lists between vertical bars. In both
cases, the parameter list looks like the list you can give to methods. It can take
default values, splat arguments (described later in Jariable-Length Parameter
Lists), keyword arguments, and its own block parameter (a trailing argument
starting with an ampersand). You can write blocks that are as versatile as
methods. Actually, they are more versatile because these blocks are also
closures, while methods are not. Here’s a block using the lambda notation:

procl = lambda do |a, *b, &block]
puts "a = #{a.inspect}”
puts "b = #{b.inspect}"
block.call

end

procl.call(1, 2, 3, 4) { puts "in blocki" }
Produces:

a=1

b=1[2, 3, 4]

in block1

And here’s one using the -> notation:

proc2 = -> (a, *b, &block) do
puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

proc2.call(1, 2, 3, 4) { puts "in block2" }
Produces:

a=1
b= [2: 3’ 4]
in block2

Enumerators

As powerful and flexible as the Ruby enumeration methods are, the ones
we’ve seen all have the same structure. A block is passed to an object, and that
object controls how it interacts with the block and traverses the collection.

As useful as that structure 1s, it doesn’t cover all the cases where iteration is
useful. Sometimes, you want an external object or method to control how the
collection is traversed. You may need a more complicated kind of access to the
block methods. For example, you might want to iterate over two collections in
parallel, which is difficult using Ruby’s internal iterator scheme.

Fortunately, Ruby comes with a built-in Enumerator class, which implements
external iterators in Ruby for just such occasions. An external iterator is an
iterator where you control the iteration behavior outside the iterator itself,
meaning we have a specific way of explicitly triggering when the iterator
should move to the next element in its collection.

The Enumerator class is not to be confused with the Enumerable module, which
we’ll discuss in Chapter 6, Sharing Functionality: Inheritance, Modules, and
Mixins. The Enumerable module is a mixin that provides functionality to a

variety of classes. The Enumerator class is a class that allows for external
iterators.

You can create an Enumerator object by calling the to_enum method (or its
synonym, enum_for) on a collection such as an array or a hash. Once you have
an Enumerator, you can access the next element in the collection with the
method next:

a=1[1, 3, "cat"]

enum_a = a.to_enum
enum_a.next # => 1
enum_a.next # => 3

h = {dog: "canine", fox: "vulpine"}
enum_h = h.to_enum

enum_h.next # => [:dog, "canine"
enum_h.next # => [:fox, "vulpine"]

By default, the new enumerator uses the each method as the way it walks

through the underlying enumeration, but you can use any method that
successively yields values to a block:

a=1[1, 3, "cat"]

enum_a = a.to_enum(:reverse_each)
enum_a.next # => "cat”
enum_a.next # => 3

Most of Ruby’s internal iterator methods—the ones that normally yield
successive values to a block—will return an Enumerator object if called without

a block:
a=1[1, 3, "cat"]
enum_a = a.each

enum_a.next # => 1
enum_a.next # => 3

Ruby’s Kernel module has a method called loop that does nothing but
repeatedly invoke its block. Typically, your code in the block will look for an
ending condition and break out of the loop when that condition occurs. But

loop 1s also smart when you use an Enumerator—when an enumerator object
runs out of values inside a loop, the loop will terminate cleanly.

The following example shows this in action—the loop iterates both arrays in

parallel and ends when the three-element enumerator runs out of values. You

can also handle this in your own iterator methods by rescuing the Stopiteration
exception, but, because we haven’t talked about exceptions yet, we won’t go

into details here.

short_enum = [1, 2, 3].to_enum

long_enum = ('a’..’'z').to_enum
loop do
puts "#{short_enum.next} - #{long_enum.next}"
end
Produces:
a
-b
3-c

Enumerators Are Objects

Enumerators take something that’s normally executable code (the act of
iterating—by default, calling each) and turn it into an object. This means you
can do things programmatically with enumerators that aren’t easily done with
regular loops.

For example, the Enumerable module defines the method each_with_index. This
invokes its host class’s each method, returning successive values along with an
index:

result = []
['a', 'b', 'c'].each_with_index { |item, index]| result << [item, index] }
result # => [["a", 0], ["b", 1], ["c", 2]]

What if you wanted to iterate and receive an index but use a different method
than each to control that iteration? For example, you might want to iterate over

the characters in a string. There’s no method called each_char_with_index built
into the string class.

Enumerators to the rescue. The each_char method of strings will return an
enumerator if you don’t give it a block, and you can then call each_with_index
on that enumerator:

result = []
"cat".each_char.each_with_index { |item, index| result << [item, 1index] }
result # => [["c", 0], ["a", 1], ["t", 2]]

In fact, this 1s such a common use of enumerators that Matz has given us
with_index, which makes the code read better:

result = []
"cat".each_char.with_index { |item, index| result << [item, 1index] }
result # =>[["c", 0], ["a", 1], ["t", 2]]

By separating the with_index from the each_char, we can even chain in a map call
and simplify the code even further:

"cat".each_char.with_index.map { |item, index| [item, 1index] }

You can also create the Enumerator object explicitly—in this case, we’ll create
one that calls our string’s each_char method. We can call to_a on that
enumerator to iterate over it:

enum = "cat”.each_char

n "

enum.to_a # => ["c", "a", "t"]

If the method we’re using as the basis of our enumerator takes parameters, we
can pass them to enum_for:

enum_1in_threes = (1..10).enum_for(:each_slice, 3)
enum_in_threes.to_a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

Enumerators Used as Generators and Filters

In addition to creating enumerators from existing collections, you can create
an enumerator explicitly with Enumerator.new, passing it a block that takes a

single argument. The code in the block will be used when next is called on the
enumerator object, and it needs to supply a fresh value to your program. But
the block isn’t simply executed from top to bottom. When first called,
execution starts at the top of the block and pauses when the block calls yield on
its argument, which yields a value to the calling code. When next is called
again, execution resumes at the statement following the yield.

Among other things, this lets you write enumerators that generate infinite
sequences:

triangular_numbers = Enumerator.new do |yielder|
number = 0
count = 1
loop do
number += count
count += 1
yielder.yield(number)
end
end

5.times { print triangular_numbers.next, " " }
puts

Produces:
136 10 15

We start by creating an iterator using Enumerator.new and assigning that value
to the variable triangular_numbers. After that, we loop 5.times, each time calling
triangular_numbers.next. The first time next is called, we start at the top of the
block, setting number and count before entering the loop. In the loop, number is
set to 1, count is incremented to 2, and then yielder.yield is called, passing number
back to the caller.

The following time that next is called, we continue at the point of yield
meaning that we stay in the loop rather than start at the beginning again. The
code updates number to 3, increments count to three, and yields. And so on...

That syntax for infinite sequences is confusing, though. So, a simpler
mechanism was added for creating infinite sequences. The produce method
takes an initial value and a block. Every time the block is invoked via next, the
resulting value is stored and used as the input to the next call. This means all
you need to do is define the succession function, and you don’t need to worry
about managing yielders and whatnot:

triangular_numbers = Enumerator.produce([1, 2]) do |number, count]|
[number + count, count + 1]

end
5.times { print triangular_numbers.next.first, " " }
puts
Produces:
13610 15

Note that we’re returning a two-element array to keep both values, so we need
to call first on the result to get the actual number. We’ll see a workaround in a
second.

Enumerator objects are also enumerable (that is to say, the methods available
to enumerable objects are also available to them). So we can use Enumerable’s

methods (such as first) on them:

triangular_numbers = Enumerator.produce([1, 2]) do |number, count]|
[number + count, count + 1]
end
p triangular_numbers.first(5).map { _1.first }
Produces:

[1, 3, 6, 10, 15]

You have to be careful with enumerators that can generate infinite sequences.
Some of the regular Enumerable methods, such as count and select, will happily

try to read the whole enumeration before returning a result. If you want a

version of select that works with infinite sequences, you need to use the lazy
method of Enumerable.

If you call lazy on any Ruby enumerable, you get back an instance of class
Enumerator:Lazy. This enumerator acts like the original, but it reimplements
methods such as select and map so that they can work with infinite sequences.
Putting it another way, none of the lazy versions of the methods actually
consume any data from the collection until that data is requested, and then
they only consume enough to satisfy that request. In other words, they are
“lazy”.

To work this magic, the lazy versions of the various methods don’t return
arrays of data. Instead, each returns a new enumerator that includes its own
special processing—the select method returns an enumerator that knows how
to apply the select logic to its input collection, the map enumerator knows how
to handle the map logic, and so on. The result is that if you chain a bunch of
lazy enumerator methods, what you end up with is a chain of enumerators—
the last one in the chain takes values from the one before it, and so on.

Let’s play with this a little. To start, let’s create a class that generates a stream
of integers...

class InfiniteStream
def all
Enumerator.produce(0) do |number|
number += 1
end.lazy
end
end

p InfiniteStream.new.all.first(10)
Produces:

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

See how we convert the basic generator into a lazy enumerator with the call to
lazy after the end of the block.

Calling the first method on this with the argument 10 returns the numbers 1
through 10, but this doesn’t exercise the method’s lazy characteristics. Let’s
instead get the first 10 multiples of three.

p InfiniteStream.new.all
.select { (_1 % 3).zero? }
.first(10)

Produces:

(e, 3, 6, 9, 12, 15, 18, 21, 24, 27]

Without the lazy enumerator, the call to select would effectively never return,
as select would try to read all the values from the generator. But the lazy
version of select only consumes values on demand, and in this case the
subsequent call to first only asks for 10 values.

Let’s make this a little more complex—how about multiples of 3 whose string
representations are palindromes?

def palindrome?(n)

n =n.to_s
n == n.reverse
end

p InfiniteStream.new.all
.select { (_1 % 3).zero? }
.select { palindrome?(_1) }
first(10)

Produces:
[0, 3, 6, 9, 33, 66, 99, 111, 141, 171]

Remember that our lazy filter methods simply return new Enumerator objects?
That means we can split up the previous code:

multiple_of_three = InfiniteStream.new.all.select { (_1 % 3).zero? }
p multiple_of_three.first(10)
m3_palindrome = multiple_of_three.select { palindrome?(_1) }
p m3_palindrome.first(10)
Produces:

[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
[0, 3, 6, 9, 33, 66, 99, 111, 141, 171]

You could also code up the various predicates as free-standing procs if you
feel it aids readability or reusability.

multiple_of_three = -> n { (n % 3).zero? }

palindrome = -> n { n = n.to_s; n == n.reverse }

p InfiniteStream.new
.all
.select(&multiple_of_three)
.select(&palindrome)
first(10)

Produces:
[0, 3, 6, 9, 33, 66, 99, 111, 141, 171]

This also gives us a way to fix our definition of triangular numbers so that the
user of that method doesn’t have to know about the two-element array, we use
lazy and map to return only the number we care about:

triangular_numbers = Enumerator.produce([1, 2]) do |number, count]|
[number + count, count + 1]

end.lazy.map { _1.first }

p triangular_numbers.first(5)

Produces:

[1, 3, 6, 10, 15]

What’s Next

Collections, blocks, and iterators are core concepts in Ruby. The more you
write in Ruby, the more you’ll find yourself moving away from
conventional looping constructs. Instead, you’ll write classes that support
iteration over their contents. And you’ll find that this code is compact, easy
to read, and a joy to maintain. If this all seems too weird, don’t worry. After
a while, it’1l start to come naturally. And you’ll have plenty of time to
practice as you use Ruby libraries and frameworks. Now, let’s talk more
about how Ruby lets you define and call methods.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 5

More about Methods

So far in this book, we’ve been defining and using methods without much
thought. Now it’s time to get into the details.

Defining a Method

As we’ve seen, a method is defined using the keyword def.

The keyword def creates a method and returns the name of the method as a
symbol, which, as we saw in Specifying Access Control, allows us to put
decorator methods like private before the declaration.

The body of a method contains normal Ruby expressions. The return value of
a method is the value of the last expression executed or the argument of an
explicit return expression.

An important fact about def is that if you define a method a second time, Ruby

won’t raise an error, it’ll print a warning, and then 1t’ll redefine the method
using the second definition:

class Batman
def who_1is_robin
puts "Dick Grayson"
end

def who_1is_robin
puts "“Damian Wayne"
end
end
Batman.new.who_is_robin
Produces:

Damian Wayne

When combined with the ability to reopen classes that we saw in Reopening
Classes, the ability to redefine methods is an important, but potentially
dangerous, feature of how classes work.

Method Bodies

In a “regular” method definition, the method body starts on the line after the
method declaration and continues until a matching end. Ruby doesn’t require
the method body to be indented, but standard code style does indent method
bodies by two characters:

def a_method_name(arg)
puts arg
end

Starting in Ruby 3.0, you can create one-line methods with a different syntax,
sometimes called an “endless method,” because you don’t need the end

statement.

It’s the method name, any arguments, an optional space, an =, and the method
body:

def a_method_name(arg) = puts arg

The right side of the equal sign is a single expression. If the method takes
arguments, the argument list must be surrounded by parentheses (which are
optional in a regular definition). There must be either a parenthesis or a space
between the method name and the equals sign, or else the parser will consider
the equals sign to be part of the method name.

Sometimes you’ll want to define a method with no body, often because it’s a
method that will be fully defined by subclasses. While you can do that in two
lines, you’ll sometimes see this idiom:

def a_method_name; end

The semicolon, which is rare in Ruby code, is used here as a separator
between multiple expressions on the same line. If the method is called, it
returns nil.

Method Names

Method names should begin with a lowercase letter or underscore followed by
a combination of letters, digits, and underscores. You won’t get an error if you

start a method name with an uppercase letter, but when Ruby sees you calling

the method, it might guess that’s a constant, not a method invocation, and, as a
result, it may parse the call incorrectly. By convention, method names starting
with an uppercase letter are in the Kernel module and are used for type

conversion. The Integer method, for example, converts its parameter to an
integer.

In addition to letters, digits, and underscores, a method name may end with 2,
I, Or =.

Methods that return a boolean result (so-called predicate methods) are often
named with a trailing 2:

1.even? # => false
2.even? # => true
1.instance_of?(Integer) # => true

Methods that are “dangerous” or that modify their receiver, may be named
with a trailing exclamation point, !. These are sometimes called bang methods
and are often paired with a “safe” version that doesn’t end in an exclamation
point. For instance, class String provides both chop and chop! methods. The first
returns a modified string; the second modifies the receiver in place.

sample = "this is my code”
sample.chop # => "this is my cod"
sample # => "this is my code"

sample.chop! # => "this is my cod"
sample # => "this is my cod"

Methods that can appear on the left side of an assignment (a feature we
discussed back in Writing to Attributes) end with an equal sign (=).

?, 1, and = are the only weird characters allowed as method name suffixes.
These characters are only allowed at the end of a method name.

In addition, you can override a limited set of operators by defining them as
methods. For example:

class Matrix
attr_reader :x, :y

def initialize(x, y)

@x = x
@y =y
end

def to_s = "(#{x}, #{y})"

def +(other)
Matrix.new(x + other.x, y + other.y)
end
end

first = Matrix.new(1, 2)
second = Matrix.new(3, 4)
puts first + second

Produces:
(4, 6)

Here we’re defining the + operator to implement a matrix addition and return a
new matrix object. Even though the + is defined as a method, it’s still written

as a binary operator. You can find the full list of operator names that you can
define as methods in Chapter 25, Language Reference: Objects and Classes.

Method Receiver

An instance method definition, like the ones we just saw, adds the method to
the class it’s defined within and makes the method available to instances of
that class. (In Chapter 25, Language Reference: Objects and Classes, we’ll
talk about what Ruby does for method definitions that aren’t inside a class.)

Ruby also allows you to define a method for one specific object rather than the
current class. The most common use of this feature 1s to assign methods to the

class itself rather than to instances of the class.

The syntax is to put the object name, followed by a dot, before the method
name:

class Computer
def self.function
"I'm afraid I can't do that"
end
end

puts Computer.function
Produces:
I'm afraid I can't do that

In this example, the object name is self, and at the point of the method
declaration, self means “The class this method is being declared inside,” in this
case Computer, so the method is accessible as Computer.function. (You could
actually define the method as def Computer.function, and you might see older
Ruby code that uses that syntax.) We’ll talk more about self in Chapter 22, The
Ruby Object Model and Metaprogramming.

Although class methods are the most common use of this feature, methods can
be attached to any object:

class Computer
end

mac = Computer.new
pc = Computer.new

def mac.introduction = "I'm a Mac"

def pc.introduction = "I'm a PC"

puts mac.introduction
puts pc.introduction

Produces:

I'm a Mac
I'ma PC

In this case, we’ve attached separate methods to each of the two instances, so
calling introduction on each instance behaves differently.

You’ll see this syntax for class methods frequently, and the individual object
version of it quite rarely. We’ll talk more in Chapter 25, Language Reference:
Objects and Classes, about why this works and how class methods behave in
Ruby.

Method Parameters

Now that we’ve defined our new method, we may need to declare some
parameters to the method. Parameters are defined using a list of local variable
names. Using parentheses around a method’s parameters in the definition is
optional. The standard convention is to use them when a method has
parameters and omit them when it doesn’t. Note that if the method is defined
using the “endless method” syntax, the parameter list must be surrounded by
parentheses, but you don’t need to include empty parentheses.

def my_new_method(argl, arg2, arg3) # 3 parameters
Code for the method would go here
end

def my_other_new_method # No parameters
Code for the method would go here
end

Ruby lets you specify default values for a method’s parameters—values that
will be used if the caller doesn’t pass them explicitly. You do this using an
equal sign (=) followed by a Ruby expression. That expression can include

references to previous parameters in the list:

def cool_dude(argl="Miles", arg2="Coltrane", arg3="Roach")

"#{argl}, #{arg2}, #{arg3}."
end

cool_dude => "Miles, Coltrane, Roach."

#
cool_dude("Bart") # => "Bart, Coltrane, Roach."
cool_dude("Bart", "Elwood") # => "Bart, Elwood, Roach."
cool_dude("Bart", "Elwood", "Linus") # => "Bart, Elwood, Linus."

Here’s an example where the default parameter references a previous
parameter:

def surround(word, pad_width=word.length/2)
"[" * pad_width + word + "]J" * pad_width
end

surround("elephant") # => "[[[[elephant]]]]"
surround("fox") # => "[fox]"
surround("fox", 10) # => "[[[[[[[[[[fox]]]]]]1]1]]"

The default parameter value is re-evaluated every time the method is called,
and any variable that would be visible inside the method itself is available for
the default value expression.

Variable-Length Parameter Lists

But what if you want to pass in a variable number of parameters or want to
capture multiple arguments into a single parameter? Placing an asterisk before
the name of the parameter lets you do just that. This is sometimes called a
splat (presumably because the asterisk looks somewhat like a bug after hitting
the windscreen of a fast-moving car).

def variable_args(argl, *rest)
"argl=#{argl} -- rest=#{rest.inspect}”

end

variable_args("one") # => argl=one -- rest=[]
variable_args("one", "two") # => argl=one -- rest=["two"]
variable_args("one”, "two", "three") # => argl=one -- rest=["two", "three"]

In this example, the first argument is assigned to the first method parameter as
usual. But the next parameter is prefixed with an asterisk, so all the remaining
arguments are bundled into a new Array, which is then assigned to that

parameter.

Folks sometimes use a splat to specify parameters that aren’t used by the
method but that are perhaps used by the corresponding method in a superclass.
(Note that in this example we call super with no parameters. This is a special
case that means “invoke this method in the superclass, passing it all the
parameters that were given to the original method.” More about this is found
in Super Lookup.)

class Child < Parent
def do_something(*not_used)
our processing
super
end
end

If the parameter isn’t used, you can also leave off the name of the parameter
and just write an asterisk:

class Child < Parent
def do_something(*)
our processing
super
end
end

And you can pass the anonymous splat parameter to another method without
giving it a name.

class Example
def method_1(*)
method_2(*)
end

def method_2(*array_args)
puts array_args.join(", ")
end
end

puts Example.new.method_1("a"”, "b", "c")

Produces:

a, b, c

You do have to give the splat a name if you want to use it, though, so you
can’t write *,join or something like that.

You can put the splat parameter anywhere in a method’s parameter list,
allowing you to write this:

def split_apart(first, *splat, last)
puts "First: #{first.inspect}, splat: #{splat.inspect}, " +
"last: #{last.inspect}”
end

split_apart(1,2)
split_apart(1,2,3)
split_apart(1,2,3,4)

Produces:

First: 1, splat: [], last: 2
First: 1, splat: [2], last: 3
First: 1, splat: [2, 3], last: 4

In practice, many developers will find this confusing.

If you cared only about the first and last parameters, you could define this
method using the bare asterisk syntax:

def split_apart(first, *, last)

You can have only one array splat parameter in a method—if you had two,
parameter assignment would be ambiguous. You also can’t put parameters
with default values after the splat parameter. In all cases the splat argument
receives any values left over after the positional variables have been assigned.

Hash and Keyword Parameters

Ruby allows you to define parameters to methods using keywords, with the
requirement that the arguments will also be passed using the same keyword. In
Calling a Method, we’ll talk more about how those arguments are passed.

The difference between a positional and keyword parameter in the method
definition is that a keyword parameter name is followed by a colon:

def method_with_keywords(city:, state:, zip:)
end

method_with_keywords(city: "Chicago”, state: "IL", zip: "60606")

As with positional parameters, you can specify a default value for a keyword
parameter that’s not called. For keyword parameters, this involves placing the
default value after the colon. Keyword parameters with default values don’t
need to be included in each call:

def method_with_keywords(city:, state: "IL", zip:)
end

method _with_keywords(city: "Chicago", zip: "60606")

When a method with keywords is called, each keyword parameter must either
be part of the call or have a default value, otherwise Ruby raises an

ArgumentError.

If a method has both positional and keyword parameters, the keyword
parameters must come after the positional parameters.

You can collect arbitrary keyword arguments into a Hash with the double-splat,
Or **:

def varargs(argl, **rest)
"argl=#{argl}. rest=#{rest.inspect}”

end

varargs("one"” # => argl=one. rest={}
varargs("one", color: "red") # => argl=one. rest=
{:color=>"red"}

varargs "one", color: "red", size: "xl" # => argl=one. rest=

{:color=>"red",
.. :size=>"x1"}

As with the single splat, you can use the bare double splat (**) to ignore

keyword parameters or to pass the entire hash on to another method. A bare
single splat will catch positional arguments, a bare double splat will catch
keyword arguments.

class Child < Parent
def do_something(**)
do_something else(**)
end
end

Ruby also allows you to use **nil to explicitly indicate that the method doesn’t

accept any keyword arguments. Otherwise, a method definition that uses a
single splat will pull in keyword arguments as a hash. If you don’t want that
behavior, **nil will raise an exception.

Ruby Keywords Pre 3.0
We don’t normally mention deprecated or removed Ruby features in this book, but this is
a pattern you’re extremely likely to see in older Ruby code.

Before Ruby had true keyword parameters, it had a syntax that simulated them. Any
arbitrary key/value pair passed after the positional parameters to a method were
automatically rolled up and converted to a Hash. In other words, you could do this:

class SonglList
def search(field, options = {})
implementation
end
end

Songlist.new.search(:titles, genre: "jazz", duration_less_than: 270)

Here, the genre and duration_less_than parameters would be rolled together and placed
in the last parameter of the method. In this case, options (the default empty hash is there
in case no extra parameters are passed). It was then the responsibility of the method to
determine if the list of key/value pairs in the hash were valid.

Ruby added true keyword parameters in version 2.0, and the true keyword parameters
and hash parameters lived awkwardly together until Ruby 3.0, which removed the

arbitrary hash parameters, fully replacing them with keyword arguments and the double
splat.

Methods and Block Parameters

As we discussed in Blocks and Enumeration, when a method is called, it may
be associated with a block. Normally, you call the block from within the

method using yield:

def double(p1l)
yield(pl * 2)
end

double(3) { |val| "I got #{val}" } # => "I got 6"
double("tom") { |val| "Then I got #{val}" } # => "Then I got tomtom"

But, if the last parameter in a method definition list is prefixed with an
ampersand, any associated block is converted to a Proc object, and that object
is assigned to the parameter. This allows you to store the block for use later.

tut_methods/tax_calculator.rb

class TaxCalculator
def initialize(name, &block)
@name, @block = name, block
end

def get_tax(amount)
"#{@name} on #{amount} = #{@block.call(amount)}"

end
end

tc = TaxCalculator.new("Sales tax") { |amt| amt * 0.075 }

7.5"
18.75"

tc.get_tax(100) # => "Sales tax on 100
tc.get_tax(250) # => "Sales tax on 250

You don’t have to give the block parameter a name if you’re only going to
pass it along, you can just use a bare & character.

class Child < Parent

http://media.pragprog.com/titles/ruby5/code/tut_methods/tax_calculator.rb

def do_something(&)
do_something_else(&)
end
end

Combining all these mechanisms, if you want to roll all the arguments of a
method along to a different method, then def(*args, **kwargs, &block) 1s an
awkward way to gather all the arguments. Ruby has a simpler way:

class Thing
def do_something(...)
do_something else(...)
end
end

The triple dot syntax is an anonymous way to pass all arguments to one
method onward to a different method.

Calling a Method

You call a method by optionally specifying a receiver, giving the name of
the method, and optionally passing some arguments and an optional block.
Here’s a code fragment that shows us calling a method with a receiver, a
positional argument, a keyword argument, and a block:

connection.download_mp3("jitterbug", speed: :slow) { |p| show_progress(p) }

In this example, the object connection is the receiver, download_mp3 is the
name of the method, the string "jitterbug" is the positional parameter, the
key/value pair speed: :slow 1s a keyword parameter, and the code between the
braces is the associated block argument. When the method is called, Ruby
invokes the method in that object, and inside that method, self is set to that
recetver object. For class and module methods, the receiver will be the class
or module object.

File.size("testfile") # => 66
Math.sin(Math::PI/4) # => 0.7071067811865475

Ruby allows you to omit the receiver, in which case the default receiver is
self, the current object. In this example, all the methods in write_on are

called with the current object as the implicit receiver.

class InvoiceWriter
def initialize(order)
@order = order
end

def write_on(output)
called on current object, as there is no receiver
write_header_on(output)
write_body_on(output)
write_totals_on(output)
end

def write_header_on(output)

end

def write_body_on(output)
end

def write_totals_on(output)
end
end

This defaulting mechanism is how Ruby handles private methods. Private
methods may not be called with a receiver other than self, so they must be
methods available in the current object. In the previous example, we might
want to make the helper methods private because they shouldn’t be called
from outside the Invoicewriter class:

class InvoicelWriter
def initialize(order)
@order = order
end

def write_on(output)
write_header_on(output)
write_body_on(output)
write_totals_on(output)
end

private def write_header_on(output)
end

private def write_body_on(output)
end

private def write_totals_on(output)
end
end

If the method name ends in =, and only if the method name ends in =, Ruby
allows you to call the method as the left side of an assignment statement.
Ruby allows you to place whitespace between the rest of the method name
and the closing =. The last two lines of this example are equivalent:

class Person
def name=(new_name)
@name = new_name
end
end

p = Person.new
p.name = "Brandi Carlile”
p.name=("Elton John")

This use of methods on the left side of an assignment leads to a potential
ambiguity between a local variable assignment and a method call:

class Person
def name=(new_name)
@ame = new_name
end

def change_things(new_name, address)
name = new_name
end
end

In this example, it’s potentially ambiguous whether the line name = new_name
creates a local variable called name and assigns new_name to it or whether it
uses the implicit receiver syntax to call the method self.name= with new_name
as an argument.

Ruby handles this potential issue consistently and is always in favor of
creating the local variable. When calling a method on the left side of an
assignment, you must specify the receiver explicitly. In this case, the
highlighted line must be changed to self.name = new_name. Not doing so can

lead to some hard-to-track-down bugs. (Ask us how we know.)

Passing Arguments to a Method

Any arguments follow the method name. If no ambiguity exists, you can
omit the parentheses around the argument list when calling a method. Ruby
documentation sometimes describes method calls without parentheses as
commands. As you’ve seen, method calls that look like commands or
macros, such as puts, are often written without parentheses. A lot of Ruby
tools, like RSpec, skip parentheses to make their domain-specific languages
flow more naturally.

But, except in the simplest cases, we don’t recommend skipping
parentheses—some subtle problems can trip you up. In particular, you must
use parentheses on a method call that is itself an argument to another
method call (unless it’s the last parameter). Our rule is simple: if you have
any doubt, use parentheses.

for some suitable value in obj:
a = obj.hash # Same as
a = obj.hash() # this.

obj.some_method "Argi1", arg2, arg3 # Same thing as
obj.some_method("Arg1", arg2, arg3) # with parentheses.

Positional arguments are passed to the method based on their position, but
keyword arguments are passed based on the keyword and can be listed in
any order:
def method_with_keywords(city:, state:, zip:)
"I live in #{city}, #{state} #{zip}"

end

puts method_with_keywords(city: "Chicago", state: "IL", zip: "60606")
puts method_with_keywords(zip: "02134", city: "Boston", state: "MA")

Produces:

I live in Chicago, IL 60606
I 1live in Boston, MA 02134

Method Return Values

Every method you call returns a value (although no rule says that you have
to use that value). The value of a method is the value of the last expression
executed by the method:

def method_one
HoneH
end

n

method_one # => "one

def method_two(arg)
case
when arg > 0 then “positive’
when arg < 0 then "negative'’

!

!

else
"zero"
end
end
method_two(23) # => "positive”
method_two(0) # => "zero"

Ruby has a return statement, which exits from the currently executing
method. The value of a return is the value of its argument(s). An idiomatic
Ruby practice is to omit the return in the last expression of a method since
it’s redundant, as shown by the previous two examples.

This next example uses return to exit from a loop inside the method:

def method_three
100.times do |num]|
square = num * num
return num, square if square > 1000
end
end
method_three # => [32, 1024]

As this case illustrates, if you give return multiple parameters, the method
returns them in an array. You can use parallel assignment to collect this

return value:

num, square = method _three
num # => 32
square # => 1024

Splat! Expanding Collections in Method Calls

We’ve seen that if you prefix the name of a method argument with an
asterisk, multiple arguments in the call to the method will be passed as an
array. Well, the same thing works in reverse.

When you call a method, you can convert any collection, enumerable
object, or object that implements to_a into its constituent elements and pass
those elements as individual arguments to the method. Do this by prefixing
array arguments with an asterisk:

def five(a, b, c, d, e)

"I was passed #{a} #{b} #{c} #{d} #{e}"
end

five(1, 2, 3, 4, 5) # => "I was passed 1 2 3 4 5"
five(1, 2, 3, *['a’, 'b']) # => "I was passed 1 2 3 a b"
five(*['a’, 'b'], 1, 2, 3) # => "I was passed a b 1 2 3"
five(*(10..14)) # => "I was passed 10 11 12 13 14"
five(*[1,2], 3, *(4..5)) # => "I was passed 1 2 3 4 5"

Splat arguments can appear anywhere in the argument list, and you can
intermix splat and regular arguments.

Similarly, you can expand hashes, or anything that implements to_h, into
keyword arguments by prefixing the argument with a double-splat:
def method_with_keywords(city:, state:, zip:)
"I live in #{city}, #{state} #{zip}"

end

data = {city: "Chicago", state: "IL", zip: "60606"}

puts method_with_keywords(**data)
Produces:
I live in Chicago, IL 60606

You can also use the shortcut access syntax if the name of the keyword and
the name of the variable in the local context are the same, similar to the
hash shortcut we saw in Hashes.

def method_with_keywords(city:, state:, zip:)
"T live in #{city}, #{state} #{zip}"
end

city = "Chicago”

state = "IL"

zip = "60606"

puts method_with_keywords(city:, state:, zip:)

Produces:

I live in Chicago, IL 60606

Passing Block Arguments

Earlier we saw how an & in a parameter list converted a block argument to a
Proc object. You can also do this in reverse by passing a Proc object, or
anything that implements the method to_proc, and prefixing it with an & to
convert it to a block argument.

A common example of the use of objects that implement to_proc is Symbol.
The following two lines of code behave identically:

[Ilall, "b”, "C"].F’Iap { |S| S.Upcase } # = [”A”, IIBHJ HCII]
[Ilall, Hb”, ”C”].map(&:upcase) # => [IIAH’ IIBII’ HCII]

The reason why this works is that the class Symbol implements the to_proc
method, returning a Proc object that says “take the argument to this proc,

and call the method whose name matches this symbol”. The returned Proc
object gets used as the block argument and behaves the same as the explicit
block in the first line. You’ll frequently see this syntax as a shortcut for
methods that take simple blocks like map or sort_by.

We’ve already seen how to associate a block with a method call:

collection.each do |member|
...
end

Usually, this is perfectly good enough—you associate a fixed block of code
with a method in the same way you’d have a chunk of code after an if or

while statement.

But sometimes you’d like to be more flexible. In this example, we’re
teaching math skills. The student could ask for an n-plus table or an n-times
table. If the student asked for a 2-times table, we’d output 2, 4, 6, 8, and so
on. (This code doesn’t check its inputs for errors.)

print “(t)imes or (p)lus: "
operator = gets

print "number: "

number = Integer(gets)

if operator.start_with?("t")

puts((1..10).collect { |n| n*number }.join(", "))
else

puts((1..10).collect { |n| n+number }.join(", "))
end

Produces:
(t)imes or (p)lus: t

number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the
if statement. It would be nice if we could factor out the block that does the
calculation:

print “(t)imes or (p)lus: "
operator = gets

print "number: "

number = Integer(gets)

if operator.start_with?("t")

calc = -> (n) { n * number }
else

calc = -> (n) { n + number }
end

puts((1..10).map(&calc).join(", "))
Produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

In this version, we assign the correct block to a variable named calc, and
then in the highlighted line, we pass calc to the standard method map,
prefixing it with an &, (&calc).

If the last argument to a method is preceded by an ampersand, Ruby calls
to_proc on the object. It removes it from the argument list, converts the Proc
object into a block, and associates it with the method. In this case, the
object is already a Proc, so that means that map is called with the lambda as
its block argument and uses that block to convert the elements of the
method receiver.

There’s a shorter way to write this code. Ruby objects have a method
named method, which takes a symbol and returns the object’s method of the

same name. We can use the same to_proc feature that symbols have:

n

print "(t)imes or (p)lus:
operator = gets

"

print "number:
number = Integer(gets)

method = number.method(operator.start_with2("t") ? :* : :4)
puts((1..10).map(&method).join(", "))

Produces:

(t)imes or (p)lus: t

number: 2

2, 4, 6, 8, 10, 12, 14, 16, 18, 20
In this case, we’re using method to grab the method named :+ or :* based on
the input and using the ampersand’s to_proc powers to create a proc that
calls that method.

What’s Next

A well-written Ruby program will typically contain many methods, each
quite small, so it’s worth getting familiar with the options available when
defining and using them. At some point, you’ll probably want to read
arguments in a method call get mapped to the method’s formal parameters
when you have combinations of default parameters and splat parameters.

Now that we have methods, we need to talk about how different classes can
share functionality defined by their methods, so it’s time to talk about
inheritance and modules.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 6

Sharing Functionality: Inheritance,
Modules, and Mixins

One of the principles of good software design is the elimination of
unnecessary duplication. We work hard to make sure that each concept in
our application is expressed only once in our code. Why? Because the
world changes. And when you adapt your application to each change, you
want to know that you’ve changed exactly the code you need to change. If
each real-world concept is implemented at a single point in the code, this
becomes vastly easier.

We’ve already seen how classes help reduce duplication. All the methods in
a class are automatically accessible to instances of that class. But we want
to do other, more general types of sharing. Maybe we’re dealing with an
application that ships goods. Many forms of shipping are available, but all
forms share some basic functionality, perhaps weight calculation. We don’t
want to duplicate the code that implements this functionality across the
implementation of each shipping type.

Or maybe we have a more generic capability that we want to inject into a
number of different classes. For example, an online store may need the
ability to calculate sales tax for carts, orders, quotes, and so on. Again, we
don’t want to duplicate the sales tax code in each of these places.

In this chapter, we’ll look at two different but related mechanisms for this
kind of sharing in Ruby. The first, class-level inheritance, is common in
object-oriented languages. We’ll then look at mixins, a technique that’s
often preferable to inheritance. We’ll wind up with a discussion of when to
use each.

Inheritance and Messages

In a previous chapter, we saw that when the puts method needs to convert an
object to a string, it calls that object’s to_s method. But we’ve also written our
own classes that don’t explicitly implement to_s. Despite this, instances of
these classes respond successfully when we call to_s on them. How this works
has to do with inheritance and how Ruby uses it to determine what method to
run when you send a message to an object.

Inheritance allows you to create a class that’s a specialization of another class.
This specialized class is called a subclass of the original, and the original is a
superclass of the subclass. People also refer to this relationship as child and
parent classes.

The basic mechanism of subclassing is that the child inherits all of the
capabilities of its parent class. All the parent’s instance methods are available
to instances of the child.

Let’s look at a minimal example and then later build on it. Here’s a definition
of a parent class and a child class that inherits from it:

class Parent
def say_hello
puts "Hello from #{self}"
end
end

p = Parent.new
p.say_hello

class Child < Parent
end

c = Child.new
c.say_hello

Produces:

Hello from #<Parent:0x0000000100937780>
Hello from #<Child:0x0000000100936f60>

The parent class defines a single instance method, say_hello. We call that

method by creating a new instance of the class, storing a reference to that
instance in the variable p, and then using dot syntax, p.say_hello.

We then create a subclass using class Child < Parent. The < notation means we’re
creating a subclass of the thing on the right. The fact that we use the less-than

sign 1s meant to signal that the child class is supposed to be a specialization of
the parent.

Note that the child class defines no methods, but when we create an instance
of it, we can call say_hello. That’s because the child inherits all the methods of
its parent. Also note that when we output the value of selfF—the current object
—it shows that we’re in an instance of class child, even though the method
we’re running is defined in the parent.

The superclass method returns the parent of a particular class:

class Parent
end

class Child < Parent
end

Child.superclass # => Parent

But what’s the superclass of Parent?

class Parent
end
Parent.superclass # => Object

If you don’t define an explicit superclass when defining a class, Ruby
automatically uses the built-in class Object as the class’s parent. Let’s go

further:

Object.superclass # => BasicObject

Class BasicObject is a very, very minimal object that’s used in certain kinds of
metaprogramming, acting as a blank canvas. What’s its parent?

BasicObject.superclass # => nil

So, we’ve finally reached the end. BasicObject is the root class of our hierarchy
of classes. Given any class in any Ruby application, you can ask for its
superclass, then the superclass of that class, and so on, and you’ll eventually
get back to BasicObject.

We’ve seen that if you call a method in an instance of class child and that
method isn’t in child’s class definition, Ruby will look in the parent class. It
goes deeper than that because if the method isn’t defined in the parent class,
Ruby continues looking in the parent’s parent, the parent’s parent’s parent, and
so on, through the ancestors until it runs out of classes. Method lookup in
Ruby is actually a little bit more complex, we’ll talk more about it in Method
Lookup.

And this explains our original question about to_s. We can work out why to_s
is available in just about every Ruby object. to_s, it turns out, is defined in
class Object. Because Object 1s an ancestor of every Ruby class except
BasicObject, instances of every Ruby class have a to_s method defined:

class Person
def initialize(name)
@name = name
end
end

p = Person.new("Michael")
puts p

Produces:
#<Person:0x0000000100e781b8>

We saw in the previous chapter that we can override the to_s method:

class Person
def initialize(name)
@name = name
end

def to_s
"Person named #{@name}"
end
end

p = Person.new("Michael")
puts p

Produces:
Person named Michael

Armed with our knowledge of subclassing, we now know there’s nothing
special about this code. The puts method calls to_s on its arguments. In this
case, the argument is a Person object. Because class Person defines a to_s
method, that method is called. If it doesn’t define a to_s method, then Ruby
looks for (and finds) to_s in Person’s parent class, Object.

It’s common to use subclassing to add application-specific behavior to a
standard library or framework class. If you’ve used Ruby on Rails," you’ll
have subclassed ActionController::Base when writing your own controller
classes. Your controllers get all the behavior of the base controller and add
their own specific handlers to individual user actions.

Let’s look at an example where inheritance can spare us a significant amount
of duplication. Imagine you’re working on a task-tracker application. A task
might be in one of several states—it might be done, it might be started but
incomplete, or it might be defined but not started. There may be other statuses,
but just those three are probably enough to make the point.

If you’re writing code that interacts with the tasks in this system, you’ll likely
have to take a task’s status into account in your code. In other words, you’ll
likely be forever writing code like this:

def chatty_string(task)
case task.status
when "done” then "I'm done"
when "started"” then "I'm not done"”
when "unstarted" then "I haven't even started"
end
end

You’ll be continually switching on the status of a task. This is a form of
duplication. If the list of statuses changes, every one of these if statements or
case statements would need to be updated. So it seems worth trying to reduce
the number of times we use that switching logic.

We can use inheritance to create a hierarchy of status classes, and then only do
our switching logic once:

tut_modules/status.rb

class Status

def self.for(status_string)
case status_string
when "done" then DoneStatus.new
when "started" then StartedStatus.new
when "defined" then DefinedStatus.new
end

end

def done? = false

def chatty_string = raise NotImplementedError
end

class DoneStatus < Status
def to_s = "done"

def done? = true

def chatty_string = "I'm done"
end

class StartedStatus < Status
def to_s = "started"

http://media.pragprog.com/titles/ruby5/code/tut_modules/status.rb

def chatty_string = "I'm not done”
end

class DefinedStatus < Status
def to_s = "defined"

def chatty_string = "I'm not even started”
end

Now, if we want to get at that particular chatty string, rather than having to do
the case expression explicitly, we can write something like this:

Status.for(task.status).chatty_string

The case logic 1s now behind the scenes, in our Status.for method. Once we call
it, we know what kind of status we have, and each kind of status knows its
own behavior, so we can now call chatty_string directly on the status. More to
the point, once we call Status.for, we don’t need to have that case logic again;
we’ve removed the potential duplication.

The done? method is defined in the parent class as being false, which is fine for
the StartedStatus and DefinedStatus classes, but incorrect for the DoneStatus class,
which therefore overrides done? to the correct value—true—for that class.
There is no default for the chatty_string method though, so the parent class

throws an exception if it’s somehow called. This is a signal that all the
subclasses must define this method.

This is a common 1diom when using subclassing. A parent class assumes that
it’ll be subclassed and calls a method that it expects its children to implement.
The parent takes on the brunt of the processing but also invokes what are
effectively hook methods in subclasses to add application-level functionality.
As we’ll see at the end of this chapter, just because this idiom is common
doesn’t always make it a good design.

Instead, let’s look at mixins, a different way of sharing functionality in Ruby
code. But, before we look at mixins, we’ll need to get familiar with Ruby
modules.

In Ruby, a module can do everything that a class can do, except create
instances. It turns out, that even without creating instances, it still can be
useful to group related methods and data together. Let’s explore how.

Modules

Modules are a way of grouping together methods, classes, and constants.
Modules give you two major benefits:

e Modules provide a namespace and prevent name clashes.
e Modules can be included in other classes, a facility known as a mixin.

Namespaces

As you start to write bigger Ruby programs, you’ll find yourself producing
chunks of reusable code—Ilibraries of related routines that are applicable in
many different contexts. You’ll want to break this code into separate files so
the contents can be shared among different Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class
into each file. But sometimes you want to group things together that don’t
naturally form a class—for example, the methods that you want to group
together may be utility methods that don’t manage their own state.

An 1nitial approach may be to put all these things into a file and simply load
that file into any program that needs it. This is the way the C language works.
But this approach has a potential problem—mname collisions. To give an
admittedly contrived example, say you write a set of trigonometry functions,
sin, cos, and so on. You stuff them all into a file, trig.rb, for future generations
to enjoy. Meanwhile, another developer is working on a role-playing game
where characters might choose to be good or evil and codes a set of her own
useful routines, including be_good and sin, and sticks them into a file called
morality.rb. Now you want to add some physics calculations to this game and
so you need to load both trig.rb and morality.rb into your program. But both
define a method called sin. Bad news.

The answer is the module mechanism. Modules define a namespace, a
sandbox in which your methods and constants can play without having to

worry about being stepped on by other methods and constants. The trig
functions can go into one module:

tut_modules/trig.rb

module Trig
PI = 3.141592654
def self.sin(x)
..
end

def self.cos(x)
..

end

end

and the good and bad “moral” methods can go into another:

tut_modules/morals.rb

module Morals

VERY_BAD = 0
BAD =1
def self.sin(badness)
end
end

Module names are like class names, both are global constants with an initial
uppercase letter. Their method definitions look similar too: module methods
are defined like class methods, using the def self.method_name syntax.

If a third program wants to use these modules, it can simply load the two files
(using the Ruby require or require_relative method). To reference the name sin

unambiguously, our code can then qualify the name using the name of the
module containing the implementation we want:

tut_modules/pin_head.rb

require_relative "trig”
require_relative "morals”

http://media.pragprog.com/titles/ruby5/code/tut_modules/trig.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/morals.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/pin_head.rb

y = Trig.sin(Trig::PI / 4)
wrongdoing = Morals.sin(Morals::VERY_BAD)

As with class methods, you call a module method by preceding its name with
the module’s name and a period. As a result, one method is now accessible as
Trig.sin, the other is Moral.sin, and the names no longer conflict. Module
constants are referenced using the module name followed by two colons,
which is called the scope resolution operator, so in this example, Trig::Pl and
Moral::VERY_BAD.

Mixins
Modules have another wonderful use. They can provide an alternative to
inheritance as a way of extending classes. This facility is sometimes called a

mixin. Mixins enable something very much like multiple inheritance in other
languages.

In the previous section’s examples, we defined module methods, methods
whose names were prefixed with self. If this made you think of class methods,
your next thought may well be “What happens if | define instance methods
within a module?” Good question. A module can’t have instances because a
module isn’t a class. But you can include a module within a class definition.
When this happens, all the module’s instance methods are suddenly available
as instance methods in the class as well. They get mixed in. In fact, for method
lookup, mixed-in modules effectively behave as superclasses.

tut_modules/who_am_i.rb

module Debug
def who_am_1?
"#{self.class.name} (id: #{self.object_id}): #{self.name}"
end
end

class Phonograph
include Debug

attr_reader :name

http://media.pragprog.com/titles/ruby5/code/tut_modules/who_am_i.rb

def initialize(name)
@name = name
end
...
end

class EightTrack
include Debug

attr_reader :name

def initialize(name)
@name = name
end
...
end

phonograph = Phonograph.new("West End Blues")
eight_track = EightTrack.new("Surrealistic Pillow")

phonograph.who_am_1i? # => "Phonograph (id: 60): West End Blues"
eight_track.who_am_1? # => "EightTrack (id: 80): Surrealistic Pillow"

By including the Debug module, both the Phonograph and EightTrack classes gain
access to the who_am_i? instance method.

We’ll make a couple of points about the include statement before we go on.

First, although include looks like a statement, it’s actually a method of the
Module class. The include method has nothing to do with files. The Ruby include

method simply makes a reference to a module. If that module is in a separate
file, you must use require or require_relative to drag that file in before using

include. The require call 1s at the file level, and loads the module into the Ruby
application as a whole. The include call is at the class level and adds the
module’s behavior to the class in which it’s included.

Second, a Ruby include doesn’t copy and paste the module’s instance methods

into the class. Instead, it makes a reference from the class to the included
module. If multiple classes include that module, they’ll all point to the same

thing. If you change the definition of a method within a module, even while
your program is running, all classes that include that module will exhibit the
new behavior. Of course, we’re speaking only of methods here. Instance
variables are always different per object.

Mixins give you a wonderfully controlled way of adding functionality to
classes. But their true power comes out when the code in the mixin can make
assumptions about the code in the class that uses it and then can interact with
that code.

Ruby uses mixin behavior in the standard library extensively. Many of the
behaviors we’ve seen that are available to all objects are actually defined in a
module called Kernel which is included into Object and therefore in all objects.

Methods like puts, p, lambda, proc, and many more are added to objects using
mixin behavior.

The standard Ruby module Comparable is another great example of a mixin, but

one that makes an assumption about the classes that use it. Including
Comparable as a mixin adds the comparison operators (<, <=, ==, >=, and >) as

well as the method between? to a class. For these methods to work, Comparable
assumes that any class that uses it defines the method <=>, also known as the

“spaceship operator”. The spaceship operator compares two values and returns
-1, 0, or +1 depending on whether the first is less than, equal to, or greater
than the second, respectively. As a class writer, you can define one method,
<=>; include Comparable; and get six comparison functions for free.

Let’s take a Person class. We’ll make people comparable based on their names:

tut_modules/comparable.rb

class Person
include Comparable
attr_reader :name

def initialize(name)
@name = name

http://media.pragprog.com/titles/ruby5/code/tut_modules/comparable.rb

end

def to_s
@name.to_s
end

def <=>(other)
name <=> other.name
end
end

Person.new("Matz")
Person.new("Guido")
Person.new("Larry")

pl
p2
p3

if p1 > p2
puts "#{pl.name}’'s name > #{p2.name}'s name"
end

puts "Sorted list:"
puts [p1, p2, p3].sort

Produces:

Matz's name > Guido's name
Sorted list:

Guido

Larry

Matz

We included Comparable in our Person class and then defined a <=> method. We
were then able to perform comparisons (such as p1> p2) and even sort an array
of Person objects.

Inheritance and Mixins
Some object-oriented languages (such as C++ or Python) support multiple inheritance,
where a class can have more than one immediate parent, inheriting functionality from
each. Although powerful, this technique can be dangerous because the inheritance
hierarchy can become ambiguous.

Other languages, such as Java, JavaScript, and C#, support single inheritance. Here, a
class can have only one immediate parent. Although cleaner (and easier to implement),
single inheritance also has drawbacks—in the real world, objects often inherit attributes
from multiple sources (a ball is both a bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you the simplicity of single
inheritance and the power of multiple inheritance. A Ruby class has only one direct
parent, so Ruby is a single-inheritance language. But Ruby classes can include the
functionality of any number of mixins (a mixin is like a partial class definition). This
provides a controlled multiple-inheritance-like capability with an unambiguous inheritance
hierarchy and method lookup path.

Ruby provides two mechanisms for mixing in module behavior which are
related to include but combine the module and the class differently. The
behavior of include is to add the module’s methods as instance methods to the
class in which the module is being included, and to have those module
methods be looked up after the class itself is checked for a method.

Ruby also provides the method extend. The behavior of extend is to add the
methods directly to the receiver of extend rather than as instance methods of a
class. As most commonly used, the effect of extend is to add the module
methods as class methods:

tut_modules/extend.rb

module ExtendedNew
def new_from_string(string, delimiter = ", ")
new(*string.split(delimiter))
end

end

class Person
extend ExtendedNew

def initialize(first_name, last_name)
@first_name = first_name
@last_name = last_name

end

def full_name = "#{@first_name} #{@last_name}"

http://media.pragprog.com/titles/ruby5/code/tut_modules/extend.rb

end

superman = Person.new_from_string("Clark,Kent")
batman = Person.new_from_string("Bruce/Wayne", "|")
puts superman.full_name

puts batman.full_name

Produces:

Clark Kent
Bruce Wayne

In this example, the ExtendedNew module is extended into the Person class, and
SO Person.new_from_string 1s available.

Ruby also provides prepend. The behavior of prepend is the same as that of
include except that a method in a prepended module is executed before a
method of the same name in the class. Typically, the method in the prepended
module calls super so that the method in the class is also called. Prepending is
often used to add logging or other logistical information to classes.

Iterators and the Enumerable Module

The Ruby collection classes (Array, Hash, and so on) support a large number of

operations that do various things with the collection: traverse it, sort it, and so
on. You may be thinking, “Gee, it’d sure be nice if my class could support all
these neat-o features too!”

Well, your classes can support all these neat-o features, thanks to the magic of
mixins and the Enumerable module. All you have to do is write an iterator

called each, which returns the elements of your collection in turn. Mix in
Enumerable, and suddenly your class supports methods such as map, include?,
and find_all?. If the objects in your collection implement meaningful ordering
semantics using the spaceship operator <=> method, you’ll also get methods

such as min, max, and sort.

Composing Modules

Enumerable is a mixin in the Ruby standard library, implementing a bunch of
methods in terms of the host class’s each method. One of the methods defined
by Enumerable 1s reduce, which we saw previously in . This method applies a
function or operation to the first two elements in the collection and then
applies the operation to the result of this computation and to the third element,
and so on until all elements in the collection have been used.

Because reduce is made available by Enumerable, we can use it in any class that
includes the Enumerable module and defines the method each. Many built-in
classes do this.

[1, 2, 3, 4, 5].reduce(:+) # => 15
("a".."m").reduce(:+) # => "abcdefghijkim"

We could also define our own class that mixes in Enumerable and hence gets
reduce support:

tut_modules/vowel_Finder.rb

class VowelFinder
include Enumerable

def initialize(string)
@string = string
end

def each
@string.scan(/[aeiou]/) do |vowel]
yield vowel
end
end
end

tut_modules/vowel_Ffinder_eg.rb

require_relative "vowel finder"
vf = VowelFinder.new("the quick brown fox jumped")
puts vf.reduce(:+)

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_modules/vowel_finder.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/vowel_finder_eg.rb

euiooue

Note that we used the same pattern in the call to reduce in these examples—
we’re using it to perform a summation. When applied to numbers, it returns
the arithmetic sum; when applied to strings, it concatenates them. We can use
a module to encapsulate this functionality too:

tut_modules/vowel_Ffinder_sum.rb

require_relative "vowel finder"

module Summable
def sum
reduce(:+)
end
end

class Array
include Summable
end

class Range
include Summable
end

class VowelFinder
include Summable
end

puts [1, 2, 3, 4, 5].sum
puts ("a".."m").sum

vf = VowelFinder.new("the quick brown fox jumped")
puts vf.sum

Produces:
15

abcdefghijklm
euiooue

http://media.pragprog.com/titles/ruby5/code/tut_modules/vowel_finder_sum.rb

Note that you don’t need to define this particular example in Ruby since sum is
already defined as part of the Enumerable module.

Instance Variables in Mixins

People learning Ruby often ask, “What happens to instance variables in a
module that’s used as a mixin?”

Remember how instance variables work in Ruby: the first mention of an @-
prefixed variable creates the instance variable in the current object, self.

For a mixin, this means the module you mix into your client class may create
instance variables in the client object and may use attr_reader and friends to
define accessors for these instance variables. For instance, the Observable
module in the following example adds an instance variable @observer_list to
any class that includes it:

tut_modules/observer_impl.rb

module Observable
def observers
@observer_list ||= []
end

def add_observer(obj)
observers << obj
end

def notify_observers
observers.each { |o| o.update }
end
end

But this behavior exposes us to a risk. A mixin’s instance variables can clash
with those of the host class or with those of other mixins. The example that
follows shows a class that uses our Observable module but that unluckily also

uses an instance variable called @observer_list. At runtime, this program will go
wrong in some hard-to-diagnose ways:

http://media.pragprog.com/titles/ruby5/code/tut_modules/observer_impl.rb

tut_modules/observer_impl_eg.rb

require_relative "observer_impl"

class TelescopeScheduler
other classes can register to get notifications
when the schedule changes
include Observable

def initialize
@observer_list = [] # folks with telescope time
end

def add_viewer(viewer)
@observer_list << viewer
end

end

For the most part, mixin modules don’t use instance variables directly—they
use accessors to retrieve data from the client object. But if you need to create a
mixin that has to have its own state, ensure that the instance variables have
unique names to distinguish them from any other mixins in the system
(perhaps by using the module’s name as part of the variable name).
Alternatively, the module could use a module-level hash, indexed by the
current object ID, to store instance-specific data without using Ruby instance
variables:

tut_modules/state_eg.rb

module Test
def self.states
@states ||= {}
end

def state=(value)
Test.states[object_id] = value
end

def state
Test.states[object_1id]

http://media.pragprog.com/titles/ruby5/code/tut_modules/observer_impl_eg.rb
http://media.pragprog.com/titles/ruby5/code/tut_modules/state_eg.rb

end
end

class Client
include Test
end

cl = Client.new
c2 = Client.new
cl.state = "cat”
c2.state "dog"
cl.state # => "cat"
c2.state # => "dog"

A downside of this approach is that the data associated with a particular object
won’t get automatically deleted if the object is deleted. In general, a mixin that
requires its own state isn’t a mixin—it should be written as a class.

Method Lookup

Because of modules being mixed in, Ruby’s story for method lookup becomes
more complicated. In particular, what happens if methods with the same name
are defined in a class, in that class’s parent class, and in a module included
into the class?

When a method is called, Ruby looks for a definition of the method. Typically,
this search starts in the receiver’s class. If the method is found there, great!
Ruby executes that method. If not, Ruby continues up the search tree to
included modules and superclasses.

The exact order of places that Ruby searches for an instance method is the
following:

1. Methods that have specifically been added to that instance using the def
foo.bar that we’ve seen or the class << foo syntax that we haven’t talked
about yet.

2. Any module that has been added to the receiver’s class using prepend, the
last module so added is checked first.

3. Methods that are actually defined in the receiver’s class.

4. Any module that’s added to the receiver’s class using include, the last
module so added is checked first.

5. If the method hasn’t yet been found at this point, the entire loop is started
over with the superclass of the receiver’s class.

This continues until either a match is found or the top of the inheritance
structure is reached and no match is found.

The entire list of classes and modules in this lookup path can be accessed by
calling the method ancestors, as in String.ancestors. Modules that have been

prepended will show up before the receiver, and superclasses and appended
modules will show up after.

If no match 1s found, the entire loop is tried again from the receiver’s class,
this time for looking for a special method called method_missing. If no

method_missing 1s found to handle the message, a NameError is thrown.

Class or module methods have a slightly different path:

e Methods added directly to the class or module via the def self.foo or class
<< self syntax

e Methods in modules that are added to the receiving class or module via
extend

And so on upward via superclasses.

Super Lookup

When executing a method, if Ruby encounters the keyword super, it acts as
though a method of the same name as the method being executed had been
called, but starts the search later. Specifically, the method lookup for super
starts one step after the point where the method being executed is located. If
the method being executed is defined inside the class as a normal instance

method (step 3 in the method lookup steps described in Method Lookup), then
Ruby starts looking in step 4, with included modules, and then goes looking to

the superclass. If, instead, the method is defined in a prepended module (step 1

in the steps described in Method Lookup) then Ruby starts looking in steps 2
and 3 for regular instance methods.

If super has no argument list, the same method arguments from the original
method call are passed forward, if any argument list (even an empty one with
empty parentheses) 1s specified, those arguments are passed through.

Short examples of method lookup are kind of contrived, but let’s try one
anyway:

tut_modules/lookup.rb

module Log
def execute
puts "logging”
super
end
end

module Caller
def execute
puts “calling”
super
end
end

class Parent
def execute

puts "parenting”
end
end

class Child < Parent
prepend Log

include Caller

def execute

http://media.pragprog.com/titles/ruby5/code/tut_modules/lookup.rb

puts “childing"
super
end
end

puts Child.new.execute
Produces:

logging
childing
calling
parenting

When the execute method is called, Ruby looks first at the prepended module,
Log, and executes there. That method calls super, which continues the lookup
chain upward, to the actual child class. The super in that method moves up the
lookup chain to the included module caller, and the super in that method
moves up the chain to Parent.

Inheritance, Mixins, and Design

Inheritance and mixed-in modules both allow you to write code in one place
and use that code in multiple classes. So, when do you use each?

As with most questions of design, the answer is, well...it depends. But over
the years, developers have come up with some general guidelines to help us
decide.

First, let’s look at subclassing. Classes in Ruby are related to the idea of
types. It would be natural to say that "cat" is a string and [1, 2] is an array.
And that’s another way of saying that the class of "cat" is String and the class
of [1, 2] is Array. When we create our own classes, you can think of it as
adding new types to the language. And when we subclass either a built-in
class or our own class, we’re creating a subtype.

Now, a lot of research has been done on type theories. One of the more
useful concepts is the Liskov Substitution Principle. The Liskov
Substitution Principle states that you should be able to substitute an object
of a child class wherever you use an object of the parent class—the child
should honor the parent’s contract. There’s another way of looking at this
relationship: we should be able to say that the child object is a kind of the
parent. We’re used to saying this in English: a car is a vehicle, a cat is an
animal, and so on. This means that a cat should, at the very least, be capable
of doing everything we say that a generic animal can do.

So, when you’re looking for subclassing relationships while designing your
application, be on the lookout for these is-a relationships.

But here’s the bad news. In the real world, there aren’t that many true is a
relationships. Instead, it’s far more common to have has a or uses a
relationships between things. The real world is built using composition, not
strict hierarchies.

In the past, we’ve tended to gloss over that fact when programming. When
inheritance is the only scheme available for sharing code, it’s easy to say
things like “My Person class is a subclass of my Databasewrapper class.”
(Indeed, the Ruby on Rails framework makes this design choice.) But a
person object is not a kind of database wrapper object. A person object uses
a database wrapper to provide persistence services.

Is this just a theoretical issue? No! Inheritance represents an incredibly tight
coupling of two components. Change a parent class, and you risk breaking
the child class. But, even worse, if code that uses objects of the child class
relies on those objects also having methods defined in the parent, then all
that code will break too. The parent class’s implementation leaks through
the child classes and out into the rest of the code. With a decent-sized
program, this becomes a serious inhibitor to change.

And that’s why we tend to move away from inheritance in our designs.
Instead, we need to be using composition wherever we see a case of A uses
a B, or A has a B. Our persisted Person object won’t subclass Datawrapper.
Instead, 1t’ll construct a reference to a database wrapper object and use that
object reference to save and restore itself.

But that can also make code messy. And that’s where a combination of
mixins comes to the rescue, because we can say this:

class Person
include Persistable
end

instead of this:
class Person < DataWrapper

end

If you’re new to object-oriented programming, this discussion may feel
remote and abstract. But as you start to code larger and larger programs, we
urge you to think about the issues discussed here. Try to reserve inheritance
for the times when it’s justified. And try to explore all the cool ways that
mixins let you write decoupled, flexible code.

What’s Next

In this chapter, we looked at using Ruby modules to encapsulate code into
namespaces and to share code by using the include method to mix modules

into classes. We also talked about how module inclusion affects method
lookup and when to use mixins versus inheritance.

Now that we’ve learned some of Ruby’s class and object structure, let’s
look at some of the classes that Ruby uses for standard types.

Footnotes

(131 http://www.rubyonrails.org

Copyright © 2024, The Pragmatic Bookshelf.

http://www.rubyonrails.org/

Chapter 7

Basic Types: Numbers, Strings, and
Ranges

We’ve been having fun implementing programs using arrays, hashes, and
procs, but we haven’t yet covered the most basic types in Ruby: numbers,
strings, and ranges. Let’s spend a few pages on these basic building blocks
Now.

Numbers

Ruby supports integers, floating-point, rational, and complex numbers.
Integers can be of any length (up to a maximum determined by the amount
of free memory on your system) and are of type Integer.

Integers are assumed to be decimal base 10, but, you can write integers
using a leading sign as an optional base indicator—o for octal, ox for hex, or
ob for binary (and od for decimal)—followed by a string of digits in the
appropriate base.

Underscore characters are ignored in the digit string, you’ll see them used
in place of commas in larger numbers.

123456 => 123456 # base 10

0d123456 => 123456 # base 10

123_456 => 123456 # underscore ignored
-543 => -543 # negative number
Oxaabb => 43707 # hexadecimal

0377 => 255 # octal

-0b10_1010 => -42 # binary (negated)

123_456_789_123_456_789 => 123456789123456789

A numeric literal with a decimal point and/or an exponent is turned into a
Float corresponding to double-width floating-point numbers in the
underlying system. You must both precede and follow the decimal point
with a digit—if you write 1.0e3 as 1.e3, Ruby will try to invoke the method

e3 on the object 1.

The standard Ruby library contains the BigDecimal class, which is Ruby’s
high-precision decimal class. When you require BigDecimal, in addition to
the class itself, the Kernel module gets a BigDecimal method for converting

strings or numbers to BigDecimal instances.

require "bigdecimal”

BigDecimal("3.14")
BigDecimal("4.13")
y # => 0.727e1

X

-+

Ruby includes support for rational and complex numbers. Rational numbers
are the ratio of two integers—they are fractions—and hence have an exact
representation (unlike floats). Complex numbers represent points on the
complex plane. They have two components, the real and imaginary parts.

Ruby has a literal syntax for both Rational and Complex numbers, but it
might not be what you expect. Rationals first. If you try to directly represent
a fraction like 3/4, Ruby will interpret that as integer division and return 0.
To make the fraction into a Ruby Rational instance, you need to add the letter
r, as in 3/4r. You can also convert decimals into rationals with this syntax,
for example, 0.75r will also convert into three-fourths (but note that .75r is

still a syntax error because decimal numbers need to have digits on both
sides of the decimal point). Strings can be converted to rationals with the
to_r method. Finally, Ruby offers a conversion method, Rational, which takes

either a string or two arguments and creates a Rational instance.

3/4 #=>0

3/4r # => (3/4)
0.75r # => (3/4)
"3/4".to_r # => (3/4)

Rational(3, 4) # => (3/4)
Rational("3/4") # => (3/4)

The literal syntax for Complex numbers uses i as a suffix. Alternatively, you
can convert strings via the to_c method. There is also a Complex conversion
method.

1+21 # => (1+21)
"1+21".to_c # => (1+21)
Complex(1, 2) # => (1+21)
Complex("1+21") # => (1+21)

If you were wondering, a number can be both rational and imaginary, as in
5.7ri, but the r needs to come before the i otherwise you get a syntax error.

All numbers are objects and respond to a variety of messages. Unlike
Python, for example, you find the absolute value of a number by writing

num.abs, not abs(num).

Finally, we’ll offer a warning for users of other languages. Strings that
contain only digits are not automatically converted into numbers when used
in expressions. This tends to bite when reading numbers from a file or when
trying to use the parameters from a web request.

For example, we may want to find the sum of the two numbers on each line
for a file such as the following:

34
56
78

The following code doesn’t work:

some_file.each do |line]|

vl, v2 = line.split # split line on spaces
print vi + v2, " "
end
Produces:
34 56 78

The problem is that the input was read as strings, not numbers. The plus
operator for strings concatenates them, and that’s what we see in the output.
To fix this, use the Integer method to convert the strings to integers:

some_file.each do |line]

vl, v2 = line.split

print Integer(vl) + Integer(v2),
end

n n

Produces:

7 11 15

How Numbers Interact

Most of the time, numbers work the way you’d expect. If you perform some
operation between two numbers of the same class, the answer will typically
be a number of that same class. If the two numbers are of different classes,
the result will have the class of the more general one. If you mix integers
and floats, the result will be a float; if you mix floats and complex numbers,
the result will be complex.

1+2 # => 3

1+ 2.0 # => 3.0

1.0 + 2 # => 3.0

1.0 + 1+21 # => (2.0+21)

1+ 2/3r # => (5/3)

1.0 + 2/3r # => 1.6666666666666665

The return-type rule still applies when it comes to division. But this often
confuses folks because division between two integers yields an integer
result. If you want integer division to yield a float, you can either convert
one side of the division with the to_f method or multiply one side by 1.0,
which is the same thing, or you can use the fdiv method.

1.0 / 2 # => 0.5
1/ 2.0 #=>0.5
1/2 #=> 0

1.tof /2 #=>0.5
1*%1.0 /2 #=>0.5
1.fdiv(2) # =>0.5

Looping Using Numbers

Integers support several iterators. We’ve seen one already: 5.times. Others
include upto and downto for iterating up and down between two integers.

Class Numeric also provides the more general method step, which is more
like a traditional for loop.

3.times { print "X " }

1.upto(5) { |i] print 1, " " }

99.downto(95) { |i| print i, " " }

50.step(80, 5) { |i]| print i, " "}
Produces:

XXX12345099 98 97 96 95 50 55 60 65 70 75 80

As with other iterators, if you leave the block off, the call returns an

Enumerator.
10.downto(7).with_index { |num, index| puts "#{index}: #{num}" }
Produces:
¢ 10
: 9

. 8
7

w N RO

Strings

Ruby strings are sequences of characters. They normally hold printable
characters, but that isn’t a requirement; a string can also hold binary data.
Strings are instances of class String and are often created using string literals—
sequences of characters between delimiters.

Ruby has a lot of different ways to create string literals, which differ in how
much processing is done on the characters in the string. One kind of
processing is an escape sequence. An escape sequence allows you to represent
data that 1s otherwise impossible to represent in the string. Escape sequences
in Ruby start with a backslash (\).

The simplest literal in Ruby is the single-quoted string. Inside a single-quoted
string, only two escape sequences are recognized. Two consecutive
backslashes (\\) are replaced by a single backslash, and a backslash followed

by a single quote (\\") becomes a single quote. In these cases, the escape

sequence allows you to represent a character that would otherwise cause
problems because the character has meaning to the Ruby parser.

'escape using "\|"' # => escape using "\|"
"That|'s right' # => That's right

Note that the double quote inside the top string is handled normally.

Double-quoted strings support a boatload of escape sequences. The most
common is probably \n, the newline character. For a complete list, see Table
11, Substitutions in double-quoted strings.

Double-quoted strings also support string interpolation. With string
interpolation, you can substitute the value of any Ruby code into a string using
the sequence #{ expr }. If the expression being evaluated is a global variable, a
class variable, or an instance variable, you can omit the braces, as in #@foo,
#@@fFoo, Or #Sfoo.

"Seconds/day: #{24 * 60 * 60}" # => Seconds/day: 86400
"#{'Ho! ' * 3}Merry Christmas!" # => Ho! Ho! Ho! Merry Christmas!
"The input file name is #SFILENAME" # => The input file name is -

The interpolated code can be one or more statements, not just an expression—
we don’t recommend this, but here’s an example:

puts "now i1s #{
def the(a)
"the ' + a
end
the('"time")
} for all bad coders..."

Produces:
now is the time for all bad coders...

Some style guides prefer single quotes if interpolation isn’t used because they
are faster. As far as we’ve been able to tell, there’s no significant speed
difference between the two, so you’ll need a different justification if you want
to prefer that style quirk.

Ruby will concatenate string literals that are next to each other if no operator
is between them:

" n n n

"This" "is" "just" "one" "string" # => "Thisisjustonestring"

Ruby provides an alternative to single- and double-quote delimiters, which
comes in handy sometimes when the string you want to quote contains the
delimiter you need. The syntax is %q or %Q followed by a delimiter character.
The %q delimiter is equivalent to single quote, and %Q is equivalent to double
quote. In fact, the Q is optional, a % followed by the delimiter is equivalent to
double quote:

%q/general single-quoted string/ # => general single-quoted string
%Q!general double-quoted string! # => general double-quoted string
%Q{Seconds/day: #{24*60*60}} # => Seconds/day: 86400
%!general double-quoted string! # => general double-quoted string
%{Seconds/day: #{24*60%60}} # => Seconds/day: 86400

Notice that the delimiter changes from line to line. Whatever character follows
the initial g or Q is the delimiter—this also goes for other variants on the
flexible delimiter syntax we’ll see. If the character is an opening bracket [, a
brace {, a parenthesis (, or a less-than sign <, the string is read until the
matching closing symbol is found. Otherwise, the string is read until the next
occurrence of the same delimiter. The delimiter can be any nonalphanumeric
or nonmultibyte character. Current code style guidelines will often suggest that
you stick to parentheses as the string delimiters, %q().

Finally, you can construct a string using a here document, or heredoc. A
heredoc allows you to build a multiline string.

string = <<END_OF_STRING

The body of the string is the input lines up to

one starting with the same text that followed the '<<'
END_OF_STRING

A here document consists of lines in the source up to but not including the
terminating string that you specify after the << characters. Normally, this
terminator must start in column one. But, if you put a minus sign after the <<
characters, you can indent the terminator:

string = <<-END_OF_STRING
The body of the string is the input lines up to

one starting with the same text that followed the '<<
END_OF_STRING

And if you put a tilde after the << characters you can indent the text. Well, you
can always indent the text, but if you use a ~, then Ruby will remove the

indentation spaces from the beginning of each line, making it easier to lay out
a long string:

def a_long_string
<<~END_OF_STRING
Faster than a speeding bullet, more powerful than
a locomotive, able to leap tall buildings in a single
bound-look, up there in the sky, it's a bird, it's a
plane, it's Superman!

END_OF_STRING
end
puts a_long_string

Produces:

Faster than a speeding bullet, more powerful than

a locomotive, able to leap tall buildings in a single
bound-look, up there in the sky, it's a bird, it's a
plane, it's Superman!

You can also have multiple here documents on a single line. Each acts as a
separate string. The bodies of the here documents are fetched sequentially
from the source lines that follow:

print <<-STRING1l, <<-STRING2
Concat
STRING1
enate
STRING2

Produces:

Concat
enate

This is generally considered super confusing.

Note that Ruby doesn’t strip leading spaces off the contents of the strings in
these cases. If you want to do so, you can call a method on the initial
delimiter, x = <<EOL.strip

Strings and Encodings

An encoding is a mechanism for translating bits into characters. For many
years, most developers who used English used ASCII, a 7-bit encoding of
English characters, such as binary 101 to capital A—it used to be extremely
common for programming books to include a table of ASCII values as an

appendix. Somewhat later, an 8-bit representation called Latin-1 that included
most characters in European languages became common.

All of these were eventually superseded by Unicode,"® a global standard for
all text characters used in all languages. A Unicode character is two bytes
long, which makes a Unicode string twice as long internally as a Latin-1
string. As a result, the overwhelming majority of web pages use an encoding
called UTF-8, which represents any Unicode character but uses fewer bytes
for ASCII or Latin-1 characters. UTF-8 isn’t the only encoding you’ll
encounter but is the default for Ruby and the one you’ll likely encounter most
often.

Every string in Ruby has an associated encoding. The default encoding of a
string literal depends on the encoding of the source file that contains it. With
no explicit encoding specified, a source file (and its strings) is encoded using
UTF-8:

plain_string = "dog"
puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}”

Produces:
Encoding of "dog" is UTF-8

If you want to use your own encoding for some reason (and honestly, it’s hard
to think of a good reason), you can use a magic comment at the top of the file
to change the encoding for that file. If you override the encoding, you’ll do
that for all strings in the file:

#encoding: utf-8

plain_string = "dog"

puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}”
utf_string = "6og”

puts "Encoding of #{utf_string.inspect} is #{utf_string.encoding}”

Produces:

Encoding of "dog" is UTF-8
Encoding of "6og" is UTF-8

If there’s a shebang line, the encoding comment must be after the shebang but
before any actual Ruby code:

#! Jusr/local/rubybook/bin/ruby
encoding: utf-16

The special constant __ ENCODING__ returns the encoding of the current source
file.

Working with Strings

String is probably the largest built-in Ruby class, with more than one hundred
standard methods. We won’t go through them all here; the online API
documentation has a complete list. Instead, we’ll look at some common string
idioms—things that are likely to pop up during day-to-day programming.

Maybe we’ve been given a file containing information on a song playlist. For
historical reasons (are there any other kind?), the list of songs is stored as lines
in the file. Each line holds the name of the file containing the song, the song’s
duration, the artist, and the title, all in vertical bar—separated fields. A typical
file may start like this:

tut_stdtypes/songdata

/jazz/jo0132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'
/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World
/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

Looking at the data, it’s clear that we’ll be using some of class String’s many

methods to extract and clean up the fields before we use them. At a minimum,
we’ll need to do the following:

e Break each line into fields
e Convert the running times from mm:ss to seconds
e Remove those extra spaces from the artists’ names

Our first task is to split each line into fields, and String#split will do the job
nicely. In this case, we’ll pass split a regular expression, /\s*\|\s*/, that splits the

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/songdata

line into tokens wherever split finds a vertical bar, optionally surrounded by

spaces (more about regular expressions in Chapter 8, Regular Expressions).
And, because the line read from the file has a trailing newline, we’ll use chomp

to strip it off each line as we read it.

We’ll store details of each song in a Struct that contains an attribute for each of
the three fields. (A struct is simply a data structure that contains a given set of
attributes—which in this case is the title, name, and length. It’s a shortcut for
declaring a class that only has instance variables but little to no logic. For
more on this subject, see Struct.)

tut_stdtypes/read_songdata_1.rb
Song = Struct.new(:title, :name, :length)
songs = File.readlines("code/tut_stdtypes/songdata”, chomp: true).map do |line]|
_file, length, name, title = line.chomp.split(/|s*|/|s*/)
Song.new(title, name, length)

end
puts songs[1]

Produces:

#<struct Song title="Wonderful World", name="Louis Armstrong",
length="2:58">

We’re using readlines and map here to convert each line of the input file into its
own Song.

Unfortunately, whoever created the original file entered the artists’ names in

columns, so some of them contain extra spaces that we’d better remove before

we go much further. We have many ways of doing this, but probably the

simplest 1s String#squeeze, which trims runs of repeated characters.
tut_stdtypes/read_songdata_2.rb

Song = Struct.new(:title, :name, :length)

songs = File.readlines("code/tut_stdtypes/songdata”, chomp: true).map do |line]|

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/read_songdata_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/read_songdata_2.rb

_file, length, name, title = line.chomp.split(/|s*|/|s*/)
Song.new(title, name.squeeze("” "), length)

end

puts songs[1]

Produces:
#<struct Song title="Wonderful World", name="Louils Armstrong", length="2:58">

Finally, we have the minor matter of the time format. The file says 2:58, but
we want it to say the number of seconds, 178. We could use split again, this
time splitting the time field around the colon character:

”2:58”.Split(H: H) # = [112111 ”.58”]

Instead, we’ll use a related method. String#scan 1s similar to split in that it
breaks a string into chunks based on a pattern. But, unlike split, with scan you

specify the pattern that you want the chunks to match. In this case, we want to
match one or more digits for both the minutes and seconds components. The
pattern for one or more digits is /\d+/. Then we convert the resulting minutes

and seconds to the length in seconds.

tut_stdtypes/read_songdata_3.rb
Song = Struct.new(:title, :name, :length)

songs = File.readlines("code/tut_stdtypes/songdata”, chomp: true).map do |line|
_file, length, name, title = line.chomp.split(/|s*|/|s*/)
minutes, secs = length.scan(/|d+/)
Song.new(title, name.squeeze(” "), minutes.to_i * 60 + secs.to_1)

end

puts songs[1]

Produces:
#<struct Song title="Wonderful World", name="Louis Armstrong", length=178>

We could spend the next fifty pages looking at all the methods in class String

(see Strings for a fuller list). For now, let’s move on instead to look at a
simpler data type: the range.

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/read_songdata_3.rb

Ranges

Ranges occur everywhere: January to December, 0 to 9, rare to well done,
lines 50 through 67, and so on. If Ruby is to help us model reality, it seems
natural for it to support these ranges. In fact, Ruby goes one better: it uses
ranges to implement sequences and intervals.

Ranges as Sequences

The first and perhaps most natural use of ranges is to express a sequence of
values. Sequences have a start point, an end point, and a way to produce
successive values in the sequence. In Ruby, these sequences are created using
the .. and ... range operators. The two-dot form creates an inclusive range, and

the three-dot form creates a range that excludes the specified high value:

1..10

"n "on

a".."z
0...3

If you’re looking for a way to remember which is which, you can imagine the
third dot as replacing the high-end value. The two-dot form is more common
in actual code, and we recommend not switching between the two—it’s a
subtle distinction and hard to read.

You can convert a range to an array using the to_a method and convert it to an

Enumerator using to_enum.

(1..10).to_a #=>[1, 2, 3, 4, 5, 6, 7, 8 9, 10]
('bar'..'bat').to_a # => ["bar", "bas", "bat"]

enum = ('bar'..'bat"').to_enum

enum. next # => "bar"

enum.next # => "bas"

Sometimes people worry that ranges take a lot of memory. That’s not an issue:
the range 1..100000 is held as a Range object containing references to two

Fixnum objects. But, convert a range into an array, and all that memory will get
used.

Ruby also allows you to specify ranges that have no beginning or no end.
While this can be useful for generating infinite sequences, it’s also pretty
useful to define a subrange for an array or string. A range starting with [..x]
goes from the beginning of the sequence to index x, while [x..] goes from x to
the end of the sequence:

arr = [1, 2, 3, 4, 5, 6]

arr[..2] #=>[1, 2, 3]

arr[Z..] # => [3, 4, 5, 6]

Ranges have methods that let you iterate over them and test their contents in a
variety of ways:

digits = 0..9

digits.include?(5) # => true
digits.max #=>09
digits.reject { |[i| 1 <5} #=>[5 6, 7, 8, 9]
digits.reduce(:+) # => 45

So far, we’ve shown ranges of numbers and strings. But, as you’d expect from
an object-oriented language, Ruby ranges can be based on objects that you
define. The only constraints are that the objects must respond to succ by
returning the next object in sequence and they must be comparable using <=>
(as described in Mixins).

In reality, this isn’t something you do often, so examples tend to be a bit
contrived. Here’s one—a class that presents numbers that are powers of 2.
Because it defines <=> and succ, we can use objects of this class in ranges:

class PowerOfTwo
attr_reader :value
def initialize(value)
@value = value
end

def <=>(other)
@value <=> other.value

end

def succ

PowerOfTwo.new(@value + @value)
end

def to_s
@value.to_s
end
end

PowerOfTwo.new(4)
PowerOfTwo.new(32)

pl
p2

puts (pl..p2).to_a
Produces:

4
8

16
32

Ranges as Intervals

A final use of the versatile range is as an interval test: seeing whether some
value falls within the interval represented by the range. We do this using ===,

the case equality operator, which 1s equivalent to the include? methods for
boolean testing. Ranges also provide the cover? method, which is identical to
include? for numbers, but for nonnumeric sequences the method behaves
differently. The cover? method includes any item between the start and end of
the range even if the item isn’t in the range itself.

(1..10) === # => true
(1..10) === 15 # => false
(1..10) === 3.14159 # => true
('a'..'7") === 'c' # => true
('a'..'j")y === 'z’ # => false
('a'..'j").include?('c') # => true
('a'..'7").include?('bb") # => false
('a'"..'j").cover?('bb') # => true

Since case statements use triple-equals for comparisons, ranges are often used
as a convenient shortcut for branch conditions.

tut_stdtypes/range_case.rb

car_age = gets.to_f # let's assume it's 9.5
case car_age

when 0...1
puts "Mmm.. new car smell"
when 1...3
puts "Nice and new"
when 3...10
puts "Reliable but slightly dinged"
when 10...30
puts "Clunker”
else
puts "Vintage gem"
end
Produces:

Reliable but slightly dinged

Note the use of exclusive ranges in the previous example. These are usually
the correct choice in case statements. If instead we had written the following,

we’d get the wrong answer because 9.5 doesn’t fall within any of the ranges,
so the else clause triggers:

tut_stdtypes/range_case_2.rb

car_age = gets.to_f # let's assume it's 9.5
case car_age
when 0..0

puts "Mmm.. new car smell"
when 1..2

puts "Nice and new"
when 3..9

puts "Reliable but slightly dinged"
when 10..29

puts "Clunker”
else

puts "Vintage gem"
end

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/range_case.rb
http://media.pragprog.com/titles/ruby5/code/tut_stdtypes/range_case_2.rb

Vintage gem

What’s Next

In this chapter, we covered some of Ruby’s most commonly used types:
numbers, strings, and ranges. We showed how to create literals and how to
use the functionality of these types. Now let’s look at one of Ruby’s most
powerful standard types—regular expressions.

Footnotes

[16] https://home.unicode.org

Copyright © 2024, The Pragmatic Bookshelf.

https://home.unicode.org/

Chapter 8

Regular Expressions

We spend much of our time in Ruby working with strings, so it seems
reasonable for Ruby to have great tools for working with those strings. As
we’ve seen, the String class itself 1s no slouch—it has more than 100
methods. But it still can’t do everything on its own. For example, we might
want to see whether a string contains two or more repeated characters, or
we might want to replace every word longer than fifteen characters with its
first five characters and an ellipsis. This is when we turn to the power of
regular expressions.

Regular expressions are powerful and are used in many languages besides
Ruby. In this chapter, we’ll cover the basics of what regular expressions can
do in Ruby; later, in Regular Expressions, we’ll show you all the details and
more complex techniques.

What Regular Expressions Let You Do

A regular expression is a pattern that can be matched against a string. It can
be a simple pattern, such as the string must contain the sequence of letters

»

“cat,” or the pattern can be complex, such as the string must start with a
protocol identifier, followed by two literal forward slashes, followed by ...,
and so on. This is cool in theory. But what makes regular expressions so

powerful is what you can do with them in practice:

e You can test a string to see whether it matches a pattern.

e You can extract from a string the sections that match all or part of a
pattern.

e You can change the string, replacing the parts that match a pattern.

Ruby provides built-in support that makes pattern matching, extraction, and
substitution convenient and concise. In this first section, we’ll work through
the basics of regular expression patterns and see how Ruby supports
matching and replacing based on those patterns. In the sections that follow,
we’ll dig deeper into both the patterns and Ruby’s support for them.

Creating and Using Regular Expressions

Ruby has many ways of creating a regular expression pattern. By far, the
most common is to write the pattern between forward slashes. Thus, the
pattern /cat/ is a regular expression literal in the same way that "cat" is a
string literal.

/cat/ is an example of a simple pattern. It matches any string that contains
the substring cat. In fact, inside a regular expression pattern, all characters
except., |, (), L1,{1} + \, %, 4 * and ? match themselves. So, at the risk of

creating something that sounds like a logic puzzle, here are some patterns
and examples of strings they match and don’t match:

/cat/ Matches "dog and cat" and "catch" but not "Cat" or "c.a.t."
/123/ Matches "86512312" and "abc123" but not "1.23"

/tab/ Matches "hit a ball" but not "table"

If you want to match one of the special characters literally in a pattern,
precede it with a backslash, so /*/ is a pattern that matches a single asterisk,
and /\// is a pattern that matches a forward slash. Those backslashes can be
confusing, so Ruby provides a %r delimiter for regular expressions, similar
to %q for strings. The recommended delimiter is the curly brace, so you can
write regular expression literals as %r{cat} or %r{\/}.

Regular expression literals are processed like double-quoted strings. In
particular, you can use #{..} expression interpolations in the pattern.

Matching Strings with Patterns

The Ruby operator =~ matches a string against a pattern. It returns the
character offset of the string at which the beginning of the match occurred:

/cat/ =~ "dog and cat" # => 8
Jcat/ =~ "catch" #=>0
/cat/ =~ "Cat" # => nil

If you only want the boolean true or false result of whether the match
occurred and don’t need the character offset, you can use the match? method.

The use of match? is more common than the operator in current Ruby style.

/cat/.match?("dog and cat") # => true
/cat/.match?("catch™) # => true
/cat/.match?("Cat") # => false

You can put the string on the left-hand side of either the =~ operator or the
match? method if you prefer.

"dog and cat" =~ /cat/ # => 8

"catch" =~ /cat/ #=>0
"catch".match?(/cat/) # => true
"Cat" =~ Jcat/ # => nil

Because pattern matching returns nil when it fails and because nil is
equivalent to false in a boolean context, you can use the result of a pattern
match as a condition in statements such as if and while.

str = "cat and dog"
if str.match?(/cat/)
puts "There's a cat here somewhere"
end
Produces:

There's a cat here somewhere

The following code prints the lines in testfile that have the string on in them:

File.foreach("testfile").with_index do |line, index|
puts "#{index}: #{line}" if line.match?(/on/)
end

Produces:

0: This is line one
3: And so on...

You can test to see whether a pattern doesn’t match a string using the
negative match operator !~:

File.foreach("testfile").with_index do |line, index|
puts "#{index}: #{line}" if 1line !~ /on/
end

Produces:

1: This is line two
2: This is line three

Changing Strings with Patterns

The string method sub takes a pattern and some replacement text. (Actually,

it does more than that, but we won’t get to that for a while.) If it finds a
match for the pattern in the string, it replaces the matched substring with the
replacement text.

str = "Dog and Cat"

new_str = str.sub(/Cat/, "Gerbil")

puts “Let's go to the #{new_str} for a pint."
Produces:

Let's go to the Dog and Gerbil for a pint.

The sub method changes only the first match it finds. To replace all
matches, use gsub. (The g stands for global.)

str = "Dog and Cat"

new_strl = str.sub(/a/, "*")
new_str2 = str.gsub(/a/, "*")
puts "Using sub: #{new _stri}"”
puts "Using gsub: #{new_str2}"

Produces:

Using sub: Dog *nd Cat
Using gsub: Dog *nd C*t

Both sub and gsub return a new string. (If no substitutions are made, that
new string will just be a copy of the original.)

If you want to modify the original string, use the sub! and gsub! forms—
often in the Ruby library, the use of ! at the end of a method name means
the method modifies the receiver in place rather than duplicating it.

str = "now is the time"
str.sub!(/i/, "*")
str.gsub!(/t/, "T")
puts str

Produces:
now *s The Time

Unlike sub and gsub, sub! and gsub! return the string only if the pattern was
matched. If no match for the pattern is found in the string, they return nil

instead. This means it can make sense (depending on your need) to use the !
forms in conditions.

Regular Expression Patterns

Like most things in Ruby, regular expressions are just objects—they are
instances of the class Regexp. This means you can assign them to variables,

pass them to methods, and so on:

str = "dog and cat"

pattern = /nd/
pattern.match?(str) # => true
str.match?(pattern) # => true

You can also create regular expression objects by calling the Regexp class’s new
method or by using the arbitrary delimiter %r{...} syntax. The %r syntax is
particularly useful when creating patterns that contain forward slashes:

/mm\/dd/ # => /mm\/dd/
Regexp.new("mm/dd") # => /mm\|/dd/
%r{mm/dd} # => /mm\/dd/

Playing with Regular Expressions
If you're like us, you’ll sometimes get confused by regular expressions. You create
something that should work, but it doesn’t seem to match. That's when we fall back to irb.
We’'ll cut and paste the regular expression into irb and then try to match it against strings.
We'll slowly remove portions until we get it to match the target string and add stuff back
until it fails. At that point, we’ll know what we were doing wrong.

Another option is to use the website Rubular, at https://rubular.com. Rubular allows you to
enter a regular expression and a test string and shows what the match result is. The site
also allows you to create a permalink for your particular regular expression and a test
string which is excellent for using as a comment where the regular expression is defined
in your code.

Regular Expression Options

A regular expression may include one or more options that modify the way the
pattern matches strings. If you’re using literals to create the Regexp object, then

the options are one or more characters placed immediately after the terminator.

https://rubular.com/

If you’re using Regexp.new, the options are constants used as the second
parameter of the constructor.

i Case The pattern match will ignore the case of letters in the
insensitive. pattern and string.

o Substitute Any #{..} substitutions in a particular regular expression
once. literal will be performed just once, the first time it’s
evaluated. Otherwise, the substitutions will be
performed every time the literal generates a Regexp

object.
m Multiline Normally, “.” matches any regexp option character
mode. except a newline. With the /m option, “.” matches any
character.
x Extended Complex regular expressions can be difficult to read.
mode. The x option allows you to insert spaces and newlines in

the pattern to make it more readable. You can also use #
to introduce comments.

It’s worth taking a second to explore extended mode, which allows you to add
whitespace and comments into the regular expression definition. If there’s
actually whitespace in the pattern, you need to explicitly use character classes
to denote the whitespace. This can make the regular expression more readable.
We’ll see what all this syntax means in a moment:

city_state zip = %r{

(\w.*), # city name followed by a comma

|s # a space

([A-Z][A-Z]) # a two character state abbreviation
|s # a space

(\d{5}) # 5 digits for the US simple zip code

Fx

"Chicago, IL 60601".match?(city_state_zip) # => true

Another set of options allows you to set the language encoding of the regular
expression. If none of these options is specified, the regular expression will
have US-ASCII encoding if it contains only 7-bit characters. Otherwise, it’ll
use the default encoding of the source file containing the literal. The options
are:

: no encoding (ASCII)
e e: EUC

e s: SJIS

e u: UTF-8

[]
=

Matching against Patterns

Once you have a regular expression object, you can match it against a string
using the Regexp#match method, the boolean match? method, or the match
operators =~ (positive match) and !~ (negative match). The methods and match
operators are defined for both String and Regexp objects. One operand of the
match operator must be a regular expression.

name = "Fats Waller"

name =~ /a/ # => 1

name =~ /z/ # => nil

/a/ =~ name # => 1

/a/.match(name) # => #<MatchData "a">
Regexp.new("all").match(name) # => #<MatchData "all">

The different versions return different results:

Method or Return on match Return on no
operator match

=~ index of beginning of first match nil
in string

I~ false true

Method or Return on match Return on no

operator match
match MatchData object nil
match? true false

After a successful match using either =~ or match, but not using match?, Ruby
sets a whole bunch of magic global variables with data:

e The global variable $~ receives the entire MatchData object.

e The same MatchData object is also accessible as Regexp.last_match.

e s&receives the complete matched text.

e $'receives the part of the string that preceded the match.

e ¢ receives the string after the match.

e 31 receives the first capture group, $2 the second, and so on. More on that
in Grouping.

But these particular variables are considered to be fairly ugly, so most Ruby
programmers use the MatchData object returned from the match method instead,
because it encapsulates all the information Ruby knows about the match.
Given a MatchData object, you can call pre_match to return the part of the string
before the match, post_match for the string after the match, and index using [0]
to get the matched portion.

"Faster than a speeding bullet" =~ /speed/ # => 14

S~ # => #<MatchData "speed">
$& # => "speed"

$° # => "Faster than a "

$! # => "ing bullet”
match_data = "Faster than a speeding bullet".match(/speed/)
match_data # => #<MatchData "speed">
match_data[0] # => "speed"
match_data.pre_match # => "Faster than a "
match_data.post_match # => "ing bullet"

We can use these to write show_regexp, a method that shows where a pattern
matches:

tut_regexp/show_match.rb

def show_regexp(string, pattern)
match = pattern.match(string)
if match
"#{match.pre_match}->#{match[0] }<-#{match.post_match}"”
else
"no match"
end
end

We could use this method like this:

show_regexp('very interesting', /t/) # => very in->t<-eresting
show_regexp('Fats waller', /lle/) # => Fats Wa->lle<-r
show_regexp('Fats waller', /z/) # => no match

http://media.pragprog.com/titles/ruby5/code/tut_regexp/show_match.rb

Regular Expression Syntax

We said earlier that, within a pattern, all characters match themselves except
for.| ()[1{}+\~$*and 2 Those characters all have special meanings in
regular expression patterns. First, always remember that you need to escape
any of these characters with a backslash if you want them to be treated as
regular characters to match:

show_regexp('ves [no', /\//) # => yes ->[<- no
show_regexp('ves (no)', /\(nol\)/) # => yes ->(no)<-
show_regexp('are you sure?', /e\?/) # => are you sur->e?<-

Now let’s see what some of these characters mean if you use them without
escaping them.

Anchors

By default, a regular expression will try to find the first match for the pattern
in a string. Match /iss/ against the string “Mississippi,” and it’1l find the

substring “iss” starting at position 1 (the second character in the string). But
what if you want to force a pattern to match only at the start or end of a string?

The patterns » and $ match the beginning and end of a line, respectively. These
are often used to anchor a pattern match; for example, /~option/ matches the
word option only if it appears at the start of a line. Similarly, the sequence \A
matches the beginning of a string, and only at the beginning of a string,
whereas ~ would match the first character after a newline even if it isn’t the
beginning of the string. Similarly, you have \z and \z which match the end of
the entire string rather than the end of a line. The difference is that \z matches
the end of a string unless the string ends with \n, in which case it matches just
before the \n.

str = "this is|nthe time"

show_regexp(str, /“the/) # => this is|n->the<- time
show_regexp(str, /is$/) # => this ->is<-|nthe time
show_regexp(str, /|Athis/) # => ->this<- is|nthe time

show_regexp(str, /|Athe/) # => no match

The pattern \b is an anchor that matches a word boundary. A word boundary is

the separation between a word character—an ASCII letter, a number, or an
underscore—and something that isn’t a word character. The string “six
o’clock” has six word boundaries:

e Before the s—the beginning of the string is considered a non-word
character

After the x—between the ASCII letter x and the space

Before the o—between the space and the letter o

Before and after the —because apostrophes aren’t word characters
After the k—the end of the string is also considered a nonword character

You can see where word boundaries occur by replacing every instance of a
word boundary with an * using gsub:

"six o'clock".gsub(/\b/, "*") # => "*six* *o*'*clock*"

The \B pattern is the inverse, it matches the boundary between any two
characters that’s not a word boundary. The string “six o’clock” also has six of
those.

"six o'clock".gsub(/\B/, "*") # => "s*i*x o'c*l*o*c*k"

You use these anchors to limit a match to the beginning or end of a word (\b)
or prevent a match from happening at the beginning or end of a word (\B).

show_regexp("this is|\nthe time", /\bis/) # => this ->is<-|nthe time
show_regexp("this is\nthe time", /\Bis/) # => th->is<- is|nthe time

Character Classes

A character class 1s a set of characters between brackets: [characters]. The

character class pattern matches any individual character between the brackets,
with no delimiter separating them, so [aeiou] matches any of the five vowels,

[.;;!7] matches some punctuation, and so on. The significance of the special
regular expression characters—.|(){+"$*?>—is turned off inside the brackets. But

normal string substitution still occurs. So, for example, \b represents a
backspace character, and \n represents a new line.

show_regexp('Price S 12.', /[aeiou]/) # => Pr->i<-ce S 12.
show_regexp('Price S 12.', /[0123456789]/) # => Price S ->1<-2.
show_regexp('Price S 12.', /[S$.]/) # => Price ->S<- 12.

Within the brackets, a sequence such as c-c, represents all the characters from

¢ to ¢, in the current string encoding:

a = 'see [The PickAxe-page 123]'

show_regexp(a, /[A-F]/) # => see [The Pick->A<-xe-page 123]
show_regexp(a, /[A-Fa-f]/) # => s->e<-e [The PickAxe-page 123]
show_regexp(a, /[0-9]/) # => see [The PickAxe-page ->1<-23]

show_regexp(a, /[0-9][0-9]/) # => see [The PickAxe-page ->12<-3]

It’s common to see [a-zA-Z] to represent all the English letters or [0-9] to
represent all the digits.

You can negate a character class by putting an up arrow (», sometimes called a
caret) immediately after the opening bracket:

show_regexp('Price $12.', /[7?A-Z]/) # => P->r<-ice $12.
show_regexp('Price $12."', /[*\w]/) # => Price-> <-512.
show_regexp('Price $12.', /[a-z][?a-z]/) # => Pric->e <-S$12.

> Some character classes are used so frequently that Ruby provides
abbreviations for them. These abbreviations are listed in Table 2, Character
class abbreviations. They may be used both within brackets and in the body of
a pattern.

show_regexp('It costs $12.', /\s/) # => It-> <-costs S$12.
show_regexp('It costs $12.', /\d/) # => It costs S->1<-2.

If you want to include the literal characters] and - in a character class, escape
them with a backslash:

a = 'see [The PickAxe-page 123]'
show_regexp(a, /[\]]/) # => see [The PickAxe-page 123->]<-
show_regexp(a, /[0-9\|]]/) # => see [The PickAxe-page ->1<-23]

show_regexp(a, /[\d|\-]/) # => see [The PickAxe->-<-page 123]

Finally, a period (.) appearing outside the brackets represents any character
except a newline (though in multiline mode it matches a newline, too):

a = "It costs $12.'

show_regexp(a, /c.s/) # => It ->cos<-ts S12.
show_regexp(a, /./) # => ->I<-t costs S12.
show_regexp(a, /\|./) # => It costs $12->.<-

Table 2. Character class abbreviations
For some of these classes, the meaning depends on the character set mode selected for the pattern.
In these cases, the different options are shown like this:

(?a), (2d) — [a-zA-Z0-9_]
(?u) — Letter, Mark, Number, Connector Punctuation

In this case, the first line applies to ASCII and default modes, and the second to Unicode. In the
second part of each line, the [...] is a conventional character class. Words in italic are Unicode
character classes.

Sequence Logical intent Characters matched

(?a), (2d) — [0-9]
(2u) — Decimal Number

\d Decimal digit

\D Any character except a All characters not matched by \d
decimal digit

\h Hexadecimal digit [0-9a-FA-F]
character

\H Any character excepta All characters not matched by \h
hex digit

\R A generic linebreak Matches any ASCII or Unicode

sequence

linebreak may also match the two
characters \r\n

Sequence Logical intent Characters matched

\s Whitespace (?a), (2d) — [_\M\r\n\f\v]
(?2u) — [\t\n\r\x{000B}\x{000C}\x{0085}]
plus Line Separator,
Paragraph_Separator,
Space Separator

\S Any character except Any character not matched by \s
whitespace

\w A “word” character (?a), (2d) — [a-zA-Z0-9_]
(really, a programming (2u) — Letter, Mark, Number
language identifier) ,Connector Punctuation

\wW Any character excepta ~ Any character not matched by \w

word character

\X An extended Unicode
grapheme (two or more
characters that combine
to form a single visual
character)

Repetition

Back in Working with Strings, we specified the pattern that split the song list
line, /\s*\|\s*/, and we said we wanted to match a vertical bar surrounded by an

arbitrary amount of whitespace. We now know that the \s sequences match a
single whitespace character and \| means a literal vertical bar, so it seems
likely that the asterisks somehow mean “an arbitrary amount.” In fact, the

asterisk is one of a number of modifiers that allow you to match multiple
occurrences of a pattern.

If » stands for the immediately preceding regular expression within a pattern,
then:

7 Matches zero or more occurrences of »
r+ Matches one or more occurrences of r
7? Matches zero or one occurrence of r

r{m,n} Matches at least m and at most n occurrences of r
r{m,} Matches at least m occurrences of r
r{,n} Matches at most n occurrences of r

r{m} Matches exactly m occurrences of

These repetition constructs have a high precedence—they bind only to the
immediately preceding matching construct in the pattern. /ab+/ matches an “a”
followed by one or more “b’’s, not a sequence of “ab”s. If you want a sequence

of “ab”s, you need to group the pattern, /(ab)+/.

These patterns are called greedy because by default they’ll match as much of
the string as they can. You can alter this behavior and have them match the
minimum by adding a question mark suffix. The repetition is then called lazy
—it stops once it has done the minimum amount of work required.

a = "The moon is made of cheese”
show_regexp(a, /\w+/)
show_regexp(a, /|s.*|s/)
show_regexp(a, /|s.*?|s/)
show_regexp(a, /[aeiou]{2,99}/)

=> ->The<- moon is made of cheese
=> The-> moon i1s made of <-cheese
=> The-> moon <-is made of cheese
#

=> The m->00<-n 1s made of cheese

show_regexp(a, /mo?0/) # => The ->moo<-n is made of cheese
show_regexp(a, /mo??0/) # => The ->mo<-on is made of cheese

The lazy versions on lines three and six behave differently than their matching
greedy versions on lines two and five.

Be careful when using the * modifier. It matches zero or more occurrences. We
often forget about the zero part. In particular, a pattern that contains only a *
repetition will always match, whatever string you pass it. For example, the

(192

pattern /a*/ will always match because every string contains zero or more “a’’s.

Both of these examples match an empty substring at the start of the string:

a = "The moon is made of cheese”
show_regexp(a, /m*/) # => -><-The moon is made of cheese
show_regexp(a, /Z*/) # => -><-The moon is made of cheese

Alternation

We know that the vertical bar is special because our line-splitting pattern had
to escape it with a backslash. That’s because an unescaped vertical bar, as in |,

matches either the construct that precedes it or the construct that follows it:

a = "red ball blue sky"

show_regexp(a, /d/e/) # => r->e<-d ball blue sky
show_regexp(a, /al/lu/) # => red b->al<-1 blue sky
show_regexp(a, /red ball|angry sky/) # => ->red ball<- blue sky

There’s a trap for the unwary here because | has a very low precedence. The
last example in the previous lines matches red ball or angry sky, not red ball
sky or red angry sky. To match red ball sky or red angry sky, you’d need to
override the default precedence using grouping, /red (balllangry) sky/.

Grouping

You can use parentheses to group terms within a regular expression.
Everything within the group is treated as a single regular expression.

The first example here, without a group, matches an ‘a’ followed by one or
more ‘n’s. The second, using a group, matches the sequence ‘an’ one or more
times.

show_regexp('banana’, /an+/) # => b->an<-ana
show_regexp('banana’, /(an)+/) # => b->anan<-a

a = 'red ball blue sky'
show_regexp(a, /blue/red/) # => ->red<- ball blue sky
show_regexp(a, /(blue/red) \w+/) # => ->red ball<- blue sky
show_regexp(a, /(red/blue) |w+/) # => ->red ball<- blue sky
show_regexp(a, /red/blue \w+/) # => ->red<- ball blue sky
show_regexp(a, /red (ball/angry) sky/) #

a = 'the red angry sky'

=> no match
show_regexp(a, /red (ball/angry) sky/) # => the ->red angry sky<-

Parentheses do double duty in regular expressions. They also collect the
results of pattern matching. Ruby counts opening parentheses and stores the
result of the partial match between each opening parenthesis and the
corresponding closing parenthesis. You can use this partial match both within
the rest of the pattern and in your Ruby program. Within the pattern, the
sequence \1 refers to the match of the first group, \2 refers to the second group,
and so on. Outside the pattern, the special global variables $1, $2, and so on,
serve the same purpose and are reset on every regular expression match, just
like $~.

/(\d\d):(\d\d)(..)/ =~ "12:50am" # => 0
"Hour i1s #S$1, minute #S$2" # => "Hour is 12, minute 50"
/((\d\d):(\d\d))(..)/ =~ "12:56am" # => 0
"Time is #S$1" # => "Time is 12:50"

"Hour i1s #S2, minute #5$3" # => "Hour is 12, minute 50"
"AM/PM 1s #54" # => "AM/PM is am"

If you’re using the MatchData object returned by the match method, you can
index into it to get the corresponding subpatterns. This is much more common
than using the global magic variables.

md = /(\d\d):(\d\d)(..)/.match("12:50am")
"Hour is #{md[1]}, minute #{md[2]}" # => "Hour is 12, minute 50"
md = /((\d\d):(\d\d))(..)/.match("12:50am")

"Time is #{md[1]}" # => "Time is 12:50"
"Hour is #{md[2]}, minute #{md[3]}" # => "Hour is 12, minute 50"
"AM/PM is #{md[4]}" # => "AM/PM is am"

The ability to use part of the current match later in that match allows you to
look for various forms of repetition:

match duplicated letter

show_regexp('He said "Hello"', /(\w)\1/) # => He said "He->ll<-0"
match duplicated substrings

show_regexp('Mississippi', /(\w+)|1/) # => M->ississ<-ippi

Rather than use numbers, you can use names to refer to previously matched
content. You give a group a name by placing ?<_name_> immediately after the
opening parenthesis. You can subsequently refer to this named group using
\k<_name_> (or \k’_name_’).

tut_regexp/named_regex_groups_1.rb

match duplicated letter
str = 'He said "Hello"'
show_regexp(str, /(?<char>\w)\k<char>/) # => He said "He->ll<-0"

match duplicated adjacent substrings
str = "Mississippi”
show_regexp(str, /(?<seq>\w+)\k<seq>/) # => M->ississ<-ippi

The named matches in a regular expression are also available as local
variables, but only if you use a literal regexp and that literal appears on the
left-hand side of the =~ operator. (So you can’t assign a regular expression
object to a variable, match the contents of that variable against a string, and
expect the local variables to be set.)

tut_regexp/named_regex_groups_2.rb

/(?<hour>\d\d):(?<min>\d\d)(..)/ =~ "12:50am" # => 0
"Hour is #{hour}, minute #{min}" # => "Hour is 12, minute 50"

You can mix named and position-based references

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_2.rb

"Hour 1is #{hour}, minute #{$2}" # => "Hour is 12, minute 50"

Finally, the named matches also can be used as indexes into a MatchData
instance.

tut_regexp/named_regex_groups_3.rb

md = /(?<hour>\d\d):(?<min>\d\d)(..)/.match("12:50am")
"Hour is #{md[:hourl}, minute #{md[:min]}" # => "Hour is 12, minute 50"

As you can see in these examples, named groups are a mixed bag. They can
make the actual regular expressions look more complicated, but they can also
make expressions using the result of the match clearer.

Pattern-Based Substitution

We’ve already seen how sub and gsub replace the matched part of a string with
other text. In those previous examples, the pattern was always fixed text, but
the substitution methods work equally well if the pattern contains repetition,
alternation, and grouping.

= "quick brown fox"

.sub(/[aeiou]/, "*") # => "g*ick brown fox"
.gsub(/[aetiou]/, "*") # => "q**ck br*wn f*x"
.sub(/\|s|Ss+/, "") # => "quick fox"
.gsub(/|s|Ss+/, "") # => "quick"

{a 2 o BV I o B 0)

The substitution methods can take a string or a block. If a block is used, the
block is passed each matching substring, and the block’s return value is
substituted into the original string.

a = "quick brown fox"
a.sub(/7./) { |match| match.upcase } # => "Quick brown fox"
a.gsub(/[aeiou]/) { |vowel| vowel.upcase } # => "qUIck brOwn fOx"

Maybe we want to normalize city names entered by users into a web
application even if the city name is multiple words. They may enter NEW
YORK, new york, or nEw yORk, and we’d like to store it as New York. The
following method 1s a simple first iteration. The pattern that matches the first

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_3.rb

character of a word is \b\w—Ilook for a word boundary followed by a word
character. Combine this with gsub, and we can hack the names:

def mixed_case(name)

name.downcase.gsub(/|b\w/) { |first| first.upcase }
end
mixed_case("NEW YORK") # => "New York"
mixed_case("new york") # => "New York"
mixed_case("nEw yORk") # => "New York"

As we saw previously, that substitution block could also be written as either {
_l.upcase } Or &:upcase as a second argument written.

def mixed_case(name)
name.downcase.gsub(/|b\w/, &:upcase)
end

mixed_case("nEw yORk") # => "New York"

You can also give sub and gsub a hash as the replacement parameter, in which
case they’ll look up matched groups and use the corresponding values as
replacement text:

replacement = { "cat" => "feline", "dog" => "canine"
replacement.default = "unknown"

"cat and dog".gsub(/\w+/, replacement) # => "feline unknown canine"

Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on, are available in the
pattern, standing for the n_th group matched so far. The same sequences can
be used in the second argument of sub and gsub.

puts "fred:smith".sub(/(\w+):(\w+)/, '|\2, |1")
puts "nercpyitno”.gsub(/(.)(.)/, '|2|1")

Produces:

smith, fred
encryption

You can also reference named groups:

tut_regexp/named_regex_groups_4.rb

puts "fred:smith".sub(/(?<first>\w+):(?<last>\w+)/, '|k<last>, |k<first>")
puts "nercpyitno”.gsub(/(?<c1>.)(?<c2>.)/, '|k<c2>\k<c1>")

Produces:

smith, fred
encryption

Additional backslash sequences work in substitution strings: \& (last match), \+
(last matched group), \ (string prior to match), ’ (string after match), and * (a literal
backslash).

It gets confusing if you want to include a literal backslash in a substitution.
Your first attempt might be str.gsub(/\\/, \\\\').

Clearly, this code is trying to replace each backslash in str with two. The
programmer doubled up the backslashes in the replacement text, knowing that
they’d be converted to \\ in syntax analysis. But when the substitution occurs,
the regular expression engine performs another pass through the string,
converting \\ to \, so the net effect is to replace each single backslash with
another single backslash. You need to write gsub(/\\/, "\\\\\\\\")!

str = 'alb|c’ # => "a\b|c"
str.gsub(/11/, "IIIILILL") # => "allbl|c”

But, using the fact that \& 1s replaced by the matched string, you could also
write this:

str = 'alb|c’ # => "alb|c"
str.gsub(/\\|/, "|&\&") # => "al||b]||c"

If you use the block form of gsub, the string for substitution is analyzed only
once (during the syntax pass), and the result is what you intended:

str = 'albl|c’ # => "alb|c"

http://media.pragprog.com/titles/ruby5/code/tut_regexp/named_regex_groups_4.rb

str.gsub(/11/) { "Il111" } # => "a||b||c”

What’s Next

So that’s it! If you’ve made it this far, consider yourself a regular expression
ninja. Get out there and match some strings. Now we’ll take a more general
look at Ruby expressions.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 9

Expressions

So far, we’ve been fairly cavalier in our use of expressions in Ruby. After
all, a=b + c is pretty standard stuff. That said, Ruby expressions are different
than what you might see in JavaScript, Python, or Java, and there’s a lot of
power and flexibility there. You could write a whole lot of Ruby code
without reading any of this chapter, but it wouldn’t be as much fun.

One of the first differences in Ruby is that anything that can reasonably
return a value does: just about everything is an expression. What does this
mean in practice?

Well, for one thing, we have the ability to chain statements together:

a=b=c=0
[3, 1, 7, O].sort.reverse # => [7, 3, 1, 0]

Code structures that are statements in languages like JavaScript or Java are
expressions in Ruby. For example, the if and case statements both return the

value of the last expression executed:

song_type = if song.mp3_type == MP3::Jazz
if song.written < Date.new(1935, 1, 1)
Song::TradJazz
else
Song::Jazz
end
else

Song: :Other
end

rating = case votes_cast
when 0...10 then Rating::SkipThisOne
when 10...50 then Rating::CouldDoBetter
else
Rating: :Rave
end

We’ll talk more about if and case later in jf and unless Expressions.

Operator Expressions

Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few
surprises. A complete list of the operators, and their precedences, is given in
Table 19, Ruby operators (high to low precedence).

In Ruby, many binary operators are implemented as method calls. For
example, when you write a * b + ¢, you’re actually asking the object
referenced by a to execute the method *, passing in the parameter b. You
then ask the object that results from that calculation to execute the +
method, passing c as a parameter. This is the same as writing the following
(perfectly valid) Ruby:

a, b, c=1, 2,3
a*b+c #=>5
(a.*(b)).+(c) # => 5

Because everything is an object and because you can redefine instance
methods, you can always redefine basic arithmetic if you don’t like the
answers you’re getting:

class Integer
alias old_plus +

Redefine addition of Integers. This is a BAD IDEA!
def +(other)
old_plus(other).succ
end
end

1+ 2 # =>4
a=3

a += 4 #=>8
a+a+a#-=>26

What’s going on here? First off, we’re reopening the Integer class to allow
new definitions inside it, a feature of the Ruby object model that we talked

about in Reopening Classes. Inside the class, the keyword alias allows you

to give a new name to an existing method; here we rename the + method to
old_plus. The syntax here might seem odd because there’s only a space
between the new name and the old name. Typically, you’d use alias because
you’re planning on overwriting the existing method but you want that new
method to still be able to access the original, as in this case, we’ve rewritten
+ to use old_plus but added 1.

More useful is that classes you write can participate in operator expressions
just as if they were built-in objects. For example, the left shift operator, <<,

is often used to mean append to receiver.

Arrays support this:

a=1[1, 2, 3]
a << 4 #=>[1, 2, 3, 4]

You can add similar support to your classes:

class ScoreKeeper
def initialize
@total_score = @count = 0
end

def <<(score)
@total _score += score
@count += 1
self

end

def average
fail "No scores” if @count.zero?
Float(@total_score) / @count
end
end

scores = ScoreKeeper.new
scores << 10 << 20 << 40
puts "Average = #{scores.average}l"

Produces:
Average = 23.333333333333332

Note that there’s a subtlety in this code—the << method explicitly returns
self. It does this to allow the method chaining in the line scores << 10 << 20 <<
40. Because each call to << returns the scores object, you can then call <<
again, passing in a new score. (Arrays also implement << the same way, and
for the same reason.)

In addition to operators such as +, *, and <<, indexing using square brackets
is also implemented as a method call:

some_obj[1, 2, 3]

Here you’re actually calling a method named [] on some_obj, passing it three
parameters, equivalent to some_obj.[1(1, 2, 3). You’d define this method using
this:

class Some(Class
def [](p1, p2, p3)
...
end
end

Similarly, assignment to an element is implemented using the []= method.

This method receives each object passed as an index as its first n parameters
and the value of the assignment as its last parameter:

class Some(Class
def []=(*params)
value = params.pop
puts "Indexed with #{params.join(', ')}"
puts "value = #{value.inspect}"”
end
end

s = SomeClass.new

s[1] = 2
s['cat', 'dog'] = 'enemies'

Produces:

Indexed with 1

value = 2

Indexed with cat, dog
value = "enemies"

Command Expressions

If you enclose a string in backquotes (sometimes called backticks) or use
the delimited form %x{...}, the string will (by default) be executed as a
command by your underlying operating system. The value returned is the
standard output of that command. Newlines will not be stripped, so the
value you get back will likely have a trailing return or linefeed character.

‘date’ # => "Thu Nov 2 17:16:02 CDT 2623\n"
‘ls .split[34] # => "irb.md"
%x{echo "hello there"} # => "hello there|\n"

You can use expression expansion and all the usual escape sequences in the
command string:

0..3.each do |1i]
status = ‘dbmanager status id=#{i1}"
end

The exit status of the command is available in the global variable $?, also

aliased as Process.last_status.

In the description of the command expression, we said that the string in
backquotes would “by default” be executed as a command. In fact, the
string is passed to the Kernel method called ‘ (a single backquote). If you
want, you can override this method. This example uses Process.last_status,
which contains the status of the last external process run:

alias old_backquote °

def “(cmd)
result = old_backquote(cmd)
unless Process.last_status.success?
puts "*** Command #{cmd} failed: status = #{Process.last_status.
exitstatus}”
end

result
end

print ‘ls -1 /etc/passwd’
print ‘ls -1 /etc/wibble"

Produces:
-rw-r--r-- 1 root wheel 8460 Oct 20 02:35 /etc/passwd

1s: /etc/wibble: No such file or directory
**%* Command 1s -1 /etc/wibble failed: status =1

Assignment

Almost every example we’ve given so far in this book has featured
assignment. It’s about time we said something about it.

An assignment statement sets the variable or attribute on its left side (the
Ivalue) to refer to the value on the right (the rvalue). It then returns that rvalue
as the result of the assignment expression. This means you can chain
assignments, and you can perform assignments in some unexpected places:

a=b=1+24+3
a #=>6
b #=>6
a=(b=1+2)+3
a #=>6
b # => 3

File.open(name = gets.chomp)

Ruby has two basic forms of assignment. The first assigns an object reference
to a variable or constant. This form of assignment is hardwired into the
language:

instrument = "piano”
MIDDLE_A = 440

The second form of assignment involves having an object attribute or element
reference on the left side. These forms are special because they are
implemented by calling methods in the lvalues, which means you can override
them.

We’ve already seen how to define a writable object attribute. Simply define a
method name ending in an equals sign. This method receives as its parameter
the assignment’s rvalue. We’ve also seen that you can define [] as a method:

tut_expressions/assignment.rb

http://media.pragprog.com/titles/ruby5/code/tut_expressions/assignment.rb

class ProjectList
def initialize
@projects = []
end

def projects=(1list)
@projects = list.map(&:upcase) # store list of names in uppercase
end

def [](offset)
@projects[offset]
end
end

list = ProjectList.new
list.projects = %w[strip sand prime sand paint sand paint rub paint]
list[3] # => "SAND"
list[4] # => "PAINT"

As this example shows, these attribute-setting methods don’t have to
correspond with internal instance variables, and you don’t need an attribute
reader for every attribute writer (or vice versa).

The value of the assignment is a/ways the value of the parameter; the return
value of the method 1s discarded. In the code that follows, result will be set to
2, even though the attribute setter actually returns 99.

tut_expressions/assignment_setter.rb

class Test
def val=(val)
@val = val
return 99
end
end

t = Test.new
result = (t.val = 2)
result #=>2

http://media.pragprog.com/titles/ruby5/code/tut_expressions/assignment_setter.rb

You can also flip the order of assignments in Ruby using the => operator,
which is sometimes called “rightward assignment” and is a special case of
Ruby’s general Pattern Matching.

2 => X
puts Xx

Produces:
2

Note that the return value of the rightward assignment itself is nil, not the
value of the assignment.

Parallel Assignment

You may have had to write code to swap the values in two variables and have
done so by creating a temporary variable:

C, or Java, or ...
int a = 1;
int b = 2;
int temp;

temp = a;
a = b;
b = temp;

You can do this swap much more cleanly in Ruby with parallel assignment:

a, b=1, 2 # a=1, b=2
a, b=>b, a # b=2, a=1

Ruby lets you have a comma-separated list of rvalues (the things on the right
of the assignment). Once Ruby sees more than one rvalue in an assignment,
the rules of parallel assignment come into play. What follows is a description
at the logical level: what happens inside the interpreter is somewhat hairier.

When Ruby interprets a parallel assignment, the values on the left are
evaluated before the values on the right.

Then all the rvalues are evaluated, left to right, and collected into an array
(unless they are already an array). This array will be the eventual value
returned by the overall assignment.

Next, the left side result is inspected. If it contains a single element, the array
1s assigned to that element.

a=1,273,4 # a=[1, 2, 3, 4]

b=[1,2,3,4] # b=[1,2,3,4]

If the left side contains a comma, Ruby matches values on the right side
against successive elements on the left side. Excess elements are discarded.

a,b=1,2,3,4 # a=1, b=2

¢,=12,3,4 # c=1

Splats and Assignment

If Ruby sees any splats on the right side of an assignment (that is, rvalues
preceded by an asterisk), each will be expanded inline into its constituent
values during the evaluation of the rvalues and before the assignment to
lvalues starts:

a,b,c,d e=%(1.2),3,*[4,5] # a=1, b=2, c=3, d=4, e=5

Exactly one lvalue may be a splat. This makes it greedy—it’ll end up being an
array, and that array will contain as many of the corresponding rvalues as
possible. So, if the splat is the last lvalue, it’ll soak up any rvalues that are left
after assigning rvalues to previous lvalues:

a,*b=1,2,3 # a=1, b=[2, 3]

a,*b=1 # a=1, b=[]

If the splat isn’t the last Ivalue, then Ruby ensures that the lvalues that follow
it will all receive values from rvalues at the end of the right side of the
assignment. The splat Ivalue will soak up only enough rvalues to leave one for
each of the remaining lvalues.

*a,b=1,2,3,4 # a=[1, 2, 3], b=4
¢, *d,e=1,2,3,4 # c=1, d=[2, 3], e=4

F' *g' hl i'j = 1' 2' 3l 4 # f=1' g=[]' h=2' i=3' j=4

As with method parameters, you can use a raw asterisk to ignore some
rvalues:

First, *, last=1,2,3,4,5,6 # First=1, last=6

Nested Assignments

The left side of an assignment may contain a parenthesized list of terms. Ruby
treats these terms as if they were a nested assignment statement. It extracts the
corresponding rvalue, assigning it to the parenthesized terms, before
continuing with the higher-level assignment.

a,(b,c),d=1,2,3,4 # a=1, b=2, c=nil, d=3

a, (b, c),d=1[1,2,3,4] # a=1, b=2, c=nil, d=3

a, (b,c),d=1,[2,3],4 # a=1, b=2, ¢=3, d=4
a, (b,c),d=1,[23,4],5 # a=1, b=2, c=3, d=5

a3, (b,*c),d=1,[2,3,4],5 # a=1, b=2, c=[3, 4], d=5

Operator Plus Assignment

Ruby has a syntactic shortcut for applying an operation to a value and
immediately assigning that value the new result: a=a+ 2 may be written as a +=
2. The second form is converted internally to the first. This means that the
operators you’ve defined as methods in your own classes work as you’d
expect:

class List
def initialize(*values)
@list = values
end

def +(other)
@list.push(other)

end
end
a = List.new(1, 2) #=>[1, 2]
a+= 3 #:>[1: 2: 3]

Ruby doesn’t have the autoincrement (++) and autodecrement (—) operators
that C, Java, and JavaScript have. Use the += and -= forms instead.

Conditional Execution

Ruby has several different mechanisms for the conditional execution of code;
they should feel similar to other programming languages, but many have some
neat twists. Before we get into them, we need to spend a short time looking at
boolean expressions.

Boolean Expressions

Ruby has a simple definition of truth. Any value that isn’t nil or the constant
false 1S true—"cat", 99, 0, and :a_song—are all considered true. An empty string
""_an empty array [], and an empty hash {} are all true in Ruby. (You’ll
sometimes see Rubyists refer to the set of all false values as “falsey” and the
set of all true values as “truthy”.)

In this book, when we want to talk about a general true or false value, we use
regular Roman type: true and false. When we want to refer to the actual
constants, we write true and false.

The fact that nil is considered to be false is convenient. For example, gets,
which returns the next line from a file, returns nil at the end of the file,
enabling you to write loops such as this:

while (line = gets)
process line
end

And, Or, and Not

Ruby supports all the standard boolean operators. Both the keyword and and
the operator && (logical and) return their first argument if it’s falsey.
Otherwise, they evaluate and return their second argument (this 1s sometimes
known as short circuit evaluation).

nil && 99 # => nil
false && 99 # => false

"cat” && 99 # => 99

The only difference in the two forms is precedence—the && operator has
higher precedence than and, meaning that where there’s a choice of operators
to evaluate, && will be evaluated first but and will be evaluated last.

result "a" && "b"
result # =>"b"

result "a" and "b"
n n

result # => "a

In the first line, the operator && has higher precedence than the assignment, so
it’s evaluated first, returning "b", and the result is set to "b", as if the line was
written result = ("a" && "b").

In the second line, the assignment has higher precedence than and, so the result
1s set to "a" first, and then the and 1s evaluated, as if it was written (result = "a")
and "b". The entire sequence still returns "b", but in the second line, the result is
set to "a". We strongly recommend that you use parentheses when the order of
execution might be ambiguous or confusing.

The && and and operators return a true value only if both of their arguments are
true.

Similarly, both or and || return their first argument unless it’s falsey, in which
case they evaluate and return their second argument.

nil || 99 # => 99

false || 99 # => 99
"cat" || 99 # => "cat"

As with and, the only difference between or and || is their precedence. To make
life interesting, and and or have the same precedence, but && has a higher
precedence than ||.

The spelled-out versions of and and or are useful as a kind of control flow.
EXPRESSION or exit will perform the expression, no matter how complex it is,
and return that value if it’s truthy, exiting only if the entire expression is false.

A common idiom is to use ||= to assign a value to a variable only if that
variable isn’t already set:

var ||= "default value"

This is almost, but not quite, the same as var = var || "default value". It differs in

that no assignment is made at all if the variable is already set. In pseudocode,
this might be written as var = "default value" unless var Or as var || var = "default

value".

not and ! (logical not) return the opposite of their operand (false if the operand
is any true value and true if the operand is any false value). And, yes, not and !
differ only in precedence. You’ll sometimes see a !! used as an implicit
conversion to boolean, since the first ! converts any value to either true or false
and the second ! reverses the value to match the boolean status of the original
value. Teams will have different opinions about whether !! is good style, so
keep an eye out for that.

All these precedence rules are summarized in Table 19, Ruby operators (high

to low precedence).

The defined? Keyword

The defined? keyword returns nil if its argument (which can be an arbitrary
expression) 1sn’t defined in the current scope; otherwise, it returns a
description of that argument. If the argument is yield, defined? returns the string
“yield” if a code block is associated with the current context.

defined? 1 # => "expression”
defined? dummy # => nil

defined? printf # => "method”

defined? String # => "constant”
defined? $_ # => "global-variable"

defined? Math::PI # => "constant"”

defined? a = 1 # => "assignment"

defined? 42.abs # => "method”

defined? nil # => "pil"
Comparing Objects

In addition to the boolean operators, Ruby objects support comparison using

operators). All but <=> are defined in class Object but are often overridden by
descendants to provide appropriate semantics. For example, class Array
redefines == so that two array objects are equal if they have the same number
of elements and the corresponding elements are equal.

It’s relatively rare to see eql? or equal? in Ruby code. Also, if you’re familiar
with JavaScript, please note that triple equal, ===, means something very
different in Ruby than in JavaScript.

Both == and =~ have negated forms, != and !~. When evaluating the negated
versions, Ruby first looks for methods called != or !~, calling them if found. If
not, it’ll then invoke either == or =~, negating the result.

In the following example, Ruby calls the == method to perform both
comparisons:

tut_expressions/equality.rb

class Type
def ==(other)
puts "Comparing self == #{other}"
other == "value"
end
end

t = Type.new
p(t == "value")
p(t !'= "value")

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_expressions/equality.rb

Comparing self == value
true
Comparing self == value
false

If instead we explicitly define !=, Ruby calls it:

tut_expressions/negated_equality.rb

class Type
def ==(other)
puts "Comparing self == #{other}"
other == "value"
end

def !=(other)
puts "Comparing self != #{other}"

other != "value"
end

end

t = Type.new

p(t == "value")

p(t !'= "value")
Produces:

Comparing self == value

true

Comparing self != value

false

You can use a Ruby range as a boolean expression. A range such as exp1..exp2
will evaluate as false until exp1 becomes true. The range will then evaluate as
true until exp2 becomes true.

Once this happens, the range resets, ready to fire again.

Table 3. Common comparison operators

http://media.pragprog.com/titles/ruby5/code/tut_expressions/negated_equality.rb

Operator Meaning

== Test for equal value.

=== Test for "matching" as defined by the type of the operand.
Used most often to compare each of the items with the target in
the when clause of a case statement.

<=> General comparison operator. Returns -1, 0, or +1, depending
on whether its receiver is less than, equal to, or greater than its
argument.

<, <=, >=, Comparison operators for less than, less than or equal, greater

> than or equal, and greater than.

=~ Regular expression pattern match.

eql? True if the receiver and argument have both the same type and

equal values. 1==1.0 returns true, but 1.eql?(1.0) is false.

equal? True if the receiver and argument have the same object ID.

if and unless Expressions

An if expression in Ruby is pretty similar to if statements in other languages:

if artist == "Gillespie"” then
handle = "Dizzy"”

elsif artist == "Parker” then
handle = "Bird"

else
handle = "unknown"

end

The then keyword 1s optional if you lay out your statements on multiple lines:

if artist == "Gillespie”
handle = "Dizzy"
elsif artist == "Parker”

handle = "Bird"

else
handle = "unknown"
end

But, if you want to lay out your code more tightly, you must separate the
boolean expression from the following statements with the then keyword:

if artist == "Gillespie” then handle = "Dizzy”
elsif artist == "Parker"” then handle = "Bird"
else handle = "unknown"

end

You can have zero or more elsif clauses and an optional else clause. And notice
that there’s no e in the middle of elsif.

As we’ve said before, an if statement is an expression—it returns a value. You
don’t have to use the value of an if statement, but it can come in handy:

handle = if artist == "Gillespie”
"Dizzy"
elsif artist == "Parker”
"Bird"
else
"unknown"
end

Ruby also has a negated form of the if statement:

unless volume.nil?
play_the_song
end

The unless statement does support else, but it’s always clearer to switch to an if
statement in these cases.

Finally, Ruby also supports the ternary operator conditional expression, as
seen in C, JavaScript, and Java:

cost = duration > 180 ? 0.35 : 0.25

A ternary expression returns the value of the expression either before or after
the colon, depending on whether the boolean expression before the question
mark is true or false. In the previous example, if the duration is greater than
three minutes, the expression returns 0.35. For shorter durations, it returns
0.25. The result is then assigned to cost.

if and unless Modifiers

Statement modifiers let you tack conditional statements onto the end of a
normal statement:

mon, day, year = $1, $2, $3 if date =~ /(|d\d)-(\d\d)-(\d\d)/

puts "a = #{a}" if $SDEBUG

print total unless total.zero?

For an if modifier, the preceding expression will be evaluated only if the
condition is true. The unless modifier works the other way around:

File.foreach("/etc/passwd") do |line]|

next if line =~ /7#/ # Skip comments
parse(line) unless line =~ /7S/ # Don't parse empty lines
end

case Expressions

The Ruby case expression is a powerful beast: a multiway if on steroids.

A Ruby case expression can be written as basically a series of if statements. It

lets you list a series of conditions and execute a statement corresponding to the
first one that’s true:

case

when song.name == "Misty"
puts "Not again!”

when song.duration > 120
puts "Too long!"

when Time.now.hour > 21
puts "It's too late"

else
song.play

end

The else clause at the end is optional and is evaluated if none of the earlier
expressions are true.

Note that standard Ruby style has the when statements at the same level as the
parent case, not indented.

More commonly, you can specify a target at the top of the case statement, and
each when clause lists one or more comparisons to be tested against that target:

case command

when "debug”
dump_debug_1info
dump_symbols

when /p|s+(\w+)/
dump_variable($1)

when "quit", "exit"
exit

else
print "Illegal command: #{command}"

end

The first comparison to match the target is evaluated. Again, the else clause is
optional and evaluates if none of the other clauses do.

Unlike JavaScript, you don’t need to explicitly break out of each when clause,
Ruby will only evaluate the expression of the first clause to match.

As with if, case returns the value of the last expression executed, and you can
use a then keyword to place the expression on the same line as the condition:

kind = case year
when 1850..1889 then "Blues”
when 1890..1909 then "Ragtime"
when 1910..1929 then "New Orleans Jazz"
when 1930..1939 then "Swing"
else "Jazz"
end

A case expression operates by comparing the target (the expression after the
keyword case) with each of the comparison expressions after the when
keywords. This test is a little unusual in that it uses an operator that’s unique
to Ruby, the === operator. Please note that Ruby’s === is different than
JavaScript’s. Ruby’s means “matches, as defined by the type of the left
operand,” which is different from JavaScript’s “equal and of the same type”
operator.

What does _comparison_===_target_ mean? It depends on how the class defines
it. Different classes define different meaningful semantics for ===.

For example, regular expressions define === as a pattern match:

case line

when /title=(.*)/
puts "Title is #S1"

when /track=(.*)/
puts "Track is #S1"

end

Ruby classes are instances of class Class. (Try saying that three times quickly.)
The === operator is defined in Class to test whether the argument is an instance

of the receiver or one of its superclasses. So (abandoning the benefits of
polymorphism and bringing the gods of refactoring down around your ears),
you can test the class of objects:

case shape

when Square, Rectangle
when Circle

when Triangle

else

end

This example shows another syntactic feature of Ruby’s case statement, which
is that if you have multiple comparisons for the same result, you can put them

in the same when statement and separate them with a comma, as this example
does with Square, Rectangle.

There are a couple of other interesting uses of ===. For a Range, === means the
target is inside the range. A Set is === if the target is in the set. A Proc checks
for === by calling the proc with the target as an argument and using the truth
value of whatever the proc returns.

Safe Navigation

It’s common to have a chain of method calls on a series of objects. For
example, you might want to retrieve a string from a hash and perform other
processing on it:

datal[:name] .upcase

There’s only one problem: you might have no way of knowing if data[:name]
returns a value or returns nil. If a value is returned, great! The line of code
works as intended. If nil is returned, there’s a problem because nil.upcase isn’t
defined and will raise an exception.

As a result, checking for nil is a common pattern:

name = data[:name]
if name then name.upcase else nil end

This 1s often written with the && as a shortcut:

data[:name] && datal :name].upcase

But this version is a little awkward, and it requires the fetch to be executed
twice.

To make this pattern a little nicer, Ruby offers the safe navigation operator, &.
(ampersand followed by a dot). You’ll sometimes see this called the lonely

operator because Matz thought that the ampersand dot combination looked
like a person sitting alone staring off into space. It works like this:

data[:name]&.upcase

The way the &. operator works is that if the receiver of the message on the left
side (in this case data[:name]) is nil, then the message isn’t sent and the nil value
is returned without raising an exception. If the receiver isn’t nil, then the
message 1s processed normally.

This 1s what we want—the code works as desired for both nil and non-nil
values for the data[:name].

The safe navigation operator’s powers only last for the one message. If you
want to continue with more downstream messages, you need more safe
navigation operators.

data[:name]&.upcase&.strip&.split

The safe navigation operator is a great shortcut, but it’s not a substitute for
software design. If you have a lot of values and you don’t know whether or not
they are nil, it’s worth thinking about whether there’s a better way to structure
the code.

Loops and Iterators

We discussed Ruby blocks and iterators back in Chapter 4, Collections,
Blocks,_and Iterators. In this section, we’ll talk about all of Ruby’s looping
constructs in more depth.

Loops

Ruby has primitive built-in looping constructs, separate from the iterator
constructs we’ve already seen.

The most basic loop of all that Ruby provides is a built-in iterator method
called loop:

loop do
block ...
end

The loop iterator calls the associated block forever (or at least until you

break out of the loop, but you’ll have to read ahead to find out how to do
that).

The while loop executes its body zero or more times as long as its condition
1s true. For example, this idiom reads until the input is exhausted, assigning
each line to the local variable line:

while (line = gets)
end

The until loop is the opposite; it executes the body until the condition
becomes true:

until play_list.duration > 60
play_list.add(song_list.pop)
end

As with if and unless, you can use both of the loops as statement modifiers:

=1

*= 2 while a < 100
=> 128

-= 10 until a < 100
=> 98

(2 o VI oY S o VR o)

Earlier, we said that a range can be used as a kind of flip-flop, returning true
when some event happens and then staying true until a second event occurs.
This facility 1s normally used within loops. In the example that follows, we
” “second,”
and so on) but print only the lines starting with the one that matches “third”
and ending with the one that matches “fifth”:

read a text file containing the first ten ordinal numbers (“first,

file = File.open("ordinal")
while 1line = file.gets

puts(line) +if line =~ /third/ .. line =~ /fifth/
end

Produces:

third
fourth
fifth

The start and end of a range used in a boolean expression can themselves be
expressions. These are evaluated each time the overall boolean expression
is evaluated. For example, the following code uses the fact that the variable
$. contains the current input line number to display the first three lines as

well as those lines between a match of /eig/ and /nin/:

File.foreach("ordinal") do |1line|
if (($. == 1) || line =~ Jfeig/) .. (($. == 3) || line =~ /nin/)
print line
end
end

Produces:

first
second
third
eighth
ninth

You’ll come across a wrinkle when you use while and until as statement
modifiers. If the statement they are modifying is a begin...end block, the

code in the block will always execute at least one time, regardless of the
value of the boolean expression:

print "Hello|n" while false
begin

print "Goodbyel|n"
end while false

Produces:

Goodbye

Iterators

If you read the beginning of the previous section, you may have been
discouraged. “Ruby has primitive built-in looping constructs,” it said. Don’t
despair, gentle reader, for we have good news. Ruby doesn’t need
sophisticated built-in loops because all the fun stuff is implemented using
Ruby’s iterators.

As we’ll see, even Ruby’s for loop is defined in terms of Ruby iterators.

Ruby uses methods defined in various built-in classes to provide equivalent,
but less error-prone functionality to other languages’ primitive for loops.

Let’s look at some examples:

3.times do
print "Ho! "
end

Produces:
Ho! Ho! Ho!

It’s easy to avoid fence-post and oft-by-one errors; this loop will execute
three times, period. In addition to times, integers can loop over specific

ranges by calling downto and upto, and all numbers can loop using step. For

instance, a simple “for” loop that runs from 0 to 9 (something that you’d
write in JavaScript as for(let i = 0; i < 10; i++)) 1S written as follows:

0.upto(9) do |x|

" "

print x,
end

Produces:
01234567809

A loop from 0 to 12 by 3 can be written as follows:
0.step(12, 3) { Ix| print x, " "}

Produces:
0369 12

Similarly, iterating over arrays and other containers is easy if you use their
each method:

[1, 1, 2, 3, 5]J.each { |val| print val, " "}
Produces:
11235

And once a class supports each, it can also include Enumerable, and the
additional methods in the Enumerable module become available. (We talked

about this back in Chapter 6, Sharing Functionality: Inheritance, Modules,
and Mixins.) For example, the File class provides an each method, which

returns each line of a file in turn. Using the grep method in Enumerable, we
could iterate over only those lines that end with a d:

File.open("ordinal").grep(/dS/) do |line]|
puts line
end

Produces:

second
third

for ... in

Earlier we said that the only built-in Ruby looping primitives were while and
until. Technically, that’s not true, Ruby does have a for keyword. What’s this
for thing, then? Well, for is a different way to write an each loop.

When you write this:

for song in playlist
song.play
end

Ruby translates it into something like this:

playlist.each do |song]|
song.play
end

The only difference between the for loop and the each form is the scope of
local variables that are defined in the body.

You can use for to iterate over any object that responds to the method each,
such as an Array or a Range:
for 1 in ['fee', 'fi', 'fo', 'fum']

print 1, " "
end

for 1 in 1..3
print 1, " "
end

for 1 in File.open("ordinal").find_all { |line| line =~ /dS/ }
print i.chomp, " "
end

Produces:
fee fi fo fum 1 2 3 second third

As long as your class defines a sensible each method, you can use a for loop
to traverse its objects:

class Periods
def each
yield "Classical”
yield "Jazz"
yield "Rock”
end
end

periods = Periods.new
for genre in periods

print genre, " "
end

Produces:

Classical Jazz Rock

break, redo, and next

The loop control constructs break, redo, and next let you alter the normal
flow through a loop or iterator.

break terminates the immediately enclosing loop; control resumes at the
statement following the block. redo repeats the current iteration of the loop

from the start but without reevaluating the condition or fetching the next
element in an iterator. next skips to the end of the loop, effectively starting
the next iteration:

while (line = gets)
next 1if line.matches?(/*\s*#/) # skip comments
break if line.matches?(/”END/) # stop at end

substitute stuff in backticks and try again
redo if line.gsub!(/"(.*?)'/) { eval($1l) }

process line ...
end

These keywords can also be used within blocks. Although you can use them

with any block, they make the most sense when the block is being used for
iteration:

i=0
loop do
1i+=1
next if 1 < 3
print i
break if 1 > 4
end

Produces:

345

A value may be passed to break or next. A value passed to break 1s returned
as the value of the loop when the break is triggered. A value passed to next
is effectively lost, while you can pass a value to next, there’s no reason to do
so. If a conventional loop doesn’t execute a break, its value is nil.

Here’s a contrived example:

result = while (line = gets)
break(line) if line =~ /answer/

end

process_answer(result) if result

Variable Scope, Loops, and Blocks

The while, until, and for loops are built into the language and don’t introduce
new scope. Previously existing locals can be used in the loop, and any new
locals created will be available afterward. Depending on what languages
you might be used to, this will either seem normal (Python), very weird
(Java), or actually a model of relative clarity (JavaScript).

The scoping rules for blocks (such as those used by loop and each) are
different. Normally, the local variables created in these blocks aren’t
accessible outside the block:

[1, 2, 3].each do |x]|
y=x+1

end

[x, vyl

Produces:

[x, y]

N

prog.rb:4:in “<main>': undefined local variable or method “x' for main
(NameError)

But, if at the time the block executes a local variable already exists with the
same name as that of a variable in the block, the existing local variable will
be used in the block. So its value will be available after the block finishes.
As the following example shows, this applies to normal variables in the
block but not to the block’s parameters:

"initial value"

"another value"

[1, 2, 3].each do [x]
y=x+1

end

[x, v] # => ["initial value", 4]

Note that the assignment to the outer variable doesn’t have to be executed.
The Ruby interpreter just needs to see that the variable exists on the left
side of an assignment:

a = "never used" if false
[99].each do |1i]
a=1
end
a # => 99

The a =i statement in the block sets the outer value of a even though a =
“never used” isn’t executed.

You can list block-local variables in the block’s parameter list, preceded by
a semicolon. This code doesn’t use block-locals:

square = "yes"
total = 0

[1, 2, 3].each do |val|
square = val * val
total += square
end
puts “Total = #{total}, square = #{square}"”
Produces:

Total = 14, square = 9

In contrast, the following code, which uses a block-local variable, square in

the outer scope isn’t affected by a variable of the same name within the
block:

square = "yes”
total = 0

[1, 2, 3].each do |val; square]

square = val * val
total += square
end
puts "Total = #{total}, square = #{square}"
Produces:

Total = 14, square = yes

If you’re concerned about the scoping of variables with blocks, turn on
Ruby warnings, and declare your block-local variables explicitly.

Pattern Matching

When you’re dealing with a complicated data structure, but you only need to
use part of the structure, it can be awkward to access the structure through
regular [] methods, with something like movies[:mcu][1][:actors][1][:first_name].
Not only is the access complicated but validating that the data has the shape
you’re looking for can also be difficult.

In Ruby, pattern matching is designed to make both these tasks easier by
allowing you to specify the structure of the data as a pattern, and assign values
to the parts of the data that match. Please note that many programming
languages have features they call “pattern matching,” but Ruby’s
implementation is somewhat different from many of these. The most similar
seems to be in Python.

Pattern matching in Ruby compares a target, which can be any Ruby object, to
a pattern. A pattern is also a Ruby object, but the pattern can also contain the
names of not-yet-defined local variables. If the target matches the pattern, the
target 1s deconstructed into the pattern, setting the value of those variables.
Single-Line Pattern Matching

Ruby uses the keyword in to match a target to a pattern. When used this way,

the expression returns true if the target matches and false if it doesn’t.

The simplest pattern match is that values match themselves:

"banana”" in "banana" # => true

"banana" in "apple" # => false
31in 3 # => true
31in 5 # => false
21 in 21 # => true

Behind the scenes, the pattern match for values uses the same === triple-equal
operator that case statements do. This means that classes that implement ===
can do more general matches. As we saw earlier, a class is === to instances of

that class, regular expressions are === to strings that match the expression, and
ranges are === to elements covered by the range.

So we can write the following patterns:

"banana" in String # => true
"banana" in Integer # => false
"banana" in /b(an+)/ # => true
31in 1..10 # => true

That’s starting to look a little more interesting.

The next step is that you can match not only scalar values but also arrays and
hashes. Each subelement of the array or hash can be a pattern that matches the
associated element in the target. For an array, every element in the array must
match the associated pattern element. For a hash, only keys in the pattern must
match. The existence of other keys in the target doesn’t fail the match. If you
want to have an exact hash match, you need to include **nil in the pattern.

[1, 2, 3] in [Integer, Integer, Integer] # => true
[3, "banana", "apple"] in [1..10, String, /p{2}/] # => true
{name: "Fred", city: "Bedrock"} in {city: String} # => true
{name: "Fred", city: "Bedrock"} in {} # => false

That last line shows that the empty hash is treated differently—an empty hash
only matches another empty hash.

You can use * at the end of an array pattern to indicate rest, and you can use
one at the front to indicate a “find pattern”, where you’re looking for an
element in the middle.

[1, "potato", 2, "potato"] in [Integer, "potato”, Integer, "potato"] # => true
[1, "potato", 2, "potato"] in [Integer, "potato", *] # => true
[1, "potato”, 2, "potato"] in [*, "potato”, 2, *] # => true

You can nest the data:

{likes: [3, 5], dislikes: [2, 4]} in {likes: [3, *], dislikes: [2, *]} # =>
true

And you can provide multiple patterns using “or” logic:

[1, 2, 3] in [Integer, Integer, Integer] | [String, String, String]
=> true

["a", "b", "c"] in [Integer, Integer, Integer] | [String, String, String]
=> true

["a", "b", 3] in [Integer, Integer, Integer] | [String, String, String]
=> false

The last example is false because the left side of the expression does not
match either of the patterns completely.
Variable Binding

Where pattern matching starts to get really powerful is that you can also assign
values in the target to variables in the pattern and then use those values. You
can include a bare variable in the pattern by adding a hashrocket => and a local

variable name to any part of a pattern:

"value" in String => a
puts a

Produces:
value

Note that the in expression still returns true, and the variable assignment is a
side effect.

If you only want the variable assignment and don’t care about the truth value,
you can replace the in operator with =>, which we’ve already seen can be used

for rightward assignment:

"value" => String => a
puts a

Produces:

value

There’s a shortcut if the part of the pattern being assigned doesn’t have any
other pattern-matching syntax. You can leave off the hashrocket and just put in
the local name:

"value" in a
puts a

"Another value" => b
puts b

Produces:

value
Another value

The second form here is the rightward assignment we’ve already seen. This
can be used in more complex patterns:

[1, "potato", 2, "potato"] => [first, String, second, String]
puts "the numbers are #{first} and #{second}"

Produces:
the numbers are 1 and 2

There’s a shorter shortcut for hash patterns where you’re only asserting that
the key exists, including the name of the key assigned a local variable with
that name.

{rank: "Ace", suit: "Hearts"} => {rank:, suit:}

puts "Your card is the #{rank} of #{suit}."
Produces:

Your card is the Ace of Hearts.

If the pattern doesn’t match, the variable assignment behavior is technically
“undefined” to allow for potential performance improvements in the future. It

looks like variables are assigned up to the point of the first mismatch, but we
wouldn’t recommend depending on that. This pattern assigns first but not
second:

[1, "potato"”, 2, "potato"] in [Integer => first, Integer, Integer => second,
String]

puts "the numbers are #{first} and #{second}"
Produces:
the numbers are 1 and

If you use => instead of in here, the behavior is much more clearly defined: you
get a NoMatchingPatternError error, and neither variable is assigned.

There are two limitations on assigning variables in pattern matching. First, you
can only assign a value to a local variable. Specifically, you cannot assign a
value to an @ instance variable inside a pattern match. This seems to be related
to performance and thread-safety concerns (it’s actually related to the
undefined performance of failed matches mentioned earlier), and there’s a
decent chance this will change in the future.

Second, you cannot do a variable assignment inside a pattern that uses the | to
provide alternative patterns because you’ll get a syntax error. We’re honestly
not 100% sure why this is, but we suspect it’s related to performance concerns.
(Technically, you can do this if the variable names start with an _, but the
official docs suggest not relying on this behavior, since the underscore is
supposed to indicate a variable that’s being discarded.)

Case Pattern Matching

Having mentioned that pattern matching uses the Ruby === operator and that it
compares a target value against another value, this might remind you of
Ruby’s case statement in case Expressions, which also uses the === operator
and compares a target value.

And in fact, Ruby does support a case/in statement that pattern matches the
target against one or more successive patterns:

tut_expressions/pick_a_card_1.rb

def pick_a_card(cards)
case cards
in [*, {rank: "Ace", suit: String => s}, *]
"You have an Ace! Its suit is #{s}."
in [*, {rank: r, suit: "Diamonds"}, *]
"You have a Diamond! Its rank is #{r}."
in [*, {rank: "Queen", suit:}, *]
"You have a Queen! Its suit is #{suit}.”
else
"You have no interesting cards, "
end
end

puts pick_a_card([
{rank: "Ace", suit: "Hearts"},
{rank: "King", suit: "Diamonds"},
{rank: "Queen", suit: "Clubs"}

D

Produces:
You have an Ace! Its suit is Hearts.

The case/in statement works like a successive set of pattern matchings the way
we’ve already seen pattern matches work. The target variable, in this case, our
list of card hashes that’s passed to cards, 1s matched against the first pattern.

The first pattern is a find pattern, matching against the first hash with key rank
and value Ace. The rest of the pattern assigns the variable in the suit key to s,
and then that variable is local to all the code within that pattern.

If that pattern doesn’t match, the next one is tried. In this case, the second
pattern looks for a suit of Diamonds, and we’re not expecting anything in
particular for the matching rank, so we can just bind it to r. If that doesn’t
match, the third line shows another shortcut for variable assignment, in this

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_1.rb

one the hash key shortcut is used to assign suit to the suit of the card that
matches rank: "queen".

Eventually, we run out of patterns. If there’s an else clause, then the else clause
1s executed. If not, the statement raises a NoMatchingPatternError. The

expectation is that the case statement will be complete and always have a
clause to execute, even if that clause is the else clause.

A case statement either has in clauses or when clauses; you can’t mix the two in
a single statement.

Pinning Values

Pattern matching is a great way to combine validating data with variable
assignment, but we’re still missing an important piece of the puzzle. In our
earlier card example, the pick_a_card example hard codes the ranks of cards it’s

looking for. But what if you wanted to use an existing value, for example, if
you wanted to pass a value to look for?

tut_expressions/pick_a_card_2.rb

def pick_a_card(rank_to_look for, suit_to_ look for, cards)
case cards
in [*, {rank: ~rank_to_look_for, suit:}, *]
"You have a #{rank_to_look for}! Its suit is #{suit}.”
in [*, {rank:, suit: ~suit_to_look_for}, *]
"You have a {rank}! Its suit is #{suit_to_look_for}."
else
"You have no interesting cards,"
end
end

puts pick_a_card("King", "Clubs”, [
{rank: "Ace", suit: "Hearts'"},
{rank: "King", suit: "Diamonds"},
{rank: "Queen", suit: "Clubs"}

D

Produces:

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_2.rb

You have a King! Its suit is Diamonds.

The new syntax in that example is the » operator, which is called the pin
operator because it “pins” a value to part of the pattern. Without the »
operator, Ruby would interpret the use of rank_to_look_for and suit_to_look_for as
variables to be bound by the pattern match. With the » operator, Ruby
interprets them as existing values that are part of the pattern.

Unlike a variable assignment, you can pin any value, including an instance
variable ~@foo, or a global variable ~$global.

You can even pin a local variable assigned earlier in the pattern match, which
makes pattern matching much more powerful:

tut_expressions/pick_a_card_3.rb

def pick_a_card(cards)
case cards
in [*, {rank: }, {rank: ~rank}, *]
"You have a pair of #{rank}s.”
else
"You have no interesting cards, "
end
end

puts pick_a_card([
{rank: "Ace", suit: "Hearts"},
{rank: "Ace", suit: "Diamonds'"},
{rank: "Queen", suit: "Clubs"}

D

Produces:
You have a pair of Aces.

In this example, the pattern [*, {rank: }, {rank: ~rank}, *] looks for a match where
the first matching object sets the rank local variable using the hash shortcut
syntax, and the second matching object matches if its rank is equal to the
existing rank by pinning the value using #rank.

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_3.rb

You can also pin an expression rather than a mere value, allowing for
something like this (we converted the rank attribute to an integer to make this
a little easier to write, and we’re also sorting the cards by rank up front):

tut_expressions/pick_a_card_4.rb

def pick_a_card(cards)
cards = cards.sort_by { _1[:rank] }
case cards
in [{rank:}, {rank: ~(rank + 1)}, {rank: ~(rank + 2)}]
"You have three consecutive cards"
else
"You have no interesting cards,"
end
end

puts pick_a_card([
{rank: 7, suit: "Hearts"},
{rank: 8, suit: "Diamonds"},

{rank: 9, suit: "Clubs"}
D

Produces:
You have three consecutive cards

In this example, the pattern matches if the first card has a rank, the second
card has a rank that’s rank + 1, and the third card has rank + 2.

Pinning also works on single-line patterns, it’s not limited to patterns within
case statements.
Guard Clauses

There’s one other thing that you can do with patterns. You can use a boolean
statement to add a guard clause at the end of the pattern, the pattern only
matches if the clause is true.

tut_expressions/pick_a_card_5.rb

def pick_a_card(cards)

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_4.rb
http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_5.rb

cards = cards.sort_by { _1[:rank] }

case cards

in [{rank:}, {rank: ~(rank + 1)}, {rank: ~(rank+ 2)}] if rank > 6
"You have three consecutive high cards"

else
"You have no interesting cards, "

end

end

puts pick_a_card([
{rank: 7, suit: "Hearts"},
{rank: 8, suit: "Diamonds"},
{rank: 9, suit: "Clubs"}

D

Produces:
You have three consecutive high cards

In the previous example, the clause if rank > 6 limits the pattern to match only

cases where the lowest rank of the three cards is greater than 6. As you can
see, variables assigned as part of the pattern can be used in the clause. You can
use unless instead of if here, in which case the pattern matches when the unless

clause is false.

Custom Pattern Matching

Our “pick a card” examples so far have had our card data stored in a Ruby
hash, but it’s not unlikely that we’d rather have them stored in their own class.

At this point, we can no longer pattern match against our card class because a
hash match no longer works:

tut_expressions/pick_a_card_6.rb

class Card
attr_accessor :rank, :suit

def initialize(rank, suit)
@rank = rank
@suit = suit

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_6.rb

end
end

def pick_a_card(cards)
cards = cards.sort_by(&:rank)
case cards
in [{rank:}, {rank: ~(rank + 1)}, {rank: ~(rank+ 2)}] if rank > 6
"You have three consecutive high cards”
else
"You have no interesting cards, "
end
end

puts pick_a_card([
Card.new(7, "Hearts"),
Card.new(8, "Diamonds"),
Card.new(9, "Clubs")

D

Produces:
You have no interesting cards,

The problem is that {rank:} no longer matches anything because Card isn’t a
hash.

Happily, Ruby provides a way for this to work, the Card class can implement a
method called deconstruct_keys that returns a Hash version of the class suitable
for pattern matching.

Here we use the hash shortcut to define our deconstruct_keys method:

tut_expressions/pick_a_card_7.rb

class Card
attr_accessor :rank, :suit

def initialize(rank, suit)
@rank = rank
@suit = suit

end

http://media.pragprog.com/titles/ruby5/code/tut_expressions/pick_a_card_7.rb

def deconstruct_keys(keys)
{rank:, suit:}
end
end

def pick_a_card(cards)
cards = cards.sort_by(&:rank)
case cards
in [{rank:}, {rank: ~(rank + 1)}, {rank: ~(rank+ 2)}] if rank > 6

"

"You have three consecutive high cards
else
n . . n
You have no interesting cards,
end
end

puts pick_a_card([
Card.new(7, "Hearts"),
Card.new(8, "Diamonds"),
Card.new(9, "Clubs")

D

Produces:
You have three consecutive high cards

This works because now the pattern match runs against the hash returned by

deconstruct_keys.

The deconstruct_keys method takes an argument that in many cases you can
ignore. The value of that argument is the set of keys that the pattern is actually
inquiring about, and the purpose of that information is to allow you to send
back a subset of your object for performance reasons. For simple cases, the
subset operation is probably more expensive than creating the hash. If the
argument is nil, then the pattern has used ** to request the entire hash. The
return value of deconstruct_keys is arbitrary, but typically it’s a hash
representation of the data in the object.

An analogous method called deconstruct allows your class to match against
array patterns. It takes no arguments, and the expectation is that you return an
array that’s a representation of your instance. We suspect that fewer classes

will use deconstruct than deconstruct_keys because many classes don’t seem to
have an array representation with a clear order. But if you do have a class
where the data has a clearly ordered representation, like a date or a cartesian
point, then deconstruct would be useful. A class can implement both
deconstruct_keys and deconstruct if both a useful array and a hash representation
exist.

What’s Next

In this chapter, we went through a lot of different Ruby expressions, from
assignment to math to logic to loops to patterns. Next, we’ll look at Ruby’s
exception handling and see what to do when things go wrong.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 10

Exceptions

So far, we’ve been developing code in Pleasantville, a wonderful place
where nothing ever, ever goes wrong. Every library call succeeds, users
never enter incorrect data, and resources are plentiful and cheap. Well,
that’s about to change.

In the real world, errors happen. Good programs (and programmers)
anticipate them and arrange to handle them gracefully. This i1sn’t always as
easy as it may sound. Often the code that detects an error doesn’t have the
context to know what to do about it. For example, attempting to open a file
that doesn’t exist is acceptable in some circumstances and is a fatal error at
other times. What’s your file-handling module to do?

One approach is to use return codes to signal errors (for example, the Go
language uses this pattern). In this approach, Ruby’s File.open method could
return some specific value to say it failed. This value is then propagated
back through the layers of calling routines until someone wants to take
responsibility for it.

The problem with this approach is that managing all these error codes can
be a pain. If a function calls open, then read, and finally close and if each can
return an error indication, how can the function distinguish these error
codes in the value it returns to its caller?

Ruby uses exceptions to help solve the problem of responding to errors.
Exceptions let you package information about an error into an object. That
exception object is then propagated back up the calling stack automatically
until the runtime system finds code that explicitly declares that it knows
how to handle that type of exception.

The Exception Class

Information about an exception is encapsulated in an object of class
Exception or in one of class Exception’s children. Ruby predefines a tidy
hierarchy of exceptions, see https://docs.ruby-
lang.org/en/master/Exception.xhtml for the full list. As we’ll see later, this
hierarchy makes handling exceptions considerably easier.

The most important subclass of Exception is StandardError. The StandardError
exception and its subclasses represent the exceptional conditions that you’re
going to want to capture in your code. Other subclasses of Exception are
raised by Ruby internals or system-level problems. Almost all of the time, if
you want to capture exceptions, you capture StandardError or one of its

children.

When you need to raise an exception, you can use one of the built-in
Exception classes, or you can create one of your own. Your own exception

classes should be subclasses of StandardError or one of its children, for the
same reason we just gave. Making your exceptions children of StandardError
ensures that regular Ruby processes will capture them appropriately.

Often, the only new piece of data associated with a custom exception is that
it’s a custom exception, so you can declare it in one line:

class MissingUserError < StandardError; end

Semicolons, which are rare in Ruby, are used to separate expressions when
you put more than one on a line. This syntax is often used to indicate a class
with no particular new data other than its parent class. By convention,
custom exception class names end with Error.

Every Exception has associated with it a message string and a stack
backtrace. If you define your own exceptions, you can add extra

https://docs.ruby-lang.org/en/master/Exception.xhtml
https://docs.ruby-lang.org/en/master/Exception.xhtml

information, see Adding Information to Exceptions.

Handling Exceptions

Here’s some simple code that uses the open-uri library to download the
contents of a web page and write it to a file, line by line:

tut_exceptions/fetch_web_page/Fetch1.rb

require "open-uri”
URI.open("https://pragprog.com/news/index.xhtml") do |web_page]|
output = File.open("index.xhtml", "w")
while (line = web_page.gets)
output.puts line
end
output.close
end

What happens if we get a fatal error halfway through? We certainly don’t want
to store an incomplete page to the output file.

Let’s add some exception-handling code and see how it helps. To start
exception handling, we enclose the code that could raise an exception in a
begin/end block and use one or more rescue clauses to tell Ruby the types of
exceptions we want to handle. If our code was already inside a method or an
existing Ruby block, we wouldn’t need a separate begin/end block to trigger
exception handling—the method or block is considered to be a begin/end block
on its own. This code isn’t in a method, so we need to create an explicit begin/
end block.

tut_exceptions/fetch_web_page/Fetch2.rb
require "open-uri”

file_name = "index.xhtml"
URI.open("https://pragprog.com/news/#{file_name}") do |web_page]|
output = File.open(file_name, "w")
begin
while (line = web_page.gets)
output.puts line

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/fetch_web_page/fetch1.rb
http://media.pragprog.com/titles/ruby5/code/tut_exceptions/fetch_web_page/fetch2.rb

end
output.close

rescue StandardError
$stderr.warn "Failed to download #{file_name}: #{$!}"
output.close
File.delete(file_name)
raise
end
end

Because we specified StandardError in the rescue line, that clause will handle the
exceptions of class StandardError and all of its children, which means that we

won’t catch Ruby’s internal errors, which is fine. In the error-handling block,
we report the error, close and delete the output file, and then reraise the
exception. It’s also worth noting that the close and delete calls could also raise

exceptions, and those exceptions aren’t caught in this code example. We’ll see
a partial fix for that in a moment.

As a matter of style, the rescue statement is outdented to the level of the
begin/end block.

When an exception is raised, independent of any subsequent exception
handling, Ruby places a reference to the associated exception object into the
global variable $!. (The exclamation point presumably mirroring our surprise

that any of our code could cause errors.) In the previous example, we used the
$! variable to format our error message.

After closing and deleting the file, we call raise with no parameters, which
reraises the exception that’s currently stored in $!. This is a useful technique
because it allows you to write code that filters exceptions, passing on those
you can’t handle to higher levels. It’s almost like implementing an inheritance
hierarchy for error processing.

You can have multiple rescue clauses in a method or begin block, and each
rescue clause can specify multiple exceptions to catch. At the end of each
rescue clause, you can give Ruby the name of a local variable to receive the

matched exception. Most people find this more readable than using $! all over
the place:

begin
eval string
rescue SyntaxError, NameError => e

print "String doesn't compile: " + e
rescue StandardError => e

print "Error running script: " + e
end

How does Ruby decide which rescue clause to execute? It turns out that the
processing is similar to that used by the case statement. For each rescue clause
in the begin block, Ruby compares the raised exception against each of the

parameters in turn. If the raised exception matches a parameter, Ruby executes
the body of the rescue and stops looking. The match is made using _parameter_

=== S

This means that the match will succeed if the exception named in the rescue

clause is the same as or a superclass of the type of the currently thrown
exception. This comparison happens because exceptions are classes, and
classes in turn are kinds of Module. The === method is defined for modules,

returning true if the class of the operand is the same as or is a descendant of
the receiver. If you write a rescue clause with no parameter list, the parameter
defaults to StandardError, so technically our declaration of StandardError in the
earlier code is redundant.

If no rescue clause matches or if an exception is raised outside a begin/end
block, Ruby moves up the stack and looks for an exception handler in the
caller, then in the caller’s caller, and so on. If nothing catches the exception,
the program typically halts.

Although the parameters to the rescue clause are typically the names of

exception classes, they can be arbitrary expressions (including method calls)
that return an Exception class.

Tidying Up

Sometimes you need to guarantee that particular processing is done at the end
of a block of code, regardless of whether an exception was raised. For
example, you may have a file open on entry to the block, and you need to
make sure it always gets closed as the block exits.

The ensure clause does just this. An ensure clause goes after the last rescue

clause and contains a chunk of code that will always be executed as the block
terminates. It doesn’t matter if the block exits normally, raises and rescues an
exception, or it’s terminated by an uncaught exception—the ensure block will

get run:

f = File.open("testfile")
begin

.. process
rescue

.. handle error
ensure

f.close
end

You might assume that the File.open call should be inside the begin block. In
this case, having the File.open inside this begin block would be a problem
because open can itself raise an exception. If the exception happened on open,
you wouldn’t want to run the code in the ensure block because there’d be no
file to close.

In the specific case of File.open, you can pass the call a block argument that
uses exception handling techniques to ensure the file is closed at the end of the
block, as in the next example. (We talked about this in Using Blocks for
Transactions.)

File.open("testfile") do |f]
.. process
end

The else clause is a similar, although less useful, construct. If present, it goes
after the rescue clauses and before any ensure. The body of an else clause is
executed only if no exceptions are raised by the main body of code.

f = File.open("testfile")
begin
.. process
rescue
.. handle error
else
puts "Congratulations-- no errors!”
ensure
f.close
end

Play It Again

Sometimes you may be able to correct the cause of an exception. In those
cases, you can use the retry statement within a rescue clause to repeat the entire

begin/end block. Clearly, tremendous scope exists for infinite loops here, so
this is a feature to use with caution (and with a finger resting lightly on the
interrupt key).

As an example of code that retries on exceptions, take a look at the following
simplified code that you might find making a network connection.

attempts = 0
begin
attempts += 1
@connection = @remote_server.read_data

rescue TimeOutError
if @remote_server && attempts < 10 then
sleep(attempts ** 2)
retry
else
raise
end
end

This code tries to read data from remote_server. If the code returns a
TimeOutError and if the remote_server exists, the code sleeps for a while and
then tries again. It keeps track of the number of attempts, lengthening the time
out, until eventually if the number of attempts gets too high, it stops trying to
connect and just raises the error.

Raising Exceptions

So far, we’ve been on the defensive, handling exceptions raised by others. It’s
time to turn the tables and go on the offensive. It’s time to raise some...
exceptions.

You can raise exceptions in your code with the raise method (or its judgmental
and less commonly used synonym, fail):

raise
raise "bad mp3 encoding"
raise InterfaceException, "Keyboard failure"

The first form simply reraises the current exception (or raises a RuntimeError if
no current exception exists). This is used in exception handlers that intercept
an exception before passing it on.

The second form creates a new RuntimeError exception, setting its message to
the given string. This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the
associated message to the second argument. Typically, the first argument will
be either the name of a class in the Exception hierarchy or a reference to an

instance of one of these classes. If the argument is a class name, then Ruby
will create an instance using a call to new with no arguments. Technically, this
argument can be any object that responds to the message exception by returning
an object such that object.kind_of?(Exception) is true.

Here are some typical examples of raise in action:

raise
raise "Missing name" if name.nil?

if 1 >= names.size
raise IndexError, "#{i1} >= size (#{names.size})"

end
raise ArgumentError, "Name too big", caller

In this example, we show that we can add a stack trace as an optional third
argument to the raise method. The effect of this usage is to remove the current
routine from the stack backtrace, which is often useful in library modules. We
do this using the Kernel#caller method, which returns the current stack trace.
The ability to edit the stack trace sent to the exception for more focused
information is why you have the optional third argument.

The Kernel#caller method returns an array of strings with information about the
call stack. We can take this further by manipulating that array. The following
code removes two routines from the backtrace by passing only a subset of the
call stack to the new exception:

raise ArgumentError, "“Name too big", caller[1..]

Adding Information to Exceptions

You can define your own exceptions to hold any information that you need to
pass out from the site of an error. For example, certain types of network errors
may be transient depending on the circumstances. If such an error occurs and
the circumstances are right, you could set a flag in the exception to tell the
handler that it may be worth retrying the operation.

Here’s what part of the remote server from the previous example might look
like:

tut_exceptions/retry_exception.rb

class RetryException < RuntimeError
attr_reader :ok_to _retry
def initialize(ok_to_retry)
@ok_to_retry = ok_to_retry
end
end

Somewhere down in the depths of the code, a transient error occurs:

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/retry_exception.rb

tut_exceptions/read_data.rb

def read_data(attempt_count)
data = @socket.read(512)
if data.nil?
raise RetryException.new(attempt_count < 10), "transient read error"
end
.. normal processing
end

And we might incorporate that in our call:

attempts = 0
begin
attempts += 1
@connection = @remote_server.read_data(attempts)

rescue RetryException => e
retry if e.okay_to_retry
raise

end

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/read_data.rb

Using Catch and Throw

Although the exception mechanism of raise and rescue is great for abandoning
execution when things go wrong, it’s sometimes nice to be able to jump out of
some deeply nested construct during normal processing. This is where the
rarely used catch and throw come in handy.

Here’s a trivial example. The following code reads a list of words one at a time
and adds them to an array. When done, it prints the array in reverse order. But,

if any of the lines in the file don’t contain a valid word, we want it to abandon

the whole process.

tut_exceptions/catch_1.rb

word_list = File.open("wordlist")
catch(:done) do
result = []
while (line = word_list.gets)
word = line.chomp
throw :done unless /*|\w+$/.match?(word)
result << word
end
puts result.reverse
end

catch defines a block that’s labeled with the given name (which may be a
Symbol or a String). The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a
catch block with a matching symbol. When it finds it, Ruby unwinds the stack
to that point and terminates the block. So, in the previous example, if the input
doesn’t contain correctly formatted lines, the throw will skip to the end of the
corresponding catch, not only terminating the while loop but also skipping the
code that writes the reversed list. If the throw is called with the optional second
parameter, that value is returned as the value of the catch. In the next example,

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/catch_1.rb

our word list incorrectly contains the line *wow*. Without the second parameter
to throw, the corresponding catch returns nil.

tut_exceptions/catch_2.rb

word_list = File.open("wordlist")
word_1in_error = catch(:done) do
result = []
while (line = word_list.gets)
word = line.chomp
throw(:done, word) unless /*|\w+S/.match?(word)
result << word
end
puts result.reverse
end
if word_1in_error
puts "Failed: '#{word_in_error}' found, but a word was expected"
end

Produces:
Failed: '*wow*' found, but a word was expected

The following example uses a throw to terminate interaction with the user if ! is
typed in response to any prompt:

tut_exceptions/catchthrow.rb

def prompt_and_get(prompt)
print prompt
res = readline.chomp
throw :quit_requested if res ==
res
end

nyn

catch :quit_requested do
name = prompt_and_get("Name: ")
age = prompt_and _get("Age: ")
sex = prompt_and_get("Sex: ")
..
process information

end

http://media.pragprog.com/titles/ruby5/code/tut_exceptions/catch_2.rb
http://media.pragprog.com/titles/ruby5/code/tut_exceptions/catchthrow.rb

As this example illustrates, the throw doesn’t have to appear within the static
scope of the catch.

What’s Next

In this chapter, we looked at how to make our Ruby code more error-proof
by catching and raising exceptions, and you saw how to create your own
exception classes that might have their own data. Next up, we’re going to
talk about a leading cause of exceptions in code: managing input and
output.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 11

Basic Input and Output

Ruby provides what looks at first sight like two separate sets of input and
output (I/O) routines. The first is the simple interface we’ve been using a lot
so far:

print "Enter your name: "
name = gets

This whole set of I/O-related methods is implemented in the Kernel module,
including gets, open, print, printf, putc, puts, readline, readlines, and test. The
I/O methods are available to all objects, and they make it simple and
convenient to write straightforward Ruby programs. These methods
typically do I/O to standard input and standard output, which makes them
useful for writing simple tasks.

The other way to do I/O, which gives you more control, is to use Ruby’s
dedicated 10 classes.

What Is an I/0 Object?

Ruby defines a single base class, 10, to handle input and output. This base
class 1s subclassed by classes File and BasicSocket to provide more
specialized behavior, but the principles are the same. An 10 object is a
bidirectional channel between a Ruby program and some external resource.

In this chapter, we’ll focus on class 10 and its most commonly used
subclass, class File.

Opening and Closing Files
You can create a new file object using File.new:

file = File.new("testfile’, "r")
... process the file
file.close

The first parameter to the method is the filename. The second is called the
mode string, which lets you declare whether you’re opening the file for
reading, writing, or both. Here we opened testfile for reading with an "r". We
could also have used "w" for write or "r+" for read-write. The full list of

allowed modes appears in Table 28, Mode values.

You can also optionally specify file permissions when creating a file. After
opening the file, we can write and/or read data as needed and as specified
by the mode string. When we’re done, as responsible software citizens, we
close the file, ensuring that all buffered data is written and that all related
resources are freed.

But Ruby can make life a little bit easier for you. The method File.open also
opens a file. In regular use, it behaves like File.new. But, if you associate a
block with the call, open behaves differently (see Using Blocks for
Transactions). Instead of returning a new File object, it invokes the block,

passing the newly opened File as a parameter. When the block exits, the file
is automatically closed.
File.open("testfile”, "r") do |[file|

... process the file
end # <- file automatically closed here

Using File.open with a block has an added benefit. When using File.new as we

did earlier, if an exception is raised while processing the file, the call to
File.close may not happen. Once the file variable goes out of scope, then

garbage collection will eventually close it, but this may not happen for a
while. Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is

raised inside the block, the file is closed before the exception is propagated
on to the caller. It’s as if the File.open method looks like the following:

class File
def self.open(*args)
f = File.new(*args)
result = f
if block_given?
begin
result = yield f
ensure
f.close
end
end
result
end
end

Reading and Writing Files

The same methods that we’ve been using for “simple” I/O from standard input
and output are available for File objects. So, where Kernel#gets reads a line
from standard input (or from any files specified on the command line when the
script was invoked), File#gets reads a line from the file object.

For example, we could create a program called copy.rb:

tut_io/copy.rb

while (line = gets)
puts line
end

If we run this program with no arguments, it’ll read lines from the console and
copy them back to the console. Note that each line is echoed once the Return
key is pressed. (In this and later examples, we show user input in a bold font.)
The ~D is the end-of-file character on Unix systems.

$ ruby copy.rb
These are lines
These are lines
that I am typing
that I am typing
D

We can also pass in one or more filenames on the command line. In this case,
the filenames are passed to standard input and the Kernel#gets will read from

each in turn as if all the files in the command line were concatenated into a
single file. From the top directory of the sample code, we get this:

$ ruby code/tut_io/copy.rb code/tut_io/testfile
This is line one

This is line two

This is line three

And so on...

http://media.pragprog.com/titles/ruby5/code/tut_io/copy.rb

We have another option. We can explicitly open the file and read from it using
File#gets:

File.open("testfile") do |file]|
while line = (file.gets)
puts line
end
end

Produces:

This is line one
This is line two
This is line three
And so on...

In addition to gets, I/O objects define an additional set of access methods, all
intended to make our lives easier.

Iterators for Reading

While the usual loops work to allow you to read data from an 10 stream, Ruby
also defines some task-specific iterators. The method each_byte invokes a block
with the next 8-bit byte from an 10 object (in this case, an object of type File).
The Integer#chr method converts an integer to the corresponding ASCII

character:
File.open("testfile") do |file]|
file.each_byte.with_index do |ch, index|
print "#{ch.chr}:#{ch} "
break if index > 10

end
end

Produces:
T:84 h:104 1:105 s:115 :32 1:105 s:115 :32 1:108 1:105 n:110 e:101

The method 10#each_line calls the block with each line from the file. In the next
example, we’ll make the original newlines visible using String#dump, which

returns the string in double quotes with escape characters, so you can see that
we’re not cheating:

File.open("testfile") do |file|
file.each_line { |line| puts "Got #{line.dump}" }
end

Produces:

Got "This is line one\n"
Got "This is line two\n"
Got "This is line three\n"
Got "And so on...\n"

The each_line method includes the line ending at the end of each line of data.
That’s why you see the \n characters in the output of the previous example.
You don’t have to use \n as the separator, though. You can pass each_line an
argument, any sequence of characters. The method will use that argument as a
line separator, and break up the input accordingly, returning the separator at
the end of each line of data. In the next example, we’ll use the character e as
the line separator:

File.open("testfile") do |file]|
file.each_line("e") { |line| puts "Got #{ line.dump }" }
end

Produces:

Got "This is line"
Got " one"

Got "\nThis is line"

Got " two\nThis is line"
Got " thre"

Got "e"

Got "\nAnd so on...\n"

If you combine the idea of an iterator with the autoclosing block feature, you
get 10.foreach, or the subclass method File.foreach. This method takes the name
of an I/O source, opens it for reading, calls the iterator once for every line in
the file, and then closes the file automatically:

File.foreach("testfile") { |line| puts line }
Produces:

This is line one
This is line two
This is line three
And so on...

Or, if you prefer, you can retrieve an entire file into a string:

str = I0.read("testfile")
str.length # => 66
str[0@, 30] # => "This is line one|nThis is line

"

Or into an array of lines:

arr = I0.readlines("testfile")
arr.length # => 4
arr[0] # => "This is line onel|n”

Don’t forget that I/O is never certain in an uncertain world—exceptions will
be raised on most errors, and you should be ready to rescue them and take
appropriate action.

Writing to Files

So far, we’ve been merrily calling puts and print, passing in any old object and

trusting that Ruby will do the right thing (which, of course, it does). But what
exactly is 1t doing?

With a couple of exceptions, every object you pass to puts or print is converted
to a string by calling that object’s to_s method. If for some reason the to_s
method doesn’t return a valid string, a string is created containing the object’s
class name and ID, something like <ClassName:0x123456>. This example opens a
file for writing (note the mode string is "w") and then reads the file in and
prints its contents to STDOUT. As with the other Kernel methods, there’s an
equivalent 10#puts that we can use.

File.open("output. txt", "w") do |[file|
file.puts "Hello”
file.puts "1 + 2 = #{1+2}"

end

puts File.read("output.txt")
Produces:

Hello
1+2=3

There is one slight difference between puts and print. The puts method inserts a
newline after the output unless the output already ends in a newline, but print
does not.

The “every object calls its to_s method” rule has two exceptions. The nil object
will print as the empty string, and an array passed to puts will be written as if
each of its elements in turn were passed separately to puts.

More generally, we have File#write, which writes its argument to the file,
converting non-strings to strings with to_s. The difference is that write returns
the number of bytes written to the file, while puts returns nil.

File.open("output. txt", "w") do |[file]|
file.write "Hello”
file.write "1 + 2 = #{1+2}"

end

puts File.read("output.txt")
Produces:
Hellol + 2 = 3

What if you want to write binary data and don’t want Ruby messing with it?
Well, normally, you can simply use print and pass in a string containing the
bytes to be written. You can also get at the low-level I/O routines if you really

want them (look at the documentation for sysread and syswrite at
https://docs.ruby-lang.org/en/master/10.xhtml#method-i-sysread).

And how do you get the binary data into a string in the first place? The three
common ways are to use a literal, poke it in byte by byte, or use Array#pack,
which takes an array of data and packs it into a string.

stri = "|001\1002\003" # => "|\u0001\ud0O2|u00O3"
str2 = ""

str2 << 1 << 2 << 3 # => "\u0ee1|\udee2\ucee3"
[1, 2, 3].pack("c*") # => "|x01|x02|x03"

The first example here 1s using escape sequences to put raw bytes into the
string, the second is using the shovel operator to add the numbers one by one,
and the third is using Array#pack. The argument c* says that all the elements of

the array should be converted as 8-bit unsigned values.

Finding Files

Ruby has a couple of utility methods that can help you find files. Typically,
when you search for a file, the pathname is relative to the directory from
where the script was invoked, but in a large code base that’s unlikely to be the
file you’re writing code in.

To help orient yourself, Ruby provides _FILE__, which always has the relative
name of the file it’s contained in, and __dir__, which has the absolute pathname
of that file. File.realpath returns the absolute path to a file, so
File.realpath(__FILE_) gives you the absolute path to the current file. This means
_dir__ is equivalent to File.dirname(File.realpath(__FILE_)).

You’re probably wondering why _FILE__ is capitalized, while __dir__isn’t.
Technically, _FILE__is a reserved word (not quite a constant, but close), while
_dir__1s a method of Kernel. That’s not much of an explanation, but it’s what
we’ve got.

https://docs.ruby-lang.org/en/master/IO.xhtml#method-i-sysread

One way you might use realpath is to figure out what Ruby is thinking of as the
base path. You might try to do something like File.open("local.txt"), only to have
Ruby tell you that local.txt doesn’t exist. In that case, putting in a debug
statement like puts File.realpath("local.txt") will go a long way toward orienting
you as to where Ruby thinks it’s looking.

I/0 with Streams

> Just as you can append an object to an Array using the << operator, you can
also append an object to an output 10 stream:

endl = "|n"

Sstdout << 99 << " red balloons”" << endl
Produces:
99 red balloons

Again, the << method uses to_s to convert its arguments to strings before
printing them.

There are actually some good reasons for using the << operator. Because other
classes (such as String and Array) also implement a << operator with similar
semantics, you can often write code that appends to something using <<
without caring whether it’s added to an array, a file, or a string. This kind of
flexibility also makes unit testing easy. We’ll discuss this idea in greater detail
in Chapter 21, Ruby, Style.

Doing I/0O with Strings

Sometimes you need to work with code that assumes it’s reading from or
writing to one or more files. But you have a problem: the data isn’t in files.
Perhaps it’s available instead via a remote network call, or it has been passed
to you as command-line parameters. Or maybe you’re running unit tests, and
you don’t want to alter the real file system.

Enter StringlO objects. They behave like other I/O objects, but they read and
write strings, not files. If you open a StringlO object for reading, you supply it
with a string. All read operations on the StringlO object and then read from this
string. Similarly, when you want to write to a StringlO object, you pass it a
string to be filled.

require "stringio”

StringIO.new("now is|nthe time|\nto learn|\nRuby!")
StringIO.new("", "w")

ip
op

ip.each_line do |line]|
op.puts line.reverse
end
op.string # => "|nsi won|n\nemit eht\n\nnrael ot|\n!ybuR\n"

Talking to Networks

Ruby is fluent in most of the Internet’s protocols, both low-level and high-
level.

For those who enjoy groveling around at the network level, Ruby comes with
a set of classes in the socket library (https://docs.ruby-
lang.org/en/master/Socket.xhtml). These give you access to TCP, UDP,
SOCKS, and Unix domain sockets, as well as any additional socket types
supported on your architecture. The library also provides helper classes to
make writing servers easier. Here’s a simple program that gets information
about our user website on a local web server using the HTTP OPTIONS request:

tut_io/socket.rb

require "socket"

client = TCPSocket.open("127.0.0.1", "www")

client.send("OPTIONS /~dave/ HTTP/1.0\n|n", 0) # 0 means standard packet
puts client.readlines

client.close

At a higher level, the “lib/net” set of library modules provides handlers for a
set of application-level protocols (currently FTP, HTTP, HTTPS, IMAP, POP,
and SMTP). For example, the following program lists the images that are
displayed on this book’s home page. (To save space, we show only the first
three.)

tut_io/networking.rb
require "net/http"

uri = URI("https://pragprog.com/titles/ruby5/programming-ruby-3-2-5th-edition/"

)

Net::HTTP.start(
"pragprog.com”,
Net::HTTP.https_default_port,
use_ssl: true

https://docs.ruby-lang.org/en/master/Socket.xhtml
https://docs.ruby-lang.org/en/master/Socket.xhtml
http://media.pragprog.com/titles/ruby5/code/tut_io/socket.rb
http://media.pragprog.com/titles/ruby5/code/tut_io/networking.rb

) do |http]
request = Net::HTTP::Get.new(uri)
response = http.request(request)

if response.code == "200"
puts response.body.scan(/<img class=".*?" src="(.*?)"/m).uniq[0, 3]
end
end
Produces:

/titles/ruby5/programming-ruby-3-2-5th-edition/ruby5-beta-250. jpg
/img/pdf_1icon.png
/titles/rails7/agile-web-development-with-rails-7/rails7-125. jpg

This example could be improved significantly. In particular, it doesn’t do
much in the way of error handling. It should report “Not Found” errors (the
infamous 404) and should handle redirects (which happen when a web server
gives the client an alternative address for the requested page).

We can take this to a higher level still. By bringing the open-uri library into a
program, the URL.open method recognizes http:// and ftp:// URLs in the
filename. Not just that—it also handles redirects automatically.

tut_io/networking_2.rb

require "open-uri”

url = "https://pragprog.com/titles/ruby5/programming-ruby-3-3-5th-edition/"
URI.open(url) do |f]|

puts f.read.scan(/<img class=".*?" src="(.*2)"/m).uniq[0,3]
end

Produces:

/titles/ruby5/programming-ruby-3-3-5th-edition/ruby5-beta-250. jpg
/img/pdf_icon.png
/titles/rails7/agile-web-development-with-rails-7/rails7-125. jpg

http://media.pragprog.com/titles/ruby5/code/tut_io/networking_2.rb

What’s Next

In this chapter, we’ve seen both Ruby’s simple 1/O library, implemented as
a series of methods in the Kernel module, and the more complicated 1/0
methods in the class 10 and its children. We’ve also seen how to read and
write data.

A common problem with I/O is that it’s slow and blocks programs. A
common workaround is to use threading to allow the program to do
multiple things at once. Let’s take a look at some of Ruby’s threading
options.

Copyright © 2024, The Pragmatic Bookshelf.

Chapter 12

Threads, Fibers, and Ractors

Being able to do more than one thing at the same time is pretty useful.
When a computer program has to wait for one task to finish, like an API
call to a slow server, multitasking allows it to turn control over to another
task and do other useful work while it waits. When a computer has more
than one CPU—which, these days, means a computer—the program can
split tasks across multiple CPUs. You can achieve tremendous speed boosts
this way.

Being able to multitask is also pretty complicated. When a program
multitasks, a task can change the state of the data another task is using, so
the other task’s understanding of the data may no longer be correct. When a
program multitasks, its tasks may fight for access to limited resources, like
the filesystem, and might even overwrite each other’s changes. People are
notoriously bad at predicting the effects of even mildly complicated
threading scenarios, so unexpected bug cases are a real problem.

When writing programs that are doing multiple things at once, each “thing”
is called a thread, and the goal is to have thread safety, meaning the code
will execute correctly no matter in what order the threads operate. In some
cases, the order of operation matters. For example, if two threads are
writing to a log file and instead of appending to the log file, the last thread
overwrites the first one, the final contents of the log file will depend on

which thread executed first. This is called a race condition and it 1s bad
because it can lead to hard-to-diagnose bugs.

A key to achieving thread safety is to avoid having data or status
information shared between threads, especially if that data is changeable by
one thread without the knowledge of the other. But sometimes you must
share information such as access to a common database. In that case, you
need constructs that limit access to shared resources such that only one
thread can access them at a time.

Historically, Ruby programs have a Global Interpreter Lock (GIL), which
ensures that only one thread is actually being executed by Ruby at any time.
The GIL is one way Ruby protects thread safety. Since only one thread can
run at a time, shared global resources within Ruby are automatically
protected from being changed behind your thread’s back. You still get the
advantage of allowing one thread to take over execution if other threads are
blocked. But you can’t take advantage of, say, multiple parallel CPUs with
a single Ruby interpreter (with the exception of the Ractor library). Ruby
installations that do want to take advantage of multiple CPUs typically run
multiple Ruby interpreters that communicate via an external data source or
message system. (There’s one relatively new Ruby construct that works
around this—called Ractors—which we’ll talk about at the end of this
chapter.)

In this chapter, we’ll look at Ruby’s different threading abstractions that
allow you to organize your program so that you can run different parts of it
apparently “at the same time.” The Thread class is the basic unit of
multithreaded behavior in Ruby. Ruby also allows you to spawn processes
out to the underlying operating system and multithread those processes.
Fibers are an additional abstraction that lets you suspend the execution of
one part of your program and run some other part. Finally, the Ractor
library allows you to bypass the GIL and have true multithreading using
Ruby.

Let’s start with the Thread class, which is the basis for Ruby’s multithreaded
behavior.

Multithreading with Threads

The lowest-level mechanism in Ruby for doing two things at once is to use the
Thread class. Although threads can in theory take advantage of multiple
processors or multiple cores in a single processor, there’s a major catch. Many
Ruby extension libraries aren’t thread-safe because they expect to be protected
by the GIL. So, Ruby uses native operating system threads but operates only a
single thread at a time. Unless you use the Ractor library, you’ll never see two
threads in the same application running Ruby code truly concurrently. You’ll
instead see threads that are busy executing Ruby code while another thread
waits on an I/O operation.

Creating Ruby Threads

The code that follows is a simple example. It downloads a set of web pages in
parallel. For each URL the code is asked to download, it creates a separate
thread that handles the HTTP transaction:

tut_threads/fetcher.rb
require "net/http"
pages = %w[www.rubycentral.org www.pragprog.com www.google.com]

threads = pages.map do |page_to_fetch|
Thread.new(page_to_fetch) do |url]
http = Net::HTTP.new(url, 80)
print "Fetching: #{url}|n"
response = http.get("/")
print "Got #{url}: #{response.message}l|n”
end
end
threads.each { |thread| thread.join }
print "We're done here!|n"

The results look something like this:

Fetching: www.rubycentral.org
Fetching: www.pragprog.com

http://media.pragprog.com/titles/ruby5/code/tut_threads/fetcher.rb

Fetching: www.google.com

Got www.google.com: OK

Got www.pragprog.com: Moved Permanently
Got www.rubycentral.org: OK

We're done here!

Let’s look at this code in more detail because a few subtle things are
happening.

New threads are created with the Thread.new call. The Thread.new call is given a
block that contains the code to be run in the new thread. In our case, the block
uses the net/http library to fetch the page from the URL that’s passed to the
thread. Once the thread is created, it’s available to be scheduled for execution
by the operating system, and, in this code at least, we don’t have direct control
over when the thread runs.

This code uses a map call to create three new threads from the list of sites to
call and stores the threads in an array. Threads, like everything else in Ruby,
are objects that can be assigned to variables, returned from blocks or methods,
and passed as parameters.

Our output tracing shows that these fetches are going on in parallel because all
three “fetch” statements happen before any of the “got” statements do.
Broadly, what’s happening is that the first thread is created, is scheduled for
control, makes its HTTP request, and is blocked while it waits for the answer.
Control reverts back to the main program, which immediately creates the
second thread, and so on. The thread creation 1s much faster than the HTTP
request, so even with the overhead of making the threads, all three threads will
usually be created before any of them return.

Just to be clear, our discussion is using the word “block” in two ways: one
meaning “a chunk of Ruby code” and the other meaning “being stalled waiting
for a response.”

When we create the thread, we pass the required URL as a parameter to the
block as url, even though the same value is already available as page_to_fetch

outside the block. Why do we do this? The answer relates to thread safety and
how threads share values.

A thread shares all global, instance, and local variables that are in existence
and available at the time the thread starts. Despite what Mr. Rogers says,
sharing isn’t always a good thing. In this case, all three threads share the
variable page_to_fetch, defined outside the Thread.new block. The first thread

gets started, and page_to_fetch is set to "www.rubycentral.org”. In the meantime,
the loop creating the threads is still running. The second time around,
page_to_fetch gets set to "pragprog.com"”. If the first thread hasn’t yet finished
using the page_to_fetch variable, it’ll suddenly start using this new value. In our
case, that would likely manifest as one value being used in the actual http.get

command, then the value changing while the thread is blocked, and then a
different value being used in the print statement on the next line. This would
be, to say the least, confusing. These kinds of bugs are difficult to track down.

However, local variables created within a thread’s block are truly local to that
thread—each thread will have its own copy of these variables. In our case, the
variable url will be set at the time the thread is created, and each thread will

have its own copy of the page address. You can pass any number of arguments
into the block via Thread.new, the arguments to the method become the

arguments to the block.

This code also illustrates a gotcha. Inside the loop, the threads use print to
write out the messages, rather than puts. Why? Well, behind the scenes, puts

splits its work into two chunks: it writes its argument, and then it writes a
newline. Between these two, a thread could get scheduled, and the output
would be interleaved. Calling print with a single string that already contains

the newline gets around the problem.

Manipulating Threads

Another subtlety occurs in the next to last line of our program, where we call
join on each thread.

When a Ruby program terminates, all threads are killed, regardless of their
states. Since we don’t control the scheduling of any internally created threads,
it’d be easy for this program to reach the end while one or more threads are
still waiting for responses. The program would terminate, and we’d never get
those responses.

You can wait for a particular thread to finish by calling that thread’s
Thread#join method. The thread in which the join method is called—in our case,

that’s the original program—will block until the thread receiving the join call

has finished. The subthread has been off on its own, but rejoins the parent
thread so the parent thread can move forward.

By calling join on each of the requested threads, you can make sure that all

three requests have completed before you terminate the main program. We can
see this in our code because the “we’re done here” print statement will always
happen after all three threads complete. Even though the join methods are

called one at a time, the order and speed of the subthread execution ultimately
don’t matter because the main thread will wait on all of them.

The join method normally returns the thread itself. If you don’t want to block
forever, you can give join a timeout parameter—if the timeout expires before
the thread terminates, the join call returns nil. The expiration of the timeout

doesn’t actually terminate the thread, but it does allow the calling thread to
continue, which might mean that the program will end before the thread is
complete. Another variant of join, the method Thread#value, returns the value of

the last statement executed by the thread. The value method doesn’t have a
timeout parameter.

In addition to join, a few other handy routines are used to manipulate threads.
The current thread is always accessible using Thread.current. You can obtain a
list of all threads using Thread.list, which returns a list of all Thread objects that
are runnable or stopped. You can stop a thread with Thread#exit which is
aliased as kill and terminate.

To determine the status of a particular thread, you can use Thread#status and
Thread#alive?. The status method returns "run” if the thread is executing
normally, "sleep" if it has been paused or is blocked, "aborting" if it is in the
process of being killed. If the thread ended normally it returns false; if the
thread terminated exceptionally, it returns nil. The alive? method returns true if
the status is “run” or “sleep.”

You can adjust the priority of a thread using Thread#priority=. Higher-priority
threads will run before lower-priority threads, though the operating system is
free to ignore this setting.

Thread Variables

A thread can normally access any variables that are in scope when the thread
is created. Variables local to the block containing the thread code are local to
the thread and aren’t shared. But what if you need per-thread variables that can
be accessed by other threads—including the main thread? Class Thread has a
facility that allows thread-local variables to be created and accessed by name.
You can treat the thread object as if it were a Hash, writing to elements using
[1= and reading them back using []. A true thread-local variable can be accessed
using Thread.thread_variable_get and Thread.thread_variable_set.

In the example that follows, each thread records the current value of the
variable count in a thread-local variable with the key mycount. To do this, the

code uses the symbol :mycount when indexing thread objects:

tut_threads/thread_variables.rb

count = 0
threads = 10.times.map do
Thread.new do
sleep(rand(0.1))
Thread.current[:mycount] = count
count += 1
end
end

http://media.pragprog.com/titles/ruby5/code/tut_threads/thread_variables.rb

threads.each do |t]
t.join
print t[:mycount], ", "
end
puts “count = #{count}"

Produces:
7,0, 8,6,5,4,1,9, 3, 2, count = 10

The main thread waits for the subthreads to finish and then prints that thread’s
value of count. Just to make it interesting, we use rand(0.1) to have each thread

wait a random amount of time before recording the value so that we can’t
predict the order in which the threads will finish.

A subtle race condition exists in this code. A race condition occurs when two
or more pieces of code (or hardware) try to access some shared resource, and
the outcome changes depending on the order in which they do so. In the
example here, it’s possible for one thread to set the value of its mycount

variable to count, but before it gets a chance to increment count, the thread gets
descheduled and another thread reuses the same value of count. These issues
are fixed by synchronizing the access to shared resources such as the count
variable (see Synchronization via Mutual Exclusion).

Threads and Exceptions

If a thread raises an unhandled exception, what happens next depends on the
setting of the Thread.abort_on_exception flag and on the setting of the

interpreter’s $DEBUG flag.

If abort_on_exception is false and the debug flag isn’t enabled (the default
condition), an unhandled exception simply kills the current thread—all the rest
continue to run. In fact, you don’t even hear about the exception until you
issue a join on the thread that raised it. In the following example, thread 1
blows up and fails to produce any output. But you can still see the trace from
the other threads:

tut_threads/exception_01.rb

4.times.map do |number|
Thread.new(number) do |1i]
raise "Boom!" if 1 ==
print "#{i}|n"
end
end
puts “Waiting"
sleep 0.1
puts “Done”

Produces:

#<Thread:0x0000000104bb97e8 code/tut_threads/exception_01.rb:2 run> terminated
with exception (report_on_exception is true):
code/tut_threads/exception_01.rb:3:1n “block (2 levels) in <main>': Boom!
(RuntimeError)

Waiting

0

2

3

Done

You normally don’t sleep waiting for threads to terminate; you’d use join. If

you join to a thread that has raised an exception, then that exception will be
raised in the thread that does the joining:

tut_threads/exception_02.rb

threads = 4.times.map do |number|
Thread.new(number) do |[1i]
raise "Boom!" if 1 ==
print "#{i}|n"
end
end

puts “Waiting"
threads.each do |t
t.join
rescue RuntimeError => e
puts "Failed: #{e.message}"
end

http://media.pragprog.com/titles/ruby5/code/tut_threads/exception_01.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/exception_02.rb

puts “Done”
Produces:

#<Thread:0x0000000103166d00 code/tut_threads/exception_02.rb:2 run> terminated
with exception (report_on_exception is true):
code/tut_threads/exception_02.rb:3:in “block (2 levels) in <main>': Boom!
(RuntimeError)

Waiting

0

2

3

Failed: Boom!

Done

If you set abort_on_exception to true or use -d to turn on the debug flag, if an
unhandled exception occurs, it kills the main thread. This is shown in the
following code, where the message Done never appears.

tut_threads/exception_03.rb

Thread.abort_on_exception = true
threads = 4.times.map do |number|
Thread.new(number) do |[1i]
raise "Boom!" if 1 ==
print "#{i}|n"
end
end

puts "Waiting"
threads.each { |t] t.join }
puts "Done"

Produces:

#<Thread:0x00000001047c95c0 code/tut_threads/exception_03.rb:3 run> terminated
with exception (report_on_exception is true):
code/tut_threads/exception_03.rb:4:in “block (2 levels) in <main>': Boom!
(RuntimeError)

code/tut_threads/exception_03.rb:4:in “block (2 levels) in <main>': Boom!
(RuntimeError)

Waiting

0

http://media.pragprog.com/titles/ruby5/code/tut_threads/exception_03.rb

Controlling the Thread Scheduler

In a well-designed application, you’ll normally let threads do their thing.
Building timing dependencies into a multithreaded application is generally
considered to be bad form because it makes the code far more complex and
also prevents the thread scheduler from optimizing the execution of your
program.

That said, the Thread class provides a number of methods that control or give
hints to the scheduler. Invoking Thread.stop stops the current thread, and
invoking Thread#run arranges for a particular thread to be run. The method
Thread.pass deschedules the current thread, allowing others to run, and
Thread#join and Thread#value block the calling thread until a given thread
finishes. These last two are the only low-level thread control methods that the
average program should use. In fact, we believe that the low-level thread
control methods are too complex and dangerous to be used correctly in
programs we write. Fortunately, Ruby has support for higher-level thread
synchronization.

Synchronization via Mutual Exclusion

Let’s start by looking at a simple example of a race condition—multiple
threads updating a shared variable:

tut_threads/race_condition.rb

sum = 0
threads = 10.times.map do
Thread.new do
100_000.times do
new_value = sum + 1
print "#{new_value} " if new_value % 250_000 == 0
sum = new_value
end
end

http://media.pragprog.com/titles/ruby5/code/tut_threads/race_condition.rb

end
threads.each(&:join)
puts "|nsum = #{sum}"

Produces:

250000 250000 250000 250000 250000 250000 250000 250000
sum = 349999

We create ten threads, and each increments the shared sum variable 100,000
times. But when the threads all finish, the final value in sum is considerably
less than 1,000,000. We have a race condition. The reason is the print call that
sits between the code that calculates the new value and the code that stores it
back into sum. In one thread, the updated value gets calculated. Let’s say that
the value of sum is 99,999, so new_value will be 100,000. Before storing the
new value back into sum, we call print, and that causes another thread to be
scheduled (because the first thread blocks waiting for the I/O to complete). So,
a second thread also fetches the value of 99,999 and increments it. It stores
100,000 into sum. It then loops around again and stores 100,001, 100,002, and
so on. Eventually, the original thread continues running because it finished
writing its message. It immediately stores its value of 100,000 into the sum,
overwriting (and losing) all the values stored by the other thread(s). We lost
data.

Fortunately, that’s easy to fix. We use the built-in class Mutex (short for

“mutually exclusive”) to create synchronized regions—areas of code that only
one thread may enter at a time.

Some grade schools coordinate students’ hall access during class time using a
system of hall passes. The number of passes is limited, and to leave the
classroom, you need to take a pass with you. If someone else already has that
pass, you have to wait for that person to return. The pass controls access to the
shared resource—you have to own the pass to use the resource, and only one
person can own it at a time.

A mutex is like that hall pass. You create a mutex to control access to a
resource and then lock it when you want to use that resource. If no one else

has it locked, your thread continues to run. If someone else has already locked

that particular mutex, your thread suspends until they unlock it.

Here’s a version of our counting code that uses a mutex to ensure that only one

thread updates the count at a time:

tut_threads/mutex_1.rb

sum = 0
mutex = Thread::Mutex.new
threads = 10.times.map do
Thread.new do
100_000.times do
one at a time, please
mutex.lock
new_value = sum + 1
print "#{new_value} " if new_value % 250 000 ==
sum = new_value
mutex.unlock
end
end
end
threads.each(&:join)
puts "|nsum = #{sum}"

Produces:

250000 500000 750000 1000000
sum = 1000000

This pattern—Ilock a mutex, do something, and then unlock—is so common
that the Mutex class provides Mutex#synchronize, which locks the mutex, runs
the code in a block, and then unlocks the mutex. This also ensures that the
mutex will get unlocked even if an exception is thrown while it’s locked.
Otherwise, an exception might cause the mutex to never unlock and
permanently prevent other threads from gaining access to the shared resource.

tut_threads/mutex_2.rb

http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_1.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_2.rb

sum = 0
mutex = Thread::Mutex.new
threads = 10.times.map do
Thread.new do
100_000.times do
mutex.synchronize do
new_value = sum + 1
print "#{new_value} " if new_value % 250_000 == 0
sum = new_value
end
end
end
end

threads.each(&:join)
puts "|nsum = #{sum}"

Produces:

250000 500000 750000 1000000
sum = 1000000

Sometimes you want to claim a lock if a mutex is currently unlocked, but you
don’t want to suspend the current thread if the mutex is locked. The
Mutex#try_lock method takes the lock if it can, but returns false if the lock is
already taken. The following code illustrates a hypothetical currency
converter. The ExchangeRates class caches rates from an online feed, and a
background thread updates that cache once an hour. This update takes a
minute or so. In the main thread, we interact with our user. But rather than just
go dead if we can’t claim the mutex that protects the rate object, we use
try_lock and print a status message if the update is in process.

tut_threads/mutex_3.rb

rate_mutex = Thread::Mutex.new
exchange_rates = ExchangeRates.new
exchange_rates.update_from_online_feed

Thread.new do
loop do
sleep(3600)

http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_3.rb

rate_mutex.synchronize do
exchange_rates.update_from_online_feed
end
end
end

loop do
print "Enter currency code and amount:
line = gets
if rate_mutex.try_lock
begin
puts(exchange_rates.convert(line))
ensure
puts "Ensuring unlock"”

"

rate_mutex.unlock
end
else
puts "Sorry, rates being updated. Try again in a minute"
end
end

By using ensure the unlock command is guaranteed to run even if puts raises an

exception.

If you’re holding the lock on a mutex and you want to temporarily unlock it,
allowing others to use it, you can call Mutex#sleep.

We could use this to rewrite the previous example:

tut_threads/mutex_4.rb

rate_mutex = Thread::Mutex.new
exchange_rates = ExchangeRates.new
exchange_rates.update_from_online_feed

Thread.new do
rate_mutex.lock
loop do
rate_mutex.sleep(3600)
exchange_rates.update_from_online_feed
end
end

http://media.pragprog.com/titles/ruby5/code/tut_threads/mutex_4.rb

loop do
print "Enter currency code and amount:
line = gets
if rate_mutex.try_lock
begin
puts(exchange_rates.convert(line))
ensure
puts "Ensuring unlock"
rate_mutex.unlock
end
else
puts "Sorry, rates being updated. Try again in a minute"
end
end

"

Running Multiple External Processes

Sometimes you may want to split a task into several process-sized chunks—
maybe to take advantage of all those cores in your shiny new processor. Or
perhaps you need to run a separate process that was not written in Ruby. Not a
problem: Ruby has a number of methods by which you may spawn and
manage separate processes.

Spawning New Processes

You have several ways to spawn a separate process. The easiest is to run some
command and wait for it to complete. You may find yourself doing this to run

a system command or retrieve data from the host system. Ruby lets you spawn
a process with the system or by using backquote (or backtick) methods:

system("tar xzf test.tgz") # => true
spawn("date") # => 38483\nThu Nov 2 17:16:10 CDT 2623
‘date’ # => "Thu Nov 2 17:16:10 CDT 2023\n"

The method Kernel#system executes the given command in a subprocess; it
returns true 1f the command was found and executed properly. It raises an
exception if the command cannot be found. It returns false if the command ran
but returned an error. In case of an error, you’ll find the subprocess’s exit code
in the global variable $?. The spawn method is the same as system, except that it
returns the process ID of the spawned process and doesn’t wait for the process
to be finished to move forward.

One problem with system is that the command’s output will simply go to the

same destination as the program’s output, which may not be what you want.
To capture the standard output of a subprocess, you can use the backquote
characters, as with date in the previous example. Note that you may need to

use String#chomp to remove the line-ending characters from the result.

This is fine for simple cases—we can run an external process and get the
return status. But many times we need a bit more control than that. We’d like

to carry on a conversation with the subprocess, possibly sending it data and
possibly getting some back. The method 10.popen does just this. The popen
method runs a command as a subprocess and connects that subprocess’s
standard input and standard output to a Ruby 10 object. Write to the 10 object,
and the subprocess can read it on standard input. Whatever the subprocess
writes is available in the Ruby program by reading from the 10 object.

For example, on our systems, one of the more useful utilities is pig, a program
that reads words from standard input and prints them in pig Latin (or igpay
atinlay). We can use this when our Ruby programs need to send us output that
our five-year-olds shouldn’t be able to understand:

pig = I0.popen("local/util/pig", "w+")
pig.puts "ice cream after they go to bed"
pig.close_write

puts pig.gets

Produces:
iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the more subtle real-
world complexities involved in driving subprocesses through pipes. The code
certainly looks simple enough: open the pipe, write a phrase, and read back the
response. But it turns out that the pig program doesn’t flush the output it

writes. Our original attempt at this example, which had a pig.puts followed
immediately by a pig.gets, hung forever. The pig program processed our input,

but its response was never written to the pipe. We had to insert the
pig.close_write line. This sends an end-of-file to pig’s standard input, and the

output we’re looking for gets flushed as pig terminates.

The popen method has one more twist. If the command you pass is a single
minus sign (-), popen will fork a new Ruby interpreter. Both this and the
original interpreter will continue running by returning from the popen. The
original process will receive an 10 object back, and the child will receive nil.

This works only on operating systems that support the fork call’? (and for
now, this excludes Windows, unless you use WDSL).

tut_threads/fork.rb

nonon

new_pipe = I0.popen(, w"
if new_pipe
new_pipe.puts "Get a job!"
$stderr.puts "I'm the parent, the child said to me '#{new_pipe.gets.chomp}
else
$stderr.puts "I'm the child, the parent said to me '#{gets.chomp}
puts "OK"
end

"

rn

Produces:

I'm the child, the parent said to me 'Get a job!'
I'm the parent, the child said to me 'OK'

Let’s walk this one through. The original, soon-to-be parent interpreter calls
10.popen with the minus sign argument. We now have two Ruby interpreters
each of which moves forward from this point. The original interpreter gets an
10 pipe back as new_pipe, and the new child interpreter gets nil. At this point,
the parent can send text to the child using new_pipe.puts and can listen for text
from the child using new_pipe.gets. From the child’s perspective, new_pipe is nil,
but it can communicate with the parent using the regular Kernel methods, gets
to listen for input and puts to send output to the parent.

The code splits on the if new_pipe expression. For the child, the pipe is nil, this
expression is false, and the child goes down the else branch. For the parent,
the pipe exists, the expression is true, and the parent goes down the main
branch.

In the parent branch, the parent immediately uses new_pipe.puts to send a string
to the child branch, and then it calls $stderr.puts to write something to the
global standard error output. That string contains new_pipe.gets, meaning that it
will block waiting for something to be sent from the child.

http://media.pragprog.com/titles/ruby5/code/tut_threads/fork.rb

In the child branch, similar things happen. The $stderr.puts call includes a call
to gets which is listening for the text coming from the parent process, and then
the child puts text to be read by the parent process.

We’re using the standard error port here rather than standard out because
standard error automatically flushes its text after being called. If we used
standard output, we’d likely get the first part of each output statement
interleaved while it waits for the text coming from the other process.

In addition to the popen method, some platforms support the methods
Kernel#fork, Kernel#exec, and Kernel#pipe. The file naming convention of many
10 methods and Kernel#open will also spawn subprocesses if you put a pipe
character, |, as the first character of the filename. Note that you cannot create
pipes using File.new; that method is only for files.

Independent Children

Sometimes we don’t need to be so hands-on; we’d like to give the subprocess
its assignment and then go on about our business. Later, we’ll check to see
whether it has finished. For instance, we may want to kick off a long-running
external sort:

pid = spawn("sort testfile > output.txt")
The sort is now running in a child process
carry on processing in the main program

... dum di dum ...

then wait for the sort to finish
Process.wait(pid)

The call to Kernel#spawn here executes a system-level command and returns its
process ID. But it does not wait for the command to finish, so Ruby
processing continues apace. Later, we issue a Process.wait call with the process
ID, which causes the parent process to wait for the child process running the
sort to complete and returns the child process ID.

If you’d rather be notified when a child exits (instead of just waiting around),
you can set up a signal handler using Kerneli#trap. Here we set up a trap on
SsIGcLD, which i1s the signal sent on “death of child process™:

tut_threads/trap.rb

trap("CLD") do
pid = Process.wait
puts "Child pid #{pid}: terminated"
end
spawn("sort testfile > output.txt")
Do other stuff...

Produces:

Child pid 38545: terminated

Blocks and Subprocesses

The 10.popen method takes a command as an argument and an optional block.
It runs the command and returns an 10 object attached to that command. The
method then passes the 10 object to the block, where you can read from it or
(more rarely) write to it.

I0.popen("date”) { |f| puts "Date is #{f.gets}" }
Produces:
Date is Thu Nov 2 17:16:10 CDT 2023

The 10 object will be closed automatically when the code block exits, just as it
1S with 10.open.

If you associate a block with Kernel#fork, the code in the block will be run in a
Ruby subprocess, and the parent will continue after the block:

tut_threads/fork_02.rb

http://media.pragprog.com/titles/ruby5/code/tut_threads/trap.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/fork_02.rb

fork do
puts "In child, pid = #{$$}"
exit 99
end
pid = Process.wait
puts "Child terminated, pid = #{pid}, status = #{$?.exitstatus}”

Produces:

In child, pid = 38576
Child terminated, pid = 38576, status = 99

The $$ here is a global variable that’s the process ID of the running process.

The wait method will, by default, wait for any subprocess to complete, but you
can pass it a process ID (pid) as an argument if you want to wait on a specific
process.

$? 1s a global variable that contains information on the termination of a
subprocess.

Although Ruby’s thread utilities are powerful, they are kind of low-level and
have some common usage patterns. Ruby gives us two built-in higher-level
patterns to support common usage: fibers and ractors. We’ll talk about fibers
first.

Creating Fibers

Although the name “fibers” suggests some kind of lightweight thread, Ruby’s
fibers are a mechanism for denoting a block of code that can be stopped and
restarted, which is sometimes called a coroutine. Fibers in Ruby are
cooperatively multitasked, meaning that the responsibility for yielding control
rests with the individual fibers and not the operating system. Fibers can
explicitly yield control, or be set to automatically yield control when its
operations are blocked.

Fibers let you write programs that share control without incurring all of the
complexity inherent in low-level threading. Let’s look at a simple example.
We’d like to analyze a text file, counting the occurrence of each word. We
could do this (without using fibers) in a simple loop:

tut_threads/loop_word_count.rb

counts = Hash.new(0)
File.foreach("./testfile") do |line]|
line.scan(/|w+/) do |word]|
word = word.downcase
counts[word] += 1
end
end
counts.keys.sort.each { |k| print "#{k}:#{counts[k]} " }

Produces:
and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

But this code is messy—it mixes word finding with word counting. We could
fix this by writing a method that reads the file and yields each successive
word. But fibers give us a simpler solution:

tut_threads/fiber_word_count.rb

words = Fiber.new do
File.foreach("./testfile") do |line]|

http://media.pragprog.com/titles/ruby5/code/tut_threads/loop_word_count.rb
http://media.pragprog.com/titles/ruby5/code/tut_threads/fiber_word_count.rb

line.scan(/|\w+/) do |word|
Fiber.yield word.downcase
end
end
nil
end

counts = Hash.new(0)
while (word = words.resume)
counts[word] += 1
end
counts.keys.sort.each { |k| print "#{k}:#{counts[k]} " }

Produces:
and:1 i1s:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

The constructor for the Fiber class takes a block and returns a fiber object.
Unlike a thread, the code in the block for a Fiber isn’t immediately executed.

After the Fiber is created, we can call resume on the fiber object. Calling
resume the first time causes the block to start execution. In this case, the file is
opened, and the scan method starts extracting individual words and passing
each individual word to the block passed to scan. Inside that block, Fiber.yield is
called. Calling Fiber.yield suspends execution of the fiber—the resume method
that we called to run the block returns any value passed to Fiber.yield.

Upon receiving the yielded value as the return value of resume, our main
program enters the body of the loop and increments the count for the first
word returned by the fiber. It then loops back up to the top of the while loop,
which again calls words.resume while evaluating the condition. The resume call
goes back into the block, continuing where it left off at the line after the
Fiber.yield call.

When the fiber runs out of words in the file, the foreach block exits, and the
code in the fiber terminates. Just as with a method call, the return value of the
fiber will be the value of the last expression evaluated (which this code sets to
nil). In this case, nil isn’t strictly needed, as foreach will return nil when it

terminates. But here nil just makes it explicit. The next time resume is called, it
returns this value, nil. You’ll get a FiberError if you attempt to call resume again
after the fiber has terminated.

Fibers can be used to generate values from infinite sequences on demand.
Here’s a fiber that returns successive integers divisible by 2 and not divisible
by 3:

tut_threads/infinite_fiber.rb

twos = Fiber.new do
num = 2
loop do
Fiber.yield(num) unless num % 3 == 0
num += 2
end
end
10.times { print twos.resume, " " }

Produces:
2 48 10 14 16 20 22 26 28

But you can more easily use lazy enumerators to gracefully create infinite
lists. These are described in Enumerators Used as Generators and Filters.

Because fibers are just objects, you can pass them around, store them in
variables, and so on. Fibers can be resumed only in the thread that created
them.

Fibers can also use the transfer method to explicitly transfer control between
specific fibers. The tricky part here is that the receiver of transfer 1s the thread
to be resumed—in other words, the call is fiber_that_gets_control.transfer(args)
and not calling_fiber.transfer(fiber_that_gets_control). The return value of the
transfer call is the same as yield—the last expression before the fiber pauses
control again.

http://media.pragprog.com/titles/ruby5/code/tut_threads/infinite_fiber.rb

The yield/resume mechanism for switching control and the transfer method
don’t work well together. Specifically, if a fiber is started with resume then
cedes control, it can only receive control using the same mechanism. If it uses
yield, it can only be returned with resume. If it transfers out, it can only be
transfered back. If a fiber is started with transfer, it can only return control
using transfer, not yield. Using the wrong mechanism will result in an
exception.

Fibers can be non-blocking, meaning that when a fiber would otherwise block
because of I/O or waiting on another process, it automatically cedes control to
a fiber scheduler which chooses another fiber to wake up and controls
resuming the original fiber when it has whatever it needs to proceed.

To create a non-blocking fiber, you need to do two things:

e (all Fiber.set_scheduler to set a scheduler
e (Create the fiber with Fiber.new(blocking: false)

The scheduler is the tricky part because instead of distributing a standard
scheduler, Ruby only provides an interface that schedulers are expected to
implement. Bruno Sutic’s website
https://github.com/bruno-/fiber_scheduler list maintains a list of available

schedulers and recommends using FiberScheduler™ in Ruby 3.1 and up.

https://github.com/bruno-/fiber_scheduler_list

Understanding Ractors

Ruby 3.0 introduced ractors, a Ruby implementation of the Actor pattern for
multithreaded behavior. (Experimental support for the feature was originally
developed under the name “Guilds.”)

How Ractors Work

Ractors allow true parallelism within a single Ruby interpreter: each ractor
maintains its own GIL, allowing for potentially better performance. In order
for this to work, ractors have only limited ability to access variables outside
their scope and can communicate with each other in only specific, pre-defined
ways. (Also, if for some reason you’re running multiple threads inside a single
ractor—probably you shouldn’t do this—those threads are subject to the
equivalent of a global lock on the ractor and won’t run in parallel.)

We think that showing trivial examples of ractor code tends to obfuscate
what’s going on, so we’re first going to explain conceptually how ractors work
and talk about the API and then show some code that can actually do a thing.

You can think of a ractor as a chunk of code that has a single input port and a
single output port. Metaphorically, you can think of a room with one door
marked “entrance” and one door marked “exit.” The entrance door has a
potential queue to get in.

You create a ractor with Ractor.new, which always takes a block. The block
becomes the inside of our metaphorical room. The new method optionally
takes an arbitrary number of positional arguments, and there’s an optional
keyword argument called name: that you should use to give the ractor a unique
name. We find it helps in understanding ractors to realize that in many useful
cases, the block will contain a loop of some kind. Once a ractor is created, the
pre-existing part of the thread is called the main ractor and can be accessed
with Ractor.main.

Ractors mostly interact with each other in one of four ways:

e A ractor (including the main thread) can send arguments to a known other
ractor. In our metaphorical room, this is asking somebody to stand in line
at the entrance door to a different ractor. The entrance lines are infinite,
and the sending call is guaranteed not to block (by “guaranteed” we mean
“if this goes wrong you have much bigger problems”). The API call is
send, and the receiver of the message is the ractor that the message is
being sent to, other_ractor.send(my_args). This is similar to the API for
fibers.

e A ractor (or the main thread) can take output from an other known ractor.
Metaphorically, we’re waiting by the exit door for the next value to
emerge and grabbing it. The API call here is take, as in new_value =
other_ractor.take, and the take call will block waiting for a value to be sent
by the other ractor.

 Inside the ractor, the ractor can block waiting for an incoming message.
Metaphorically, the ractor is waiting for somebody to show up at the
entrance door. The API call here is Ractor.receive, and yes, that’s a class

method of the class Ractor.

 Inside the ractor, the ractor can block waiting for another ractor to ask for
a value. Metaphorically, the ractor is waiting for somebody to knock on
the exit door, and will then send a value out for them. The API call is
Ractor.yield(obj), and the argument is the value that’s sent out. The pattern
here is that the external calls are messages sent to a ractor and the internal
calls are class messages sent to Ractor that know that they take place
inside a specific ractor. The API is constrained here to allow for some
automatic thread safety to happen as values are passed to a ractor using
send or from a ractor using yield or take.

Let’s take a closer look at the lifecycle of a ractor.

First, the ractor is created using Ractor.new. The block is immediately started,
and any arguments passed to new are passed to the block as though they came
from a send message—we’ll show what that means in How Ractors Pass

Variables.

The new ractor is isolated. This concept comes from other languages but is a
new thing for Ruby that was added just for ractors. Being isolated means that
the code inside the block won’t be able to access any variables that aren’t
defined in the block—mno globals and no external locals. The only way to have
a value be visible to a ractor is via send.

The code block passed to the ractor executes until one of the following
happens:

e The code block hits a Ractor.yield call. In this case, it waits for a different
ractor to call ractor.take with this ractor as the receiver. When that
happens, it passes away the argument to yield and continues operation.

e The code block hits a Ractor.recieve call. In this case, the ractor waits to
receive another call to send (the arguments passed to send become the
result returned by the recieve call) and then continues operation.

e The code block ends. The last expression value is available for one other
ractor to retrieve using take.

Let’s take a look at how ractors might be used to do the same word count
example we did using fibers:

tut_threads/ractor_word_count.rb

reader = Ractor.new(name: "reader") do
File.foreach("testfile") do |line|
line.scan(/|w+/) do |word]|
Ractor.yield(word.downcase)
end
end
nil

http://media.pragprog.com/titles/ruby5/code/tut_threads/ractor_word_count.rb

end

counter = Ractor.new(reader, name: "counter") do |source
result = Hash.new(0Q)
while(word = source.take)
result[word] += 1
end
result
end

counts = counter.take
counts.keys.sort.each { |k| print "#{k}:#{counts[k]} " }

Produces:
and:1 i1s:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

We’ve maintained the same structure of the code. There’s one ractor that’s
reading the file and another ractor that’s actually doing the word count.

Here’s more or less how this plays out, with the understanding that because
this is parallel code, the exact order may differ slightly.

First, we create the reader ractor. The block starts immediately (or is scheduled
to start immediately) and opens the file and scans the first line, at which point
1t blocks on Ractor.yield with the first word scanned.

Moving down the file, the counter ractor is created, with—and this is important
—the reader as an argument. The counter block 1s now executed with the reader
passed in as source. We have to pass the ractor to the block because the ractor

is isolated. The block inside the ractor doesn’t have access to the local variable

reader.

Inside the counter ractor block, we build an empty hash and then a while loop
on source.take. Each time we call source.take, we grab the most recent value

yielded by the reader, and the reader continues forward until it blocks on the
next yield call.

Eventually, the reader runs out of words in the file and hits nil at the end of the
block. Subsequently, the last source.take returns nil and ends the while loop, and
the counter returns the result.

After these two blocks comes the counter.take call, which will block the main
ractor until the counter ractor is ready to return a value. Since the counter
ractor doesn’t yield anywhere, that call waits until it exits, and then the final
value is available to take. It’s a good thing we have that take call blocking
because, if we didn’t block on something in the main ractor, the code would
terminate and all the internal ractors would be stopped.

Having pulled that last value, we then print out the results.

And it works. The two ractors run in parallel. But I don’t like that the reader is
blocked on every word; it seems like you’d rather allow the reader to get as far
ahead as it can, and let the counter catch up.

You can do that by reversing the direction of the interaction, like this:

tut_threads/ractor_word_count_flipped.rb

counter = Ractor.new(name: "counter") do
result = Hash.new(0)
while (word = Ractor.receive)
result[word] += 1
end
result
end

Ractor.new(counter, name: "reader") do |worker|
File.foreach("./testfile") do |line]
line.scan(/|w+/) do |word|
worker.send(word.downcase)
end
end
worker.send(nil)
end

counts = counter.take

http://media.pragprog.com/titles/ruby5/code/tut_threads/ractor_word_count_flipped.rb

counts.keys.sort.each { |k| print "#{k}:#{counts[k]} " }
Produces:
and:1 i1s:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

Same logic, same result. This time, though, we start the counter first, it creates
its hash and then blocks at Ractor.receive. Then we create the reading ractor,
which takes the counter as an argument, again because otherwise the ractor
block would be isolated. Inside the block, the reader opens the files and scans
as before, but this time it uses send to pass each word back to the counter
without blocking. Note that in this case, we need to explicitly also send nil at
the end to terminate the loop.

The final two lines are the same, waiting on the counter to be finished, but
overall, this version of the code should block less and allow the reader to get
ahead of the worker if it can.

How Ractors Pass Variables

We’ve hinted that variables passed to and from ractors don’t behave the same
way as regular variable passing does in Ruby. The goal of the ractor
implementation is to prevent ractors from changing values that other ractors
depend on. One way that’s done is by preventing ractors from having access to
mutable variables that exist outside the ractor scope.

As we’ve already mentioned, ractors are isolated from the rest of their
binding. Variables that would normally be in scope for the block aren’t
available inside the ractor.

Additionally, ractors apply special semantics to values that are passed to a
ractor using send or yield. The ractor world divides Ruby objects into

“shareable” or “unsharable.”

Broadly, sharable objects are objects whose value can’t be changed—
immutable objects and objects that have been frozen. Specifically, the
following are all considered shareable:

* The special values true, false, and nil.
e Symbols.

e “Small integers.” What’s a small integer? If you’re familiar with Ruby
before 2.4, it’s an integer small enough to be represented as a Fixnum. For
everybody else, it’s an integer small enough to fit in one memory
location, so, on a 64-bit machine, that’s 2762 - 1. (That’s one bit for the
sign and one bit to mark it as an integer.)

» Instances of type Float, Complex, Rational, String, Or Regexp or larger Integers
if they’ve been frozen.

¢ Instances of Class or Module — not instances of an individual class,
instances of Class itself.

 Individual ractors.
e An instance of an object whose instance variables are all sharable.

Ruby provides the method Ractor.make_sharable(obj) which tries to make an

arbitrary object sharable by walking through all its attributes and freezing
them all. With the keyword argument copy: true, it makes a copy of the object
and returns the copy.

Sharable objects are shared when passed to a ractor, meaning that a reference
to them is passed along and both the sender and the receiver are still able to
access the object. Unsharable objects are copied, unless you pass move: true to

either Ractor.send or Ractor.yield. If you move the unsharable object, then it’s

available to the new ractor but no longer available to the ractor that sent it,
attempting to access that variable after it moves will raise an exception.

Conditional Reception

A ractor can be made to be picky about what it lets in the front door by using
the Ractor.receive_if method, which takes a block argument. If another ractor

tries to send to a ractor that’s waiting on receive_if, the receiving ractor will call
the block argument on the objects sent. If the block returns a truthy value, then
recieve_if returns the object the same way that plain ordinary recieve does. If the

block returns a falsey value, the ractor continues to wait. But the failing object
stays at the head of the line, so if the ractor ever does get an object that passes
the block, all the failed objects are still in the entrance queue and are able to
get picked up by future receive calls in the ractor.

Waiting on Multiple Ractors

If you have multiple ractors you might be waiting on and you want to respond
to whichever of them yields a value on the outgoing port first, you can use
Ractor.select. The argument to Ractor.select is an arbitrary number of ractors, as
in Ractor.select(r1, r2, r3). The value returned is a two-object array; the first

object is the ractor that has put the value on the port, and the second is the
value itself, so r, val = Ractor.select(r1, r2, r3).

Now, there are a couple of weirdnesses here. First off, one of the ractors in the
argument could be the ractor making the call, as in Ractor.select(r1,
Ractor.current). If the current ractor is somehow the one that emits the value,
then the select call still returns the value, but instead of returning the ractor, it

returns :receive.

Also, you can use Ractor.select to deal with multiple other ractors that you
expect to take rather than yield. In this case, our call needs to provide the value
for the take call, which you do with a yield_value keyword argument:
Ractor.select(r1, r2, yield_value: 37). In the yield case, the return values are :yield
and nil. It’s frankly not clear why those aren’t two different methods.

You can slam shut either the entrance or exit door with the close_incoming and
close_outgoing methods. Attempts to access a closed port on a ractor return an

exception, as do attempts to access the outgoing port of a ractor that has ended
and returned its last value.

What’s Next

That covers the basics of threading in Ruby. We’ve talked about basic
threads, using system processes, fibers, and ractors. Now let’s look at how
we can use testing to help ensure that our code does what we expect.

Footnotes

[L7] https://www.freebsd.org/cgi/man.cgi?query=fork

(18] https://github.com/bruno-/fiber_scheduler

Copyright © 2024, The Pragmatic Bookshelf.

https://www.freebsd.org/cgi/man.cgi?query=fork
https://github.com/bruno-/fiber_scheduler

Chapter 13

Testing Ruby Code

Automated testing has long been an important part of how Ruby developers
validate their code. Not only does testing ensure that the code behaves as
expected, but the process of writing tests can also expose weaknesses in the
structure of the code. Ruby provides a core library called minitest to make it
easy to write automated tests. A more complex and fully-featured library,
RSpec, is also commonly used. The two tools have different terminologies
and a slightly different focus. In this chapter, we’ll look at how these tools
are used for unit testing, which is testing that focuses on small chunks of
code, typically individual methods or branches within methods.

Why Unit Test?

It’s important to be able to test individual units for many reasons, one of
which is that being able to isolate code into testable units is useful for
ongoing changes and maintenance. Code in one unit often relies on the
correct operation of the code in other units. If one unit turns out to contain
bugs, then all the code that depends on that unit is potentially affected. This
1s a big problem.

When you unit test this code as you write it, two things can happen. First,
you’re more likely to find the bug while the code was still fresh in your
mind. Second, because the unit test was only interacting with the code you
just wrote, when a bug does appear, you only have to look through a
handful of lines of code to find it, rather than doing archaeology on the rest
of the code base.

Unit testing helps developers write better code. It helps before the code is
actually written because thinking about testing naturally leads you to create
better, more decoupled designs. It helps as you’re writing the code because
it gives you instant feedback on how accurate your code is. And it helps
after you’ve written code because it both gives you the ability to check that
the code still works and helps others understand how to use your code.

Unit testing is a Good Thing.

Unit testing and dynamic languages such as Ruby go hand in hand. The
flexibility of Ruby makes writing tests easy, and the tests make it easier to
verify that your code is working. Once you get into the swing of it, you’ll
find yourself writing a little code, writing a test or two, verifying that
everything i1s copacetic, and then writing some more code. You may even
find yourself writing the test before you write a little code.

Testing with Minitest

If all that seems a little abstract, let’s look at an example of how you use the
minitest library to write automated testing. We’ll start with a Roman numeral
class. Our first pass at the code is pretty simple; it lets us create an object
representing a certain number and display that object in Roman numerals:

unittesting/romanbug.rb

This code has bugs
class Roman
MAX_ROMAN = 4999

def initialize(value)
if value <= 0 || value > MAX_ROMAN
fail "Roman values must be > @ and <= #{MAX_ROMAN}"
end
@value = value
end

FACTORS = [
['n", 1000], [“cn”, 9001, ["d", 5001, [’cd”, 4001,
["c", 100], ["xc”, 901, ["l", 501, ["xL", 40],
["x", 10], ["ix", 91, ["v", 51, ["iv", 4],
['i", 1]

def to_s
value = @value
roman = ""
FACTORS.each do |code, factor|
count, value = value.divmod(factor)
roman << code unless count.zero?
end
roman
end
end

We could test this without a framework code by writing another plain Ruby
script, like this:

http://media.pragprog.com/titles/ruby5/code/unittesting/romanbug.rb

unittesting/manual_romanbug.rb

require_relative "romanbug"

r = Roman.new(1)
fail "'i1' expected” unless r.to_s == "i"

r = Roman.new(9)

me . n

faill "'ix' expected"” unless r.to_s == "ix

As the number of tests in a project grows, this kind of ad hoc approach can get
complicated to manage. The Ruby standard library comes with minitest—a
framework originally written by Ryan Davis and the seattle.rb user group,
which makes tests easier to write, run, and manage.

The minitest testing framework has three facilities wrapped into a neat
package:

[t gives you a way of expressing individual tests.
e [t provides a framework for structuring the tests.
[t gives you flexible ways of invoking the tests.

Assertions == Expected Results

Rather than have you write series of individual if or unless statements in your
tests, the testing framework allows you to define assertions that achieve the
same thing. Although a number of different styles of assertion exist, they all
follow the same pattern. Each gives you a way of specifying an expected
result and a way of passing in the actual outcome. If the actual value doesn’t
match the expected value, the assertion outputs a nice message and records the
failure.

For example, we could rewrite our previous test of the Roman class using
minitest. For now, ignore the scaffolding code at the start and end, and just
look at the assert_equal method:

unittesting/test_romanbug1.rb

require_relative "romanbug”

http://media.pragprog.com/titles/ruby5/code/unittesting/manual_romanbug.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/test_romanbug1.rb

require "minitest/autorun”

class TestRoman < Minitest::Test
def test_simple
assert_equal("i"”, Roman.new(1).to_s)
assert_equal("ix"”, Roman.new(9).to_s)
end

end
Produces:

Run options: --seed 38570
Running:

Finished in 0.000223s, 4484.3059 runs/s, 8968.6118 assertions/s.
1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

The first assertion says that we’re expecting the Roman number string
representation of 1 to be "i," and the second test says we expect 9 to be "ix."

We can run the test by running the file as a Ruby file—the minitest/autorun

module will automatically load and run our tests (more on that in a bit).
Luckily for us, both expectations are met, and the tracing reports that our tests
pass. Let’s add a few more tests:

unittesting/test_romanbug2.rb

require_relative "romanbug"
require "minitest/autorun”

class TestRoman < Minitest::Test
def test_simple
assert_equal("i"”, Roman.new(1).to_s)
assert_equal("ii"”, Roman.new(2).to_s)
assert_equal("iii1", Roman.new(3).to_s)
assert_equal("iv"”, Roman.new(4).to_s)
assert_equal("ix"”, Roman.new(9).to_s)
end
end

http://media.pragprog.com/titles/ruby5/code/unittesting/test_romanbug2.rb

Produces:

Run options: --seed 32554
Running:

F

Finished in 0.000392s, 2551.0207 runs/s, 5102.0414 assertions/s.

1) Failure:

TestRoman#test_simple [code/unittesting/test_romanbug2.rb:7]:

Expected: "ii
Actual: "i"

1 runs, 2 assertions, 1 failures, 0 errors, 0 skips

Uh-oh! The second assertion failed. The error message uses the fact that the
assertion knows both the expected and actual values: it expected to get “i1” but

Ces 9
1.

instead got

Looking at our code, you can see a clear bug in to_s. If the

count after dividing by the factor is greater than zero, then we should output
that many Roman digits. The existing code outputs only one. The fix is easy,

change the line roman << code unless count.zero? t0 roman << (code * count):

unittesting/roman3.rb

def to_s
value = @value

roman =
FACTORS.each do |code, factor|

count, value = value.divmod(factor)

roman << (code * count)
end
roman
end

Now let’s run our tests again:

unittesting/test_roman3.rb

require_relative "roman3”

require "minitest/autorun”

class TestRoman < Minitest::Test
def test_simple

http://media.pragprog.com/titles/ruby5/code/unittesting/roman3.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/test_roman3.rb

assert_equal("i"”, Roman.new(1).to_s)
assert_equal("ii"”, Roman.new(2).to_s)
assert_equal("iii1", Roman.new(3).to_s)
assert_equal("iv"”, Roman.new(4).to_s)
assert_equal("ix"”, Roman.new(9).to_s)
end
end

Produces:

Run options: --seed 59738
Running:

Finished in 0.000451s, 2217.2952 runs/s, 11086.4759 assertions/s.
1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

It’s looking good. You can see there’s some duplication in the test, and you
might be tempted to address it by running each expected and actual value pair
in a loop. We recommend avoiding loops in tests because they are often hard
to read and debug if the tests fail. Instead, we recommend making the
assertions as clear as possible, so we might re-write the test like this:

unittesting/test_roman4.rb

require_relative "roman3"”
require "minitest/autorun”

class TestRoman < Minitest::Test
def assert_roman_value(roman_numeral, arabic_numeral)
assert_equal(roman_numeral, Roman.new(arabic_numeral).to_s)
end

def test_simple
assert_roman_value("1", 1)
assert_roman_value("ii", 2)
assert_roman_value("iii", 3)
assert_roman_value("iv", 4)
assert_roman_value("ix", 9)

end

end

http://media.pragprog.com/titles/ruby5/code/unittesting/test_roman4.rb

Produces:

Run options: --seed 44317
Running:

Finished in 0.000279s, 3584.2290 runs/s, 17921.1451 assertions/s.
1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

We think this does a good job of separating the boilerplate action of the
comparison from the data values we’re trying to compare.

What else can we test? Well, the constructor of our Roman class checks that the

number we pass in can be represented as a Roman number, throwing an
exception if it can’t. Let’s test the exception:

unittesting/test_roman5.rb

require_relative "roman3”
require "minitest/autorun”

class TestRoman < Minitest::Test
def assert_roman_value(roman_numeral, arabic_numeral)
assert_equal(roman_numeral, Roman.new(arabic_numeral).to_s)
end

def test_simple
assert_roman_value("i", 1)
assert_roman_value("i1", 2)
assert_roman_value("ii1", 3)
assert_roman_value("iv", 4)
assert_roman_value("ix", 9)
end

def test_range
no exception for these two...
Roman.new(1)
Roman.new(4999)
but an exception for these
assert_raises(RuntimeError) { Roman.new(0) }
assert_raises(RuntimeError) { Roman.new(5000) }

http://media.pragprog.com/titles/ruby5/code/unittesting/test_roman5.rb

end
end

Produces:

Run options: --seed 4358
Running:

Finished in 0.000328s, 6097.5622 runs/s, 21341.4676 assertions/s.
2 runs, 7 assertions, 0 failures, 0 errors, 0 skips

We could do more testing on our Roman class, but let’s move on. We’ve only
scratched the surface of the set of assertions available inside the testing
framework. For example, for every positive assertion (such as assert_equal)
there’s a negative refutation (such as refute_equal).

The final parameter to every assertion is an optional message that will be
output before any failure message. This normally isn’t needed because the
failure messages are normally pretty reasonable. The one exception is the
assertion refute_nil, where the default message “Expected nil to not be nil”
doesn’t help much. In that case, you may want to add some annotation of your
own. (This code assumes the existence of some kind of User class.)

require 'minitest/autorun’
class ATestThatFails < Minitest::Test
def test_user_created
user = User.find(1)
refute_nil(user, "User with ID=1 should exist")
end
end

Produces:

Run options: --seed 16917
Running:

F
Finished in 0.000252s, 3968.2549 runs/s, 3968.2549 assertions/s.

1) Failure:
ATestThatFails#test_user_created [prog.rb:11]:
User with ID=1 should exist.
Expected nil to not be nil.

1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

Structuring Tests

Earlier we asked you to ignore the scaffolding around our tests. Now it’s time
to look at it.

You include the testing framework facilities in your unit by including

minitest/autorun.

require "minitest/autorun”

The minitest/autorun module includes minitest itself, which has most of the
features we’ve talked about so far. It also includes an alternate minitest/spec
syntax that’s more like RSpec and the minitest/mock mock object package.
(We’re not going to talk about minitest/spec syntax in this book. If you want
that style of syntax, we recommend actually using RSpec.) Finally, it calls
Minitest.autorun, which starts the test runner. This is why our test files have
been executing tests when invoked just as plain Ruby files.

Unit tests are often combined into high-level groupings, called test cases. The
test cases generally contain all the tests relating to a particular facility or
feature—in Ruby, often each application class will have one associated test
case. Within the test case, you’ll typically want to organize your assertions
into separate test methods, where each method contains the assertions for one
type of test; one method could check regular number conversions, another
could test error handling, and so on. (We’ll see later that RSpec allows you to
structure tests a little bit differently.)

The classes that represent test cases must be subclasses of Minitest:Test. The
methods that hold the assertions must have names that start with test_. This is

important: the testing framework dynamically searches the test methods to
find tests to run, and only methods whose names start with test_ are eligible.

Quite often you’ll find that all the test methods within a test case start by
setting up a particular scenario. Each test method then probes some aspect of

that scenario. Finally, each method may then tidy up after itself. For example,
we could be testing a class that extracts jukebox playlists from a database.
(The playlist_builder file contains a DBI class that simulates a database

connection for our purposes here.)

unittesting/test_playlist_builder1.rb

require "minitest/autorun”
require_relative "playlist_builder"

class TestPlaylistBuilder < Minitest::Test
def test_empty_playlist
database = DBI.new("DBI:mysql:playlists")
playlist_builder = PlaylistBuilder.new(database)
assert_empty(playlist_builder.playlist)
playlist_builder.close
end

def test_artist_playlist
database = DBI.new("DBI:mysql:playlists")
playlist_builder = PlaylistBuilder.new(database)
playlist_builder.include_artist("krauss")
refute_empty(playlist_builder.playlist, "Playlist shouldn't be empty")
playlist_builder.playlist.each do |entry|
assert_match(/krauss/i, entry.artist)
end
playlist_builder.close
end

def test_title_playlist
database = DBI.new("DBI:mysql:playlists")
playlist_builder = PlaylistBuilder.new(database)
playlist_builder.include_title("midnight")
refute_empty(playlist_builder.playlist, "Playlist shouldn't be empty")
playlist_builder.playlist.each do |entry|
assert_match(/midnight/i, entry.title)
end
playlist_builder.close
end

end

http://media.pragprog.com/titles/ruby5/code/unittesting/test_playlist_builder1.rb

Produces:

Run options: --seed 19023
Running:

Finished in 0.000397s, 7556.6751 runs/s, 115869.0188 assertions/s.
3 runs, 46 assertions, 0 failures, 0 errors, 0 skips

Each test starts by connecting to a database and creating a new playlist builder.
Each test ends by disconnecting from the database. The idea of using a real
database in unit tests is questionable because unit tests are supposed to be fast-
running, context-independent, and easy to set up, but it illustrates a point.
(And that said, Ruby on Rails makes database calls in its unit tests all the
time.)

We can extract all this common code into setup and teardown methods. Within
a Minitest:Test class, if a method called setup exists, it’ll be run before each and
every test method, and if a method called teardown exists, it’ll be run after each
test method finishes. The setup and teardown methods bracket each test rather
than being run only once for the entire test case. This is shown in the code that
follows:

unittesting/test_playlist_builder2.rb

require "minitest/autorun”
require_relative "playlist_builder"

class TestPlaylistBuilder < Minitest::Test
def setup
@database = DBI.new("DBI:mysql:playlists")
@playlist_builder = PlaylistBuilder.new(@database)
end

def teardown
@playlist_builder.close

end

def test_empty_playlist

http://media.pragprog.com/titles/ruby5/code/unittesting/test_playlist_builder2.rb

assert_empty(@playlist_builder.playlist)
end

def test_artist_playlist
@playlist_builder.include_artist("krauss")
refute_empty(@playlist_builder.playlist, "Playlist shouldn't be empty")
@playlist_builder.playlist.each do |entry|
assert_match(/krauss/i, entry.artist)
end
end

def test_title_playlist
@playlist_builder.include_title("midnight")
refute_empty(@playlist_builder.playlist, "Playlist shouldn't be empty")
@playlist_builder.playlist.each do |entry|
assert_match(/midnight/i, entry.title)
end
end

end

Produces:
Run options: --seed 17223
Running:
Finished in 0.000437s, 6864.9875 runs/s, 105263.1415 assertions/s.
3 runs, 46 assertions, 0 failures, 0 errors, 0 skips

Inside the teardown method, you can detect whether the preceding test
succeeded with the passed? method.

Creating Mock Objects in Minitest

Minitest allows you to create mock objects, which are objects that simulate the
API of an existing object in the system, typically providing a canned response
instead of a more expensive or fragile real response. A minitest mock object
can be verified, meaning it’ll raise a failure if the methods you expected to be
called were not called during the test.

Using these mock object expectations allows for a style of testing where,
instead of testing the result of a method by verifying its output, you test the
behavior of the method by verifying that it makes expected calls to other
methods.

In minitest, a mock object is created like any other Ruby object. Then you add
the methods you wish the mock to respond to via the expect method. At the

end, you can optionally test that all expected methods were called with verify.

For example, we can re-write our playlist builder test so that we don’t need to
create a “real” DBI instance. (The word real is in scare quotes because, for
this contrived example, even the DBI instance in the previous code was
faked....) Behind the scenes, our playlist builder calls connect and disconnect on
the DBI instance.

We can instead create a mock object:

unittesting/test_playlist_builder_mock.rb

require "minitest/autorun”
require_relative "playlist_builder"

class TestPlaylistBuilder < Minitest::Test
def setup
@database = Minitest::Mock.new
@database.expect(:connect, true)
@database.expect(:disconnect, false)
@playlist_builder = PlaylistBuilder.new(@database)
end

http://media.pragprog.com/titles/ruby5/code/unittesting/test_playlist_builder_mock.rb

def teardown
@database.disconnect
@database.verify

end

def test_empty_playlist
assert_empty(@playlist_builder.playlist)
end

def test_artist_playlist
@playlist_builder.include_artist("krauss")
refute_empty(@playlist_builder.playlist, "Playlist shouldn't be empty")
@playlist_builder.playlist.each do |entry|
assert_match(/krauss/i, entry.artist)
end
end

def test_title_playlist
@playlist_builder.include_title("midnight")
refute_empty(@playlist_builder.playlist, "Playlist shouldn't be empty")
@playlist_builder.playlist.each do |entry|
assert_match(/midnight/i, entry.title)
end
end

...
end

Produces:
Run options: --seed 61004
Running:
Finished in 0.000585s, 5128.2049 runs/s, 78632.4745 assertions/s.
3 runs, 46 assertions, 0 failures, 0 errors, 0 skips

Now, the setup method is creating the @database as a Minitest::Mock and then
setting the expectation that the test will call connect and disconnect on the object
(which is done behind the scenes by the PlaylistBuilder). The second argument
to each method is a value returned when the mocked method is called. At the

end of each test, in the teardown method, we verify the mock object, which
raises a failure if both expectations aren’t met.

Minitest mock objects can get more complicated. A mock object can take an
optional third argument, which is an array of arguments, and an optional block
argument. If those arguments are used, then the mock object only accepts the
method call if the arguments match. If not, it raises a MockExpectationError
when called with arguments that don’t match. If you want to call the mock
object multiple times, you need to have multiple expect calls, which are used in
the order defined.

It’s common to want to override one method on an existing object rather than
create an entire mock object (this isn’t necessarily recommended, but it’s
common). In minitest, you can do this with the stub method, which is added to
Object, so it’s available to all objects.

The first argument to stub is the name of the method you want to intercept, as
a symbol. The second argument is the value you want returned, or you can
pass a block argument. The return value of the stub is one of these:

e The value returned by the block if there is a block.

e The result of second_arg.call if the second argument responds to call,
usually meaning that it’s a Proc or lambda.

e The second argument itself if neither of the first two options is true.

So, we could re-write the setup of that test using stub as follows:

def setup
@database = DBI.new("DBI:mysql:playlists")
@database.stub(:connect, true)
@database.stub(:disconnect, true)
@playlist_builder = PlaylistBuilder.new(@database)
end

This version calls stub to make calls to connect or disconnect be handled by the
stubbing functionality to return true rather than making the actual method call.

Stubs don’t get verified, so they are most useful for replacing an expensive or
flaky method call with a canned value for use as part of some larger logic.

If you want a more complex mock object behavior, the longstanding Ruby
library Mocha™ is the next step up in using mock objects in minitest.

Organizing and Running Tests

The test cases we’ve seen so far are all runnable Ruby programs. If, for
example, the test case for the Roman class was in a file called test_roman.rb,

we could run the tests from the command line using this:

$ ruby test_roman.rb
Run options: --seed 29842
Running:

Finished in 0.000407s, 4914.0040 runs/s, 17199.0141 assertions/s.
2 runs, 7 assertions, 0 failures, 0 errors, 0 skips

Minitest is clever enough to run the tests even though there’s no main
program. It collects all the test case classes and runs each in turn.

If we want, we can ask it to run a particular set of test methods based on a
naming pattern:

$ ruby test_roman.rb -n test_range
Run options: -n test_range --seed 26287
Running:

Finished in 0.000276s, 3623.1883 runs/s, 7246.3767 assertions/s.
1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

In this case, minitest will run test methods whose names exactly match the
text passed to -n. That’s pretty restrictive. So, if you want to run more than
one test based on a naming pattern and include any regular expression
punctuation in the argument, minitest will match the test name against the
regular expression:

$ ruby test_roman.rb -n /range/
Run options: -n /range/ --seed 52301
Running:

Finished in 0.000321s, 3115.2648 runs/s, 6230.5296 assertions/s.
1 runs, 2 assertions, 0 failures, 0 errors, 0 skips

This last capability is a great way of grouping your tests. Use meaningful
names, and you’ll be able to run (for example) all the shopping cart-related
tests by running tests with -n /cart/.

Where to Put Tests

Once you get into unit testing, you may well find yourself generating as
much test code as production code. All of those tests have to live
somewhere. But if you put them alongside your regular production code
source files, your directories start to get bloated, and you end up with two
files for every production source file.

A common solution is to have a test/ directory where you place all your test

source files. This directory is then placed parallel to the directory containing
the code you’re developing. For example, for our Roman numeral class, we

may have this:

roman/
1ib/
roman.rb
OTHER FILES

test/
test_roman.rb
OTHER TESTS

OTHER STUFF

This works well as a way of organizing files but leaves you with a small
problem: how do you tell Ruby where to find the library files that are being
tested? For example, if our TestRoman test code is in a test/ subdirectory,

how does Ruby know where to find the roman.rb source file that we’re
trying to test?

An option that doesn t work reliably is to build the path into require
statements in the test code and run the tests from the test/ subdirectory:

require 'test/unit’
require '../lib/roman’

class TestRoman < Minitest::Test
end

This doesn’t work in general because our roman.rb file may itself require
other source files in the library we’re writing. The roman.rb file will load
them using require (without the leading ../lib/), and, because they aren’t in
Ruby’s $LOAD_PATH, they won’t be found. Our test just won’t run. A second,
less immediate problem is that we won’t be able to use these same tests to
test our classes once installed on a target system because then they’ll be
referenced simply using require "roman".

You could do this using require_relative '../lib/roman’, which would be more
stable and doesn’t assume anything about the load path. A better solution is
to assume that your Ruby program is packaged according to the
conventions we’ll be discussing in Chapter 15, Ruby Gems. In this
arrangement, the top-level lib directory of your application is assumed to be

in Ruby’s load path by all other components of the application. Your test
code would then be as follows:

require 'minitest/autorun’
require ‘roman'’

class TestRoman < Minitest::Test
end
And you’d run it using this:

$ ruby -I path/to/app/lib path/to/app/test/test_roman.rb

The normal case, where you’re already in the application’s directory, would
be as follows:

$ ruby -I 1ib test/test_roman.rb

This would be a good time to investigate using Rake to automate your
testing (see Using the Rake Build Tool).

Test Suites

After a while, you’ll grow a decent collection of test cases for your
application. You may well find that these tend to cluster: one group of cases
tests a particular set of functions, and another group tests a different set of
functions. If so, you can group those test cases together into fest suites,
letting you run them all as a group.

This is easy to do. You create a Ruby file that requires minitest/autorun and

then requires each of the files holding the test cases you want to group. This
way, you build a helpful hierarchy of test material.

e You can run individual tests by name.

e You can run all the tests in a file by running that file.

You can group a number of files into a test suite and run them as a unit.
You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that
you can control, testing one method or the entire application.

Most people seem to use test_ as the test-case filename prefix. A sample test
suite file might look like this:

require 'minitest/autorun’
require_relative 'test_connect'
require_relative 'test query'
require_relative 'test_update'
require_relative 'test delete'’

Now, if you run Ruby on this file, you execute the test cases in the four files
you’ve required.

Testing with RSpec

The minitest framework has a lot going for it. It’s simple and compatible in
style with frameworks from other languages (such as JUnit for Java and pytest
for Python).

RSpec has different things going for it. It’s feature-rich (or “complicated,” as
some would say), and it has a different vocabulary for discussing testing. It
also has a different syntax. Even so, that syntax has influenced the design of
other testing tools including the Jasmine and Jest JavaScript testing
frameworks.

In RSpec, the focus isn’t on assertions. Instead, you write expectations. RSpec
is very much concerned with driving the design side of things. As a result, the
vocabulary words of RSpec (expectation and specification) are associated with
ways you might reason about your code before you write it. A “spec” is
something you’d write before coding; an “assertion” is something you use to
describe code that already exists.

To be clear, you can write RSpec after you write your code, just as you can
write minitest before you write your code. The design goal of RSpec is to
encourage thinking about tests as a way to influence the design of code yet to
be written and express those tests in a way that’s closer to natural language.
Then, as you fill in the code, the specs can continue to act as tests that validate
that your code meets your expectations.

Let’s start with a simple example of RSpec in action.

Starting to Score Tennis Matches

The scoring system used in lawn tennis originated in the Middle Ages. As
players win successive points, their scores are shown as 15, 30, and 40. The
next point is a win unless your opponent also has 40. If you’re both tied at 40,
then different rules apply. The first player with a clear two-point advantage is
the winner. Some say the 0, 15, 30, 40 system is a corruption of the fact that

scoring used to be done using the quarters of a clock face. We just think those
medieval folks enjoyed a good joke.

We want to write a class that handles this scoring system. Let’s use RSpec
specifications to drive the process. We install RSpec with gem install rspec, or
place it in our Gemfile (see Chapter 15, Ruby Gems). We’ll then create our first
specification file:

unittesting/bdd/1/ts_spec.rb

RSpec.describe "TennisScorer" do
describe "basic scoring"” do
it "starts with a score of 0-0"
it "makes the score 15-0 if the server wins a point”
it "makes the score 0-15 if the receiver wins a point"
it "makes the score 15-15 after they both win a point"
end
end

This file contains nothing more than a description of the beginning of how a
tennis scoring class that we haven’t yet written should behave. Inside the
declaration of the class is a grouping (describe "basic scoring") and inside that is a

set of four expectations, all of which start with it. We can run this specification
using the rspec command.

$ rspec ts_spec.rb
*%k%k%
Pending: (Failures listed here are expected and do not affect your suite's
status)
1) TennisScorer basic scoring starts with a score of 0-0
Not yet implemented
./ts_spec.rb:3
2) TennisScorer basic scoring makes the score 15-0 if the server wins a point
Not yet implemented
./ts_spec.rb:4
3) TennisScorer basic scoring makes the score 0-15 if the receiver wins a
point
Not yet implemented
./ts_spec.rb:5
4) TennisScorer basic scoring makes the score 15-15 after they both win a
point

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/1/ts_spec.rb

Not yet implemented

./ts _spec.rb:6
Finished in 0.00191 seconds (files took 0.0777 seconds to load)
4 examples, 0 failures, 4 pending

That’s pretty cool. Executing the tests echoes our expectations back at us,
telling us that each has yet to be implemented. Fixing things is just a few
keystrokes away. Let’s start by meeting the first expectation—when a game
starts, the score should be 0 to 0. We’ll start by fleshing out the spec:

unittesting/bdd/2/ts_spec.rb

require_relative "tennis_scorer"”

RSpec.describe TennisScorer do
describe "basic scoring"” do
it "starts with a score of 0-0" do
ts = TennisScorer.new
expect(ts.score).to eq("0-0")
end

it "makes the score 15-0 if the server wins a point”
it "makes the score 0-15 if the receiver wins a point"
it "makes the score 15-15 after they both win a point"”
end
end

Our tests assume that we have a class TennisScorer, both 1n the line of code that
creates an instance and also in the top line of code RSpec.describe TennisScorer.
Inside that, we have a second call to describe that groups our expectations. Our

first expectation now has a code block associated with it. Inside that block, we
create a TennisScorer and then use RSpec’s expectation syntax to validate that
the score starts out at “0-0". This particular aspect of RSpec syntax probably
generates the most controversy—some people love it, others find it awkward.
Either way, expect(ts.score).to eq("0-0") is equivalent to assert_equal("0-0", ts.score).

We can run our tests at this point with the same command, and we’ll see the
test fail because the TennisScorer class doesn’t exist.

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/2/ts_spec.rb

Before we create that class and pass the test, let’s take a moment to explain
what RSpec is doing here. RSpec is an example of a domain-specific language
(DSL), an alternate syntax built on Ruby with the goal of making it easier to
express the intent of the test. Like a lot of Ruby DSLs, RSpec takes advantage
of Ruby’s flexibility to result in code that doesn’t look exactly like regular
Ruby.

When trying to understand RSpec, it’s helpful to reinstate full parentheses and
implicit self message receivers as a guide to what’s actually happening. Here’s
what that looks like for our current spec:

unittesting/bdd/2/ts_spec_paren.rb

require_relative "tennis_scorer"”

RSpec.describe(TennisScorer) do
self.describe("basic scoring"”) do
self.it("starts with a score of 0-0") do
ts = TennisScorer.new
self.expect(ts.score).to(self.eq("0-0"))
end

self.it("makes the score 15-0 if the server wins a point")
self.it("makes the score 0-15 if the receiver wins a point")
self.it("makes the score 15-15 after they both win a point")
end
end

With all the parentheses, the structure of the code becomes more familiar. The
top line shows that describe is a method of an object named RSpec, and that the
inner describe and it lines are also methods with block arguments. There’s
actually an important part of how this fits together that we haven’t discussed
(it’s a method called instance_eval, which is discussed in Chapter 22, The Ruby

Object Model and Metaprogramming), but the basic idea is that RSpec takes
the blocks that are arguments to describe and it, holds on to them, and then

invokes them later in order to run the spec.

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/2/ts_spec_paren.rb

You can see that the actual expectation is also just a set of method calls. The
expect method is called with an object as an argument. The result of that

method is passed the to method, which itself takes an argument that’s
generated by calling eq. The result of the call to eq is a matcher, and RSpec
defines a series of matchers that interact with the to method (or its sibling
method not_to) to determine whether the expectation is fulfilled or not.

We’ll set up our TennisScorer class but only enough to let it satisfy this
assertion:

unittesting/bdd/2/tennis_scorer.rb

class TennisScorer
def score
H@_@H
end
end

Now we can run our spec again:

$ rspec ts_spec.rb
. *k*

Pending: (Failures listed here are expected and do not affect your suite's
status)
1) TennisScorer basic scoring makes the score 15-0 if the server wins a point
Not yet implemented
./ts_spec.rb:10
2) TennisScorer basic scoring makes the score 0-15 if the receiver wins a
point
Not yet implemented
./ts spec.rb:11
3) TennisScorer basic scoring makes the score 15-15 after they both win a
point
Not yet implemented
./ts_spec.rb:12
Finished in 0.0016 seconds (files took 0.04504 seconds to load)
4 examples, 0 failures, 3 pending

Now we have only three pending specs; the first one has been satisfied.

Let’s write the next couple of specs (I’ve added a new one for an error case):

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/2/tennis_scorer.rb

unittesting/bdd/3/ts_spec.rb

require_relative "tennis_scorer"”

RSpec.describe TennisScorer do
describe "basic scoring"” do
it "starts with a score of 0-0" do
ts = TennisScorer.new
expect(ts.score).to eq("0-0")
end

it "makes the score 15-0 if the server wins a point" do
ts = TennisScorer.new
ts.give_point_to(:server)
expect(ts.score).to eq("15-0")

end

it "raises an error if it doesn't know the player" do

ts = TennisScorer.new

expect { ts.give_point_to(:referee) }.to raise_error(RuntimeError)
end

it "makes the score 0-15 if the receiver wins a point"
it "makes the score 15-15 after they both win a point"
end
end

This won’t pass yet because our TennisScorer class doesn’t implement a
give_point_to method. Let’s rectify that. Our code isn’t finished, but now the
existing specs will pass:

unittesting/bdd/3/tennis_scorer.rb

class TennisScorer
PLAYERS = %i[server receiver]

def initialize
@score = {server: 0, receiver: 0}
end

def score
"#{@score[:server] * 15}-#{@score[:receiver] * 15}"
end

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/3/ts_spec.rb
http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/3/tennis_scorer.rb

def give_point_to(player)
raise "Unknown player #{player}" unless PLAYERS.include?(player)
@score[player] += 1
end
end

Again, we’ll run the file:

$ rspec ts_spec.rb
..**

Pending: (Failures listed here are expected and do not affect your suite's
status)
1) TennisScorer basic scoring makes the score 0-15 if the receiver wins a
point
Not yet implemented
./ts_spec.rb:21
2) TennisScorer basic scoring makes the score 15-15 after they both win a
point
Not yet implemented
./ts_spec.rb:22
Finished in 0.0031 seconds (files took 0.04484 seconds to load)
5 examples, 0 failures, 2 pending

We’re now meeting two of the four initial expectations. But, before we move
on, note there’s a bit of duplication in the specification: all of our expectations
create a new TennisScorer object. We can fix that by using a before method in
the specification. This works a bit like the setup method in minitest, allowing
us to run code before expectations are executed. Let’s use this feature and, at
the same time, build out the last two expectations:

unittesting/bdd/4/ts_spec.rb

require_relative "tennis_scorer"”

RSpec.describe TennisScorer do
describe "basic scoring"” do
before(:example) do
@ts = TennisScorer.new
end

it "starts with a score of 0-0" do
expect(@ts.score).to eq("0-0")

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/4/ts_spec.rb

end

it "makes the score 15-0 if the server wins a point" do
@ts.give_point_to(:server)
expect(@ts.score).to eq("15-0")

end

it "raises an error if it doesn't know the player" do
expect { @ts.give_point_to(:referee) }.to raise_error(RuntimeError)
end

it "makes the score 0-15 if the receiver wins a point" do
@ts.give_point_to(:receiver)
expect(@ts.score).to eq("0-15")

end

it "makes the score 15-15 after they both win a point" do
@ts.give_point_to(:receiver)
@ts.give_point_to(:server)
expect(@ts.score).to eq("15-15")
end
end
end

Let’s run it;

$ rspec ts_spec.rb

Finished in 0.00193 seconds (files took 0.04763 seconds to load)
5 examples, 0 failures

RSpec gives us an alternative, preferred way of setting up variables that are
conditions for our tests. The let method creates what looks like a variable

whose value is given by evaluating a block. This lets us write the following:
unittesting/bdd/5/ts_spec.rb
require_relative "tennis_scorer"”
RSpec.describe TennisScorer do

describe "basic scoring"” do
let(:ts) { TennisScorer.new }

http://media.pragprog.com/titles/ruby5/code/unittesting/bdd/5/ts_spec.rb

it "starts with a score of 0-0" do
expect(ts.score).to eq("0-0")
end

it "makes the score 15-0 if the server wins a point" do
ts.give_point_to(:server)
expect(ts.score).to eq("15-0")

end

it "raises an error if it doesn't know the player" do
expect { ts.give_point_to(:referee) }.to raise_error(RuntimeError)
end

it "makes the score 0-15 if the receiver wins a point" do
ts.give_point_to(:receiver)
expect(ts.score).to eq("0-15")

end

it "makes the score 15-15 after they both win a point" do
ts.give_point_to(:receiver)
ts.give_point_to(:server)
expect(ts.score).to eq("15-15")
end
end
end

The let block is only evaluated when the associated variable is used, and then

the block 1s evaluated once, and further uses of that variable use the stored
value from the first evaluation.

We’re going to stop here, but I suggest that you take this code and continue to
develop it. Write expectations such as these:

it "is 40-0 after the server wins three points"”

it "is W-L after the server wins four points"”

it "is L-W after the receiver wins four points”

it "is Deuce after each wins three points”

it "is Advantage-server after each wins three points and the server gets one
more"

RSpec and Matchers

In the previous code, we kind of ran right past RSpec’s matchers—Iines like
expect(@ts.score).to eq("15-0"). RSpec has a rich syntax of matchers to cover the
same ground that minitest does with different assertions.

We’ve already seen eq, but that matcher is a little unusual. Many of RSpec’s
matchers start with be, as with this set of matchers that cover basic logic:

expect(value).to be_truthy
expect(value).to be_falsey
expect(value).to be_an_1instance_of(Product)
expect(value.price).to be > 10
expect(value.price).to be_between(5, 15)

You can substitute any Ruby comparison operator for the greater than symbol
In be >.

RSpec also provides matchers for structured data, such as objects, arrays,
hashes, and strings:

expect(array).to contain_exactly(:a, :b, :c)
expect(hash).to include(key: value)

expect(string).to start_with("abc")
expect(string).to end_with("xyz")

expect(instance).to have_attributes(color: "blue")
expect(array_string_or_hash).to include("value")

In addition, RSpec has a generic matcher match, which can be applied to
arrays, strings, or hashes. Typically, the argument to match is a pattern, and the
expectation passes if the expected value fits the pattern. You can use other
RSpec matchers to fill part of the pattern.

Some examples:

expect(string).to match(/regex/)
expect(array).to match([3, 5])
expect(hash).to match(color: a_string_starting_with("b"))

The last example shows that RSpec offers aliases for most of its matchers so
they read more like natural language when used internally, so
“a_string_starting with” is an alias for “starts_with”. This is where people’s
opinions about RSpec start to split—some people find this kind of linguistic
wordplay elegant and clever, while others find it confusing and overly
complicated.

Which is a great lead into RSpec’s dynamic matcher syntax.

Often, an object has boolean methods that you want to test. In Ruby, the
community standard is to end boolean methods with a ? as in: paperback?.

class Book
def paperback?
type == :paper
end
end

You can test this method in RSpec using normal RSpec syntax, which would
look something like this:

expect(book.paperback?).to be_truthy

And that’s fine, and it works. But if you read it out loud it sounds weird—
more like how computers talk and not like how people talk. You might want to
be able to write this:

expect(book).to be_a paperback

Read that out loud, and it sounds like natural language.
So, to make that work in RSpec, you need to do...nothing. It already works.

When RSpec sees a matcher that starts with be, be_a, or be_an, it does some
parsing on the name of the matcher and looks for a method in the object under
test. If the matcher has no arguments, it looks for a predicate method that ends
in a question mark, so expect(book).to be_a_paperback looks for book.paperback?
and failing that, book.paperbacks?. If the matcher has arguments, it looks for a

regular method, so expect(book).to be_published_at(Date.today) would look for
book.published_at(Date.today). RSpec will do the same thing with have and has.
The matcher expect(book).to have_cover will look for book.has_cover?, while
expect(book).to have_author("Dave") will look for book.has_author("Dave").

There is also a set of matchers that take a block. The general structure is expect
{ SOMETHING }.to MATCHER. The most common is probably expect {}.to
raise_error(arg), where the argument is usually a Ruby exception class and the

matcher passes if the block raises the expected error. The argument could also
be a string or regular expression matching the error message.

There are also a series of matchers based on expect { BLOCK 1 }.to change { BLOCK 2
}. Here’s how this works: RSpec runs block 2 and stores the value, then it runs
block 1, and then it checks block 2 again, and the matcher passes if block 2’s
value has changed. You can chain additional methods to the end if you want to
specify details, as in expect { book.publish! }.to change { book.publication_date
}.from(nil).to(Date.today).

There’s a lot more to RSpec matchers, including the ability to create your own.
For more information, see Effective Testing with RSpec 3 by Myron Marston
and Erin Dees.

RSpec and Mocks

rb In addition to minitest, RSpec also allows you to create mock and stub
objects and has a lot of features available by default. Here’s an overview of the
most common.

In RSpec, the generic term for a fake object is test double, an object that
stands in for another object, by analogy to “stunt double.” The simplest way to
create one is by using the method double. You can create the double and assign
it a method to respond to using the RSpec method allow:

obj = double
allow(obj).to receive(:cost).and_return("cheap")

allow(obj).to receive(:name).and_return("banana")
obj.cost
obj.name

If you pass multiple arguments to and_return, you specify responses for
multiple times that the method is called. You can limit the arguments under
which the double is invoked by chaining in .with, as in allow(obj).to

receive(:availability).with("January").and_return(true).

You can define multiple responses at once with the receive_messages method,

which takes a hash. Keys become the methods to respond to, and values are
the fake values returned:

obj = double

allow(obj).to receive_messages(cost: "cheap"”, name: "banana")
obj.cost

obj.banana

Or you can use a shortcut by passing keyword arguments directly to double:

obj = double(cost: "cheap"”, name: "banana")
obj.cost
obj.banana

In minitest, we talked about validating mock objects by having the test fail if
the method being faked isn’t called during the test. In RSpec, you manage this
with the expect method.

You can call expect on a double before the main action of the spec. In this case,
expect is an exact replacement for allow:

obj = double

expect(obj).to receive(:cost).and_return("cheap")
expect(obj).to receive(:name).and_return("banana)
obj.cost

obj.banana

The expect method behaves the same as allow except that, at the end of the
spec, RSpec additionally and automatically validates whether the expected

methods have been called. If not, it fails the spec.

A downside of this mechanism is that the expectation happens at the beginning
of the spec, but the validation happens at the end, and only implicitly. This can
make the spec hard to read. An alternative is to use a slightly different form of
expect at the end of the spec:

obj = double

allow(obj).to receive(:cost).and_return("cheap")
obj.cost

expect(obj).to have_received(:cost)

The allow and expect constructs in RSpec are powerful. You can even use them

on objects that aren’t test doubles to stub a particular method on an existing
object:

kermit = Muppet.new
allow(kermit).to receive(:greeting).and_return("Hi ho")

A potential problem with test doubles is that the API of the underlying object
might change, but the test, with its stubbed method, blissfully continues to
pass. RSpec offers some protection from that with the instance_double variation.
An instance_double call takes a class as an argument:

fake product = instance_double(Product)
allow(fake_product).to receive(:name).and_return("pretzel")

Now, when you call allow or expect with the instance double as an argument,

RSpec checks to see if the class in question actually defines the method you’re
stubbing. (There’s a similar RSpec creator, class_double, for class methods

rather than instance methods.) If the method doesn’t exist, RSpec raises an
error at the point of the declaration.

This only scratches the surface of RSpec’s mock package.

What’s Next

In this chapter, we covered Ruby’s two most commonly used test
frameworks: minitest and RSpec. Which should you use? Well, if you’re
working on a project that already uses one of them, we recommend sticking
with that one. There’s not so much difference between the two that it’s
worth re-writing all your tests.

If you’re starting a new project, consider whether you like RSpec’s syntax.
RSpec is probably more widely used, but some prominent Ruby projects
still use minitest, including Ruby on Rails. RSpec has a higher initial
complexity but is also more flexible and has more available functionality
out of the box. Ultimately, though, it’s a question of which syntax you like
better and will get you to write more tests.

We’ve finished our tutorial of the Ruby language, and now it’s time to
widen our view and take a look at the larger Ruby tool ecosystem.

Footnotes

[12] https://mocha.jamesmead.org

Copyright © 2024, The Pragmatic Bookshelf.

https://mocha.jamesmead.org/

Part 2
Ruby in Its Setting

Ruby isn t just a programming language. It'’s an entire
ecosystem of tools that enables you to leverage the language
and make it valuable for a variety of tasks in a range of
different contexts. These tools include the Ruby command-
line program itself, the Ruby gems tool for including
libraries, and tools for interacting with and debugging Ruby.
Ruby also has support for automated documentation, can be
used in various editors and different operating systems, and
has runtime versions that are optimized for performance in
different settings.

Chapter 14

Ruby from the Command Line

If you’re using Ruby as a scripting language, you’ll be starting it from the
command line. In this chapter, we’ll look at how to use Ruby as a
command-line tool and how to interact with your operating system
environment. The two most common ways for a Ruby program to kick off
from the command line are with the Ruby interpreter itself and with Rake, a
utility that makes it easy to define a series of interrelated tasks. You also
might want to create your own command-line programs, and Ruby can help
with that as well.

Please note that some of the details of this chapter only apply to Unix-based
systems like Linux, MacOS, and WSL.

Calling the Ruby Command

The most direct way to start the Ruby interpreter and run a Ruby program is
by calling the ruby command from the command line. Regardless of the system
in which Ruby is deployed, you have to start the Ruby interpreter somehow,
and doing so gives us the opportunity to pass in command-line arguments both
to Ruby itself and to the script being run.

A Ruby command-line call consists of three parts, none of which are required:
options for the Ruby interpreter itself, the name of a program to run, and
arguments for that program.

ruby <options> <--> <programfile> <arguments>"
You only need the double-dash if you’re separating options to Ruby itself from
options being passed to the program being run. The simplest Ruby command
is ruby followed by a filename:

$ ruby my_code.rb

This command will cause the Ruby interpreter to load the my_code.rb file, parse
it, and then execute it.

If the file has a syntax error, Ruby will attempt to locate the error and suggest
where the problem is.

Here’s an example:

rubyworld/syntax_error.rb

class HasAnError
def this_method_ends
p "it sure does"”
end

def this_doesnt_end
return "a thing"

http://media.pragprog.com/titles/ruby5/code/rubyworld/syntax_error.rb

def this_one_1is_also_right
p Vlfinell
end
end

sh: code/rubyworld/syntax_error.rb:12: syntax error, unexpected end-of-input,
expecting 'end' or dummy end (SyntaxError)

Ruby notices the error—a missing end—and attempts to find the actual
location of the item missing the end. In this case, it gets it right.

Any options after the command ruby are sent to the Ruby interpreter. The Ruby
interpreter options end with the first word on the command line that doesn’t
start with a hyphen or with the special flag -- (two hyphens).

There are ways to invoke the Ruby interpreter without passing it a filename.
One way is to use the -e command-line option, which executes one line of
script.

This lets us use Ruby as a powerful command-line calculator. Here’s a one-
liner that returns the first five square numbers:

ruby -e "p (1..5).map { _1 ** 2 }"
[1, 4, 9, 16, 25]

When you do this, remember that the command you run needs to be a string
and that you have to print it, or you won’t see the result.

You can also pipe a file into the command using Unix standard input and then
access that file using Kernel#gets:

ruby -e 'puts "line: #{gets}"' < testfile

That works swimmingly, but it only processes the first line of the file.
However, we can use Ruby’s while expression clause to loop over the file in a
single line:

$ ruby -e 'puts "line: #{S_}" while gets' < testfile
line: This is line one

line: This is line two
line: This is line three
line: And so on...

In this snippet, we’re not only taking advantage of the while clause, we’re also
using the Ruby global $_, which contains the most recent text read in by a gets
call. So, the while gets reads the line and puts it in $_ and the body of the
statement prints out the line.

Still, that while at the end seems kind of awkward for something you might do
often. If only there were some kind of shortcut:

$ ruby -ne ‘puts "line: #{S_}"' < testfile
line: This is line one

line: This is line two

line: This is line three

line: And so on...

The -n command-line option wraps whatever else is sent to the Ruby
interpreter in a while gets; <INPUT>; end loop. This is frequently a single line
passed in using -e, but it doesn’t have to be. You could have a script file that
processes a single line of input and use -n to apply that script to an entire input.

Now, looking at it, that puts statement seems like boilerplate, and it turns out
there’s a shortcut for that as well...sort of:

ruby -pe '"line: #{S }"' < testfile
This is line one

This is line two

This is line three

And so on...

The -p option behaves like n but also prints the line as it is being input, not the
line that we’re processing, which is sometimes helpful.

There’s one more twist to the looping input, which is -a for auto-split mode.
With -a set, the incoming gets line is automatically split using String#split, and
the result goes into the global $F. The default delimiter is space, but you can

set a delimiter with the command-line option -F, as in -F"\n". So this code uses -
a to split the line from the input:

$ ruby -nae ‘puts "line: #{SF}"' < testfile
line: ["This", "is", "line", "one"

line: ["This", "is", "line", "two"]

line: ["This", "is", "line", "three"]

line: ["And", "so", "on..."]

And this code uses -F to also set a custom delimiter:

$ ruby -F"i" -nae 'puts "line: #{SF}"' < testfile
line: ["Th", "s ", "s 1", "ne one\n"]

line: ["Th", "s ", "s 1", "ne two\n"]

line: ["Th", "s ", "s 1", "ne three\n"]

line: ["And so on...\n"]

And just to clear one thing up—the options can be stacked if they don’t have
any arguments, so -nae is identical to -n -a -e.

If no filename is present on the command line or if the filename is a single
hyphen, Ruby reads the program source from standard input.

Arguments for the program itself follow the program name:
$ ruby -w - "Hello World"

In this snippet, -w will enable warnings, and then Ruby will read a program
from standard input, and pass that program the string "Hello World" as an
argument. We’ll talk in a moment about how to deal with incoming command-
line arguments.

Ruby Command-Line Options

Following is a complete list of Ruby’s command-line options roughly
organized by functionality.

Options That Determine What Ruby Runs

-0foctal]
The 0 flag (the digit zero) specifies the record separator character (\0,
if no digit follows). -00 indicates paragraph mode: records are

separated by two successive default record separator characters. 0777
reads the entire file at once (because it’s an illegal character). Sets $/.

-a
Autosplit mode when used with -n or -p; equivalent to executing $F =
$_.split at the top of each loop iteration.
-C
Checks syntax only; does not execute the program.
--copyright
Prints the copyright notice and exits.
-e ‘command’

Executes command as one line of Ruby source. Several -es are
allowed, and the commands are treated as multiple lines in the same
program. If programfile is omitted when -e is present, execution stops
after the -e commands have been run. Programs that run using -e can
use ranges and regular expressions in conditions—ranges of integers
compare against the current input line number, and regular expressions
match against $_.

-F pattern

Specifies the input field separator ($;) used as the default for split
(affects the -a option).

-h, --help

Displays a short help screen.

Enables automatic line-ending processing; sets $\ to the value of $/ and
chops every input line automatically.

=N
Assumes a while gets; ...; end loop around your program. For example, a
simple grep command could be implemented as follows:
$ ruby -n -e "print if /wombat/" *.txt
P

Places your program code within the loop while gets; ...; print; end.

$ ruby -p -e "S .downcase!" *.txt

--version
Displays the Ruby version number and exits.

Options That Change the Way the Interpreter Works

--backtrace-limit=num
Sets a limit on the number of lines of backtrace that are sent to
standard error when the program sends a backtrace (when the program
terminates unexpectedly, for example). The default value is -1,
meaning unlimited backtrace.

-Cdirectory
Changes working directory to directory before executing.

-d, --debug

Sets $DEBUG and $VERBOSE to true. This can be used by your programs
to enable additional tracing.

--disable={FEATURE}
Disables one of the features described in Features That Can Be
Enabled or Disabled.

-Eex[:in], --encoding=ex[:in], external-encoding=encoding, internal-encoding=encoding
Specifies the default character encoding for data read from and written
to the outside world. This can be used to set both the external encoding
(the encoding to be assumed for file contents) and optionally the
default internal encoding (the file contents are transcoded to this when
read and transcoded from this when written). The format of the single
encoding parameter is -E external, -E external:internal, Ot -E :internal.

-l directories
Specifies directories to be prepended to $LOAD_PATH ($:). Multiple -I
options may be present. Multiple directories may appear following
each -1, separated by a colon on Unix-like systems and by a semicolon
on DOS/Windows systems.

-i [extension]
Edits ARGV files in place. For each file named in ARGV, anything you

write to standard output will be saved back as the contents of that file.
A backup copy of the file will be made if the extension is supplied, as
in the following code sample:

$ ruby -pi.bak -e "gsub(/Perl/, 'Ruby')" *.txt

-Jit, --rjit, --yjit
Enables one of the two just-in-time compilers available in Ruby. The
Rust-based compiler can be enabled with --jit or --yjit, while the
experimental Ruby-based version can be enabled with --rjit. Ruby
versions prior to 3.3 also had -mjit. The JIT compilers are designed to

improve program performance in long-running Ruby applications.
Both compilers have several of their own command-line options.

-r library

Requires the named library or gem before executing.

Looks for the program file using the RUBYPATH or PATH environment
variable.

Any command-line switches found after the program filename, but
before any filename arguments or before a --, are removed from ARGV

and set to a global variable named for the switch. In the following
example, the effect of this would be to set the variable $opt to "electric":

$ ruby -s prog -opt=electric ./mydata

-v, --verbose

Sets $VERBOSE to true, which enables verbose mode. Also prints the

version number. In verbose mode, compilation warnings are printed. If
no program filename appears on the command line, Ruby exits.

Enables warning mode, which is like verbose mode, except it reads the
program from standard input if no program files are present on the
command line. We recommend running your Ruby programs with -w.

-W level

Sets the level of warnings issued. With a level of 2 (or with no level
specified), which is the equivalent to -w, additional warnings are given.
If level is 1, it runs at the standard (default) warning level. With -wo,
absolutely no warnings are given (including those issued using
Object.warn).

-x [directory]

Strips off text before #!ruby line and changes working directory to
directory 1f given.

Other Options

--dump option...
Tells Ruby to dump various items of internal state. options... is a

comma or space separated list containing one or more of insns,
insns_without_opt, parsetree, parsetree_with_comment, and yydebug. This is
intended for Ruby core developers.

Features That Can Be Enabled or Disabled

All of these features can be explicitly enabled or disabled from the
command line, using an option such as --enable=gems or --

disable=did_you_mean.

did_you_mean
When enabled, a NameError will also show the results of a search of the
receiving object for similarly named messages that might have been
the intended message. Helpful when you can’t remember the name of
the message you want. Enabled by default.

error_highlight
When enabled, error messages will have arrows highlighting the exact
part of the line where the error was triggered. Useful in tracking down
errors in a long line of code that chains multiple method calls. Enabled
by default.

frozen-string-literal
When enabled, acts as if the magic comment # frozen_string_literal: true

is placed at the front of all Ruby files. This comment causes all string
literals to be implicitly frozen without freeze being called on them.

Disabled by default.

gems
Stops Ruby from automatically loading RubyGems from require.

Enabled by default.

rjit
Enables the rjit compiler. Disabled by default.

rubyopt
Prevents Ruby from examining the RUBYOPT environment variable. You
should probably disable this in an environment you want to secure.
Enabled by default.

syntax_suggest
Enables the syntax_suggest tool which provides better handling of
syntax errors when code is loaded.

yjit
Enables the yjit compiler. Disabled by default.

Making Your Code an Executable Program

It’s a little clunky to have to call ruby my_code.rb when you want to run your
code; it’d be easier if you could use my_code.rb. This is more of an operating
system tip than a Ruby tip, but on Unix systems, this is doable with just a
couple of steps.

First, you need to make the file executable by changing the mode of the file.
To oversimplify slightly, the mode of the file is metadata that determines if
the current user can read from, write to, or execute a given file. Typically,
on a Unix-based system, the command to make a file executable is chmod +x
<FILENAME>. The chmod command is Unix-speak for “change the mode of the
file,” +x means “make it executable,” and FILENAME is the filename. For

more on the Unix command line, see Appendix 3, Command-Line Basics.

Having made the file executable, we also need to tell Unix what it means
for the file to be executable. For a Ruby script, what we mean is “run this
file through the Ruby runtime”. And we tell that to the Unix system through
a special comment on the first line of the file that starts with #! and contains

the name of an interpreter program that should be used to run the file. (This
comment is often referred to as “shebang” because the two characters that
make it up are the #, which is a musical sharp, and !, which coders often call

C‘bang,’.)

In most cases, the shebang command you use to invoke Ruby can look like
this:

#!/usr/bin/env ruby
Ruby code goes here

The path /usr/bin/env is, for weird Unix reasons, a common cross-platform
way to ensure you’re running the proper shell and ruby is the Ruby

interpreter. (You can use other ways to specify the Ruby interpreter, but this
is the most recommended way to have the script run in most common Unix
setups.)

Anyway, once you’ve done both these steps, you can invoke your script
directly:

$ my_code.rb

If for some reason you want to send command-line options to Ruby itself
(for example, you might want to run in warning mode), you can do so by
setting an environment variable called RUBYOPTS:

RUBYOPTS="-w" my_code.rb

The Ruby interpreter will, by default, look in that environment variable for
options before it starts.

Any arguments after the filename are passed to the Ruby code itself, so this
would be a good time to show how to access those arguments...

Processing Command-Line Arguments to Your
Code

Just as you can pass arguments to methods in your Ruby code, you can pass
arguments from the command line to the Ruby script itself. Ruby provides
mechanisms for capturing arguments passed to the script and allowing you to
read and parse them as part of your script.

ARGV

Any command-line arguments after the program filename are available to your
Ruby program in the global array ARGV. For instance, assume test.rb contains

the following program:
ARGV.each { |arg]| p arg }

If you invoke it with the following command line:
$ ruby -w test.rb "Hello World" al 1.6180

It’1l generate the following output:

"Hello World"
”al n
"1.6180"

There’s a gotcha here for all you C programmers. In Ruby, ARGV[0] 1s the first
argument to the program, not the program name. The name of the current
program is available in the global variable $0, which is aliased to
$PROGRAM_NAME. All the values in ARGV are strings.

If your program reads from standard input (or uses the special object ARGF,
described in the next section), the arguments in ARGV will be taken to be

filenames, and Ruby will read from these files. If your program takes a
mixture of arguments and filenames, make sure you empty the nonfilename
arguments from the ARGV array before reading from the files.

ARGF

It’s common for a command-line program to take a list of zero or more
filenames to process. It’1l then read through these files in turn, doing whatever
it does. Imagine a command that takes a list of log files and processes them
line by line, like process.rb log1 log2 log3. It’d be handy to be able to treat all the

log file arguments as a single logical file object.

Ruby provides a convenience object, referenced by the name ARGF, that
handles access to these files, allowing you to treat the files as a single stream.
The data for the ARGF object is taken from the values in ARGV. The assumption
is that when you use ARGF all the elements in the ARGV array are filenames.
This means that any nonfilename arguments need to be removed from the
ARGV array before you start reading from them using ARGF. Conversely, any
filenames you add to ARGV in your code will be available to ARGF just as

though they were supplied in the command line. We recommend that you do
any ARGV manipulation before you start reading from ARGF.

The ARGF object defines most of the same read methods that 10 does, including
gets, read, and readline. If you read from ARGF, Ruby will open the file whose
name is the first element of ARGV and perform the I/O on it. If, as you continue
to read, you reach the end of that file, Ruby closes it, shifts it out of the ARGV

array, and then opens the next file in the list. At some point, when you’ve
finished reading from the last file, ARGF will return an end-of-file condition (so

gets will return nil, for example). If ARGV is initially empty, ARGF will read from
standard input.

You can get to the name of the file currently being read from using
ARGF.filename, and you can get the current File object as ARGF.file. ARGF keeps
track of the total number of lines read in ARGF.lineno—if you need the line
number in the current file, use ARGV.file.lineno. Here’s a program that uses this
information:

while (line = gets)
printf "%d: %10s[%d] %s", ARGF.lineno, ARGF.filename, ARGF.file.lineno, line

end

If we run it, passing a couple of filenames, it’ll copy the contents of those
files.

$ ruby copy.rb testfile otherfile
1 testfile[1] This is line one
2: testfile[2] This is line two
3: testfile[3] This is 1line three
4 testfile[4] And so on...

5 otherfile[1] ANOTHER LINE ONE

6 otherfile[2] AND ANOTHER LINE TWO

7 otherfile[3] AND FINALLY THE LAST LINE

In-Place Editing of ARGF Files

In-place editing is a hack inherited from Perl. It allows you to alter the
contents of files passed in on the command line, retaining a backup copy of
the original contents.

To turn on in-place editing, give Ruby the file extension to use for the backup
file, either with the -i [_ext_] command-line option or by calling
ARGF.inplace_mode=_ext_ in your code.

Now, as your code reads through each file given on the command line, Ruby
will rename the original file by appending the backup extension. It’ll then
create a new file with the original name and open it for writing on standard
output. For example, you might code a program like this:

while (line = gets)
puts line.chomp.reverse
end
You invoke it like this:

$ ruby -i.bak reverse.rb testfile otherfile

The result is that testfile and otherfile would now have reversed lines and the
original files would be available in testfile.bak and otherfile.bak.

For finer control over the I/O to these files, you can use the methods provided
by ARGF. They’re rarely used, so rather than document them here, we’ll refer
you to the online documentation.

Option Parsing

It’s quite handy that Ruby packages up all the options into the ARGV array. If

you have a complex script, and you want your script to use conventional
patterns of options, where there’s something like -a true --database sqlite, then
the ARGV array isn’t enough. You’d also like to be able to respond to these
op