

Simple Object-Oriented Design

Create clean, maintainable applications

Maurício Aniche

To comment go to liveBook

https://livebook.manning.com/#!/book/simple-object-oriented-design/discussion

Manning

Shelter Island

For more information on this and other Manning titles go to

www.manning.com

https://www.manning.com/

Copyright

For online information and ordering of these and other
Manning books, please visit www.manning.com. The publisher
offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department

Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

©2024 by Manning Publications Co. All rights reserved.

https://www.manning.com/
mailto:orders@manning.com

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means
electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

♾ Recognizing the importance of preserving what has been

written, it is Manning’s policy to have the books we publish
printed on acid-free paper, and we exert our best efforts to that
end. Recognizing also our responsibility to conserve the
resources of our planet, Manning books are printed on paper
that is at least 15 percent recycled and processed without the
use of elemental chlorine.

Manning Publications Co.
20 Baldwin Road
PO Box 761

Shelter Island, NY 11964

Development editor: Toni Arritola

Technical editor: Matthias Noback

Review editor: Isidora Isakov

Production editor: Keri Hales

Copy editor: Tiffany Taylor

Proofreader: Katie Tennant

Technical proofreader: Srihari Sridharan

Typesetter: Gordan Salinović

Cover designer: Marija Tudor

ISBN: 9781633437999

dedication

To Laura, Thomas, Bono, and Duke,

my lovely family/team

contents

 Front matter

preface

acknowledgments

about this book

about the author

about the cover illustration

 1 It’s all about managing complexity

https://calibre-pdf-anchor.a/#a104
https://calibre-pdf-anchor.a/#a113
https://calibre-pdf-anchor.a/#a120
https://calibre-pdf-anchor.a/#a159
https://calibre-pdf-anchor.a/#a162

 1.1 Object-oriented design and the test of time

 1.2 Designing simple object-oriented systems

Simple code

Consistent objects

Proper dependency management

Good abstractions

Properly handled external dependencies and infrastructure

Well modularized

 1.3 Simple design as a day-to-day activity

Reducing complexity is similar to personal hygiene

Complexity may be necessary but should not be permanent

Consistently addressing complexity is cost effective

High-quality code promotes good practices

Controlling complexity isn’t as difficult as it seems

Keeping the design simple is a developer’s responsibility

https://calibre-pdf-anchor.a/#a179
https://calibre-pdf-anchor.a/#a192
https://calibre-pdf-anchor.a/#a210
https://calibre-pdf-anchor.a/#a220
https://calibre-pdf-anchor.a/#a232
https://calibre-pdf-anchor.a/#a242
https://calibre-pdf-anchor.a/#a251
https://calibre-pdf-anchor.a/#a263
https://calibre-pdf-anchor.a/#a275
https://calibre-pdf-anchor.a/#a279
https://calibre-pdf-anchor.a/#a283
https://calibre-pdf-anchor.a/#a286
https://calibre-pdf-anchor.a/#a294
https://calibre-pdf-anchor.a/#a300
https://calibre-pdf-anchor.a/#a305

Good-enough designs

 1.4 A short dive into the architecture of an information
system

 1.5 The example project: PeopleGrow!

 1.6 Exercises

 2 Making code small

https://calibre-pdf-anchor.a/#a312
https://calibre-pdf-anchor.a/#a320
https://calibre-pdf-anchor.a/#a320
https://calibre-pdf-anchor.a/#a348
https://calibre-pdf-anchor.a/#a370

 2.1 Make units of code small

Break complex methods into private methods

Move a complex unit of code to another class

When not to divide code into small units

Get a helicopter view of the refactoring before you do it

Example: Importing employees

 2.2 Make code readable and documented

Keep looking for good names

Document decisions

Add code comments

Example: Deciding when to send an update email

 2.3 Move new complexity away from existing classes

Give the complex business logic a class of its own

Break down large business flows

Example: Waiting list for offerings

https://calibre-pdf-anchor.a/#a398
https://calibre-pdf-anchor.a/#a415
https://calibre-pdf-anchor.a/#a432
https://calibre-pdf-anchor.a/#a443
https://calibre-pdf-anchor.a/#a455
https://calibre-pdf-anchor.a/#a466
https://calibre-pdf-anchor.a/#a631
https://calibre-pdf-anchor.a/#a637
https://calibre-pdf-anchor.a/#a658
https://calibre-pdf-anchor.a/#a673
https://calibre-pdf-anchor.a/#a693
https://calibre-pdf-anchor.a/#a757
https://calibre-pdf-anchor.a/#a766
https://calibre-pdf-anchor.a/#a780
https://calibre-pdf-anchor.a/#a799

 2.4 Exercises

 3 Keeping objects consistent

https://calibre-pdf-anchor.a/#a891

 3.1 Ensure consistency at all times

Make the class responsible for its consistency

Encapsulate entire actions and complex consistency checks

Example: The Employee entity

 3.2 Design effective data validation mechanisms

Make preconditions explicit

Create validation components

Use nulls carefully or avoid them if you can

Example: Adding an employee to a training offering

 3.3 Encapsulate state checks

Tell, don’t ask

Example: Available spots in an offering

 3.4 Provide only getters and setters that matter

Getters that don’t change state and don’t reveal too much to

https://calibre-pdf-anchor.a/#a925
https://calibre-pdf-anchor.a/#a932
https://calibre-pdf-anchor.a/#a941
https://calibre-pdf-anchor.a/#a956
https://calibre-pdf-anchor.a/#a1056
https://calibre-pdf-anchor.a/#a1064
https://calibre-pdf-anchor.a/#a1086
https://calibre-pdf-anchor.a/#a1105
https://calibre-pdf-anchor.a/#a1141
https://calibre-pdf-anchor.a/#a1235
https://calibre-pdf-anchor.a/#a1249
https://calibre-pdf-anchor.a/#a1260
https://calibre-pdf-anchor.a/#a1288
https://calibre-pdf-anchor.a/#a1298

clients

Setters only to attributes that describe the object

Example: Getters and setters in the Offering class

 3.5 Model aggregates to ensure invariants in clusters of
objects

Don’t break the rules of an aggregate root

Example: The Offering aggregate

 3.6 Exercises

 4 Managing dependencies

https://calibre-pdf-anchor.a/#a1298
https://calibre-pdf-anchor.a/#a1314
https://calibre-pdf-anchor.a/#a1326
https://calibre-pdf-anchor.a/#a1360
https://calibre-pdf-anchor.a/#a1360
https://calibre-pdf-anchor.a/#a1377
https://calibre-pdf-anchor.a/#a1391
https://calibre-pdf-anchor.a/#a1487

 4.1 Separate high-level and low-level code

Design stable code

Interface discovery

When not to separate the higher level from the lower level

Example: The messaging job

 4.2 Avoid coupling to details or things you don’t need

Only require or return classes that you own

Example: Replacing the HTTP bot with the chat SDK

Don’t give clients more than they need

Example: The offering list

 4.3 Break down classes that depend on too many other classes

Example: Breaking down the MessageSender service

 4.4 Inject dependencies, aka dependency injection

Avoid static methods for operations that change the state

Always inject collaborators: Everything else is optional

https://calibre-pdf-anchor.a/#a1519
https://calibre-pdf-anchor.a/#a1531
https://calibre-pdf-anchor.a/#a1539
https://calibre-pdf-anchor.a/#a1548
https://calibre-pdf-anchor.a/#a1556
https://calibre-pdf-anchor.a/#a1627
https://calibre-pdf-anchor.a/#a1641
https://calibre-pdf-anchor.a/#a1655
https://calibre-pdf-anchor.a/#a1677
https://calibre-pdf-anchor.a/#a1687
https://calibre-pdf-anchor.a/#a1722
https://calibre-pdf-anchor.a/#a1730
https://calibre-pdf-anchor.a/#a1807
https://calibre-pdf-anchor.a/#a1817
https://calibre-pdf-anchor.a/#a1827

Strategies to instantiate the class together with its dependencies

Example: Dependency injection in MessageSender and
collaborators

 4.5 Exercises

 5 Designing good abstractions

https://calibre-pdf-anchor.a/#a1834
https://calibre-pdf-anchor.a/#a1841
https://calibre-pdf-anchor.a/#a1841
https://calibre-pdf-anchor.a/#a1850

 5.1 Design abstractions and extension points

Identifying the need for an abstraction

Designing an extension point

Attributes of good abstractions

Learn from your abstractions

Learn about abstractions

Abstractions and coupling

Example: Giving badges to employees

 5.2 Generalize important business rules

Separate the concrete data from the generalized business rule

Example: Generalizing the badge rules

 5.3 Prefer simple abstractions

Rules of thumb

Simple is always better

Enough is enough

https://calibre-pdf-anchor.a/#a1884
https://calibre-pdf-anchor.a/#a1893
https://calibre-pdf-anchor.a/#a1906
https://calibre-pdf-anchor.a/#a1917
https://calibre-pdf-anchor.a/#a1930
https://calibre-pdf-anchor.a/#a1939
https://calibre-pdf-anchor.a/#a1944
https://calibre-pdf-anchor.a/#a1952
https://calibre-pdf-anchor.a/#a2122
https://calibre-pdf-anchor.a/#a2132
https://calibre-pdf-anchor.a/#a2146
https://calibre-pdf-anchor.a/#a2235
https://calibre-pdf-anchor.a/#a2240
https://calibre-pdf-anchor.a/#a2248
https://calibre-pdf-anchor.a/#a2254

Don’t be afraid of modeling abstractions from day one

Example: Revisiting the badge example

 5.4 Exercises

 6 Handling external dependencies and infrastructure

https://calibre-pdf-anchor.a/#a2264
https://calibre-pdf-anchor.a/#a2268
https://calibre-pdf-anchor.a/#a2276

 6.1 Separate infrastructure from the domain code

Do you need an interface?

Hide details from the code, not from the developers

Changing the infrastructure someday: Myth or reality?

Example: Database access and the message bot

 6.2 Use the infrastructure fully

Do your best not to break your design

Example: Cancelling an enrollment

 6.3 Only depend on things you own

Don’t fight your frameworks

Be aware of indirect leakage

Example: Message bot

 6.4 Encapsulate low-level infrastructure errors into high-level

https://calibre-pdf-anchor.a/#a2313
https://calibre-pdf-anchor.a/#a2325
https://calibre-pdf-anchor.a/#a2349
https://calibre-pdf-anchor.a/#a2361
https://calibre-pdf-anchor.a/#a2377
https://calibre-pdf-anchor.a/#a2424
https://calibre-pdf-anchor.a/#a2430
https://calibre-pdf-anchor.a/#a2441
https://calibre-pdf-anchor.a/#a2558
https://calibre-pdf-anchor.a/#a2572
https://calibre-pdf-anchor.a/#a2591
https://calibre-pdf-anchor.a/#a2601
https://calibre-pdf-anchor.a/#a2627

domain errors

Example: Handling exceptions in SDKBot

 6.5 Exercises

 7 Achieving modularization

https://calibre-pdf-anchor.a/#a2627
https://calibre-pdf-anchor.a/#a2634
https://calibre-pdf-anchor.a/#a2670

 7.1 Build deep modules

Find ways to reduce the effects of changes

Keep refining your domain boundaries

Keep related things close

Fight accidental coupling, or document it when you can’t

 7.2 Design clear interfaces

Keep the module’s interface simple

Backward-compatible modules

Provide clean extension points

Code as if your module will be used by someone with different

https://calibre-pdf-anchor.a/#a2700
https://calibre-pdf-anchor.a/#a2713
https://calibre-pdf-anchor.a/#a2721
https://calibre-pdf-anchor.a/#a2730
https://calibre-pdf-anchor.a/#a2739
https://calibre-pdf-anchor.a/#a2750
https://calibre-pdf-anchor.a/#a2763
https://calibre-pdf-anchor.a/#a2773
https://calibre-pdf-anchor.a/#a2787
https://calibre-pdf-anchor.a/#a2796

needs

Modules should have clear ownership and engagement rules

 7.3 No intimacy between modules

Make modules and clients responsible for the lack of intimacy

Don’t depend on internal classes

Monitor the web of dependencies

Monoliths or microservices?

Consider events as a way to decouple modules

Example: The notification system

 7.4 Exercises

 8 Being pragmatic

https://calibre-pdf-anchor.a/#a2796
https://calibre-pdf-anchor.a/#a2806
https://calibre-pdf-anchor.a/#a2837
https://calibre-pdf-anchor.a/#a2844
https://calibre-pdf-anchor.a/#a2851
https://calibre-pdf-anchor.a/#a2869
https://calibre-pdf-anchor.a/#a2877
https://calibre-pdf-anchor.a/#a2883
https://calibre-pdf-anchor.a/#a2891
https://calibre-pdf-anchor.a/#a2940

 8.1 Be pragmatic and go only as far as you must

 8.2 Refactor aggressively but in small steps

 8.3 Accept that your code won’t ever be perfect

 8.4 Consider redesigns

 8.5 You owe this to junior developers

 8.6 References

 8.7 Exercises

 index

https://calibre-pdf-anchor.a/#a2975
https://calibre-pdf-anchor.a/#a2980
https://calibre-pdf-anchor.a/#a2989
https://calibre-pdf-anchor.a/#a2995
https://calibre-pdf-anchor.a/#a3006
https://calibre-pdf-anchor.a/#a3012
https://calibre-pdf-anchor.a/#a3050

front matter

ce

Why write another book on object-oriented design when so
many are out there? This was the question I had to answer for
myself before embarking on this project.

We already possess a wealth of knowledge about object-
oriented design from the early works of Dave Parnas, Grady
Booch’s books on UML and object-oriented analysis, and Eric
Evans’ domain-driven design approach. However, object-
oriented design is not merely a pure engineering task; it
transcends into art. No prescribed sequence of steps will
unfailingly lead us to an optimal design. Instead, object-
oriented design demands a creative approach.

This book delves into object-oriented design from two specific
angles: how to prevent the complexity of a system from
skyrocketing and how to achieve “good-enough” designs.

First, most of a developer’s work revolves around maintaining
and evolving existing systems. Unfortunately, without due care,
every time you make changes to a software system, it becomes
more complex, even if it is well designed from the outset.

Therefore, this book greatly emphasizes how to combat the
natural growth in complexity.

Second, more often than not, you initially have limited
knowledge about what you’re building. Despite your best
efforts, your first design may fall short. However, that’s
acceptable if you arrive at a good-enough design. The purpose
of this book is not to lead you to always achieve the absolute
best possible design, but to enable you to create good designs
that empower you to build software effectively.

If you are familiar with the existing literature on object-
oriented design, you will recognize many of the principles
discussed here. Much of my perspective on good modeling has
been inspired by existing work. However, I’ve infused my own
flavor into these ideas. I hope even seasoned developers can
glean a thing or two from this book.

Happy reading!

owledgments

First, I want to thank Dr. Ismar Frango Silveira. Ismar was the
teacher of my first-ever formal course on object-oriented design
during my undergrad studies back in 2004. The class was an
eye-opener for me. Since then, I’ve been working diligently to

sharpen my skills, but his instruction was the foundation.
Although it’s been a long time since we spoke last, I’ve never
forgotten his contribution to my career.

I would also like to thank Alberto Souza. Besides being one of
my best friends in life, Alberto loves good code as much as I do.
Despite living one ocean apart, we still find ways to keep in
touch not only about life but also about software engineering.
Our conversations have always kept me sharp, and many of my
thoughts on class design are influenced by his point of view.

I would like to express my gratitude to Toni Arritola, my
development editor at Manning. She has been a great partner
on this journey, offering numerous valuable suggestions and
being an attentive listener. Whenever I was running low in
energy, she consistently provided me with a fresh boost. I also
must thank Matthias Noback, trainer and consultant at
Noback’s Office, who was the technical editor for this book. He
made many insightful comments that were very helpful. In
addition, many thanks go to the behind-the-scenes production
staff who helped create this book in its final form.

To all the reviewers—Adail Retamal, Amit Lamba, Brent
Honadel, Colin Hastie, Daivid Morgan, Emanuele Origgi, George
Onofrei, Gilbert Beveridge, Goetz Heller, Harsh Raval, Helder da

Rocha, Iago Sanjurjo Alvarez, Ismail Tapaal, Juan Durillo, Karl
van Heijster, Laud Bentil, Marcus Geselle, Mikael Byström,
Mustafa Özçetin, Najeeb Arif, Narayanan Jayaratchagan, Nedim
Bambur, Nghia To, Nguyen Tran Chau Giang, Oliver Korten,
Patrice Maldague, Peter Szabo, Ranjit Sahai, Robert Trausmuth,
Sebastian Palma, Sergio Gutierrez, and Victor Durán—thank
you. Your suggestions helped make this a better book. A special
thank you goes to Paulo Afonso Parreira, Jr., who sent me very
helpful, detailed feedback on the manuscript.

Finally, I would like to thank Laura, my wife. She always
supports whatever project I decide to start. Without her
support, none of this would be possible.

t this book

Simple Object-Oriented Design presents a set of principles that
help developers keep the complexity of their designs under
control—in other words, keep it simple. The principles can be
grouped into six higher-level ideas:

Small units of code
Consistent objects
Proper dependency management
Good abstractions

Properly handled infrastructure
Well modularized

should read this book

Simple Object-Oriented Design is a book for software developers
who want to sharpen their object-oriented design skills. We
discuss code complexity, consistency and encapsulation,
dependency management, designing abstractions, handling
infrastructure, and modularization in depth. If you are an
advanced developer who is familiar with similar approaches,
such as clean architecture, you’ll still benefit from this book’s
unique perspective.

Readers must have basic knowledge of object-oriented concepts
such as classes, polymorphism, and interfaces. The code
examples are written in pseudo-Java code but can be
understood by developers familiar with any object-oriented
programming language such as C#, Python, or Ruby.

this book is organized: A road map

This book contains object-oriented design principles derived
from my experience. The principles are grouped into six
dimensions (complexity, consistency, dependency management,

abstractions, infrastructure, and modularization), one per
chapter.

Principles are first introduced theoretically and later illustrated
with code examples. No new ideas are introduced in the code
examples, so more experienced readers can skip them if they
wish. You’ll also notice that the examples are small in terms of
lines of code and complexity. It’s impractical to illustrate all the
principles in this book with real-world examples from large-
scale software systems. Instead, I demonstrate the ideas with
small snippets, and it’s up to you, the reader, to generalize the
idea.

I do my best to provide context, pros and cons, tradeoffs, and
when and when not to apply the principles. Nevertheless, as
with any best practice, you should consider your context and
not blindly adopt what you find here.

Chapters end with a few exercises in which I ask you to discuss
the ideas covered in that chapter with a colleague. They are
broad and open on purpose. I don’t provide answers to these
questions because there are no one-size-fits-all responses.

Chapter 1 introduces why systems become complex over time,
why we must continuously combat the growth of complexity,

and why this endeavor is less painful than it may seem. Then,
chapters 2–7 delve into the six higher-level ideas.

Chapter 2 discusses the importance of keeping code simple. In a
nutshell, it covers how to break large units of code into smaller
pieces, isolate new complexity from existing code units, and
document code effectively to improve understanding.

Chapter 3 focuses on maintaining objects’ consistency at all
times. It explores the problems that arise when objects fall into
an inconsistent state and how to implement validation
mechanisms that ensure objects remain consistent throughout.

Chapter 4 delves into dependencies and how managing them
properly is fundamental for a simple design. It explains how to
reduce the effect of coupling in the design, how to model stable
classes that are less likely to change, and why dependency
injection is crucial for effective dependency management.

Chapter 5 discusses abstractions and how to design them to
facilitate software system evolution without altering numerous
classes each time.

Chapter 6 concentrates on handling infrastructure code without
compromising the design. The chapter explains how to

decouple infrastructure code from the domain, allowing
changes in one without affecting the other.

Chapter 7 explores modularity: specifically, how to design
modules that provide complex features through simple
interfaces, how to minimize dependencies among modules, and
the importance of defining ownership and engagement rules.

Chapter 8 offers some final advice about the importance of
being pragmatic, the necessity for continuous refactoring, and
the value of perpetual learning about object-oriented design.

t the code

This book contains many examples of source code both in
numbered listings and in line with normal text. In both cases,
source code is formatted in a fixed-width font like
this to separate it from ordinary text.

In many cases, the original source code has been reformatted;
we’ve added line breaks and reworked indentation to
accommodate the available page space in the book.
Additionally, comments in the source code have often been
removed from the listings when the code is described in the
text. Code annotations accompany many of the listings,
highlighting important concepts.

ook discussion forum

Purchase of Simple Object-Oriented Design includes free access
to liveBook, Manning’s online reading platform. Using
liveBook’s exclusive discussion features, you can attach
comments to the book globally or to specific sections or
paragraphs. It’s a snap to make notes for yourself, ask and
answer technical questions, and receive help from the author
and other users. To access the forum, go to
https://livebook.manning.com/book/simple-object-oriented-
design/discussion. You can also learn more about Manning’s
forums and the rules of conduct at
https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue
where a meaningful dialogue between individual readers and
between readers and the author can take place. It is not a
commitment to any specific amount of participation on the part
of the author, whose contribution to the forum remains
voluntary (and unpaid). We suggest you try asking him some
challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.

https://livebook.manning.com/book/simple-object-oriented-design/discussion
https://livebook.manning.com/book/simple-object-oriented-design/discussion
https://livebook.manning.com/discussion

r online resources

If you want to continue reading my thoughts on object-oriented
design and software testing, subscribe to my newsletter:
https://effectivesoftwaretesting.substack.com.

t the author

Maurício Aniche’s mission is to help software engineers become

better and more productive. Maurício is currently a Tech Lead
at Adyen, where he leads different engineering enablement
initiatives, including Adyen’s Tech Academy, a team focused on
additional training and education for engineers. Maurício is
also an assistant professor of software engineering at Delft
University of Technology in the Netherlands. His teaching
efforts in software testing earned him the Computer Science
Teacher of the Year 2021 award and the TU Delft Education
Fellowship, a prestigious fellowship given to innovative
lecturers. He is the author of Effective Software Testing: A
Developer’s Guide (Manning, 2022).

t the cover illustration

The figure on the cover of Simple Object-Oriented Design is
“Femme de l’Isle Scio,” or “Woman of Chios Island,” taken from

https://effectivesoftwaretesting.substack.com/

a collection by Jacques Grasset de Saint-Sauveur, published in
1788. Each illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and
what their trade or station in life was just by their dress.
Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich diversity
of regional culture centuries ago, brought back to life by
pictures from collections such as this one.

1 It’s all about managing complexity

This chapter covers

Why software systems get more complex over time
The challenges of object-oriented design
Why we should keep improving our design over time

In 2010, I worked for a great internet company as part of a team
responsible for billing. The company founder wrote the first
version of the system 10 or 15 years before I joined. The logic
was all in complex SQL Server stored procedures, each of which
had thousands of lines of code. It was time to refactor this
existing billing infrastructure into something new, and I can’t
count the number of hours we spent talking to the financial
team so that we could create a design that would fit all their
current and future needs.

The great news is that we made it. With our new
implementation, we could add new products or financial rules
in hours. The financial team was very happy with us. Feature
requests that in the past took weeks now took a couple of days.
The quality was also much higher. Our design was highly
testable, so we rarely introduced regression bugs. Even our
most junior engineer could easily navigate the code and feel

confident enough to make critical changes. In a word, our new
design was simple.

I’ve been developing object-oriented software systems for 20
years and have learned that in an object-oriented system
without a proper design, even simple things are too hard. It
doesn’t have to be like this.

bject-oriented design and the test of time

Object-oriented programming is always a great choice when
implementing complex software systems where flexibility and
maintainability are requisites. However, solely picking an
object-oriented language for your project isn’t enough. You
need to make good use of it.

Luckily, we don’t have to invent best practices for object-
oriented systems from scratch, as our community already has
extensive knowledge. If you don’t know much about existing
best practices or want to revisit them, this book is perfect for
you, and you should read it cover to cover, including the code
examples. If you are already a more senior engineer and aware
of the existing best practices, this book will give you a different
and pragmatic view of them, which will hopefully trigger
interesting discussions in your mind.

Here are some common questions that emerge when almost
any developer is building an information system using an
object-oriented language:

Is this implementation simple enough, or should I propose a
more elegant abstraction?
This class goes through many states during its life cycle. How
can I ensure that it’s always in a consistent state?
How should I model the interaction between my system and
an external web app?
Is it okay to make this class depend on this other class, or is
that coupling bad?

This book is called Simple Object-Oriented Design because simple
object-oriented designs are always easier to maintain. The
challenge is not only to develop a simple design but also to keep
it that way. I learned a lot from my good and bad decisions over
the years, and that’s what I’ll share in this book: the set of
patterns that help me deliver object- oriented software systems
that are easy to maintain and evolve.

esigning simple object-oriented systems

“As software systems evolve, their complexity increases unless
work is done to maintain or reduce it.”

This insight comes from Manny Lehman’s 1984 paper, “On
understanding laws, evolution, and conservation in the large-
program life cycle” (https://dl.acm.org/doi/10.1016/0164-
1212%2879%2990022-0). Evolving software systems of any type
isn’t straightforward. We know that code tends to decay over
time and requires effort to maintain. And despite 40 years of
progress, the maintainability of software systems remains a
challenge.

In essence, maintainability is the effort you put into completing
tasks like modifying business rules, adding features, identifying
bugs, and patching the system. Highly maintainable software
enables developers to perform such tasks with reasonable
effort, whereas low maintainability makes tasks too difficult,
time consuming, and bug prone.

Many factors affect maintainability, from overly complex code
to dependency management, poorly designed abstractions, and
bad modularization. Systems naturally become more complex
over time, so continually adding code without considering its
consequences for maintenance can quickly lead to a messy
codebase.

Consistently combating complexity growth is crucial, even if it
seems time consuming. And I know it’s more effort than simply

https://dl.acm.org/doi/10.1016/0164-1212%2879%2990022-0
https://dl.acm.org/doi/10.1016/0164-1212%2879%2990022-0

“dumping code.” But trust me, developers feel much worse
when handling big balls of mud the entire day. You may have
worked on codebases that were hard to maintain. I did. Doing
anything in such systems takes a lot of time. You can’t find
where to write your code, all the code you write feels like it’s a
workaround, you can’t write automated tests because the code
is untestable, you are always afraid something will go wrong
because you never feel confident about changing the code, and
so on.

What constitutes a simple object-oriented design? Based on my
experience, it’s a design that presents the following six
characteristics, also illustrated in figure 1.1:

Simple code
Consistent objects
Proper dependency management
Good abstractions
Properly handled external dependencies and infrastructure
Well modularized

Figure 1.1 Characteristics of a simple object-oriented design

These ideas may sound familiar to you. They are all popular in
object-oriented systems. Let’s look at what I mean by each of
them and what happens when we lose control, all in a nutshell.

Simple code

Implementing methods and classes that are simple is a great
way to start your journey toward maintainable object-oriented
design. Consider a method that began as a few lines with a
handful of conditional statements but grew over time and now
has hundreds of lines and if s inside of if s. Maintaining such
a method is tricky.

Interestingly, classes and methods usually start simple and
manageable. But if we don’t work to keep them like this, they
become hard to understand and maintain, as in figure 1.2.
Complex code tends to result in bugs, which are drawn to
complex implementations that are difficult to understand.
Complex code is also challenging to maintain, refactor, and test,
as developers fear breaking something and struggle to identify
all possible test cases.

Figure 1.2 Simple code becomes complex over time and, consequently, very hard to
maintain.

There are many ways to reduce the complexity of a class or
method. For example, clear and expressive variable names help
developers better understand what’s going on. However, in this
part of the book, I argue that the number-one rule to keep
classes and methods simple is to keep them small. A method
shouldn’t be too long. A class shouldn’t have too many methods.
Smaller units of code are always easier to maintain and evolve.

Consistent objects

It’s much easier to work on a system when you can trust that
objects are always in a consistent state and any attempt to make
them inconsistent is denied. When consistency isn’t accounted
for in the design, objects may hold invalid states, leading to
bugs and maintainability problems.

Consider a Basket class in an e-commerce system that tracks
the products a person is buying and their final value. The total
value must be updated whenever we add a product to or
remove a product from the basket. The basket should also reject
invalid client requests, like adding a product more than one
time or removing a product that isn’t in the basket.

In figure 1.3, the left side shows a protected basket: items can
only be added or removed by asking the basket to do so. The

basket is in complete control and ensures its consistency. On the
right side, the unprotected basket allows unrestricted access to
its contents. Given the lack of control, that basket can’t always
ensure consistency.

Figure 1.3 Two baskets: one that has control over the actions that happen on it and
another that doesn’t. Managing state and consistency is fundamental.

We’ll see that a good design ensures that objects can’t ever be in
an inconsistent state. Consistency can be mishandled in many
ways, such as improper setter methods that bypass consistency
checks or a lack of flexible validation mechanisms, which we’ll
discuss in more detail later.

Proper dependency management

In large-scale object-oriented systems, dependency
management becomes critical to maintainability. In a system
where the coupling is high and no one cares which classes are
coupled to which other classes, any simple change may have
unpredicted consequences.

Figure 1.4 shows how the Basket class may be affected by
changes in any of its dependencies: DiscountRules ,
Product , and Customer . Even a change in
DiscountRepository , a transitive dependency, may affect
Basket . For example, if the Product class changes
frequently, Basket is always at risk of having to change as
well.

Figure 1.4 Dependency management and change propagation

Simple object-oriented designs aim to minimize dependencies
among classes. The less they depend on each other and the less
they know about each other, the better. Good dependency
management also ensures that classes depend as much as
possible on stable components that are less likely to change
and, therefore, less likely to provoke cascading changes.

Good abstractions

Simple code is always preferred, but it may not be sufficient for
extensibility. Extending a class by adding more code stops being
effective at some point and becomes a burden.

Imagine implementing 30 or 40 different business rules in the
same class or method. I illustrate that in figure 1.5. Note how
the DiscountRules class, a class that’s responsible for
applying different discounts in our e-commerce system, grows
as new discount rules are introduced, making the class much
harder to maintain. A good design provides developers with
abstractions that help them evolve the system without making
existing classes more complex.

Figure 1.5 A class that has no abstractions grows in complexity indefinitely.

Properly handled external dependencies and
infrastructure

Simple object-oriented designs separate domain code that
contains business logic from code required for communication
with external dependencies. Figure 1.6 shows domain classes
on the left and the classes that handle communication with
other systems and infrastructure on the right.

Figure 1.6 The architecture of a software system that separates infrastructure from
domain code

Letting infrastructure details leak into your domain code may
hinder your ability to make changes in the infrastructure.
Imagine that all the code to access the database is spread
through the codebase. Now you must add a caching layer to
speed up the application’s response time. You may have to
change the code everywhere for that to happen.

The challenge lies in abstracting irrelevant or external aspects
of your infrastructure while using valuable features provided

by the infrastructure. For instance, if you are using a relational
database like Postgres, you may want to hide its presence from
the domain code but still be able to use its unique features that
enhance productivity or performance.

Why do you call it infrastructure?

I use the term infrastructure to refer to any dependency on
external systems and resources such as web services,
databases, third-party APIs, and anything beyond your system’s
border. Whenever you have such a dependency, you must
write code connecting your system to the external system or
resource. We’ll focus on writing this “glue code” flexibly so it
doesn’t harm the rest of your design in chapter 6.

Well modularized

As software systems grow, fitting everything into a single
component or module is challenging. Simple object-oriented
designs divide large systems into independent components that
interact to achieve a common goal.

Dividing systems into smaller components makes them easier to
maintain and understand. It also helps different teams work on
separate components without conflicts. Smaller components are
more manageable and testable.

Consider a software system with three domains: Invoice,
Billing, and Delivery. These domains must work together, with
Invoice and Delivery requiring information from Billing.

Figure 1.7 shows a system without modules on the left, where
classes from different domains mix freely. As complexity
increases, this becomes unmanageable. The right side of the
figure shows the same system divided into modules: Billing,
Invoice, and Delivery. Modules interact through interfaces,
ensuring that clients use only what’s needed without
understanding the entire domain.

Figure 1.7 Two software systems with different modularization approaches

It’s not easy to identify the right level of granularity for a
module or what its public interface should look like. We’ll
discuss this later.

mple design as a day-to-day activity

As I said, creating a simple design isn’t usually a complex
challenge, but keeping it simple as the system evolves is. We
must keep improving and simplifying our designs as we learn
more about the system. For that to happen, we must transform
design into an everyday activity.

Reducing complexity is similar to personal hygiene

Constantly working toward simplifying the design can be
compared to brushing your teeth. Although not particularly
exciting, it’s necessary to avoid discomfort and costly problems
in the future. Similarly, investing a little time in code
maintenance daily helps prevent more significant problems
down the line.

Complexity may be necessary but should not be
permanent

Sometimes a degree of complexity is needed to uncover a
simpler and more elegant solution to a problem. Many believe

complexity can’t be sidestepped. Starting with a complex
solution isn’t a problem; the problem lies in maintaining
complexity indefinitely. Once you identify a simpler solution,
it’s time to plan for refactoring.

Consistently addressing complexity is cost effective

Regularly addressing complexity keeps both the time and cost
associated with it within reasonable limits. Delaying complexity
management can result in significantly higher expenses and
make refactoring more difficult and time consuming.

The technical debt metaphor helps us understand this. Coined
by Ward Cunningham, the idea is to see coding problems as
financial debt. The additional effort required for maintenance
due to past poor decisions represents interest on this debt. This
concept relates closely to this book’s focus; complexity escalates
if code structure isn’t improved, leading to excessive interest
payments.

I’ve seen codebases where everyone knew that parts of them
were very complex and challenging to maintain, but no one
dared to refactor them. Trust me, you don’t want to get there.

High-quality code promotes good practices

When developers work with well-structured code with proper
abstractions, straightforward methods, and comprehensive
tests, they are more likely to maintain the code’s quality.
Conversely, messy code often leads to further disorganization
and degradation in quality. This concept is similar to the
broken-window theory, which explains how maintaining
orderly environments can prevent further disorder.

Controlling complexity isn’t as difficult as it seems

The key to ensuring that complexity doesn’t grow out of hand is
recognizing the signs as soon as possible and addressing them
early. With experience and knowledge, developers can detect
and resolve most problems in the initial stages of development.
Problems that are detected and tackled early enough are
cheaper and faster to fix.

Keeping the design simple is a developer’s
responsibility

Creating high-quality software systems that are easy to evolve
and maintain can be challenging but is necessary. As
developers, managing complexity is part of our job and
contributes to more efficient and sustainable software systems.

Striking the right balance between manageable complexity and
overwhelming chaos is challenging. Starting with complex
abstractions may prevent problems, but it adds system
complexity. A more straightforward method with two if
statements is easier to understand than a convoluted interface.
On the other hand, at some point, simple code is no longer
enough. Striving for extensibility in every piece of code would
create chaos. It’s our job to find the right balance between
simplicity and complexity.

Good-enough designs

In the book A Philosophy of Software Design
(https://web.stanford.edu/~ouster/cgi-bin/book.php), John
Ousterhout says it takes him at least three rewrites to get to the
best design for a given problem. I couldn’t agree more.

Often, the most effective designs emerge after several iterations.
In many cases, it’s more practical to focus on creating “good-
enough designs” that are easily understood, maintained, and
evolved rather than strive for perfection from the outset. Again,
the key is to identify when simple is no longer good enough.

https://web.stanford.edu/~ouster/cgi-bin/book.php

short dive into the architecture of an
information system

Let me define a few terms before discussing different patterns
to help you keep your design simple. We can examine object-
oriented design from many different angles. If you are building
a framework that’s supposed to be highly generic, you may
have different concerns than someone developing an enterprise
system. In this book, I focus on object-oriented design for
information or enterprise systems. An information system
helps us organize information. Think of the back office of an
online store, a financial system that processes payments and
customer billing, or an e-learning system that handles all the
students at a university.

Figure 1.8 illustrates what usually happens behind an
information system. These systems are often characterized as
having the following:

A frontend that displays all the information to the user. This
frontend is often implemented as a web page. Developers can
use many technologies to build modern frontends, such as
React, Angular, VueJS, or even plain vanilla JavaScript, CSS,
and HTML. In this book, we focus not on the design of the
frontend but rather on the backend.

A backend that handles requests from the frontend. The
backend is where most, if not all, business logic lives. The
backend may communicate with other software systems,
such as external or internal web services, to achieve its tasks.
A database that stores all the information. Backend systems
are strongly database centric. This means most backend
actions involve retrieving, inserting, updating, or deleting
information from the database.

Figure 1.8 A traditional information system with a frontend, a backend, and a
database

Let me also define the inside of a backend system and a few
terms (see figure 1.9). A backend system receives requests via
any protocol (usually HTTP) from any other system: for

example, a traditional web-based frontend. Today, we
commonly use a Model-View-Controller (MVC) framework to
help us build the application.

Figure 1.9 The internal design of a backend system

A Controller first receives the user request. The Controller’s
primary responsibility is to convert the user request into a
series of commands to the domain Model that knows the
business rules. The domain Model is composed of different
types of classes. This depends on the architectural patterns your
application is following, but you often see the following:

Entities model business concepts. Think of an Invoice class
that models what invoices mean to the system. Entity classes
contain attributes that describe the concept and methods that
consistently manipulate these attributes.
Services encapsulate more complex business rules that
involve one or more entities. Think of a GenerateInvoice
service that generates the final invoice for a user who
decides to pay for all the products in their basket.
Repositories contain all the logic to retrieve and persist
information. Behind the scenes, their implementation talks to
a database.
Data-transfer objects (DTOs) are classes that hold information
and transfer information from different layers.
Utility classes contain a set of utility methods not offered by
your programming language or framework of choice.

Backends also commonly have to communicate with other
external applications, usually via remote calls or specific
protocols. Think of a web service that enables the application to
send a request to a governmental system, or a Simple Mail
Transfer Protocol (SMTP) server that enables the application to
send e-mails. Anything that’s outside and somewhat out of the
control of the backend, I call infrastructure.

A large-scale backend may also be organized in modules. Each
module contains its domain Model with entities, repositories,
services, etc. Modules may also send messages to each other.

If you’re familiar with architectural patterns such as Clean
Architecture, Hexagonal Architecture, Domain-Driven Design,
or any other layered architecture, you may have opinions about
how things should be organized. The diagram in figure 1.9 is
meant to be generic enough that anyone can fit it into their
favorite architecture.

The figure also shows the two modules inside the same
backend, which may lead you to think I’m proposing monoliths
over a service-distributed architecture. Again, this figure is
meant to be generic. Different modules can live in the same
distributed binary and communicate via simple method calls or
distributed over the network and communicate via remote
procedure calls. It doesn’t matter at this point.

he example project: PeopleGrow!

To illustrate the design patterns throughout the book, I use an
imaginary backend system called PeopleGrow!, illustrated in
figure 1.10. It’s an information system that manages employees
and their growth through training courses.

The system handles different features, some of which are
highlighted here. The italicized domain terms appear
frequently in the following chapters:

The list of trainings and learning paths (collections of
trainings).
The employees and the training courses that they took or still
have to take.
Training courses are offered multiple times each year. Each
offering contains the training course’s date and the maximum
number of participants allowed.
Participants can enroll in the offerings themselves or be
enrolled by the administrator.
The training courses and the trainers who deliver them.
All sorts of reports, such as which training courses don’t have
an instructor assigned, which training courses are full, etc.
Convenient functionality such as calendar invites through
the company’s calendar system, automatic messages via the
company’s internal chat, and e-mail notifications.
A frontend available for administrators to add new training
courses and learning paths and see reports.
Various APIs for any internal system to use. For example,
employees can enroll in courses via the company’s internal
wiki, which uses PeopleGrow!’s APIs.

Figure 1.10 The high-level architecture of PeopleGrow!

Architecturally speaking, PeopleGrow! comprises a frontend, a
backend, and a database. As I said, it also can connect to
external company systems, such as the internal chat and the
calendar system. PeopleGrow!’s API may also be consumed by
other company applications, such as its internal wiki.

The backend is implemented using object-oriented languages
like Java, C#, and Python. It uses current frameworks for web
development and database access. For example, think of Spring
Boot and Java Persistence API (JPA) if you are a Java developer;
ASP.NET Core MVC and Entity Framework if you are a C#
developer; or Django if you are a Python developer. Internally,
the backend models the business. In the following chapters, I’ll

write Java-like pseudocode to illustrate the principles, but these
are easily understandable by developers familiar with any
language.

The team that’s building PeopleGrow! is now facing
maintenance challenges. Bugs are emerging. Any changes
requested by the product team take days to complete.
Developers are always afraid of making changes, and an
innocent change often affects unexpected areas of the system.
Let’s dive into the design decisions of PeopleGrow! and improve
them!

xercises

Think through the following questions or discuss them with a
colleague:

1. In your opinion, what constitutes a simple object-oriented
design? What’s the difference between your point of view
and that presented in this chapter?

2. What types of object-oriented design problems have you
faced as a developer? What were their consequences? Do
they fit in any of the six categories presented in this chapter?

3. Is it possible to keep the design simple as the system evolves?
What are the main challenges in keeping it simple?

mary

Building a highly maintainable software system requires a
good object-oriented design. Simplicity is the key factor for a
highly maintainable software system.
Building simple object-oriented designs is often
straightforward, but it’s hard to keep the design simple as the
complexity of the business grows. Managing complexity is
essential to maintain and develop software systems
effectively.
Simple and maintainable object-oriented designs have six
characteristics: simple code, consistent objects, proper
dependency management, good abstractions, adequately
handled infrastructure, and good modularization.
Managing complexity and keeping designs simple is a
continuous process requiring daily attention, like brushing
your teeth.
Writing good code is easier when the existing code is already
good. Productivity increases, developers feel confident
modifying the code, and business value is delivered faster.

2 Making code small

This chapter covers

Breaking large units of code into smaller pieces
Moving new complexity away from existing units of code
Documenting your code to improve understanding

Complex code is harder to read and understand than simple
code. As a developer, you’ve likely experienced the mental
strain of deciphering a 200-line method compared to a 20-line
method. You feel tired even before you begin to read it. Highly
complex code is also more prone to bugs. It’s easier to make
mistakes in code that’s difficult to grasp. It’s also hard to write
tests for complex code, as it has too many possibilities and
corner cases to explore, and it’s too easy to forget one of them.

Making code simple and small is the first thing you should
always consider. Even with a well-designed software system, it’s
easy to lose sight of code complexity. Lines of code tend to
become overgrown if we don’t actively work to prevent it,
leading to oversized classes. Long classes and methods happen
more often and more naturally than we like to admit. It’s too
easy to open an existing class in the system and add more code

instead of reflecting on the impact of these new lines and
redesigning the code.

The gist of this chapter is that small code is easier to maintain.
In the following sections, I’ll dive into patterns to help you
make your code small.

ake units of code small

Classes and methods should be small. That improves code
readability, maintainability, and reusability and reduces the
likelihood of bugs.

Business rules in information systems keep evolving and
increasing in complexity. The popular quick-and-dirty way to
evolve a business rule is to add code to methods and classes:
either adding lines of code to an existing method or adding
methods to existing classes. Suddenly you have a long class, and
maintaining it requires a lot of energy from an engineer.

No matter how well crafted a 2,000-line method or class is, it
remains challenging to understand. Such methods do too much
for any developer, regardless of seniority, to quickly grasp. This
may seem like a basic pattern, but trust me, the primary
strategy for reducing code complexity is to decrease the unit’s
size. It’s that simple.

Developers sometimes debate whether having more classes is a
drawback. Some argue that it’s easier to follow code if it’s all in
the same file. Although software design has tradeoffs, academic
studies like the 2012 paper “An Exploratory Study of the Impact
of Antipatterns on class Change- and Fault-Proneness” by
Khomh and colleagues shows that longer methods are more
susceptible to changes and defects.

It doesn’t take much to convince someone that breaking
complex code into smaller units is a good approach. Smaller
units are always better than oversized units.

First, small classes or units of code allow developers to read
less. If the implementation is visible, they will likely read it
whether they need to or not. But if a method calls another class,
they’ll only open that code when needed. Although some argue
that navigation becomes trickier when jumping between
classes, modern IDEs make navigation easy when you master it.

Second, small units of code enable extensibility from day one.
Refactoring complex behavior into smaller classes often
involves seeing the code as a set of pieces that, together, form a
puzzle. Once modeled, each piece can be replaced if needed.

Finally, testability improves: smaller classes let developers
decide whether to write isolated unit tests for specific parts of
the business logic. Sometimes we want to exercise one piece in
isolation and other times all the pieces together. You don’t have
that choice if the behavior is all in one place.

In practice, we should build complex behavior using smaller
methods or classes, as illustrated in figure 2.1. The classes and
methods shown are all small and do only one thing. Anyone can
easily understand the code, and testing is easy.

Figure 2.1 Smaller units are always better than large units.

In the following subsections, I discuss a few heuristics of when
to break code into methods and classes. We also discuss the
exceptional cases where you don’t want to break code into
small units.

What does “cohesion” mean?

A cohesive component (class or method) has a single, clear
responsibility within the system—it does only one thing. A
class that does one thing is undoubtedly smaller than a class
that does multiple things. If we strive for cohesive code, we
naturally strive for simple code.

Break complex methods into private methods

Breaking a large method into a few smaller ones is an excellent
and easy way to reduce complexity. All you need to do is
identify a piece of code within a large method that can be
moved to a private method.

Private methods

Private methods can only be called from within the same class
they’re declared in. They’re a perfect solution when you want

to isolate a piece of code from the rest but don’t want it to be
visible and possibly called from outside the class.

An excellent way to determine whether a new private method
makes sense or whether a code segment can be an independent
unit is by evaluating the following:

Can you assign a clear name to the private method that
explains its purpose?
Does the new method perform a cohesive, small action that
the public method can easily use?
Is the new method dependent on numerous parameters or
class dependencies, or is it concise enough for a developer to
understand its requirements quickly?
When the method is called, is its name sufficient to explain
its function without examining the implementation?
Could this private method be made static? Such methods
often make good candidates for extraction, as they don’t rely
on the original class. I don’t want you to make the method
static, but this is a nice trick to see if the method is
independent.

How do you test a private method?

A test method can’t invoke private methods. After all, they are
private. A private method should be tested through the public
method that calls it. If you feel the urge to unit-test that private
method in isolation, consider moving the code to another class,
as I explain next.

Move a complex unit of code to another class

Private methods may not be the ideal location for extracted
code, particularly if it’s unrelated to the main goal of the large
unit. Consider the following to decide whether to move code to
another class instead of a private method:

Does this piece of code do something different than the rest
of the class?
Does it do something important enough for the domain that it
deserves its own name and class?
Do you want to test this piece of code in isolation?
Does this code depend on classes you don’t want the rest of
the code to depend on?
Is it too big to break into many other private methods?

Believe it or not, one of the most significant challenges in
moving behavior to a new class is naming the new class. If you

can quickly come up with a good name and know precisely
which package this class should live in, then you should do it.

When not to divide code into small units

Every rule has exceptions. When should code be kept together?

When two or more puzzle pieces can’t live apart. Forcing
separation often results in complex method signatures.
When a puzzle piece is unlikely to be replaced.
When there’s little value in testing a part in complete
isolation.
When there are few puzzle pieces. If you only need two to
four private methods, why complicate your code?

As always, pragmatism is critical.

Be careful about classitis

In the insightful book A Philosophy of Software Design, John
Ousterhout argues that having too many small classes can
hinder maintainability. He refers to creating too many small
classes as classitis. He has a point. You don’t want micro
classes, just as you don’t want huge blocks of code.

Get a helicopter view of the refactoring before you do
it

In more complex refactorings, I try to picture what the final
code will look like once I’m done:

What will the classes look like after the refactoring, and how
will they relate to each other?
Do I like what I see?
Do I see any design issues?

I don’t do this in a formal way. If I can’t see the final result in
my mind, I draw diagrams on a piece of paper or whiteboard,
usually in a Unified Modeling Language (UML)-like form.

Example: Importing employees

Employees are imported into PeopleGrow! in batches. The
administrator uploads a comma-separated values (CSV) file
containing each employee’s name, email, role, and starting date.
If the employee is already in the database, PeopleGrow! updates
their information.

The initial implementation looked like what you see in listing
2.1. The code parses the CSV using a third-party library. Then,

for each employee in the import data, the system either creates
a new employee or updates an existing one in the database.

Although the code isn’t complicated, remember that this is just
an illustration. The importing service could have hundreds of
lines in a real software system.

Listing 2.1 A large method that should be broken down

class ImportEmployeesService {

 private EmployeeRepository employees;

 public ImportEmployeesService(EmployeeRepositor

 this.employees = employees;

 }

 public ImportResult import(String csv) {

 var result = new ImportResult();

 var csvParser = new CsvParserLibrary();

 csvParser.setMode(CsvParserLibrary.Mode.IGNOR

 csvParser.setObjectType(EmployeeParsedData.cl

 List<EmployeeParsedData> importedList =

 csvParser.parse(csv);

 for(var employee in importedList) {

 var maybeAnEmployee =

 employees.findByEmail(employee.email());

 if(maybeAnEmployee.isEmpty()) {

 var newEmployee = new Employee(

 employee.getName(),

 employee.getEmail(),

 employee.getStartingDate(),

 employee.getRole());

 employees.save(newEmployee);

 result.addedNewEmployee(newEmployee);

 } else {

 var currentEmployee = maybeAnEmployee.get

 currentEmployee.setName(name);

 currentEmployee.setStartingDate(startingD

 currentEmployee.setRole(role);

 employees.update(currentEmployee);

 result.updatedEmployee(currentEmployee);

 }

 }

 return result;

 }

}

record EmployeeParsedData(

 String name,

 String email,

 LocalDate startingDate,

 String role) { }

❶ Parses the CSV using the fictitious CsvParserLibrary

❷ Looks for an existing employee in the DB by their email

❸ If the employee doesn’t exist, creates a new one

❹ If the employee already exists, updates their information

❺ Data structure to store the data that comes from the CSV

The import method does too much. It’s easy to get lost in the
code. Let’s reduce its complexity by moving code away from it.
First, let’s move the CSV-parsing logic to another class. Even
though these few lines of code only delegate the real work to
the CsvParserLibrary class, it’s a different responsibility and
will look good in its own class.

NOTE In future chapters, I’ll also discuss wrapping up calls to
third-party libraries—which is also, in general, a good idea.

The EmployeeImportCSVParser class offers a parse method
that returns a list of EmployeeParsedData . The
implementation is the same as before.

Listing 2.2 CSV parser in its own class

class EmployeeImportCSVParser {

 public List<EmployeeParsedData> parse(String cs

 var csvParser = new CsvParserLibrary();

 csvParser.setMode(CsvParserLibrary.Mode.IGNOR

 csvParser.setObjectType(EmployeeParsedData.cl

 return csvParser.parse(csv);

 }

}

❶ The parsing algorithm is now in the parse() method.

There’s still more we can do in ImportEmployeesService . We
can make the import method only control the flow and let
other classes or methods implement the actions. For example,

the two blocks of code in the if statement—one that creates a
new employee and another that updates them—can be
extracted to a private method.

I don’t envision these two methods going to different classes.
They seem related, and leaving them in
ImportEmployeesService looks fine for now. I may change
my mind in the future, but I like to take simpler and smaller
steps first.

In listing 2.3, the class is much smaller, and the methods are
more cohesive. The import method only coordinates the task.
It calls the new EmployeeImportCSVParser , gets the parsed
results, calls EmployeeRepository to see whether the
employee is already in the database, and, based on that, decides
which action to take, with each action in a separate private
method.

Listing 2.3 Much smaller ImportEmployeesService

class ImportEmployeesService {

 private EmployeeRepository employees;

 private EmployeeImportCSVParser parser;

 public ImportEmployeesService(EmployeeRepositor

 EmployeeImportCSVParser parser) {

 this.employees = employees;

 this.parser = parser;

 }

 public ImportResult import(String csv) {

 var result = new ImportResult();

 var importedEmployees = parser.parse(csv);

 for(var importedEmployee : importedEmployees)

 var maybeAnEmployee =

 å

 employees.findByEmail(importedEmployee.getEmail

 if(maybeAnEmployee.isEmpty()) {

 createNewEmployee(importedEmployee, resul

 } else {

 updateEmployee(importedEmployee, maybeAnE

 }

 }

 return result;

 }

 private void createNewEmployee(

 EmployeeParsedData importedEmployee,

 ImportResult result) {

 var newEmployee = new Employee(

 importedEmployee.getName(),

 importedEmployee.getEmail(),

 importedEmployee.getStartingDate(),

 importedEmployee.getRole());

 employees.save(newEmployee);

 result.addedNewEmployee(newEmployee);

 }

 private void updateEmployee(

 EmployeeParsedData importedEmployee,

 Employee currentEmployee,

 ImportResult result) {

 currentEmployee.setName(name);

 currentEmployee.setStartingDate(startingDate)

 currentEmployee.setRole(role);

 employees.update(currentEmployee);

 result.updatedEmployee(currentEmployee);

 }

}

❶ EmployeeImportCSVParser is now injected through the
constructor.

❷ Calls the parser class and gets the parsing results

❸ Looks for the employee in the database

❹ The if block decides which private method to call.

❺ The logic to create a new employee is moved to this private
method.

❻ Same for the logic to update an employee, which is now in a
private method.

It takes less time for a developer to read this class and figure
out what it does. It also takes less time for a developer to
understand each small block. Having methods that focus on the
“what” and letting other methods implement the “how” is a
good practice that I’ll discuss in chapter 5.

ImportEmployeesService now requires
EmployeeRepository and EmployeeImportCSVParser in
its constructor. This means some other part of the code should
instantiate these classes. Receiving dependencies via a

constructor is a good idea. We’ll discuss dependency injection
and dependency management further in general in chapter 4.

Good-enough design

I don’t really like that we have to pass ImportResult to the
private methods. Not bad, but also not elegant. There are other
ways to design this. For example, each method could return its
own ImportResult back to the import method, which
would merge them all. That would require more code. I don’t
see the need to overcomplicate this now, so we’ll settle for the
“good-enough design,” as discussed in chapter 1.

Good job. ImportEmployeesService is much better now!

ake code readable and documented

Improve the readability of the code, and document it when
necessary to minimize the time developers spend trying to
understand its purpose and functionality.

Consider how much time you’ve spent reading code to fix bugs
or implement new features in unfamiliar areas. In the book
Clean Code (Pearson, 2008), Robert Martin estimates that the
ratio of time spent reading code to writing code is about 10 to 1.
Academic research indicates that programmers spend around

60% of their time reading code (see the 2017 paper, “Measuring
Program Comprehension: A Large-Scale Field Study with
Professionals,” by Xin Xia and colleagues). The less time
developers spend reading code, the more productive they
become.

Your goal should be to write code that others can easily
understand. There are many different patterns and principles
that you can apply. Clean Code is the canonical reference for
writing readable code.

This section focuses on three techniques that increase code
legibility and that we should be doing more: looking for good
variable names, explaining complex decision points, and
writing code comments.

Keep looking for good names

Naming is a critical aspect of writing maintainable code. The
more closely your code resembles how business people
communicate, the better. Good variable names enable
developers to quickly grasp a method’s purpose and are
particularly essential in information systems, as code should
mirror business terminology.

Choosing an initial name for a variable, method, or class is
tough. In a controlled experiment conducted by Feitelson,
Mizrahi, and Noy (in “How Developers Choose Names,” IEEE
Transactions on Software Engineering, March 12, 2021),
researchers noticed that if they ask two developers to name the
same variable, they’re likely to pick different names. That’s why
this pattern isn’t about coming up with good variable names;
it’s about continually searching for the right name and
refactoring until you find it.

When implementing a method, you may only have a vague idea
of how a new variable will be used. Will it be combined with
another variable, passed to another method, or returned to the
caller? Because choosing initial names is difficult, I prefer not to
dwell on them. I move forward, wait until I have more concrete
code, and then focus on finding better variable and method
names.

I often consider these questions when naming:

Is the class name fitting and representative of the concept?
Does the attribute name reveal its information while aligning
with the class name?
Does the method name clearly describe its function,
expectations, and return?

Is the interface name indicative of its concrete
implementations’ actions?
Does the service name specify the actions it performs?

This list isn’t exhaustive but aims to guide your naming
considerations. You might initially answer yes to these
questions, only to change your mind later. This is natural,
especially during early development stages. So, don’t hesitate to
rename variables, methods, or classes repeatedly. Investing
time in renaming saves future developers considerable effort.

Ubiquitous language

Popularized by domain-driven design, ubiquitous language
refers to a shared and consistent language used by all
development team members to communicate and understand
domain concepts. This language should be reflected in the
code. It helps eliminate confusion and ensure that everyone
has a clear understanding of the problem domain. This is
strongly related to what we just discussed.

Document decisions

A characteristic of information systems is that they make
complex decisions based on lots of data. Because of that,
decision points in the code can quickly become complex.

It’s not uncommon to see if statements with multiple
conditions. These if statements are crucial to the system;
therefore, developers should be able to easily and quickly
understand what they mean.

We can do several things to clarify decisions:

Introduce extra variables in the code to better explain the
meaning of complex if statements.
Break the large and complex decision process into a set of
smaller steps, each handling a smaller part of the process.
Write a code comment that explains it.

Regardless of your approach, remember that clarifying the
decisions a unit of code may make is vital for code legibility, as
understanding the decision-making process eases maintenance
and debugging.

Add code comments

Code comments written in natural language can be powerful,
and there are many reasons to write a code comment. Some
developers argue that if a code comment is needed, the code
isn’t clear enough. Others claim that comments become
deprecated quickly, or they see pointless code comments
everywhere. Although all these points are valid and we should

always try first to improve the legibility of the code through
refactoring, there are still cases where refactoring isn’t enough.

The first reason we may want to add code comments is to
explain things that go beyond the code. Clean code is excellent
for explaining implementation details but isn’t great for
explaining the whys. For example, what was the business
reason behind the decisions made in this code? Why did we
take approach A instead of B?

Some may say that this information fits best on an internal wiki
page. Wikis are great tools because we can write text with
formatting. I prefer to write code comments as developers are
always in their IDEs, closer to the code. I’ve seen teams add
comments that link to a page in their internal wikis. This is also
a good solution that combines the power of both tools.

Another reason we may prefer comments is that breaking the
code into smaller pieces sometimes reduces rather than
increases its readability. For example, an extract-method
refactoring can sometimes make the code look cumbersome,
especially if the code in the middle relies on numerous
variables from preceding or subsequent sections. This can be
evident when you use automated refactoring in your IDE,

which may propose a private method with a strange signature
or fail.

Separating blocks of code with code comments is a great way to
explain the upcoming code. It’s easy for a developer to identify
different blocks of comments, so it’s also easy for them to skip
to the next block if they don’t need to read that part of the code
(see figure 2.2).

Figure 2.2 Comments separating code blocks

Finally, comments can save time for developers. In many cases,
reading the name of the method and its parameters isn’t
enough to understand all of its details. Think of how often

you’ve had a question about a method from a library. The name
of the method was clear enough, but you still needed more
information. Did you read its code, or did you read its
documentation? I’d guess the documentation.

Open source methods are great examples of well-documented
code. See, for example, the WordUtils class from the Apache
Commons Lang (http://mng.bz/g7QR). All methods have long
comments describing what they do.

Reading a summary of what the method does, its main caveats,
what it does if preconditions aren’t met, and so on is much
faster than reading code. Remember that in most cases, you
don’t need to know the in-depth details of a method—only high-
level information.

Although you may want to document every public method of an
open source library that will be used by millions of developers,
you shouldn’t document every method in your software system:
only those that contain complex business rules or have been
through interesting decision-making processes. Understanding
the “why” behind coding decisions is crucial for maintaining
that piece of code in the future.

http://mng.bz/g7QR

Now, let’s talk about the problems with comments. A significant
disadvantage is that they can become deprecated without
anyone noticing. However, deprecated comments occur when
those comments aren’t essential. Developers usually (or at least
should) update crucial comments. If you identify a comment
that no one bothers to update, delete it.

Writing code with newcomers in mind is essential. A useless
code comment may seem pointless to you, but it could help
someone who’s never seen the code before. Nevertheless, if you
find a comment truly useless, delete it.

NOTE In A Philosophy of Software Design, by John Ousterhout
(Yaknyam Press, 2018), he offers a refreshing perspective on
code comments. His views on their importance and usefulness
are worth exploring. I highly recommend reading his ideas on
this topic.

Example: Deciding when to send an update email

Whenever an administrator updates an offering in
PeopleGrow!, all employees who are enrolled for that offering
should receive an email. At least, that’s how the feature started.
The business later noticed that employees were getting
spammed by a large number of emails. If an administrator

changes the number of available positions for a trainer, a
participant doesn’t need to know about it.

It was agreed that updates would be sent only if the offering’s
dates or description changed: imagine a text field where
admins add the room where a training course will happen or a
Zoom link. Employees can still opt in if they want to receive all
updates.

Listing 2.4 Deciding whether an employee should receive an
update email

public void update(UpdatedOffering updatedOfferin

 // ...

 // logic to update the offering

 // ...

 if(employee.wantsAnyEmailUpdates() ||

 (updatedOffering.isDateUpdated() ||

 updatedOffering.isDescriptioUpdated())) {

 // send an update email to the employee

 }

}

❶ This if statement is too long and needs more clarity.

The if statement is hard to understand. You have to dive into
the code to follow what this decision point is all about.

Let’s refactor this snippet as follows:

1. Separate the decision from the code that sends the email.
Let’s move the entire decision process to a boolean
shouldReceiveAnEmail() method.

2. Introduce variables to explain the different parts of the if
statement, simplifying its legibility.

3. Make the Offering class encapsulate the decision logic
around whether important information was updated in an
isImportantInfoUpdated() method. This way, if this logic
ever changes, we only have to change it in a single place.

In the refactored version, it is much easier to understand what
the method does. You can read the comments and understand
how the implementation works because the complex if is
broken down.

Listing 2.5 Better version of the algorithm

class Offering {

 // ...

 public boolean isImportantInfoUpdated() {

 return this.isDateUpdated() || this.isDescrip

 }

}

/**

 * An employee should receive an email in case

 * they opt-in for it or in case important inform

 */

boolean shouldReceiveAnEmail(Offering updatedOffe

 Employee employee) {

 boolean importantInfoWasUpdated = offering.isIm

 boolean employeeWantsUpdates = employee.wantsAn

 return employeeWantsUpdates || importantInfoWas

}

...

if(shouldReceiveAnEmail(offering, employee)) {

 // send an update email to the student

}

❶ Offering now offers a method that returns whether important
information (right now, date or description) was updated.

❷ The code comment explains what the method does.

❸ The introduced variables help us break down the complex
decision.

❹ The complex decision is hidden in the shouldReceiveAnEmail
method, so the developer doesn’t have to read it unless they go
to the implementation of the method.

Don’t be afraid of documenting your code. Documentation is
key to productive maintenance.

ove new complexity away from existing
classes

Move any new complexity arising from feature requests or code
evolution to a separate location. This pattern fosters simplicity

and cohesiveness within existing units, making them easier to
maintain and comprehend.

Deciding when to create a new class while evolving code can be
challenging. It’s tempting to keep adding code where the rest of
it already exists. However, continuously avoiding this question
leads to lengthy and complex code.

Methods and classes that grow indefinitely eventually become
unmaintainable. They should expand as business complexity
increases, but this growth must be controlled. Overgrown code
units eventually become too complex for developers to
maintain with reasonable effort, resulting in complex classes.

In many cases, classes grow indefinitely due to a lack of good
abstraction or extension points that enable developers to add
new behavior without changing existing code. I’ll cover these
topics in chapters 4 and 5. In this section, I focus on two
recurrent design decisions to avoid classes growing forever:
move complex business rules to their own class, and break
down large business flows into multiple steps.

Give the complex business logic a class of its own

Whenever there’s a new complex business logic to implement,
trying to fit it into an existing class can be a burden. We may

never be able to find the suitable class because the rule spans
multiple classes. We may also have to add too many other
dependencies to an existing class because the rule will likely
require interaction with many other classes.

In such cases, it’s best to create another class that isolates the
feature, keeping the other classes free from growing in
complexity. There are a few advantages to doing that:

Dedicating an entire class to a complex feature makes it
easier to see all its dependencies. In this case, email-related
classes and different repositories are explicitly listed in the
service’s constructor.
The feature’s code is isolated from the rest of the system.
When reading the code, there’s no need to separate what
belongs to this feature and what doesn’t, reducing cognitive
overload.
Isolation also makes testing easier. We can write tests for this
feature without worrying about other behaviors.
It simplifies reusing the functionality. This class can be called
from any part of the system that needs the same
functionality.
The class is highly cohesive, doing only one thing.

A caveat is that at the same time, you should keep your business
logic as close as possible to the class it acts on and not a class
that’s “far away,” as I just said. For example, marking the
Enrollment as canceled should happen inside the
Enrollment class and not outside. We’ll discuss encapsulation,
state, and consistency in chapter 3.

Break down large business flows

Some long, complex methods exist because they control
sizeable multiple-step business flows. Without a proper
abstraction to help us model the flow, we may end up with a
huge class where each method is one step of the flow. Imagine a
business flow composed of 10, 15, or 20 steps. Putting the
implementation of all steps in a single class isn’t a good idea.

You should break down large, complex business flows into
simple, small, cohesive units of code and use intelligent design
mechanisms to deliver the entire flow. If each step is in its own
class, you get all the benefits of small classes again:

They are simple and easier to understand.
They are easier to maintain.
They are more easily testable.
They can be better reused.

Although there are frameworks for organizing workflows, a
simple abstraction often suffices. If you need patterns for
breaking up multistep business flows, consider Gang of Four
design patterns like Chain of Responsibility, Decorator, and
Observer. You might also explore domain events for highly
complex business flows
(www.martinfowler.com/eaaDev/DomainEvent.html).

Another alternative is to build an event-based system, where
each process step generates an event consumed by the next
step. Consider this option for complex workflows requiring
flexibility or when steps should occur in different services.
Otherwise, stick to simpler workflow mechanisms. I won’t delve
into event-based system implementation details, as many books
cover this topic (choose any microservices book).

Single Responsibility Principle

The Single Responsibility Principle (SRP) states that a class (or a
method or any unit of code in general) should have one and
only one reason to change. Cohesive classes and methods are
much easier to understand and maintain.

The ideas discussed in this chapter are related to the SRP. After
all, smaller units of code tend to be more cohesive than large

https://www.martinfowler.com/eaaDev/DomainEvent.html

units of code.

The key difference between the SRP and this chapter is that
SRP focuses on dividing code according to their different
responsibilities. Cohesive code should always be our north star.
However, in many cases, it’s hard to decide what the
responsibilities of a class or method are, especially at the
beginning of the development. Focusing on making units of
code small is a more straightforward rule that you can apply
from day one, even if you still don’t know much about the
software you’re building. Once you identify that the class isn’t
cohesive enough, you should refactor it, and your job will be
much easier because the classes and methods are small.

Example: Waiting list for offerings

PeopleGrow! offers a waiting list feature. If an offering is full,
employees can join the waiting list. If someone unenrolls, the
entire waiting list is notified, and the first employee who enrolls
gets that spot. An employee who enrolls in an offering is
automatically removed from the waiting list.

Let’s focus on the part where someone unenrolls, and we need
to send an email to all employees on the waiting list. The first
implementation proposed by the developer was to implement

this functionality in the
UnenrollEmployeeFromOfferingService service. The
service would retrieve the employees on the waiting list and
then loop through this list and create an email for every one of
them. Here’s the initial implementation.

Listing 2.6 Notifying the waiting list when an employee
unenrolls

class UnenrollEmployeeFromOfferingService {

 private Emailer emailer;

 private OfferingRepository offerings;

 public UnenrollEmployeeFromOfferingService(...,

 OfferingRepository offerings,

 Emailer emailer) {

 this.offerings = offerings;

 this.emailer = emailer;

 }

 public void unenroll(int enrollmentId) {

 // ...

 // logic to unenroll the employee

 // ...

 Offering offering = offerings.getOfferingFrom

 notifyWaitingList(offering);

 }

 private void notifyWaitingList(Offering offerin

 Set<Employee> employees = offering.getWaiting

 for(Employee employee : employees) {

 emailer.sendWaitingListEmail(offering, empl

 }

 }

}

❶ One extra dependency to send the email

❷ The new step on the flow, notify the waiting list, is now at the
end of the unenroll process.

❸ The notifyWaitingList private method implements the
notification logic.

Adding this implementation to the existing
UnenrollEmployeeFromOfferingService isn’t a good idea,
as it makes the class more complex. As soon we add
notifyWaitingList , we may be forced to review all our
automated tests for the
UnenrollEmployeeFromOfferingService and see if they

still work. Writing tests for the new feature in isolation is also
more demanding.

A better option is to move the waiting list notification logic to a
separate class, say, WaitingListNotifier . Move the
complexity away from existing classes, as I said.

That’s what we’ll do.
UnenrollEmployeeFromOfferingService now depends on
the new WaitingListNotifier and calls when it’s time to
notify the employees. The waiting list notifier depends on
Emailer and has the same logic as before.

Listing 2.7 Waiting list notification in another class

class UnenrollEmployeeFromOfferingService {

 private OfferingRepository offerings;

 private WaitingListNotifier notifier;

 public UnenrollEmployeeFromOfferingService(...,

 OfferingRepository offerings,

 WaitingListNotifier notifier) {

 this.offerings = offerings;

 this.notifier = notifier;

 }

 public void unenroll(int enrollmentId) {

 // ...

 // logic to unenroll the employee

 // ...

 Offering offering = offerings.getOfferingFrom

 notifier.notify(offering);

 }

}

class WaitingListNotifier {

 private Emailer emailer;

 public WaitingListNotifier(Emailer emailer) {

 this.emailer = emailer;

 }

 public void notify(Offering offering) {

 Set<Employee> employees = offering.getWaiting

 for(Employee employee : employees) {

 emailer.sendWaitingListEmail(offering, empl

 }

 }

}

❶ The service depends on the new waiting list notifier.

❷ Calls the new notifier class

❸ The new class depends on the Emailer.

❹ The notification logic is in the new class.

Figure 2.3 illustrates the new class design. Note how we
managed to move new complexity away from existing classes.
We did so by creating a new class and delegating this new
behavior to it. The new class is also small, easily testable, and
reusable. This simple pattern works more often than you’d
expect. We achieved a simpler design by forcing ourselves to
move new complexity away from existing code.

Figure 2.3 A set of smaller classes work together to deliver the unenrolling-employee
feature,

xercises

Think through the following questions or discuss them with a
colleague:

1. If you were to define a hard threshold for the maximum
number of lines of code that a method can have, what would
it be? Why?

2. How do you currently document your software systems?
Does your approach work? Do you see room for
improvement?

3. Have you ever encountered bad comments in code? What
about good code comments? What did both look like?

4. This chapter strongly argues for small classes. What are your
thoughts? Do you also prefer having many small classes
instead of a larger class, or do you see advantages in larger
classes?

mary

Code complexity arises when code units become too large
and complex to understand, maintain, and extend, leading to
bugs.
To reduce code complexity, break down complex methods
and classes into smaller ones, such as splitting a large
method into smaller private methods or moving code to
different classes.
Use explanatory variables, clear method names, and natural
language comments to make code easy for other developers
to read. Code comments should explain why decisions were
made, and easy-to-read code should explain the
implementation logic.
Move any new complexity away from existing units. You can
do that by, for example, moving the new feature to a new
class.

3 Keeping objects consistent

This chapter covers

Keeping classes consistent
Modeling aggregates that hold complex object relationships
Implementing validation mechanisms that ensure
consistency at all times

A well-designed class encapsulates its data and provides
operations to access or manipulate it. These operations ensure
that the object remains in a valid state without inconsistencies.
Better yet, they do so in a way that the clients of the class don’t
even need to know about it.

One of the greatest advantages of object-oriented programming
is the ability to ensure that objects are always in a consistent
state. Compare it with, say, procedural programming languages
like C. In C, you can define data structures (known as structs).
However, there’s no way to control who changes the values
inside the structs. Any piece of code, anywhere in the codebase,
can change them.

When code is not appropriately encapsulated, developers feel
they can never find where to patch the code or fully fix a bug in

one shot. When code is spread out and not encapsulated,
developers have to constantly search for things. Just going to
the class that defines the abstraction isn’t enough. A developer
may find a place to fix the code, only to have the same bug
appear somewhere else.

Encapsulation, the idea of keeping data within the object and
allowing users to manipulate it only through elegant
operations, is the cornerstone of object-oriented programming.
It’s due to encapsulation that we can change internal details of
a class without affecting the rest of the codebase. In this
chapter, I present some patterns that will help you design
classes that will stay consistent no matter what.

Consistency or integrity?

In object-oriented programming, the word consistency is
commonly used to indicate that an object has accurate and
reliable information. In other computer science domains, such
as databases, the term integrity refers to the accuracy of the
information (and consistency is often related to the availability
of the data).

nsure consistency at all times

Ensure that objects are in a consistent state at all times. This
improves reliability, because objects are always in a valid state
regardless of where and how they are being used.

When objects are consistent, their internal state is
synchronized and coherent with the program’s requirements
and users’ expectations. Maintaining consistency ensures that
objects behave correctly and produce accurate results, leading
to reliable and trustworthy software.

The rule of thumb when it comes to consistency is this: Does the
client of the class need to work to be sure the object is in a
consistent state? If yes, you likely have a poorly designed class
that may soon haunt you. Maintaining a consistent state should
take minimal, if not zero, effort from clients. In the following
sections, we explore patterns that make encapsulation a breeze.

Make the class responsible for its consistency

You should ensure that consistency checks are coded in the
class itself. If you’re not sure which class should maintain data
consistency, a good rule of thumb is to always make the class
that contains the data also ensure its consistency.

In information systems, entities are usually the classes
containing the data. For example, making sure an Offering
never accepts more participants than its maximum allowed
limit should happen inside the Offering class, as should
reducing the number of empty seats by one as soon as someone
enrolls. The developers who use these classes shouldn’t have to
say “I just added one more participant to the offering. Now I
need to reduce the number of available spots by one.”

Figure 3.1 illustrates the idea. Stay alert. If you find yourself
coding consistency checks outside the class, pause and
reconsider.

Figure 3.1 An entity ensuring consistency

Can consistency always be ensured inside the class?
Unfortunately, no.

Encapsulate entire actions and complex consistency
checks

Some consistency checks need information beyond that in the
object, or they may be too complex, requiring the code to live
somewhere outside the class. For example, we may need to
consult the information in the database to decide whether an
operation is valid. We can’t do (and shouldn’t want to do) that
from inside the entity.

NOTE Technically, you can access the database from an entity,
and some frameworks—especially those that support Active
Record, like Ruby on Rails—make it easy to do so. However, this
is not the standard in most architectures and is something we
usually avoid.

In these cases, we should encapsulate the consistency checks
and the business logic in one class: for example, in service
classes, as described in chapter 1. Services ensure the
consistency that entities can’t provide themselves, although
entities still ensure as much as they can on their own. Figure 3.2
illustrates the overall idea of this pattern.

Figure 3.2 Services and entities working together to achieve consistency

The advantage of moving all the consistency logic to a new class
is that we can implement complex consistency checks without
making the original (entity) class more complex. The clear
disadvantage is that when we move this logic away from the
class it’s supposed to be in, clients of the class need to know that
they should use the service.

Documentation plays an important role here. You should write
code comments in the most natural places a developer will look
if they want that behavior. For example, the Offering entity
may deserve a comment saying that if a client wants to add an
employee to a training course, it should use the service class.

Although it’s sad to see behavior separated from data,
sometimes it’s necessary. Clients should never be responsible
for consistency checks; the class should manage it by default. If
checks are too complex for the class, move the entire operation,
including consistency checks, to a service class, and require
clients to use this class for the desired behavior.

NOTE Later in this chapter, I talk more about aggregate roots,
as moving behavior to another class becomes tricky if the class
is an aggregate of multiple classes and has many invariants to
take care of.

The complexity of the consistency checks is an excellent reason
to move the process to another class. There may be other good
reasons. Avoiding unwanted dependencies is one of them. I’ll
talk more about class dependencies in future chapters, but I like
my domain classes to be as pure as possible and contain only
data and methods that operate on this data. I especially avoid
coupling domain classes to classes that access things like
databases or other external software systems. As a rule of
thumb, the object should take care of all the consistency checks
it can without relying on additional dependencies.

Example: The Employee entity

An offering in PeopleGrow! contains the date it will happen, the
list of employees attending the training course, the maximum
number of participants allowed, and an open description text
field where administrators can write information like the room
where the training course will happen, a Zoom link, and so on.

The first version of the Offering class is shown in listing 3.1.
Note that the class doesn’t ensure consistency. This is a poorly
designed class, as it’s easy to put it in an inconsistent state.
Clients have to check whether there are available spots before
adding an employee and then, later, reduce the number of
available spots by one (see listing 3.2). Imagine a client
forgetting to update the number of available spots. Suddenly
the object is invalid.

Also note setAvailableSpots , which sets a new number
without checking whether it’s valid. This is not good.

Listing 3.1 The Offering entity

class Offering {

 private int id;

 private Training training;

 private Calendar date;

 private Set<Employee> employees;

 private int maximumNumberOfAttendees;

 private int availableSpots;

 public Offering(

 Training training,

 Calendar date,

 int maximumNumberOfAttendees,

 int availableSpots) {

 this.training = training;

 this.date = date;

 this.maximumNumberOfAttendees = maximumNumber

 this.availableSpots = maximumNumberOfAttendee

 }

 public Set<Employee> getEmployees() {

 return this.employees;

 }

 public int getAvailableSpots() {

 return this.availableSpots;

 }

 public void setAvailableSpots(int availableSpot

 this.availableSpots = availableSpots;

 }

}

❶ The id field contains the database ID of this offering.

❷ The constructor stores the information passed in the
attributes of the class.

❸ The number of available spots is the same as the maximum
number of attendees when the object is created.

❹ Returns the list of employees in the offering

❺ A getter ...

❻ ... and a setter for the number of available spots

Listing 3.2 Clients using the Offering entity

Offering offering = getOfferingFromDatabase();

if(offering.getNumberOfAvailableSpots() > 0) {

 offering.getEmployees().add(employeeThatWantsTo

 offering.setAvailableSpots(offering.getAvailabl

}

❶ Suppose an offering comes from the database.

❷ Are spots available in the training course?

❸ Adds the employee to the offering

❹ Reduces the number of available spots by 1

The first refactoring we must do makes the Offering class
ensure its internal consistency. This means the class should
make sure the number of available spots is reduced by one if
someone is added to the training course. The class also should
not allow a new employee to join the training course if it’s
already full.

The new version of the class in listing 3.3 has a much better
addEmployee method. The method ensures that no one can be
added to the training course if it doesn’t have any empty spots.
The method also keeps tabs on the number of available spots.
Now the clients of this class don’t need to know anything about
how offerings work. Whenever they want to add an employee,
they call addEmployee() and move forward.

Listing 3.3 Offering entity with the new addEmployee()
method

class Offering {

 private int id;

 private Training training;

 private Calendar date;

 private Set<Employee> employees;

 private int maximumNumberOfAttendees;

 private int availableSpots;

 public Offering(Training training, Calendar dat

 int maximumNumberOfAttendees) {

 // basic constructor

 }

 public void addEmployee(Employee employee) {

 if(availableSpots == 0)

 throw new OfferingIsFullException();

 employees.add(employee);

 availableSpots--;

 }

 public int getAvailableSpots() {

 return this.availableSpots;

 }

}

❶ Ensures that the object is always consistent

❷ It’s still fine to let clients know how many spots are available.

It’s also important to notice that the class doesn’t offer the
getEmployees method. We don’t want clients to be able to
handle an internal data structure of the class by themselves
without any control. Only Offering should handle the list of
employees.

Returning a copy of the data structure

One way to avoid giving clients full access to an internal data
structure of the object—as in this case, where we don’t want to
give access to the internal list of employees—is to instead give
them a copy of that data structure. Changes they make in the
copy won’t affect the original data structure, which is only
available internally to the object. I discuss when and how to
offer getters and setters later in this chapter.

We can also improve the construction of the class. The class
shouldn’t allow an Offering to be created with an empty

training course or a negative number of
maximumNumberOfAttendees . I talk more about this when we
discuss validation in the next section.

Concurrency and design

Don’t forget that nonfunctional requirements may influence
your design decisions. For example, if you expect multiple
simultaneous requests to add employees to training courses,
listing 3.3 may not work, as there will be concurrent access to
availableSpots . To solve this problem in an information
system where multiple requests may be processed at the same
time, you can ensure that requests for the same training course
are processed linearly through, say, smart queueing. Or, in
terms of class design, you can get rid of availableSpots and
eliminate concurrent access to this field.

I won’t dive into architectural patterns for data-intensive
systems in this book. But the overall message is that you should
never forget your functional and nonfunctional requirements
when designing classes.

esign effective data validation mechanisms

Validate client data to prevent unexpected errors and reduce the
risk of odd behavior in the system. Clearly define the
consequences of invalid data. This pattern improves code
reliability and user experience by ensuring that the system can
better handle and communicate problems.

Validating data throughout your system may seem tedious, but
it pays off in the long run. Consider what will happen if a user
requests the creation of a training course offering with an
empty date. Will the software crash, or will it handle the invalid
input gracefully?

I discuss two design approaches to handle data validation in the
following sections. One focuses on explicitly defining pre- and
postconditions of methods, and the other validates input data
from a business perspective.

Make preconditions explicit

Many bugs and inconsistencies in software systems occur when
methods call other methods in invalid ways. This can happen
for various reasons, such as not knowing how to use a class or
method, or input data cascading from previous code layers
without prechecks.

The second reason is harder to spot in code. Systems have
complex data flows, and we can’t be aware of all of them. By
actively ensuring pre- and postconditions and explicitly
documenting them, we reduce the chances of inconsistent
program execution and increase the likelihood of others using
classes as intended.

Let’s start with preconditions. Methods should make it clear
what values are valid for each input. For example, the
Offering class offers a method called addEmployee that
receives Employee s as a parameter. The method adds the
employee to that course.

What if the client passes null to the method? Null is clearly an
invalid input parameter. If nothing is done, the system will
likely crash at some point. It’s the developer’s responsibility to
decide what the method should do if a client doesn’t respect the
preconditions of a method.

We can design different actions when preconditions aren’t met.
We can take harsh measures against invalid input values, such
as throwing an exception. Throwing an exception has an
advantage: it halts the program right away. Halting the program
is better than continuing its execution when we don’t know
how to proceed with the invalid data. However, this decision

increases the workload for client classes because they have to
handle this possible exception. If that’s our intention for that
class, it’s a perfect decision.

In other cases, we may choose a more lightweight way of
handling preconditions. For example, the method can accept
nulls and do nothing in these cases. If a null comes in, the
method returns early. This option requires less effort from
clients because the method doesn’t throw exceptions or stop
working in case of invalid input (which is no longer invalid
because the method can handle it).

Handling invalid input was easy in this example, but it may
require more lines of code in practice. The tradeoff is that if we
make our code more tolerant toward bad input, saving clients
from handling possible exceptions themselves, the method’s
developer must code a bit more.

Overall, explicitly thinking of preconditions is a fundamental
design activity that will save our code from crashing
unexpectedly. This is one of the few practices discussed in this
book that focuses more on quality as in, “This code works”—
rather than quality as in, “This code is easy to maintain.”
However, code that works is easier to maintain.

Additionally, the maintenance aspect is related to how we
decide to handle the precondition. In his book A Philosophy of
Software Design, John Ousterhout says we should “define errors
out of existence.” For example, imagine a method that returns
all employees enrolled in a training course. Instead of throwing
an exception if no employees are enrolled, we can return an
empty list. Or imagine a method that marks an invoice as paid.
If the invoice is already paid, instead of throwing an exception
if someone tries to mark it as paid again, the code does nothing.
By simplifying the preconditions of the code, we simplify the
lives of our clients because they have fewer corner cases to
handle.

If you can design your code so that it can’t fail, that’s better for
maintenance. If you consider that you’ll develop the class once,
but it will be used multiple times by different clients, saving
them effort is also a good thing to do in the long run.

Create validation components

In enterprise systems, actions often require more than just
meeting method preconditions. Take enrolling in a training
course as an example. addEmployee has a simple
precondition: don’t accept nulls. However, from a business
perspective, there might be additional validations: employees

can’t take the same course more than three times, the employee
must be from a specific office, and so on. These rules aren’t
preconditions per se, but we must ensure that the request
complies with them.

Business validation rules are pervasive in enterprise systems,
so you should handle validation explicitly in your code by
giving rules their own classes. This enables reusability and
clarity when clients call validation methods.

Preconditions vs. validation rules

Preconditions are the minimum requirements for a unit of
code to execute correctly, such as “This attribute can’t be null”
or “This value should be A, B, or C.” Validation rules are more
business related and often require more code for checks, like
“Employees can’t take the same training course more than
three times.”

We don’t want clients to handle consistency or precondition
checks, and we don’t want them to know that validation rules
should be called before an action. In this case, it’s also wise to
design a service class to control the flow and ensure that
validations and consistency checks happen before the action.

Figure 3.3 enhances the previous figure. Services do consistency
and validation checks that entities can’t. Services may get the
help of validation components. Entities still perform all the
consistency checks they can.

Figure 3.3 Validation components help maintain consistency.

Let me make a few final remarks about validation classes:

If you’re sure you’ll need to reuse the same validation rules
for other use cases or service classes, design them so they can
be reusable elsewhere. If you are looking for a way to build
flexible validation rules, consider the Specification pattern,
which became popular after the book Domain-Driven Design
by Eric Evans was published in 2003. This pattern allows you
to define rules and compose them in different ways.
However, most validation rules are specific to a feature or
service. Don’t overdesign validation classes.
Should you call validation components from inside an entity?
Because many validation rules require external
dependencies such as databases, and you don’t want to
couple your entities to such things, it’s preferable not to call
them from an entity. Using a service class to coordinate is a
worthwhile tradeoff for complex business actions.
If you try to instantiate an entity that does all the proper
consistency checks directly with the data from the user, you
may get an immediate precondition violation without having
the chance to do other checks. To avoid this, you can
introduce intermediate classes like OfferingForm , which
are data structures that hold the user’s data without
validation. Once the data is valid, you can convert it to a
proper Offering class.

Use nulls carefully or avoid them if you can

Sir Tony Hoare introduced nulls in 1965 as a convenient
solution, later calling it his “billion-dollar mistake.” Nulls can be
tricky, causing unexpected null pointer exceptions and
hindering readability with excessive null checks.

The possibility of a class returning null forces clients to perform
null checks everywhere, which hampers readability. In the
following listing, note what would happen if we had to check
for nulls at every point in the code.

Listing 3.4 Null checks everywhere

var obj1 = method1(); ❶

if(obj1!=null) {

 var obj2 = method2();

 if(obj2!=null) {

 var obj3 = method3();

 if(obj3!=null) { ❷

 // ... code continues ...

 }

 }

}

❶ method1() may return a null, forcing the code to do a check.

❷ Look how deep this code already is, just because of three
checks.

This example may be extreme, but I hope you get the point.
Adding null checks everywhere is something you should avoid.

The best thing you can do is ensure that your methods never
return null. How? Consider the following:

If a method has a path that should return nothing, consider
creating an object that represents nothing. For example, if
the method returns a list, will it be a problem if you return
an empty list if the operation isn’t successful?
If you want to return null because there was a problem in
the execution of a method, should this method then throw an
exception? Can you make the method return a class that
describes the problem?
Can you design the error out of existence? For example, if the
client passes a null to a list parameter, can you assume this
list is empty instead of returning null?

If a method returns null because a library you don’t control
returns nulls, can you wrap this library call and transform
the result?

A system without null returns is easier to work with, but
avoiding nulls requires time and effort. We have to invest some
time in designing away the null.

What if you need to represent the absence of information? Isn’t
that what null is all about? Languages like Java offer the
Optional type, which can be helpful in such situations. Clients
must check for the presence of a value before proceeding.

I also don’t want to discard the need for a null return you can’t
control. Life is hard, and you may be in one of those situations.
If so, I suggest documenting the behavior so clients know they
must be prepared for it. Avoiding surprises is the best you can
do when you can’t model away a null.

Tools can also help you identify pieces of code that may suffer
from null pointers. For example, the Checker Framework and
IntelliJ’s null-detection capabilities are excellent at detecting
places where you should handle a possible null return.

Example: Adding an employee to a training offering

PeopleGrow! has many business rules around adding an
employee to an offering:

An employee can’t register if there are no spots available.
An employee can’t take the same course more than three
times.
An employee can’t be registered more than once for the same
offering.

These rules can’t all be implemented inside the Offering
class, as a single instance of an offering doesn’t have access to
whether the employee already took this course in the past.
Given that adding an employee to an offering has become more
complex, the entity isn’t the best place to code this rule. We
need a service and a validation class.

Let’s start with the service class. Its implementation should be
straightforward. We validate the request. If it’s valid, we add
the employee to the offering.

As a design choice, I opted to receive the IDs of the offering and
the employee and let the service retrieve them from the
database. Another option would be to receive the Offering
and Employee entities directly, forcing the client to retrieve

them before calling the service. Both approaches have
advantages and disadvantages.

The method then ensures that both exist in the database;
otherwise, it throws an error. Then it calls the
AddEmployeeToOfferingValidator validator to ensure that
this is a valid request from a business point of view. (Can we
implement the validation rules in the service directly? If they
are simple, sure. If they are more complex, I prefer a dedicated
class, as discussed earlier.) If validation goes fine, we add the
employee to the offering. If not, we throw an exception.

Listing 3.5 AddEmployeeToOfferingService class

class AddEmployeeToOfferingService {

 private OfferingRepository offerings;

 private EmployeeRepository employees;

 private AddEmployeeToOfferingValidator validato

 public void addEmployee(int offeringId, int emp

 var offering = offerings.findById(offeringId)

 var employee = employees.findById(employeeId)

 if(offering == null || employe == null)

 throw new InvalidRequestException(

 "Offering and employee IDs should be vali

 var validation = validator.validate(offering,

 if(validation.hasErrors()) {

 throw new ValidationException(validation);

 }

 offering.addEmployee(employee);

 }

}

❶ Checks whether the offering and employee IDs are valid

❷ Calls out the validator to ensure that this is a valid request
business-wise

❸ If validation fails, throws an exception and lets the client
handle it

❹ Adds the employee to the offering

Depending on your architecture and technologies of choice, the
service may also have to handle other aspects of your system.
For example, suppose you choose an object-relational mapper
(ORM) such as Hibernate. In that case, you don’t have to call an

update method explicitly to persist the changes in the database,
as Hibernate will handle that for you. If you aren’t using an
ORM, you may have to explicitly call methods that will persist
the change in the database.

Naming services

Naming is a tough software engineering problem. I decided to
name this service after the action it provides (“add an
employee to an offering”) because it makes the intent and
functionality of the service immediately evident to developers
and domain experts. People name services in different ways.
Pick whichever makes the intent of that service the most
evident.

This snippet doesn’t explicitly show how the service should be
instantiated. Depending on how you design everything, you
may use a dependency injection framework or do it manually.

The implementation of the
AddEmployeeToOfferingValidator class is also
straightforward. It contains a sequence of if s, each checking a
business rule, and notes if the request is invalid.

Listing 3.6 AddEmployeeToOfferingValidator class

class AddEmployeeToOfferingValidator {

 private TrainingRepository trainings;

 public ValidationResult validate(

 Offering offering,

 Employee employee) {

 var validation = new ValidationResult();

 if(!offering.hasAvailableSpots()) {

 validation.addError("Offering has no availa

 }

 var timesParticipantTookTheTraining =

 trainings.countParticipations(employee, off

 if(timesParticipantTookTheTraining >= 3) {

 validation.addError("Participant can't take

 }

 if(offering.isEmployeeRegistered(employee)) {

 validation.addError("Participant already in

 }

 return validation;

 }

}

❶ The offering must have available spots.

❷ The participant shouldn’t have taken the course more than 3
times.

❸ The participant can’t be already in this offering.

I won’t go into the details of ValidationResult . Just imagine
a simple class that stores the list of possible errors that the
validator identifies. The service can then ask if there were
errors (via validation.hasErrors()) and decide what to do
with them: for example, repassing them to the client that called
the service.

What matters in this listing is that the service coordinates the
action and doesn’t allow an invalid request to proceed. It makes
sure offerings are always consistent.

This means clients shouldn’t be able to call addEmployee()
directly; only the service should be able to do that. In many
programming languages, you can play with visibility modifiers,

module systems, or even static analysis to prevent that from
happening.

Note that you can implement the generic validation mechanism
many different ways. Don’t get too attached to my
ValidationResult example. As I said before, make it simple,
and evolve it over time.

Domain services and application services

Domain-driven design (DDD) and clean architecture
distinguish between domain services and application services.
Application services should only coordinate the work and have
no business rules, whereas domain services contain the
business rules. The latest version of
AddEmployeeToOfferingService acts as an application
service as it only coordinates the tasks between the different
classes that are part of the operation and has no business rules.

Separating application and domain services, or separating
control flow from business logic, helps simplify your code and
domain. As always, I take a pragmatic approach. I start with a
simple service, and I’m lenient at the beginning if the service is
playing the roles of both an application and a domain service.
However, as soon as the complexity starts to grow, I refactor.

ncapsulate state checks

Encapsulate state checks, regardless of their complexity. Doing so
ensures that clients remain ignorant about other classes’ internal
details, enabling classes to change their internal implementation
without breaking the clients.

Clients often need to know the object’s state to make decisions.
We’re used to encapsulating business rules, but we often forget
to also encapsulate state checks.

Consider asking if the Offering class still has spots available.
An inattentive developer may write something like
if(offering.getNumberOfAvailableSpots() == 0) (if
the number of available spots is equal to zero) or even
offering.getEmployees().size() <

offering.getNumberOfAvailableSpots() (if the number of
employees enrolled is smaller than the number of total spots).

Although this may work for a while, it creates a strong coupling
between the Offering class and all the clients. What if the
class internally changes the way it represents the number of
available spots? Clients would have to be changed as well.

This design problem even has a name: shotgun surgery
(https://refactoring.guru/smells/shotgun-surgery). Shotgun

https://refactoring.guru/smells/shotgun-surgery

surgeries happen whenever a change in one place requires
several other places to change. Figure 3.4 illustrates. You should
avoid shotgun surgeries as much as possible.

Figure 3.4 Shotgun surgery

Encapsulate the state check so the clients don’t have to do any
work. Make the Offering class offer a method like boolean
hasAvailableSpots() . How the class implements it internally
is no longer important for the clients. You can change the class’s
internal implementation as many times as you like.

Encapsulating state checks is crucial when they become more
complex. You certainly don’t want your clients to write complex
if statements to get the information they need about the
object’s state.

Although writing state checks in client code may seem
convenient, encapsulating even simple checks can save time
and provide flexibility. This approach prevents clients from
needing to understand the inner workings of the class, allowing
the class to change freely.

Tell, don’t ask

“Tell, don’t ask” is a principle in object-oriented programming
that encourages telling objects what to do instead of asking
them for data and acting on it. You can read more about it on
Martin Fowler’s wiki
(https://martinfowler.com/bliki/TellDontAsk.html).

We’ve seen that encapsulating state checks within objects is
beneficial. However, if clients have to ask the object for
information so they know how to act on it, there’s room for
improvement. For example, in the first version of the
Offering class implemented in this chapter, we had to see if
there were available spots (ask) and, if so, add the employee
(tell). In the second version, clients had to tell the class to add
the employee.

The latter approach is better for maintenance and evolution, as
clients don’t need to check whether the offering has spots

https://martinfowler.com/bliki/TellDontAsk.html

before calling addEmployee . Moreover, if addEmployee
requires additional checks in the future, we only need to
modify it internally in the method and not in all the clients,
avoiding shotgun surgery. This shouldn’t surprise you, as we
discussed similar things previously in this chapter, but now you
know the name of a related principle.

Example: Available spots in an offering

If a client of our Offering class needs to know whether spots
are still available, the client has to get the number of available
spots via getNumberOfAvailableSpots() and see if the
number is greater than zero.

Let’s better encapsulate this state check. The Offering class
now has a hasAvailableSpots() method, which abstracts
how the check is done away from clients. This allows the
Offering class to change its implementation freely if needed.

The implementation of the method is as simple as
availableSpots > 0 . It doesn’t matter that it’s so simple: you
should encapsulate it and free your clients from knowing how
to do it.

Listing 3.7 Implementing the hasAvailableSpots method

class Offering {

 // ...

 private int availableSpots;

 public boolean hasAvailableSpots() { ❶

 return availableSpots > 0;

 }

 public int getAvailableSpots() { ❷

 return this.availableSpots;

 }

}

❶ Checks if the number of available spots is greater than 0

❷ It’s still acceptable to have this getter, as some clients may
need to know the number of spots available.

The Offering class is getting much better!

rovide only getters and setters that matter

Offer clients only relevant getters and setters. Getters should not
modify or allow modification of the class state, and setters should
be provided for descriptive properties only. This pattern promotes

code clarity and maintainability by limiting the public interface of
a class to what is necessary and relevant for clients.

Getters and setters enable clients to access and modify class
data. These methods are essential in languages like Java but less
so in Python or C#, which offer different functionalities.
Regardless of your programming language, you must prevent
clients from having unrestricted access to attributes.

If classes can freely modify attributes, how can we ensure
consistency? Additionally, if classes can access any attribute,
how can we guarantee that future class evolutions won’t break
clients because they are now coupled to every attribute?

But we can’t write software without offering clients ways to
interact with class data. In the following two sections, we
discuss the characteristics of good getters and setters.

Getters that don’t change state and don’t reveal too
much to clients

Getters should never change the state of the class. This is an
essential and unbreakable rule. Command-query separation
(CQS) is a principle that says a method should be either a
command (perform an action that changes the state of the
system) or a query (return data to the caller) but never both.

Although this rule is generally well followed, it’s crucial to think
about which attributes should have getters. Some fields may be
better kept inside the class or replaced with more elegant
getters providing richer information.

The practical challenge with getters is that frameworks often
require getters and setters for their functionality. Some
developers separate classes for mapping objects to relational
tables from domain classes to avoid breaking invariants. Others
prefer a more pragmatic approach, providing the getter or
setter the framework requires and understanding that the
design doesn’t fully protect against bad changes. It depends on
developers using classes correctly. This has been less of a
problem with modern frameworks that understand good
object-oriented practices, but still, it is worth knowing, given
that most of us still have legacy systems to maintain.

Unmodifiable collections

In Java, you can ensure that the returned list of employees is
unmodifiable. If you have to offer a getter that returns a list,
return an immutable collection.

Setters only to attributes that describe the object

Careless setters can lead to inconsistent objects, as they allow
anyone to update the field of a class any way they want. Each
setter in the code should exist only after a deliberate decision.

Never offer a setter for an attribute requiring consistency
checks. Instead, provide elegant methods that safely perform
the operation, like the addEmployee() method discussed
earlier. We don’t want clients to do
offering.getEmployees().add(employee) .

A safe rule of thumb for using setters is when the attribute
being changed mainly describes the object, such as a
description attribute for an Offering class or a name
attribute in an Employee class. Setters for descriptive fields
usually won’t cause future problems. For other fields, consider
whether allowing changes could lead to inconsistency.

Checks inside setters

Setters can include additional code, like checking for null
values before storing them. However, if you need business
checks inside setters, consider giving the method a more
meaningful name (or moving the operation to a service if the
consistency check is complex). This way, your code follows the

convention that setters only assign values, making it clear what
to expect from any setter in your codebase.

Example: Getters and setters in the Offering class

The Offering class should offer clients the possibility of
seeing the list of employees on an offering. However, we don’t
want clients to be able to change that list without going through
the proper service.

There are many ways we could implement this. For example,
we could create a method that returns a different data structure
with the list of employees: say, an EnrolledEmployees class.
This way, even if clients changed the data, it wouldn’t be
reflected in the entity.

I often use this approach, as it strongly decouples the entities
from my model that I need to keep consistent from objects that
only carry data. This approach also allows me to return only
what the clients need. For example, maybe clients only need an
employee’s name and e-mail. The new data structure can only
contain what clients need, decoupling them even more from the
entity.

Your programming language may also offer a way to return
copies of lists or even immutable data structures that throw

exceptions if clients try to modify them. In this example, I use
Java’s way of returning an immutable collection. The
unmodifiableSet method from the Collections class, part
of Java’s collections library, returns a list that can’t be modified.

Listing 3.8 getEmployees returns an immutable list

class Offering {

 ...

 private Set<Employee> employees;

 public Set<Employee> getEmployees() {

 return Collections.unmodifiableSet(employees)

 }

}

❶ This set is unmodifiable!

The getEmployees method is now a safe getter! Also note that
we don’t offer a setEmployees method, as allowing a client to
pass an entire list of employees at once makes no sense.

Should we offer a setter for maximumNumberOfAttendees ? I
don’t think so. Modifying the maximum number of attendees

may involve logic. What if we have more employees in the
offering than the new number? A simple setter isn’t enough;
we’d need a proper method in the Offering class or a service
if the logic became more complex.

odel aggregates to ensure invariants in
clusters of objects

Design aggregates to ensure consistency of entities that hold
clusters of objects. This approach improves code clarity and
maintainability, making it easier to reason about entities that
handle complex relationships between objects.

In DDD, an aggregate root is a cluster of objects treated as a
single object by the rest of the application. The main object, or
root, ensures consistency in the entire object tree. Clients can
access and call operations only on the root object and not
directly on its internal objects. Clients should hold references
only to the aggregate, to prevent changes to internal objects
without the root’s knowledge. For example, a Basket class
may be composed of multiple Item s composed of Product s,
but the other classes of the system only see Basket . If they
need the Product s inside it, they will ask the aggregate root:
in this case, the Basket class. Figure 3.5 illustrates.

Figure 3.5 An aggregate root

As DDD suggests, modeling aggregate roots should be an explicit
part of your design process. Identifying objects within an
aggregate root and ensuring that they’re accessed only through
it is a crucial design activity that pays off in software
maintenance. If all actions go through the aggregate root, it can
maintain consistency throughout the object tree.

Note that aggregate roots go beyond simply encapsulating lists
of objects. They do more than that. We’re modeling entities that

should be responsible for keeping the consistency of more
complex domain relationships.

Another important rule with aggregates is treating aggregate
roots as the unit to be passed around. When persisting an object
to the database, pass the entire aggregate root, not a specific
internal object. You should, therefore, have one repository or
data access object per aggregate root, not per database entity.
This maintains consistency by passing aggregate root
references.

Regarding persistence, the aggregate root repository also
ensures database integrity. For example, deleting an enrollment
from an offering directly in the database using
enrollmentRepository.delete (enrollment) might
break consistency in the offering, as the number-of-available-
spots field might now be incorrect. A well-designed
OfferingRepository wouldn’t offer a deleteEnrollment
method because it could break consistency.

Don’t break the rules of an aggregate root

Trust me: you will sometimes feel tempted to skip the aggregate
root and operate directly on one of its child objects. There are
various reasons for this:

Some frameworks or libraries may require it, such as
persistence frameworks needing one repository per database
entity.
For performance reasons, you might prefer to access a small
part of the aggregate directly rather than through the
aggregate root.
Aggregate roots with deep object clusters may need too much
boilerplate code for simple changes.

Are you willing to sacrifice consistency and maintainability for
other benefits? My advice is to be pragmatic. Use all available
tools and software to your advantage, but be aware of the
tradeoffs.

The personal checklist I go through whenever I feel tempted to
break an aggregate root is as follows:

Is the benefit from breaking the aggregate rules much more
beneficial than keeping maintenance costs low and
invariants always up to date?
If I want to change part of the aggregate directly without
going through the aggregate root, am I sure this object should
be part of the aggregate? If no real invariant needs to be kept,
break the aggregate into smaller parts.

If there’s an invariant to be kept, can I still break the
aggregate root and accept that there will be some eventual
consistency between the two aggregates? You can use domain
events to ensure the aggregate is notified about the change in
the other aggregate.

NOTE This discussion only scratches the surface of designing
aggregate roots. Consider reading books on DDD, such as Eric
Evans’ Domain-Driven Design and Vaughn Vernon’s
Implementing Domain-Driven Design (Addison-Wesley
Professional, 2013) for deeper exploration.

Example: The Offering aggregate

PeopleGrow! needs to improve how offerings are handled. Right
now, we store the list of employees in a training course, and if
an employee drops out, we remove them from the list. The
business wants to know the date the employee enrolled for that
course, as well as the date of the unenrollment if the employee
drops out of the course.

Storing employees as a simple list isn’t enough. We need
another entity to store the extra required information. Let’s call
this entity Enrollment . An enrollment will contain the

employee, the date of enrollment, the enrollment status, and, if
canceled, the date of cancellation.

The Enrollment class stores all the information for an
enrollment. It also offers a cancel method that cancels the
enrollment and sets the cancellation date.

Listing 3.9 Enrollment entity

class Enrollment {

 private Employee employee;

 private Calendar dateOfEnrollment;

 private boolean status;

 private Optional<Calendar> dateOfCancellation;

 public Enrollment(Employee employee, Calendar d

 this.employee = employee;

 this.dateOfEnrollment = dateOfEnrollment;

 this.status = true;

 this.dateOfCancellation = Optional.empty();

 }

 public void cancel(Calendar dateOfCancellation)

 this.status = false;

 this.dateOfCancellation = Optional.of(dateOfC

 }

 // relevant getters

}

We’ll make an Offering have multiple Enrollment s instead
of a direct list of employees. We’ll also ensure that all changes
in an Enrollment happen through the Offering that the
Enrollment belongs to. After all, we can’t allow clients to
change enrollments directly. Imagine if a client cancels an
enrollment but forgets to update the number of available spots
(there’s another spot available now that one was canceled). To
ensure that we have no consistency problems, we make
Offering an aggregate root and Enrollment one of its
aggregates.

The enroll method (I changed the name of addEmployee to
enroll because that name makes more sense from this new
business angle) creates a new instance of Enrollment , puts it
in the list of enrollments, and decreases the number of
available spots. If someone wants to cancel their participation
in a course, Offering offers the cancel method, which looks
up that employee’s enrollment, cancels it, and then makes the
spot available again. I won’t illustrate the changes in the
AddEmployeeToOfferingService class as they are minimal

(mostly call enroll() instead of addEmployee() and
perhaps rename it to EnrollAnEmployeeToOfferingService
to reflect the new domain terms better).

Listing 3.10 Offering as an aggregate root

class Offering {

 private int id;

 private Training training;

 private Calendar date;

 private List<Enrollment> enrollments;

 private int maximumNumberOfAttendees;

 private int availableSpots;

 public Offering(

 Training training,

 Calendar date,

 int maximumNumberOfAttendees) {

 // basic constructor

 }

 public void enroll(Employee employee) {

 if(!hasAvailableSpots())

 throw new OfferingIsFullException();

 Calendar now = Calendar.getInstance();

 enrollments.add(new Enrollment(employee, now)

 availableSpots--;

 }

 public void cancel(Employee employee) {

 Enrollment enrollmentToCancel = findEnrollmen

 if(enrollmentToCancel == null)

 throw new EmployeeNotEnrolledException();

 Calendar now = Calendar.getInstance();

 enrollmentToCancel.cancel(now);

 availableSpots++;

 }

 private Enrollment findEnrollmentOf(Employee em

 // loops through the list of enrollments and

 // finds the one for that employee

 // ...

 }

}

❶ The list of employees is replaced by a list of enrollments.

❷ Creates an enrollment and ensures that the offering is in a
consistent state after that

❸ Cancels the enrollment and ensures that the entire aggregate
is consistent

❹ Loops through the list of enrollments and finds the one for
that employee. Returns null otherwise.

Note how the Offering aggregate root ensures that the entire
aggregation is consistent. No client should be able to
manipulate enrollments. Again, you can play with your
programming language so clients can’t use the Enrollment
entity directly.

Canceling an enrollment may become a service in the future, as
it may have more complex consistency checks and validation
rules. In that case, the service will ensure that the cancellation
is valid and then call the aggregate to propagate the
cancellation to the Offering , just as we did with adding an
offering.

Figure 3.6 illustrates this aggregate root. Offering is the
aggregate root, and Enrollment is an internal domain object.
All operations in the offering or its internal domain objects

must go through the aggregate root. The design should prevent
any modification of internal domain objects.

Figure 3.6 An illustration of the Offering aggregate root

Although this is primarily a topic for chapter 6, let me discuss
my decision in the cancel() method. The method finds the
enrollment to cancel by looping through the list of
Enrollment s. In practice, we have to load the entire list of
enrollments from the database before finding the one we need.

This may not be performant enough, depending on your
nonfunctional requirements.

In the case of PeopleGrow!, the list of employees in a training
course is small, and the system isn’t expected to have an
extremely high load. Loading the list of employees shouldn’t
ever cause performance problems—but you never know. We’ll
look at this example in chapter 6 when I discuss how to get the
best out of your infrastructure without compromising much of
your design.

xercises

Think through the following questions or discuss them with a
colleague:

1. Have you ever faced a bug caused by an object’s lack of
consistency? What was this bug like? How did you fix it?

2. What are the real-world challenges of ensuring that things
are correctly consistent and encapsulated?

3. How have you been designing consistency checks and
validation mechanisms in your software systems? How much
does that approach differ from what’s presented in this
chapter?

4. Were you aware of the domain-driven design concept of
aggregates? Do you see opportunities to apply it in your
current project? Where? Why? How?

mary

Object consistency is crucial to prevent bugs, reduce coding
effort, and ensure smooth maintenance. Consistency should
be ensured first in the class, with all of its methods making
sure no invalid changes occur.
Complex business operations may require external
validation, which should be handled by services or dedicated
validation classes working with the central entity to ensure
consistency.
Avoid creating getters and setters blindly, and reflect on the
needs of each method.
Design aggregate roots in complex entities to ensure the
consistency of the entire object graph and prevent clients
from updating the internal state of the aggregate.

4 Managing dependencies

This chapter covers

Reducing the effect of coupling in the class design
Depending on high-level, more stable code
Avoiding tightly coupled classes
Increasing flexibility and testability with dependency
injection

In any software system, classes get together to deliver more
extensive behavior. For example, a service class may depend on
several repositories and entities to do its job. This means the
service is coupled to these other classes.

We’ve discussed the problems of large classes and the
advantages of smaller classes. On the one hand, having a class
depend on other classes instead of doing everything alone is
good. On the other hand, once a class delegates part of its task
to another class, it has to “trust” the other class to do its job
right. If a developer introduces a bug in an entity, this bug may
propagate to the service class and make it break without even
touching its code.

That’s why you shouldn’t randomly add more dependencies to a
class. Dependency management or, in simpler words, which
classes depend on which classes and whether this is good or
bad, is critical when maintaining large software systems.

It’s easy to lose control of dependencies. For example, suppose
we make a class depend on the details of a dependency.
Suddenly, any change in the dependency creates a ripple effect
of changes throughout the codebase, increasing the system’s
complexity and making it harder to maintain over time. Now
suppose we make a class depend on many other classes. Besides
the code complexity that emerges from the many interactions
with the other classes, too many of those classes may change
and affect our class. We don’t want that.

Managing dependencies is like layering a cake. If you don’t do it
well, the cake will fall. In this chapter, I talk about patterns that
can help you get your dependencies under control.

eparate high-level and low-level code

Separate code with high-level behavior from low-level
implementation code to minimize the effect of changes. High-level
code should primarily depend on other high-level code, reducing
the potential effects of changes to low-level details. By isolating

high-level code, we can create a more modular and adaptable
system that is easier to maintain and update over time.

Most business functionalities can be seen from both high- and
low-level perspectives. The high-level perspective describes
what the functionality should do, and the low-level perspective
describes how it should accomplish the task.

This explicit separation in the code is good for maintenance,
especially for complex features and business rules. We want
pieces of code that describe only the feature (the high-level
code) and other pieces that concretely implement the feature.

There are advantages to following this pattern. First, when
maintaining code, starting from the high-level code gives us a
quicker understanding of the feature, as the code contains only
the “what” and not the “how.” We dive into implementing the
lower-level details only if we have to. Maintaining code is much
easier when it doesn’t require reading hundreds of lines before
understanding what it does. By hiding details, developers can
focus on what’s important.

Second, the separation between higher-level and lower-level
code allows them to change and evolve separately. For example,

we can change the internal details of the lower level without
affecting the higher level and vice versa.

Third, higher-level code tends to be more abstract and,
consequently, more stable. Therefore, when we make our code
always depend on other higher-level code, we are less likely to
be affected by a change.

You may have heard of the dependency inversion principle
(DIP), which is a name to describe what I just said. This
principle states that we should depend on abstractions, not
details. Moreover, higher-level and lower-level classes should
depend only on abstractions, not other lower-level classes.
Although I’m less strict about depending solely on abstractions,
separating high-level and low-level concerns is more critical
than creating unnecessary abstractions. Some low-level
components are stable enough not to require additional
abstractions.

Design stable code

When writing higher-level code, we mostly write “stable code,”
which is good. Interfaces are an example of units of code that
are stable over time because they define, in a high-level way,
what a component offers the external world. Interfaces don’t

care about internal implementation details and are a great way
to decouple high-level code from low-level code.

Interfaces don’t work miracles. Bad interfaces can still be
designed: for example, interfaces that aren’t stable or leak
internal implementation details. We need to design interfaces
with stability and information hiding in mind.

Interface discovery

Writing all the high-level code first and implementing the
details later is an interesting programming style, which you get
better at the more you practice.

There are many advantages to coding this way. Not only is there
a clear separation between higher-level and lower-level code,
but this approach also prevents you from getting stuck. If you
tackle the implementation details in the order they appear, then
as soon as a new requirement arises, you have to search for the
solution, distracting you from your original focus. By coding the
high-level functionality first, you can handle the
implementation details later, resulting in a productivity boost.

Coding the high-level interfaces first enables you to explore
what the contract of the class should look like and what
operations it should offer to its clients. This is a great design tool

to ensure that your interfaces stay sharp and to the point and
don’t contain methods or require information that’s not needed.

NOTE Steve Freeman and Nat Pryce’s book Growing Object-
Oriented Systems, Guided by Tests (Addison-Wesley Professional,
2009) brilliantly illustrates how interface discovery can help
you build maintainable object-oriented design. This book is
worth the read.

When not to separate the higher level from the lower
level

Not every feature needs to be separated into higher-level and
lower-level code, because not all features in a software system
are complex. Mixing the high-level description of what needs to
happen with its implementation can be acceptable for more
straightforward features. You can encapsulate the
implementation details of the higher-level code using private
methods, making navigating to the implementation details
easier if needed. As always, as soon as you realize complexity is
growing, refactor.

The only things I suggest you never mix, regardless of the
complexity of the feature, are infrastructure and business code.
You don’t want your business logic mixed with SQL queries or
HTTP calls to get information from a web service. In these

cases, you should always have a higher-level interface that
describes the “what” and put the implementation details in
lower-level classes. I talk more about that in chapter 6.

Example: The messaging job

PeopleGrow! has a background job that runs every 5 seconds
and sends messages to users. The code gets unsent messages,
retrieves the user’s internal ID from their email, sends the
message using the internal communicator, and marks the
message as sent.

Listing 4.1 High-level unit of code for MessageSender

public class MessageSender {

 private Bot bot;

 private UserDirectory userDirectory;

 private MessageRepository repository;

 public MessageSender(Bot bot,

 UserDirectory userDirectory,

 MessageRepository repository) {

 this.bot = bot;

 this.userDirectory = userDirectory;

 this.repository = repository;

 }

 public void sendMessages() {

 List<Message> messagesToBeSent = repository.g

 for(Message messageToBeSent : messagesToBeSen

 String userId = userDirectory.

 getAccount(messageToBeSent.getEmail());

 bot.sendPrivateMessage(userId,

 messageToBeSent.getBodyInMarkdown());

 messageToBeSent.markAsSent();

 }

 }

}

interface Bot {

 void sendPrivateMessage(String userId, String m

}

interface UserDirectory {

 String getAccount(String email);

}

interface MessageRepository {

 List<Message> getMessagesToBeSent();

}

❶ Loops through all the messages that need to be sent

❷ Gets the user’s ID based on their email

❸ Sends the message through the bot

❹ Marks the message as sent

Note how high-level this code is. It solely describes what’s
expected from this job and contains no low-level
implementation details of any of these parts. We know that
MessageRepository returns the list of messages to be sent,
but we don’t know how. We know that UserDirectory gets
the user ID based on an email, but we don’t know how this is
done. The same thing for the Bot interface; we know what it
does but not how it does it.

Any developer who bumps into this code snippet will
understand what this job does. Sure, the developer may not
know the implementation details, but do they need to know?
You rarely need to know how everything in a business flow
works. It’s more common that, in maintenance tasks, you find
the small part of the flow that you want to change, and you
make the change. Imagine how complex software development
would be if you had to understand every single detail of the
software system before being able to change it.

In figure 4.1, you can see that MessageSender depends on
interfaces that are likely to be stable, such as
MessageRepository , UserDirectory , and Bot . These
interfaces are implemented by low-level code that gets things

done. For example, the MessageRepository interface is
implemented by the) MessageHibernateRepository class,
which uses Hibernate (a Java persistence framework) for
database access. The UserDirectory interface is
implemented by a CachedLdapServer class that caches the
information retrieved by the company’s Lightweight Directory
Access Protocol (LDAP) server, and Bot is implemented by an
HttpBot class that makes an HTTP call to the API. We only
know the implementation details once we dive into the lower-
level classes.

Figure 4.1 The separation between higher-level and lower-level code

The implementation details of how the lower-level classes do
their jobs are not of concern to MessageSender . It only needs
to know that the Bot interface offers a way to send a
markdown message to a specific user. The MessageSender
interface is decoupled from the implementation details, which
is what we want.

In terms of coding, the developer who implemented this class
followed the suggestion of implementing the higher-level code

first (or, in other words, following a more top-down approach
rather than bottom-up). So, they did the following:

1. They started to write the entire MessageSender class
without caring about the details.

2. At some point, they needed the list of messages to be sent.
MessageRepository already existed, so they added a new
method to the interface.

3. They needed to retrieve the user ID based on the user’s
email. This was the first time that information was required.
They created the UserDirectory interface and continued
with MessageSender .

4. It was time to send the message to the bot. This was also the
first time a bot was required, so they wrote the Bot
interface.

5. Once MessageSender was done, they changed their focus to
the lower-level classes.

6. They implemented getMessagesToBeSent() in the
repository.

7. They investigated and learned that the user ID should come
from the LDAP server. They found a library to help
communicate with the LDAP server and wrote the class.

8. They read the documentation of the chat tool and learned
that a simple HTTP post with the message would be enough.
Then they wrote the code.

As you can see, starting from the higher-level code allowed the
developer to implement the entire business logic without
changing focus. Then it was just a matter of coding the lower-
level classes. Well done!

void coupling to details or things you don’t
need

Minimize dependencies on the implementation details of other
components to reduce the effect of internal changes. The less you
know about how components do their job, the less likely you are
to be affected by changes to their implementation.

Rule number one in good dependency management is to never
depend on the details of other classes or components. The best
way to achieve this is by ensuring that classes don’t expose
their details in the first place.

Hiding the internal details of classes is crucial for evolving
software components independently without worrying about
other components. Imagine having to change hundreds of
classes in your system just because you performed a refactoring
in a single class. This would be time consuming and expensive.

In computer science, this principle is also known as information
hiding. The idea is to separate what’s likely to change from
what’s not so that other components don’t have to be modified
too much when we change these parts.

Although it’s impossible to hide every detail of a class, we can
explicitly design what we expose and what we conceal. Here
are some guidelines to help:

If you change the internal implementation of this class—say,
you refactor it—will clients be affected?
Will this piece of code need frequent changes? If so, can you
design it so the code is hidden behind a more stable
abstraction, like an interface?
Is this the minimum information the client needs to know?
Less is better.
Are you unnecessarily exposing implementation details? If
the client doesn’t need to know, don’t reveal it.

In short, you must decide what to expose and what to conceal
and reflect on how much changes to the details you expose will
affect clients.

Only require or return classes that you own

When designing classes or interfaces, it’s important to require
or return only classes you own, not classes from a framework
or third-party library. By a “class you own,” I mean a class that
belongs to your domain model and over which you have
complete control and ownership; for example, an entity,
repository, or new data structure you created for this new
requirement. By returning only classes you own, you avoid
coupling your code to external dependencies, such as a
particular library or structure.

The importance of this pattern emerges when you start
integrating your code with other modules or third-party
libraries. Say you decided to adopt the software development
kit (SDK) of the chat tool your company uses internally. If you
pass the classes from the chat SDK throughout your entire
codebase, you strongly couple your code to it. What happens if
the SDK changes? You’ll be forced to either never update to the
newer SDK or to propagate the change to the entire codebase,
which is cumbersome and expensive. A way out of this problem
is to create classes that represent the communication with the
chat tool from your domain’s point of view and let one class in
your system handle the conversion between the domain and
the chat SDK.

Although the two aforementioned approaches may seem
slightly different, they have distinctly different consequences. If
the third-party library changes, we only need to propagate the
change to the converter class.

We can’t avoid coupling entirely, but we can control what our
code is coupled to. Be cautious not to overdo it and create
excessive layers of indirection or needlessly complex code. In
some cases, a third-party class is precisely what’s needed, and
coupling to it is acceptable. It’s up to you to judge how “bad” the
coupling is.

The cost of onboarding developers

Something to keep in mind when creating wrappers or internal
libraries and frameworks is that they will have a cost when
onboarding a new developer. The developer likely knows how
to use a widely used open source library, but they won’t know
how your unique layer on top of it works. So, make sure your
wrapper is simple enough. This idea appears again in chapter 6
when I talk about connecting your design with external
infrastructure.

Last but not least, returning classes we own makes the most
sense in our domain classes. We don’t want our Invoice or

Product classes to be coupled to a data structure from another
library we have little control over. However, we don’t have to
wrap every single class of every single framework in our tech
stack. On the contrary: it’s often better to embrace the
framework’s way of doing things. I have a rule of thumb that I
never create wrappers around the major frameworks I picked
for the project’s tech stack.

For example, if I choose Spring Boot as my framework of choice,
I don’t wrap its classes so that later, I can replace Spring with
another framework. I do my best not to let Spring Boot get
spread over my domain classes, but I don’t wrap the controller
classes just so my controller becomes independent from Spring.
Spring also offers facilities to implement repository classes. If
you use it, your repositories may be coupled to some of Spring’s
functionalities and not a framework-independent class, but this
shouldn’t be a problem.

I used a Java framework as an example, but the same is true
when you pick similar frameworks in other languages. If you
choose Ruby on Rails or ASP.NET Core, embrace the framework
unless you have excellent reasons not to.

Example: Replacing the HTTP bot with the chat SDK

The internal communication system used by the company now
offers an SDK for the integration that PeopleGrow! can use. This
means a better SDK implementation can replace HttpBot .
Given that the Bot interface clearly defines what a bot needs
to implement (high-level code), all we need to do is implement a
new class that implements this interface (low-level code).

The SDK offers a ChatBotV1 class with a writeMessage
method that receives a BotMessage (a class that’s part of the
SDK) as a parameter. Given that we don’t own this class, we
don’t let it go outside the low-level implementation of the new
SDKBot class we’re about to implement.

Listing 4.2 Implementation of SDKBot

class SDKBot implements Bot {

 public void sendPrivateMessage(String userId, S

 var chatBot = new ChatBotV1();

 var message = new BotMessage(userId, msg);

 chatBot.writeMessage(message);

 }

}

❶ Instantiates the chatbot class from the SDK

❷ Composes the BotMessage, also part of the SDK

❸ Sends the message to the bot via the SDK’s provided
writeMessage() method

In no situation should we return instances of BotMessage to
other parts of the code. This way, the rest of the codebase is
fully decoupled from the library, allowing us to change the
implementation in the future.

You may have noticed that we instantiate ChatBotV1 directly
in sendPrivateMessage . A better way to do this would be to
inject it into the SDKBot class. We talk about dependency
injection later in this chapter.

Don’t give clients more than they need

In information systems, it’s common to reuse the same domain
entities in different parts of the application. The same entity
retrieved from a repository is used by the service and then sent
back to the client that requested it (after, say, being serialized to
JSON). We do this because it’s too easy to reuse an existing class
even if the client’s needs differ.

I’ll focus on the example of the same entity being shared across
different layers of the application, as it’s the most common type
of reuse I see. Figure 4.2 illustrates this.

Figure 4.2 The same entity is used across different layers, creating some undesired
coupling.

Giving clients the entire entity, not only what they need, has
disadvantages. First, any change in the entity is propagated to
the client. Could this change break the client? There may also be
security implications. What if we add a field the client shouldn’t
see or know about? The worst part is that it’s hard for the
developer to do an impact analysis on the fly and identify
whether the change to the entity will affect clients.

A great solution to this issue is to decouple the entity from what
the clients requested. We can achieve this by creating a more

specific data structure representing the client’s needs and then
converting the entity to this data structure before sending it to
the client. This way, we can change the entity without worrying
about how it will affect clients.

What we are doing here is abstracting the information. We are
used to abstract behavior, but we can also abstract information!

Example: The offering list

PeopleGrow! has a page in the web system that lists all the
current offerings, the number of enrollments, and the number
of available spots. The Offering entity contains all this
information. However, if we return this entire entity to the
frontend client, we’ll return too much information it doesn’t
need. For example, this page doesn’t need the names of the
enrolled employees. In some architectures, returning this list of
employees may even have a performance cost as it requires
more queries to the database.

Listing 4.3 Offering class

class Offering {

 private int id;

 private Training training;

 private Calendar date;

 private Set<Employee> employees;

 private int maximumNumberOfAttendants;

 private int numberOfAvailableSpots;

 // relevant constructors, getters, and setters

}

Instead of returning the full-blown entity, we’ll create a data
structure that holds only the information the client needs. The
OfferingSummary class contains only the title, date, number
of enrollments, and total number of spots. This class is
constructed after the main entity.

Listing 4.4 OfferingSummary class

class OfferingSummary {

 private int id;

 private String training;

 private Calendar date;

 private int numberOfEnrollments;

 private int maximumNumberOfAttendants;

 // relevant constructors and getters

}

We only need to build OfferingSummary based on the
Offering entity. The question is where to put this code. I’ve

seen developers put it in different places, but these are the best
two:

A method OfferingSummary toSummary() inside the
Offering entity. This ensures that the conversion logic
stays inside the entity.
A static method OfferingSummary convert(Offering
offering) in the OfferingSummary class. This way, the
conversion logic becomes closer to the data structure, freeing
the entity from knowing that this data structure exists.

I prefer the second option as I like my domain entities to be
agnostic regarding the clients’ needs. But the first one is also OK
and won’t give you complicated maintenance challenges.

reak down classes that depend on too many
other classes

Break down classes with too many dependencies to limit the
scope of potential changes. This pattern improves code
maintainability and flexibility, allowing your system to better
adapt to changing requirements.

Units of code should be small in all dimensions, including
dependencies. If a class depends on 10 other classes, it may

indicate a design problem and cause maintenance issues in the
future.

As features grow more complex, dependency numbers increase.
When we’re adding functionality to an existing feature, there
are two primary options (figure 4.3). One is to expand the
current code unit, which doesn’t add dependencies but
increases complexity, as mentioned in chapter 2. The other
option is to create a new class and link it to the existing one,
which increases coupling without increasing the original
feature’s complexity.

Figure 4.3 Add code to the same class or create a new class? Both decisions have
advantages and disadvantages.

When a class starts to depend on many other classes, and they
themselves have grown, consider breaking the cycle. Explore
alternatives, including those that follow.

Example: Breaking down the MessageSender service

Consider the MessageSender service in PeopleGrow!. It
depends on three classes:

UserDirectory —Communicates with the user directory,
obtaining user IDs from emails
Bot —Sends messages to users via the company’s internal
chat system
MessageRepository —Retrieves messages to be sent at a
specific time

Now imagine a new request to deliver messages via email if the
user prefers. We find the existing EmailSender class and add
it as the fourth dependency. A fifth dependency,
UserPreferences , is introduced to obtain user preferences.

Listing 4.5 Sending a message by email

public class MessageSender {

 private Bot bot;

 private UserDirectory userDirectory;

 private MessageRepository repository;

 private EmailSender emailSender;

 private UserPreferences userPrefs;

 public MessageSender(Bot bot,

 UserDirectory userDirectory,

 MessageRepository repository,

 EmailSender emailSender,

 UserPreferences userPrefs) {

 this.bot = bot;

 this.userDirectory = userDirectory;

 this.repository = repository;

 this.emailSender = emailSender;

 this.userPrefs = userPrefs;

 }

 public void sendMessages() {

 List<Message> messagesToBeSent = repository.g

 for(Message messageToBeSent : messagesToBeSen

 String userId = userDirectory.getAccount(me

 bot.sendPrivateMessage(userId, messageToBeS

 if(userPrefs.sendViaEmail(messageToBeSent.g

 emailSender.sendMessage(messageToBeSent);

 }

 // mark the message as sent

 messageToBeSent.markAsSent();

 }

 }

}

❶ Adds new dependencies to MessageServer

❷ These two dependencies are used to decide whether to send a
copy of the message to the user’s email.

A class that was previously dependent on three classes now
depends on five. This is not good. We should break down this
class and move some dependencies to regain control.

For instance, the Bot interface could be changed from
sendPrivateMessage(user id, markdown message) to
sendPrivateMessage(Message) , because the Message
object includes the user’s email and the message. This change
may necessitate updates to the code but may be manageable if
the bot isn’t widely used.

If modifying an existing interface is costly, try creating a
wrapper class that groups dependencies, especially if it can be
given a meaningful domain name. For example, a MessageBot
class can combine the responsibilities of obtaining the user ID
and sending the message. This class has a single send()

method that takes a Message object and calls UserDirectory
and Bot .

Listing 4.6 MessageBot class

public class MessageBot {

 private Bot bot;

 private UserDirectory userDirectory;

 public MessageBot(Bot bot,

 UserDirectory userDirectory) { ❶

 this.bot = bot;

 this.userDirectory = userDirectory;

 }

 public void send(Message msg) { ❷

 String userId = userDirectory.getAccount(msg

 bot.sendPrivateMessage(userId, msg.getBodyInM

 }

 }

}

❶ This class depends on UserDirectory and Bot.

❷ It uses both to send the message to the bot, the same way as
in MessageSender.

Introducing this new class has benefits: doing so reduces client
coupling by replacing Bot and UserDirectory in
MessageSender with MessageBot , simplifying the Bot
interface. The drawback is managing an additional class in the
code.

Figure 4.4 MessageSender before grouping dependencies

The “grouping dependencies” tactic can also apply to
UserPreferences and EmailSender . EmailSender can
depend on UserPreferences to verify user email
preferences, reducing the dependency count by one more.
Compare the dependencies in MessageSender in figures 4.4
(before) and 4.5 (after).

Figure 4.5 MessageSender after grouping dependencies

Indirect coupling

In the example, MessageSender depends on MessageBot ,
which relies on UserDirectory and Bot . Although
MessageSender doesn’t directly depend on UserDirectory
and Bot , it has indirect dependencies. Although also critical,
indirect coupling is less concerning than direct coupling. If the
Bot class changes, the modification won’t affect
MessageSender because it doesn’t directly use the bot. As
long as MessageBot effectively encapsulates the Bot usage,
changes are unlikely to propagate beyond MessageBot .

ject dependencies, aka dependency
injection

Enable dependency injection in components to increase flexibility
and testability. By allowing dependencies to be injected,
components become more modular and can be easily tested in
isolation.

Passing different concrete implementations to a class during
run time gives a design flexibility. We can create as many
different implementations of an interface as we want, and the
main class will work just fine. We explore extensible
abstractions in the next chapter; for now, understand that
dependency injection enables compatibility with various bots
and user directories.

Another benefit of injecting dependencies is enhanced
testability. Developers can easily inject mocked dependencies,
which is particularly useful when dependencies have
computational costs or extend beyond the application. I won’t
discuss design for testability here (see my other book, Effective
Software Testing: A Developer’s Guide:
www.manning.com/books/effective-software-testing), but you
get this for free if your classes allow dependencies to be
injected.

https://www.manning.com/books/effective-software-testing

The best part is that the implementation is simple. We only
need to create constructors that receive the class’s
dependencies instead of instantiating them directly.

There are few benefits in hardcoding dependencies and not
allowing them to be injected. In the past, teams working on
highly performant applications avoided dependency injection
due to its computational costs. These concerns are largely
outdated. Dependency injection frameworks are optimized for
performance, and virtual machines have improved, handling
numerous short-lived object allocations. Unless you’re working
at the scale of Google or Facebook, dependency injection
performance costs are unlikely to be a problem.

Another common argument against dependency injection was
that using static methods was a way to simplify the dependency
graph, but this is misleading. Coupling still exists, and now we
have less control over it. When dependencies are injected
through constructors, developers can easily see a class’s
dependencies. Identifying dependencies becomes difficult with
static methods, as they’re dispersed throughout the class’s
source code.

Interestingly, dependency injection is a typical pattern
nowadays because most frameworks, such as Spring Boot and

ASP.NET Core, support it.

Avoid static methods for operations that change the
state

Static methods can’t be replaced at run time, making the design
inflexible and hindering testing. Using static methods as a
design pattern can lead to a chaotic, hard-to-maintain system.

The problem with using static methods as a design pattern is
that the design quickly becomes a big ball of mud. I’ve seen
systems that performed database access inside static methods.
For a static method to call the database, it needs an active
connection. Because static methods can call only static methods,
we need a static method that returns the active connection. To
create a connection, we need all the database information.
There we go: another static method to return the database
configuration. Before we know it, we are stuck with a set of
methods that can’t be injected.

Another way to reason about what can be static and what can’t
is to look at how “pure” the operation is. A simple utility
method that receives a string and returns the number of
commas in that string is an example of a pure operation. It
doesn’t depend on many other classes, and, more importantly, it
doesn’t depend on any external resources. It’s often okey for

pure functions to be static methods, as we rarely have to
replace them during production or testing.

Conversely, the methods in the earlier service class examples
are impure functions. They change the system state (for
example, by persisting new information into the database) and
may yield different results even with the same input. Such
classes and operations shouldn’t be static.

Always inject collaborators: Everything else is
optional

Classes in information systems often implement different
behaviors and collaborate with other classes to deliver complex
features. For example, the MessageSender class we discussed
earlier in this chapter relies on Bot , UserDirectory , and
MessageRepository as collaborators, and each is responsible
for a different aspect of the “sending messages to users” feature.

Collaborators should always be injected. After all, collaborators
are the dependencies we may want to change in the future (say,
change to a new bot) or mock during testing (like
UserDirectory , because we shouldn’t require an entire LDAP
server to be available during testing).

However, not all dependencies are collaborators. A class may
use entities or other data structures representing information.
These aren’t typically injected. It’s more common for classes or
services to use repositories or factories to instantiate them
rather than receive them from clients. If clients have the entity
in their hands, it’s expected that they pass it to other classes via
the parameters of a method.

Strategies to instantiate the class together with its
dependencies

A pragmatic question around dependency injection is how to
instantiate such a deep graph of dependencies. Dependency
injection frameworks remove all the cumbersome work of
instantiating complex dependency graphs for you. My favorite
option has always been relying on a dependency injection
framework such as Spring, Guice, or whatever is available in
your programming language. In larger applications, you are
likely using a framework to support you in this endeavor, such
as Spring or ASP.NET MVC, and a dependency injection
framework comes out of the box.

Some developers think that hiding this work from us makes us
create even more complex dependency graphs. After all, if we
had to instantiate classes manually, we’d see all the work

required and redesign our code to simplify the graph. Although
I agree with that, there are other ways to get the same type of
information that don’t require doing a lot of manual work.

That being said, I don’t use dependency injection frameworks
for more straightforward applications. I have built a lot of small
command-line tools in recent years. In these cases, I prefer
factory classes that instantiate my dependency graph rather
than configuring a dependency injection framework.

Using a dependency injection framework is, in the end, a
decision full of trade-offs. Pick one, get all the benefits of your
chosen option, and ensure that the downsides are controlled.

Example: Dependency injection in MessageSender and
collaborators

The MessageSender class in PeopleGrow! was born with the
idea of dependency injection in mind, so all of its dependencies
are injected through the constructor. If we take the idea of
dependency injection further, the dependencies of
MessageSender also require their own dependencies to be
injected via the constructor.

Figure 4.6 illustrates the dependency graph when we
instantiate MessageSender . Luckily, PeopleGrow! uses

dependency injection, so the dependencies are automatically
injected whenever we need to use MessageSender .

Figure 4.6 The dependency graph of the MessageSender class

xercises

Think through the following questions or discuss them with a
colleague:

1. Have you ever suffered from a software system that didn’t
manage its dependencies properly? What were the
consequences? What did you do, if anything?

2. How often do you separate high-level code from low-level
code? Do you (now) see advantages in doing so?

3. Some developers don’t like using dependency injection
frameworks. What’s your opinion about it?

mary

Minimizing how much a class knows of its dependencies is
essential to reduce the effect of changes in the dependencies.
Separate high-level and low-level code, and depend on more
stable abstractions. Avoid excessive dependencies, and
identify opportunities for better abstractions.
Use dependency injection to increase flexibility and simplify
testing. Classes should allow collaborators to be injected.

5 Designing good abstractions

This chapter covers

Understanding abstractions
Adding abstractions in code
Keeping abstractions simple

Good abstractions allow us to add new functionality to a system
without constantly changing existing code. For example, think
of a bookstore with a range of discounts like “Buy three books,
get one free,” “45% off during Christmas,” and “Buy five e-
books, get one printed copy free.” The marketing team proposes
new discounts regularly, so the development team needs an
easy way to add them to the code. A well-designed software
system will have abstractions in place so developers can add
new discounts with minimal effort.

It’s difficult to define what abstractions are in one sentence, so
I’ll use a few:

They describe a concept, functionality, or process in a way
that clients can understand without knowing the underlying
mechanisms.

They focus on essential characteristics and ignore
nonessential ones.
Abstractions don’t care (and don’t know) about their concrete
implementations.

Abstractions work well with extension points. An extension
point enables developers to extend or modify the system’s
functionality. In the bookstore, an extension point would allow
developers to plug in or unplug whatever discounts should be
applied for a given basket.

Edsger Dijkstra, a remarkable computer scientist, once said,
“Being abstract is something profoundly different from being
vague. The purpose of abstraction is not to be vague but to
create a new semantic level in which one can be absolutely
precise.”

Designing abstractions is the most fun part of working on
object-oriented systems. It involves identifying common
characteristics among existing and future business rules or
functionalities and expressing them in abstract terms.

Abstractions and extension points are a way to achieve
modularity and flexibility in software design, as they allow
different parts of a system to evolve independently of each

other. However, creating effective abstractions can be
challenging. A wrong abstraction can be worse than not having
one. To truly facilitate system evolution, we must go beyond
simply creating interfaces for things. Abstractions must be
carefully planned and thought through.

Creating good abstractions is like designing a perfect puzzle
whose pieces fit together nicely. In this chapter, I discuss
patterns that can help you understand when it’s time for an
abstraction, how to design good and simple abstractions, and
when not to use them.

esign abstractions and extension points

Create abstractions and extension points in your system to
accommodate variability and simplify adding new functionality.
They improve maintainability and flexibility while minimizing the
need to rewrite existing code.

Abstractions and extension points enable us to easily plug new
features or variations of existing features into a software
system. A software system without them forces developers to
make existing code more complex whenever a new feature
comes in.

It’s common to see classes full of if statements, each block
handling a different variation of a feature, or classes with
several blocks of code, each handling one piece of the
functionality. Without proper abstractions, the only way to
extend a feature is to write more code into existing classes or
methods, making them even more complex.

As we’ve discussed, having a class with a couple of if s or
blocks of code isn’t problematic. The problem appears once this
number explodes. I once saw a class with around 40 if blocks,
one for each feature variation; each block contained around 20
lines of code, and all the blocks had many similarities. As you
can imagine, the class had no tests, and no engineers wanted to
maintain it. A brave engineer eventually refactored the class.
Their solution was to create an interface that each variant
implemented. They then implemented something similar to the
Template Method design pattern, reducing most duplicated
code across variants. Life was much better afterward.

I won’t dive into how to implement abstractions or teach design
patterns, as the existing literature is extensive. Instead, I’ll talk
about when to add an abstraction and pitfalls to pay attention
to.

Identifying the need for an abstraction

You shouldn’t introduce a new abstraction because “it looks
cool.” After all, abstractions add flexibility but also complexity
to the code. There must be a reason for you to create one.

When is it a good idea to introduce an abstraction? Some of my
rules of thumb are as follows:

Features that require lots of variations. This way, whenever a
new variation appears, all you need to do is to create yet
another implementation of the abstraction.
Features that require flexibility in terms of composability. If a
feature has dozens of variations and you may assemble a
different combination for each client, then having an
abstraction helps you combine variations without much
extra code.
Places where you expect changes in the future. If you know
that parts of the feature will likely change, you can do
yourself a favor and facilitate this change through good
design.

Decisions or code you want to hide from the rest of the
system. You can use abstractions to prevent details from
leaking to other parts of the code. For example, you should
hide database access logic from your domain model. You can
do that by introducing an interface that’s ignorant of the
details.

You may have other reasons to introduce an abstraction. This
list is certainly non-exhaustive. Analyze the tradeoffs and see if
the extra cost that abstractions bring to the code is worth it.

Designing an extension point

Sometimes, having clients use the newly created abstraction
directly is enough. When clients depend on the abstraction
rather than the concrete implementation, they are decoupled
from details that may change. That helps us easily replace one
concrete implementation for another without changing a single
line in the client’s code. For example, recall the Bot interface
we created in chapter 4 and that MessageSender used.
Depending on the interface rather than the direct HttpBot
allowed us to change the bot to SDKBot without any changes in
MessageSender itself.

However, in other cases, we design abstractions to provide
flexibility and variability to a feature. Consider the bookstore
from the beginning of this chapter. The abstraction Discount
was created to apply many discounts in the customer’s basket.
The abstraction isn’t enough in this case. We need a mechanism
to plug as many varied discount rules as possible into the
customer’s basket and have them calculate the final price.

Designing an extension point (or not) involves identifying how
the abstraction should be used in the wild. You should not only
design the abstraction but also put yourself in the shoes of those
who will use it.

Extension points are prevalent in open source libraries. Think
of any framework you use, such as Spring or ASP. NET MVC.
These frameworks provide lots of extension points so that you
can customize them. Spring allows you to define different
security filters to define your own security rules. These are
nothing but extension points.

In business applications, although less commonly than in
frameworks, you see them used in features requiring great
flexibility; for example, calculating the final price of the
customer’s basket after going through complex rules,
calculating an employee’s salary based on many different salary

components or rules based on their location, or calculating how
much tax to pay for a given invoice based on the types of
products sold.

Attributes of good abstractions

Designing good abstractions is an art. What does a good
abstraction look like?

A good abstraction separates the “what” from the “how.” In
other words, good abstractions focus on what they should do
but know nothing about how it’s done. Good abstractions make
you, the developer, not care about concrete implementations.
You read the code that uses the abstraction, and that’s enough
for you to know what’s going on.

Good abstractions define a clear contract that clients can rely
on. They make it clear to clients what their preconditions are
and what they promise to deliver. The contracts of a good
abstraction are also as lean as possible. They don’t expect
anything more from clients than the precise data they require
to get the job done, and they don’t return more than what the
clients need.

Once you have a suitable abstraction, writing the different
concrete implementations should be easy. You shouldn’t need to

read lots of documentation or spend hours figuring out what’s
right and wrong. Good abstractions lead you the correct way
from the very beginning. That said, good abstractions are well
documented, and developers can learn everything about them
without bothering other team developers.

A good abstraction is easy for clients to use. With a few lines of
code, you should get the most out of the abstraction. You
shouldn’t need hundreds of lines of code or have to meet
complex requirements to use it. Good abstractions are
straightforward.

A good abstraction doesn’t force extension points to change
whenever it changes or evolves. A good abstraction is, in fact,
stable and doesn’t change much. That’s why coupling to an
abstraction is less of a problem than coupling to a more
unstable concrete implementation.

Finally, a good abstraction allows us to plug and unplug
concrete implementations without requiring any changes in the
code. Good abstractions allow developers to mix and match
different concrete implementations to compose more complex
behavior in very complex features.

Learn from your abstractions

Designing abstractions and extension points is not an exact
science, and even established frameworks sometimes need to
evolve their APIs over time. So, it’s natural to expect changes in
your code as well.

You should continuously refine abstractions and extension
points based on real-world usage. Although valuable for
accommodating variability and simplifying code changes,
abstractions require ongoing improvement to meet evolving
needs. Observe how they are used throughout the software
system. Learn from the clients. Listen to the developers. And
then improve the abstractions.

The challenge is that you can’t keep changing your abstractions
and interfaces, as doing so can cause breaking changes in
everything that depends on them. Maybe the abstraction you
are changing isn’t used much, and you can afford to change
code everywhere. In other cases, you should consider keeping
backward compatibility. Changing abstractions safely is a
complex software engineering task that can even be considered
an open problem, and I won’t dive into it.

Learn about abstractions

One valuable resource for learning more about abstractions
and how to design extension points is the 1994 book Design
Patterns by the Gang of Four (Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides; Addison-Wesley
Professional). Many of these patterns involve creating extension
points for different parts of the system. These patterns can
provide a range of ideas for designing extension points. I
strongly recommend studying the following design patterns,
especially if you’re working on enterprise systems: Strategy,
State, Chain of Responsibility, Decorator, Template Method, and
Command. Although some may not apply directly to your
programming language or framework of choice, you can still
learn much from them.

Another excellent resource is to examine the design of open
source frameworks. Look closely at your favorite framework to
see how it designs extension points. Dive deep into the source
code. Exploring the source code of frameworks like Spring can
teach you a lot about creating extensible software systems.

Abstractions and coupling

In chapter 4, we discussed dependency management and the
challenges that high coupling brings to design. There, I also said

that designing stable code is a good practice.

Dependency management and designing good abstractions
work together. A good abstraction tends to be stable. This means
being coupled to an abstraction is less of a problem, as it’s less
likely to change and, consequently, force other classes to
change.

Example: Giving badges to employees

PeopleGrow! gives badges to employees who take trainings.
Like any gamified system, PeopleGrow! has many badges, and
the rules to get one range from simple to complex.

The initial implementation of the badge system is shown in
listing 5.1. The BadgeGiver class has a give() method that
receives Employee . The implementation goes rule by rule; if
employees satisfy that rule, they win the badge. Badge is a
simple enum that lists the available badges.

As you can see, all the badge-assigning rules are implemented
in a single class. A developer has attempted to organize the
code: rules are grouped in different private methods, and code
comments separate different rules.

Listing 5.1 First implementation of BadgeGiver

class BadgeGiver {

 public void give(Employee employee) {

 perTraining(employee);

 perQuantity(employee);

 }

 private boolean perTraining(Employee employee)

 TrainingsTaken trainingsTaken = employee.getT

 // you get a badge if you did quality-related

 if(trainingsTaken.has("TESTING") &&

 trainingsTaken.has("CODE QUALITY")) {

 assign(employee, Badge.QUALITY_HERO);

 }

 // you get a badge if you took all the securi

 if(trainingsTaken.has("SECURITY 101") &&

 trainingsTaken.has("SECURITY FOR MOBILE DEVS

 assign(employee, Badge.SECURITY_COP);

 }

 // ... and many more ...

 }

 private void perQuantity(Employee employee) {

 TrainingsTaken trainingsTaken = employee.getT

 if(trainingsTaken.totalTrainings() >= 5) {

 assign(employee, Badge.FIVE_TRAININGS);

 }

 if(trainingsTaken.totalTrainings() >= 10) {

 assign(employee, Badge.TEN_TRAININGS);

 }

 if(trainingsTaken.trainingsInPast3Months() >=

 assign(employee, Badge.ON_FIRE);

 }

 }

 private void assign(Employee employee, Badge ba

 employee.winBadge(badge);

 }

}

❶ Applies all types of different badge-assigning rules: per type
of training and quantity

❷ Each specific badge comes with code comments to improve
legibility.

❸ The implementation of this method is similar in structure to
the previous one.

Let’s try a more straightforward design before going for more
complex solutions. We can try a pattern we’ve seen before:
breaking a complex class into a few smaller ones.

Let’s see what happens if we move the groups of badge rules to
different classes. The new BadgesForTrainings and
BadgesForQuantity classes contain just the rules related to

their groups of badges. If a new group of badges emerges, we
create a new class. BadgeGiver now coordinates the work.

Listing 5.2 Groups of badges in different classes

class BadgeGiver {

 public void give(Employee employee) { ❶

 new BadgesForTrainings().give(employee);

 new BadgesForQuantity().give(employee);

 }

}

class BadgesForTrainings { ❷

 public void give(Employee employee) {

 // same code for badges for trainings as befo

 }

}

class BadgesForQuantity { ❸

 public void give(Employee employee) {

 // same code for badges for quantity as befor

 }

}

❶ BadgeGiver coordinates the work with the new classes.

❷ The BadgesForTrainings class contains only the rules related
to badges that employees get if they take specific training
courses.

❸ The BadgesForQuantity class contains only rules related to
badges if employees take a specific number of training courses.

The new implementation is more straightforward due to
smaller classes, but it’s not a suitable final implementation for
two reasons. First, the internal implementation of the new
classes, BadgesForTrainings and BadgesForQuantity , is
repetitive and will continue to grow whenever a new badge
becomes available. Second, creating a new group of badges
requires modifying BadgeGiver . Although this is a minor
issue, improving it can aid in future maintenance.

The first step in improving the implementation is identifying
the common behavior we want to abstract: deciding whether a
badge must be given to an employee. We can create a
BadgeRule interface that generically represents all the rules
determining whether a badge should be assigned.

BadgeRule requires two methods from its concrete
implementations: give() and badgeToGive() . The first

determines whether an employee deserves a badge, and the
second returns the badge that should be given.

Listing 5.3 BadgeRule interface

interface BadgeRule {

 boolean give(Employee employee);

 Badge badgeToGive();

}

We can now implement the different rules, each in its own
class. The following listing shows the implementation of three
of these rules. All the classes implement the BadgeRule
abstraction.

Listing 5.4 A few implementations of BadgeRule

class QualityHero implements BadgeRule {

 public boolean give(Employee employee) {

 TrainingsTaken trainingsTaken = employee.getT

 return trainingsTaken.has("TESTING") &&

 trainingsTaken.has("CODE QUALITY"));

 }

 public Badge badgeToGive() {

 return Badge.QUALITY_HERO;

 }

}

class SecurityCop implements BadgeRule {

 public boolean give(Employee employee) {

 TrainingsTaken trainingsTaken = employee.getT

 return trainingsTaken.has("SECURITY 101") &&

 trainingsTaken.has("SECURITY FOR MOBILE DEV

 }

 public Badge badgeToGive() {

 return Badge.SECURITY_COP;

 }

}

class FiveTrainings implements BadgeRule {

 public boolean give(Employee employee) {

 TrainingsTaken trainingsTaken = employee.getT

 return trainingsTaken.totalTrainings() >= 5;

 }

 public Badge badgeToGive() {

 return Badge.FIVE_TRAININGS;

 }

}

// ... same for the 10 trainings and On Fire badg

❶ The QualityHero class checks whether the employee took the
two quality-related trainings.

❷ The SecurityCop class checks whether the employee took the
security trainings.

❸ The FiveTrainings class checks whether the number of
trainings the employee took is greater than 5.

Now that we have a proper abstraction to represent the badge
rules, we make BadgeGiver depend on the abstraction, not the
concrete implementations. We do this by receiving a list of
BadgeRule s—say, via the constructor. The give() method
loops through all the rules, checks whether a badge should be
given to an employee, and if so, gives the badge.

BadgeGiver can work with any new badge we create, as long
as the rule implements the BadgeRule interface.

Listing 5.5 BadgeGiver , which depends on BadgeRule

class BadgeGiver {

 private final List<BadgeRule> rules;

 public BadgeGiver(List<BadgeRule> rules) { ❶

 this.rules = rules;

 }

 public void give(Employee employee) {

 for(BadgeRule rule : rules) { ❷

 if(rule.give(employee)) {

 employee.winBadge(rule.badgeToGive());

 }

 }

 }

}

❶ The constructor receives a list of badge rules.

❷ Loops through all the rules to see whether the employee
deserves that badge

Figure 5.1 illustrates what our design looks like now.
BadgeRule is an abstraction, and badges implement it. Badges
are then plugged into BadgeGiver , which processes them all.

Figure 5.1 The BadgeRule abstraction and BadgeGiver

With this new design, we have reached our first goal: we don’t
have to change BadgeGiver if a new badge emerges. Instead,
we implement a new BadgeRule .

The next problem to solve is avoiding the explosion of classes.
With this design, we need a new class for a badge, even if the
badge is similar to an existing one. For example, the badges we
give if an employee takes the quality- and the security-related
trainings are very similar. The only difference is the training
courses we look for—and the same for the badges we give
based on quantity. There’s a lot of code duplication happening.

We’ll improve this after we discuss another pattern:
generalizing business rules.

Another decision we made in this code was to create the
TrainingsTaken class. Note how the method
employee.getTrainingsTaken() returns not a simple list of
trainings but rather a TrainingsTaken class. This class is a
wrapper on top of the list of training courses that encapsulates
complex query logic clients may ask for, such as whether a
course was taken or how many training courses a person took
in the past three months. The following listing illustrates its
implementation.

Listing 5.6 TrainingsTaken class

class TrainingsTaken {

 private final List<Training> trainings;

 public TrainingsTaken(List<Training> trainings)

 this.trainings = trainings;

 }

 public boolean has(String trainingName) {

 ... find whether the training is in the list

 }

 public int totalTrainings() {

 ... return the number of completed trainings

 }

 public int trainingsInPast3Months() {

 ... return the number of completed

 ... trainings in the past 3 months

 }

}

❶ The class contains the list of training courses taken by the
employee.

❷ Methods encapsulate the query logic to simplify the clients.

Creating classes on top of lists of objects is something I suggest
doing, especially if you expect clients to query this list in
multiple different ways.

eneralize important business rules

Generalize business logic to create multiple variants of the same
rule without introducing unnecessary complexity or duplication.
This approach facilitates the creation of flexible and scalable code
that can adapt to changing requirements and improves code
reuse by eliminating redundant code.

Sometimes we must apply the same business rule in different
contexts with varying concrete values. Without a proper

abstraction, developers may duplicate the original code to
account for these slight differences.

If we go back to our bookstore example, suppose a specific
discount is based on the authors of the books the customer is
buying. For example, if the customer buys books by Kent Beck
and Martin Fowler, renowned software engineering authors,
they get a discount. They also get a discount if they buy books
by Tolkien and Rowling (two of my favorite fiction authors).
Now suppose the bookstore has 50 or 60 discounts based on
different combinations of authors.

A very naive approach to implement this would be to write a
series of if statements, each checking whether the authors
match the customer’s books and, if so, applying the discount.
Note how these if statements would pertain to the same
business rule but with slight variations. Whenever a new
discount was added, the developer would copy and modify the
business rule, which is not maintainable.

We should identify the general business rule and create an
abstraction to solve this issue. Each concrete implementation of
this discount is a different instance of the generic business rule
but with concrete values.

In essence, this pattern isn’t that different from the previous
one. Both are about identifying the right abstractions to enable
us to evolve the software system with minimal effort. In my
experience, it’s easier for developers to create extension points
or abstractions that resemble different strategies, such as
different ways of calculating discounts. Generalizing business
rules is more challenging, so I have a dedicated pattern, which I
discuss next.

Separate the concrete data from the generalized
business rule

The main challenge around generalizing business rules is
related to data. In most information systems, business related
data comes from a database. Mixing business rules and data
retrieval concerns without a proper design is easy, but doing so
leads to code that is complex and hard to follow. Figure 5.2
illustrates.

Figure 5.2 Code that mixes business logic and data retrieval quickly becomes messy,
hard to maintain, and hard to test.

Modifying and adding new features becomes challenging when
we mix data retrieval and business logic in our code. The code
becomes too specialized for one rule, making it challenging to
add new variations or enhance its flexibility. In these situations,
it’s better to segregate the code that fetches data from the code
that executes the business logic, just as we did before.

When generalizing business logic, you should avoid tying it to
specific data. Instead, ensure that the abstraction depends not
on specific values but rather on generic ones. For example,

instead of having “JK Rowling” and “Tolkien” hardcoded in the
code, the generalized business logic should deal with a list of
authors’ names, whoever those authors are.

There are many different ways to implement this approach.
Some are manual, others are fancier. For example, having one
class that implements the generalized business rule and
receives the data through its constructor and another class
that’s responsible for retrieving the data (via a repository) and
instantiating the generic business rule with the concrete data is
often a good-enough solution.

The advantage of a simplistic glue code is that it’s easy to
understand and evolve. But the disadvantage is that it can
become complex quickly when new discount types emerge.

Deciding how far you should go when designing abstractions is
a challenge. As always, there are no rights and wrongs, just
different design decisions with different advantages and
tradeoffs. Should you go for the most flexible solution
immediately or start simple? We’ll talk more about this soon.

Example: Generalizing the badge rules

We have too much duplication across the different badges. For
example, QualityHero and SecurityCop are basically the

same in terms of code and structure. We should generalize
them. In both cases, the badge is assigned if the participant has
taken a selected list of training courses. Therefore, our
generalization needs a list of courses and the badge that should
be assigned.

The BadgeForTrainings class does what we just described: it
receives the list of training courses and the badge to give in its
constructor. The give() method loops through the list of
courses and checks whether they were all taken. Then
badgeToGive() returns the badge provided through the
constructor. To instantiate the concrete QualityHero badge
rule, we need to instantiate BadgeForTrainings and provide
it with the list of training courses this badge requires: in this
case, testing and code quality.

Listing 5.7 BadgeForTrainings implementation

class BadgeForTrainings implements BadgeRule {

 private final List<String> trainings;

 private final Badge badgeToGive;

 public BadgeForTrainings(List<String> trainings

 Badge badgeToGive) {

 this.trainings = trainings;

 this.badgeToGive = badgeToGive;

 }

 public boolean give(Employee employee) {

 TrainingsTaken trainingsTaken = employee.getT

 return trainings.stream()

 .allMatch(training -> trainingsTaken.has(tr

 }

 public Badge badgeToGive() {

 return badgeToGive;

 }

}

var qualityHero = new BadgeForTrainings(

 Arrays.asList("TESTING", "CODE QUALITY"),

 Badge.QUALITY_HERO);

var securityCop = new BadgeForTrainings(

 Arrays.asList("SECURITY 101", "SECURITY FOR MO

 Badge.SECURITY_COP);

❶ The constructor receives the list of trainings and badge.

❷ If all trainings have been taken, the method returns true, or
false otherwise.

❸ Returns the badge that should be given

❹ Concrete QualityHero badge rule

❺ Concrete SecurityCop badge rule

We can apply the same strategy to the badges based on quantity
and training. In the implementation of BadgeForQuantity in
the next listing, the constructor receives the number of training
courses the employee must have completed to get the badge,
along with the badge. Then give() checks whether the
employee has done so.

Listing 5.8 BadgeForQuantity implementation

class BadgeForQuantity implements BadgeRule {

 private final int quantity;

 private final Badge badgeToGive;

 public BadgeForQuantity(int quantity,

 Badge badgeToGive) {

 this.quantity = quantity;

 this.badgeToGive = badgeToGive;

 }

 public boolean give(Employee employee) {

 TrainingsTaken trainingsTaken = employee.getT

 return trainingsTaken.totalTrainings() >= qua

 }

 public Badge badgeToGive() {

 return badgeToGive;

 }

}

var fiveTrainings = new BadgeForQuantity(5, Badge

❶ The constructor receives the number of trainings required for
this badge, and the badge.

❷ Returns true if the number of trainings the employee has
taken is greater than the provided quantity

❸ We can instantiate concrete badges for quantity rules.

With the generalized badge rules, the next step is to assemble
the final BadgeGiver with all the concrete rules. Before, when
we had one class per rule and lots of duplication, instantiating
them wasn’t hard. If the system were using a dependency
injection framework, all we would need to do would be to ask
for all implementations of BadgeRule , and the framework
would find them. However, with the generalized versions, we
need smarter logic to instantiate the concrete rules and get the
data from the database.

There are different ways to achieve that, ranging from simple
and less flexible, with some human intervention, to more
complex but more flexible and automated. One approach is to
create a factory method: we can create factories for each type of

badge rule, and these factories are responsible for instantiating
them. (To learn more, see https://refactoring.guru/design-
patterns/factory-method.)

The following listing shows the factories for
BadgeForTrainings and BadgeForQuantity .
BadgeRuleFactory describes what a factory should look like.
Then, each concrete implementation--
BadgeForQuantityFactory and
BadgeForTrainingsFactory --gets its data from the database
and returns a list with all the concrete rules.

Listing 5.9 BadgeRuleFactory

interface BadgeRuleFactory {

 List<BadgeRule> createRules();

}

class BadgeForQuantityFactory implements BadgeRul

 public List<BadgeRule> createRules() {

 // accesses the DB, gets the data

 // and for each of them, instantiates a Badge

 // ...

}

class BadgeForTrainingsFactory implements BadgeRu

 public List<BadgeRule> createRules() {

 // accesses the DB, gets the data

https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/factory-method

 // and for each of them, instantiates a Badge

 // ...

 }

}

❶ Factory interface

❷ The BadgeForQuantityFactory instantiates all concrete badge
rules based on quantity.

❸ The BadgeForTrainingsFactory instantiates all concrete badge
rules based on trainings.

Figure 5.3 illustrates the final class design of the badge rules.
Note how easy it is to extend the system with more types of
rules. All we have to do is create a new implementation of
BadgeRule describing the high-level business rule for a badge
and a BadgeRuleFactory that gets the current concrete rules
for that badge.

Figure 5.3 The final class design of BadgeRule and BadgeRuleFactory

With some creativity, we can even make a design force
developers to create a factory whenever a new badge rule is
created. This is one example of how to do it, but as I said before,
it’s okay to start with simple glue code and make it more
sophisticated later if needed. We also haven’t talked about
infrastructure so far (that’s the topic of chapter 6). Still, if your
design doesn’t allow factories to access the database, you can
add one extra layer between the factory and the database
access.

Good abstractions equal easier maintenance!

refer simple abstractions

Abstractions should be simple and require their implementations
to do as little work as possible. Such abstractions simplify the
creation of new concrete implementations and reduce the overall
complexity of the code that may accumulate over time when the
number of implementations grows.

Abstractions add complexity to code. It’s harder for developers
to follow a flow full of interfaces and polymorphic calls. But this
is the tradeoff you make in exchange for more flexibility. You
should strive to simplify the abstraction as much as possible by
letting it represent only the bare minimum of behavior and
delegating the rest to concrete implementations.

Rules of thumb

Choosing the best design can be tricky and often involves
tradeoffs. Ultimately, it’s up to you to decide which tradeoffs are
most suitable for your specific problem.

Although extension points and abstractions can make adding
new functionality to a system easy, they can also add
complexity to the code. It’s essential to weigh the benefits
against the costs to ensure that an abstraction is worthwhile.

It’s not always easy to anticipate how much flexibility a system
will need. Sometimes we implement a simplistic design that
could use more flexibility or overcomplicate a design that
doesn’t need it.

To help you decide when to create extension points and
abstractions, I suggest following the three rules of thumb
illustrated in figure 5.4.

Figure 5.4 Three rules to help you decide whether to create an abstraction or
extension point

Simple is always better

Keeping your code simple is always the best option. Don’t create
an abstraction without a clear reason to abstract the code. If

you aren’t sure how much flexibility you need, starting simple
may be good enough.

But it’s hard to define what simple means. Unfortunately, I often
see code that lacks abstractions with an excuse of simplicity: for
example, code full of if statements or long classes to avoid
creating an interface. Sandi Metz, a Ruby developer who also
authored books on object-oriented design, once said that
duplication is cheaper than wrong abstraction
(https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction).
Although this is true, remember that duplication is also more
expensive than a good abstraction.

You shouldn’t fall into this trap. Simple and small code isn’t
enough in places where an abstraction is needed.

Enough is enough

If you doubt whether an abstraction is needed, you can wait for
empirical evidence. For example, when implementing the first
discount rule for the e-book store, we don’t need more than
simple code. If we’re then asked to implement a second
discount rule, that’s fine; maybe two are all we’ll ever need. But
when discount rules 3, 4, and 5 come in, and we start writing

https://sandimetz.com/blog/2016/1/20/the-wrong-abstraction

many if statements in a row, it may be time to rethink and go
for an abstraction.

Here are some other things I pay attention to when deciding if
it’s time for an abstraction:

Do I keep changing to the same class again and again?
Do classes keep getting bigger?
Am I constantly using if statements to implement
variability?
Do I keep finding clunky ways to glue existing business rules
to other parts of the system?

This is far from an exhaustive list, but I hope it gives you a good
idea of what to look out for.

Deciding when enough is enough is relative and a decision full
of tradeoffs. If you make an early decision, there’s a chance you
are overengineering. If you take too long, it can require more
effort for you to refactor the existing code.

Don’t be afraid of modeling abstractions from day one

Sometimes you’ll be confident from the start that you need
flexibility. In these cases, don’t be afraid of proposing an

abstraction or extension point, even if you have only one or two
implementations at the beginning.

If you opt to start with simple code, you may only delay the
inevitable. Such a decision can cost you more than an
immediately flexible solution.

Example: Revisiting the badge example

The design we created around badges in PeopleGrow! followed
the ideas discussed in this chapter:

The BadgeRule interface is straightforward. It’s easy to
create new implementations. The interface requires minimal
information from clients (the employee under evaluation)
and returns only what clients of the abstraction need
(whether to give the badge, and the badge itself).
The generalization of specific badge rules, such as the badge
for trainings (implemented in the BadgeForTrainings
class) and the badge for quantity (in BadgeForQuantity)
are also simple in terms of implementation. They are
decoupled from each other and won’t change if a new badge
rule is created or because of a change in another badge rule.
BadgeGiver can work with any badge rule and doesn’t have
to change if new badges are plugged in or unplugged.

The fun part of designing abstractions is that there are many
ways to solve the same problem. If you were to do this yourself,
your final design would likely be different from mine. Which is
better, yours or mine? It’s hard to say—we should always keep
learning from our abstractions in the wild.

xercises

Think through the following questions or discuss them with a
colleague:

1. How often do you encounter well-designed extension points
in your current software system? What do they look like?

2. Would parts of your current project deserve a better
abstraction or extension point? What part? Why? How would
you design it?

3. Have you ever suffered from a poorly designed abstraction?
What did it look like? Why was it wrong?

mary

Abstractions and extension points simplify software
evolution and prevent code complexity over time by allowing
new functionality to be added without changing existing
code.

These design elements can be applied in various aspects of
the system for flexibility, such as adding discount rules or
generalizing specific rules for multiple instances.
Simplicity should be a priority when designing abstractions
and extension points, to avoid adding unnecessary
complexity to the code.
Introducing an abstraction early on can be beneficial
because not having one when you need it can be costly.

6 Handling external dependencies
and infrastructure

This chapter covers

Decoupling infrastructure code from the domain
Understanding how far to go when decoupling infrastructure
Creating wrappers on top of infrastructure libraries and data
structures

Software systems rarely exist in isolation; they often interact
with databases for data persistence or web services from
external companies or internal teams. A significant challenge in
software design is preventing our code from being
contaminated by these outside details.

You may wonder why this is a problem. There are a few reasons
to protect your domain from external influences. First, they can
impede your ability to replace a component with something
simpler, which would facilitate testing. For instance, if you lack
a layer between the code that accesses an external web service
and your domain logic, it becomes difficult to test the domain
logic in isolation.

Second, without encapsulation, your code becomes tightly
coupled to the data structures and abstractions of third-party
APIs. Many libraries are not particularly stable and undergo
frequent changes. You don’t want minor updates to those
libraries affecting numerous places in your code.

Third, handling infrastructure involves low-level code, and
without proper encapsulation, making changes becomes
cumbersome. Consider a caching layer: you may start with a
straightforward implementation using an in-memory hash map
for quick access. However, as your application grows and
requires more advanced caching strategies, you’d prefer to
implement a new approach without needing to modify every
instance where the old caching is used.

You may now think that all you need to do is add an interface to
abstract the infrastructure, and you’re done. Although this is a
good starting point and often sufficient, I’d like to delve deeper
into the topic.

A well-designed abstraction should hide the details of the
infrastructure, allowing the rest of the system to remain largely
unaware of it. However, there’s an interesting tradeoff between
proposing a simple interface that completely abstracts away the
infrastructure (enabling easy evolution or even full

replacement) and losing the ability to use specific features of
the underlying infrastructure.

For example, you may want to take advantage of the
performance of your Oracle database or the scalability of
Amazon Simple Queue Service (SQS) queues. However, doing so
may require a specific implementation that doesn’t apply to any
other database or queue. The challenge lies in creating
abstractions that allow you to harness the benefits of the
underlying infrastructure while avoiding contamination of
your code with these specific details.

Furthermore, although I’ve used external systems (databases,
caches, web services) as examples thus far, similar challenges
can arise within your software system. Perhaps you’re using an
opinionated framework that imposes a coding style that isn’t
ideal for your domain code. Your design should shield you from
such limitations as well.

Designing a solid infrastructure abstraction is akin to
organizing the plumbing in your house. It involves ensuring
organization, ease of maintenance, and replaceability. In this
chapter, we explore how to create abstractions that will help
make your code independent of specific external systems so
your designs don’t break when major changes happen in them.

Using “infrastructure” as a generic term

Throughout this chapter, I use terms like infrastructure and
infrastructure code. By infrastructure, I mean any
infrastructure or external system your software depends on,
such as a database like Postgres, Redis as cache, or an external
web service provided by an airline company that your
software has to integrate with. By infrastructure code, I mean
the code you write on your side to integrate with this external
system. For example, you have to write database APIs and SQL
queries so your application can read data from and write data
into Postgres.

eparate infrastructure from the domain
code

Code that handles infrastructure should be separated from the
domain code. These classes should be as thin as possible and
contain no business logic. This separation keeps the design clean,
easier to evolve, and more testable.

Don’t write any infrastructure-handling code inside any class
with business logic. This is rule number one regarding handling
infrastructure code—and a no-brainer because it’s easy to
follow and pays off quickly. Instead, write the handling code in

a class whose sole purpose is to represent the communication
between your application and the external system.

Even before we dive into a discussion of whether you need an
interface or if the concrete class representing the external
system is enough, you can improve your design by an order of
magnitude just by putting the domain and infrastructure code
in different classes. Your code is more testable because it’s
easier to replace a concrete class with a fake or a mock during
testing, and any changes in the infrastructure code happen in a
single place.

Separating infrastructure code from domain logic is common in
more modern codebases. It’s been years since I’ve seen a system
that contains SQL queries and database logic code mixed with
business rule code. Patterns like Data Access Objects and
Repositories (from the book Domain-Driven Design) are
prevalent in most codebases.

However, the devil is in the details. Let’s say you need to
retrieve a simple configuration value from a file to process
business rules. It’s common to see file-access logic and business
logic mixed together. Although this may not appear to be a
major problem, you’ve inadvertently coupled your code to the
file’s structure. This can complicate your life if the file needs to

evolve because you’ll have to locate all the places that read the
file and make corresponding changes. Moreover, it becomes
more challenging to test your code as you can’t easily replace
the configuration value to facilitate testing. To avoid these
problems, you can introduce a Configuration class that
encapsulates the logic of reading the configuration value from
the file and returns it cleanly to the client.

Now, let’s consider a scenario where you need to retrieve data
using a third-party library provided by an external company.
An inattentive developer may make direct method calls to this
library within the business logic. Similar to the previous
example, if the library changes, you’ll have to update all the
classes in your system accordingly. However, this problem could
have been prevented if a single class handled all the calls to the
library.

In a nutshell, aim to minimize the effect of these external
systems on your code. By doing so, if these systems ever need to
change, the resulting effect will be as minimal as possible.

Do you need an interface?

It’s a good idea to have an interface that explicitly separates the
infrastructure from the domain code. Although many argue

that interfaces support us in changing the infrastructure’s
implementation later, the primary reason I use interfaces is that
they prevent me from writing code that relies on the
infrastructure directly. Within an interface, I can only define a
set of methods I anticipate from the infrastructure, and nothing
more.

Let’s consider a scenario where we’re tasked with
implementing a feature that requires obtaining a list of
employees. We know this list is stored in a database, so our code
needs to interact with this external system. One approach to
implementing this (depicted in fig- ure 6.1) is to define an
EmployeeRepository interface with a method
Set<Employee> allEmployees() . Additionally, we have a
concrete implementation—let’s call it
HibernateEmployeeRepository —which implements this
interface and internally uses Hibernate to communicate with
the database in the background. By using this interface, we
ensure that no details related to the database leak into the
domain code.

Figure 6.1 The EmployeeRepository interface prevents implementation details
from leaking into the domain.

Different architectures, such as ports and adapters (also known
as hexagonal architecture) and clean architecture, suggest the
same idea: an interface that speaks the domain language and
prevents implementation details from leaking.

That being said, always having an interface is not a hard rule
you can’t break. Sometimes a class is good enough. As long as
this class speaks the domain language and doesn’t allow
implementation details to leak, you’re fine.

My rules of thumb for when to create an interface are the
following (also see figure 6.2):

If I anticipate multiple implementations of the same
infrastructure, I immediately implement an interface. Doing
so ensures a smoother transition when additional
implementations arise and also enables me to create a fake
implementation of that infrastructure for testing purposes.
If I have limited knowledge about the specific infrastructure
details, the interface provides a solid starting point. It allows
me to proceed with coding the rest of the features without
being hindered by my lack of knowledge.
When I know I’ll use this infrastructure in multiple places,
relying on an interface is more lightweight than relying on a
heavy class that brings numerous dependencies.
If the underlying infrastructure is complex, it becomes more
challenging to prevent details from leaking. By employing an
interface, I am compelled to carefully consider the design
from day one.

Figure 6.2 Deciding whether there’s a need for an interface

With or without the interface, you must ensure that the code is
well encapsulated and that the implementation details are
hidden from the code but not from the developers.

Hide details from the code, not from the developers

Your design should conceal the internal details of the
infrastructure from the rest of the code to minimize the effect
of implementation changes. However, it’s important not to hide
too much from developers, because understanding what’s
happening behind the scenes enables them to write optimal and
efficient code.

A common misconception in infrastructure-related code design
is the belief that everything must be hidden from everyone. The
primary objective of properly encapsulating infrastructure is to
ensure that changes have a limited effect on the overall system.
Your entire system shouldn’t require extensive modifications
when upgrading the version of your persistence framework,
introducing read replicas to the database, or transitioning from
SOAP to REST for a consumed web service.

But simultaneously, you don’t want to hide everything from
developers. Such an approach can be impractical and
unnecessary for most projects. For instance, if developers know
that a relational database is used instead of a document-
oriented database, they may optimize their designs accordingly.
Creating a design that supports seamless switching between

different database types is possible but expensive, requiring a
compelling business reason to implement.

Consider another example. Suppose we know that retrieving
the list of employees involves making a remote call to the
Employee service. In that case, we may exert additional effort
to ensure that our code handles common failures in distributed
architectures. We can create abstractions and components that
make a remote call appear local to the rest of the system
(although it may not always be achievable), but doing so
correctly demands significant effort that isn’t necessary for
most systems. Moreover, if developers are unaware that a
remote call is involved in retrieving the employee list, they may
inadvertently write code that doesn’t function correctly from
the start.

The extent to which to abstract infrastructure is a topic of
heated debate within the community. On the one hand, some
advocate treating infrastructure as a mere detail not
warranting excessive concern while modeling the rest of the
system. On the other hand, some proponents assert that
infrastructure is an integral part of an information system that
should be accepted as such.

My viewpoint lies somewhere in between these perspectives. I
agree that infrastructure should not be treated as a mere detail.
For example, databases are core components of information
systems. However, we also don’t want the implementation
details scattered throughout the codebase. Instead, we should
isolate infrastructure-specific code as much as possible to
minimize the effect of changes, similar to what we discussed in
the previous section.

Changing the infrastructure someday: Myth or
reality?

The strong encapsulation of the infrastructure code is beneficial
when changes become necessary. In such cases, the goal is to
modify only the classes related to the infrastructure while
ensuring that the rest of the system continues to function
seamlessly.

But complete infrastructure overhauls are rare, so why
optimize for such scenarios? This is a valid point. Most software
systems seldom undergo complex migrations, such as
transitioning from one type of database to another or switching
web frameworks. Nevertheless, the infrastructure of most
software systems undergoes constant evolution over time.

Testing and infrastructure

From a testing perspective, your infrastructure is constantly
changing. For example, you may not want your unit tests to
depend on a Kafka instance.

I can think of many evolutions in infrastructure that we want to
implement without breaking the rest of the system, including
the following examples:

The system requires caching, and we wish to cache specific
queries without altering the entire codebase.
Scaling demands necessitate the introduction of a read
replica. We don’t want to change every place in the code that
calls the database and redirects it to the replica. Instead, we
want the infrastructure abstraction to handle it.
The authentication mechanism used internally by our
company to validate calls from internal web services has
changed. It shouldn’t be necessary to modify every
occurrence of a call due to this change.
The system now needs to handle large file uploads and
downloads, prompting a decision to transition to Amazon’s
S3 instead of storing files on on-premises disks. This
migration becomes much easier if the infrastructure code is
encapsulated behind a well-defined interface.

Even if you’re sure your infrastructure won’t change drastically,
remember that it will evolve, and you want to minimize the
evolution cost.

Example: Database access and the message bot

From the start, we kept infrastructure code separate in all the
code examples in PeopleGrow! We didn’t want those
implementation details to clutter the entire codebase. This
applies not just to infrastructure code but also to everything
we’ve talked about in this chapter. Let’s review.

From a domain point of view, the repository interfaces
represent all the required data access behavior. For example,
the EmployeeRepository interface in listing 6.1 has methods
such as findById , which returns the employee with that ID,
findByLastName , which returns all employees with a specific
last name, and save , which persists a new employee to the
database.

Note that this interface doesn’t give any hints about how these
methods are implemented. Which database is behind them?
Which library is used to communicate with them? If we ever
need to change any implementation detail related to accessing

employee information in the database, the rest of the system
won’t be affected by the changes.

Listing 6.1 The EmployeeRepository interface

interface EmployeeRepository { ❶

 Employee findById(int id);

 Set<Employee> findByLastName(String lastName)

 void save(Employee employee);

 // ...

}

❶ This interface models all the data access actions related to
employees.

PeopleGrow! is definitely in a good position if we need to
change how we handle database access. Behind the scenes,
PeopleGrow! uses Hibernate as a persistence framework and
Postgres as its database of choice.
HibernateEmployeeRepository contains all the handling
code.

Suppose we now want to improve the performance of the
findByLastName method, and we decide to add some caching.
All we need to do is change the implementation of this method,

hitting a cache first and, if it’s not there, hitting the database.
We plug our caching library into the Cache class.

Listing 6.2 Changing some infrastructure details

class HibernateEmployeeRepository implements Empl

 private Cache cache;

 // ...

 public Set<Employee> findByLastName(String la

 if (!cache.contains(lastName)) {

 cache.add(lastName, session

 .createQuery("from Employee e where e.l

 .setParameter(...)

 .toSet());

 }

 return cache.get(lastName);

 }

}

❶ HibernateEmployeeRepository now depends on our Cache
library.

❷ We go for the cache first and then the database.

Thanks to this separation between infrastructure and domain
code, we only needed to modify

HibernateEmployeeRepository ; the rest of the codebase
remained untouched.

I won’t get into the details of how to implement caching or what
challenges it brings to the implementation because this isn’t the
focus of this book. Introducing caching in a real system may be
more complex than in this example. Nevertheless, changing
code in a single place rather than everywhere is already a great
advantage, as shown in figure 6.3.

Figure 6.3 Changes only have to happen in a single place, not the entire system.

A challenge that emerges when modeling an interface to hide
the details is that we may design an interface that doesn’t use
the infrastructure to its fullest. And we don’t want that.

se the infrastructure fully

Get to know your underlying infrastructure and use it to the best
advantage. Design your classes in a way that optimizes what they
have to offer. This helps you to write the best system you can with
the least effort.

Most software systems rely on existing components to fulfill
their tasks. For instance, they depend on databases for data
persistence and web frameworks to efficiently build APIs. These
components have undergone significant advancements in
recent decades, providing developers with a wealth of features
that would be a shame to disregard simply because they don’t
fit our class design.

Let’s consider a scenario where we need to perform a data
operation, and our database offers a remarkable feature that
can help us do so correctly and efficiently. The alternative
approach would be to load the data into the system and
perform the operation purely through code, thus avoiding
polluting our design with a feature specific to that particular
database. Although this may make the design appear clean and
technology independent, it will ultimately complicate our work
and degrade the quality of the system. The second option is
significantly slower and more susceptible to bugs than the first.

Unless there’s a valid reason to do so, you shouldn’t overlook
the advantages the infrastructure offers. The challenge lies in
using your infrastructure to its fullest potential without
compromising the integrity of your design.

Do your best not to break your design

In the world of software design, nothing comes without
tradeoffs. If you wish to use a remarkable feature from your
infrastructure, it may require creating additional abstractions.
This ensures that your design remains protected if there are
changes in how this operation is handled in the future, which is
not uncommon.

Technically speaking, an interface that provides a domain-
focused operation implemented by a class encapsulating the
handling code is often sufficient. For instance, let’s consider a
scenario where we need to generate a report that aggregates
information from multiple tables, and our database offers a
perfect solution. Similar to the approach taken with the
employee list, one design idea is to create an interface called
ReportGenerator with a domain-focused method like
Report generateReport() . A concrete class implements this
interface and uses the magical query capabilities of our
database. If we need to change this in the future, such as by

migrating to a database with fewer capabilities, we can create a
new implementation of the interface to achieve the same
outcome.

Notice how similar this is to the previous example of
EmployeeRepository . By creating domain-focused interfaces
that emphasize the expected business outcomes and abstract
away implementation details, many challenges related to using
specific infrastructure features can be mitigated.

In information systems, a common challenge arises when we
consider bypassing the aggregate and performing an operation
directly on an aggregated object. For instance, using a direct
database update command may be more performant than
making a change through the aggregate root. However, I
recommend revisiting your design before proceeding with such
an approach.

Ask yourself whether the object needs to be part of the
aggregate in the first place if you feel the change should be
made directly within the object. This is often the appropriate
response to this design challenge. Alternatively, you can
consider eliminating the invariant. Not all invariants we
initially consider are truly necessary. If the object must be part
of the aggregate due to essential invariants, can you accept

some eventual inconsistency and remodel it using domain
events? Breaking your design should be a last resort and
avoided at all costs.

Example: Cancelling an enrollment

As you may remember, PeopleGrow! lets employees cancel their
enrollment in a training course. In chapter 3, we implemented a
cancel() method in the Offering aggregate root to receive
the employee who wants to skip the training, find them in the
list of enrollments, remove them from the list, and add one
available spot to the offering. This code is reproduced in the
following listing.

Listing 6.3 The cancel method in the Offering entity

class Offering {

 private List<Enrollment> enrollments;

 private int availableSpots;

 // ...

 public void cancel(Employee employee) {

 Enrollment enrollmentToCancel = findEnrollmen

 if(enrollmentToCancel == null)

 throw new EmployeeNotEnrolledException();

 Calendar now = Calendar.getInstance();

 enrollmentToCancel.cancel(now);

 availableSpots++;

 }

 private Enrollment findEnrollmentOf(Employee em

 // loops through the list of enrollments and

 // finds the one for that employee

 // ...

 }

}

❶ Removes the enrollment of an employee from the specific
offering

❷ Goes through all enrollments in the offering, looking for the
one for the employee

We discussed in chapter 3 that this cancel() method isn’t the
most performant. After all, it needs to loop through the entire
list of enrollments. There’s a relational database behind the
scenes, so we may need an extra query to bring this list into
memory. We implemented this code because we considered the
performance hit not to be a problem for such a small system.
But PeopleGrow! is growing, and we can’t afford that anymore.

The first idea that comes to the developers’ minds is to move the
entire canceling logic to a service class. The service will

coordinate canceling the enrollment and then bump the
number of available spots.

Listing 6.4 The cancel operation as a service

class CancelEnrollmentService {

 private OfferingRepository offerings;

 public void cancel(int offeringId, int employee

 if(offeringId==null || employeeId==null)

 throw new InvalidArgumentException();

 Offering offering = offerings.getById(offerin

 Enrollment enrollment =

 offerings.getEnrollment(offeringId, employe

 if(enrollment == null)

 throw new EnrollmentDoesntExistException();

 enrollment.cancel(now());

 offering.increaseAvailableSpots();

 }

}

class Offering {

 // ...

 public void increaseAvailableSpots() {

 availableSpots++;

 }

}

❶ The overall logic is similar to the previous cancel() method.

❷ Gets the enrollment directly from the database without
having to load the entire list first

❸ Bumps the number of available spots

Although this implementation no longer requires loading the
complete list of enrollments, it does have some drawbacks. The
most significant is that it reduces the control of invariants in
the aggregate root. With this implementation, any client can
now manipulate the available spots by requesting an increase.
Additionally, this approach may introduce inconsistencies. For
instance, what happens if we load the list of enrollments in
another part of the business logic and then the cancellation
service is invoked? The list of enrollments in the offering may
become outdated because we don’t reload it when removing an
offering from the service. Finally, the implementation of
getEnrollment had to be included in OfferingRepository
because we typically don’t have repositories for internal parts
of the aggregate. We usually handle them through the aggregate
root, which isn’t ideal.

Transferring the control of invariants out of the aggregate root
may seem like the easiest solution, but it can quickly result in

inconsistent objects. As discussed in chapter 3, we must do our
best to avoid this. However, I understand why it happens.
Refactoring a settled design can be challenging. Nonetheless,
investing in refactoring and eliminating any possibilities of
object inconsistencies will pay off, even in the short term. The
payoff will depend on how important or frequently used the
aggregate is within the entire system.

Let’s try to redesign the code. The problem seems to originate
from the need to keep the list of free spots up to date in the
Offering entity. Do we really need this information in the
entity? If we take availableSpots out of the entity, the
problem becomes simpler. We can then promote enrollments to
an aggregate. Whenever a request to cancel an enrollment
comes in, an application service can grab the offering and the
enrollment and cancel it. The next listing is the implementation
of CancelEnrollmentService .

Listing 6.5 CancelEnrollmentService application service

class CancelEnrollmentService {

 private OfferingRepository offerings;

 private EnrollmentRepository enrollments;

 public void cancel(int offeringId, int employee

 if(offeringId==null || employeeId==null)

 throw new InvalidArgumentException();

 Offering offering = offerings.getById(offerin

 if(offering == null)

 throw new OfferingDoesntExistException();

 Enrollment enrollment =

 offerings.getEnrollment(offeringId, employe

 if(enrollment == null)

 throw new EnrollmentDoesntExistException

 Calendar now = Calendar.getInstance();

 enrollment.cancel(now);

 }

}

class Offering {

 // private int availableSpots;

 // public void cancel(Enrollment enrollmentToCa

}

❶ The cancel() method organizes the workflow.

❷ We cancel the enrollment directly as it’s now its own
aggregate.

❸ The Offering class no longer has the availableSpots attribute
and the cancel method.

The number of available spots can easily be calculated by a SQL
query in the Postgres database behind the scenes. We then
create an availableSpots(Offering) method in
OfferingRepository . In the concrete
HibernateOfferingRepository implementation of that
repository, we’ll use Hibernate’s query language to get that
information. Internally, the class even caches the results to
speed up the response.

Listing 6.6 Calculating the available spots via SQL query

class HibernateOfferingRepository implements Offe

 private Session session;

 public int availableSpots(Offering offering) {

 if(!cache.contains(offering)) {

 int spots = (int) session

 .createQuery("select maximumNumberOfAtt

 "count(...) from Offering o where ..

 .setParameter(...)

 .getSingleResult();

 cache.put(offering, spots);

 }

 return cache.get(offering);

 }

}

❶ Uses Hibernate’s HQL to query the database and get the
number of available spots

❷ Caches the result to improve performance

There are other ways to model this. For example, we could keep
the availableSpots attribute in the Offering entity and
use domain events to update both aggregates. Once a cancel
request came in, the domain service would publish a domain
event, and different listeners would update the offering and the
enrollment. That might mean eventually consistent
information, but users might be fine with it.

Defining errors out of existence

In chapter 3, we explored the idea of defining errors out of
existence. We can apply that idea here. The cancel() method
currently throws an exception if the offering or employee is
null. This means clients should handle this possible exception.
Another way of designing this method would be to make it do
nothing if an inexistent offering or employee was passed,
simplifying the clients’ lives.

As always, there are no rights and wrongs, only tradeoffs.

nly depend on things you own

Create wrappers on top of third-party data structures and
libraries. Doing so prevents third-party dependencies from
spreading too far in the codebase, saving you time whenever such
out-of-control classes change.

Our systems benefit greatly from the availability of third-party
libraries and systems. Many libraries even provide software
development kits (SDKs) that simplify the integration process.
However, it’s important to remember that these libraries also
bring code that is outside your control. You have no influence
over the library’s release cycle or the possibility of introducing
breaking changes.

Therefore, when incorporating code from other libraries and
systems, it’s crucial to establish a layer that prevents their
proliferation throughout your codebase. These wrappers
ensure that any changes in the library code will only affect this
specific layer and nothing else.

Let’s consider an example where we are integrating with a
payment gateway that offers a clean library to streamline the
integration process. To initiate a payment, this library requires
us to invoke the makePayment() method and provide a

PaymentDetails data structure containing information such
as the payment amount, currency, buyer’s email, and other
relevant details. However, we don’t want the PaymentDetails
class, which we don’t own, to be scattered throughout the
codebase. In this case, we need to create a class that
encompasses the same information and pass it to our
PaymentGateway class (an adapter) to convert the information
into the appropriate API calls expected by the library. See figure
6.4.

Figure 6.4 The adapter prevents the library code from getting spread into the
domain.

At first, these wrappers may appear redundant. After all, our
data structure resembles the one used by the library. However,
it’s important to recognize that we have complete control over

our data structure and can manage its changes. If the library
undergoes modifications, such as requiring an additional
function call, we only need to update the adapter.

Certain changes in the library may necessitate modifications in
other areas of the application. For instance, let’s say the
payment gateway now requires an extra piece of information.
In such a case, we must incorporate this information into our
data structure and find the appropriate location in our code to
load it. Nevertheless, these changes are significantly more
within our control.

Additionally, libraries often become deprecated or undergo
complete rewrites. If such a situation occurs, it is much easier to
make the necessary adjustments in the adapter rather than
locating and modifying all the different parts of the application
that use the library.

Don’t fight your frameworks

Although it’s important to minimize coupling to external
dependencies you don’t control, it’s equally essential to avoid
fighting against them. Complete decoupling from all
dependencies is an unattainable goal.

Attempting to achieve full decoupling can significantly increase
the complexity of your code by orders of magnitude. Moreover,
your abstractions may fall short of meeting your requirements
at some point.

As a developer, it is necessary to balance accepting
dependencies you acknowledge will exist and challenging
dependencies you are unwilling to accept. Let me illustrate how
I approach this with a few examples:

If I have chosen Spring MVC as my model-view-controller
(MVC) framework, I don’t attempt excessive decoupling from
it. I use all the capabilities that Spring provides to their fullest
extent. Although I avoid using Spring code in my domain
objects (such as entities and services), I don’t shy away from
using Spring’s helpful utilities in my controllers.
If I have selected Hibernate as my persistence framework
and Postgres as my database, I encapsulate Hibernate code
within the repository or data access object classes to isolate it
from the rest of the system. However, I don’t ignore the fact
that there’s an object-relational mapping mechanism at work
or that I have a robust relational database supporting my
system.

If I need to integrate with a third-party payment gateway
using its provided library, which may be less stable than
large-scale open source frameworks and subject to frequent
changes (due to the ever-evolving nature of payment
systems), I add a wrapper layer on top of it and ensure that
no other parts of the code directly depend on it.
If the system requires generating reports in Excel files, I
design domain-specific data structures to represent the
report information and encapsulate the Excel generation
code within an adapter. I don’t expose the specific library for
generating the file to the rest of the codebase.
If I have opted for Amazon AWS as my cloud provider, I don’t
disregard its powerful capabilities. I fully use Amazon SQS
(AWS’s queue) and make architectural decisions that favor
SQS. However, I encapsulate the relevant code within an
adapter to prevent AWS-specific code from spreading
throughout the codebase.

Note that these are personal approaches and not absolute
truths. You may have different arguments and make different
decisions in the given scenarios. Nonetheless, the general
principle applies: minimize dependencies on external
components you don’t own, and work harmoniously with your
chosen frameworks and architectural decisions.

Be aware of indirect leakage

Interfaces can effectively prevent the rest of the code from
knowing about or depending on implementation details, but
these details can still leak into the code. Let’s consider the
example of object-relational mapping (ORM) frameworks. ORMs
often perform tasks behind the scenes that developers may not
be aware of and that can affect the rest of their code. For
instance, when we return a Hibernate-managed entity to the
rest of our code, even if our code isn’t aware that the entity is
managed by Hibernate, it remains connected to Hibernate’s
session and may be automatically persisted when the
transaction scope is closed. Another common scenario is client
code invoking a getter method in a Hibernate-managed entity
and triggering the framework to execute additional queries to
the database without the developer’s explicit knowledge. We
may not see these behaviors from the code itself, but the
underlying infrastructure’s behavior indirectly seeps into our
code.

It’s up to you to determine whether this is favorable or
undesirable and to what extent you should safeguard your
design against it. In the example mentioned, if you find this
kind of leakage undesirable, you can introduce an additional
layer to ensure that Hibernate never manages entities used

within the domain code. This requirement would be part of the
contract defined by the interface, which the concrete class
implementing it and using Hibernate internally must adhere to.
Although it requires extra effort, it provides an added level of
flexibility. If you ever decide to transition from Hibernate to
another framework, your domain code will remain unaffected.

As mentioned, these implementation details should be hidden
from the code but never from the developer. Once again,
developers must have a thorough understanding of their
infrastructure choices and their implications for the overall
design.

Example: Message bot

If you recall PeopleGrow!’s message bot implementation, you
may have noticed that we made sure the data structures of the
Bot SDK didn’t spread across the codebase. The ChatBotV1
class provided by the SDK requires a BotMessage class to
write a message via the bot. ChatBotV1 and BotMessage are
third-party classes we have little control over, so we did what’s
best. The Bot interface doesn’t let them leak into the domain.
They are well encapsulated into the SDKBot concrete
implementation. The following listing shows the code.

Listing 6.7 SDKBot implementation

interface Bot {

 void sendPrivateMessage(String userId, String m

}

class SDKBot implements Bot {

 public void sendPrivateMessage(String userId, S

 var chatBot = new ChatBotV1();

 var message = new BotMessage(userId, msg);

 chatBot.writeMessage(message);

 }

}

❶ Instantiate the chatbot class from the SDK

❷ Composes the BotMessage, also part of the SDK

❸ Sends it to the bot via the SDK’s provided writeMessage()
method

Although this may look like code duplication because
sendPrivateMethod requires the precise information that the
BotMessage data structure needs, you never know what
tomorrow will look like. If a change is made in these third-party
classes, we know the only place we’ll need to change, and we

will be better able to trace any other change required in the
domain code if the Bot interface is also forced to change.

ncapsulate low-level infrastructure errors
into high-level domain errors

Any errors triggered by the infrastructure must be fully
encapsulated into the infrastructure layer, converted to an error
that makes sense to the domain, and gracefully handled by the
application.

Infrastructures and the libraries that help us communicate with
them (for example, a Postgres database, a JDBC driver that’s
used to communicate with it in Java, and Hibernate, a popular
object-relational mapping framework that many teams use)
may throw all sorts of errors and exceptions. This means the
low-level infrastructure implementation must know about such
errors. For example, if a database throws a unique-constraint
exception whenever the constraint is violated, the
infrastructure layer must be aware of and catch it.

Some errors may be recoverable, and we can take action
directly in the infrastructure layer without popping the error
up to higher layers. For example, if the database layer notices
that the European cluster isn’t available for a query, the layer

can switch to the American cluster and execute the query there.
Of course, we have to decide whether switching between
clusters is desirable; but if so, encapsulating it in the
infrastructure layer saves the rest of the code from knowing
how this happens and allows this behavior to change more
easily in the future.

Other types of errors are unrecoverable, and the best we can do
is show an error message to the user and internally log the low-
level details to facilitate debugging. In these cases, the
infrastructure may throw a domain-focused exception
containing helpful information to be displayed to the user while
also logging relevant details to the developer.

Never let exception classes from your framework spread
through your codebase. You don’t want a
JdbcPostgresUniqueConstraintException or similar
handled in upper layers. This prevents your code from being
coupled to infrastructure decisions and your current
framework. If you need to bubble up the constraint exception,
the best alternative is to create a domain-focused exception—
for example, EmployeeAlreadyExistsException , which is
free of any infrastructure details.

Example: Handling exceptions in SDKBot

The writeMessage method of the ChatBotV1 API may throw
an IOException . Although this is a native Java exception, we
don’t want to let it spread. Let’s handle it properly in the
infrastructure code. If the exception happens, the code throws a
BotException containing the user ID and the message that
wasn’t delivered and logs the low-level details of the original
exception to the developer.

Listing 6.8 Revised SDKBot implementation

interface Bot {

 void sendPrivateMessage(String userId, String m

}

class SDKBot implements Bot {

 public void sendPrivateMessage(String userId, S

 try {

 var chatBot = new ChatBotV1();

 var message = new BotMessage(userId, msg);

 chatBot.writeMessage(message);

 } catch (IOException e) {

 throw new BotException(userId, message);

 LOGGER.error(e);

 }

 }

}

class BotException extends RuntimeException {

 ...

}

❶ Throws a domain-focused exception and logs the low-level
details

❷ BotException is a domain-focused exception.

The implementation now prevents infrastructure errors from
bubbling up to other layers.

xercises

Think through the following questions or discuss them with a
colleague:

1. Does your current project separate infrastructure from
domain code? If not, what should you do to get there?

2. How far do you think developers should go when isolating
infrastructure code? Can you make compromises? What are
the tradeoffs involved?

3. What do you think of always encapsulating things you don’t
own? Is this a good idea or not? Why?

mary

Decouple any infrastructure-handling code from the domain
code. Doing so reduces the effect of changes in the
infrastructure code on the entire codebase.
The infrastructure layer should hide the implementation
details from other parts of the codebase. Developers should
know what’s behind the scenes, as understanding helps them
develop better software systems.
Don’t let third-party libraries and data structures of external
systems spread throughout your codebase. Create (domain-
focused) wrappers around them.
Don’t fight your frameworks. You won’t ever be able to
decouple your system entirely. Instead, decide which tools
and technologies you accept being coupled to and which you
don’t.

7 Achieving modularization

This chapter covers

Designing modules that provide complex features through
simple interfaces
Reducing the dependencies between modules
Defining ownership and engagement rules

Up to this point in our journey through simple object-oriented
design, our discussions have primarily focused on simplicity,
consistency, abstractions, and extension points. We discussed
how to apply these ideas from small methods to a set of classes.
However, as we venture into large, multifaceted systems, our
scope must broaden. We must consider not just classes within a
single component but also how different components that
perform entirely different business operations interact and
integrate.

Think of a large-scale business system that takes care of an e-
commerce shop. The billing system, which handles charging
customers, is complex and most likely developed by one
dedicated team. The same is true for the delivery system, which
ensures that goods get to their buyers, and for the inventory
system, which controls whether items are still available or if the

shop has to restock them. Although these systems are different
from each other, they must collaborate. The delivery system
must consult with the inventory system before delivering
goods. Billing must notify delivery that the invoice was paid
and the goods can be delivered.

Picture each component as an individual player on a football
team; each has a role to play, but their effectiveness is defined
by how they coordinate and work together toward a common
goal. As football players must understand their positions,
responsibilities, and tactics, software components must also
have well-defined roles. They need clear contracts about how to
interact with others and what others can expect from them.
This delineation helps components work harmoniously,
ensuring that they collaborate without clashing. Importantly, it
also allows for components to evolve and improve
independently of one another. With a clear contract, a single
component can be altered or upgraded without triggering a
domino effect of changes across the entire system.

Neglecting the design of modules can lead to considerable
difficulties down the line. Components that aren’t designed with
adequate care tend to become overly dependent on each other,
leading to tight coupling. Changing a single module can be a
Herculean task in a tightly coupled system because it may

require changes in many other interconnected modules. This
setup is also a breeding ground for bugs because developers are
forced to understand the intricate workings of multiple
modules before they can make even minor maintenance
tweaks.

Remember that the principles we’ve discussed so far—
simplicity, keeping things consistent, good abstractions and
extension points, and isolating infrastructure details—are
equally applicable at the module level. As we encapsulate data
within a class, we can encapsulate related functionality within
a module.

The design of individual components is undoubtedly essential.
But in a large system, their collaboration brings about true
harmony, just like in an orchestra. In this chapter, we repurpose
the ideas discussed in earlier chapters so they make even more
sense at the module level.

NOTE In this chapter, the illustrative example comes at the end
but uses all the principles introduced here.

uild deep modules

Modules should provide simple interfaces on top of complex
features. The simple interface makes integrating other modules

easier, reduces coupling, and simplifies their evolution. Modules
should also be cohesive and own everything related to the
functionality they expose.

A great module hides all the details of complex features and
offers a simple interface that removes all the complexity from
clients. Note that, at this level, I’m not talking about
encapsulating complex business rules in a class. The concept is
much bigger than that. I mean hiding an entire business behind
a module. Continuing the example from the chapter
introduction, in an e-commerce system, all the rules related to
delivery should be in a Delivery module, and all the rules
related to invoicing and payment should be in a Billing module.

Delivery and Billing are complex modules. If they have to
collaborate, Delivery shouldn’t need to deeply understand
Billing and vice versa. The more straightforward an interface
one module can provide to the other, the better it is for clients
and for itself. It’s easier for clients to integrate with the new
module. And the simpler and leaner the interface is, the easier
it is for developers to make changes without breaking all of its
consumers.

Figure 7.1 illustrates what I mean by deep modules. Note the
module’s size and depth: it offers many complex features. But

also note how thin and simple its API layer is: other modules
only need to understand the API layer and nothing more.

Deep modules

The term deep module comes from John Ousterhout’s book A
Philosophy of Software Design. John says that good modules are
always “deep.” A deep module provides powerful functionality
under a simple interface. A shallow module, on the other hand,
provides an interface that’s almost as complex as the
functionality it encapsulates. You don’t want shallow modules
because they increase the system’s overall complexity without
much benefit.

Figure 7.1 Modules should offer a simple API on top of complex features.

The following subsections discuss the primary challenges of
building deep modules: identifying what should be in the
module, keeping related things close, designing clear and
simple interfaces, keeping compatibility, and providing flexible
ways to extend the module.

Find ways to reduce the effects of changes

Deciding what should be included in a module is as challenging
as determining what should be in a class or method. Ideally, we
want to minimize the number of modules that must be
modified when a business domain changes. For example, if a
new business rule emerges for invoices, we should only need to

change the Invoice module; there should be no need to modify
the Delivery module.

This often entails having modules that encompass entire
business domains. All classes related to invoices should be in
the same module, and all classes related to delivery should be
in a dedicated Delivery module.

Keep refining your domain boundaries

It’s undoubtedly hard to define a clear boundary between
different business domains. Billing, Delivery, and Invoice may
look completely different from each other in the simple
example of this book, but in real life, domains are often
strongly intertwined. I recommend working in strong
collaboration with domain experts (they understand the
business) and technical leads (they understand the pains that
teams are having when trying to deliver working software), and
keep revisiting your interpretation of the domain. An excellent
reference on strategies to identify domain boundaries is the
canonical book Domain-Driven Design by Eric Evans, in
particular, sections 1 (putting the domain model to work) and 4
(strategic design).

Keep related things close

Another way to approach this principle is to ensure that related
things or components that require simultaneous changes are
kept close together. When we know that altering A necessitates
modifying B, the change becomes easier and more predictable
if A and B are nearby, such as in the same module.

There are advantages to keeping related things together. First,
when A and B are in the same module, they are likely part of
the same continuous integration, build process, and test
pipelines. If a breaking change occurs or one class is modified
without considering the other, a robust test suite will detect the
problem. Conversely, if A and B are in different modules, these
modules can be developed independently. Although there are
methods to ensure that compilation or tests will fail if one class
is changed but not the other, this approach is less
straightforward.

Second, when A and B are in the same module, the module’s
developers probably have a comprehensive understanding of
both classes. They know what needs to change and how to do it
efficiently. Conversely, suppose A and B are separated and
handled by different teams. In that case, no developer may have
a complete picture in their mind, so they have to request

changes from the other team or make them themselves with
less confidence.

Fight accidental coupling, or document it when you
can’t

Although keeping related things in the same module seems
straightforward in theory, it is more nuanced in practice.
Business domains are highly interconnected, and developers
often need to couple different modules.

For example, suppose we need to ensure that changes made to
the details of an invoice (such as adding a new attribute to
represent the buyer’s preferred address format) also reflect in
the PDF generated by the Delivery module. We can contemplate
various design alternatives to avoid this coupling, and that’s
great! The longer we can avoid coupling, the better. However,
the reality is that you won’t always be able to come up with
optimal alternatives, especially considering budget constraints
when developing a feature.

We will discuss technical approaches to ensure that changes in
Invoice don’t break the Delivery module, even if one is
implemented before the other: for instance, designing
backward and forward compatibility in how modules
communicate. In addition, you must document such couplings

the best you can. Add code comments in the codebase, create
documentation in the team’s wiki, and automate processes in
your pipeline that alert you whenever you make a breaking
change. Use whatever methods work best for you and your
team.

esign clear interfaces

Modules should offer public interfaces that are easy to use,
require as little information as possible from clients, and are
stable. That simplifies the integration between two modules and
reduces the chances of breaking changes.

In large-scale software systems, modules need to communicate
with each other to deliver the entire business workflow.
Ensuring that a module effectively encapsulates entire business
domains and that any changes to that domain only require
modifications within the module is just part of the challenge.
Another significant aspect is offering clear communication
interfaces that enable modules to interact.

This interface is nothing more than the API a module provides
to the external world. Implementation-wise, it can vary from
simple classes and methods that a module offers other modules,

to web APIs that support different request and response
formats.

APIs and monolithic systems

Although the term API is commonly associated with remote
HTTP calls, an API does not always have to be offered
exclusively through a web API. In modular monolithic systems,
good, old-fashioned method calls are used to exchange
messages between modules.

A good communication interface has several key
characteristics. First and foremost, it is simple. Clients don’t
need an in-depth understanding of how the module works, as
the interface is designed to be easily understandable by anyone.
This also avoids the need for complex input objects; if
necessary, the API provides clean mechanisms to handle them.

In addition, a good communication interface maintains its
initial promises and ensures good backward compatibility. It
recognizes that clients will not change their code every time a
module changes. Furthermore, it avoids breaking clients
without ample prior warning.

Exemplary communication interfaces offer clear extension
mechanisms. They allow clients to implement specific

variations in the module’s behavior without inconveniencing
another module’s development team or bloating the module
with code that serves only a single client. We discuss these
characteristics in more detail in the following sections.

Keep the module’s interface simple

Keep the module’s interface to the external world as simple as
possible. The challenge in designing such interfaces is that
modules encapsulate complex business logic by their very
nature. Ensuring that the complexity does not leak outside the
module is crucial.

Let’s delve into what constitutes a simple interface for a
module. The interface should not require knowledge of how the
module operates internally. For example, suppose the Delivery
module offers an API that provides information about whether
the customer’s goods were delivered. In that case, clients of this
API should not be concerned with the underlying mechanisms
for retrieving this information. Whether it comes from a
database, another module’s call, or cache utilization (for faster
responses) should be inconsequential to clients.

A good interface is also easy to use. Clients should not be
burdened with performing complex setups or invoking a

convoluted chain of methods in a specific order for the module
to fulfill its purpose. All the complexity should be handled
within the module, minimizing the client’s responsibilities.
Suppose we need to expose a module feature that requires an
intricate setup. In that case, it is important to ensure that most
of the complexity resides within the module rather than
encumbering the client.

When designing interfaces, remember that as soon as they are
made public, other modules will begin to depend on them.
Therefore, a good interface is stable: it undergoes minimal
changes and does not force clients to continually update how
they interact with the module. A good interface also offers
backward compatibility.

Backward-compatible modules

Modularization offers numerous advantages. For example, it
allows different teams to work on different parts of a product
without interfering with one another excessively. However, it
also presents the challenge of different parts of the system
potentially residing in various locations—even in different
codebases and repositories.

In a system with a single module, it is easier to identify all the
places that need to be modified when a method changes. The
compiler may signal an error because the method now expects
three parameters instead of two. But determining when an API
has changed in systems with multiple modules is more
complex. Questions like “Who is using this API?” are harder to
answer. Furthermore, in a single module, if we modify a
method’s contract, we naturally feel compelled to update all the
places where it is called; otherwise, our code won’t compile.
Backward compatibility doesn’t require constant consideration
because we can modify the contract and update all its clients.
We have full control over the entire process.

In larger modularized systems, however, we may not want or
have the authority to modify other modules. We have to ask the
team responsible for maintaining those modules, and this
process can take weeks. Waiting for all the teams to update to
the new API before we can deploy a new feature is not ideal.

Backward compatibility plays a vital role in large modularized
systems. The API of a module should be able to understand
requests compatible with its previous versions. This is crucial
for scalable development. We don’t want to wait for other
teams to complete their tasks, and other teams don’t want their
systems to break due to a change in our code.

Maintaining backward compatibility doesn’t come without
challenges. It increases the complexity of the module because
the API needs to understand not just a single type of request but
multiple types. Our code may need to handle missing
information (which may have been introduced in version 2 of
the API) or different information (such as changes to the list of
enumerated strings in version 2), and so on.

If you cannot maintain backward compatibility with an old
version, be sure you notify your clients well in advance,
allowing them enough time to make the necessary changes. In
public APIs, I’ve encountered cases where we notified our
customers a year and a half before deprecating the API!

Forward compatibility is also important, depending on how we
deploy our software. Some companies deploy software in
release trains, where all modules are deployed once a week.
Due to the challenges of defining the correct order for weekly
module deployment, modules are deployed in a predetermined
sequence. A client already using the new version 2 of the API
may be deployed before the module that supports version 2. For
a few seconds (or minutes or hours, depending on the duration
and complexity of the deployment), clients may be making API
calls using version 2 while the module still only understands
version 1.

In such situations, you should ensure not only backward
compatibility but also forward compatibility. This means your
modules should be able to handle requests gracefully, even if
they are in formats that the modules do not yet understand.

Provide clean extension points

Modules should offer clean ways for other modules to extend
their functionality, especially when a module’s behavior needs
constant changes, evolution, or customization for other
modules. By providing extension points, teams can avoid the
need for frequent synchronization whenever they require
minor changes in the module’s behavior. For example, consider
the delivery team modifying the Delivery module whenever the
store sells a new item. Such an approach doesn’t scale well.

I once worked with a team that developed billing systems for a
company offering various software-as-a-service products. Each
time a new product was introduced, we had to adjust to support
the company’s payment collection method. This caused
significant delays in delivering the new products. To address
this, we created a new API that offered product teams a lot of
flexibility. Whether they wanted to charge customers with one-
off payments or a combination of one-off and recurring
monthly payments, they could do it easily using the new API. As

a result, teams could release new products without needing to
involve us, and we were pleased to no longer receive
emergency requests with unreasonable deadlines every month.

We discussed designing flexible classes in chapter 5, and the
same principles apply at the module level. In essence, flexibility
in modules can range from offering simple interfaces that other
modules implement to fully flexible APIs, allowing clients to
make complex requests as needed.

Code as if your module will be used by someone with
different needs

It is essential for modules to be as decoupled from each other as
possible. One helpful approach to consider is coding your
module as if it were to be used by another company. The only
way a module can be designed to work for another company is
by avoiding coupling it to the specific decisions of your current
company.

You may think this is a waste of time. It is crucial to carefully
reason what needs to be decoupled and not abstract everything
arbitrarily. As discussed in previous chapters, you must find the
right places to abstract and create extension points. But 5 or 10
years from now, your module will probably be used by another
company. Why? Because your company today will not be the

same in 5 or 10 years. Companies change, evolve, and grow; the
code must adapt accordingly. The most cost-effective way to
allow this growth is by designing modules that support such
changes.

Many companies make the mistake of creating in-house
frameworks driven by the desire to precisely match their
current work methods and needs. They forget that work
methods will change in a few years, and without investing in
flexibility beforehand, refactoring the entire codebase to
accommodate those changes will be much more expensive.

For example, suppose a module requires all other modules to
register before using a feature. A future-proof approach would
be for this module to offer a Register API that other modules
can use to register themselves. A less future-proof method
would be to have a hardcoded array listing other modules,
requiring changes whenever a new module emerges.

Modules should have clear ownership and
engagement rules

Focusing on designing good modules from a technical
perspective isn’t enough in large modularized systems. We also
need rules to help teams know who to talk to and how to

communicate in case of problems. That’s why modules should
have clear ownership and engagement rules.

By ownership, I mean it has to be evident to every team in the
organization who’s responsible for the module (see figure 7.2).
For example, if there’s a bug, who fixes it? If maintenance or
evolution needs to be performed, who does it? Deciding who
owns what may be a trivial problem in small-scale software
development, but it becomes a significant challenge as the
company grows. The problems arising from lack of ownership
are numerous. The lack of clear ownership leads to the
disappearance of knowledge about the module over time; no
engineers feel responsible for improving its design, developers
are never confident about changing it, and the number of bugs
starts to increase, among other problems.

Figure 7.2 Modules should have clear ownership.

Defining engagement rules is also essential when different
teams develop dozens of modules. If I identify a bug in a
module that doesn’t belong to me, can I fix it, or should I open a
request? Does it require code review from at least one code
owner, or is it enough that the continuous integration pipeline
passes?

I won’t discuss which approach is better because that’s getting
closer to the social aspects rather than the technical aspects of
object-oriented design, but these things must be clearly defined.
A great book on the social/technical challenges of building
performant autonomous teams is Team Topologies by Matthew

Skelton and Manuel Pais (IT Revolution, 2019). I strongly
recommend that everyone read it.

Team topologies in a nutshell

In a nutshell, Team Topologies proposes four fundamental
team topologies and three ways of interaction. The four
topologies are as follows:

Stream-aligned teams focused on a segment of the business
domain
Enabling teams to help stream-aligned teams overcome
obstacles
Complicated subsystem teams dedicated to overly complex
systems that require specific expertise
Platform teams to accelerate the delivery of stream-aligned
teams by providing internal products

And these are the three ways these different teams can
collaborate:

Collaboration —Teams work together for a specific amount
of time to explore new things or solve a new problem.
X-as-a-service —One team provides and one team consumes
something “as a service.”

Facilitation—One team helps and mentors another team.

As the book discusses, explicitly designing the teams’ goals,
ownership boundaries, and interaction modes is critical to
accelerate and increase productivity.

o intimacy between modules

Modules should aim to minimize their level of interdependence
with other modules. The less they know about each other, the
better. Modules shouldn’t allow others to inspect their internal
workings too extensively. This practice ensures that modules can
evolve gracefully without causing disruptions in other parts of
the system.

In object-oriented design, having too much knowledge about
the internal details of other code components is frowned on,
and the same applies at the module level. Modules that are
overly aware of how other modules function are more
susceptible to breaking if those other modules undergo changes
in their internal implementation.

For example, consider a module that uses caching to improve
response times. No other module should have to care or be
aware of this caching process. By enforcing this rule, the

original module can modify its caching mechanism without
fear of breaking other modules that rely on it.

All the principles of encapsulation and information hiding we
discussed earlier are equally relevant here. Now, let’s focus on
ideas that emerge when thinking at the module level.

Make modules and clients responsible for the lack of
intimacy

Ensuring that modules remain unaware of the internal details
of other modules is a responsibility shared between the module
and its clients. In an ideal world, clients wouldn’t have to worry
about this because modules would be perfectly designed, and
no details would ever leak. But in reality, our designs are often
imperfect, and due to a combination of limited knowledge
(about what the application needs to do, not lack of design
knowledge) and time pressure, we sometimes make suboptimal
decisions.

These less-than-ideal decisions may become apparent to clients.
Just because a module leaks information doesn’t mean clients
must use it. Instead, clients should ignore the information and
hope the module will be fixed one day without causing any
negative effects.

If another team develops the leaking module, it’s a kind gesture
to drop that team a message and try to understand why it’s
happening. There might be a valid reason, or it could be an
oversight, and your message could serve as a helpful
refactoring suggestion.

Don’t depend on internal classes

In monoliths, it’s common for all modules to be in the same
codebase, and all a developer needs to do to access classes from
another module is to declare them in the package manager. This
grants development teams great power because it requires zero
effort to start using a new module. However, it also places a
significant responsibility on them to ensure that they don’t use
classes that are meant to be internal to a specific module, as
shown in figure 7.3.

Figure 7.3 Modules shouldn’t use internal classes of other modules.

Modules coupling themselves to the internal implementation of
other modules is a recipe for disaster. If an internal class
changes, this may break the modules coupled to it. Also, when
the team learns that other modules are coupled with internal
details of their module, they will refrain from changing them
because they don’t want to break others. This may hinder their
ability to keep improving their code.

I remember watching a talk by Marc Philipp
(https://github.com/marcphilipp), one of the lead developers of
JUnit 5, the most popular Java testing framework. He mentioned
that it was too hard to make changes in JUnit 4, as any change
could break clients, including famous IDEs like Eclipse. He gave

https://github.com/marcphilipp

the audience a remarkable example: some IDEs were coupled to
the field names of internal classes. This meant an IDE could
stop working if developers renamed a field. This clearly
illustrates how bad coupling to internal details is for everyone.

Teams can help other teams avoid making this mistake in a few
ways. The first is to document the module’s API thoroughly. It
should be clear to other developers what they can use from that
module. Some software designers make it explicit that all
classes other modules can use are in a public or api
package, and no other class should be used.

Teams can also put tools in place to enforce these rules. For
instance, ArchUnit is a well-known Java framework that allows
developers to declare architectural constraints. If a module
starts depending on a class from a forbidden package, the tool
will alert the developers. The Java Platform Modules System
(JPMS) also helps developers by preventing code compilation if
they use something they shouldn’t.

Depending on an internal class tends to occur when a module
needs a functionality already implemented by another module
but not exposed as a public API. Reusing entities is another
common cause of such coupling. For example, if another

module implements an Invoice class, it may be tempting to
reuse it instead of reimplementing it.

This reuse seems logical and more efficient than
reimplementing it, but what if the other team changes that class
in a way you don’t expect or want? Remember that the two
teams are likely separated for a reason. They may have
different stakeholders and different perspectives on the
business. They may change Invoice in a way that makes
sense to them but not you.

If you find yourself in such a situation, stop and think: Can you
make the functionality into something that other modules can
use? Can you transform it into an API? Should you create a new
small module to hold this new feature so that it becomes a
standard library between both teams and you share the
responsibility to keep it compatible?

If the answer to these questions is no, how bad would it be to
duplicate the functionality? Duplication can be problematic, but
having to synchronize teams every time a class changes may
cost you even more.

Monitor the web of dependencies

Monitoring the web of dependencies and how it grows is vital,
especially in large-scale systems with dozens or hundreds of
modules. Before you know it, you may have modules coupled
with others in ways you don’t want, becoming so intertwined
that refactoring becomes virtually impossible.

Besides the maintenance cost, where changes in one module
may affect another, complex dependency trees can result in
longer build times. It’s not uncommon to see companies with
build times exceeding an hour, mainly because the compiler
struggles to recompile a large amount of code whenever a
highly used module in the system is altered. Although build
systems like Bazel have improved over time and become
smarter about what to recompile, it’s best to address this
problem at the root by preventing the dependency tree from
growing wildly in the first place.

Modules that offer a clear API and are designed with flexibility
and extensibility in mind—meaning modules that follow the
principles discussed in this book—tend to be less problematic.
Changes in their internals don’t trigger breaking changes or
force other modules to recompile. However, we know that
reality isn’t always ideal, and large software systems inevitably

have modules that were not well designed from the beginning.
These modules require careful monitoring.

In my experience, the primary reason for wild growth of
coupling is that modules start depending on other, poorly
designed modules because they need one little thing another
module offers. My suggestion is the same as in the previous
section: search for opportunities not to depend on these large
modules. Can you extract this functionality to another module
or at least expose it to clients in a less coupled and more elegant
way? Note that there’s no clear answer or silver bullet for this
problem, and you also don’t want to end up with a million tiny
modules with a single class each. You have to explore, try,
monitor, and improve.

Monoliths or microservices?

I’ve refrained from discussing whether modules should all live
in a monolith or multiple individual microservices. There are
great books on this topic—especially the two authored by Sam
Newman, Building Microservices, Second Edition, and Monoliths
to Microservices (O’Reilly, 2021 and 2019, respectively)—so I
won’t delve too deeply into it.

All the principles discussed in this chapter apply to both
approaches. It doesn’t matter whether it’s a monolith or a
microservice; you don’t want it to become too intimate, neglect
backward compatibility, or offer a complex API. Each approach
has its challenges. Although it’s much easier to apply the
“extract functionality to a module” principle in a monolith than
in a microservices world, it’s also much easier to become too
intimate with another module in a monolith world. Ultimately,
you must pick your favorite approach and fight against the
growth of its complexity.

Consider events as a way to decouple modules

Event-based architectures have become popular in recent years
due to their remarkable way of decoupling modules and
services. The idea is that instead of coupling modules with each
other through calls, we publish an event announcing what just
happened, and interested modules subscribe to this stream of
events.

For example, let’s say the Billing service makes an explicit call
to the Delivery service whenever an invoice is marked as paid.
This strongly couples Delivery with Billing. If Delivery changes
how it receives this paid notification, Billing may also have to
change.

In an event-driven architecture, Billing publishes an
InvoicePaid event. The services interested in this event, such as
Delivery, subscribe to the stream, and whenever a new event
pops up, they get the event and do their jobs. Note that Billing is
no longer coupled to Delivery. Billing has no idea who listens to
these events. Delivery can change as much as it wants, and
Billing won’t be affected. Even new services can start listening
to this event without requiring the billing team.

As with any architectural decision, event-driven architecture
design is full of trade-offs. On the plus side, in addition to
decoupling modules, it’s easier to listen and react to events than
to provide APIs for every single action you need in your system.
We have lots of good architectural patterns and infrastructure
to support this. On the negative side, it can quickly become hard
to see all the events raised in the system. Monitoring also
becomes trickier because following events requires more work
than following a sequence of method calls. Backward
compatibility is still important, because if the billing team
changes the event’s content, it may affect listening modules. If
you are curious about event-driven architectures, read Building
Event-Driven Microservices: Using Organizational Data at Scale
by Adam Bellemare (O’Reilly, 2020) or Microservices Patterns by
Chris Richardson (Manning, 2018).

Example: The notification system

Notifying participants about the training courses they’re
enrolled in became core to PeopleGrow! These notifications
could be sent through email, direct messages, or WhatsApp. The
logic around it grew too much, prompting the company to
decide it was time to move notifications to another module and
allocate them to a dedicated development team.

The assembled team decided to implement Notification (the
new module’s name) as a separate service. That would allow
them to have a different release cycle and set up different
service-level objectives (SLOs). The team drafted the first
responsibilities of this new service:

Sending notifications through different channels
Supporting different notification templates and messages
that can be customized by clients of the service

The team decided that the service should be offered via a web
API and should be accessible through a collection of endpoints.
JSON was chosen as the format for communication.

In their first modeling session, the team focused on designing
the core of their service: how clients should request a

notification to be sent. They decided that the service must offer
three different APIs to get started:

The first offers clients a way to create a new notification. Say
they want to notify participants who enroll in a specific
training course. This API should then be created to create the
notification. The API requires the message, the supported
media (only email? email and chat?) and when it should be
sent (now, X days later, X days before the course starts, and so
on).
The second offers clients a way to add the list of participants
to the notification. Clients should pass the ID of the
notification (returned by the previous API) and the list of
emails. The client can call this API as often as they want with
new participants.
The third offers clients a way to remove participants from a
specific notification.

The following listing shows an interface that can represent this
API. The team worked hard to ensure that this interface is
simple yet powerful, as we discussed in this chapter. The
interface offers three methods, one for each of the actions
described. Medium and DispatchTime are enumerations that
give users a specific list of options.

Listing 7.1 Notification API

interface NotificationAPI { ❶

 Notification createNotification(

 String message,

 List<Medium> supportedMedium,

 List<DispatchTime> times);

 void addParticipant(int notificationId, Strin

 void removeParticipant(int notificationId, St

}

enum Medium { ❷

 EMAIL,

 CHAT,

 WHATSAPP;

}

enum DispatchTime { ❸

 RIGHT_NOW,

 ONE_WEEK_BEFORE,

 DAY_BEFORE,

 ONE_HOUR_BEFORE;

}

❶ Interface with the three operations offered by the Notification
API

❷ Three types of supported media

❸ Four types of supported dispatch times

To support backward compatibility (another important topic
discussed in this chapter), the team clarified that they can
always add more items to the Medium and DispatchTime
enumerators but can’t remove any of them. The same is true for
the Notification structure that’s returned to the clients
whenever they create a new notification: fields can be added
but not removed, nor can their semantics be changed.

Behind the scenes, the team decided the API would be
implemented in Java, with Spring Boot as the framework and
Postgres as the database. Asynchronous jobs poll the database
for the next notifications to be sent. The team considered
introducing a queue like RabbitMQ but decided that could be
done later. The API doesn’t let internal details leak (another
principle from this chapter), so this refactoring can eventually
be done without breaking the clients.

Security concerns

When designing such an API in a real-world system, you have
to take care of authentication and authorization so only users
with the proper permissions can make calls to the API. Security

goes beyond the scope of this book, but it’s interesting to think
about whether such security aspects would have to be reflected
in the design of the API. I’ll leave this as an exercise for you.

xercises

Think through the following questions or discuss them with a
colleague:

1. Have you ever worked on a microservices or monolithic
project with multiple modules? What were the primary
challenges related to how they were designed to work
together?

2. In the project you are currently working on, how intimate
are the modules? What should you do to reduce such
intimacy?

3. Have you ever encountered a problem due to poor backward
compatibility? What caused it? What did you do to avoid
going through the same problem again?

4. What other practices does your company have around
ensuring that modules (or services) work well together?

mary

Modules should provide simple interfaces on top of complex
features.
A good module doesn’t force clients to change whenever its
internal details change.
Modules should provide clear communication interfaces that
are stable and backward compatible. If flexibility is needed,
modules should offer easy-to-use extension points.
Don’t let modules know about each other’s details. Modules
should do their best to hide their details, and clients should
do their best not to be coupled to any leaked details.
Modules should have clear ownership and engagement rules
to simplify communication among the different teams
working on different modules.

8 Being pragmatic

This chapter covers

Why being pragmatic matters
Why you should never stop refactoring
Why you should never stop learning about object-oriented
design

Congratulations! You’ve finished this journey through the six
most important characteristics of simple object-oriented design:

Small units of code
Consistent objects
Proper dependency management
Good abstractions
Properly handled infrastructure
Well modularized

In this chapter, I discuss a few pieces of advice that I also
consider essential to keep object-oriented designs as simple as
possible. Some were briefly mentioned in previous chapters but
are so important that I’ve dedicated a separate section to them.

e pragmatic and go only as far as you must

It’s easy to get stuck in an infinite loop of design improvements,
especially for engineers who appreciate a well-designed system.
Even simple design decisions can branch out into numerous
possibilities.

Striving for the best possible design is essential for a highly
maintainable, simple object-oriented system. But it’s important
to remember that our primary goal is not to write beautiful
designs but rather to deliver functional software as efficiently
as possible. A good design enables that goal, but it’s not the end.
Finding the right tradeoff between exploring the perfect design
and settling for a good-enough design is a challenging task that
improves with experience over time.

efactor aggressively but in small steps

Never stop refactoring. Refactoring is the most effective tool to
combat the growth of complexity. The more frequently you
refactor, the cheaper and quicker it becomes because you have
less code to refactor, and your skills will improve.

Engineers who are less enthusiastic about constant refactoring
may argue that it wastes time. They may ask, “Why should I

rename this variable? It makes no difference,” or say “This is
nitpicking!” But once you realize that refactoring is an
investment with significant returns, you’ll find it easier to
embrace.

As we discussed earlier, pragmatism is essential. Don’t overdo it.
You don’t need to refactor every bit of functionality that is easy
to maintain. You may not need to refactor—at least urgently—
pieces of code that never change or have proven themselves in
production. Pay attention to the signals, listen to your code, and
refactor when necessary.

ccept that your code won’t ever be perfect

Life as an engineer becomes much easier when you realize that
your code, design, and architecture will never be perfect. Do
your best with the information and resources available at a
given moment. As you learn more about the system, you may
discover better possibilities.

As I’ve mentioned, your code doesn’t have to be perfect. “Good
enough,” as discussed in the previous chapters, is sufficient in
most cases. But you should never stop writing better code every
day.

onsider redesigns

Don’t dismiss the possibility of redesigns, especially in the early
stages of development when refactoring is still cost effective. I
understand the need for pragmatism. Redesigning and
reimplementing something can be costly. But if you can see that
the current approach is leading you to a dead end, it’s best to
refactor it as soon as possible.

I’ve encountered codebases where developers talked for years
about redesigning parts of the system but never found the time
to do it. Consequently, the codebase turned into a tangled mess.
If you wait until the code becomes unbearable, you may reach a
point where refactoring is no longer feasible.

John Osterhout’s book, A Philosophy of Software Design, states
that he makes the best design decisions on the third attempt at
designing something. In other words, it takes him two versions
to understand what the design should look like. So as soon as
you realize there’s a better way to do something, start planning
the refactoring.

ou owe this to junior developers

I’ve met talented developers who spent their early years in
companies that didn’t prioritize code quality. As a result, these
developers faced challenges in upskilling themselves when they
moved on to other jobs.

Novice developers learn a lot from the code they work on and
the engineers they are surrounded by. It’s our responsibility to
help the newer generations understand the importance of good
code. We achieve this by setting an example, constantly
working to reduce complexity in our code, and continually
seeking ways to improve the design of our systems.

eferences

There are many books about object-oriented design, and I’ve
learned a lot from them. I strongly recommend you read other
perspectives on this topic:

Domain Language: Tackling Complexity in the Heart of
Software by Eric Evans (Addison-Wesley, 2003)
Implementing Domain Driven Design by Vaughn Vernon
(Addison-Wesley, 2-13)

A Philosophy of Software Design by John Ousterhout
(Yaknyam Press, 2021)
Head First Design Patterns: Building Extensible and
Maintainable Object-Oriented Software, 2nd ed., by Eric
Freeman and Elisabeth Robson (O’Reilly, 2021)
Building Maintainable Software, Ten Guidelines for Future-
Proof Code by Joost Visser et al.
(www.softwareimprovementgroup.com/publications/ebook-
building-maintainable-software)
Refactoring to Patterns by Joshua Kerievsky
(www.industriallogic.com/xp/refactoring)
Object Design Style Guide, from Python to PHP by Matthias
Noback (https://matthiasnoback.nl/book/style-guide-for-
object-design)
Refactoring: Improving the Design of Existing Code by Martin
Fowler (https://martinfowler.com/books/refactoring.html)
Object-Oriented Analysis and Design with Applications, 3rd
ed., by Grady Booch et al. (Addison-Wesley, 2007)
Growing Object-Oriented Software, Guided by Tests by Steve
Freeman and Nat Pryce (Addison-Wesley, 2009)

These are the books that affected me, but there are many
others. Never stop learning about object-oriented design!

https://www.softwareimprovementgroup.com/publications/ebook-building-maintainable-software/
https://www.softwareimprovementgroup.com/publications/ebook-building-maintainable-software/
https://www.industriallogic.com/xp/refactoring/
https://matthiasnoback.nl/book/style-guide-for-object-design
https://matthiasnoback.nl/book/style-guide-for-object-design
https://martinfowler.com/books/refactoring.html

xercises

Think through the following questions or discuss them with a
colleague:

1. How often do you refactor your design? Are you a refactoring
addict, or is refactoring something you only do when it’s
really needed?

2. Being pragmatic isn’t easy. How do you decide when to go for
a more elegant design solution?

3. People say, “There’s nothing more permanent than a
temporary workaround.” How often have you seen a
workaround become permanent in the codebase? Why do
you think that happened? Is there something you can do to
avoid it?

4. Have you ever redesigned (parts of) a software system? What
challenges did you face? Did you benefit from it in the end?

mary

Designing object-oriented systems is a fine art that requires
mastering.
Complexity tends to grow in any software system. It’s your
job to keep fighting against this growth. It costs less if done
every day.

A simple object-oriented system keeps its code simple, objects
consistent, and dependencies adequately managed; it has
good abstractions, handles infrastructure code properly, and
is well modularized.
Strive for the perfect design, but know that it doesn’t exist.
Good-enough designs are often what you need.
This book shows my take on simple object-oriented design
after 20 years of building good and bad software systems.
There are many other good books on this topic, read some of
them and form your own opinions about what constitutes a
good design.

index

A

A Philosophy of Software Design (Ousterhout) 159

abstractions 91 – 111

and coupling 97

attributes of good 95 – 96

designing 94 – 95

example of 97 – 102

extension points 93 – 102

good 8

identifying need for abstractions 93 – 94

learning from abstractions 96

simplicity of 108 – 111

addEmployee() method 46, 49, 61, 66

AddEmployeeToOfferingService class 54, 66

AddEmployeeToOfferingValidator class 55

aggregates

ensuring invariants in clusters of objects 63 – 68

Offering aggregate 65 – 68

rules of 64 – 65

allEmployees() method 116

Amazon AWS 130

Amazon SQS 130

API (application programming interface) 141

api package 149

architecture, of information systems 13 – 15

availableSpots attribute 126 – 127

availableSpots(Offering) method 127

B

BadgeGiver class 97

BadgeRule abstraction 100

BadgeRule interface 99 – 100

BadgesForQuantity class 98

BadgesForTrainings class 98

badgeToGive() method 99

Basket class 63

Booch, Grady 159

Bot interface 76, 84 – 85, 131

BotException 133

BotMessage class 131

BotMessage data structure 132

breaking complex methods into private methods 22

broken-window theory 11

Building Maintainable Software, Ten Guidelines for Future-Proof
Code (Visser) 159

business rules

example 105 – 108

generalizing 102 – 108

separating concrete data from 103 – 105

C

Cache class 121

CachedLdapServer class 75

cancel() method 65, 68, 124 – 125, 127

CancelEnrollmentService 126

ChatBotV1 API 133

handling exceptions in 133

ChatBotV1 class 79, 131

classes

breaking down large business flows 36 – 37

example of waiting list for offerings 37 – 39

giving complex business logic a class of its own 35

moving new complexity away from existing classes 34 – 39

clusters of objects, ensuring invariants in 63 – 68

code

readability 34

code comments 30 – 34

documenting decisions 30

good names 29 – 30

simple 4 – 5

cohesive components 21

Collections class 62

complexity designing for

consistently addressing 11

controlling 12

example project 15 – 17

good-enough designs 12

high-quality code 11

keeping design simple 12

object-oriented design 2 – 3

reducing 11

simple design as day-to-day activity 10 – 12

complicated subsystem team 146

Configuration class 115

consistency 5, 42 – 69

designing effective data validation mechanisms

creating validation components 50 – 52

example 54 – 57

making preconditions explicit 48 – 50

using nulls carefully or avoiding them 52 – 53

ensuring at all times 43 – 48

Employee entity, example 45 – 48

encapsulating entire actions and complex consistency checks 43
– 45

making class responsible for consistency 43

functional and nonfunctional requirements 49

integrity 43

keeping objects consistent

providing only getters and setters that matter 60 – 62

CQS (command-query separation) 60

CsvParserLibrary class 25

D

data validation mechanisms 48 – 57

creating validation components 50 – 52

example 54 – 57

making preconditions explicit 48 – 50

using nulls carefully or avoiding them 52 – 53

data-transfer objects (DTOs) 14

DDD (domain-driven design) 57

decisions, documenting 30

deep modules 137 – 140

fighting accidental coupling 140

keeping related things close 139

reducing effects of changes 138

refining domain boundaries 139

deleteEnrollment method 64

dependencies, managing 70 – 90

avoiding coupling to details or things you don’t need 77 – 82

clients 80 – 81

offering list 81 – 82

replacing HTTP bot with chat SDK 79 – 80

requiring or returning classes that you own 77 – 79

breaking down classes that depend on too many other classes
82 – 86

example 83 – 86

dependency injection 86 – 89

avoiding static methods 87

in MessageSender class 89

injecting collaborators 88

instantiating class together with dependencies 89

proper 7

separating high-level and low-level code 71 – 76

designing stable code 72

interface discovery 72 – 76

messaging job example 74 – 76

when not to separate 73

deprecated comments 32

Design Patterns (Gamma et al.) 97

Dijkstra, Edsger 92

DIP (dependency inversion principle) 72

DispatchTime enumeration 153

DispatchTime enumerator 154

domain code

changing infrastructure 119 – 120

database access and message bot example 120 – 122

hiding details from code 118 – 119

interfaces 115 – 118

separating infrastructure from 114 – 122

domain errors, encapsulating low-level infrastructure errors
into 133

Domain-Driven Design (Evans) 139, 159

DTOs (data-transfer objects) 14

E

EmailSender class 83

EmployeeImportCSVParser class 25, 27

EmployeeRepository class 27

EmployeeRepository interface 116, 120

enabling teams 146

encapsulation 42

enroll() method 66

EnrollAnEmployeeToOfferingService class 66

EnrolledEmployees class 62

Enrollment class 65

Evans, Eric 139, 159

exceptions, handling in SDKBot 133

extension points 93 – 102, 108

abstractions and coupling 97

attributes of good abstractions 95 – 96

designing 94 – 95

example of 97 – 102

identifying need for abstractions 93 – 94

learning from abstractions 96

external dependencies

example 131 – 132

fighting frameworks 129 – 130

indirect leakage 131

F

findById method 120

findByLastName method 120 – 121

Fowler, Martin 159

frameworks 129 – 130

Freeman, Eric 159

Freeman, Steve 159

G

generalizing business rules 102 – 108

example 105 – 108

separating concrete data from 103 – 105

getEmployees method 47, 62

getEnrollment method 125

getters 60 – 62

in Offering class 61 – 62

only to attributes that describe object 61

that don’t change state 60 – 61

that don’t reveal too much to clients 60 – 61

give() method 97, 99 – 100, 105

glue code 104

grouping dependencies tactic 85

Growing Object-Oriented Software, Guided by Tests (Freeman
and Pryce) 73, 159

H

Head First Design Patterns (Freeman and Robson) 159

hexagonal architecture 116

Hibernate 130

HibernateEmployeeRepository 116

HibernateOfferingRepository 127

HttpBot class 75

I

if statements 12

Implementing Domain Driven Design (Vernon) 159

import method 25 – 26, 28

ImportEmployeesService class 27

indirect leakage 131

information hiding 77

information systems, architecture of 13 – 15

infrastructure

encapsulating low-level infrastructure errors into high-level
domain errors 133

handling external dependencies and 112 – 114

properly handled external dependencies and 8 – 9

separating from domain code 114 – 122

changing infrastructure 119 – 120

database access and message bot example 120 – 122

hiding details from code 118 – 119

interfaces 115 – 118

using to best advantage 122 – 127

breaking design 123 – 124

cancelling enrollment 124 – 127

infrastructure code 114

integrity 42

interfaces

designing clear 140 – 147

backward-compatible modules 142 – 143

coding as if module will be used by someone with different
needs 144 – 145

keeping module’s interface simple 141 – 142

modules should have and clear ownership and engagement
rules 145 – 147

providing clean extension points 144

separating infrastructure from domain code 115 – 118

invariants, ensuring in clusters of objects 63 – 68

Invoice class 149

Item class 63

J

JPA (Java Persistence API) 17

junior developers, code quality and 158 – 159

K

Kerievsky, Joshua 159

M

makePayment() method 128

maximumNumberOfAttendees 47

Medium enumeration 153

Medium enumerator 154

MessageBot class 84

MessageRepositoryHibernate class 75

MessageSender class 76, 88

dependency injection in 89

MessageSender interface 75

MessageSender service, example of breaking down 83 – 86

messaging job example 74 – 76

Metz, Sandi 109

modularization 135 – 155

avoiding intimacy between modules 147 – 154

considering events as way to decouple modules 151 – 152

depending on internal classes 148 – 150

making modules and clients responsible for lack of intimacy
148

monitoring web of dependencies 150 – 151

monoliths or microservices? 151

deep modules 137 – 140

fighting accidental coupling 140

keeping related things close 139

reducing effects of changes 138

refining domain boundaries 139

designing clear interfaces 140 – 147

backward-compatible modules 142 – 143

coding as if module will be used by someone with different
needs 144 – 145

keeping module’s interface simple 141 – 142

modules and clear ownership and engagement rules 145 – 147

providing clean extension points 144

MVC (Model-View-Controller) 14

N

names, good 29 – 30

Noback, Matthias 159

Notification structure 154

notification system, example of 152 – 154

Notifications module 152

notifyWaitingList method 38

nulls, using carefully or avoiding 52 – 53

O

Object Design Style Guide, from Python to PHP (Noback) 159

Object-Oriented Analysis and Design with Applications (Booch)
159

object-oriented design 2 – 18

object-oriented systems, designing simple 3 – 10

consistent objects 6

good abstractions 8

overview 3 – 10

proper dependency management 7

properly handled external dependencies and infrastructure 8 –
9

simple code 4 – 5

well modularized 9 – 10

objects

clusters of, ensuring invariants in 63 – 68

consistency 6, 41 – 69

ensuring at all times 42 – 48

encapsulating state checks 57 – 59

example 59

Tell, Don’t Ask 58 – 59

keeping consistent

designing effective data validation mechanisms 48 – 57

providing only getters and setters that matter 60 – 62

Offering aggregate 65 – 68

Offering aggregate root 124

Offering class 45, 49, 54

example of getters and setters in 61 – 62

Offering entity 82, 126 – 127

OfferingForm class 52

OfferingRepository 125, 127

OfferingSummary class 81 – 82

OfferingSummary convert(Offering offering) method 82

OfferingSummary toSummary() method 82

Optional type 53

ORM (object-relational mapper) 55

ORM (object-relational mapping) 131

Ousterhout, John 12, 32, 50, 138, 158 – 159

P

Pais, Manuel 146

parse method 25

PaymentDetails class 128

PaymentDetails data structure 128

PaymentGateway class 128

PeopleGrow! example project 15 – 17

Philipp, Marc 149

Philosophy of Software Design, A (Ousterhout) 32

platform teams 146

pragmatism 156 – 157

accepting that your code won’t ever be perfect 158

code quality and junior developers 158 – 159

going only as far as you need 157 – 158

redesigns 158

refactoring aggressively but in small steps 157

preconditions, making explicit 48 – 50

Product class 63

Pryce, Nat 159

public package 149

R

readability 34

code comments 30 – 34

documenting decisions 30

good names 29 – 30

redesigns 158

refactoring

aggressively but in small steps 157

Improving the Design of Existing Code (Fowler) 159

making units of code small 24

example 24 – 28

Refactoring to Patterns (Kerievsky) 159

Report generateReport() method 123

ReportGenerator interface 123

Robson, Elisabeth 159

S

save method 120

SDK (software development kit) 78

SDKBot 131

handling exceptions in 133

SDKBot class 79

send() method 84

sendPrivateMethod 132

separating high-level and low-level code 71 – 76

designing stable code 72

interface discovery 72 – 76

messaging job example 74 – 76

when not to separate 73

services, naming 56

setEmployees method 62

setters 60 – 62

in Offering class 61 – 62

only to attributes that describe object 61

that don’t change state 60 – 61

that don’t reveal too much to clients 60 – 61

shotgun surgery 58

shouldReceiveAnEmail method 34

Skelton, Matthew 146

SLOs (service-level objectives) 152

small code 19 – 40

making units of code small 20 – 28

breaking complex methods into private methods 22

example 24 – 28

moving complex unit of code to another class 23

refactoring 24

when not to divide code into small units 23

moving new complexity away from existing classes 34 – 39

breaking down large business flows 36 – 37

example of waiting list for offerings 37 – 39

giving complex business logic a class of its own 35

SMTP (Simple Mail Transfer Protocol) 15

Specification pattern 51

Spring MVC 129

SRP (Single Responsibility Principle) 37

state checks, encapsulating 57 – 59

example 59

Tell, Don’t Ask 58 – 59

static methods 87

stream-aligned teams 146

structs 42

T

Team Topologies (Skelton and Pais) 146

technical debt 11

Tell, Don’t Ask 58 – 59

TrainingsTaken class 102

U

ubiquitous language 30

UnenrollEmployeeFromOfferingService service 37

unmodifiableSet method 62

UserDirectory interface 76

V

Vernon, Vaughn 159

Visser, Joost 159

W

writeMessage method 79, 133

	Simple Object-Oriented Design
	Copyright
	dedication
	contents
	front matter
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration

	1 It’s all about managing complexity
	1.1 Object-oriented design and the test of time
	1.2 Designing simple object-oriented systems
	1.2.1 Simple code
	1.2.2 Consistent objects
	1.2.3 Proper dependency management
	1.2.4 Good abstractions
	1.2.5 Properly handled external dependencies and infrastructure
	1.2.6 Well modularized

	1.3 Simple design as a day-to-day activity
	1.3.1 Reducing complexity is similar to personal hygiene
	1.3.2 Complexity may be necessary but should not be permanent
	1.3.3 Consistently addressing complexity is cost effective
	1.3.4 High-quality code promotes good practices
	1.3.5 Controlling complexity isn’t as difficult as it seems
	1.3.6 Keeping the design simple is a developer’s responsibility
	1.3.7 Good-enough designs

	1.4 A short dive into the architecture of an information system
	1.5 The example project: PeopleGrow!
	1.6 Exercises
	Summary

	2 Making code small
	2.1 Make units of code small
	2.1.1 Break complex methods into private methods
	2.1.2 Move a complex unit of code to another class
	2.1.3 When not to divide code into small units
	2.1.4 Get a helicopter view of the refactoring before you do it
	2.1.5 Example: Importing employees

	2.2 Make code readable and documented
	2.2.1 Keep looking for good names
	2.2.2 Document decisions
	2.2.3 Add code comments
	2.2.4 Example: Deciding when to send an update email

	2.3 Move new complexity away from existing classes
	2.3.1 Give the complex business logic a class of its own
	2.3.2 Break down large business flows
	2.3.3 Example: Waiting list for offerings

	2.4 Exercises
	Summary

	3 Keeping objects consistent
	3.1 Ensure consistency at all times
	3.1.1 Make the class responsible for its consistency
	3.1.2 Encapsulate entire actions and complex consistency checks
	3.1.3 Example: The Employee entity

	3.2 Design effective data validation mechanisms
	3.2.1 Make preconditions explicit
	3.2.2 Create validation components
	3.2.3 Use nulls carefully or avoid them if you can
	3.2.4 Example: Adding an employee to a training offering

	3.3 Encapsulate state checks
	3.3.1 Tell, don’t ask
	3.3.2 Example: Available spots in an offering

	3.4 Provide only getters and setters that matter
	3.4.1 Getters that don’t change state and don’t reveal too much to clients
	3.4.2 Setters only to attributes that describe the object
	3.4.3 Example: Getters and setters in the Offering class

	3.5 Model aggregates to ensure invariants in clusters of objects
	3.5.1 Don’t break the rules of an aggregate root
	3.5.2 Example: The Offering aggregate

	3.6 Exercises
	Summary

	4 Managing dependencies
	4.1 Separate high-level and low-level code
	4.1.1 Design stable code
	4.1.2 Interface discovery
	4.1.3 When not to separate the higher level from the lower level
	4.1.4 Example: The messaging job

	4.2 Avoid coupling to details or things you don’t need
	4.2.1 Only require or return classes that you own
	4.2.2 Example: Replacing the HTTP bot with the chat SDK
	4.2.3 Don’t give clients more than they need
	4.2.4 Example: The offering list

	4.3 Break down classes that depend on too many other classes
	4.3.1 Example: Breaking down the MessageSender service

	4.4 Inject dependencies, aka dependency injection
	4.4.1 Avoid static methods for operations that change the state
	4.4.2 Always inject collaborators: Everything else is optional
	4.4.3 Strategies to instantiate the class together with its dependencies
	4.4.4 Example: Dependency injection in MessageSender and collaborators

	4.5 Exercises
	Summary

	5 Designing good abstractions
	5.1 Design abstractions and extension points
	5.1.1 Identifying the need for an abstraction
	5.1.2 Designing an extension point
	5.1.3 Attributes of good abstractions
	5.1.4 Learn from your abstractions
	5.1.5 Learn about abstractions
	5.1.6 Abstractions and coupling
	5.1.7 Example: Giving badges to employees

	5.2 Generalize important business rules
	5.2.1 Separate the concrete data from the generalized business rule
	5.2.2 Example: Generalizing the badge rules

	5.3 Prefer simple abstractions
	5.3.1 Rules of thumb
	5.3.2 Simple is always better
	5.3.3 Enough is enough
	5.3.4 Don’t be afraid of modeling abstractions from day one
	5.3.5 Example: Revisiting the badge example

	5.4 Exercises
	Summary

	6 Handling external dependencies and infrastructure
	6.1 Separate infrastructure from the domain code
	6.1.1 Do you need an interface?
	6.1.2 Hide details from the code, not from the developers
	6.1.3 Changing the infrastructure someday: Myth or reality?
	6.1.4 Example: Database access and the message bot

	6.2 Use the infrastructure fully
	6.2.1 Do your best not to break your design
	6.2.2 Example: Cancelling an enrollment

	6.3 Only depend on things you own
	6.3.1 Don’t fight your frameworks
	6.3.2 Be aware of indirect leakage
	6.3.3 Example: Message bot

	6.4 Encapsulate low-level infrastructure errors into high-level domain errors
	6.4.1 Example: Handling exceptions in SDKBot

	6.5 Exercises
	Summary

	7 Achieving modularization
	7.1 Build deep modules
	7.1.1 Find ways to reduce the effects of changes
	7.1.2 Keep refining your domain boundaries
	7.1.3 Keep related things close
	7.1.4 Fight accidental coupling, or document it when you can’t

	7.2 Design clear interfaces
	7.2.1 Keep the module’s interface simple
	7.2.2 Backward-compatible modules
	7.2.3 Provide clean extension points
	7.2.4 Code as if your module will be used by someone with different needs
	7.2.5 Modules should have clear ownership and engagement rules

	7.3 No intimacy between modules
	7.3.1 Make modules and clients responsible for the lack of intimacy
	7.3.2 Don’t depend on internal classes
	7.3.3 Monitor the web of dependencies
	7.3.4 Monoliths or microservices?
	7.3.5 Consider events as a way to decouple modules
	7.3.6 Example: The notification system

	7.4 Exercises
	Summary

	8 Being pragmatic
	8.1 Be pragmatic and go only as far as you must
	8.2 Refactor aggressively but in small steps
	8.3 Accept that your code won’t ever be perfect
	8.4 Consider redesigns
	8.5 You owe this to junior developers
	8.6 References
	8.7 Exercises
	Summary

	index

