

Contents

1. Cover Page

2. About This E-Book

3. Half Title Page

4. Title Page

5. Copyright Page

6. Dedication Page

7. Contents at a Glance

8. Table of Contents

9. Acknowledgments

10. About the Author

11. We Want to Hear from You!

12. Reader Services

13. Figure Credits

14. Introduction

1. This Book’s Scope

2. What’s New in the Fifth Edition

3. The Intended Audience

4. The Book’s Approach

5. Source Code Used in This Book

15. 1. Introduction to Object-Oriented Concepts

1. The Fundamental Concepts

2. Objects and Legacy Systems

3. Procedural Versus OO Programming

4. Moving from Procedural to Object-Oriented

Development

5. What Exactly Is an Object?

6. What Exactly Is a Class?

7. Using Class Diagrams as a Visual Tool

8. Encapsulation and Data Hiding

9. Inheritance

10. Polymorphism

11. Composition

12. Conclusion

16. 2. How to Think in Terms of Objects

1. Knowing the Difference Between the Interface and the

Implementation

2. Using Abstract Thinking When Designing Interfaces

3. Providing the Absolute Minimal User Interface Possible

clbr://internal.invalid/book/OEBPS/Images/cover.xhtml

4. Conclusion

5. References

17. 3. More Object-Oriented Concepts

1. Constructors

2. Error Handling

3. The Importance of Scope

4. Operator Overloading

5. Multiple Inheritance

6. Object Operations

7. Conclusion

8. References

18. 4. The Anatomy of a Class

1. The Name of the Class

2. Comments

3. Attributes

4. Constructors

5. Accessors

6. Public Interface Methods

7. Private Implementation Methods

8. Conclusion

9. References

19. 5. Class Design Guidelines

1. Modeling Real-World Systems

2. Identifying the Public Interfaces

3. Designing Robust Constructors (and Perhaps

Destructors)

4. Designing Error Handling into a Class

5. Designing with Reuse in Mind

6. Designing with Extensibility in Mind

7. Designing with Maintainability in Mind

8. Using Object Persistence

9. Conclusion

10. References

20. 6. Designing with Objects

1. Design Guidelines

2. Object Wrappers

3. Conclusion

4. References

21. 7. Mastering Inheritance and Composition

1. Reusing Objects

2. Inheritance

3. Composition

4. Why Encapsulation Is Fundamental to OO

5. Conclusion

6. References

22. 8. Frameworks and Reuse: Designing with Interfaces and Abstract

Classes

1. Code: To Reuse or Not to Reuse?

2. What Is a Framework?

3. What Is a Contract?

4. An E-Business Example

5. Conclusion

6. References

23. 9. Building Objects and Object-Oriented Design

1. Composition Relationships

2. Building in Phases

3. Types of Composition

4. Avoiding Dependencies

5. Cardinality

6. Tying It All Together: An Example

7. Conclusion

8. References

24. 10. Design Patterns

1. Why Design Patterns?

2. Smalltalk’s Model/View/Controller

3. Types of Design Patterns

4. Antipatterns

5. Conclusion

6. References

25. 11. Avoiding Dependencies and Highly Coupled Classes

1. Composition versus Inheritance and Dependency

Injection

2. Conclusion

3. References

26. 12. The SOLID Principles of Object-Oriented Design

1. The SOLID Principles of Object-Oriented Design

2. Conclusion

3. References

27. Index

28. Code Snippets

clbr://internal.invalid/book/OEBPS/Images/ch01_images.xhtml#ch01_images

About This E-Book

EPUB is an open, industry-standard format for e-books.

However, support for EPUB and its many features varies

across reading devices and applications. Use your device

or app settings to customize the presentation to your

liking. Settings that you can customize often include font,

font size, single or double column, landscape or portrait

mode, and figures that you can click or tap to enlarge.

For additional information about the settings and

features on your reading device or app, visit the device

manufacturer’s Web site.

Many titles include programming code or configuration

examples. To optimize the presentation of these

elements, view the e-book in single-column, landscape

mode and adjust the font size to the smallest setting. In

addition to presenting code and configurations in the

reflowable text format, we have included images of the

code that mimic the presentation found in the print

book; therefore, where the reflowable format may

compromise the presentation of the code listing, you will

see a “Click here to view code image” link. Click the link

to view the print-fidelity code image. To return to the

previous page viewed, click the Back button on your

device or app.

The Object-Oriented

Thought Process

Fifth Edition

The Object-Oriented Thought

Process

Fifth Edition

Matt Weisfeld

Boston • Columbus • New York • San Francisco •

Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris •

Montreal • Toronto • Delhi

Mexico City • São Paulo • Sydney • Hong Kong • Seoul •

Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and

sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this

book, and the publisher was aware of a trademark claim,

the designations have been printed with initial capital

letters or in all capitals.

The author and publisher have taken care in the

preparation of this book, but make no expressed or

implied warranty of any kind and assume no

responsibility for errors or omissions. No liability is

assumed for incidental or consequential damages in

connection with or arising out of the use of the

information or programs contained herein.

For information about buying this title in bulk quantities,

or for special sales opportunities (which may include

electronic versions; custom cover designs; and content

particular to your business, training goals, marketing

focus, or branding interests), please contact our

corporate sales department at corpsales@pearsoned.com

or (800) 382-3419.

For government sales inquiries, please contact

governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact

intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019930825

Copyright © 2019 Pearson Education, Inc.

All rights reserved. Printed in the United States of

America. This publication is protected by copyright, and

permission must be obtained from the publisher prior to

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw

any prohibited reproduction, storage in a retrieval

system, or transmission in any form or by any means,

electronic, mechanical, photocopying, recording, or

likewise. For information regarding permissions, request

forms and the appropriate contacts within the Pearson

Education Global Rights & Permissions Department,

please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-518196-6

ISBN-10: 0-13-518196-8

1 19

Microsoft and/or its respective suppliers make no

representations about the suitability of the information

contained in the documents and related graphics

published as part of the services for any purpose. All

such documents and related graphics are provided “as is”

without warranty of any kind. Microsoft and/ or its

respective suppliers hereby disclaim all warranties and

conditions with regard to this information, including all

warranties and conditions of merchantability, whether

express, implied or statutory, fitness for a particular

purpose, title and non-infringement. In no event shall

Microsoft and/or its respective sup-pliers be liable for

any special, indirect or consequential damages or any

damages whatsoever resulting from loss of use, data or

profits, whether in an action of contract, negligence or

other tortious action, arising out of or in connection with

the use or performance of information available from the

services.

The documents and related graphics contained herein

could include technical inaccuracies or typographical

errors. Changes are periodically added to the

information herein. Microsoft and/or its respective sup-

pliers may make improvements and/or changes in the

product(s) and/or the program(s) described herein at

http://www.pearsoned.com/permissions/

any time. Partial screenshots may be viewed in full

within the software version specified.

Microsoft and Windows are registered trademarks of

the Microsoft Corporation in the U.S.A. and other

countries. Screenshots and icons reprinted with

permission from the Microsoft Corporation. This book is

not sponsored or endorsed by or affiliated with the

Microsoft Corporation.

Editor-in-Chief

Mark Taub

Development Editor

Mark Taber

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Indexer

Erika Millen

Proofreader

Abigail Manheim

Technical Reviewer

John Upchurch

Editorial Assistant

Cindy Teeters

® ®

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

To Sharon, Stacy, Stephanie, and Paulo

Contents at a Glance

Introduction

1 Introduction to Object-Oriented Concepts

2 How to Think in Terms of Objects

3 More Object-Oriented Concepts

4 The Anatomy of a Class

5 Class Design Guidelines

6 Designing with Objects

7 Mastering Inheritance and Composition

8 Frameworks and Reuse: Designing with Interfaces and

Abstract Classes

9 Building Objects and Object-Oriented Design

10 Design Patterns

11 Avoiding Dependencies and Highly Coupled Classes

12 The SOLID Principles of Object-Oriented Design

Index

Table of Contents

Introduction

This Book’s Scope

What’s New in the Fifth Edition

The Intended Audience

The Book’s Approach

Source Code Used in This Book

1 Introduction to Object-Oriented Concepts

The Fundamental Concepts

Objects and Legacy Systems

Procedural Versus OO Programming

Moving from Procedural to Object-Oriented

Development

Procedural Programming

OO Programming

What Exactly Is an Object?

Object Data

Object Behaviors

What Exactly Is a Class?

Creating Objects

Attributes

Methods

Messages

Using Class Diagrams as a Visual Tool

Encapsulation and Data Hiding

Interfaces

Implementations

A Real-World Example of the Interface/Implementation

Paradigm

A Model of the Interface/Implementation Paradigm

Inheritance

Superclasses and Subclasses

Abstraction

Is-a Relationships

Polymorphism

Composition

Abstraction

Has-a Relationships

Conclusion

2 How to Think in Terms of Objects

Knowing the Difference Between the Interface and the

Implementation

The Interface

The Implementation

An Interface/Implementation Example

Using Abstract Thinking When Designing Interfaces

Providing the Absolute Minimal User Interface Possible

Determining the Users

Object Behavior

Environmental Constraints

Identifying the Public Interfaces

Identifying the Implementation

Conclusion

References

3 More Object-Oriented Concepts

Constructors

When Is a Constructor Called?

What’s Inside a Constructor?

The Default Constructor

Using Multiple Constructors

The Design of Constructors

Error Handling

Ignoring the Problem

Checking for Problems and Aborting the Application

Checking for Problems and Attempting to Recover

Throwing an Exception

The Importance of Scope

Local Attributes

Object Attributes

Class Attributes

Operator Overloading

Multiple Inheritance

Object Operations

Conclusion

References

4 The Anatomy of a Class

The Name of the Class

Comments

Attributes

Constructors

Accessors

Public Interface Methods

Private Implementation Methods

Conclusion

References

5 Class Design Guidelines

Modeling Real-World Systems

Identifying the Public Interfaces

The Minimum Public Interface

Hiding the Implementation

Designing Robust Constructors (and Perhaps

Destructors)

Designing Error Handling into a Class

Documenting a Class and Using Comments

Building Objects with the Intent to Cooperate

Designing with Reuse in Mind

Designing with Extensibility in Mind

Making Names Descriptive

Abstracting Out Nonportable Code

Providing a Way to Copy and Compare Objects

Keeping the Scope as Small as Possible

Designing with Maintainability in Mind

Using Iteration in the Development Process

Testing the Interface

Using Object Persistence

Serializing and Marshaling Objects

Conclusion

References

6 Designing with Objects

Design Guidelines

Performing the Proper Analysis

Developing a Statement of Work

Gathering the Requirements

Developing a System Prototype

Identifying the Classes

Determining the Responsibilities of Each Class

Determining How the Classes Collaborate with Each

Other

Creating a Class Model to Describe the System

Prototyping the User Interface in Code

Object Wrappers

Structured Code

Wrapping Structured Code

Wrapping Nonportable Code

Wrapping Existing Classes

Conclusion

References

7 Mastering Inheritance and Composition

Reusing Objects

Inheritance

Generalization and Specialization

Design Decisions

Composition

Representing Composition with UML

Why Encapsulation Is Fundamental to OO

How Inheritance Weakens Encapsulation

A Detailed Example of Polymorphism

Object Responsibility

Abstract Classes, Virtual Methods, and Protocols

Conclusion

References

8 Frameworks and Reuse: Designing with

Interfaces and Abstract Classes

Code: To Reuse or Not to Reuse?

What Is a Framework?

What Is a Contract?

Abstract Classes

Interfaces

Tying It All Together

The Compiler Proof

Making a Contract

System Plug-in Points

An E-Business Example

An E-Business Problem

The Non-Reuse Approach

An E-Business Solution

The UML Object Model

Conclusion

References

9 Building Objects and Object-Oriented Design

Composition Relationships

Building in Phases

Types of Composition

Aggregations

Associations

Using Associations and Aggregations Together

Avoiding Dependencies

Cardinality

Multiple Object Associations

Optional Associations

Tying It All Together: An Example

Conclusion

References

10 Design Patterns

Why Design Patterns?

Smalltalk’s Model/View/Controller

Types of Design Patterns

Creational Patterns

Structural Patterns

Behavioral Patterns

Antipatterns

Conclusion

References

11 Avoiding Dependencies and Highly Coupled

Classes

Composition versus Inheritance and Dependency

Injection

1) Inheritance

2) Composition

Dependency Injection

Conclusion

References

12 The SOLID Principles of Object-Oriented

Design

The SOLID Principles of Object-Oriented Design

1) SRP: Single Responsibility Principle

2) OCP: Open/Close Principle

3) LSP: Liskov Substitution Principle

4) IPS: Interface Segregation Principle

5) DIP: Dependency Inversion Principle

Conclusion

References

Index

Acknowledgments
As with the first four editions, this book required the

combined efforts of many people. I would like to take the

time to acknowledge as many of these people as possible,

for without them, this book would never have happened.

First and foremost, I would like to thank my wife Sharon

for all her help. Not only did she provide support and

encouragement throughout this lengthy process, she is

also the first line editor for all my writing.

I would also like to thank my mom and the rest of my

family for their continued support.

It is hard to believe that the work on the first edition of

this book began in 1998. For all these years, I have

thoroughly enjoyed working with everyone at Pearson—

on all five editions. Working with editors Mark Taber

and Tonya Simpson on this edition has been a pleasure.

A special thanks goes to Jon Upchurch for his expertise

with much of the code as well as the technical editing of

the manuscript. Jon’s insights into an amazing range of

technical topics have been of great help to me.

Finally, thanks to my daughters, Stacy and Stephanie,

and my cat, Paulo, for always keeping me on my toes.

About the Author

Matt Weisfeld is a college professor, software

developer, and author based in Cleveland, Ohio. Prior to

teaching college full time, he spent 20 years in the

information technology industry as a software developer,

entrepreneur, and adjunct professor. Weisfeld holds an

MS in computer science and an MBA. Besides several

editions of The Object-Oriented Thought Process, Matt

has authored two other software development books and

published many articles in magazines and journals, such

as informit.com, developer.com, Dr. Dobb’s Journal,

The C/C++ Users Journal, Software Development

Magazine, Java Report, and the international journal

Project Management.

We Want to Hear from You!

As the reader of this book, you are our most important

critic and commentator. We value your opinion and want

to know what we’re doing right, what we could do better,

what areas you’d like to see us publish in, and any other

words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to

let us know what you did or didn’t like about this book—

as well as what we can do to make our books better.

Please note that we cannot help you with technical

problems related to the topic of this book.

When you write, please be sure to include this book’s title

and author as well as your name and email address. We

will carefully review your comments and share them with

the author and editors who worked on the book.

Email: community@informit.com

mailto:community@informit.com

Reader Services

Visit our website and register this book at

www.informit.com/register for convenient access to any

updates, downloads, or errata that might be available for

this book.

http://www.informit.com/register

Figure Credits
Cover image@SOMRERK

WITTHAYANANT/Shutterstock.

Figure 8.1, screenshot of Microsoft word

copyright@Microsoft 2019.

Figure 8.2, screenshot of API documentation

copyright@1993, 2018, Oracle.

Introduction

THIS BOOK’S SCOPE

As the title suggests, this book is about the object-

oriented (OO) thought process. Although choosing the

theme and title of a book are important decisions, these

decisions are not at all straightforward when dealing

with a highly conceptual topic. Many books deal with one

level or another of programming and object orientation.

Several popular books cover topics including OO

analysis, OO design, OO programming, design patterns,

OO data (XML), the Unified Modeling Language (UML),

OO web development, OO mobile development, various

OO programming languages, and many other topics

related to OO programming (OOP).

However, while poring over all these books, many people

forget that all these topics are built on a single

foundation: how you think in OO ways. Often, many

software professionals, as well as students, dive into

these books without taking the appropriate time and

effort to really understand the design concepts behind

the code.

I contend that learning OO concepts is not accomplished

by learning a specific development method, a

programming language, or a set of design tools. Object-

oriented development is, simply put, a way of thinking.

This book is all about the OO thought process.

Separating the languages, development practices, and

tools from the OO thought process is not an easy task.

Often, people are introduced to OO concepts by diving

headfirst into a programming language. For example,

many years ago a large number of C programmers were

first introduced to object orientation by migrating

directly to C++ before they were even remotely exposed

to OO concepts.

It is important to understand the significant difference

between learning OO concepts and programming in an

OO language. This came into sharp focus for me well

before I worked on the first edition of this book, when I

read articles like Craig Larman’s “What the UML Is—and

Isn’t,” In this article he states,

Unfortunately, in the context of software engineering

and the UML diagramming language, acquiring the skills

to read and write UML notation seems to sometimes be

equated with skill in object-oriented analysis and design.

Of course, this is not so, and the latter is much more

important than the former. Therefore, I recommend

seeking education and educational materials in which

intellectual skill in object-oriented analysis and design is

paramount rather than UML notation or the use of a case

tool.

Thus, although learning a modeling language is an

important step, it is much more important to learn OO

skills first. Learning UML before fully understanding OO

concepts is similar to learning how to read an electrical

diagram without first knowing anything about electricity.

The same problem occurs with programming languages.

As stated earlier, many C programmers moved into the

realm of object orientation by migrating to C++ before

being directly exposed to OO concepts. This would

always come out in an interview. Quite often developers

who claim to be C++ programmers are simply C

programmers using C++ compilers. Even now, with

languages such as C# .NET, VB .NET, Objective-C, Swift,

and Java well established, a few key questions in a job

interview can quickly uncover a lack of OO

understanding.

Early versions of Visual Basic are not OO. C is not OO,

and C++ was developed to be backward compatible with

C. Because of this, it is quite possible to use a C++

compiler while using only C syntax while forsaking all of

C++’s OO features. Objective-C was designed as an

extension to the standard ANSI C language. Even worse,

a programmer can use just enough OO features to make

a program incomprehensible to OO and non-OO

programmers alike.

Thus, it is of vital importance that while you’re learning

to use OO development environments, you first learn the

fundamental OO concepts. Resist the temptation to jump

directly into a programming language, and instead take

the time to learn the object-oriented thought process

first.

WHAT’S NEW IN THE FIFTH EDITION

As stated often in this introduction, my vision for the

first edition was to stick to the concepts rather than focus

on a specific emerging technology. Although I still

adhere to this goal for the fifth edition, I also introduce

more of the “counter-arguments” than were present in

the earlier editions. By that I mean that although object-

oriented development is, by far, the biggest game in

town, it is not the only one.

Since the first edition of this book was completed in

1999, many technologies have emerged and some have

faded. At the time, Java was just establishing itself and

was the primary OO development language. Web pages

would soon become a part of daily life and business. We

all know how ubiquitous mobile devices have become. In

the past 20 years software developers have encountered

XML, JSON, CSS, XSLT, SOAP, and RESTful Web

Services. Android devices use Java and now Kotlin, while

iOS devices use Objective-C and Swift.

The point I am trying to make is that we have embraced a

lot of technologies in the past 20 years (and four editions

of the book). My primary goal for this edition is to

condense all of this down to the original intent of the

first edition, fundamental object-oriented concepts. I like

to think that whatever success the first edition of the

book had was because it focused on fundamental object-

oriented concepts. In some ways we have gone full circle

because this edition encapsulates all the technologies

mentioned above.

Finally, the concepts that ultimately encapsulate these

technologies into a design methodology are represented

by SOLID, which is woven into all the chapters of this

edition as well as two new chapters at the end of the

book.

The five SOLID principles are

SRP—Single Responsibility Principle

OCP—Open/Close Principle

LSP—Liskov Substitution Principle

IPS—Interface Segregation Principle

DIP—Dependency Inversion Principle

I often think of the first nine chapters as representing

what I consider classical object-oriented principles. The

last three chapters on design patterns, avoiding

dependencies, and SOLID build on the classical

principles and present a strong methodology.

THE INTENDED AUDIENCE

This book is a general introduction to the concepts of

object-oriented programming. The term concepts is

important because, while code is certainly used to

reinforce the topics covered, the primary focus of this

book is to ground the reader in the object-oriented

thought process. It is also important for programmers to

understand that OOP does not represent a distinct

paradigm (as many believe)—OOP is simply one part of a

vast toolkit available to modern software developers.

When the material for the first edition of this book was

initially created in 1995, OOP was in its infancy. I can say

this because, other than pockets of OO languages such as

Smalltalk, there really were no true object-oriented

languages in play at the time. C++, which does not

enforce object-oriented constructs, was the dominant C-

based language. Java 1.0 was released in 1996 and C# 1.0

in 2002. In fact, when the first edition of this book was

published in 1999, there was no certainty that OO would

actually become the leading development paradigm.

(Java 2 wasn’t even released until December 1998.)

Despite its current dominance, there are some

interesting chinks in the OOP armor to be addressed.

Thus, the audience for the first edition differs from the

audience today.

From 1995 until as late as 2010, I was basically

retraining many structured programmers in the art of

OOP. The vast majority of these students had grown up

with COBOL, FORTRAN, C, and VB, both in college and

on the job. Today, students graduating college, writing

video games, creating websites, or producing mobile

apps have almost certainly learned programming using

an object-oriented language. Thus, the approach of the

fifth edition of this book is significantly different from

the first edition, or second, etc. Rather than teaching

structured programmers to become OO developers, we

are now teaching programmers who have grown up with

OO languages.

The intended audience for this book includes business

managers, designers, developers, programmers, and

project managers: in short, anyone who wants to gain a

general understanding of what object orientation is all

about. My hope is that reading this book will provide a

strong foundation for moving to other books covering

more advanced topics.

THE BOOK’S APPROACH

It should be obvious by now that I am a firm believer in

becoming comfortable with the object-oriented thought

process before jumping into a programming language or

modeling language. This book is filled with examples of

code and UML class diagrams; however, you do not need

to know a specific programming language or UML to

read it. After all I have said about learning the concepts

first, why is there so much code and class diagrams?

First, code and class diagrams are great for illustrating

OO concepts. Second, they are integral to the OO process

and should be addressed at an introductory level. The

key is not to focus on Java, C#, and so on but to use them

as aids in the understanding of the underlying concepts.

Note that I really like using UML class diagrams as a

visual aid to illustrate classes, and their attributes and

methods. In fact, the class diagrams are the only

component of UML used in this book. I believe that the

UML class diagrams offer a great way to model the

conceptual nature of object models. I continue to use

object models as an educational tool to illustrate class

design and how classes relate to one another.

The code examples in the book illustrate concepts such

as loops and functions; however, understanding the code

itself is not a prerequisite for understanding the

concepts. It might be helpful

to have a book at hand that covers specific languages’

syntax if you want to get more detailed.

I cannot state too strongly that this book does not teach

Java, C# .NET, VB .NET, Objective-C, Swift, or UML, all

of which can command volumes unto themselves. It is

also important to understand that this is a book of

concepts, and the intent of the examples in this book is

not, necessarily, to describe the optimal way to design

your classes; they are an educational exercise meant to

get you thinking about OO concepts. For example, it is

obvious that you won’t create many models using

penguins and barkless dogs on the job—but using them is

a fun way to demonstrate the concepts. With all of this in

mind, it is my hope that this book will whet your appetite

for other OO topics, such as OO analysis, object-oriented

design, and OO programming.

SOURCE CODE USED IN THIS BOOK

The sample code described throughout this book is

available on the publisher’s website. Go to

informit.com/register and register your book for access

to downloads.

1. Introduction to Object-

Oriented Concepts
Although many programmers don’t realize it, object-

oriented (OO) software development has been around

since the early 1960s. It wasn’t until the mid to late

1990s that the object-oriented paradigm started to gain

momentum, despite the fact that popular object-oriented

programming languages such as Smalltalk and C++ were

already widely used.

The rise of OO methodologies coincides with the

emergence of the Internet as a business and

entertainment platform. In short, objects work well over

a network. And after it became obvious that the Internet

was here to stay, object-oriented technologies were

already well positioned to develop the new web-based

technologies.

It is important to note that the title of this first chapter is

“Introduction to Object-Oriented Concepts.” The

operative word here is “concepts” and not “technologies.”

Technologies change very quickly in the software

industry, whereas concepts evolve. I use the term

“evolve” because, although they remain relatively stable,

they do change. And this is what is really cool about

focusing on the concepts. Despite their consistency, they

are always undergoing reinterpretations, and this allows

for some very interesting discussions.

This evolution can be easily traced over the past 25 years

or so as we follow the progression of the various industry

technologies from the first primitive browsers of the mid

to late 1990s to the mobile/phone/web applications that

dominate today. As always, new developments are just

around the corner as we explore hybrid apps and more.

Throughout this journey, OO concepts have been there

every step of the way. That is why the topics of this

chapter are so important. These concepts are just as

relevant today as they were 25 years ago.

THE FUNDAMENTAL CONCEPTS

The primary point of this book is to get you thinking

about how the concepts are used in designing object-

oriented systems. Historically, object-oriented languages

are defined by the following: encapsulation, inheritance,

and polymorphism (what I call “classical” OO). Thus, if a

language does not implement all of these, it is generally

not considered completely object-oriented. Along with

these three terms, I always include composition in the

mix; thus, my list of object-oriented concepts looks like

this:

Encapsulation

Inheritance

Polymorphism

Composition

We will discuss all these in detail as we proceed through

the rest of the book.

One of the issues that I have struggled with right from

the first edition of this book is how these concepts relate

directly to current design practices, which are always

changing. For example, there has always been debate

about using inheritance in an OO design. Does

inheritance actually break encapsulation? (This topic will

be covered in later chapters.) Even now, many

developers try to avoid inheritance as much as possible.

So this raises the question: Should inheritance be used at

all?

My approach is, as always, to stick to concepts. Whether

or not you use inheritance, you at least need to

understand what inheritance is, thus enabling you to

make an educated design choice. It is important not to

forget that inheritance will almost certainly be

encountered in code maintenance, so you need to learn it

regardless.

As mentioned in the introduction, the intended audience

is those who want a general introduction to fundamental

OO concepts. With this statement in mind, in this

chapter I present the fundamental object-oriented

concepts with the hope that you will then gain a solid

foundation for making important design decisions. The

concepts covered here touch on most, if not all, of the

topics covered in subsequent chapters, which explore

these issues in much greater detail.

OBJECTS AND LEGACY SYSTEMS

As OO moved into the mainstream, one of the issues

facing developers was the integration of new OO

technologies with existing systems. Lines were being

drawn between OO and structured (or procedural)

programming, which was the dominant development

paradigm at the time. I always found this odd because, in

my mind, object-oriented and structured programming

do not compete with each other. They are

complementary because objects integrate well with

structured code. Even now, I often hear this question:

are you a structured programmer or an object-oriented

programmer? Without hesitation, I would answer: both.

In the same vein, object-oriented code is not meant to

replace structured code. Many non-OO legacy systems

(that is, older systems that are already in place) are doing

the job quite well, so why risk potential disaster by

changing or replacing them? In most cases you should

not change them, at least not for the sake of change.

There is nothing inherently wrong with systems written

in non-OO code. However, brand-new development

definitely warrants the consideration of using OO

technologies (in some cases, there is no choice but to do

so).

Although there has been a steady and significant growth

in OO development in the past 25 years, the global

community’s dependence on networks such as the

Internet and mobile infrastructures has helped catapult

it even further into the mainstream. The explosion of

transactions performed on browsers and mobile apps has

opened up brand-new markets, where much of the

software development is new and mostly unencumbered

by legacy concerns. Even when there are legacy concerns,

there is a trend to wrap the legacy systems in object

wrappers.

Object Wrappers

Object wrappers are object-oriented code that includes other code inside. For
example, you can take structured code (such as loops and conditions) and
wrap it inside an object to make it look like an object. You can also use object
wrappers to wrap functionality such as security features, nonportable hardware
features, and so on. Wrapping structured code is covered in detail in Chapter
6, “Designing with Objects.”

One of the most interesting areas of software

development is the integration of legacy code with

mobile- and web-based systems. In many cases, a mobile

web front end ultimately connects to data that resides on

a mainframe. Developers who can combine the skills of

mainframe and mobile web development are in demand.

You probably experience objects in your daily life

without even realizing it. These experiences can take

place in your car, when you’re talking on your cell phone,

using your home entertainment system, playing

computer games, and many other situations. The

electronic highway has, in essence, become an object-

based highway. As businesses gravitate toward the

mobile web, they are gravitating toward objects because

the technologies used for electronic commerce are mostly

OO in nature.

Mobile Web

No doubt, the emergence of the Internet provided a major impetus for the shift
to object-oriented technologies. This is because objects are well suited for use
on networks. Although the Internet was at the forefront of this paradigm shift,
mobile networks have now joined the mix in a major way. In this book, the term
mobile web will be used in the context of concepts that pertain to both mobile
app development and web development. The term hybrid app is sometimes
used to refer to applications that render in browsers on both web and mobile
devices.

PROCEDURAL VERSUS OO

PROGRAMMING

Before we delve deeper into the advantages of OO

development, let’s consider a more fundamental

question: What exactly is an object? This is both a

complex and a simple question. It is complex because

learning any method of software development is not

trivial. It is simple because people already think in terms

of objects.

TIP

In watching a YouTube video lecture presented by OO guru Robert Martin, his
view is that the statement that “people think in terms of objects” was coined by
marketing people. Just some food for thought.

For example, when you look at a person, you see the

person as an object. And an object is defined by two

components: attributes and behaviors. A person has

attributes, such as eye color, age, height, and so on. A

person also has behaviors, such as walking, talking,

breathing, and so on. In its basic definition, an object is

an entity that contains both data and behavior. The word

both is the key difference between OO programming and

other programming methodologies. In procedural

programming, for example, code is placed into totally

distinct functions or procedures. Ideally, as shown in

Figure 1.1, these procedures then become “black boxes,”

where inputs go in and outputs come out. Data is placed

into separate structures and is manipulated by these

functions or procedures.

Figure 1.1 Black boxes.

Difference Between OO and Procedural

In OO design, the attributes and behaviors are contained within a single object,
whereas in procedural, or structured, design the attributes and behaviors are
normally separated.

As OO design grew in popularity, one of the realities that

initially slowed its acceptance was that there were a lot of

non-OO systems in place that worked perfectly fine.

Thus, it did not make any business sense to change the

systems for the sake of change. Anyone who is familiar

with any computer system knows that any change can

spell disaster—even if the change is perceived to be

slight.

This situation came into play with the lack of acceptance

of OO databases. At one point in the emergence of OO

development, it seemed somewhat likely that OO

databases would replace relational databases. However,

this never happened. Businesses have a lot of money

invested in relational databases, and one overriding

factor discouraged conversion: they worked. When all

the costs and risks of converting systems from relational

to OO databases became apparent, there was no

compelling reason to switch.

In fact, the business forces have now found a happy

middle ground. Much of the software development

practices today have flavors of several development

methodologies, such as OO and structured.

As illustrated in Figure 1.2, in structured programming

the data is often separated from the procedures, and

often the data is global, so it is easy to modify data that is

outside the scope of your code. This means that access to

data is uncontrolled and unpredictable (that is, multiple

functions may have access to the global data). Second,

because you have no control over who has access to the

data, testing and debugging are much more difficult.

Objects address these problems by combining data and

behavior into a nice, complete package.

Figure 1.2 Using global data.

Proper Design

We can state that when properly designed, there is no such thing as global
data in an OO model. This fact provides a high amount of data integrity in OO
systems.

Rather than replacing other software development

paradigms, objects are an evolutionary response.

Structured programs have complex data structures, such

as arrays, and so on. C++ has structures, which have

many of the characteristics of objects (classes).

However, objects are much more than data structures

and primitive data types, such as integers and strings.

Although objects do contain entities such as integers and

strings, which are used to represent attributes, they also

contain methods, which represent behaviors. In an

object, methods are used to perform operations on the

data as well as other actions. Perhaps more important,

you can control access to members of an object (both

attributes and methods). This means that some

members, both attributes and methods, can be hidden

from other objects. For instance, an object called Math

might contain two integers, called myInt1 and myInt2.

Most likely, the Math object also contains the necessary

methods to set and retrieve the values of myInt1 and

myInt2. It might also contain a method called sum() to

add the two integers together.

Data Hiding

In OO terminology, data are referred to as attributes, and behaviors are
referred to as methods. Restricting access to certain attributes and/or methods
is called data hiding.

By combining the attributes and methods in the same

entity, which in OO parlance is called encapsulation, we

can control access to the data in the Math object. By

defining these integers as off-limits, another logically

unconnected function cannot manipulate the integers

myInt1 and myInt2—only the Math object can do that.

Sound Class Design Guidelines

Keep in mind that it is possible to create poorly designed OO classes that do
not restrict access to class attributes. The bottom line is that you can design
bad code just as efficiently with OO design as with any other programming
methodology. Simply take care to adhere to sound class design guidelines (see
Chapter 5, “Class Design Guidelines”).

What happens when another object—for example,

myObject—wants to gain access to the sum of myInt1

and myInt2? It asks the Math object: myObject sends a

message to the Math object. Figure 1.3 shows how the

two objects communicate with each other via their

methods. The message is really a call to the Math object’s

sum method. The sum method then returns the value to

myObject. The beauty of this is that myObject does not

need to know how the sum is calculated (although I’m

sure it can guess). With this design methodology in

place, you can change how the Math object calculates the

sum without making a change to myObject (as long as

the means to retrieve the sum do not change). All you

want is the sum—you don’t care how it is calculated.

Figure 1.3 Object-to-object communication.

Using a simple calculator example illustrates this

concept. When determining a sum with a calculator, all

you use is the calculator’s interface—the keypad and LED

display. The calculator has a sum method that is invoked

when you press the correct key sequence. You may get

the correct answer back; however, you have no idea how

the result was obtained—either electronically or

algorithmically.

Calculating the sum is not the responsibility of

myObject—it’s the Math object’s responsibility. As long

as myObject has access to the Math object, it can send

the appropriate messages and obtain the requested

result. In general, objects should not manipulate the

internal data of other objects (that is, myObject should

not directly change the value of myInt1 and myInt2).

And, for reasons we will explore later, it is normally

better to build small objects with specific tasks rather

than build large objects that perform many.

MOVING FROM PROCEDURAL TO

OBJECT-ORIENTED DEVELOPMENT

Now that we have a general understanding about some of

the differences between procedural and object-oriented

technologies, let’s delve a bit deeper into both.

Procedural Programming

Procedural programming normally separates the data of

a system from the operations that manipulate the data.

For example, if you want to send information across a

network, only the relevant data is sent (see Figure 1.4),

with the expectation that the program at the other end of

the network pipe knows what to do with it. In other

words, some sort of handshaking agreement must be in

place between the client and the server to transmit the

data. In this model, it is quite possible that no code is

actually sent over the wire.

Figure 1.4 Data transmitted over a wire.

OO Programming

The fundamental advantage of OO programming is that

the data and the operations that manipulate the data (the

code) are both encapsulated in the object. For example,

when an object is transported across a network, the

entire object, including the data and behavior, goes with

it.

A Single Entity

Although thinking in terms of a single entity is great in theory, in many cases,
the behaviors themselves may not be sent because both sides have copies of
the code. However, it is important to think in terms of the entire object being
sent across the network as a single entity.

In Figure 1.5, the Employee object is sent over the

network.

Figure 1.5 Objects transmitted over a wire.

Proper Design

A good example of this concept is an object that is loaded by a browser. Often,
the browser has no idea of what the object will do ahead of time because the
code is not there previously. When the object is loaded, the browser executes
the code within the object and uses the data contained within the object.

WHAT EXACTLY IS AN OBJECT?

Objects are the building blocks of an OO program. A

program that uses OO technology is basically a collection

of objects. To illustrate, let’s consider that a corporate

system contains objects that represent employees of that

company. Each of these objects is made up of the data

and behavior described in the following sections.

Object Data

The data stored within an object represents the state of

the object. In OO programming terminology, this data is

called attributes. In our example, as shown in Figure 1.6,

employee attributes could be Social Security numbers,

date of birth, gender, phone number, and so on. The

attributes contain the information that differentiates

between the various objects, in this case the employees.

Attributes are covered in more detail later in this chapter

in the discussion on classes.

Figure 1.6 Employee attributes.

Object Behaviors

The behavior of an object represents what the object can

do. In procedural languages the behavior is defined by

procedures, functions, and subroutines. In OO

programming terminology, these behaviors are

contained in methods, and you invoke a method by

sending a message to it. In our employee example,

consider that one of the behaviors required of an

employee object is to set and return the values of the

various attributes. Thus, each attribute would have

corresponding methods, such as setGender() and

getGender(). In this case, when another object needs

this information, it can send a message to an employee

object and ask it what its gender is.

Not surprisingly, the application of getters and setters, as

with much of object-oriented technology, has evolved

since the first edition of this book was published. This is

especially true when it comes to data. Remember that

one of the most interesting, not to mention powerful,

advantages of using objects is that the data is part of the

package—it is not separated from the code.

The emergence of XML has not only focused attention on

presenting data in a portable manner; it also has

facilitated alternative ways for the code to access the

data. In .NET techniques, the getters and setters are

considered properties of the data itself.

For example, consider an attribute called Name, using

Java, that looks like the following:

public String Name;

The corresponding getter and setter would look like this:

public void setName (String n) {name = n;};
public String getName() {return name;};

Now, when creating an XML attribute called Name, the

definition in C# .NET may look something like this,

although you can certainly use the same approach as the

Java example:

private string strName;

public String Name
{
 get { return this.strName; }
 set {

 if (value == null) return;
 this.strName = value;
 }
}

In this technique, the getters and setters are actually

properties of the attributes—in this case, Name.

Regardless of the approach, the purpose is the same—

controlled access to the attribute. For this chapter, I want

to first concentrate on the conceptual nature of accessor

methods; we will get more into properties in later

chapters.

Getters and Setters

The concept of getters and setters supports the concept of data hiding.
Because other objects should not directly manipulate data within another
object, the getters and setters provide controlled access to an object's data.
Getters and setters are sometimes called accessor methods and mutator
methods, respectively.

Note that we are showing only the interface of the

methods, and not the implementation. The following

information is all the user needs to know to effectively

use the methods:

The name of the method

The parameters passed to the method

The return type of the method

To illustrate behaviors, consider Figure 1.7.

Figure 1.7 Employee behaviors.

In Figure 1.7, the Payroll object contains a method

called CalculatePay()that calculates the pay for a

specific employee. Among other information, the

Payroll object must obtain the Social Security number

of this employee. To get this information, the payroll

object must send a message to the Employee object (in

this case, the getSocialSecurityNumber() method).

Basically, this means that the Payroll object calls the

getSocialSecurityNumber() method of the

Employee object. The employee object recognizes the

message and returns the requested information.

To illustrate further, Figure 1.8 is a class diagram

representing the Employee/Payroll system we have

been talking about.

Figure 1.8 Employee and payroll class diagrams.

UML Class Diagrams

Because this is the first class diagram we have seen, it is very basic and lacks
some of the constructs (such as constructors) that a proper class should
contain. Fear not—we will discuss class diagrams and constructors in more
detail in Chapter 3, “More Object-Oriented Concepts.”

Each class diagram is defined by three separate sections:

the name itself, the data (attributes), and the behaviors

(methods). In Figure 1.8, the Employee class diagram’s

attribute section contains SocialSecurityNumber,

Gender, and DateofBirth, whereas the method

section contains the methods that operate on these

attributes. You can use UML modeling tools to create

and maintain class diagrams that correspond to real

code.

Modeling Tools

Visual modeling tools provide a mechanism to create and manipulate class
diagrams using the Unified Modeling Language (UML). Class diagrams are

used and discussed throughout this book. They are used as a tool to help
visualize classes and their relationships to other classes. The use of UML in
this book is limited to class diagrams.

We will get into the relationships between classes and

objects later in this chapter, but for now you can think of

a class as a template from which objects are made. When

an object is created, we say that the objects are

instantiated. Thus, if we create three employees, we are

actually creating three totally distinct instances of an

Employee class. Each object contains its own copy of the

attributes and methods. For example, consider Figure

1.9. An employee object called John (John is its identity)

has its own copy of all the attributes and methods

defined in the Employee class. An employee object

called Mary has its own copy of attributes and methods.

They both have a separate copy of the DateOfBirth

attribute and the getDateOfBirth method.

Figure 1.9 Program spaces.

An Implementation Issue

Be aware that there is not necessarily a physical copy of each method for each
object. Rather, each object points to the same implementation. However, this is
an issue left up to the compiler/operating platform. From a conceptual level,
you can think of objects as being wholly independent and having their own
attributes and methods.

WHAT EXACTLY IS A CLASS?

In short, a class is a blueprint for an object. When you

instantiate an object, you use a class as the basis for how

the object is built. In fact, trying to explain classes and

objects is really a chicken-and-egg dilemma. It is difficult

to describe a class without using the term object and vice

versa. For example, a specific individual bike is an object.

However, someone had to have created the blueprints

(that is, the class) to build the bike. In OO software,

unlike the chicken-and-egg dilemma, we do know what

comes first—the class. An object cannot be instantiated

without a class. Thus, many of the concepts in this

section are similar to those presented earlier in the

chapter, especially when we talk about attributes and

methods.

Although this book focuses on the concepts of OO

software and not on a specific implementation, it is often

helpful to use code examples to explain some concepts,

so Java code fragments are used throughout the book to

help explain some concepts when appropriate. However,

for certain key examples, the code is provided in several

languages as downloads.

The following sections describe some of the fundamental

concepts of classes and how they interact.

Creating Objects

Classes can be thought of as the templates, or cookie

cutters, for objects as seen in Figure 1.10. A class is used

to create an object.

Figure 1.10 Class template.

A class can be thought of as a sort of higher-level data

type. For example, just as you create an integer or a float:

int x;
float y;

you can also create an object by using a predefined class:

myClassmyObject;

In this example, the names themselves make it obvious

that myClass is the class and myObject is the object.

Remember that each object has its own attributes (data)

and behaviors (functions or routines). A class defines the

attributes and behaviors that all objects created with this

class will possess. Classes are pieces of code. Objects

instantiated from classes can be distributed individually

or as part of a library. Because objects are created from

classes, it follows that classes must define the basic

building blocks of objects (attributes, behavior, and

messages). In short, you must design a class before you

can create an object.

For example, here is a definition of a Person class:

public class Person{

 //Attributes
 private String name;
 private String address;

 //Methods
 public String getName(){
 return name;
 }
 public void set Name(String n){
 name = n;
 }

 public String getAddress(){
 return address;
 }
 public void setAddress(String adr){
 address = adr;
 }

}

Attributes

As you already saw, the data of a class is represented by

attributes. Each class must define the attributes that will

store the state of each object instantiated from that class.

In the Person class example in the previous section, the

Person class defines attributes for name and address.

Access Designations

When a data type or method is defined as public, other objects can directly
access it. When a data type or method is defined as private, only that specific
object can access it. Another access modifier, protected, allows access by
related objects, which you'll learn about in Chapter 3.

Methods

As you learned earlier in the chapter, methods

implement the required behavior of a class. Every object

instantiated from this class includes methods as defined

by the class. Methods may implement behaviors that are

called from other objects (messages) or provide the

fundamental, internal behavior of the class. Internal

behaviors are private methods that are not accessible by

other objects. In the Person class, the behaviors are

getName(), setName(), getAddress(), and

setAddress(). These methods allow other objects to

inspect and change the values of the object’s attributes.

This is a common technique in OO systems. In all cases,

access to attributes within an object should be controlled

by the object itself—no other object should directly

change an attribute of another.

Messages

Messages are the communication mechanism between

objects. For example, when Object A invokes a method of

Object B, Object A is sending a message to Object B.

Object B’s response is defined by its return value. Only

the public methods, not the private methods, of an object

can be invoked by another object. The following code

illustrates this concept:

public class Payroll{

 String name;
 Person p = new Person();
 p.setName("Joe");

 ... code

 name = p.getName();
}

In this example (assuming that a Payroll object is

instantiated), the Payroll object is sending a message

to a Person object, with the purpose of retrieving the

name via the getName() method. Again, don’t worry

too much about the actual code, because we are really

interested in the concepts. We address the code in detail

as we progress through the book.

USING CLASS DIAGRAMS AS A VISUAL

TOOL

Over the years, many tools and modeling methodologies

have been developed to assist in designing software

systems. Right from the start, I have used UML class

diagrams to assist in the educational process. Although it

is beyond the scope of this book to describe UML in any

detail, we will use UML class diagrams to illustrate the

classes that we build. In fact, we have already used class

diagrams in this chapter. Figure 1.11 shows the Person

class diagram we discussed earlier in the chapter.

Figure 1.11 The Person class diagram.

As we saw previously, notice that the attributes and

methods are separated (the attributes on the top and the

methods on the bottom). As we delve more deeply into

OO design, these class diagrams will get much more

sophisticated and convey much more information on

how the different classes interact with each other.

ENCAPSULATION AND DATA HIDING

One of the primary advantages of using objects is that

the object need not reveal all its attributes and behaviors.

In good OO design (at least what is generally accepted as

good), an object should reveal only the interfaces that

other objects must have to interact with it. Details not

pertinent to the use of the object should be hidden from

all other objects—basically a “need to know” basis.

Encapsulation is defined by the fact that objects contain

both the attributes and behaviors. Data hiding is a major

part of encapsulation.

For example, an object that calculates the square of a

number must provide an interface to obtain the result.

However, the internal attributes and algorithms used to

calculate the square need not be made available to the

requesting object. Robust classes are designed with

encapsulation in mind. In the next sections, we cover the

concepts of interface and implementation, which are the

basis of encapsulation.

Interfaces

We have seen that the interface defines the fundamental

means of communication between objects. Each class

design specifies the interfaces for the proper

instantiation and operation of objects. Any behavior that

the object provides must be invoked by a message sent

using one of the provided interfaces. The interface

should completely describe how users of the class

interact with the class. In most OO languages, the

methods that are part of the interface are designated as

public.

Private Data

For data hiding to work properly, all attributes should be declared as private.
Thus, attributes are never part of the interface. Only the public methods are
part of the class interface. Declaring an attribute as public breaks the concept
of data hiding.

Let’s look at the example just mentioned: calculating the

square of a number. In this example, the interface would

consist of two pieces:

How to instantiate a Square object

How to send a value to the object and get the square of that value in

return

As discussed earlier in the chapter, if a user needs access

to an attribute, a method is created to return the value of

the attribute (a getter). If a user then wants to obtain the

value of an attribute, a method is called to return its

value. In this way, the object that contains the attribute

controls access to it. This is of vital importance,

especially in security, testing, and maintenance. If you

control the access to the attribute, when a problem

arises, you do not have to worry about tracking down

every piece of code that might have changed the attribute

—it can be changed in only one place (the setter).

From a security perspective, you don’t want uncontrolled

code to change or retrieve sensitive data. For example,

when you use an ATM, access to data is controlled by

asking for a PIN.

Signatures—Interfaces Versus Interfaces

Don't confuse the interfaces used to extend classes with the interface of a
class. I like to equate the interfaces, represented by methods, as “signatures.”

Implementations

Only the public attributes and methods are considered

the interface. The user should not see any part of the

internal implementation, interacting with an object

solely through class interfaces. Thus, anything defined as

private is inaccessible to the user and considered part of

the class’s internal implementation.

In the previous example, for instance the Employee

class, only the attributes were hidden. In many cases,

there will be methods that also should be hidden and

thus not part of the interface. Continuing the example of

the square root from the previous section, the user does

not care how the square root is calculated—as long as it is

the correct answer. Thus, the implementation can

change, and it will not affect the user’s code. For

example, the company that produces the calculator can

change the algorithm (perhaps because it is more

efficient) without affecting the result.

A Real-World Example of the
Interface/Implementation Paradigm

Figure 1.12 illustrates the interface/implementation

paradigm using real-world objects rather than code. The

toaster requires electricity. To get this electricity, the

cord from the toaster must be plugged into the electrical

outlet, which is the interface. All the toaster needs to do

to obtain the required electricity is to implement a cord

that complies with the electrical outlet specifications;

this is the interface between the toaster and the power

company (actually the power industry). That the actual

implementation is a coal-powered electric plant is not

the concern of the toaster. In fact, for all the toaster

cares, the implementation could be a nuclear power

plant or a local power generator. With this model, any

appliance can get electricity, as long as it conforms to the

interface specification as shown in Figure 1.12.

Figure 1.12 Power plant example.

A Model of the Interface/Implementation Paradigm

Let’s explore the Square class further. Assume that you

are writing a class that calculates the squares of integers.

You must provide a separate interface and

implementation. That is, you must specify a way for the

user to invoke and obtain the square value. You must

also provide the implementation that calculates the

square; however, the user should not know anything

about the specific implementation. Figure 1.13 shows one

way to do this. Note that in the class diagram, the plus

sign (+) designates public and the minus sign (-)

designates private. Thus, you can identify the interface

by the methods, prefaced with plus signs.

Figure 1.13 The Square class.

This class diagram corresponds to the following code:

Click here to view code image

public class IntSquare {

 // private attribute

clbr://internal.invalid/book/OEBPS/Images/ch01_images.xhtml#p22pro01

 private int squareValue;

 // public interface
 public intgetSquare (int value) {

 SquareValue = calculateSquare(value);

 return squareValue;

 }

 // private implementation
 private intcalculateSquare (int value) {

 return value*value;

 }
}

Note that the only part of the class that the user has

access to is the public method getSquare, which is the

interface. The implementation of the square algorithm is

in the method calculateSquare, which is private.

Also notice that the attribute SquareValue is private

because users do not need to know that this attribute

exists. Therefore, we have hidden the part of the

implementation: The object reveals only the interfaces

the user needs to interact with it, and details that are not

pertinent to the use of the object are hidden from other

objects.

If the implementation were to change—suppose you

wanted to use the language’s built-in square function—

you would not need to change the interface. Here the

code uses the Java library method Math.pow, which

performs the same function, but note that the interface is

still calculateSquare.

Click here to view code image

// private implementation
private intcalculateSquare (int value) {

clbr://internal.invalid/book/OEBPS/Images/ch01_images.xhtml#p23pro01

 return = Math.pow(value,2);

}

The user would get the same functionality using the same

interface, but the implementation would have changed.

This is very important when you’re writing code that

deals with data; for example, you can move data from a

file to a database without forcing the user to change any

application code.

INHERITANCE

Inheritance enables a class to inherit the attributes and

methods of another class. This provides the ability to

create new classes by abstracting out common attributes

and behaviors from another class.

One of the major design issues in OO programming is to

factor out commonality of the various classes. For

example, suppose you have a Dog class and a Cat class,

and each will have an attribute for eye color. In a

procedural model, the code for Dog and Cat would each

contain this attribute. In an OO design, the color

attribute could be moved up to a class called Mammal—

along with any other common attributes and methods. In

this case, both Dog and Cat inherit from the Mammal

class, as shown in Figure 1.14.

Figure 1.14 Mammal hierarchy.

The Dog and Cat classes both inherit from Mammal. This

means that a Dog class has the following attributes:

eyeColor // inherited from Mammal
barkFrequency // defined only for Dogs

In the same vein, the Dog object has the following

methods:

getEyeColor // inherited from Mammal
bark // defined only for Dogs

When the Dog or the Cat object is instantiated, it

contains everything in its own class, as well as everything

from the parent class. Thus, Dog has all the properties of

its class definition, as well as the properties inherited

from the Mammal class.

Behaviors

It is worth noting that behaviors today tend to be described in interfaces and
that inheritance of attributes is the most common use of direct inheritance. In
this way, the behaviors are abstracted away from their data.

Superclasses and Subclasses

The superclass, or parent class (sometimes called base

class), contains all the attributes and behaviors that are

common to classes that inherit from it. For example, in

the case of the Mammal class, all mammals have similar

attributes, such as eyeColor and hairColor, as well

as behaviors, such as generateInternalHeat and

growHair. All mammals have these attributes and

behaviors, so it is not necessary to duplicate them down

the inheritance tree for each type of mammal.

Duplication requires a lot more work, and perhaps more

worrisome, it can introduce errors and inconsistencies.

The subclass, or child class (sometimes called derived

class) is an extension of the superclass. Thus, the Dog

and Cat classes inherit all those common attributes and

behaviors from the Mammal class. The Mammal class is

considered the superclass of the Dog and the Cat

subclasses, or child classes.

Inheritance provides a rich set of design advantages.

When you’re designing a Cat class, the Mammal class

provides much of the functionality needed. By inheriting

from the Mammal object, Cat already has all the

attributes and behaviors that make it a true mammal. To

make it more specifically a cat type of mammal, the Cat

class must include any attributes or behaviors that

pertain solely to a cat.

Abstraction

An inheritance tree can grow quite large. When the

Mammal and Cat classes are complete, other mammals,

such as dogs (or lions, tigers, and bears), can be added

quite easily. The Cat class can also be a superclass to

other classes. For example, it might be necessary to

abstract the Cat class further, to provide classes for

Persian cats, Siamese cats, and so on. Just as with Cat,

the Dog class can be the parent for GermanShepherd

and Poodle (see Figure 1.15). The power of inheritance

lies in its abstraction and organization techniques.

Figure 1.15 Mammal UML diagram.

These multiple levels of abstraction are one of the

reasons why many developers are wary of using

inheritance at all. As we will see often, it is difficult to

decide how much abstraction is required. For example, if

a penguin is a bird and a hawk is a bird, should they both

inherit from a class called Bird—a class that has a fly

method?

In most recent OO languages (such as Java, .NET, and

Swift), a class can have only a single parent class;

however, a class can have many child classes. Some

languages, such as C++, can have multiple parents. The

former case is called single inheritance, and the latter is

called multiple inheritance.

Multiple Inheritance

Consider a child that inherits from both parents. Which pair of eyes does the
child inherit? This is a significant problem when it comes to writing a compiler.
C++ allows multiple inheritance; many languages do not.

Note that the classes GermanShepherd and Poodle

both inherit from Dog—each contains only a single

method. However, because they inherit from Dog, they

also inherit from Mammal. Thus, the GermanShepherd

and Poodle classes contain all the attributes and

methods included in Dog and Mammal, as well as their

own (see Figure 1.16).

Figure 1.16 Mammal hierarchy.

Is-a Relationships

Consider a Shape example where Circle, Square, and

Star all inherit directly from Shape. This relationship is

often referred to as an is-a relationship because a circle

is a shape, and a square is a shape. When a subclass

inherits from a superclass, it can do anything that the

superclass can do. Thus, Circle, Square, and Star are

all extensions of Shape.

In Figure 1.17, the name on each of the objects represents

the draw method for the Circle, Star, and Square

objects, respectively. When we design this Shape

system, it would be very helpful to standardize how we

use the various shapes. Thus, we could decide that if we

want to draw a shape, no matter what shape, we will

invoke a method called draw. If we adhere to this

decision, whenever we want to draw a shape, only the

draw method needs to be called, regardless of what the

shape is. Here lies the fundamental concept of

polymorphism—it is the individual object’s

responsibility, be it a Circle, Star, or Square, to draw

itself. This is a common concept in many current

software applications, such as drawing and word

processing applications.

Figure 1.17 The shape hierarchy.

POLYMORPHISM

Polymorphism is a Greek word that literally means many

shapes. Although polymorphism is tightly coupled to

inheritance, it is often cited separately as one of the most

powerful advantages to object-oriented technologies.

When a message is sent to an object, the object must

have a method defined to respond to that message. In an

inheritance hierarchy, all subclasses inherit the

interfaces from their superclass. However, because each

subclass is a separate entity, each might require a

separate response to the same message.

For example, consider the Shape class and the behavior

called draw. When you tell somebody to draw a shape,

the first question asked is, “What shape?” No one can

draw a shape, because it is an abstract concept (in fact,

the draw method in the Shape code following contains

no implementation). You must specify a concrete shape.

To do this, you provide the actual implementation in

Circle. Even though Shape has a draw method,

Circle overrides this method and provides its own

draw method. Overriding basically means replacing an

implementation of a parent with one from a child.

For example, suppose you have an array of three shapes

—Circle, Square, and Star. Even though you treat

them all as Shape objects, and send a draw message to

each Shape object, the end result is different for each

because Circle, Square, and Star provide the actual

implementations. In short, each class is able to respond

differently to the same draw method and draw itself.

This is what is meant by polymorphism.

Consider the following Shape class:

public abstract class Shape{

 private double area;

 public abstract double getArea();

}

The Shape class has an attribute called area that holds

the value for the area of the shape. The method

getArea() includes an identifier called abstract.

When a method is defined as abstract, a subclass must

provide the implementation for this method; in this case,

Shape is requiring subclasses to provide a getArea()

implementation. Now let’s create a class called Circle

that inherits from Shape (the extends keyword

specifies that Circle inherits from Shape):

Click here to view code image

public class Circle extends Shape{
 double radius;
 public Circle(double r) {
 radius = r;
 }

 public double getArea() {
 area = 3.14*(radius*radius);
 return (area);
 }

}

We introduce a new concept here called a constructor.

The Circle class has a method with the same name,

Circle. When a method name is the same as the class

and no return type is provided, the method is a special

method, called a constructor. Consider a constructor as

the entry point for the class, where the object is built; the

constructor is a good place to perform initializations and

start-up tasks.

clbr://internal.invalid/book/OEBPS/Images/ch01_images.xhtml#p28pro01

The Circle constructor accepts a single parameter,

representing the radius, and assigns it to the radius

attribute of the Circle class.

The Circle class also provides the implementation for

the getArea method, originally defined as abstract in

the Shape class.

We can create a similar class, called Rectangle:

Click here to view code image

public class Rectangle extends Shape{

 double length;
 double width;

 public Rectangle(double l, double w){
 length = l;
 width = w;
 }

 public double getArea() {
 area = length*width;
 return (area);
 }

}

Now we can create any number of rectangles, circles, and

so on and invoke their getArea() method. This is

because we know that all rectangles and circles inherit

from Shape, and all Shape classes have a getArea()

method. If a subclass inherits an abstract method from a

superclass, it must provide a concrete implementation of

that method, or else it will be an abstract class itself (see

Figure 1.18 for a UML diagram). This approach also

provides the mechanism to create other, new classes

quite easily.

clbr://internal.invalid/book/OEBPS/Images/ch01_images.xhtml#p28pro02

Figure 1.18 Shape UML diagram.

Thus, we can instantiate the Shape classes in this way:

Circle circle = new Circle(5);
Rectangle rectangle = new Rectangle(4,5);

Then, using a construct such as a stack, we can add these

Shape classes to the stack:

stack.push(circle);
stack.push(rectangle);

What Is a Stack?

A stack is a data structure that is a last-in, first-out system. It is like a coin
changer, where you insert coins at the top of the cylinder and, when you need
a coin, you take one off the top, which is the last one you inserted. Pushing an
item onto the stack means that you are adding an item to the top (like inserting
another coin into the changer). Popping an item off the stack means that you
are taking the last item off the stack (like taking the coin off the top).

Now comes the fun part. We can empty the stack, and we

do not have to worry about what kind of Shape classes

are in it (we just know they are shapes):

Click here to view code image

while (!stack.empty()) {
 Shape shape = (Shape) stack.pop();
 System.out.println ("Area = " +
shape.getArea());
}

In reality, we are sending the same message to all the

shapes:

shape.getArea()

However, the actual behavior that takes place depends

on the type of shape. For example, Circle calculates the

area for a circle, and Rectangle calculates the area of a

rectangle. In effect (and here is the key concept), we are

sending a message to the Shape classes and

experiencing different behavior depending on what

subclass of Shape is being used.

This approach is meant to provide standardization for

the interface across classes, as well as applications.

Consider an office suite application that includes a word

processing and a spreadsheet application. Let’s assume

that both have a class called Office which contains an

interface called print(). This print() interface is

required for all classes that are part of the office suite.

The interesting thing here is that although both the word

processor and the spreadsheet invoke the print()

interface, they do different things: one prints a word

processing document and the other a spreadsheet

document.

Polymorphism by Composition

clbr://internal.invalid/book/OEBPS/Images/ch01_images.xhtml#p29pro01

In “classical” OO, polymorphism is traditionally implemented with inheritance;
however, there is a way to implement polymorphism using composition. We
discuss this in Chapter 12, “The SOLID Principles of Object-Oriented Design.”

COMPOSITION

It is natural to think of objects as containing other

objects. A television set contains a tuner and video

display. A computer contains video cards, keyboards,

and drives. Although the computer can be considered an

object unto itself, the drive is also considered a valid

object. In fact, you could open up the computer and

remove the drive and hold it in your hand. Both the

computer and the drive are considered objects. It is just

that the computer contains other objects—such as drives.

In this way, objects are often built, or composed, from

other objects: This is composition.

Abstraction

Just as with inheritance, composition provides a

mechanism for building objects. In fact, I would argue

that there are only two ways to build classes from other

classes: inheritance and composition. As we have seen,

inheritance allows one class to inherit from another

class. We can thus abstract out attributes and behaviors

for common classes. For example, dogs and cats are both

mammals because a dog is-a mammal and a cat is-a

mammal. With composition, we can also build classes by

embedding classes in other classes.

Consider the relationship between a car and an engine.

The benefits of separating the engine from the car are

evident. By building the engine separately, we can use

the engine in various cars—not to mention other

advantages. But we can’t say that an engine is-a car. This

just doesn’t sound right when it rolls off the tongue (and

because we are modeling real-world systems, this is the

effect we want). Rather, we use the term has-a to

describe composition relationships. A car has-a(n)

engine.

Has-a Relationships

While inheritance is considered an is-a relationship, a

composition relationship is termed a has-a relationship.

Using the example in the previous section, a television

has-a tuner and has-a video display. A television is

obviously not a tuner, so there is no inheritance

relationship. In the same vein, a computer has-a video

card, has-a keyboard, and has-a disk drive. The topics of

inheritance, composition, and how they relate to each

other are covered in great detail in Chapter 7, “Mastering

Inheritance and Composition.”

CONCLUSION

There is a lot to cover when discussing OO technologies.

However, you should leave this chapter with a good

understanding of the following topics:

Encapsulation—Encapsulating the data and behavior into a single

object is of primary importance in OO development. A single object

contains both its data and behaviors and can hide what it wants from

other objects.

Inheritance—A class can inherit from another class and take

advantage of the attributes and methods defined by the superclass.

Polymorphism—Polymorphism means that similar objects can

respond to the same message in different ways. For example, you

might have a system with many shapes. However, a circle, a square,

and a star are each drawn differently. Using polymorphism, you can

send each of these shapes the same message (for example, Draw), and

each shape is responsible for drawing itself.

Composition—Composition means that an object is built from other

objects.

This chapter covers the fundamental OO concepts, of

which by now you should have a good grasp.

2. How to Think in Terms of

Objects
In Chapter 1, “Introduction to Object-Oriented

Concepts,” you learned the fundamental object-oriented

(OO) concepts. The rest of the book delves more deeply

into these concepts and introduces several others. Many

factors go into a good design, whether it is an OO design

or not. The fundamental unit of OO design is the class.

The desired end result of OO design is a robust and

functional object model—in other words, a complete

system.

As with most things in life, there is no single right or

wrong way to approach a problem. There are usually

many ways to tackle the same problem. So when

attempting to design an OO solution, don’t get hung up

in trying to do a perfect design the first time (there will

always be room for improvement). What you really need

to do is brainstorm and let your thought process go in

different directions. Do not try to conform to any

standards or conventions when trying to solve a problem

because the whole idea is to be creative.

In fact, at the start of the process, don’t even begin to

consider a specific programming language. The first

order of business is to identify and solve business

problems. Work on the conceptual analysis and design

first. Think about specific technologies only when they

are fundamental to the business problem. For example,

you can’t design a wireless network without wireless

technology. However, it is often the case that you will

have more than one software solution to consider.

Thus, before you start to design a system, or even a class,

think the problem through and have some fun! In this

chapter we explore the fine art and science of OO

thinking.

Any fundamental change in thinking is not trivial. As a

case in point, a lot has been mentioned about the move

from structured to OO development. As was mentioned

earlier, one side effect of this debate is the misconception

that structured and object-oriented development are

mutually exclusive. This is not the case. As we know from

our discussion on wrappers, structured and object-

oriented development coexist. In fact, when you write an

OO application, you are using structured constructs

everywhere. I have never seen a program, OO or

otherwise, that does not use loops, if-statements, and so

on. Yet making the switch to OO design does require a

different type of investment.

Changing from FORTRAN to COBOL, or even to C,

requires you to learn a new language; however, making

the move from COBOL to C++, C# .NET, Visual Basic

.NET, Objective-C, Swift, or Java requires you to learn a

new thought process. This is where the overused phrase

OO paradigm rears its ugly head. When moving to an

OO language, you must first go through the investment

of learning OO concepts and the corresponding thought

process. If this paradigm shift does not take place, one of

two things will happen: Either the project will not truly

be OO in nature (for example, it will use C++ without

using OO constructs) or the project will be a complete

object-disoriented mess.

Three important things you can do to develop a good

sense of the OO thought process are covered in this

chapter:

Knowing the difference between the interface and implementation

Thinking more abstractly

Giving the user the minimal interface possible

We have already touched on some of these concepts in

Chapter 1, “Introduction to Object-Oriented Concepts,”

and we now go into much more detail.

KNOWING THE DIFFERENCE

BETWEEN THE INTERFACE AND THE

IMPLEMENTATION

As we saw in Chapter 1, one of the keys to building a

strong OO design is to understand the difference

between the interface and the implementation. Thus,

when designing a class, what the user needs to know and,

perhaps of more importance, what the user does not

need to know are of vital importance. The data hiding

mechanism inherent with encapsulation is the means by

which nonessential data is hidden from the user.

Caution

Do not confuse the concept of the interface with terms like graphical user
interface (GUI). Although a GUI is, as its name implies, an interface, the term
interfaces, as used here, is more general in nature and is not restricted to a
graphical interface.

Remember the toaster example in Chapter 1? The

toaster, or any appliance for that matter, is plugged into

the interface, which is the electrical outlet—see Figure

2.1. All appliances gain access to the required electricity

by complying with the correct interface: the electrical

outlet. The toaster doesn’t need to know anything about

the implementation or how the electricity is produced.

For all the toaster cares, a coal plant or a nuclear plant

could produce the electricity—the appliance does not

care which, as long as the interface works as specified,

correctly and safely.

Figure 2.1 Power plant revisited.

As another example, consider an automobile. The

interface between you and the car includes components

such as the steering wheel, gas pedal, brake, and ignition

switch. For most people, aesthetic issues aside, the main

concern when driving a car is that the car starts,

accelerates, stops, steers, and so on. The

implementation, basically the stuff that you don’t see, is

of little concern to the average driver. In fact, most

people would not even be able to identify certain

components, such as the catalytic converter and gasket.

However, any driver would recognize and know how to

use the steering wheel because this is a common

interface. By installing a standard steering wheel in the

car, manufacturers are assured that the people in their

target market will be able to use the system.

If, however, a manufacturer decided to install a joystick

in place of the steering wheel, most drivers would balk at

this, and the automobile might not be a big seller (except

possibly gamers). On the other hand, as long as the

performance and aesthetics didn’t change, the average

driver would not notice whether the manufacturer

changed the engine (part of the implementation) of the

automobile.

It must be stressed that the interchangeable engines

must be identical in every way—as far as the interface

goes. Replacing a four-cylinder engine with an eight-

cylinder engine would change the rules and likely would

not work with other components that interface with the

engine, just as changing the current from AC to DC

would affect the rules in the power plant example.

The engine is part of the implementation, and the

steering wheel is part of the interface. A change in the

implementation should have no impact on the driver,

whereas a change to the interface might. The driver

would notice an aesthetic change to the steering wheel,

even if it performs in a similar manner. It must be

stressed that a change to the engine that is noticeable by

the driver breaks this rule. For example, a change that

would result in noticeable loss of power is actually

impacting the interface.

What Users See

When we talk about users in this chapter, we primarily mean designers and
developers—not necessarily end users. Thus, when we talk about interfaces in
this context, we are talking about class interfaces, not GUIs.

Properly constructed classes are designed in two parts—

the interface and the implementation.

The Interface

The services presented to an end user constitute the

interface. In the best case, only the services the end user

needs are presented. Of course, which services the user

needs might be a matter of opinion. If you put 10 people

in a room and ask each of them to do an independent

design, you might receive 10 totally different designs—

and there is nothing wrong with that. However, as a

general rule, the interface to a class should contain only

what the user needs to know. In the toaster example, the

user needs to know only that the toaster must be plugged

into the interface (which in this case is the electrical

outlet) and how to operate the toaster itself.

Identifying the User

Perhaps the most important consideration when designing a class is identifying
the audience, or users, of the class.

The Implementation

The implementation details are hidden from the user.

One goal regarding the implementation should be kept in

mind: A change to the implementation should not

require a change to the user’s code. This might seem a bit

confusing, but this goal is at the heart of the design issue.

Good Interfaces

If the interface is designed properly, a change to the implementation should not
require a change to the user's code.

Remember that the interface includes the syntax to call a

method and return a value. If this interface does not

change, the user does not care whether the

implementation is changed. As long as the programmer

can use the same syntax and retrieve the same value,

that’s all that matters.

We see this all the time when using a cell phone. To

make a call, the interface is simple—we either dial a

number or select an entry in the contact list. Yet, if the

provider updates the software, it doesn’t change the way

you make a call. The interface stays the same regardless

of how the implementation changes. However, I can

think of one situation when the provider did change the

interface—when my area code changed. Fundamental

interface changes, like an area code change, do require

the users to change behavior. Businesses try to keep

these types of changes to a minimum, for some

customers will not like the change or perhaps not put up

with the hassle.

Recall that in the toaster example, although the interface

is always the electric outlet, the implementation could

change from a coal power plant to a nuclear power plant

without affecting the toaster. One very important caveat

should be made here: The coal or nuclear plant must also

conform to the interface specification. If the coal plant

produces AC power but the nuclear plant produces DC

power, a problem exists. The bottom line is that both the

user and the implementation must conform to the

interface specification.

An Interface/Implementation Example

Let’s create a simple (if not very functional) database

reader class. We’ll write some Java code that will retrieve

records from the database. As we’ve discussed, knowing

your end users is always the most important issue when

doing any kind of design. You should do some analysis of

the situation and conduct interviews with end users, and

then list the requirements for the project. The following

are some requirements we might want to use for the

database reader:

We must be able to open a connection to the database.

We must be able to close the connection to the database.

We must be able to position the cursor on the first record in the

database.

We must be able to position the cursor on the last record in the

database.

We must be able to find the number of records in the database.

We must be able to determine whether there are more records in the

database (that is, if we are at the end).

We must be able to position the cursor at a specific record by

supplying the key.

We must be able to retrieve a record by supplying a key.

We must be able to get the next record, based on the position of the

cursor.

With these requirements in mind, we can make an initial

attempt to design the database reader class by creating

possible interfaces for these end users.

In this case, the database reader class is intended for

programmers who require use of a database. Thus, the

interface is essentially the application-programming

interface (API) that the programmer will use. These

methods are, in effect, wrappers that enclose the

functionality provided by the database system. Why

would we do this? We explore this question in much

greater detail later in the chapter; the short answer is

that we might need to customize some database

functionality. For example, we might need to process the

objects so that we can write them to a relational

database. Writing this middleware is not trivial as far as

design and coding go, but it is a real-life example of

wrapping functionality. More important, we may want to

change the database engine itself without having to

change the code.

Figure 2.2 shows a class diagram representing a possible

interface to the DataBaseReader class.

Figure 2.2 A Unified Modeling Language class diagram for the

DataBaseReader class.

Note that the methods in this class are all public

(remember that there are plus signs next to the names of

methods that are public interfaces). Also note that only

the interface is represented; the implementation is not

shown. Take a minute to determine whether this class

diagram generally satisfies the requirements outlined

earlier for the project. If you find out later that the

diagram does not meet all the requirements, that’s okay;

remember that OO design is an iterative process, so you

do not have to get it exactly right the first time.

Public Interface

Remember, an application programmer can access it, and thus, it is considered
part of the class interface. Do not confuse the term interface with the keyword
interface used in Java and .NET—which is discussed in later chapters.

For each of the requirements we listed, we need a

corresponding method that provides the functionality we

want. Now you need to ask a few questions:

To effectively use this class, do you, as a programmer, need to know

anything else about it?

Do you need to know how the internal database code opens the

database?

Do you need to know how the internal database code physically

positions itself over a specific record?

Do you need to know how the internal database code determines

whether any more records are left?

On all counts the answer is a resounding no! You don’t

need to know any of this information. All you care about

is that you get the proper return values and that the

operations are performed correctly. In fact, the

application programmer will most likely be at least one

more abstract level away from the implementation. The

application will use your classes to open the database,

which in turn will invoke the proper database API.

Minimal Interface

Although perhaps extreme, one way to determine the minimalist interface is to
initially provide the user no public interfaces. Of course, the class will be
useless; however, this forces the user to come back to you and say, “Hey, I
need this functionality.” Then you can negotiate. Thus, you add interfaces only
when it is requested. Never assume that the user needs something.

Creating wrappers might seem like overkill, but there are

many advantages to writing them. To illustrate, there are

many middleware products on the market today.

Consider the problem of mapping objects to a relational

database. OO databases have never caught on; however,

theoretically they may be perfect for OO applications.

However, one small problem exists: Most companies

have years of data in legacy relational database systems.

How can a company embrace OO technologies and stay

on the cutting edge while retaining its data in a relational

database?

First, you can convert all your legacy, relational data to a

brand-new OO database. However, anyone who has

suffered the acute (and chronic) pain of any data

conversion knows that this is to be avoided at all costs.

Although these conversions can take large amounts of

time and effort, all too often they never work properly.

Second, you can use a middleware product to seamlessly

map the objects in your application code to a relational

model. This is a much better solution since relational

databases are so prevalent. Some might argue that OO

databases are much more efficient for object persistence

than relational databases. In fact, many development

systems seamlessly provide this service.

Object Persistence

Object persistence refers to the concept of saving the state of an object so that
it can be restored and used at a later time. An object that does not persist
basically dies when it goes out of scope. For example, the state of an object
can be saved in a database.

However, in the current business environment,

relational-to-object mapping is a great solution. Many

companies have integrated these technologies. It is

common for a company to have a website front-end

interface with data on a mainframe.

If you create a totally OO system, an OO database might

be a viable (and better performing) option; however, OO

databases have not experienced anywhere near the

growth that OO languages have.

Standalone Application

Even when creating a new OO application from scratch, it might not be easy to
avoid legacy data. Even a newly created OO application is most likely not a
standalone application and might need to exchange information stored in
relational databases (or any other data storage device, for that matter).

Let’s return to the database example. Figure 2.2 shows

the public interface to the class, and nothing else. When

this class is complete, it will probably contain more

methods, and it will certainly contain attributes.

However, as a programmer using this class, you do not

need to know anything about these private methods and

attributes. You certainly don’t need to know what the

code looks like within the public methods. You simply

need to know how to interact with the interfaces.

What would the code for this public interface look like

(assume that we start with a Oracle database example)?

Let’s look at the open() method:

Click here to view code image

public void open(String Name){

 /* Some application-specific processing
*/

 /* call the Oracle API to open the
database */

clbr://internal.invalid/book/OEBPS/Images/ch02_images.xhtml#p39pro01

 /* Some more application-specific
processing */

};

In this case, you, wearing your programmer’s hat, realize

that the open method requires String as a parameter.

Name, which represents a database file, is passed in, but

it’s not important to explain how Name is mapped to a

specific database for this example. That’s all we need to

know. Now comes the fun stuff—what really makes

interfaces so great!

Just to annoy our users, let’s change the database

implementation. Last night we translated all the data

from an Oracle database to an SQLAnywhere database

(we endured the acute and chronic pain). It took us

hours—but we did it.

Now the code looks like this:

Click here to view code image

public void open(String Name){

 /* Some application-specific processing

 /* call the SQLAnywhere API to open the
database */

 /* Some more application-specific
processing */

};

To our great chagrin, this morning not one user

complained. This is because even though the

implementation changed, the interface did not! As far as

the user is concerned, the calls are still the same. The

code change for the implementation might have required

quite a bit of work (and the module with the one-line

clbr://internal.invalid/book/OEBPS/Images/ch02_images.xhtml#p40pro01

code change would have to be rebuilt), but not one line of

application code that uses this DataBaseReader class

needed to change.

Code Recompilation

Dynamically loaded classes are loaded at runtime—not statically linked into an
executable file. When using dynamically loaded classes, like Java and .NET
do, no user classes would have to be recompiled. However, in statically linked
languages such as C++, a link is required to bring in the new class.

By separating the user interface from the

implementation, we can save a lot of headaches down the

road. In Figure 2.3, the database implementations are

transparent to the end users, who see only the interface.

Figure 2.3 The interface.

USING ABSTRACT THINKING WHEN

DESIGNING INTERFACES

One of the main advantages of OO programming is that

classes can be reused. In general, reusable classes tend to

have interfaces that are more abstract than concrete.

Concrete interfaces tend to be very specific, whereas

abstract interfaces are more general. However, simply

stating that a highly abstract interface is more useful

than a highly concrete interface, although often true, is

not always the case.

It is possible to write a very useful, concrete class that is

not at all reusable. This happens all the time, and

nothing is wrong with it in some situations. However, we

are now in the design business and want to take

advantage of what OO offers us. So our goal is to design

abstract, highly reusable classes—and to do this we will

design highly abstract user interfaces. To illustrate the

difference between an abstract and a concrete interface,

let’s create a taxi object. It is much more useful to have

an interface such as “drive me to the airport” than to

have separate interfaces such as “turn right,” “turn left,”

“start,” “stop,” and so on, because as illustrated in Figure

2.4, all the user wants to do is get to the airport.

Figure 2.4 An abstract interface.

When you emerge from your hotel, throw your bags into

the back seat of the taxi, and get in, the cabbie will turn

to you and ask, “Where do you want to go?” You reply,

“Please take me to the airport.” (This assumes, of course,

that there is only one major airport in the city. In

Chicago you would have to say, “Please take me to

Midway Airport” or “Please take me to O’Hare.”) You

might not even know how to get to the airport yourself,

and even if you did, you wouldn’t want to have to tell the

cabbie when to turn and which direction to turn, as

illustrated in Figure 2.5. How the cabbie implements the

actual drive is of no concern to you, the passenger.

(However, the fare might become an issue at some point,

if the cabbie cheats and takes you the long way to the

airport.)

Figure 2.5 A not-so-abstract interface.

Now, where does the connection between abstract and

reuse come in? Ask yourself which of these two scenarios

is more reusable, the abstract or the not-so-abstract? To

put it more simply, which phrase is more reusable: “Take

me to the airport,” or “Turn right, then right, then left,

then left, then left”? Obviously, the first phrase is more

reusable. You can use it in any city, whenever you get

into a taxi and want to go to the airport. The second

phrase will work only in a specific case. Thus, the

abstract interface “Take me to the airport” is generally

the way to go for a good, reusable OO design whose

implementation would be different in Chicago, New

York, or Cleveland.

PROVIDING THE ABSOLUTE MINIMAL

USER INTERFACE POSSIBLE

When designing a class, the general rule is to always

provide the user with as little knowledge of the inner

workings of the class as possible. To accomplish this,

follow these simple rules:

Give the users only what they absolutely need. In effect, this means the

class has as few interfaces as possible. When you start designing a

class, start with a minimal interface. The design of a class is iterative,

so you will soon discover that the minimal set of interfaces might not

suffice. This is fine.

It is better to have to add interfaces because users really need it than to

give the users more interfaces than they need. At times it is highly

problematic for the user to have access to certain interfaces. For

example, you don’t want an interface that provides salary information

to all users—only the ones who need to know.

For the moment, let’s use a hardware example to illustrate our

software example. Imagine handing a user a PC box without a monitor

or a keyboard. Obviously, the PC would be of little use. You have just

provided the user with the minimal set of interfaces to the PC.

However, this minimal set is insufficient, and it immediately becomes

necessary to add interfaces.

Public interfaces define what the users can access. If you initially hide

the entire class from the user by making the interfaces private, when

programmers start using the class, you will be forced to make certain

methods public—these methods thus become the public interface.

It is vital to design classes from a user’s perspective and not from an

information systems viewpoint. Too often designers of classes (not to

mention any other kind of software) design the class to make it fit into

a specific technological model. Even if the designer takes a user’s

perspective, it is still probably a technician user’s perspective, and the

class is designed with an eye on getting it to work from a technology

standpoint and not from ease of use for the user.

Make sure when you are designing a class that you go over the

requirements and the design with the people who will actually use it—

not just developers (this includes all levels of testing). The class will

most likely evolve and need to be updated when a prototype of the

system is built.

Determining the Users

Let’s look again at the taxi example. We have already

decided that the users are the ones who will actually use

the system. This said, the obvious question is, who are

the users?

The first impulse is to say the customers. This is only

about half right. Although the customers are certainly

users, the cabbie must be able to successfully provide the

service to the customers. In other words, providing an

interface that would, no doubt, please the customer, such

as “Take me to the airport for free,” is not going to go

over well with the cabbie. Thus, in reality, to build a

realistic and usable interface, both the customer and the

cabbie must be considered users.

In short, any object that sends a message to the taxi

object is considered a user (and yes, the users are

objects, too). Figure 2.6 shows how the cabbie provides a

service.

Figure 2.6 Providing services.

Looking Ahead

The cabbie is most likely an object as well.

Object Behavior

Identifying the users is only a part of the exercise. After

the users are identified, you must determine the

behaviors of the objects. From the viewpoint of all the

users, begin identifying the purpose of each object and

what it must do to perform properly. Note that many of

the initial choices will not survive the final cut of the

public interface. These choices are identified by

gathering requirements using various methods such as

UML Use Cases.

Environmental Constraints

In their book Object-Oriented Design in Java, Gilbert

and McCarty point out that the environment often

imposes limitations on what an object can do. In fact,

environmental constraints are almost always a factor.

Computer hardware might limit software functionality.

For example, a system might not be connected to a

network, or a company might use a specific type of

printer. In the taxi example, the cab cannot drive on a

road if a bridge is out, even if it provides a quicker way to

the airport.

Identifying the Public Interfaces

With all the information gathered about the users, the

object behaviors, and the environment, you need to

determine the public interfaces for each user object. So

think about how you would use the taxi object:

Get into the taxi.

Tell the cabbie where you want to go.

Pay the cabbie.

Give the cabbie a tip.

Get out of the taxi.

What do you need to do to use the taxi object?

Have a place to go.

Hail a taxi.

Pay the cabbie money.

Initially, you think about how the object is used and not

how it is built. You might discover that the object needs

more interfaces, such as “Put luggage in the trunk” or

“Enter into a mindless conversation with the cabbie.”

Figure 2.7 provides a class diagram that lists possible

methods for the Cabbie class.

Figure 2.7 The methods in a Cabbie class.

As is always the case, nailing down the final interface is

an iterative process. For each interface, you must

determine whether the interface contributes to the

operation of the object. If it does not, perhaps it is not

necessary. Many OO texts recommend that each

interface model only one behavior. This returns us to the

question of how abstract we want to get with the design.

If we have an interface called enterTaxi(), we

certainly do not want enterTaxi() to have logic in it to

pay the cabbie. If we do this, not only is the design

somewhat illogical, but there is virtually no way that a

user of the class can tell what has to be done to pay the

cabbie.

Identifying the Implementation

After the public interfaces are chosen, you need to

identify the implementation. After the class is designed

and all the methods required to operate the class

properly are in place, the specifics of how to get the class

to work are considered.

Technically, anything that is not a public interface can be

considered the implementation. This means that the user

will never see any of the methods that are considered

part of the implementation, including the method’s

signature (which includes the name of the method and

the parameter list), as well as the actual code inside the

method.

It is possible to have a private method that is used

internally by the class. Any private method is considered

part of the implementation given that the user will never

see it and thus will not have access to it. For example, a

class may have a changePassword() method;

however, the same class may have a private method that

encrypts the password. This method would be hidden

from the user and called only from inside the

changePassword() method.

The implementation is totally hidden from the user. The

code within public methods is a part of the

implementation because the user cannot see it. (The user

should see only the calling structure of an interface—not

the code inside it.)

This means that, theoretically, anything that is

considered the implementation might change without

affecting how the user interfaces with the class. This

assumes, of course, that the implementation is providing

the answers the user expects.

Whereas the interface represents how the user sees the

object, the implementation is really the nuts and bolts of

the object. The implementation contains the code that

represents that state of an object.

CONCLUSION

In this chapter, we have explored three areas that can get

you started on the path to thinking in an OO way.

Remember that there is no firm list of issues pertaining

to the OO thought process. Doing things in an OO way is

more of an art than a science. Try to think of your own

ways to describe OO thinking.

In Chapter 3, “More Object-Oriented Concepts,” we

discuss the object life cycle: it is born, it lives, and it dies.

While it is alive, it might transition through many states.

For example, a DataBaseReader object is in one state if

the database is open and another state if the database is

closed. How this is represented depends on the design of

the class.

REFERENCES

Fowler, Martin. 2003. UML Distilled, Third Edition.

Boston, MA: Addison-Wesley Professional.

Gilbert, Stephen, and Bill McCarty. 1998. Object-

Oriented Design in Java. Berkeley, CA: The Waite Group

Press (Pearson Education).

Meyers, Scott. 2005. Effective C++, Third Edition.

Boston, MA: Addison-Wesley Professional.

3. More Object-Oriented

Concepts
Chapter 1, “Introduction to Object-Oriented Concepts,”

and Chapter 2, “How to Think in Terms of Objects,”

cover the basics of object-oriented (OO) concepts. Before

we embark on our journey to learn some of the finer

design issues relating to building an OO system, we need

to cover a few more advanced OO concepts, such as

constructors, operator overloading, and multiple

inheritance. We also will consider error-handling

techniques and how scope applies to object-oriented

design.

Some of these concepts might not be vital to

understanding an OO design at a higher level, but they

are necessary to anyone involved in the design and

implementation of an OO system.

CONSTRUCTORS

Constructors may be a new concept for structured

programmers. Although constructors are not normally

used in non-OO languages such as COBOL, C, and Basic,

the struct, which is part of C/C++, does include

constructors. In the first two chapters we alluded to

these special methods that are used to construct objects.

In some OO languages, such as Java and C#,

constructors are methods that share the same name as

the class. Visual Basic .NET uses the designation New

and Swift uses the init keyword. As usual, we will focus

on the concepts of constructors and not cover the specific

syntax of all the languages. Let’s take a look at some Java

code that implements a constructor.

For example, a constructor for the Cabbie class we

covered in Chapter 2 would look like this:

public Cabbie(){
 /* code to construct the object */
}

The compiler will recognize that the method name is

identical to the class name and consider the method a

constructor.

Caution

Note that in this Java code (as with C# and C++), a constructor does not have
a return value. If you provide a return value, the compiler will not treat the
method as a constructor.

For example, if you include the following code in the

class, the compiler will not consider this a constructor

because it has a return value—in this case an integer.

public int Cabbie(){
 /* code to construct the object */
}

This syntax requirement can cause problems because

this code will compile but will not behave as expected.

When Is a Constructor Called?

When a new object is created, one of the first things that

happens is that the constructor is called. Check out the

following code:

Cabbie myCabbie = new Cabbie();

The new keyword creates a new instance of the Cabbie

class, thus allocating the required memory. Then the

constructor itself is called, passing the arguments in the

parameter list. The constructor provides the developer

the opportunity to attend to the appropriate

initialization.

Thus, the code new Cabbie() will instantiate a Cabbie

object and call the Cabbie method, which is the

constructor.

What’s Inside a Constructor?

Perhaps the most important function of a constructor is

to initialize the memory allocated when the new keyword

is encountered. In short, code included inside a

constructor should set the newly created object to its

initial, stable, safe state.

For example, if you have a counter object with an

attribute called count, you need to set count to zero in

the constructor:

count = 0;

Initializing Attributes

In structured programming, a routine named housekeeping (or initialization) is
often used for initialization purposes. Initializing attributes is a common function
performed within a constructor. Regardless, don't rely on the system defaults.

The Default Constructor

If you write a class and do not include a constructor, the

class will still compile, and you can still use it. If the class

provides no explicit constructor, a default constructor

will be provided. It is important to understand that at

least one constructor always exists, regardless of whether

you write a constructor yourself. If you do not provide a

constructor, the system will provide a default constructor

for you.

Besides the creation of the object itself, the only action

that a default constructor takes is to call the constructor

of its superclass. In many cases, the superclass will be

part of the language framework, like the Object class in

Java. For example, if a constructor is not provided for the

Cabbie class, the following default constructor is

inserted:

public Cabbie(){
 super();
}

If you were to decompile the bytecode produced by the

compiler, you would see this code. The compiler actually

inserts it.

In this case, if Cabbie does not explicitly inherit from

another class, the Object class will be the parent class.

Perhaps the default constructor might be sufficient in

some cases; however, in most cases some sort of memory

initialization should be performed. Regardless of the

situation, it is good programming practice to always

include at least one constructor in a class. If there are

attributes in the class, it is always good practice to

initialize them. Moreover, initializing variables is always

a good practice when writing code, object-oriented or

not.

Providing a Constructor

The general rule is that you should always provide a constructor, even if you do
not plan to do anything inside it. You can provide a constructor with nothing in it
and then add to it later. Although there is technically nothing wrong with using
the default constructor provided by the compiler, for documentation and
maintenance purposes, it is always nice to know exactly what your code looks
like.

It is not surprising that maintenance becomes an issue

here. If you depend on the default constructor and then

subsequent maintenance adds another constructor, the

default constructor is no longer created. This may

actually break code that was assuming the presence of a

default constructor.

Always remember that the default constructor is added

only if you don’t include any constructors. As soon as you

include just one, the default constructor is not provided.

Using Multiple Constructors

In many cases, an object can be constructed in more than

one way. To accommodate this situation, you need to

provide more than one constructor. For example, let’s

consider the Count class presented here:

public class Count {

 int count;

 public Count(){
 count = 0;
 }
}

On the one hand, we want to initialize the attribute

count to count to zero: We can easily accomplish this by

having a constructor initialize count to zero as follows:

public Count(){
 count = 0;
}

On the other hand, we might want to pass an

initialization parameter that allows count to be set to

various numbers:

public Count (int number){
 count = number;
}

This is called overloading a method (overloading

pertains to all methods, not just constructors). Most OO

languages provide functionality for overloading a

method.

Overloading Methods

Overloading allows a programmer to use the same

method name over and over, as long as the signature of

the method is different each time. The signature consists

of the method name and a parameter list (see Figure 3.1).

Figure 3.1 The components of a signature.

Thus, the following methods all have different

signatures:

public void getCab();

// different parameter list
public void getCab (String cabbieName);

// different parameter list
public void getCab (int numberOfPassengers);

Signatures

Depending on the language, the signature may or may not include the return
type. In Java and C#, the return type is not part of the signature. For example,
the following methods would conflict even though the return types are different:

public void getCab (String cabbieName);
public int getCab (String cabbieName);

The best way to understand signatures is to write some code and run it through
the compiler.

By using different signatures, you can construct objects

differently depending on the constructor used. This

functionality is very helpful when you don’t always know

ahead of time how much information you have available.

For example, when creating a shopping cart, customers

may already be logged in to their account (and you will

have all of their information). On the other hand, a

totally new customer may be placing items in the cart

with no account information available at all. In each case

the constructor would initialize differently.

Using UML to Model Classes

Let’s return to the database reader example we used

earlier in Chapter 2. Consider that we have two ways we

can construct a database reader:

Pass the name of the database and position the cursor at the beginning

of the database.

Pass the name of the database and the position within the database

where we want the cursor to position itself.

Figure 3.2 shows a class diagram for the

DataBaseReader class. Note that the diagram lists two

constructors for the class. Although the diagram shows

the two constructors, without the parameter list, there is

no way to know which constructor is which. To

distinguish the constructors, you can look at the

corresponding code in the DataBaseReader class listed

next.

Figure 3.2 The DataBaseReader class diagram.

No Return Type

Notice that in this class diagram the constructors do not have a return type. All
other methods besides constructors must have return types.

Here is a code segment of the class that shows its

constructors and the attributes that the constructors

initialize (see Figure 3.3):

Figure 3.3 Creating a new object.

Click here to view code image

public class DataBaseReader {

 String dbName;
 int startPosition;

 // initialize just the name
 public DataBaseReader (String name){
 dbName = name;
 startPosition = 0;
 };

 // initialize the name and the position
 public DataBaseReader (String name, int pos){
 dbName = name;
 startPosition = pos;
 };

clbr://internal.invalid/book/OEBPS/Images/ch03_images.xhtml#p52pro01

 .. // rest of class
}

Note how startPosition is initialized in both cases. If

the constructor is not passed the information via the

parameter list, it is initialized to a default value, such as

0.

How the Superclass Is Constructed

When using inheritance, you must know how the parent

class is constructed. Remember that when you use

inheritance, you are inheriting everything about the

parent. Thus, you must become intimately aware of all

the parent’s data and behavior. The inheritance of an

attribute is fairly obvious; however, how a constructor is

inherited is not as obvious. After the new keyword is

encountered and the object is allocated, the following

steps occur (see Figure 3.4):

1. Inside the constructor, the constructor of the class’s superclass is

called. If there is no explicit call to the superclass constructor, the

default is called automatically; however, you can see the code in

the bytecodes.

2. Each class attribute of the object is initialized. These are the

attributes that are part of the class definition (instance variables),

not the attributes inside the constructor or any other method

(local variables). In the DataBaseReader code presented earlier,

the integer startPosition is an instance variable of the class.

3. The rest of the code in the constructor executes.

Figure 3.4 Constructing an object.

The Design of Constructors

As we have already seen, when designing a class, it is

good practice to initialize all the attributes. In some

languages, the compiler provides some sort of

initialization. As always, don’t count on the compiler to

initialize attributes! In Java, you cannot use an attribute

until it is initialized. If the attribute is first set in the

code, make sure that you initialize the attribute to some

valid condition—for example, set an integer to zero.

Constructors are used to ensure that the application is in

a stable state (I like to call it a “safe” state). For example,

initializing an attribute to zero, when it is intended for

use as a denominator in a division operation, might lead

to an unstable application. You must take into

consideration that a division by zero is an illegal

operation. Initializing to zero is not always the best

policy.

During the design, it is good practice to identify a stable

state for all attributes and then initialize them to this

stable state in the constructor.

ERROR HANDLING

It is extremely rare for a class to be written perfectly the

first time. In most, if not all, situations, things will go

wrong. Any developer who does not plan for problems is

inviting disaster.

Assuming that your code has the capability to detect and

trap an error condition, you can handle the error in

several ways: In Chapter 11 of their book Java Primer

Plus, Tyma, Torok, and Downing (ISBN:

9781571690623) state that there are three basic solutions

to handling problems that are detected in a program: fix

it, ignore the problem by squelching it, or exit the

runtime in some graceful manner. In Chapter 4 of their

book Object-Oriented Design in Java (ISBN:

9781571691347), Gilbert and McCarty expand on this

theme by adding the choice of throwing an exception:

Ignore the problem—not a good idea!

Check for potential problems and abort the program when you find a

problem.

Check for potential problems, catch the mistake, and attempt to fix the

problem.

Throw an exception. (Often this is the preferred way to handle the

situation.)

These strategies are discussed in the following sections.

Ignoring the Problem

Simply ignoring a potential problem is a recipe for

disaster. And if you are going to ignore the problem, why

bother detecting it in the first place? It is obvious that

you should not ignore any known problem. The primary

directive for all applications is that the application

should never crash. If you do not handle your errors, the

application will eventually terminate ungracefully or

continue in a mode that can be considered an unstable

state—possibly with corrupted data. In the latter case,

you might not even know you are getting incorrect

results, and that can be much worse than a program

crash.

Checking for Problems and Aborting the
Application

If you choose to check for potential problems and abort

the application when a problem is detected, the

application can display a message indicating that a

problem exists. In this case the application gracefully

exits, and the user is left staring at the computer screen,

shaking her head and wondering what just happened.

Although this is a far superior option to ignoring the

problem, it is by no means optimal. However, this does

allow the system to clean up things and put itself in a

more stable state, such as closing files and forcing a

system restart.

Checking for Problems and Attempting to Recover

Checking for potential problems, catching the mistake,

and attempting to recover is a far superior solution than

simply checking for problems and aborting. In this case,

the problem is detected by the code, and the application

attempts to fix itself. This works well in certain

situations. For example, consider the following code:

if (a == 0)
 a=1;

c = b/a;

It is obvious that if the conditional statement is not

included in the code, and a zero makes its way to the

divide statement, you will get a system exception because

you cannot divide by zero. By catching the exception and

setting the variable a to 1, at least the system will not

crash. However, setting a to 1 might not be a proper

solution because the result would be incorrect. The

better solution would be to prompt the user to reenter

the proper input value.

A Mix of Error-Handling Techniques

Despite the fact that this type of error handling is not necessarily object-
oriented in nature, I believe that it has a valid place in OO design. Throwing an
exception (discussed inthe next section) can be expensive in terms of
overhead. Thus, although exceptions may be a valid design choice, you will still
want to consider other error-handling techniques (even tried-and-true
structured techniques), depending on your design and performance needs.

Although the error checking techniques mentioned

previously are preferable to doing nothing, they still have

a few problems. It is not always easy to determine where

a problem first appears. And it might take a while for the

problem to be detected. In any event, it is beyond the

scope of this book to explain error handling in great

detail. However, it is important to design error handling

into the class right from the start, and often the

operating system itself can alert you to problems that it

detects.

Throwing an Exception

Most OO languages provide a feature called exceptions.

In the most basic sense, exceptions are unexpected

events that occur within a system. Exceptions provide a

way to detect problems and then handle them. In Java,

C#, C++, Swift, and Visual Basic, exceptions are handled

by the keywords catch and throw. This might sound

like a baseball game, but the key concept here is that a

specific block of code is written to handle a specific

exception. This solves the problem of trying to figure out

where the problem started and unwinding the code to

the proper point.

Here is the structure for a Java try/catch block:

try {

 // possible nasty code

} catch(Exception e) {

 // code to handle the exception
}

If an exception is thrown within the try block, the

catch block will handle it. When an exception is thrown

while the block is executing, the following occurs:

1. The execution of the try block is terminated.

2. The catch clauses are checked to determine whether an

appropriate catch block for the offending exception was included.

(There might be more than one catch clause per try block.)

3. If none of the catch clauses handles the offending exception, it is

passed to the next higher-level try block. (If the exception is not

caught in the code, the system ultimately catches it, and the results

are unpredictable—that is, an application crash.)

4. If a catch clause is matched (the first match encountered), the

statements in the catch clause are executed.

5. Execution then resumes with the statement following the try

block.

Suffice it to say that exceptions are an important

advantage for OO programming languages. Here is an

example of how an exception is caught in Java:

Click here to view code image

try {

 // possible nasty code
 count = 0;
 count = 5/count;

} catch(ArithmeticException e) {

clbr://internal.invalid/book/OEBPS/Images/ch03_images.xhtml#p56pro01

 // code to handle the exception
 System.out.println(e.getMessage());
 count = 1;

}
System.out.println("The exception is handled.");

Exception Granularity

You can catch exceptions at various levels of granularity. You can catch all
exceptions or check for specific exceptions, such as arithmetic exceptions. If
your code does not catch an exception, the Java runtime will—and it won't be
happy about it!

In this example, the division by zero (because count is

equal to 0) within the try block will cause an arithmetic

exception. If the exception was generated (thrown)

outside a try block, the program would most likely have

been terminated (crashed). However, because the

exception was thrown within a try block, the catch

block is checked to see whether the specific exception (in

this case, an arithmetic exception) was planned for.

Because the catch block contains a check for the

arithmetic exception, the code within the catch block is

executed, thus setting count to 1. After the catch block

executes, the try/catch block is exited, and the

message The exception is handled. appears on

the Java console. The logical flow of this process is

illustrated in Figure 3.5.

Figure 3.5 Catching an exception.

If you had not put ArithmeticException in the

catch block, the program would likely have crashed.

You can catch all exceptions by using the following code:

try {

 // possible nasty code

} catch(Exception e) {

 // code to handle the exception
}

The Exception parameter in the catch block is used to

catch any exception that might be generated within the

scope of a try block.

Bulletproof Code

It's a good idea to use a combination of the methods described here to make
your program as bulletproof to your user as possible.

THE IMPORTANCE OF SCOPE

Multiple objects can be instantiated from a single class.

Each of these objects has a unique identity and state.

This is an important point. Each object is constructed

separately and is allocated its own separate memory.

However, some attributes and methods may, if properly

declared, be shared by all the objects instantiated from

the same class, thus sharing the memory allocated for

these class attributes and methods.

A Shared Method

A constructor is a good example of a method that is shared by all instances of
aclass.

Methods represent the behaviors of an object; the state

of the object is represented by attributes. There are three

types of attributes:

Local attributes

Object attributes

Class attributes

Local Attributes

Local attributes are owned by a specific method.

Consider the following code:

public class Number {

 public method1() {
 int count;

 }

 public method2() {

 }

}

The method method1 contains a local variable called

count. This integer is accessible only inside method1.

The method method2 has no idea that the integer count

even exists.

At this point, we introduce a very important concept:

scope. Attributes (and methods) exist within a particular

scope. In this case, the integer count exists within the

scope of method1. In Java, C#, C++, and Swift, scope is

delineated by curly braces ({}). In the Number class,

there are several possible scopes—just start matching the

curly braces.

The class itself has its own scope. Each instance of the

class (that is, each object) has its own scope. Both

method1 and method2 have their own scopes as well.

Because count lives within method1’s curly braces,

when method1 is invoked, a copy of count is created.

When method1 terminates, the copy of count is

removed.

For some more fun, look at this code:

public class Number {

 public method1() {
 int count;
 }

 public method2() {
 int count;
 }

}

This example has two copies of an integer count in this

class. Remember that method1 and method2 each has

its own scope. Thus, the compiler can tell which copy of

count to access simply by recognizing which method it

is in. You can think of it in these terms:

method1.count;

method2.count;

As far as the compiler is concerned, the two attributes

are easily differentiated, even though they have the same

name. It is almost like two people having the same last

name, but based on the context of their first names, you

know that they are two separate individuals.

Object Attributes

In many design situations, an attribute must be shared

by several methods within the same object. In Figure 3.6,

for example, three objects have been constructed from a

single class. Consider the following code:

Click here to view code image

public class Number {

 int count; // available to both method1
and method2

 public method1() {
 count = 1;
 }

 public method2() {
 count = 2;
 }

}

Figure 3.6 Object attributes.

clbr://internal.invalid/book/OEBPS/Images/ch03_images.xhtml#p59pro01

Note here that the class attribute count is declared

outside the scope of both method1 and method2.

However, it is within the scope of the class. Thus, count

is available to both method1 and method2. (Basically,

all methods in the class have access to this attribute.)

Notice that the code for both methods is setting count

to a specific value. There is only one copy of count for

the entire object, so both assignments operate on the

same copy in memory. However, this copy of count is

not shared between different objects.

To illustrate, let’s create three copies of the Number

class:

Number number1 = new Number();
Number number2 = new Number();
Number number3 = new Number();

Each of these objects—number1, number2, and

number3—is constructed separately and is allocated its

own resources. There are three separate instances of the

integer count. When number1 changes its attribute

count, this in no way affects the copy of count in object

number2 or object number3. In this case, integer count

is an object attribute.

You can play some interesting games with scope.

Consider the following code:

Click here to view code image

public class Number {

 int count;

 public method1() {
 int count;
 }

 public method2() {

clbr://internal.invalid/book/OEBPS/Images/ch03_images.xhtml#p60pro01

 int count;
 }

}

In this case, three totally separate memory locations have

the name of count for each object. The object owns one

copy, and method1() and method2() each have their

own copy.

To access the object variable from within one of the

methods, say method1(), you can use a pointer called

this in the C-based languages:

public method1() {
 int count;

 this.count = 1;
}

Notice that some code looks a bit curious:

this.count = 1;

The selection of the word this as a keyword is perhaps

unfortunate. However, we must live with it. The use of

the this keyword directs the compiler to access the

object variable count and not the local variables within

the method bodies.

Note

The keyword this is a reference to the current object.

Class Attributes

As mentioned earlier, it is possible for two or more

objects of the same class to share attributes. In Java, C#,

C++, and Swift, you do this by making the attribute

static:

public class Number {

 static int count;

 public method1() {
 }

}

By declaring count as static, this attribute is allocated a

single piece of memory for all objects instantiated from

the class. Thus, all objects of the class use the same

memory location for count. Essentially, each class has a

single copy, which is shared by all objects of that class

(see Figure 3.7). This is about as close to global data as

we get in OO design.

Figure 3.7 Class attributes.

There are many valid uses for class attributes; however,

you must be aware of potential synchronization

problems. Let’s instantiate two Count objects:

Count Count1 = new Count();
Count Count2 = new Count();

For the sake of argument, let’s say that the object

Count1 is going merrily about its way and is using

count as a means of keeping track of the pixels on a

computer screen. This is not a problem until the object

Count2 decides to use attribute count to keep track of

sheep. The instant that Count2 records its first sheep,

the data that Count1 was saving is lost. In practice,

there might not be a lot of uses for static methods. Make

sure you are confident in their use before incorporating

them in designs.

OPERATOR OVERLOADING

Some OO languages enable you to overload an operator.

C++ is an example of one such language. Operator

overloading enables you to change the meaning of an

operator. For example, when most people see a plus sign,

they assume it represents addition. If you see the

equation

X = 5 + 6;

you expect that X would contain the value 11. And in this

case, you would be correct.

However, at times a plus sign could represent something

else. For example, in the following code:

String firstName = "Joe", lastName = "Smith";

String Name = firstName + " " + lastName;

You would expect that Name would contain Joe Smith.

The plus sign here has been overloaded to perform string

concatenation.

String Concatenation

String concatenation occurs when two separate strings are combined to create
a new, single string.

In the context of strings, the plus sign does not mean

addition of integers or floats but concatenation of

strings.

What about matrix addition? You could have code like

this:

Matrix a, b, c;

c = a + b;

Thus, the plus sign now performs matrix addition, not

addition of integers or floats.

Overloading is a powerful mechanism. However, it can

be downright confusing for people who read and

maintain code. In fact, developers can confuse

themselves. To take this to an extreme, it would be

possible to change the operation of addition to perform

subtraction. Why not? Operator overloading allows you

to change the meaning of an operator. Thus, if the plus

sign were changed to perform subtraction, the following

code would result in an X value of —1.

x = 5 + 6;

OO languages such as Java and .NET do not allow

operator overloading.

Although these languages do not allow the option of

overloading operators, the languages themselves do

overload the plus sign for string concatenation, but that’s

about it. The designers of Java must have decided that

operator overloading was more of a problem than it was

worth. If you must use operator overloading in C++, take

care by documenting and commenting properly so the

people who will use the class are not confused.

MULTIPLE INHERITANCE

We cover inheritance in much more detail in Chapter 7,

“Mastering Inheritance and Composition.” However, this

is a good place to begin discussing multiple inheritance,

which is one of the more powerful and challenging

aspects of class design.

As the name implies, multiple inheritance allows a class

to inherit from more than one class. In practice, this

seems like a great idea. Objects are supposed to model

the real world, are they not? And many real-world

examples of multiple inheritance exist. Parents are a

good example of multiple inheritance. Each child has two

parents—that’s just the way it is. So it makes sense that

you can design classes by using multiple inheritance. In

some OO languages, such as C++, you can.

However, this situation falls into a category similar to

operator overloading. Multiple inheritance is a very

powerful technique, and in fact, some problems are quite

difficult to solve without it. Multiple inheritance can even

solve some problems quite elegantly. However, multiple

inheritance can significantly increase the complexity of a

system, both for the programmer and the compiler

writers.

The designers of Java, .NET, and Swift decided that the

increased complexity of allowing multiple inheritance far

outweighed its advantages, so they simply did not

implement it. In some ways, Java, .NET, and Swift

compensate for this; however, the bottom line is that

Java, .NET, and Swift do not allow conventional multiple

inheritance.

The modern concept of inheritance is that you can only

inherit attributes from a single parent (single

inheritance). Even though you can use multiple

interfaces or protocols, this is not truly multiple

inheritance.

Behavioral and Implementation Inheritance

Interfaces are a mechanism for behavioral inheritance, whereas abstract
classes are used for implementation inheritance. The bottom line is that
interface language constructs provide behavioral interfaces but no
implementation, whereas abstract classes may provide both interfaces and

implementation. This topic is covered in great detail in Chapter 8, “Frameworks
and Reuse: Designing with Interfaces and Abstract Classes.”

OBJECT OPERATIONS

Some of the most basic operations in programming

become more complicated when you’re dealing with

complex data structures and objects. For example, when

you want to copy or compare primitive data types, the

process is quite straightforward. However, copying and

comparing objects is not quite as simple. In his book

Effective C++, Scott Meyers devotes an entire section to

copying and assigning objects.

Classes and References

The problem with complex data structures and objects is that they might
contain references. Simply making a copy of the reference does not copy the
data structures or the object that it references. In the same vein, when
comparing objects, simply comparing a pointer to another pointer only
compares the references—not what they point to.

The problems arise when comparisons and copies are

performed on objects. Specifically, the question boils

down to whether you follow the pointers. Regardless,

there should be a way to copy an object. Again, this is not

as simple as it might seem. Because objects can contain

references, these reference trees must be followed to do a

valid copy (if you truly want to do a deep copy).

Deep Versus Shallow Copies

A deep copy occurs when all the references are followed and new copies are
created for all referenced objects. Many levels might be involved in a deep
copy. For objects with references to many objects, which in turn might have
references to even more objects, the copy itself can create significant
overhead. A shallow copy would simply copy the reference and not follow the
levels. Gilbert and McCarty have a good discussion about what shallow and
deep hierarchies are in Object-Oriented Design in Java in a section called
“Prefer a Tree to a Forest.”

To illustrate, in Figure 3.8, if you do a simple copy of the

object (called a bitwise copy), only the references are

copied—not any of the actual objects. Thus, both objects

(the original and the copy) will reference (point to) the

same objects. To perform a complete copy, in which all

reference objects are copied, you must write code to

create all the subobjects.

Figure 3.8 Following object references.

This problem also manifests itself when comparing

objects. As with the copy function, this is not as simple as

it might seem. Because objects contain references, these

reference trees must be followed to do a valid

comparison of objects. In most cases, languages provide

a default mechanism to compare objects. As is usually

the case, do not count on the default mechanism. When

designing a class, you should consider providing a

comparison function in your class that you know will

behave as you want it to.

CONCLUSION

This chapter covered a number of advanced OO concepts

that, although perhaps not vital to a general

understanding of OO concepts, are quite necessary in

higher-level OO tasks, such as designing a class. In

Chapter 4, “The Anatomy of a Class,” we start looking

specifically at how to design and build a class.

REFERENCES

Gilbert, Stephen, and Bill McCarty. 1998. Object-

Oriented Design in Java. Berkeley, CA: The Waite Group

Press.

Meyers, Scott. 2005. Effective C++, Third Edition.

Boston, MA: Addison-Wesley Professional.

Tyma, Paul, Gabriel Torok, and Troy Downing. 1996.

Java Primer Plus. Berkeley, CA: The Waite Group.

4. The Anatomy of a Class
In previous chapters we have covered the fundamental

object-oriented (OO) concepts and determined the

difference between the interface and the

implementation. No matter how well you think out the

problem of what should be part of the interface and what

should be part of the implementation, the bottom line

always comes down to how useful the class is and how it

interacts with other classes. A class should never be

designed in a vacuum, for as might be said, no class is an

island. When objects are instantiated, they almost always

interact with other objects. An object can also be part of

another object or be part of an inheritance hierarchy.

This chapter examines a simple class and then takes it

apart piece by piece along with guidelines that you

should consider when designing classes. We will

continue using the cabbie example presented in Chapter

2, “How to Think in Terms of Objects.”

Each of the following sections covers a particular aspect

of a class. Although not all components are necessary in

every class, it is important to understand how a class is

designed and constructed.

note

This example class is meant for illustration purposes only. Some of the
methods are not fleshed out (meaning that there is no implementation) and
simply present the interface—primarily to emphasize that the interface is the
focus of the initial design.

THE NAME OF THE CLASS

The name of the class is important for several reasons.

The obvious reason is to identify the class itself. Beyond

simple identification, the name must be descriptive. The

choice of a name is important because it provides

information about what the class does and how it

interacts within larger systems.

The name is also important when considering language

constraints. For example, in Java, the public class name

must be the same as the filename. If these names do not

match, the application won’t compile.

Figure 4.1 shows the class that will be examined. Plain

and simple, the name of the class in our example,

Cabbie, is the name located after the keyword class:

public class Cabbie {

}

Figure 4.1 Our sample class.

Using Java Syntax

Remember that the convention for this book is to use Java syntax. The syntax
will be similar but, perhaps, somewhat different in other languages.

The class Cabbie name is used whenever this class is

instantiated.

COMMENTS

Regardless of the syntax of the comments used, they are

vital to understanding the function of a class. In Java and

other languages, two kinds of comments are common.

The Extra Java and C# Comment Style

In Java and C#, there are three types of comments. In Java, the third comment
type (/** */) relates to a form of documentation that Java provides. We do not
cover this type of comment in this book. In C#, the syntax to create
documentation comments is ///, much like the /** */ Javadoc documentation
comments.

The first comment is the old C-style comment, which

uses/* (slash-asterisk) to open the comment and */

(asterisk-slash) to close the comment. This type of

comment can span more than one line, and it’s

important not to forget to use the pair of open and close

comment symbols for each comment. If you miss the

closing comment (*/), some of your code might be

tagged as a comment and ignored by the compiler. Here

is an example of this type of comment used with the

Cabbie class:

Click here to view code image

/*

 This class defines a cabbie and assigns a cab

clbr://internal.invalid/book/OEBPS/Images/ch04_images.xhtml#p69pro01

*/

The second type of comment is the // (slash-slash),

which renders everything after it, to the end of the line, a

comment. This type of comment spans only one line, so

you don’t need to remember to use a close comment

symbol, but you do need to remember to confine the

comment to just one line and not include any live code

after the comment. Here is an example of this type of

comment used with the Cabbie class:

// Name of the cabbie

ATTRIBUTES

Attributes represent the state of the object because they

store the information about the object. For our example,

the Cabbie class has attributes that store the name of

the company, the name of the cabbie, and the cab

assigned to the cabbie. For example, the first attribute

stores the name of the company:

Click here to view code image

private static String companyName = "Blue Cab
Company";

Note here the two keywords private and static. The

keyword private signifies that a method or variable

can be accessed only within the declaring object.

Hiding as Much Data as Possible

All the attributes in this example are private. This is in keeping with the design
principle of keeping the interface design as minimal as possible. The only way
to access these attributes is through the method interfaces provided (which we
explore later in this chapter).

clbr://internal.invalid/book/OEBPS/Images/ch04_images.xhtml#p69pro02

The static keyword signifies that there will be only one

copy of this attribute for all the objects instantiated by

this class. Basically, this is a class attribute. (See Chapter

3, “More Object-Oriented Concepts,” for further

discussion on class attributes.) Thus, even if 500 objects

are instantiated from the Cabbie class, only one copy

will be in memory of the companyName attribute (see

Figure 4.2).

Figure 4.2 Object memory allocation.

The second attribute, name, is a string that stores the

name of the cabbie:

private String name;

This attribute is also private so that other objects cannot

access it directly. They must use the interface methods.

The myCab attribute is a reference to another object. The

class, called Cab, holds information about the cab, such

as its serial number and maintenance records:

private Cab myCab;

Passing a Reference

It is likely that the Cab object was created by another object. Thus, the object
reference would be passed to the Cabbie object. However, for the sake of this
example, the Cab is created within the Cabbie object. As a result, we are not
really interested in the internals of the Cab object.

Note that at this point, only a reference to a Cab object is

created; there is no memory allocated by this definition.

CONSTRUCTORS

This Cabbie class contains two constructors. We know

they are constructors because they have the same name

as the class: Cabbie. The first constructor is the default

constructor:

public Cabbie() {

 name = null;
 myCab = null;

}

Technically, this is not a default constructor provided by

the system. Recall that the compiler will provide an

empty default constructor if you do not code any

constructor for a class. By definition, the reason it is

called a default constructor here is because it is a

constructor with no arguments, which, in effect,

overrides the compiler’s default constructor.

If you provide a constructor with arguments, the system

will not provide a default constructor. Although this can

seem complicated, the rule is that the compiler’s default

constructor is included only if you provide no

constructors in your code.

No Constructor

Coding no constructor and allowing the default constructor to be in play can
cause maintenance headaches down the road. If the code relies on a default
constructor, and another constructor is added later, the default constructor will
not be included by the system.

In this constructor, the attributes name and myCab are

set to null:

name = null;
myCab = null;

The Nothingness of Null

In many programming languages, the value null represents a value of
nothing. This might seem like an esoteric concept, but setting an attribute to
nothing is a useful programming tech-nique. Checking a variable for null can
identify whether a value has been properly initialized. For example, you might
want to declare an attribute that will later require user input. Thus, you can
initialize the attribute to null before the user is given the opportunity to enter the
data. By setting the attribute to null (which is a valid condition), you can
check whether an attribute has been properly set. Note that in some languages
this is not allowed with the string type. In .NET for example, it is required to use
name = string.empty;.

As we know, it is always a good coding practice to

initialize attributes in the constructors. In the same vein,

it’s a good programming practice to then test the value of

an attribute to see whether it is null. This can save you

a lot of headaches later if the attribute or object was not

set properly. For example, if you use the myCab reference

before a real object is assigned to it, you will most likely

have a problem. If you set the myCab reference to null

in the constructor, you can later check to see whether

myCab is still null when you attempt to use it. An

exception might be generated if you treat an uninitialized

reference as if it were properly initialized.

Consider another example: If you have an Employee

class that includes a spouse attribute (perhaps for

insurance purposes), you’d better make provisions for

the situation when an employee is not married. By

initially setting the attribute to null, you can then check

for this status.

The second constructor provides a way for the user of the

class to initialize the Name and myCab attributes:

Click here to view code image

public Cabbie(String iName, String serialNumber)
{

 name = iName;
 myCab = new Cab(serialNumber);

}

In this case, the user would provide two strings in the

parameter list of the constructor to properly initialize

attributes. Notice that the myCab object is instantiated in

this constructor:

myCab = new Cab(serialNumber);

As a result of executing this line of code, the storage for a

Cab object is allocated. Figure 4.3 illustrates how a new

instance of a Cab object is referenced by the attribute

myCab. Using two constructors in this example

demonstrates a common use of method overloading.

Notice that the constructors are all defined as public.

This makes sense because in this case, the constructors

are obvious members of the class interface. If the

constructors were private, other objects couldn’t access

clbr://internal.invalid/book/OEBPS/Images/ch04_images.xhtml#p72pro01

them—thus, other objects could not instantiate a Cab

object.

Figure 4.3 The Cabbie object referencing a cab object.

Multiple Constructors

It's worth noting that it is sometimes considered a less than ideal practice to
use more than one constructor nowadays. With the prevalence of Inversion of
Control (IoC) containers and the like, it's frowned upon, and even unsupported,
for a number of frameworks without special configuration.

ACCESSORS

In most, if not all, examples in this book, the attributes

are defined as private so that any other objects cannot

access the attributes directly. It would be ridiculous to

create an object in isolation that does not interact with

other objects—for we want to share appropriate

information. That said, isn’t it sometimes necessary to

inspect and, perhaps, change another class’s attribute?

The answer is, of course, yes. There are many times when

an object needs to access another object’s attributes;

however, it does not need to do it directly.

A class should be very protective of its attributes. For

example, you do not want object A to have the capability

to inspect or change the attributes of object B without

object B having control. There are several reasons for

this; the most important reasons boil down to data

integrity and efficient debugging.

Assume that a bug exists in the Cab class. You have

tracked the problem to the Name attribute. Somehow it is

getting overwritten, and garbage is turning up in some

name queries. If Name were public and any class could

change it, you would have to go searching through all the

possible code, trying to find places that reference and

change Name. However, if you let only a Cabbie object

change Name, you’d have to look only in a method of the

Cabbie class. This access is provided by a type of

method called an accessor. Sometimes accessors are

referred to as getters and setters, and sometimes they’re

simply called get() and set(). By convention, in this

book we name the methods with the set and get

prefixes, as in the following:

// Set the Name of the Cabbie
public void setName(String iName) {
 name = iName;
}

// Get the Name of the Cabbie
public String getName() {
 return name;
}

In this code snippet, a Supervisor object must ask the

Cabbie object to return its name (see Figure 4.4). The

important point here is that the Supervisor object

can’t retrieve the information on its own; it must ask the

Cabbie object for the information. This concept is

important at many levels. For example, you might have a

setAge() method that checks to see whether the age

entered was 0 or below. If the age is less than 0, the

setAge() method can refuse to set this obviously

incorrect value. In general, the setters are used to ensure

a level of data integrity.

Figure 4.4 Asking for information.

This is also an issue of security. You may have sensitive

data, such as passwords or payroll information, that you

want to control access to. Thus, accessing data via getters

and setters provides the capability to use mechanisms

like password checks and other validation techniques.

This greatly increases the integrity of the data.

Objects

Actually, there isn't a physical copy of each nonstatic method for each object.
Each object would point to the same physical code. However, from a
conceptual level, you can think of objects as being wholly independent and
having their own attributes and methods.

The following code fragment illustrates how to define a

static method, and Figure 4.5 shows how more than one

object points to the same code.

Figure 4.5 Method memory allocation.

Static Attributes

If an attribute is static, and the class provides a setter for that attribute, any
object that invokes the setter will change the single copy. Thus, the value for
the attribute will change for all objects.

Click here to view code image

// Get the Name of the Cabbie
public static String getCompanyName() {
 return companyName;
}

Notice that the getCompanyName method is declared as

static, as a class method; class methods are described

in more detail in Chapter 3. Remember that the attribute

companyName is also declared as static. A method,

clbr://internal.invalid/book/OEBPS/Images/ch04_images.xhtml#p74pro01

like an attribute, can be declared static to indicate that

there is only one copy of the method for the entire class.

PUBLIC INTERFACE METHODS

Both the constructors and the accessor methods are

declared as public and are part of the public interface.

They are singled out because of their specific importance

to the construction of the class. However, much of the

real work is provided in other methods. As mentioned in

Chapter 2, the public interface methods tend to be very

abstract, and the implementation tends to be more

concrete. For this class, we provide a method called

giveDestination that is the public interface for the

user to describe where she wants to go:

public void giveDestination(){

}

What is inside this method is not important at this time.

The main point is that this is a public method, and it is

part of the public interface to the class.

PRIVATE IMPLEMENTATION METHODS

Although all the methods discussed so far in this chapter

are defined as public, not all the methods in a class are

part of the public interface. It is common for methods in

a class to be hidden from other classes. These methods

are declared as private:

private void turnRight(){
}

private void turnLeft() {
}

These private methods are meant to be part of the

implementation and not the public interface. You might

ask who invokes these methods, if no other class can. The

answer is simple: You might have already surmised that

these methods are called internally from the class itself.

For example, these methods could be called from within

the method giveDestination:

public void giveDestination(){

.. some code

 turnRight();
 turnLeft();

.. some more code

}

As another example, you may have an internal method

that provides encryption that you will use only from

within the class itself. In short, this encryption method

can’t be called from outside the instantiated object itself.

The point here is that private methods are strictly part of

the implementation and are not accessible by other

classes.

CONCLUSION

In this chapter we have gotten inside a class and

described the fundamental concepts necessary for

understanding how a class is built. Although this chapter

takes a practical approach to discussing classes, Chapter

5, “Class Design Guidelines,” covers the class from a

general design perspective.

REFERENCES

Fowler, Martin. 2003. UML Distilled, Third Edition.

Boston, MA: Addison-Wesley Professional.

Gilbert, Stephen, and Bill McCarty. 1998. Object-

Oriented Design in Java. Berkeley, CA: The Waite Group

Press.

Tyma, Paul, Gabriel Torok, and Troy Downing. 1996.

Java Primer Plus. Berkeley, CA: The Waite Group.

5. Class Design Guidelines
As we have already discussed, OO programming

supports the idea of creating classes that are complete

packages, encapsulating the data and behavior of a single

entity. So, a class should represent a logical component,

such as a taxicab.

This chapter presents several suggestions for designing

classes. Obviously, no list such as this can be considered

complete. You will undoubtedly add many guidelines to

your personal list and incorporate useful guidelines from

other developers.

MODELING REAL-WORLD SYSTEMS

One of the primary goals of object-oriented (OO)

programming is to model real-world systems in ways

similar to the ways in which people actually think.

Designing classes is the object-oriented way to create

these models. Rather than using a structured, or top-

down, approach, where data and behavior are logically

separate entities, the OO approach encapsulates the data

and behavior into objects that interact with each other.

We no longer think of a problem as a sequence of events

or routines operating on separate data files. The elegance

of this mindset is that classes literally model real-world

objects and how these objects interact with other real-

world objects.

These interactions occur in a way similar to the

interactions between real-world objects, such as people.

Thus, when creating classes, you should design them in a

way that represents the true behavior of the object. Let’s

use the cabbie example from previous chapters. The Cab

class and the Cabbie class model a real-world entity. As

illustrated in Figure 5.1, the Cab and the Cabbie objects

encapsulate their data and behavior, and they interact

through each other’s public interfaces.

Figure 5.1 A cabbie and a cab are real-world objects.

When OO programming was first becoming popular, it

was difficult for many structured programmers to make

the transition. One primary mistake structured

programmers made was to create a class that had

behavior but no class data, in effect creating a set of

functions or subroutines in the structured model. This

was not desirable because it didn’t take advantage of the

power of encapsulation.

This is only partially true now. Currently, much

development is done with anemic domain models, a.k.a.

data transfer objects (DTOs) and view models that have

just enough data to populate a view or just the right

amount of data that is needed by a consumer. Much

more focus has been placed on behaviors and operating

on the data, and that is handled via interfaces.

Encapsulating the behaviors into single-responsibility

interfaces and coding to the interfaces keeps code flexible

and modular and far easier to maintain.

Note

One of my favorite books pertaining to class design guidelines and suggestions
remains Effective C++: 50 Specific Ways to Improve Your Programs and

Designs, by Scott Meyers. It offers important information about program design
in a very concise manner.

One of the reasons why Effective C++ interests me so

much is that, because C++ is backward compatible with

C, you can write structured code in C++ without using

OO design principles. As I mentioned earlier, during

interviews, some people claim that they are OO

programmers simply because they program in C++. This

indicates a total misunderstanding of what OO design is

all about. Thus, you may have to pay more attention to

the OO design issues in languages such as C++ as

opposed to Java, Swift, or .NET.

IDENTIFYING THE PUBLIC

INTERFACES

It should be clear by now that perhaps the most

important issue when designing a class is to keep the

public interface to a minimum. The entire purpose of

building a class is to provide something useful and

concise. In their book Object-Oriented Design in Java,

Gilbert and McCarty state that “the interface of a well-

designed object describes the services that the client

wants accomplished.” If a class does not provide a useful

service to a user, it should not have been built in the first

place.

The Minimum Public Interface

Providing the minimum public interface makes the class

as concise as possible. The goal is to provide the user

with the exact interface to do the job right. If the public

interface is incomplete (that is, there is missing

behavior), the user will not be able to do the complete

job. If the public interface is not properly restricted (that

is, the user has access to behavior that is unnecessary or

even dangerous), problems can result in the need for

debugging, and even trouble with system integrity and

security can surface.

Creating a class is a business proposition, and as with all

steps in the design process, it is very important that the

users are involved with the design right from the start

and throughout the testing phase. In this way, the utility

of the class, as well as the proper interfaces, will be

assured.

Extending the Interface

Even if the public interface of a class is insufficient for a certain application,
object technology easily allows the capability to extend and adapt this
interface. In short, if properly designed, a new class can utilize an existing
class and create a new class with an extended interface.

This is the point where, if you're adding behaviors, the developers should not
be using inheritance,

To illustrate, consider the cabbie example again. If other

objects in the system need to get the name of a cabbie,

the Cabbie class must provide a public interface to

return its name; this is the getName() method. Thus, if

a Supervisor object needs a name from a Cabbie

object, it must invoke the getName() method from the

Cabbie object. In effect, the supervisor is asking the

cabbie for its name (see Figure 5.2).

Figure 5.2 The public interface specifies how the objects interact.

Users of your code need to know nothing about its

internal workings. All they need to know is how to

instantiate and use the object. In short, provide users a

way to get there but hide the details.

Hiding the Implementation

The need for hiding the implementation has already been

covered in great detail. Whereas identifying the public

interface is a design issue that revolves around the users

of the class, the implementation should not involve the

users at all. The implementation must provide the

services that the user needs, but how these services are

actually performed should not be made apparent to the

user. A class is most useful if the implementation can

change without affecting the users. Basically, a change to

the implementation should not necessitate a change in

the user’s application code. Again, the best way to enable

change of behaviors is via the use of interfaces and

composition.

Customer Versus User

Sometimes I use the term customer rather than user when referring to the
people who will actually be using the software. Users of the system may, in
fact, be customers. In the same vein, users who are part of your organization
can be called internal customers. This may seem like a trivial point, but I think it
is important to think of all end users as actual customers—and you must satisfy
their requirements.

In the cabbie example, the Cabbie class might contain

behavior pertaining to how, or where, he eats lunch.

However, the cabbie’s supervisor does not need to know

what the cabbie has for lunch. Thus, this behavior is part

of the implementation of the Cabbie object and should

not be available to other objects in this system (see

Figure 5.3). Gilbert and McCarty state that the prime

directive of encapsulation is that “all fields shall be

private.” In this way, none of the fields in a class are

accessible from other objects.

Figure 5.3 Objects don’t need to know some implementation details.

DESIGNING ROBUST CONSTRUCTORS

(AND PERHAPS DESTRUCTORS)

When designing a class, one of the most important

design issues involves how the class will be constructed.

Constructors are discussed in Chapter 3, “More Object-

Oriented Concepts.” Revisit this discussion if you need a

refresher on guidelines for designing constructors.

First and foremost, a constructor should put an object

into an initial, safe state. This includes issues such as

attribute initialization and memory management. You

also need to make sure the object is constructed properly

in the default condition. It is normally a good idea to

provide a constructor to handle this default situation.

In languages that include destructors, it is of vital

importance that the destructors include proper clean-up

functions. In most cases, this clean-up pertains to

releasing system memory that the object acquired at

some point. Java and .NET reclaim memory

automatically via a garbage collection mechanism. In

languages such as C++, the developer must include code

in the destructor to properly free up the memory that the

object acquired during its existence. If this function is

ignored, a memory leak will result.

Constructor Injection

This is a good point at which to introduce the concept of constructor injection,
where service classes are injected on object creation (via a constructor)
instead of within the class (using the new keyword). For example, the cabbie
can get his license object, his radio information object (frequency, call sign,
etc.), and the key that starts his cab passes into the object via a constructor.

Memory Leaks

When an object fails to properly release the memory that it acquired during an
object's life cycle, the memory is lost to the entire operating system as long as
the application that created the object is executing. For example, suppose
multiple objects of the same class are created and then destroyed, perhaps in
some sort of loop. If these objects fail to release their memory when they go
out of scope, this memory leak slowly depletes the available pool of system
memory. At some point, it is possible that enough memory will be consumed
that the system will have no available memory left to allocate. This means that
any application executing in the system would be unable to acquire any
memory. This could put the application in an unsafe state and even lock up the
system.

DESIGNING ERROR HANDLING INTO A

CLASS

As with the design of constructors, designing how a class

handles errors is of vital importance. Error handling is

discussed in detail in Chapter 3.

It is virtually certain that every system will encounter

unforeseen problems. Thus, it is not a good idea to

ignore potential errors. The developer of a good class (or

any code, for that matter) anticipates potential errors

and includes code to handle these conditions when they

are encountered.

The general rule is that the application should never

crash. When an error is encountered, the system should

either fix itself and continue, or at minimum, exit

gracefully without losing any data that’s important to the

user.

Documenting a Class and Using Comments

The topic of comments and documentation comes up in

most programming books and articles, in every code

review, and in every discussion you have about good

design. Unfortunately, comments and good

documentation are often not taken seriously, or even

worse, they are ignored.

Most developers know that they should thoroughly

document their code, but they don’t usually want to take

the time to do it. However, a good design is practically

impossible without good documentation practices. At the

class level, the scope might be small enough that a

developer can get away with shoddy documentation.

However, when the class gets passed to someone else to

extend and/or maintain, or it becomes part of a larger

system (which is what should happen), a lack of proper

documentation and comments can undermine the entire

system.

Many people have said all this before. One of the most

crucial aspects of a good design, whether it’s a design for

a class or something else, is to carefully document the

process. Implementations such as Java and .NET provide

special comment syntax to facilitate the documentation

process. Check out Chapter 4, “The Anatomy of a Class,”

for the appropriate syntax.

Too Much Documentation

Be aware that over-commenting can be a problem as well. Too much
documentation and/or commenting can become background noise and may
actually defeat the purpose of the documentation. Just like in good class
design, make the documentation and comments straightforward and to the
point. Well-written code is, in itself, the best documentation.

Building Objects with the Intent to Cooperate

We can safely say that almost no class lives in isolation.

In most cases, there is little reason to build a class if it is

not going to interact with other classes, unless the class

will be used only once. This is a fact in the life of a class.

A class will service other classes; it will request the

services of other classes, or both. In later chapters we

discuss various ways that classes interact with each

other.

In the cabbie example, the cabbie and the supervisor are

not standalone entities; they interact with each other at

various levels (see Figure 5.4).

Figure 5.4 Objects should request information.

When designing a class, make sure you are aware of how

other objects will interact with it.

DESIGNING WITH REUSE IN MIND

Objects can be reused in different systems, and code

should be written with reuse in mind. For example, when

a Cabbie class is developed and tested, it can be used

anywhere you need a cabbie. To make a class usable in

various systems, the class must be designed with reuse in

mind. This is where much of the thought is required in

the design process. Attempting to predict all the possible

scenarios in which a Cabbie object must operate is not a

trivial task—in fact, it is virtually impossible.

DESIGNING WITH EXTENSIBILITY IN

MIND

Adding new features to a class might be as simple as

extending an existing class, adding a few new methods,

and modifying the behavior of others. It is not necessary

to rewrite everything. This is where inheritance comes

into play. If you have just written a Person class, you

must consider the fact that you might later want to write

an Employee class or a Customer class. Thus, having

Employee inherit from Person might be the best

strategy; in this case, the Person class is said to be

extensible. You do not want to design Person so that it

contains behavior that prevents it from being extended

by classes such as Employee or Customer (assuming

that in your design you really intend for other classes to

extend Person). For example, you would not want to

code functionality into an Employee class that is specific

to supervisory functions. If you did, and then a class that

does not require supervisory functionality inherited from

Employee, you would have a problem.

This point touches on the abstraction guideline discussed

earlier. Person should contain only the data and

behaviors that are specific to a person. Other classes can

then subclass it and inherit appropriate data and

behaviors.

As we will cover in the SOLID discussion in Chapter 11,

“Avoiding Dependencies and Highly Coupled Classes,”

and Chapter 12, “The SOLID Principles of Object-

Oriented Design,” classes should be open for extension

but closed for modification. By using interfaces first and

coding to them, you can use all sorts of patterns like

Decorator to extend things without touching the code

that’s been tested and deployed live, for example.

What Attributes and Methods Can Be Static?

Static methods promote strong coupling to classes. You cannot abstract a
static method. You cannot mock a static method or static class. You cannot
provide a static interface. The only time it is reasonable to use static classes
(within application development—framework development is a bit different) is if
you're working with some sort of helper class or extension method that does
not produce side effects. For example, a static class to add numbers is fine. A
static class that interacts with a database or a web service is not.

Making Names Descriptive

Earlier we discussed the use of proper documentation

and comments. Following a naming convention for your

classes, attributes, and methods is a similar subject.

There are many naming conventions, and the convention

you choose is not as important as choosing one and

sticking to it. However, when you choose a convention,

make sure that when you create classes, attributes, and

method names, you not only follow the convention but

also make the names descriptive. When someone reads

the name, he should be able to tell from the name what

the object represents. These naming conventions are

often dictated by the coding standards at various

organizations.

Good Naming

Make sure that a naming convention makes sense. Often, people go overboard
and create con-ventions that might make sense to them but are totally
incomprehensible to others. Take care when forcing others to conform to a
convention. Make sure that the conventions are sensible and that everyone
involved understands the intent behind them. Make variables descriptive of
their use, not encoded based on their type.

Making names descriptive is a good development

practice that transcends the various development

paradigms.

Abstracting Out Nonportable Code

If you are designing a system that must use nonportable

(native) code (that is, the code will run only on a specific

hardware platform), you should abstract this code out of

the class. By abstracting out, we mean isolating the

nonportable code in its own class or at least its own

method (a method that can be overridden). For example,

if you are writing code to access a serial port of particular

hardware, you should create a wrapper class to deal with

it. Your class should then send a message to the wrapper

class to get the information or services it needs. Do not

put the system-dependent code into your primary class

(see Figure 5.5).

Figure 5.5 A serial port wrapper.

For example, consider the situation when a programmer

is interfacing directly with hardware. In these cases, the

object code of the various platforms will most likely be

quite different, and thus code must be written for each

platform. However, if the functionality is placed in a

wrapper class, then a user of the class can interface

directly with the wrapper and not have to worry about

the various low-level code. The wrapper class will deal

with the differences in these platforms and decide which

code to invoke.

Providing a Way to Copy and Compare Objects

Chapter 3 discussed the issue of copying and comparing

objects. It is important to understand how objects are

copied and compared. You might not want, or expect, a

simple bitwise copy or compare operation. You must

make sure that your class behaves as expected, and this

means you have to spend some time designing how

objects are copied and compared.

Keeping the Scope as Small as Possible

Keeping the scope as small as possible goes hand-in-

hand with abstraction and hiding the implementation.

The idea is to localize attributes and behaviors as much

as possible. In this way, maintaining, testing, and

extending a class are much easier. Using interfaces is a

great way to enforce this.

Scope and Global Data

Minimizing the scope of global variables is a good programming style and is
not specific to OO programming. Global variables are allowed in structured
development, yet they can get dicey. In fact, there is no global data in OO
development. Static attributes and methods are shared among objects of the
same class; however, they are not available to objects not of the class. You
could also share data via a file or database.

For example, if you have a method that requires a

temporary attribute, keep it local. Consider the following

code:

Click here to view code image

public class Math {

 int temp=0;

 public int swap (int a, int b) {

clbr://internal.invalid/book/OEBPS/Images/ch05_images.xhtml#p85pro01

 temp = a;
 a=b;
 b=temp;

 return temp;

 }

}

What is wrong with this class? The problem is that the

attribute temp is needed only within the scope of the

swap() method. There is no reason for it to be at the

class level. Thus, you should move temp within the scope

of the swap() method:

Click here to view code image

public class Math {

 public int swap (int a, int b) {

 int temp=0;

 temp = a;
 a=b;
 b=temp;

 return temp;

 }

}

This is what is meant by keeping the scope as small as

possible].

DESIGNING WITH MAINTAINABILITY

IN MIND

Designing useful and concise classes promotes a high

level of maintainability. Just as you design a class with

clbr://internal.invalid/book/OEBPS/Images/ch05_images.xhtml#p85pro02

extensibility in mind, you should also design with future

maintenance in mind.

The process of designing classes forces you to organize

your code into many (ideally) manageable pieces.

Separate pieces of code tend to be more maintainable

than larger pieces of code (at least that’s the idea). One of

the best ways to promote maintainability is to reduce

interdependent code—that is, changes in one class have

no impact or minimal impact on other classes.

Highly Coupled Classes

Classes that are highly dependent on one another are considered highly
coupled. Thus, if a change made to one class forces a change to another
class, these two classes are considered highly coupled. Classes that have no
such dependencies have a very low degree of coupling. For more information
on this topic, refer to The Object Primer, by Scott Ambler.

If the classes are designed properly in the first place, any

changes to the system should be made only to the

implementation of an object. Changes to the public

interface should be avoided at all costs. Any changes to

the public interface will cause ripple effects throughout

all the systems that use the interface.

For example, if a change were made to the getName()

method of the Cabbie class, every single place in all

systems that use this interface must be changed and

recompiled. Finding all these method calls is a daunting

task, and the likelihood of missing one is pretty high.

To promote a high level of maintainability, keep the

coupling level of your classes as low as possible.

Using Iteration in the Development Process

As in most design and programming functions, using an

iterative process is recommended. This dovetails well

with the concept of providing minimal interfaces.

Basically, this means don’t write all the code at once!

Create the code in small increments and then build and

test it at each step. A good testing plan quickly uncovers

any areas where insufficient interfaces are provided. In

this way, the process can iterate until the class has the

appropriate interfaces. This testing process is not simply

confined to coding. Testing the design with walkthroughs

and other design review techniques is very helpful.

Testers’ lives are more pleasant when iterative processes

are used, because they are involved in the process early

and are not simply handed a system that is thrown over

the wall at the end of the development process.

Testing the Interface

The minimal implementations of the interface are often

called stubs. (Gilbert and McCarty have a good

discussion on stubs in Object-Oriented Design in Java.)

By using stubs, you can test the interfaces without

writing any real code. In the following example, rather

than connecting to an actual database, stubs are used to

verify that the interfaces are working properly (from the

user’s perspective—remember that interfaces are meant

for the user). Thus, the implementation is not necessary

at this point. In fact, it might cost valuable time and

energy to complete the implementation yet because the

design of the interface will affect the implementation,

and the interface is not yet complete.

In Figure 5.6, note that when a user class sends a

message to the DataBaseReader class, the information

returned to the user class is provided by code stubs and

not by the actual database. (In fact, the database most

likely does not exist yet.) When the interface is complete

and the implementation is under development, the

database can then be connected and the stubs

disconnected.

Figure 5.6 Using stubs.

Here is a code example that uses an internal array to

simulate a working database (albeit a simple one):

Click here to view code image

public class DataBaseReader {

 private String db[] = {
"Record1","Record2","Record3","Record4","Record5"};
 private booleanDBOpen = false;
 private int pos;

 public void open(String Name){
 DBOpen = true;
 }

 public void close(){
 DBOpen = false;
 }

 public void goToFirst(){
 pos = 0;
 }

 public void goToLast(){

clbr://internal.invalid/book/OEBPS/Images/ch05_images.xhtml#p87pro01

 pos = 4;
 }

 public int howManyRecords(){
 int numOfRecords = 5;
 return numOfRecords;
 }

 public String getRecord(int key){
 /* DB Specific Implementation */
 return db[key];
 }

 public String getNextRecord(){
 /* DB Specific Implementation */
 return db[pos++];
 }

}

Notice how the methods simulate the database calls. The

strings within the array represent the records that will be

written to the database. When the database is

successfully integrated into the system, it will be

substituted for the array.

Keeping the Stubs Around

When you are done with the stubs, don't delete them. Keep them in the code
for possible use later—just make sure the users can't see them and the other
team members know that they are there. In fact, in a well-designed program,
your test stubs should be integrated into the design and kept in the program for
later use. In short, design the testing right into the class! Perhaps even better,
create stubs with mock data and coded to interfaces, and then you can swap
them out with the actual implementation when the time comes.

As you find problems with the interface design, make

changes and repeat the process until you are satisfied

with the result.

USING OBJECT PERSISTENCE

Object persistence is another issue that must be

addressed in many OO systems. Persistence is the

concept of maintaining the state of an object. When you

run a program, if you don’t save the object in some

manner, the object dies, never to be recovered. These

transient objects might work in some applications, but in

most business systems, the state of the object must be

saved for later use.

Object Persistence

Although the topic of object persistence and the topics in the next section might
not be consid-ered true design guidelines, I believe that they must be
addressed when designing classes. I introduce them here to stress that they
must be addressed early on when designing classes.

In its simplest form, an object can persist by being

serialized and written to a flat file. The state-of-the-art

technology is now XML-based. Although it is true that an

object theoretically can persist in memory as long as it is

not destroyed, we will concentrate on storing persistent

objects on some sort of storage device. There are three

primary storage devices to consider:

Flat file system—You can store an object in a flat file by serializing

the object. This is definitely outdated. More often than not, objects are

serialized to XML and/or JSON and written to some sort of file system

or data store or web endpoint. They can be put into a database or

written to disk, which is the most common practice nowadays.

Relational database—Some sort of middleware is necessary to

convert an object to a relational model.

NoSQL database—This may be a more efficient way to make objects

persistent, but most companies have all their data in legacy systems

and at this point in time are unlikely to convert their relational

databases to OO databases. This is the most common form of a flexible

structure database. MongoDB or Cosmos DB are two of the bigger

names in this space.

Serializing and Marshaling Objects

We have already discussed the problem of using objects

in environments that were originally designed for

structured programming. The middleware example,

where we wrote objects to a relational database, is one

good example. We also touched on the problem of

writing an object to a flat file or sending it over a

network.

To send an object over a wire (for example, to a file, over

a network), the system must deconstruct the object

(flatten it out), send it over the wire, and then

reconstruct it on the other end of the wire. This process

is called serializing an object. The act of sending the

object across a wire is called marshaling an object. A

serialized object, in theory, can be written to a flat file

and retrieved later, in the same state in which it was

written.

The major issue here is that the serialization and

deserialization must use the same specifications. It is

sort of like an encryption algorithm. If one object

encrypts a string, the object that wants to decrypt it must

use the same encryption algorithm. Java provides an

interface called Serializable that provides this

translation.

This is another reason why data is separated from

behaviors nowadays. It’s far simpler to create an

interface for a data contract and push that out to a web

service than it is to make sure people have the same code

on both sides.

CONCLUSION

This chapter presents many guidelines that can help you

in designing classes. This is by no means a complete list

of guidelines. You will undoubtedly come across

additional guidelines as you go about your travels in OO

design.

This chapter deals with design issues as they pertain to

individual classes. However, we have already seen that a

class does not live in isolation. Classes must be designed

to interact with other classes. A group of classes that

interact with each other is part of a system. Ultimately,

these systems provide value to end users. Chapter 6,

“Designing with Objects,” covers the topic of designing

complete systems.

REFERENCES

Ambler, Scott. 2004. The Object Primer, Third Edition.

Cambridge, United Kingdom: Cambridge University

Press.

Gilbert, Stephen, and Bill McCarty. 1998. Object-

Oriented Design in Java. Berkeley, CA: The Waite Group

Press.

Jaworski, Jamie. 1997. Java 1.1 Developers Guide.

Indianapolis, IN: Sams Publishing.

Jaworski, Jamie. 1999. Java 2 Platform Unleashed.

Indianapolis, IN: Sams Publishing.

Meyers, Scott. 2005. Effective C++, Third Edition.

Boston, MA: Addison-Wesley Professional.

Tyma, Paul, Gabriel Torok, and Troy Downing. 1996.

Java Primer Plus. Berkeley, CA: The Waite Group.

6. Designing with Objects
When you use a software product, you expect it to behave

as advertised. Unfortunately, not all products live up to

expectations. The problem is that when many products

are produced, the majority of time and effort go into the

engineering phase and not into the design phase.

Object-oriented (OO) design has been touted as a robust

and flexible software development approach. The truth is

that you can create both good and bad OO designs just as

easily as you can create both good and bad non-OO

designs. Don’t be lulled into a false sense of security just

because you are using a state-of-the-art design

methodology. You must pay attention to the overall

design and invest the proper amount of time and effort

to create the best possible product.

In Chapter 5, “Class Design Guidelines,” we concentrated

on designing good classes. This chapter focuses on

designing good systems. A system can be defined as

classes that interact with each other. Proper design

practices have evolved throughout the history of software

development, and there is no reason you should not take

advantage of the blood, sweat, and tears of your software

predecessors, whether they used OO technologies or not.

Taking advantage of previous efforts is not limited to

design practices; you can even incorporate existing

legacy code in your object-oriented designs. In many

cases, you can take code, which may have been working

well for years, and literally wrap it in your objects. The

wrapping is discussed later in the chapter.

DESIGN GUIDELINES

One fallacy is that there is one true (best) design

methodology. This is certainly not the case. There is no

right or wrong way to create a design. Many design

methodologies are available today, and they all have

their proponents. However, the primary issue is not

which design method to use, but whether to use a

method at all. This can be expanded beyond design to

encompass the entire software development process.

Some organizations do not follow a standard software

development process, or they have one and don’t adhere

to it. The most important factor in creating a good design

is to find a process that you and your organization feel

comfortable with, stick to it, and keep refining it. It

makes no sense to implement a design process that no

one will follow.

Most books that deal with object-oriented technologies

offer very similar strategies for designing systems. In

fact, except for some of the object-oriented specific issues

involved, much of the strategy is applicable to non-OO

systems as well.

Generally, a solid OO design process includes the

following steps:

1. Doing the proper analysis

2. Developing a statement of work that describes the system

3. Gathering the requirements from this statement of work

4. Developing a prototype for the user interface

5. Identifying the classes

6. Determining the responsibilities of each class

7. Determining how the various classes interact with each other

8. Creating a high-level model that describes the system to be built

For object-oriented development, the high-level system

model is of special interest. The system, or object model,

is made up of class diagrams and class interactions. This

model should represent the system faithfully and be easy

to understand and modify. We also need a notation for

the model. This is where the Unified Modeling Language

(UML) comes in. As you know, UML is not a design

process but a modeling tool. In this book, I only use class

diagrams within UML. I like to utilize class diagrams as a

visual tool to assist with the design process as well as

with documentation—even if I don’t use the other

available UML tools.

The Ongoing Design Process

Despite the best intentions and planning, in all but the most trivial cases, the
design is an ongoing process. Even after a product is in testing, design
changes will pop up. It is up to the project manager to draw the line that says
when to stop changing a product and adding features. I like to call this Version
1.

It is important to understand that many design

methodologies are available. One early methodology,

called the waterfall model, advocates strict boundaries

between the various phases. In this case, the design

phase is completed before the implementation phase,

which is completed before the testing phase, and so on.

In practice, the waterfall model has been found to be

unrealistic. Currently, other design models, such as rapid

prototyping, Extreme Programming, Agile, Scrum, and

so on, promote a true iterative process. In these models,

some implementation is attempted prior to completing

the design phase as a type of proof-of-concept. Despite

the recent aversion to the waterfall model, the goal

behind the model is understandable. Coming up with a

complete and thorough design before starting to code is a

sound practice. You do not want to be in the release

phase of the product and then decide to iterate through

the design phase again. Iterating across phase

boundaries is unavoidable; however, you should keep

these iterations to a minimum (see Figure 6.1).

Figure 6.1 The waterfall method.

Simply put, the reasons to identify requirements early

and keep design changes to a minimum are as follows:

The cost of a requirement/design change in the design phase is

relatively small.

The cost of a design change in the implementation phase is

significantly higher.

The cost of a design change after the deployment phase is

astronomical when compared to the first item.

Similarly, you would not want to start the construction of

your dream house before the architectural design was

complete. If I said that the Golden Gate Bridge or the

Empire State Building was constructed without any

consideration of design issues, you would consider the

statement absolutely crazy. Yet, you would most likely

not find it crazy if I told you that the software you were

using might contain some design flaws, and in fact,

might not have been thoroughly tested.

In reality, it might be impossible to thoroughly test

software, in the sense that absolutely no bugs exist.

However, in theory, that is always the goal. We should

always attempt to weed out as many bugs as possible.

Bridges and software might not be directly comparable;

however, software must strive for the same level of

engineering excellence as the “harder” engineering

disciplines such as bridge building. Poor-quality software

can be lethal—it’s not just wrong numbers on payroll

checks. For example, inferior software in medical

equipment can kill and maim people. Yet, you may be

willing to live with having to reboot your computer every

now and then. But the same cannot be said for a bridge

failing.

Safety Versus Economics

Would you want to cross a bridge that has not been inspected and tested?
Unfortunately, with many software packages, users are left with the
responsibility of doing much of the testing. This is very costly for both the users
and the software providers. Unfortunately, short-term economics often seem to
be the primary factor in making project decisions.

Because customers seem to be willing to pay a limited

price and put up with software of poor quality, some

software providers find that it is cheaper in the long run

to let the customers test the product rather than do it

themselves. In the short term this might be true, but in

the long run it costs far more than the software provider

realizes. Ultimately, the software provider’s reputation

will be damaged.

Some computer software companies are willing to use

the beta test phase to let the customers do testing—

testing that should, theoretically, have been done before

the beta version ever reached the customer. Many

customers are willing to take the risk of using prerelease

software because they are anxious to get the functionality

the product promises. Conversely, some customers resist

new releases like the plague. If it works, don’t fix it.

Upgrading can be a nightmare!

After the software is released, problems that have not

been caught and fixed prior to release become much

more expensive. To illustrate, consider the dilemma

automobile companies face when they are confronted

with a recall. If a defect in the automobile is identified

and fixed before it is shipped (ideally before it is

manufactured), it is much cheaper than if all delivered

automobiles have to be recalled and fixed one at a time.

Not only is this scenario very expensive, but it damages

the reputation of the company. In an increasingly

competitive market, high-quality software, support

services, and reputation are the competitive advantage

(see Figure 6.2).

Figure 6.2 The competitive advantage.

The following sections provide brief summaries of the

items listed previously as being part of the design

process. Later in the chapter, we work through an

example that explains in greater detail each of these

items.

Performing the Proper Analysis

A lot of variables are involved in building a design and

producing a software product. The users must work hand

in hand with the developers at all stages. In the analysis

phase, the users and the developers must do the proper

research and analysis to determine the statement of

work, the requirements of the project, and whether to

actually do the project. The last point might seem a bit

surprising, but it is important. During the analysis phase,

there must not be any hesitation to terminate the project

if a valid reason exists to do so. Too many times, pet

project status or some political inertia keeps a project

going, regardless of the obvious warning signs that cry

out for project cancellation. Assuming that the project is

viable, the primary focus of the analysis phase is for

everyone to learn the systems (both the old and the

proposed new one) and determine the system

requirements.

Generic Software Principles

Most of these practices are not specific to OO. They apply to software
development in general.

Developing a Statement of Work

The statement of work (SOW) is a document that

describes the system. Although determining the

requirements is the ultimate goal of the analysis phase,

at this point the requirements are not yet in a final

format. The SOW should give anyone who reads it a

complete, high level understanding of the system.

Regardless of how it is written, the SOW must represent

the complete system and be clear about how the system

will look and feel.

The SOW contains everything that must be known about

the system. Many customers create a request for

proposal (RFP) for distribution, which is similar to the

statement of work. A customer creates an RFP that

completely describes the system the customer wants

built and releases it to multiple vendors. The vendors

then use this document, along with whatever analysis

they need to do, to determine whether they should bid on

the project, and if so, what price to charge.

Gathering the Requirements

The requirements document describes what the users

want the system to do. Even though the level of detail of

the requirements document does not need to be of a

highly technical nature, the requirements must be

specific enough to represent the true nature of the user’s

needs for the end product. The requirements document

must be of sufficient detail for the user to make educated

judgments about the completeness of the system. It must

also be of specific detail for a design group to use the

document to proceed with the design phase.

Whereas the SOW is a document written in paragraph

(even narrative) form, the requirements are usually

represented as a summary statement or presented as

bulleted items. Each individual bulleted item represents

one specific requirement of the system. The

requirements are distilled from the statement of work.

This process is shown later in the chapter.

In many ways, these requirements are the most

important part of the system. The SOW might contain

irrelevant material; however, the requirements are the

final representation of the system that must be

implemented. All future documents in the software

development process will be based on the requirements.

Developing a System Prototype

One of the best ways to make sure users and developers

understand the system is to create a prototype. A

prototype can be just about anything; however, most

people consider the prototype to be a simulated user

interface. By creating actual screens and screen flows, it

is easier for people to get an idea of what they will be

working with and what the system will feel like. In any

event, a prototype will almost certainly not contain all

the functionality of the final system.

Most prototypes are created with an integrated

development environment (IDE). However, in some

basic cases, drawing the screens on a whiteboard or even

on paper might be all that is needed. Remember that you

are not necessarily creating business logic (the

logic/code behind the interface that actually does the

work) when you build the prototype, although it is

possible to do so. The look and feel of the user interface

is a major concern at this point. Having a good prototype

can help immensely when identifying classes.

Identifying the Classes

After the requirements are documented, the process of

identifying classes can begin. From the requirements,

one straightforward way of identifying classes is to

highlight all the nouns. These tend to represent objects,

such as people, places, and things. Don’t be too fussy

about getting all the classes right the first time. You

might end up eliminating classes, adding classes, and

changing classes at various stages throughout the design.

It is important to get something down first. Take

advantage of the fact that the design is an iterative

process. As in other forms of brainstorming, get

something down initially, with the understanding that

the final result might look nothing like the initial pass.

Determining the Responsibilities of Each Class

You need to determine the responsibilities of each class

you have identified. This includes the data that the class

must store and what operations the class must perform.

For example, an Employee object would be responsible

for calculating payroll and transferring the money to the

appropriate account. It might also be responsible for

storing the various payroll rates and the account

numbers of various banks.

Determining How the Classes Collaborate with
Each Other

Most classes do not exist in isolation. Although a class

must fulfill certain responsibilities, many times it will

have to interact with another class to get something it

wants. This is where the messages between classes apply.

One class can send a message to another class when it

needs information from that class, or if it wants the other

class to do something for it.

Creating a Class Model to Describe the System

When all the classes are determined and the class

responsibilities and collaborations are listed, a class

model that represents the complete system can be

constructed. The class model shows how the various

classes interact within the system.

In this book, we are using UML to model the system.

Several tools on the market use UML and provide a good

environment for creating and maintaining UML class

models. As we develop the example in the next section,

we will see how the class diagrams fit into the big picture

and how modeling large systems would be virtually

impossible without some sort of good modeling notation

and modeling tool.

Prototyping the User Interface in Code

During the design process, we must create a prototype of

our user interface. This prototype will provide invaluable

information to help navigate through the iterations of the

design process. As Gilbert and McCarty in Object-

Oriented Design in Java aptly point out, “to a system

user, the user interface is the system.” There are several

ways to create a user interface prototype. You can sketch

the user interface by drawing it on paper or a

whiteboard. You also can use a special prototyping tool,

or even a language environment like Visual Basic, which

is often used for rapid prototyping. Or you can use the

IDE from your favorite development tool to create the

prototype. However, at this point they are basically

facades; the business logic is not necessarily in place.

However you develop the user interface prototype, make

sure that the users have the final say on the look and feel.

OBJECT WRAPPERS

Several times in the previous chapters I have indicated

that one of my primary goals in this book is to dispel the

fallacy that object-oriented programming is a separate

paradigm from structured programming, and is even at

odds with it. In fact, as I have already mentioned, I am

often asked the following question: “Are you an object-

oriented programmer or a structured programmer?” The

answer is always the same—I am both!

In my mind, there is no way to write a program without

using structures. Thus, when you write a program that

uses an object-oriented programming language and are

using sound object-oriented design techniques, you are

also using structured programming techniques. There is

no way around this.

For example, when you create a new object that contains

attributes and methods, those methods will include

structured code. In fact, I might even say that these

methods will contain mostly structured code. This

approach fits in well with the container concept that we

have encountered in earlier chapters. In fact, when I get

to the point where I am coding at the method level, my

coding thought process hasn’t changed much since when

I was programming in structured languages, such as

Cobol, C, and the like. This is not to say that it is exactly

the same, because I obviously have had to adjust to some

object-oriented constructs; however, the fundamental

approach to coding at the method level is virtually the

same as programming has always been.

Now I’ll return to the question “Are you an object-

oriented programmer or a structured programmer?” I

often like to say that programming is programming. By

this I contend that being a good programmer means

understanding the basics of programming logic and

having a passion for coding. Often you will see ads for a

programmer with a specific skill set—let’s say a specific

language like Java.

Although I totally understand that an organization may

well need an experienced Java programmer in a pinch,

over the long run I would prefer to focus on hiring a

programmer who has a wide range of programming

experience and who can learn and adjust quickly when

new technologies emerge. Some of my colleagues do not

always agree with this; however, I believe that when

hiring, I look more at what a potential employee can

learn than what they already know. The passion part is

critical because it ensures that an employee will always

be exploring new technologies and development

methodologies.

Structured Code

Although the basics of programming logic may be

debated, as I have stressed, the fundamental object-

oriented constructs are encapsulation, inheritance,

polymorphism, and composition. In most textbooks that

I have seen, the basic constructs of structured

programming are sequence, conditions, and iterations.

The sequence part is a given, because it seems logical to

start at the top and proceed in a logical manner to the

bottom. For me, the meat of structured programming

resides in the conditions and iterations, which I call if-

statements and loops, respectively.

Take a look at the following Java code that starts at 0 and

loops 10 times, printing out the value if it equals 5:

Click here to view code image

class MainApplication {

 public static void main(String args[]) {

 int x = 0;

 while (x <= 10) {

 if (x==5) System.out.println("x = " +
x);
 x++;
 }
 }
}

Now while this code is written in an object-oriented

language, the code that resides inside the main method is

structured code. All three basics of structured

clbr://internal.invalid/book/OEBPS/Images/ch06_images.xhtml#p98pro01

programming are present: sequence, conditions, and

iterations.

The sequence part is easy to identify because the first line

executed is

int x = 0;

When that line completes, the next line is executed:

while (x <= 10) {

And so on. In short, this is tried and true top-down

programming: start at the first line, execute it, and then

go on to the next.

There is also a condition present in this code as part of

the if-statement:

if (x==5)

Finally, there is a loop to complete the structured trio.

while (x <= 10) {
}

Actually, the while loop also contains a condition:

(x <= 10)

You can pretty much code anything with just these three

constructs. In fact, the concept of the wrapper is basically

the same for structured programming as it is for object-

oriented programming. In structured design you wrap

the code in functions (such as the main method in this

example), and in object-oriented design you wrap the

code in objects and methods.

Wrapping Structured Code

Although defining attributes is considered coding (for

example, creating an integer), the behavior of an object

resides in the methods. And these methods are where the

bulk of the code logic is found.

Consider Figure 6.3. As you can see, an object contains

methods, and these methods contain code, which can be

anything from variable declarations to conditions to

loops.

Figure 6.3 Wrapping structured code.

Let’s consider a simple example in which we are

wrapping the functionality for addition. Here we create a

method named add, which accepts two integer

parameters and returns their sum.

class SomeMath {

 public int add(int a, int b) {

 return a + b;

 }

}

As you can see, the structured code used to perform the

addition (a + b) is wrapped inside the add method.

Although this is a trivial example, that is all there is to

wrapping structured code. Thus, when the user wants to

use this method, all that is needed is the signature of the

method as seen next:

Click here to view code image

public class TestMath {

 public static void main(String[] args) {

 int x = 0;

 SomeMath math = new SomeMath();
 x = math.add(1,2);
 System.out.println("x = " + x);
 }
}

Finally, we can add some more functionality that is a bit

more interesting and complicated. Suppose that we

wanted to include a method to calculate the Fibonacci

value of a number. We can then add a method like this:

public static int fib(int n) {

 if (n < 2) {
 return n;
 } else {
 return fib(n–1)+fib(n–2);

clbr://internal.invalid/book/OEBPS/Images/ch06_images.xhtml#p100pro01

 }
}

The whole point here is to show that we have an object-

oriented method that contains (wraps) structured code,

because the fib method contains conditions, recursion,

and so on. And as mentioned in the introduction, it is

possible to incorporate existing legacy code in wrappers

as well.

Wrapping Nonportable Code

One other use of object wrappers is for the hiding of

nonportable (or native) code. The concept is essentially

the same; however, in this case the point is to take code

that can be executed on only one platform (or a few

platforms) and encapsulate it in a method providing a

simple interface for the programmers using the code.

Consider the task of making the computer make a noise

—in this case, a beep. On a Windows platform we can

execute a beep with the following code:

System.out.println("\007");

Rather than making the programmer memorize the code

(or look it up), you can provide a class called Sound that

contains a method called beep as shown next:

class Sound {

 public void beep() {
 System.out.println("\007");
 }
}

Now, rather than having to know the code for making the

sound, the programmer can use the class and call the

beep method:

Click here to view code image

clbr://internal.invalid/book/OEBPS/Images/ch06_images.xhtml#p101pro01

public class TestBeep {

 public static void main(String[] args) {
 Sound mySound = new Sound();
 mySound.beep();
 }
}

Not only is this simpler for the programmer to use, but

you can extend the functionality of the class to include

other sounds. Perhaps more importantly, when the code

is used on a non-Windows platform, the interface for the

user remains the same. In short, the team that builds the

code for the Sound class will have to deal with the

change in platform. For the programmers who utilize the

class in their applications, the change will be seamless

because they will still call the beep method.

Wrapping Existing Classes

Although the need to wrap legacy structured code, or

even nonportable code, into a new (object-oriented) class

may seem reasonable, the need to wrap existing classes

might not seem so obvious. However, there are also

many reasons to create wrappers for existing (object-

oriented) classes.

Software developers often utilize code written by

someone else. Perhaps the code was purchased from a

vendor or even written internally within the same

organization. In many of these cases, the code cannot be

changed. Perhaps the individual who wrote the code is

no longer with the organization, or the vendor cannot

perform maintenance updates, and so on. This is where

the true power of wrappers emerges.

The idea is to take an existing class and alter its

implementation or interface by wrapping it inside a new

class—just like we did for the structured code and

nonportable code. The difference in this case is that,

rather than putting an object-oriented face to the code,

we are altering its implementation or interface.

Why would we want to do this? Well, the answer lies with

both the implementation and the interface.

Consider the database example that we used in Chapter

2, “How to Think in Terms of Objects.” Our goal was to

provide the same interface for the developers regardless

of which database they were using. In fact, if we need to

support another database, our goal would remain the

same—to make the transition to the new database

transparent to the user (see Figure 2.3 as shown in

Chapter 2).

Also, remember our earlier discussion about creating

middleware to provide an interface between objects and

relational databases. As developers, we want to use

objects. Thus, we want functionality that will allow us to

persist objects to a database. What we don’t want to have

to do is write SQL code for every single object

transaction performed to a relational database. This is

where we can consider middleware to be a wrapper, and

many object-relational mapping products are available.

Conceptually, for me, the ultimate example of the

interface and implementation paradigm is the discussion

that we had regarding the power plant example in

Chapter 2 and shown in Figure 2.1. In this case we can

swap out (wrap) both: We can alter the interface by

changing the outlet, and we can alter the implementation

by changing the power generation facility.

The use of wrappers in software development is fairly

extensive, not only from a developer’s perspective but

also from a vendor’s. Wrappers are an important tool

when developing software systems.

In this chapter, we have focused on various design

considerations, including writing new code as well as

utilizing previously written code, whether in house or

from vendors. In some cases, wrappers are even design

paradigms unto themselves. Design patterns, for

example, utilize wrappers in various cases. As we will see

later, the Decorator pattern focuses on wrapping the

implementation, whereas the Adaptor pattern focuses on

altering the interface. The discussion of design patterns

is explored in more detail in Chapter 10, “Design

Patterns.”

CONCLUSION

This chapter covers the design process for complete

systems. It is important to note that object-oriented and

structured code are not mutually exclusive. In fact, you

can’t create objects without using structured code. Thus,

while building object-oriented systems, you are also

using structured techniques in the design.

Object wrappers are used to encapsulate many types of

functionality, which can range from traditional

structured (legacy) and object-oriented (classes) code to

nonportable (native) code. The primary purpose of object

wrappers is to provide consistent interfaces for the

programmers who are using the code.

In the next several chapters, we explore in more detail

the relationships between classes. Chapter 7, “Mastering

Inheritance and Composition,” covers the concepts of

inheritance and composition and how they relate to each

other.

REFERENCES

Ambler, Scott. 2004. The Object Primer, Third Edition.

Cambridge, United Kingdom: Cambridge University

Press.

Gilbert, Stephen, and Bill McCarty. 1998. Object-

Oriented Design in Java. Berkeley, CA: The Waite Group

Press.

Jaworski, Jamie. 1999. Java 2 Platform Unleashed.

Indianapolis, IN: Sams Publishing.

Jaworski, Jamie. 1997. Java 1.1 Developers Guide.

Indianapolis, IN: Sams Publishing.

McConnell, Steve. 2004. Code Complete: A Practical

Handbook of Software Construction, Second Edition.

Redmond, WA: Microsoft Press.

Weisfeld, Matt, and John Ciccozzi. September, 1999.

“Software by Committee,” Project Management Journal

v5, number 1: 30–36.

Wirfs-Brock, R., B. Wilkerson, and L. Weiner. 1990.

Designing Object-Oriented Software. Upper Saddle

River, NJ: Prentice-Hall.

7. Mastering Inheritance and

Composition
Inheritance and composition play major roles in the

design of object-oriented (OO) systems. In fact, many of

the most difficult and interesting design decisions come

down to deciding between inheritance and composition.

These decisions have become much more interesting

over the years as object-oriented design practices have

evolved. Perhaps one of the most interesting debates

revolves around inheritance. Although inheritance is one

of the fundamental constructs of object-oriented

development (a language must support inheritance to be

considered object-oriented), some developers are even

turning away from inheritance by implementing designs

solely with composition.

It is common to use interface inheritance rather than

direct inheritance for behaviors (implementing versus

inheriting). Inheritance tends to be used often for

data/models whereas implementation tends to be used

for behaviors.

Regardless, both inheritance and composition are

mechanisms for reuse. Inheritance, as its name implies,

involves inheriting attributes and behaviors from other

classes, where there is a true parent/child relationship.

The child (or subclass) inherits directly from the parent

(or superclass).

Composition, also as its name implies, involves building

objects by using other objects. In this chapter we explore

the obvious and subtle differences between inheritance

and composition. Primarily, we will consider the

appropriate times to use one or the other.

REUSING OBJECTS

Perhaps the primary reason why inheritance and

composition exist is object reuse. In short, you can build

classes (which ultimately become objects) by utilizing

other classes via inheritance and composition, which in

effect are the only ways to reuse previously built classes.

Inheritance represents the is-a relationship that was

introduced in Chapter 1, “Introduction to Object-

Oriented Concepts.” For example, a dog is a mammal.

Composition involves using other classes to build more

complex classes—a sort of assembly. No parent/child

relationship exists in this case. Basically, complex objects

are composed of other objects. Composition represents a

has-a relationship. For example, a car has an engine.

Both the engine and the car are separate, potentially

standalone objects. However, the car is a complex object

that contains (has an) engine object. In fact, a child

object might itself be composed of other objects; for

example, the engine might include cylinders. In this case

an engine has a cylinder, actually several.

When OO technologies first entered the mainstream,

inheritance was often the first example used in how to

design an OO system. That you could design a class once

and then inherit functionality from it was considered one

of the foremost advantages to using OO technologies.

Reuse was the name of the game, and inheritance was

the ultimate expression of reuse.

However, over time the luster of inheritance has dulled a

bit. In fact, in some discussions, the use of inheritance

itself is questioned. In their book Java Design, Peter

Coad and Mark Mayfield have a complete chapter titled

“Design with Composition Rather Than Inheritance.”

Many early object-based platforms did not even support

true inheritance. As Visual Basic evolved into Visual

Basic .NET, early object-based implementations did not

include strict inheritance capabilities. Platforms such as

the MS COM model were based on interface inheritance.

Interface inheritance is covered in great detail in Chapter

8, “Frameworks and Reuse: Designing with Interfaces

and Abstract Classes.”

Today, the use of inheritance is still a major topic of

debate. Abstract classes, which are a form of inheritance,

are not directly supported in some languages, such as

Objective-C and Swift. Interfaces are used even though

they don’t provide all the functionality that abstract

classes do.

The good news is that the discussions about whether to

use inheritance or composition are a natural progression

toward some seasoned middle ground. As in all

philosophical debates, there are passionate arguments

on both sides. Fortunately, as is normally the case, these

heated discussions have led to a more sensible

understanding of how to utilize the technologies.

We will see later in this chapter why some people believe

that inheritance should be avoided, and composition

should be the design method of choice. The argument is

fairly complex and subtle. In actuality, both inheritance

and composition are valid class design techniques, and

they each have a proper place in the OO developer’s

toolkit. And, at least, you need to understand both to

make the proper design choice—not to mention

maintenance of legacy code.

The fact that inheritance is often misused and overused

is more a result of a lack of understanding of what

inheritance is all about than a fundamental flaw in using

inheritance as a design strategy.

The bottom line is that inheritance and composition are

both important techniques in building OO systems.

Designers and developers need to take the time to

understand the strengths and weaknesses of both and to

use each in the proper contexts.

INHERITANCE

Inheritance was defined in Chapter 1 as a system in

which child classes inherit attributes and behaviors from

a parent class. However, there is more to inheritance,

and in this chapter we explore inheritance in greater

detail.

Chapter 1 states that you can determine an inheritance

relationship by following a simple rule: If you can say

that Class B is a Class A, then this relationship is a good

candidate for inheritance.

Is-a

One of the primary rules of OO design is that public inheritance is represented
by an is-a relationship. In the case of interfaces you might add “behaves like”
(implements). The data (attributes) that are inherited are the “is,” the interfaces
describing encapsulated behaviors are “acts like,” and composition is “has a.”
The lines get pretty blurry, however.

Let’s revisit the mammal example used in Chapter 1.

Let’s consider a Dog class. A dog has several behaviors

that make it distinctly a dog, as opposed to a cat. For this

example, let’s specify two: A dog barks and a dog pants.

So we can create a Dog class that has these two

behaviors, along with two attributes (see Figure 7.1).

Figure 7.1 A class diagram for the Dog class.

Now let’s say that you want to create a

GoldenRetriever class. You could create a brand-new

class that contains the same behaviors that the Dog class

has. However, we could make the following, and quite

reasonable, conclusion: A Golden Retriever is-a dog.

Because of this relationship, we can inherit the attributes

and behaviors from Dog and use it in our new

GoldenRetriever class (see Figure 7.2).

Figure 7.2 The GoldenRetriever class inherits from the Dog class.

The GoldenRetriever class now contains its own

behaviors as well as all the more general behaviors of a

dog. This provides us with some significant benefits.

First, when we wrote the GoldenRetriever class, we

did not have to reinvent part of the wheel by rewriting

the bark and pant methods. Not only does this save

some design and coding time, but it saves testing and

maintenance time as well. The bark and pant methods

are written only once and, assuming that they were

properly tested when the Dog class was written, they do

not need to be heavily tested again; but it does need to be

retested because there are new interfaces, and so on.

Now let’s take full advantage of our inheritance structure

and create a second class under the Dog class: a class

called LhasaApso. Whereas retrievers were bred for

retrieving, Lhasa Apsos were bred for use as guard dogs.

These dogs are not attack dogs; they have acute senses,

and when they sense something unusual, they start

barking. So we can create our LhasaApso class and

inherit from the Dog class just as we did with the

GoldenRetriever class (see Figure 7.3).

Figure 7.3 The LhasaApso class inherits from the Dog class.

Testing New Code

In our example with the GoldenRetriever class, the bark and pant methods
should be writ-ten, tested, and debugged when the Dog class is written.
Theoretically, this code is now robust and ready to reuse in other situations.
However, the fact that you do not need to rewrite the codedoes not mean it
should not be tested. However unlikely, there might be some specific
characteristic of a retriever that somehow breaks the code. The bottom line is
that you should always test new code. Each new inheritance relationship
creates a new context for using inher-ited methods. A complete testing strategy
should take into account each of these contexts.

Another primary advantage of inheritance is that the

code for bark() and pant() is in a single place. Let’s

say there is a need to change the code in the bark()

method. When you change it in the Dog class, you do not

need to change it in the LhasaApso class and the

GoldenRetriever class.

Do you see a problem here? At this level the inheritance

model appears to work very well. However, can you be

certain that all dogs have the behavior contained in the

Dog class?

In his book Effective C++, Scott Meyers gives a great

example of a dilemma with design using inheritance.

Consider a class for a bird. One of the most recognizable

characteristics of a bird is, of course, that it can fly. So we

create a class called Bird with a fly method. You

should immediately understand the problem. What do

we do with a penguin, or an ostrich? They are birds, yet

they can’t fly. You could override the behavior locally,

but the method would still be called fly. And it would

not make sense to have a method called fly for a bird

that does not fly but only waddles, runs, or swims. This is

an example of the Liskov Substitution Principle of

SOLID, which we discuss in Chapter 12, “The SOLID

Principles of Object-Oriented Design.”

This leads to some potentially significant problems. For

example, if a penguin has a fly method, the penguin

might understandably decide to test it out. However, if

the fly method was in fact overridden and the behavior

to fly did not exist, the penguin would be in for a major

surprise when the fly method is invoked after jumping

over a cliff. Imagine the penguin’s chagrin when the call

to the fly method results in waddling instead of flight

(or even a no-op, which means no operation, where

nothing happens at all). In this situation, waddling

doesn’t cut it. Just imagine if code such as this ever

found its way into a spacecraft’s guidance system.

In our dog example, we have designed the class so that

all dogs have the ability to bark. However, some dogs do

not bark. The Basenji breed is a barkless dog. Although

these dogs do not bark, they do yodel. So should we

reevaluate our design? What would this design look like?

Figure 7.4 is an example that shows a more correct way

to model the hierarchy of the Dog class.

Figure 7.4 The Dog class hierarchy.

Generalization and Specialization

Consider the object model of the Dog class hierarchy. We

started with a single class, called Dog, and we factored

out some of the commonality between various breeds of

dogs. This concept, sometimes called generalization-

specialization, is yet another important consideration

when using inheritance. The idea is that as you make

your way down the inheritance tree, things get more

specific. The most general case is at the top of the tree. In

our Dog inheritance tree, the class Dog is at the top and

is the most general category. The various breeds—the

GoldenRetriever, LhasaApso, and Basenji classes

—are the most specific. The idea of inheritance is to go

from the general to the specific by factoring out

commonality.

In the Dog inheritance model, we started factoring out

common behavior by understanding that although a

retriever has some different behavior from that of a

LhasaApso, the breeds do share some common

behaviors—for example, they both pant and bark. Then

we realized that all dogs do not bark—some yodel. Thus,

we had to factor out the barking behavior into a separate

BarkingDog class. The yodeling behavior went into a

YodelingDog class. However, we realized that both

barking dogs and barkless dogs still shared some

common behavior—all dogs pant. Thus, we kept the Dog

class and had the BarkingDog and the YodelingDog

classes inherit from Dog. Now Basenji can inherit from

YodelingDog, and LhasaApso and

GoldenRetriever can inherit from BarkingDog.

We could have decided not to create two distinct classes

for BarkingDog and YodelingDog. In this case we

could implement all barking and yodeling as part of each

individual breed’s class—since each dog would sound

differently. This is just one example of some of the design

decisions that have to be made. Perhaps the best solution

is to implement the barking and yodeling as interfaces,

which we discuss in Chapter 8.

A design pattern, which is covered in Chapter 10, “Design

Patterns,” might be a good option in this case. A

developer might not typically create these variations of

Dog; they would either use a Dog (which implements

IDog) or use a decorator to add behaviors to a Dog

object.

Design Decisions

In theory, factoring out as much commonality as possible

is great. However, as in all design issues, sometimes it

really is too much of a good thing. Although factoring out

as much commonality as possible might represent real

life as closely as possible, it might not represent your

model as closely as possible. The more you factor out, the

more complex your system gets. So you have a

conundrum: Do you want to live with a more accurate

model or a system with less complexity? You must make

this choice based on your situation, for there are no hard

guidelines to make the decision.

What Computers Are Not Good At

Obviously, a computer model can only approximate real-world situations.
Computers are good at number crunching but are not as good at more abstract
operations.

For example, breaking up the Dog class into

BarkingDog and the YodelingDog models real life

better than assuming that all dogs bark, but it does add a

bit of complexity.

Model Complexity

At this level of our example, adding two more classes does not make things so
complex that it makes the model untenable. However, in larger systems, when
these kinds of decisions are made over and over, the complexity quickly adds
up. In larger systems, keeping things as simple as possible is usually the best
practice.

There will be instances in your design when the

advantage of a more accurate model does not warrant the

additional complexity. Let’s assume that you are a dog

breeder and that you contract out for a system that tracks

all your dogs. The system model that includes barking

dogs and yodeling dogs works fine. However, suppose

that you do not breed any yodeling dogs—never have and

never will. Perhaps you do not need to include the

complexity of differentiating between yodeling dogs and

barking dogs. This will make your system less complex,

and it will provide the functionality that you need.

Deciding whether to design for less complexity or more

functionality is a balancing act. The primary goal is

always to build a system that is flexible without adding so

much complexity that the system collapses under its own

weight. What happens if you need to add yodeling at a

later point in the project?

Current and future costs are also a major factor in these

decisions. Although it might seem appropriate to make a

system more complete and flexible, this added

functionality might barely add any benefit—the return on

investment might not be there. For example, would you

extend the design of your Dog system to include other

canines, such as hyenas and foxes (see Figure 7.5)?

Figure 7.5 An expanded canine model.

Although this design might be prudent if you were a

zookeeper, the extension of the Canine class is probably

not necessary if you are breeding and selling

domesticated dogs.

So as you can see, there are always trade-offs when

creating a design.

Making Design Decisions with the Future in Mind

You might at this point say, “Never say never.” Although you might not breed
yodeling dogs now, sometime in the future you might want to do so. If you do
not design for the possibility of yodeling dogs now, it will be much more
expensive to change the system later to include them. This is yet another of the
many design decisions that you have to make. You could possibly override the
bark() method to make it yodel; however, this is not intuitive, and some people
will expect a method called bark() to actually bark.

COMPOSITION

It is natural to think of objects as containing other

objects. A television set contains a tuner and video

display. A computer contains video cards, keyboards,

and drives. The computer can be considered an object

unto itself, and a flash drive is also considered a valid

object. You could open up the computer and remove the

hard drive and hold it in your hand. In fact, you could

take the hard drive to another computer and install it.

The fact that it is a standalone object is reinforced

because it works in multiple computers.

The classic example of object composition is the

automobile. Many books, training classes, and articles

seem to use the automobile as the classic example of

object composition. Besides the original interchangeable

manufacture of the rifle, most people think of the

automobile assembly line created by Henry Ford as the

quintessential example of interchangeable parts. Thus, it

seems natural that the automobile has become a primary

reference point for designing OO software systems.

Most people would think it natural for a car to contain an

engine. However, a car contains many objects besides an

engine, including wheels, a steering wheel, and a stereo.

Whenever a particular object is composed of other

objects, and those objects are included as object fields,

the new object is known as a compound, an aggregate,

or a composite object (see Figure 7.6).

Figure 7.6 An example of composition.

Aggregation, Association, and Composition

From my perspective, there are only two ways to reuse classes—with
inheritance or with composition. In Chapter 9, “Building Objects and Object-
Oriented Design,” we discuss composition in more detail—specifically,
aggregation and association. In this book, I consider aggregation and
association to be types of composition, although there are varied opinions on
this.

Representing Composition with UML

To model the fact that the car object contains a steering

wheel object, UML uses the notation shown in Figure 7.7.

Figure 7.7 Representing composition in UML.

Aggregation, Association, and UML

In this book, aggregations are represented in UML by lines with a diamond,
such as an engine as part of a car. Associations are represented by just the
line (no diamond), such as a standalone keyboard servicing a separate
computer box.

Note that the line connecting the Car class to the

SteeringWheel class has a diamond shape on the Car

side of the line. This signifies that a Car contains (has-a)

SteeringWheel.

Let’s expand this example. Suppose that none of the

objects in this design use inheritance in any way. All the

object relationships are strictly composition, and there

are multiple levels of composition. Of course, this is a

simplistic example, and there are many, many more

object and object relationships in designing a car.

However, this design is meant to be a simple illustration

of what composition is all about.

Let’s say that a car is composed of an engine, a stereo

system, and a door.

How Many Doors and Stereos?

Note that a car normally has more than one door. Some have two, and some
have four. You might even consider a hatchback a fifth door. In the same vein,
it is not necessarily true that all cars have a stereo system. A car could have no
stereo system or it could have one. I have even seen a car with two separate
stereo systems. These situations are discussed in detail in Chapter 9. For the
sake of this example, just pretend that a car has only a single door (perhaps it's
a special racing car) and a single stereo system.

That a car is made up of an engine, a stereo system, and a

door is easy to understand because most people think of

cars in this way. However, it is important to keep in mind

when designing software systems, just like automobiles,

that objects are made up of other objects. In fact, the

number of nodes and branches that can be included in

this tree structure of classes is virtually unlimited.

Figure 7.8 shows the object model for the car, with the

engine, stereo system, and door included.

Figure 7.8 The Car class hierarchy.

Note that all three objects that make up a car are

themselves composed of other objects. The engine

contains pistons and spark plugs. The stereo contains a

radio and a CD player. The door contains a handle. Also

note that there is yet another level. The radio contains a

tuner. We could have also added the fact that a handle

contains a lock; the CD player contains a fast forward

button, and so on. Additionally, we could have gone one

level beyond the tuner and created an object for a dial.

The level and complexity of the object model is up to the

designer.

Model Complexity

As with the inheritance problem of the barking and yodeling dogs, using too
much composition can also lead to more complexity. A fine line exists between
creating an object model that contains enough granularity to be sufficiently
expressive and a model that is so granular that it is difficult to understand and
maintain.

WHY ENCAPSULATION IS

FUNDAMENTAL TO OO

Encapsulation is the fundamental concept of OO.

Whenever the interface/implementation paradigm is

covered, we are talking about encapsulation. The basic

question is what in a class should be exposed and what

should not be exposed. This encapsulation pertains

equally to data and behavior. When talking about a class,

the primary design decision revolves around

encapsulating both the data and the behavior into a well-

written class.

Stephen Gilbert and Bill McCarty define encapsulation as

“the process of packaging your program, dividing each of

its classes into two distinct parts: the interface and the

implementation.” This is the message that has been

presented over and over in this book.

But what does encapsulation have to do with inheritance,

and how does it apply with regard to this chapter? This

has to do with an OO paradox. Encapsulation is so

fundamental to OO that it is one of OO design’s cardinal

rules. Inheritance is also considered one of the three

primary OO concepts. However, in one way, inheritance

actually breaks encapsulation! How can this be? Is it

possible that two of the three primary concepts of OO are

incompatible with each other? Let’s explore this

possibility.

How Inheritance Weakens Encapsulation

As already stated, encapsulation is the process of

packaging classes into the public interface and the

private implementation. In essence, a class hides

everything that is not necessary for other classes to know

about.

Peter Coad and Mark Mayfield make a case that when

using inheritance, encapsulation is inherently weakened

within a class hierarchy. They talk about a specific risk:

Inheritance connotes strong encapsulation with other

classes but weak encapsulation between a superclass and

its subclasses.

The problem is that if you inherit an implementation

from a superclass and then change that implementation,

the change from the superclass ripples through the class

hierarchy. This rippling effect potentially affects all the

subclasses. At first, this might not seem like a major

problem; however, as we have seen, a rippling effect such

as this can cause unanticipated problems. For example,

testing can become a nightmare. In Chapter 6,

“Designing with Objects,” we talked about how

encapsulation makes testing systems easier. In theory, if

you create a class called Cabbie (see Figure 7.9) with the

appropriate public interfaces, any change to the

implementation of Cabbie should be transparent to all

other classes. However, in any design a change to a

superclass is certainly not transparent to a subclass. Do

you see the conundrum?

Figure 7.9 A UML diagram of the Cabbie class.

If the other classes were directly dependent on the

implementation of the Cabbie class, testing would

become more difficult, if not untenable. By using a

different design approach, by abstracting out the

behaviors and inheriting only attributes, these issues

noted above go away.

If you then create a subclass of Cabbie called

PartTimeCabbie, and PartTimeCabbie inherits the

implementation from Cabbie, changing the

implementation of Cabbie directly affects the

PartTimeCabbie class.

For example, consider the UML diagram in Figure 7.10.

PartTimeCabbie is a subclass of Cabbie. Thus,

PartTimeCabbie inherits the public implementation of

Cabbie, including the method giveDirections(). If

the method giveDirections()is changed in Cabbie,

it will have a direct impact on PartTimeCabbie and

any other classes that might later be subclasses of

Cabbie. In this subtle way, changes to the

implementation of Cabbie are not necessarily

encapsulated within the Cabbie class.

Figure 7.10 A UML diagram of the Cabbie/PartTimeCabbie classes.

To reduce the risk posed by this dilemma, it is important

that you stick to the strict is-a condition when using

inheritance. If the subclass were truly a specialization of

the superclass, changes to the parent would likely affect

the child in ways that are natural and expected. To

illustrate, if a Circle class inherits implementation

from a Shape class, and a change to the implementation

of Shape breaks Circle, then Circle was not truly a

Shape to begin with.

How can inheritance be used improperly? Consider a

situation in which you want to create a window for the

purposes of a graphical user interface (GUI). One

impulse might be to create a window by making it a

subclass of a rectangle class:

public class Rectangle {

}

public class Window extends Rectangle {

}

In reality a GUI window is much, much more than a

rectangle. It is not a specialized version of a rectangle, as

is a square. A true window might contain a rectangle (in

fact, many rectangles); however, it is not a true rectangle.

In this approach, a Window class should not inherit from

Rectangle, but it should contain Rectangle classes.

public class Window {

 Rectangle menubar;
 Rectangle statusbar;
 Rectangle mainview;

}

A Detailed Example of Polymorphism

Many people consider polymorphism a cornerstone of

OO design. Designing a class for the purpose of creating

totally independent objects is what OO is all about. In a

well-designed system, an object should be able to answer

all the important questions about it. As a rule, an object

should be responsible for itself. This independence is one

of the primary mechanisms of code reuse.

As stated in Chapter 1, polymorphism literally means

many shapes. When a message is sent to an object, the

object must have a method defined to respond to that

message. In an inheritance hierarchy, all subclasses

inherit the interfaces from their superclass. However,

because each subclass is a separate entity, each might

require a separate response to the same message.

To review the example in Chapter 1, consider a class

called Shape. This class has a behavior called Draw.

However, when you tell somebody to draw a shape, the

first question is likely to be, “What shape?” Simply telling

a person to draw a shape is too abstract (in fact, the

Draw method in Shape contains no implementation).

You must specify which shape you mean. To do this, you

provide the actual implementation in Circle and other

subclasses. Even though Shape has a Draw method,

Circle overrides this method and provides its own

Draw method. Overriding basically means replacing an

implementation of a parent with your own.

Object Responsibility

Let’s revisit the Shape example from Chapter 1 (see

Figure 7.11).

Figure 7.11 The Shape class hierarchy.

Polymorphism is one of the most elegant uses of

inheritance. Remember that a Shape cannot be

instantiated. It is an abstract class because it has an

abstract method, getArea(). Chapter 8 explains

abstract classes in great detail.

However, Rectangle and Circle can be instantiated

because they are concrete classes. Although Rectangle

and Circle are both shapes, they have some

differences. As shapes, their area can be calculated. Yet

the formula to calculate the area is different for each.

Thus, the area formulas cannot be placed in the Shape

class.

This is where polymorphism comes in. The premise of

polymorphism is that you can send messages to various

objects, and they will respond according to their object’s

type. For example, if you send the message getArea()

to a Circle class, you will invoke a different calculation

than if you send the same getArea() message to a

Rectangle class. This is because both Circle and

Rectangle are responsible for themselves. If you ask

Circle to return its area, it knows how to do this. If you

want a circle to draw itself, it can do this as well. A

Shape object could not do this even if it could be

instantiated because it does not have enough

information about itself. Notice that in the UML diagram

(Figure 7.11), the getArea() method in the Shape class

is italicized. This designates that the method is abstract.

As a very simple example, imagine that there are four

classes: the abstract class Shape, and concrete classes

Circle, Rectangle, and Star. Here is the code:

Click here to view code image

public abstract class Shape{

 public abstract void draw();

}
public class Circle extends Shape{

 public void draw() {

 System.out.println("I am drawing a

clbr://internal.invalid/book/OEBPS/Images/ch07_images.xhtml#p118pro01

Circle");

 }
}

public class Rectangle extends Shape{

 public void draw() {

 System.out.println("I am drawing a
Rectangle");

 }
}

public class Star extends Shape{

 public void draw() {

 System.out.println("I am drawing a
Star");

 }
}

Notice that only one method exists for each class:

draw(). Here is the important point regarding

polymorphism and an object being responsible for itself:

The concrete classes themselves have responsibility for

the drawing function. The Shape class does not provide

the code for drawing; the Circle, Rectangle, and

Star classes do this for themselves. Here is some code to

prove it:

Click here to view code image

public class TestShape {

 public static void main(String args[]) {

 Circle circle = new Circle();
 Rectangle rectangle = new Rectangle();
 Star star = new Star();

 circle.draw();
 rectangle.draw();

clbr://internal.invalid/book/OEBPS/Images/ch07_images.xhtml#p119pro01

 star.draw();

 }

}

The test application TestShape creates three classes:

Circle, Rectangle, and Star. To draw these classes,

TestShape asks the individual classes to draw

themselves:

circle.draw();
rectangle.draw();
star.draw();

When you execute TestShape, you get the following

results:

C:\>java TestShape
I am drawing a Circle
I am drawing a Rectangle
I am drawing a Star

This is polymorphism at work. What would happen if

you wanted to create a new shape, such as Triangle?

Simply write the class, compile it, test it, and use it. The

base class Shape does not have to change—nor does any

other code:

Click here to view code image

public class Triangle extends Shape{

 public void draw() {

 System.out.println("I am drawing a
Triangle");

 }
}

clbr://internal.invalid/book/OEBPS/Images/ch07_images.xhtml#p120pro01

A message can now be sent to Triangle. And even

though Shape does not know how to draw a triangle, the

Triangle class does:

Click here to view code image

public class TestShape {

 public static void main(String args[]) {

 Circle circle = new Circle();
 Rectangle rectangle = new Rectangle();
 Star star = new Star();
 Triangle triangle = new Triangle ();

 circle.draw();
 rectangle.draw();
 star.draw();
 triangle.draw();

 }

}

C:\>java TestShape
I am drawing a Circle
I am drawing a Rectangle
I am drawing a Star
I am drawing a Triangle

To see the real power of polymorphism, you can pass the

shape to a method that has absolutely no idea what

shape is coming. Take a look at the following code, which

includes the specific shapes as parameters:

Click here to view code image

public class TestShape {

 public static void main(String args[]) {

 Circle circle = new Circle();
 Rectangle rectangle = new Rectangle();
 Star star = new Star();

 drawMe(circle);

clbr://internal.invalid/book/OEBPS/Images/ch07_images.xhtml#p120pro02
clbr://internal.invalid/book/OEBPS/Images/ch07_images.xhtml#p121pro01

 drawMe(rectangle);
 drawMe(star);

 }

 static void drawMe(Shape s) {
 s.draw();
 }

}

In this case, the Shape object can be passed to the

method drawMe(), and the drawMe()method can

handle any valid Shape—even one you add later. You

can run this version of TestShape just like the previous

one.

Abstract Classes, Virtual Methods, and Protocols

Abstract classes, as they are defined in Java, can be

directly implemented in .NET and C++ as well. Not

surprisingly, the C# .NET code looks similar to the Java

code, as shown in the following:

Click here to view code image

public abstract class Shape{

 public abstract void draw();

}

The Visual Basic .NET code is written like this:

Public MustInherit Class Shape

 Public MustOverride Function draw()

End Class

The same functionality can be provided in C++ using

virtual methods with the following code:

clbr://internal.invalid/book/OEBPS/Images/ch07_images.xhtml#p121pro02

class Shape
{
 public:
 virtual void draw() = 0;
}

As mentioned in previous chapters, Objective-C and

Swift do not fully implement the functionality of abstract

classes.

For example, consider the following Java interface code

for the Shape class we have seen many times:

public abstract class Shape{

 public abstract void draw();

}

The corresponding Objective-C (Swift) protocol is shown

in the following code. Note that in both the Java code

and the Objective-C code, there is no implementation for

the draw() method.

@protocol Shape

@required
- (void) draw;

@end // Shape

At this point, the functionality for the abstract class and

the protocol are pretty much equivalent; however, here is

where the Java-type interface and protocols diverge.

Consider the following Java code:

public abstract class Shape{
 public abstract void draw();
 public void print() {
 System.out.println("I am printing");

 };
}

In the preceding Java code, the print () method

provides code that can be inherited by a subclass.

Although this is also the case with C# .NET, VB .NET,

and C++,the same cannot be said for an Objective-C

protocol, which would look like this:

@protocol Shape

@required
- (void) draw;
- (void) print;

@end // Shape

In this protocol, the print() method signature is

provided, and thus must be implemented by a subclass;

however, no code can be included. In short, subclasses

cannot directly inherit any code from a protocol. Thus,

the protocol cannot be used in the same way as an

abstract class, and this has implications when designing

an object model.

CONCLUSION

This chapter gives a basic overview of what inheritance

and composition are and how they are different. Many

well-respected OO designers have stated that

composition should be used whenever possible, and

inheritance should be used only when necessary.

However, this is a bit simplistic. I believe that the idea

that composition should be used whenever possible hides

the real issue, which might be that composition is more

appropriate in more cases than inheritance—not that it

should be used whenever possible. The fact that

composition might be more appropriate in most cases

does not mean that inheritance is evil. Use both

composition and inheritance, but only in their proper

contexts.

In earlier chapters, the concepts of abstract classes and

Java interfaces arose several times. In Chapter 8, we

explore the concept of development contracts and how

abstract classes and Java interfaces are used to satisfy

these contracts.

REFERENCES

Booch, Grady and Robert A. Maksimchuk and Michael

W. Engel and Bobbi J. Young, Jim Conallen, and Kelli A.

Houston. 2007. Object-Oriented Analysis and Design

with Applications, Third Edition. Boston, MA: Addison-

Wesley.

Coad, Peter, and Mark Mayfield. 1997. Java Design.

Upper Saddle River, NJ: Prentice Hall.

Gilbert, Stephen, and Bill McCarty. 1998. Object-

Oriented Design in Java. Berkeley CA: The Waite Group

Press.

Meyers, Scott. 2005. Effective C++, Third Edition.

Boston, MA: Addison-Wesley Professional.

8. Frameworks and Reuse:

Designing with Interfaces

and Abstract Classes
Chapter 7, “Mastering Inheritance and Composition,”

explains how inheritance and composition play major

roles in the design of object-oriented (OO) systems. This

chapter expands upon the concepts of interfaces,

protocols, and abstract classes.

Interfaces, protocols, and abstract classes are powerful

mechanisms for code reuse, providing the foundation for

a concept I call contracts. This chapter covers the topics

of code reuse, frameworks, contracts, interfaces,

protocols, and abstract classes (for the remainder of the

chapter, unless otherwise indicated, I use the term

interface to include the concept of protocols). At the end

of the chapter, we’ll work through an example of how all

these concepts can be applied to a real-world situation.

CODE: TO REUSE OR NOT TO REUSE?

Programmers have been dealing with the issue of code

reuse ever since writing their first line of code. Many

software development paradigms stress code reuse as a

major part of the process. Since the dawn of computer

software, the concept of reusing code has been

reinvented several times. The OO paradigm is no

different. One of the major advantages touted by OO

proponents is that if you write code properly the first

time, you can reuse it to your heart’s content.

This is true only to a certain degree. As with all design

approaches, the utility and the reusability of code depend

on how well it was designed and implemented. OO

design does not hold the patent on code reuse. There is

nothing stopping anyone from writing very robust and

reusable code in a non-OO language. Certainly, countless

numbers of routines and functions, written in structured

languages such as COBOL, C, and traditional VB, are of

high quality and are quite reusable.

Thus, it is clear that following the OO paradigm is not the

only way to develop reusable code. However, the OO

approach does provide several mechanisms for

facilitating the development of reusable code. One way to

create reusable code is to create frameworks. In this

chapter, we focus on using interfaces and abstract classes

to create frameworks and encourage reusable code.

WHAT IS A FRAMEWORK?

Hand in hand with the concept of code reuse is the

concept of standardization, which is sometimes called

plug and play. The idea of a framework revolves around

these plug-and-play and reuse principles. One classic

example of a framework is a desktop application. Let’s

take an office suite application as an example. The

document editor that I am currently using has a ribbon

that includes multiple tab options. These options are

similar to those in the presentation package and the

spreadsheet software that I also have open. In fact, the

first two menu items (Home, Insert) are the same in all

three programs. Not only are the menu options similar,

but many of the options look remarkably alike as well

(New, Open, Save, and so on). Below the ribbon is the

document area—whether it be for a document, a

presentation, or a spreadsheet. The common framework

makes it easier to learn various applications within the

office suite. It also makes a developer’s life easier by

allowing maximum code reuse, not to mention that we

can reuse portions of the design as well.

The fact that all these menu bars have a similar look and

feel is obviously not an accident. In fact, when you

develop in most integrated development environments,

on a certain platform like Microsoft Windows or Linux,

for example, you get certain things without having to

create them yourself. When you create a window in a

Windows environment, you get elements like the main

title bar and the file Close button in the top-right corner.

Actions are standardized as well—when you double-click

the main title bar, the screen always

minimizes/maximizes. When you click the Close button

in the top-right corner, the application always

terminates. This is all part of the framework. Figure 8.1 is

a screenshot of a word processor. Note the menu bars,

toolbars, and other elements that are part of the

framework.

Figure 8.1 A word processing framework.

A word processing framework generally includes

operations such as creating documents, opening

documents, saving documents, cutting text, copying text,

pasting text, searching through documents, and so on. To

use this framework, a developer must use a

predetermined interface to create an application. This

predetermined interface conforms to the standard

framework, which has two obvious advantages. First, as

we have already seen, the look and feel are consistent,

and the end users do not have to learn a new framework.

Second, a developer can take advantage of code that has

already been written and tested (and this testing issue is

a huge advantage). Why write code to create a brand new

Open dialog when one already exists and has been

thoroughly tested? In a business setting, when time is

critical, people do not want to have to learn new things

unless it is absolutely necessary.

Code Reuse Revisited

In Chapter 7, we talked about code reuse as it pertains to inheritance—
basically one class inheriting from another class. This chapter is about
frameworks and reusing whole or partial systems.

The obvious question is this: If you need a dialog box,

how do you use the dialog box provided by the

framework? The answer is simple: Follow the rules that

the framework provides. And where might you find these

rules? The rules for the framework are found in the

documentation. The person or persons who wrote the

class, classes, or class libraries should have provided

documentation on how to use the public interfaces of the

class, classes, or class libraries (at least we hope). In

many cases, this takes the form of the application-

programming interface (API).

For example, to create a menu bar in Java, you would

bring up the API documentation for the JMenuBar class

and take a look at the public interfaces it presents. Figure

8.2 shows a part of the Java API. By using these APIs,

you can create a valid Java application and conform to

required standards. If you follow these standards, your

application will be set to run in Java-enabled browsers.

Figure 8.2 API documentation.

WHAT IS A CONTRACT?

In the context of this chapter, we will consider a contract

to be any mechanism that requires a developer to comply

with the specifications of an API. Often, an API is

referred to as a framework. The online dictionary,

Merriam-Webster (https://www.merriam-webster.com),

defines a contract as a “binding agreement between two

https://www.merriam-webster.com/

or more persons or parties, especially: one legally

enforceable.”

This is exactly what happens when a developer uses an

API—with the project manager, business owner, or

industry standard providing the enforcement. When

using contracts, the developer is required to comply with

the rules defined in the framework. This includes issues

such as method names, number of parameters, and so on

(signatures, and the like). In short, standards are created

to facilitate good development practices.

The Term Contract

The term contract is widely used in many aspects of business, including
software development. Do not confuse the concept presented here with other
possible software design concepts called contracts.

Enforcement is vital because it is always possible for a

developer to break a contract. Without enforcement, a

rogue developer could decide to reinvent the wheel and

write her own code rather than use the specification

provided by the framework. There is little benefit to a

standard if people routinely disregard or circumvent it.

In Java and the .NET languages, the two ways to

implement contracts are to use abstract classes and

interfaces.

Abstract Classes

One way a contract is implemented is via an abstract

class. An abstract class is a class that contains one or

more methods that do not have any implementation

provided. Suppose that you have an abstract class called

Shape. It is abstract because you cannot instantiate it. If

you ask someone to draw a shape, the first thing the

person will most likely ask you is, “What kind of shape?”

Thus, the concept of a shape is abstract. However, if

someone asks you to draw a circle, this does not pose

quite the same problem, because a circle is a concrete

concept. You know what a circle looks like. You also

know how to draw other shapes, such as rectangles.

How does this apply to a contract? Let’s assume that we

want to create an application to draw shapes. Our goal is

to draw every kind of shape represented in our current

design, as well as ones that might be added later. There

are two conditions we must adhere to.

First, we want all shapes to use the same syntax to draw

themselves. For example, we want every shape

implemented in our system to contain a method called

draw(). Thus, seasoned developers implicitly know that

to draw a shape, you invoke the draw() method,

regardless of what the shape happens to be.

Theoretically, this reduces the amount of time spent

fumbling through manuals, and it cuts down on syntax

errors.

Second, remember that it is important that every class be

responsible for its own actions. Thus, even though a class

is required to provide a method called draw(), that class

must provide its own implementation of the code. For

example, the classes Circle and Rectangle both have

a draw() method; however, the Circle class obviously

has code to draw a circle, and as expected, the

Rectangle class has code to draw a rectangle. When we

ultimately create classes called Circle and Rectangle,

which are subclasses of Shape, these classes must

implement their own version of draw() (see Figure 8.3).

Figure 8.3 An abstract class hierarchy.

Abstract Methods

In the UML diagrams, note that the abstract methods are italicized.

In this way, we have a Shape framework that is truly

polymorphic. The draw() method can be invoked for

every single shape in the system, and invoking each

shape produces a different result. Invoking the draw()

method on a Circle object draws a circle, and invoking

the draw() method on a Rectangle object draws a

rectangle. In essence, sending a message to an object

evokes a different response, depending on the object.

This is the essence of polymorphism.

circle.draw(); // draws a circle
rectangle.draw(); // draws a rectangle

Let’s look at some code to illustrate how Rectangle and

Circle conform to the Shape contract. Here is the code

for the Shape class:

public abstract class Shape {

 public abstract void draw(); // no

implementation

}

Note that the class does not provide any implementation

for draw(); basically there is no code, and this is what

makes the method abstract (providing any code would

make the method concrete). There are two reasons why

there is no implementation. First, Shape does not know

what to draw, so we could not implement the draw()

method even if we wanted to.

Structured Analogy

This is an interesting issue. If we did want the Shape class to contain the code
for all possible shapes, present and future, conditional statements, such as a
Java switch statement, would be required. This would be very messy and
difficult to maintain. This is one example of where the strength of an object-
oriented design comes into play.

Second, we want the subclasses to provide the

implementation. Let’s look at the Circle and

Rectangle classes:

Click here to view code image

public class Circle extends Shape {

 public void Draw() {System.out.println ("Draw
a Circle")};

}

public class Rectangle extends Shape {

 public void Draw() {System.out.println ("Draw
a Rectangle")};

}

Note that both Circle and Rectangle extend (that is,

inherit from) Shape. Also notice that they provide the

actual implementation (in this case, the implementation

clbr://internal.invalid/book/OEBPS/Images/ch08_images.xhtml#p130pro01

is trivial). Here is where the contract comes in. If

Circle inherits from Shape and fails to provide a

draw() method, Circle won’t even compile. Thus,

Circle would fail to satisfy the contract with Shape. A

project manager can require that programmers creating

shapes for the application must inherit from Shape. By

doing this, all shapes in the application will have a

draw() method that performs in an expected manner.

Circle

If Circle does indeed fail to implement a draw() method, Circle will be
considered abstract itself. Thus, yet another subclass must inherit from
Circle and implement a draw() method. This subclass would then become
the concrete implementation of both Shape and Circle.

Although the concept of abstract classes revolves around

abstract methods, nothing is stopping Shape from

providing some implementation. Remember that the

definition for an abstract class is that it contains one or

more abstract methods—this implies that an abstract

class can also provide concrete methods. For example,

although Circle and Rectangle implement the

draw() method differently, they share the same

mechanism for setting the color of the shape. So, the

Shape class can have a color attribute and a method to

set the color. This setColor() method is a concrete

implementation and would be inherited by both Circle

and Rectangle. The only methods that a subclass must

implement are the ones that the superclass declares as

abstract. These abstract methods are the contract.

Caution

Be aware that in the cases of Shape, Circle, and Rectangle, we are
dealing with a strict inheritance relationship, as opposed to an interface, which
we discuss in the next section. Circle is-a Shape, and Rectangle is-a
Shape.

Some languages, such as C++, use only abstract classes

to implement contracts; however, Java and .NET have

another mechanism that implements a contract called an

interface. In other cases, such as Objective-C and Swift,

abstract classes are not provided by the language. Thus,

to implement a contract in Objective-C or Swift, you

need to use protocols.

Interfaces

Before defining an interface, it is interesting to note that

C++ does not have a construct called an interface. When

using C++, you can essentially create an interface by

using a syntax subset of an abstract class. For example,

the following C++ code is an abstract class. However,

because the only method in the class is a virtual method,

there is no implementation. As a result, this abstract

class provides the same functionality as an interface.

class Shape
{
 public:
 virtual void draw() = 0;
}

Interface Terminology

This is another one of those times when software terminology gets confusing—
very confusing. Be aware that you can use the term interface in several ways,
so be sure to use each in the proper context.

First, the graphical user interface (GUI) is widely used when referring to the
visual interface that a user interacts with—often on a monitor.

Second, the interface to a class is basically the signatures of its methods.

Third, in Objective-C and Swift, you break up the code into physically separate
modules called the interface and implementation.

Fourth, an interface and a protocol are basically a contract between a parent
class and a child class.Can you think of any others?

The obvious question is this: If an abstract class can

provide the same functionality as an interface, why do

Java and .NET bother to provide this construct called an

interface? And why does Objective-C and Swift provide

the protocol?

For one thing, C++ supports multiple inheritance,

whereas Java, Objective-C, Swift, and .NET do not.

Although Java, Objective-C, Swift, and .NET classes can

inherit from only one parent class, they can implement

many interfaces. Using more than one abstract class

constitutes multiple inheritance; thus, Java and .NET

cannot go this route. In short, when using an interface,

you do not have to concern yourself with a formal

inheritance structure—you can theoretically add an

interface to any class if the design makes sense.

However, an abstract class requires you to inherit from

that abstract class and, by extension, all of its potential

parents.

Circle

Because of these considerations, interfaces are often thought to be a
workaround for the lack of multiple inheritance. This is not technically true.
Interfaces are a separate design technique, and although they can be used to
design applications that could be done with multiple inheri-tance, they do not
replace or circumvent multiple inheritance.

As with abstract classes, interfaces are a powerful way to

enforce contracts for a framework. Before we get into any

conceptual definitions, it’s helpful to see an actual

interface UML diagram and the corresponding code.

Consider an interface called Nameable, as shown in

Figure 8.4.

Figure 8.4 A UML diagram of a Java interface.

Note that Nameable is identified in the UML diagram as

an interface, which distinguishes it from a regular class

(abstract or not). Also note that the interface contains

two methods, getName() and setName(). Here is the

corresponding code:

public interface Nameable {

 String getName();
 void setName (String aName);

}

For comparison purposes, here is the code for the

corresponding Objective-C protocol:

@protocol Nameable

@required
- (char *) getName;
- (void) setName: (char *) n;
@end // Nameable

In the code, notice that Nameable is not declared as a

class but as an interface. Because of this, both methods,

getName() and setName(), are considered abstract

and no implementation is provided. An interface, unlike

an abstract class, can provide no implementation at all.

As a result, any class that implements an interface must

provide the implementation for all methods. For

example, in Java, a class inherits from an abstract class,

whereas a class implements an interface.

Implementation Versus Definition Inheritance

Sometimes inheritance is referred to as implementation inheritance, and
interfaces are called definition inheritance.

Tying It All Together

If both abstract classes and interfaces provide abstract

methods, what is the real difference between the two? As

we saw before, an abstract class can provides both

abstract and concrete methods, whereas an interface

provides only abstract methods. Why is there such a

difference?

Assume that we want to design a class that represents a

dog, with the intent of adding more mammals later. The

logical move would be to create an abstract class called

Mammal:

Click here to view code image

public abstract class Mammal {

 public void generateHeat()
{System.out.println("Generate heat");}

 public abstract void makeNoise();

}

This class has a concrete method called

generateHeat()and an abstract method called

makeNoise(). The method generateHeat()is

concrete because all mammals generate heat. The

method makeNoise()is abstract because each mammal

will make noise differently.

Let’s also create a class called Head that we will use in a

composition relationship:

Click here to view code image

public class Head {

 String size;

 public String getSize() {

clbr://internal.invalid/book/OEBPS/Images/ch08_images.xhtml#p133pro01
clbr://internal.invalid/book/OEBPS/Images/ch08_images.xhtml#p133pro02

 return size;

 }

 public void setSize(String aSize) { size =
aSize; }

}

Head has two methods: getSize() and setSize().

Although composition might not shed much light on the

difference between abstract classes and interfaces, using

composition in this example does illustrate how

composition relates to abstract classes and interfaces in

the overall design of an object-oriented system. I feel that

this is important because the example is more complete.

Remember that there are two ways to build object

relationships: the is-a relationship, represented by

inheritance, and the has-a relationship, represented by

composition. The question is: Where does the interface

fit in?

To answer this question and tie everything together, let’s

create a class called Dog that is a subclass of Mammal,

implements Nameable, and has a Head object (see

Figure 8.5).

Figure 8.5 A UML diagram of the sample code.

In a nutshell, Java and .NET build objects in three ways:

inheritance, interfaces, and composition. Note the

dashed line in Figure 8.5 that represents the interface.

This example illustrates when you should use each of

these constructs. When do you choose an abstract class?

When do you choose an interface? When do you choose

composition? Let’s explore further.

You should be familiar with the following concepts:

Dog is a Mammal, so the relationship is inheritance.

Dog implements Nameable, so the relationship is an interface.

Dog has a Head, so the relationship is composition.

The following code shows how you would incorporate an

abstract class and an interface in the same class:

Click here to view code image

clbr://internal.invalid/book/OEBPS/Images/ch08_images.xhtml#p134pro01

public class Dog extends Mammal implements
Nameable {

 String name;

 Head head;

 public void makeNoise()
{System.out.println("Bark");}

 public void setName (String aName) {name =
aName;}
 public String getName () {return (name);}

}

After looking at the UML diagram, you might come up

with an obvious question: Even though the dashed line

from Dog to Nameable represents an interface, isn’t it

still inheritance? At first glance, the answer is not simple.

Although interfaces may well be considered a special

type of inheritance, it is important to know what special

means. Understanding these special differences is key to

understanding a solid object-oriented design.

Although inheritance is a strict is-a relationship, an

interface is not quite. For example:

A dog is a mammal.

A reptile is not a mammal.

Thus, a Reptile class could not inherit from the

Mammal class. However, an interface transcends the

various classes. For example:

A dog is nameable.

A lizard is nameable.

The key here is that classes in a strict inheritance

relationship must be related. For example, in this design,

the Dog class is directly related to the Mammal class. A

dog is a mammal. Dogs and lizards are not related at the

mammal level because you can’t say that a lizard is a

mammal. However, interfaces can be used for classes

that are not related. You can name a dog just as well as

you can name a lizard. This is the key difference between

using an abstract class and using an interface.

The abstract class represents some sort of

implementation. In fact, we saw that Mammal provided a

concrete method called generateHeat(). Even though

we do not know what kind of mammal we have, we know

that all mammals generate heat. However, an interface

models only behavior. An interface never provides any

type of implementation, only behavior. The interface

specifies behavior that is the same across classes that

conceivably have no connection. Not only are dogs

nameable, but so are cars, planets, and so on.

Some say that interfaces are a poor substitute for

multiple inheritance. While it may be true that interfaces

were part of the same Java design that eliminated

multiple inheritance (and were adopted by many other

languages), interfaces are used in different design

situations than inheritance, as the Nameable example

illustrates.

The Compiler Proof

Can we prove or disprove that interfaces have a true is-a

relationship? In the case of Java (and this can also be

done in C# or VB), we can let the compiler tell us.

Consider the following code:

Dog D = new Dog();
Head H = D;

When this code is run through the compiler, the

following error is produced:

Click here to view code image

Test.java:6: Incompatible type for Identifier.
Can't convert Dog to Head. Head H = D;

Obviously, a dog is not a head. Not only do we know this,

but the compiler agrees. However, as expected, the

following code works just fine:

Dog D = new Dog();
Mammal M = D;

This is a true inheritance relationship, and it is not

surprising that the compiler parses this code cleanly

because a dog is a mammal.

Now we can perform the true test of the interface. Is an

interface an actual is-a relationship? The compiler thinks

so:

Dog D = new Dog();
Nameable N = D;

This code works fine. So, we can safely say that a dog is a

nameable entity. This is a simple but effective proof that

both inheritance and interfaces constitute an is-a

relationship. The interface relationship is more like a

“behaves-like-a” when used properly. You might have

data interfaces that are “is-a,” but more often you are

going to have the former.

Nameable Interface

An interface specifies certain behavior but not the implementation. By
implementing the Nameable interface, you are saying that you will provide
nameable behavior by implementing methods called getName() and
setName(). How you implement these methods is up to you. All you have to
do is to provide the methods.

clbr://internal.invalid/book/OEBPS/Images/ch08_images.xhtml#p135pro01

Making a Contract

The simple rule for defining a contract is to provide an

unimplemented method, via either an abstract class or

an interface. Thus, when a subclass is designed with the

intent of complying with the contract, it must provide the

implementation for the unimplemented methods in the

parent class or interface.

As stated earlier, one of the advantages of a contract is to

standardize coding conventions. Let’s explore this

concept in greater detail by providing an example of

what happens when coding standards are not used. In

this case, there are three classes: Planet, Car, and Dog.

Each class implements code to name the entity.

However, because they are all implemented separately,

each class has different syntax to retrieve the name.

Consider the following code for the Planet class:

Click here to view code image

public class Planet {
 String planetName;
 public void getPlanetName() {return
planetName;};
}

Likewise, the Car class might have code like this:

Click here to view code image

public class Car {

 String carName;

 public String getCarName() { return carName;
};

}

And the Dog class might have code like this:

clbr://internal.invalid/book/OEBPS/Images/ch08_images.xhtml#p136pro01
clbr://internal.invalid/book/OEBPS/Images/ch08_images.xhtml#p137pro01

public class Dog {

 String dogName;

 public String getDogName() { return dogName;
};

}

The obvious issue here is that anyone using these classes

would have to look at the documentation (what a

horrible thought!) to figure out how to retrieve the name

in each of these cases. Even though looking at the

documentation is not the worst fate in the world, it

would be nice if all the classes used in a project (or

company) would use the same naming convention—it

would make life a bit easier. This is where the Nameable

interface comes in.

The idea would be to make a contract for any type of

class that needs to use a name. As users of various

classes move from one class to the other, they would not

have to figure out the current syntax for naming an

object. The Planet class, the Car class, and the Dog

class would all have the same naming syntax.

To implement this lofty goal, we can create an interface

(we can use the Nameable interface that we used

previously). The convention is that all classes must

implement Nameable. In this way, the users have to

remember only a single interface for all classes when it

comes to naming conventions:

Click here to view code image

public interface Nameable {

 public String getName();
 public void setName(String aName);

clbr://internal.invalid/book/OEBPS/Images/ch08_images.xhtml#p137pro02

}

The new classes, Planet, Car, and Dog, should look like

this:

public class Planet implements Nameable {

 String planetName;

 public String getName() {return planetName;}
 public void setName(String myName) {
planetName = myName; }

}

public class Car implements Nameable {

 String carName;

 public String getName() {return carName;}
 public void setName(String myName) { carName
= myName;}

}

public class Dog implements Nameable {

 String dogName;

 public String getName() {return dogName;}
 public void setName(String myName) { dogName
= myName;}

}

In this way, we have a standard interface, and we’ve used

a contract to ensure that it is the case. In fact, one of the

major benefits of using a modern IDE is that, when

implementing an interface, the IDE will automatically

stub out the required methods. This feature saves lots of

time and effort when using interfaces.

There is one little issue that you might have thought

about. The idea of a contract is great as long as everyone

plays by the rules, but what if some shady individual

doesn’t want to play by the rules (the rogue

programmer)? The bottom line is that there is nothing to

stop people from breaking the standard contract;

however, in some cases, doing so will get them in deep

trouble.

On one level, a project manager can insist that everyone

use the contract, just like team members must use the

same variable naming conventions and configuration

management system. If a team member fails to abide by

the rules, he could be reprimanded, or even fired.

Enforcing rules is one way to ensure that contracts are

followed, but there are instances in which breaking a

contract will result in unusable code. Consider the Java

interface Runnable. Old-style Java applets implement

the Runnable interface because it requires that any

class implementing Runnable must implement a

run()method. This is important because the browser

that calls the applet will call the run() method within

Runnable. If the run()method does not exist, things

will break.

System Plug-in Points

Basically, contracts are “plug-in points” into your code.

Anyplace where you want to make parts of a system

abstract, you can use a contract. Instead of coupling to

objects of specific classes, you can connect to any object

that implements the contract. You need to be aware of

where contracts are useful; however, you can overuse

them. You want to identify common features such as the

Nameable interface, as discussed in this chapter.

However, be aware that there is a trade-off when using

contracts. They might make code reuse more of a reality,

but they make things somewhat more complex.

AN E-BUSINESS EXAMPLE

It’s sometimes hard to convince a decision maker, who

may have no development background, of the monetary

savings of code reuse. However, when reusing code, it is

pretty easy to understand the advantage to the bottom

line. In this section, we’ll walk through a simple but

practical example of how to create a workable framework

using inheritance, abstract classes, interfaces, and

composition.

An E-Business Problem

Perhaps the best way to understand the power of reuse is

to present an example of how you would reuse code. In

this example, we’ll use inheritance (via interfaces and

abstract classes) and composition. Our goal is to create a

framework that will make code reuse a reality, reduce

coding time, and reduce maintenance—all the typical

software development wish-list items.

Let’s start our own Internet business. Let’s assume that

we have a client, a small pizza shop called Papa’s Pizza.

Despite the fact that it is a small, family-owned business,

Papa realizes that a Web presence can help the business

in many ways. Papa wants his customers to access his

website, find out what Papa’s Pizza is all about, and order

pizzas right from the comfort of their browsers.

At the site we develop, customers will be able to access

the website, select the products they want to order, and

select a delivery option and time for delivery. They can

eat their food at the restaurant, pick up the order, or

have the order delivered. For example, a customer

decides at 3:00 that he wants to order a pizza dinner

(with salads, breadsticks, and drinks), to be delivered to

his home at 6:00. Let’s say the customer is at work (on a

break, of course). He gets on the Web and selects the

pizzas, including size, toppings, and crust; the salads,

including dressings; breadsticks; and drinks. He chooses

the delivery option and requests that the food be

delivered to his home at 6:00. Then he pays for the order

by credit card, gets a confirmation number, and exits.

Within a few minutes he gets an email confirmation as

well. We will set up accounts so that when people bring

up the site, they will get a greeting reminding them of

who they are, what their favorite pizza is, and what new

pizzas have been created this week.

When the software system is finally delivered, it is

deemed a total success. For the next several weeks,

Papa’s customers happily order pizzas and other food

and drinks over the Internet. During this rollout period,

Papa’s brother-in-law, who owns a donut shop called

Dad’s Donuts, pays Papa a visit. Papa shows Dad the

system, and Dad falls in love with it. The next day, Dad

calls our company and asks us to develop a Web-based

system for his donut shop. This is great, and exactly what

we had hoped for. Now, how can we leverage the code

that we used for the pizza shop in the system for the

donut shop?

How many more small businesses, besides Papa’s Pizza

and Dad’s Donuts, could take advantage of our

framework to get on the Web? If we can develop a good,

solid framework, we will be able to efficiently deliver

Web-based systems at lower costs than we were able to

do before. There will also be an added advantage that the

code will have been tested and implemented previously,

so debugging and maintenance should be greatly

reduced.

The Non-Reuse Approach

For many reasons, the concept of code reuse has not

been as successful as some software developers would

like. First, many times reuse is not even considered when

developing a system. Second, even when reuse is entered

into the equation, the issues of schedule constraints,

limited resources, and budgetary concerns often short-

circuit the best intentions.

In many instances, code ends up highly coupled to the

specific application for which it was written. This means

that the code within the application is highly dependent

on other code within the same application.

A lot of code reuse is the result of using cut, copy, and

paste operations. While one application is open in a text

editor, you copy code and then paste it into another

application. Sometimes certain functions or routines can

be used without any change. As is unfortunately often the

case, even though most of the code may remain identical,

a small bit of code must change to work in a specific

application.

For example, consider two separate applications, as

represented by the UML diagram in Figure 8.6.

Figure 8.6 Applications on divergent paths.

In this example, the applications testDonutShop and

testPizzaShop are totally independent code modules.

The code is kept separate, and there is no interaction

between the modules. However, these applications might

use some common code. In fact, some code might have

been copied verbatim from one application to another.

At some point, someone involved with the project might

decide to create a library of these shared pieces of code to

use in these and other applications. In many well-run

and disciplined projects, this approach works well.

Coding standards, configuration management, change

management, and so on are all very well run. However,

in many instances, this discipline breaks down.

Anyone who is familiar with the software development

process knows that when bugs crop up and time is of the

essence, there is the temptation to put some fixes or

additions into a system that are specific to the

application currently in distress. This might fix the

problem for the distressed application but could have

unintended, possibly harmful, implications for other

applications. Thus, in situations like these, the initially

shared code can diverge, and separate code bases must

be maintained.

For example, one day Papa’s website crashes. He calls us

in a panic, and one of our developers is able to track

down the problem. The developer fixes the problem,

knowing that the fix works but is not quite sure why. The

developer also does not know what other areas of the

system the fix might inadvertently affect. So the

developer makes a copy of the code, strictly for use in the

Papa’s Pizza system. This is affectionately named Version

2.01papa. Because the developer does not yet totally

understand the problem and because Dad’s system is

working fine, the code is not migrated to the donut

shop’s system.

Tracking Down a Bug

The fact that the bug turned up in the pizza system does not mean that it will
also turn up in the donut system. Even though the bug caused a crash in the
pizza shop, the donut shop might never encounter it. It may be that the fix to
the pizza shop's code is more dangerous to the donut shop than the original
bug.

The next week Dad calls in a panic, with a totally

unrelated problem. A developer fixes it, again not

knowing how the fix will affect the rest of the system,

makes a separate copy of the code, and calls it Version

2.03dad. This scenario gets played out for all the sites we

now have in operation. There are now a dozen or more

copies of the code, with various versions for the various

sites. This becomes a mess. We have multiple code paths

and have crossed the point of no return. We can never

merge them again. (Perhaps we could, but from a

business perspective, this would be costly.)

Our goal is to avoid the mess of the previous example.

Although many systems must deal with legacy issues,

fortunately for us, the pizza and donut applications are

brand-new systems. Thus, we can use a bit of foresight

and design this system in a reusable manner. In this way,

we will not run into the maintenance nightmare just

described. What we want to do is factor out as much

commonality as possible. In our design, we will focus on

all the common business functions that exist in a Web-

based application. Instead of having multiple application

classes like testPizzaShop and testDonutShop, we

can create a design that has a class called Shop that all

the applications will use.

Notice that testPizzaShop and testDonutShop have

similar interfaces, getInventory() and

buyInventory(). We will factor out this commonality

and require that all applications that conform to our

Shop framework implement getInventory() and

buyInventory() methods. This requirement to

conform to a standard is sometimes called a contract. By

explicitly setting forth a contract of services, you isolate

the code from a single implementation. In Java, you can

implement a contract by using an interface or an abstract

class. Let’s explore how this is accomplished.

An E-Business Solution

Now let’s show how to use a contract to factor out some

of the commonality of these systems. In this case, we will

create an abstract class to factor out some of the

implementation, and an interface (our familiar

Nameable) to factor out some behavior.

Our goal is to provide customized versions of our Web

application with the following features:

An interface, called Nameable, which is part of the contract.

An abstract class, called Shop, which is also part of the contract.

A class called CustList, which we use in composition.

A new implementation of Shop for each customer we service.

The UML Object Model

The newly created Shop class is where the functionality

is factored out. Notice in Figure 8.7 that the methods

getInventory() and buyInventory() have been

moved up the hierarchy tree from DonutShop and

PizzaShop to the abstract class Shop. Now, whenever

we want to provide a new, customized version of Shop,

we plug in a new implementation of Shop (such as a

grocery shop). Shop is the contract that the

implementations must abide by.

Click here to view code image

clbr://internal.invalid/book/OEBPS/Images/ch08_images.xhtml#p142pro01

public abstract class Shop {

 CustList customerList;

 public void CalculateSaleTax() {

 System.out.println("Calculate Sales
Tax");

 }

 public abstract String[] getInventory();

 public abstract void buyInventory(String
item);

}

Figure 8.7 A UML diagram of the Shop model.

To show how composition fits into this picture, the Shop

class has a customer list. Thus, the class CustList is

contained within Shop:

Click here to view code image

public class CustList {

 String name;

 public String findCust() {return name;}
 public void addCust(String Name){}

}

To illustrate the use of an interface in this example, an

interface called Nameable is defined:

Click here to view code image

public interface Nameable {

 public abstract String getName();
 public abstract void setName(String name);

}

We could potentially have a large number of different

implementations, but all the rest of the code (the

application) is the same. In this small example, the code

savings might not look like a lot. But in a large, real-

world application, the code savings is significant. Let’s

take a look at the donut shop implementation:

Click here to view code image

public class DonutShop extends Shop implements
Nameable {

 String companyName;

 String[] menuItems = {
 "Donuts",
 "Muffins",
 "Danish",
 "Coffee",
 "Tea"
 };

 public String[] getInventory() {

 return menuItems;

 }

 public void buyInventory(String item) {

 System.out.println("\nYou have just
purchased " + item);

 }

 public String getName(){

 return companyName;
 }

 public void setName(String name){

 companyName = name;
 }
}

The pizza shop implementation looks very similar:

Click here to view code image

public class PizzaShop extends Shop implements
Nameable {

 String companyName;

 String[] foodOfferings = {
 "Pizza",
 "Spaghetti",
 "Garden Salad",
 "Antipasto",
 "Calzone"
 }

 public String[] getInventory() {

 return foodOfferings;

 }

 public void buyInventory(String item) {

 System.out.println("\nYou have just

purchased " + item);

 }

 public String getName(){

 return companyName;
 }

 public void setName(String name){

 companyName = name;
 }

}

Unlike the initial case, where a large number of

customized applications exist, we now have only a single

primary class (Shop) and various customized classes

(PizzaShop, DonutShop). There is no coupling

between the application and any of the customized

classes. The only thing the application is coupled to is the

contract (Shop). The contract specifies that any

implementation of Shop must provide an

implementation for two methods, getInventory()

and buyInventory(). It also must provide an

implementation for getName() and setName() that

relates to the interface Nameable that is implemented.

Although this solution solves the problem of highly

coupled implementations, we still have the problem of

deciding which implementation to use. With the current

strategy, we would still have to have separate

applications. In essence, you must provide one

application for each Shop implementation. Even though

we are using the Shop contract, we still have the same

situation as before we used the contract:

DonutShop myShop= new DonutShop();

PizzaShop myShop = new PizzaShop ();

How do we get around this problem? We can create

objects dynamically. In Java, we can use code like this:

Click here to view code image

String className = args[0];

Shop myShop;

myShop =
(Shop)Class.forName(className).newInstance();

In this case, you set className by passing a parameter

to the code. (There are other ways to set className,

such as by using a system property.)

Let’s look at Shop using this approach. (Note that there

is no exception handling and nothing else besides object

instantiation.)

Click here to view code image

class TestShop {

 public static void main (String args[]) {

 Shop shop = null;

 String className = args[0];

 System.out.println("Instantiate the class:"
+ className + "\n");

 try {

 // new pizzaShop();
 shop =
(Shop)Class.forName(className).newInstance();

 } catch (Exception e) {

 e.printStackTrace();
 }

 String[] inventory = shop.getInventory();

 // list the inventory

 for (int i=0; i<inventory.length; i++) {
 System.out.println("Argument" + i + " =
" + inventory[i]);
 }

 // buy an item

 shop.buyInventory(Inventory[1]);

 }

}

In this way, we can use the same application code for

both PizzaShop and DonutShop. If we add a

GroceryShop application, we only have to provide the

implementation and the appropriate string to the main

application. No application code needs to change.

CONCLUSION

When designing classes and object models, it is vitally

important to understand how the objects are related to

each other. This chapter discusses the primary topics of

building objects: inheritance, interfaces, and

composition. In this chapter, you have learned how to

build reusable code by designing with contracts.

In Chapter 9, “Building Objects and Object-Oriented

Design,” we complete our OO journey and explore how

objects that might be totally unrelated can interact with

each other.

REFERENCES

Booch, Grady and Robert A. Maksimchuk and Michael

W. Engel and Bobbi J. Young and Jim Conallen and Kelli

A. Houston. 2007. Object-Oriented Analysis and Design

with Applications, Third Edition. Boston, MA: Addison-

Wesley.

Coad, Peter, and Mark Mayfield. 1997. Java Design.

Upper Saddle River, NJ: Prentice Hall.

Meyers, Scott. 2005. Effective C++, Third Edition.

Boston, MA: Addison-Wesley Professional.

9. Building Objects and

Object-Oriented Design
The previous two chapters cover the topics of inheritance

and composition. In Chapter 7, “Mastering Inheritance

and Composition,” we learned that inheritance and

composition represent the primary ways to build objects.

In Chapter 8, “Frameworks and Reuse: Designing with

Interfaces and Abstract Classes,” we learned that there

are varying degrees of inheritance and how inheritance,

interfaces, abstract classes, and composition all fit

together.

This chapter covers the issue of how objects are related

to each other in an overall design. You might say that this

topic was already introduced, and you would be correct.

Both inheritance and composition represent ways in

which objects interact. However, inheritance and

composition have one significant difference in the way

objects are built. When inheritance is used, the end

result is, at least conceptually, a single class that

incorporates all the behaviors and attributes of the

inheritance hierarchy. When composition is used, one or

more classes are used to build another class.

Although it is true that inheritance is a relationship

between two classes, what is really happening is that a

parent is created that incorporates the attributes and

methods of a child class. Let’s revisit the example of the

Person and Employee classes (see Figure 9.1).

Although there are indeed two separately designed

classes here, the relationship is not simply interaction—it

is inheritance. Basically, an employee is a person. An

Employeeobject does not send a message to a Person

object. An Employee object does need the services of a

Person object. This is because an Employee object is a

Person object.

Figure 9.1 An inheritance relationship.

However, composition is a different situation.

Composition represents interactions between distinct

objects. So, whereas Chapter 8 primarily covers the

different flavors of inheritance, this chapter delves into

the various flavors of composition and how objects

interact with each other.

COMPOSITION RELATIONSHIPS

We have already seen that composition represents a part

of a whole. Although the inheritance relationship is

stated in terms of is-a, composition is stated in terms of

has-a. We know intuitively that a car “has-a” steering

wheel (see Figure 9.2).

Figure 9.2 A composition relationship.

Is-a and Has-a

Please forgive my grammar: For consistency, I will stick with “has a engine,”
even though “has an engine” is grammatically correct. I do this because I want
to simply state the rules as “is-a” and “has-a.”

The reason to use composition is that it builds systems

by combining less complex parts. This is a common way

for people to approach problems. Studies show that even

the best of us can keep, at most, seven chunks of data in

our short-term memory at one time. Thus, we like to use

abstract concepts. Instead of saying that we have a large

unit with a steering wheel, four tires, an engine, and so

on, we say that we have a car. This makes it easier for us

to communicate and keep things clear in our heads.

Composition also helps in other ways, such as making

parts interchangeable. If all steering wheels are the same,

it does not matter which specific steering wheel is

installed in a specific car. In software development,

interchangeable parts mean reuse.

In Chapters 7 and 8 of their book Object-Oriented

Design in Java, Stephen Gilbert and Bill McCarty

present many examples of associations and composition

in much more detail. I highly recommend referencing

this material for a more in-depth look into these subjects.

Here we address some of the more fundamental points of

these concepts and explore some variations of their

examples.

BUILDING IN PHASES

Another major advantage in using composition is that

systems and subsystems can be built independently, and

perhaps more importantly, tested and maintained

independently.

There is no question that software systems are quite

complex. To build quality software, you must follow one

overriding rule to be successful: Keep things as simple as

possible. For large software systems to work properly

and be easily maintained, they must be broken into

smaller, more manageable parts. How do you accomplish

this? In a 1962 article titled “The Architecture of

Complexity,” Nobel Prize winner Herbert Simon noted

the following thoughts regarding stable systems:

“Stable complex systems usually take the form of a

hierarchy, where each system is built from simpler

subsystems, and each subsystem is built from simpler

subsystems still.—You might already be familiar with this principle

because it forms the basis for functional decomposition, the method

behind procedural software development. In object-oriented design,

you apply the same principles to composition—building complex

objects from simpler pieces.

“Stable, complex systems are nearly decomposable.”—This

means you can identify the parts that make up the system and can tell

the difference between interactions between the parts and inside the

parts. Stable systems have fewer links between their parts than they

have inside their parts. Thus, a modular stereo system, with simple

links between the speakers, turntable, and amplifier, is inherently

more stable than an integrated system, which isn’t easily

decomposable.

“Stable complex systems are almost always composed of

only a few different kinds of subsystems, arranged in

different combinations.”—Those subsystems, in turn, are

generally composed of only a few different kinds of parts.

“Stable systems that work have almost always evolved from

simple systems that worked.”—Rather than build a new system

from scratch—reinventing the wheel—the new system builds on the

proven designs that went before it.

In our stereo example (see Figure 9.3), suppose the

stereo system was totally integrated and was not built

from components (that is, the stereo system was one big

black-box system). In this case, what would happen if the

CD player broke and became unusable? You would have

to take in the entire system for repair. Not only would

this be more complicated and expensive, but you would

not have the use of any of the other components.

Figure 9.3 Building, testing, and verifying a complete system one step

at a time.

This concept becomes very important to languages such

as Java and those included in the .NET framework.

Because objects are dynamically loaded, decoupling the

design is quite important. For example, if you distribute

a Java application and one of the class files needs to be

re-created (for bug fixes or maintenance), you would be

required to redistribute only that particular class file. If

all code was in a single file, the entire application would

need to be redistributed.

Suppose the system is broken into components rather

than a single unit. In this case, if the CD player broke,

you could disconnect the CD player and take it in for

repair. (Note that all the components are connected by

patch cords.) This would be less complicated and less

expensive, and it would take less time than having to deal

with a single, integrated unit. As an added benefit, you

could still use the rest of the system. You could even buy

another CD player because it is a component. The

repairperson could then plug your broken CD player into

his repair systems to test and fix it. All in all, the

component approach works quite well. Composition is

one of the primary strategies that you, as a software

designer, have in your arsenal to fight software

complexity.

One major advantage of using components is that you

can use components that were built by other developers

within the organization, or even third-party vendors.

However, using a software component from another

source requires a certain amount of trust. Third-party

components must come from a reliable source, and you

must feel comfortable that the software is properly

tested, not to mention that it must perform the

advertised functions properly. There are still many who

would rather build their own than trust components built

by others.

TYPES OF COMPOSITION

Generally, there are two types of composition:

association and aggregation. In both cases, these

relationships represent collaborations between the

objects. The stereo example we just used to explain one

of the primary advantages of composition represents an

association.

Is Composition a Form of Association?

Composition is another area in OO technologies where there is a question of
which came first, the chicken or the egg. Some texts say that composition is a
form of association, and some say that an association is a form of composition.
In any event, in this book, we consider inheri-tance and composition the two
primary ways to build classes. Thus, in this book, association is considered a
form of composition.

All forms of composition include a has-a relationship.

However, subtle differences exist between associations

and aggregations based on how you visualize the parts of

the whole. In an aggregation, you normally see only the

whole, and in associations, you normally see the parts

that make up the whole.

Aggregations

Perhaps the most intuitive form of composition is

aggregation. Aggregation means that a complex object is

composed of other objects. A TV set is a clean, neat

package that you use for entertainment. When you look

at your HD TV, you see a single unit. Most of the time,

you do not stop to think about the fact that the HD TV

contains some microchips, a screen, a tuner, and so on.

Sure, you see a switch to turn the set on and off, and you

certainly see the picture screen. However, this is not the

way people normally think of HD TVs. When you go into

an appliance store, the salesperson does not say, “Let me

show you this aggregation of microchips, a picture

screen, a tuner, and so on.” The salesperson says, “Let

me show you this HD TV.”

Similarly, when you go to buy a car, you do not pick and

choose all the individual components of the car. You do

not decide which spark plugs to buy or which door

handles to buy. You go to buy a car. Of course, you do

choose some options, but for the most part, you choose

the car as a whole, a complex object made up of many

other complex and simple objects (see Figure 9.4).

Figure 9.4 An aggregation hierarchy for a car.

Associations

Whereas aggregations represent relationships where you

normally see only the whole, associations present both

the whole and the parts. As stated in the stereo example,

the various components are presented separately and

connect to the whole by use of patch cords (the cords

that connect the various components).

Consider a traditional desktop computer system as an

example (see Figure 9.5); the whole is the computer

system. The components are the monitor, keyboard,

mouse, and main box. Each is a separate object, but

together they represent the whole of the computer

system. The main computer is using the keyboard, the

mouse, and the monitor to delegate some of the work. In

other words, the computer box needs the service of a

mouse but does not have the capability to provide this

service by itself. Thus, the computer box requests the

service from a separate mouse via the specific port and

cable connecting the mouse to the box.

Figure 9.5 Associations as a separate service.

Aggregation Versus Association

An aggregation is a complex object composed of other objects. An association
is used when one object wants another object to perform a service for it.

Using Associations and Aggregations Together

One thing you might have noticed in all the examples is

that the dividing lines between what is an association

and what is an aggregation are often blurred. Suffice it to

say that many of your most interesting design decisions

will come down to whether to use associations or

aggregations.

For example, the desktop computer system example used

to describe associations also contains some aggregation.

Although the interaction between the computer box, the

monitor, the keyboard, and the mouse is association, the

computer box itself represents aggregation. You see only

the computer box, but it is actually a complex system

made up of other objects, including chips, motherboards,

video cards, and so on.

Consider that an Employee object might be composed of

an Address object and a Spouse object. You might

consider the Address object as an aggregation (basically

a part of the Employee object), and the Spouse object

as an association. To illustrate, suppose both the

employee and the spouse are employees. If the employee

is fired, the spouse is still in the system but the

association is broken.

Similarly, in the stereo example, the receiver has an

association with the speakers as well as the CD. Yet, the

speakers and the CD are themselves aggregations of

other objects, such as power cords.

In the car example, although the engine, spark plugs, and

doors represent composition, the stereo also represents

an association relationship. In reality, cars and desktop

computers are a mix of aggregations and associations.

No One Right Answer

As usual, there isn't a single, absolutely correct answer when it comes to
making a design decision. Design is not an exact science. Although we can
make general rules to live by, these rules are not hard and fast.

AVOIDING DEPENDENCIES

When using composition, it is desirable to avoid making

objects highly dependent on one another. One way to

make objects very dependent on each other is to mix

domains. In the best of all worlds, an object in one

domain should not be mixed with an object in another

domain, except under certain circumstances. We can

return again to the stereo example to explain this

concept.

By keeping all the components in separate domains, the

stereo system is easier to maintain. For example, if the

CD component breaks, you can send the CD player off to

be repaired individually. In this case, the CD player and

the MP3 player have separate domains. This provides

flexibility, such as buying the CD player and the MP3

player from separate manufacturers. So, if you decide

you want to swap out the CD player with a brand from

another manufacturer, you can.

Sometimes there is a certain convenience in mixing

domains. A good example of this, one that I have been

using for years, pertains to the existence of the old-style

TV/VCR combinations. Granted, it is convenient to have

both in the same module. However, if the TV breaks, the

VCR is unusable—at least as part of the unit it was

purchased in.

You need to determine what is more important in

specific situations: whether you want convenience or

stability. There is no right answer. It all depends on the

application and the environment. In the case of the

TV/VCR combination, we decided that the convenience

of the integrated unit far outweighed the risk of lower

unit stability (see Figure 9.6). Revisit the stereo system

in

Figure 9.3 to reinforce what a non-integrated system

looks like.

Figure 9.6 Convenience versus stability.

Interfaces solve this and managing dependencies is a

major part of this. If interfaces are defined in a shared

library and implementations are defined in more

concrete classes, you can afford to mix domains by using

the behavior contracts.

Mixing Domains

The convenience of mixing domains is a design decision. If the power of
having a TV/VCR com-bination outweighs the risk and potential downtime of
the individual components, the mixing of domains may well be the preferred
design choice.

CARDINALITY

In their book Object-Oriented Design in Java, Gilbert

and McCarty describe cardinality as the number of

objects that participate in an association and whether the

participation is optional or mandatory. To determine

cardinality, Gilbert and McCarty ask the following

questions:

Which objects collaborate with which other objects?

How many objects participate in each collaboration?

Is the collaboration optional or mandatory?

For example, let’s consider the following example. We

are creating an Employee class that inherits from

Person and has relationships with the following classes:

Division

JobDescription

Spouse

Child

What do these classes do? Are they optional? How many

does an Employee need?

Division

This object contains the information relating to the division that

the employee works for.

Each employee must work for a division, so the relationship is

mandatory.

The employee works for one, and only one, division.

JobDescription

This object contains a job description, most likely containing

information such as salary grade and salary range.

Each employee must have a job description, so the relationship is

mandatory.

The employee can hold various jobs during the tenure at a

company. Thus, an employee can have many job descriptions.

These descriptions can be kept as a history if an employee

changes jobs, or it is possible that an employee might hold two

different jobs at one time. For example, a supervisor might take

on an employee’s responsibilities if the employee quits and a

replacement has not yet been hired.

Spouse

In this simplistic example, the Spouse class contains only the

anniversary date.

An employee can be married or not married. Thus, a spouse is

optional.

An employee can have only one spouse.

Child

In this simple example, the Child class contains only the string

FavoriteToy.

An employee can have children or not have children.

An employee can have no children or an infinite number of

children (wow!). You could make a design decision as to the

upper limit of the number of children that the system can handle.

To sum up, Table 9.1 represents the cardinality of the

associations of the classes we just considered.

Table 9.1 Cardinality of Class Associations

Optional/Association Cardinality Mandatory

Employee/Division 1 Mandatory

Employee/JobDescription 1 . . n Mandatory

Employee/Spouse 0 . . 1 Optional

Employee/Child 0 . . n Optional

Cardinality Notation

The notation of 0 . . 1 means that an employee can have either zero or one
spouse. The notation of 0 . . n means that an employee can have any number
of children from zero to an unlimited number. The n basically represents infinity.

Figure 9.7 shows the class diagram for this system. Note

that in this class diagram, the cardinality is indicated

along the association lines. Refer to Table 9.1 to see

whether the association is mandatory.

Figure 9.7 Cardinality in a UML diagram.

Multiple Object Associations

How do we represent an association that might contain

multiple objects (such as 0 to many

children) in code? Here is the code for the Employee

class:

Click here to view code image

import java.util.Date;

public class Employee extends Person{

 private String CompanyID;
 private String Title;
 private Date StartDate;

 private Spouse spouse;
 private Child[] child;
 private Division division;
 private JobDescription[] jobDescriptions;

 public String getCompanyID() {return
CompanyID;}
 public String getTitle() {return Title;}
 public Date getStartDate() {return
StartDate;}

 public void setCompanyID(String
CompanyID) {}
 public void setTitle(String Title) {}
 public void setStartDate(int StartDate)
{}

}

Note that the classes that have a one-to-many

relationship are represented by arrays in the code:

private Child[] child;
private JobDescription[] jobDescriptions;

Optional Associations

One of the most important issues when dealing with

associations is to make sure that your application is

designed to check for optional associations. This means

that your code must check to see whether the association

is null.

Suppose in the previous example that your code assumes

that every employee has a spouse. However, if one

employee is not married, the code will have a problem

(see Figure 9.8). If your code does indeed expect a

spouse to exist, it may well fail and leave the system in an

unstable state. The bottom line is that the code must

check for a null condition, and must handle this as a

valid condition.

Figure 9.8 Checking all optional associations.

For example, if no spouse exists, the code must not

attempt to invoke a spouse behavior. This could lead to

an application failure. Thus, the code must be able to

process an Employee object that has no spouse.

TYING IT ALL TOGETHER: AN

EXAMPLE

Let’s work on a simple example that will tie the concepts

of inheritance, interfaces, composition, associations, and

aggregations together into a single, short system

diagram.

Consider the example used in Chapter 8, with one

addition: We will add an Owner class that will take the

dog out for walks.

Recall that the Dog class inherits directly from the

Mammal class. The solid arrow represents this

relationship between the Dog class and the Mammal class

in Figure 9.9. The Nameable class is an interface that

Dog implements, which is represented by the dashed

arrow from the Dog class to the Nameable interface.

Figure 9.9 A UML diagram for the Dog example.

In this chapter, we are mostly concerned with

associations and aggregations. The relationship between

the Dog class and the Head class is considered

aggregation because the head is actually part of the dog.

The cardinality on the line connecting the two class

diagrams specifies that a dog can have only a single head.

The relationship between the Dog class and the Owner

class is association. The owner is clearly not part of the

dog, or vice versa, so we can safely eliminate aggregation.

However, the dog does require a service from the owner

—the act of taking him on a walk. The cardinality on the

line connecting the Dog and Owner classes specifies that

a dog can have one or more owners (for example, a wife

and husband can both be considered owners, with shared

responsibility for walking the dog).

These relationships—inheritance, interfaces,

composition, associations, and aggregations— represent

the bulk of the design work you will encounter when

designing OO systems.

Where Is the Head?

You might decide that it makes sense to attach the Head class to the Mammal
class instead of the Dog class, because all mammals supposedly have a head.
For this model, I was using the Dog class as the focal point of the example, so
that is why I attached the Head to the Dog itself.

CONCLUSION

In this chapter, we have explored some of the finer

points of composition and its two primary types:

aggregation and association. Whereas inheritance

represents a new kind of already existing object,

composition represents the interactions between various

objects.

The past three chapters have covered the basics of

inheritance and composition. Using these concepts and

your skills in the software development process, you are

on your way to designing solid classes and object models.

Chapter 10, “Design Patterns,” explores how to use UML

class diagrams to assist in the modeling of object models.

REFERENCES

Booch, Grady and Robert A. Maksimchuk and Michael

W. Engel and Bobbi J. Young and Jim Conallen and Kelli

A. Houston. 2007. Object-Oriented Analysis and Design

with Applications, Third Edition. Boston, MA: Addison-

Wesley.

Coad, Peter, and Mark Mayfield. 1997. Java Design.

Upper Saddle River, NJ: Prentice Hall.

Gilbert, Stephen, and Bill McCarty. 1998. Object-

Oriented Design in Java. Berkeley, CA: The Waite Group

Press.

Meyers, Scott. 2005. Effective C++, Third Edition.

Boston, MA: Addison-Wesley Professional.

10. Design Patterns
One of the interesting things about software

development is that when you create a software system,

you are actually modeling a real-world system. For

example, in the Information Technology industry, it is

safe to say that IT is the business—or at least IT

implements the business. To write the business software

systems, the developers must thoroughly understand the

business models. As a result, the developers often have

the most intimate knowledge of a company’s business

processes.

We have seen this concept throughout this book as it

relates to our educational discussions. For example,

when we discussed using inheritance to abstract out the

behaviors and attributes of mammals, the model was

based on the true real-life model, not a contrived model

that we created for our own purposes.

Thus, when we create a mammal class, we can use it to

build countless other classes, such as dogs and cats and

so on, because all mammals share certain behaviors and

attributes. This works when we study dogs, cats,

squirrels, and other mammals because we can see

patterns. These patterns allow us to inspect an animal

and make the determination that it is indeed a mammal,

or perhaps a reptile, which would have other patterns of

behaviors and attributes.

Throughout history, humans have used patterns in many

aspects of life, including engineering. These patterns go

hand-in-hand with the holy grail of software

development: software reuse. In this chapter, we

consider design patterns, a relatively new area of

software development (the seminal book on design

patterns was published in 1995).

Design patterns are perhaps one of the most influential

developments that have come out of the object-oriented

movement in the past several years. Patterns lend

themselves perfectly to the concept of reusable software

development. Because object-oriented development is all

about reuse, patterns and object-oriented development

go hand-in-hand.

The basic concept of design patterns revolves around the

principle of best practices. By best practices, we mean

that when good and efficient solutions are created, these

solutions are documented in a way that others can

benefit from previous successes—as well as learn from

the failures.

One of the most important books on object-oriented

software development is Design Patterns: Elements of

Reusable Object-Oriented Software by Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides. This

book was an important milestone for the software

industry and has become so entrenched in the computer

science lexicon that the book’s authors have become

known as the Gang of Four. In writings on object-

oriented topics, you will often see the Gang of Four

referred to as the GoF.

The intent of this chapter is to explain what design

patterns are. (Explaining each design pattern is far

beyond the scope of this book and would take more than

one volume.) To accomplish this, we explore each of the

three categories of design patterns (creational,

structural, and behavioral) as defined by the Gang of

Four and provide a concrete example of one pattern in

each category.

WHY DESIGN PATTERNS?

The concept of design patterns did not necessarily start

with the need for reusable software. In fact, the seminal

work on design patterns is about constructing buildings

and cities. As Christopher Alexander noted in A Pattern

Language: Towns, Buildings, Construction, “Each

pattern describes a problem which occurs over and over

again in our environment, and then describes the core of

the solution to that problem, in such a way that you can

use the solution a million times over, without ever doing

it the same way twice.”

The Four Elements of a Pattern

The GoF describe a pattern as having four essential elements:

The pattern name is a handle we can use to describe a design problem,
its solutions, and consequences in a word or two. Naming a pattern
immediately increases our design vocabulary. It lets us design at a
higher level of abstraction. Having a vocabulary for patterns lets us talk
about them with our colleagues, in our documentation, and even to
ourselves. It makes it easier to think about designs and to communicate
them and their trade-off to others. Finding good names has been one of
the hardest parts of developing our catalog.?

The problem describes when to apply the pattern. It explains the
problem and its content. It might describe specific design problems,
such as how to represent algorithms as objects. It might describe class
or object structures that are symptomatic of an inflexible design.
Sometimes the problem will include a list of conditions that must be met
before it makes sense to apply the pattern.

The solution describes the elements that make up the design, their
relationships, responsibilities, and collaborations. The solution doesn't
describe a particular concrete design or implementation, because a
pattern is like a template that can be applied in many situations. Instead,
the pattern provides an abstract description of a design problem, and
how a general arrangement of elements (classes and objects in our
case) solves it.

The consequences are the results and trade-offs of applying the pattern.
Although con-sequences are often unvoiced, when we describe design
decisions, they are critical for evaluating design alternatives and for
understanding the costs and benefits of the applying pattern. The
consequences for software often concern space and time trade-offs.
They might address language and implementation issues as well.
Because reuse is often a factor in object-oriented design, the
consequences of a pattern include its impact on a system's flexibility,
extensibility, or portability. Listing the consequences explicitly helps you
understand and evaluate them.

SMALLTALK’S

MODEL/VIEW/CONTROLLER

For historical perspective, we need to consider the

Model/View/Controller (MVC) introduced in Smalltalk

(and used in other object-oriented languages). MVC is

often used to illustrate the origins of design patterns. The

Model/View/Controller paradigm was used to create

user interfaces in Smalltalk. Smalltalk was perhaps the

first popular object-oriented language.

Smalltalk

Smalltalk is the result of several great ideas that emerged from Xerox PARC.
These ideas included the mouse and using a windowing environment, among
others. Smalltalk is a wonderful language that provided the foundation for all
the object-oriented languages that followed. One of the complaints about C++
is that it's not really object-oriented, whereas Smalltalk is. Although C++ had a
larger following in the early days of OO, Smalltalk has always had a very
dedicated core group of supporters. Java is a mostly OO language that
embraced the C++ developer base.

Design Patterns defines the MVC components in the

following manner:

The Model is the application object, the View is the

screen presentation, and the Controller defines the way

the user interface reacts to user input.

The problem with previous paradigms is that the Model,

View, and Controller used to be lumped together in a

single entity. For example, a single object would have

included all three of the components. With the MVC

paradigm, these three components have separate and

distinct interfaces. So if you want to change the user

interface of an application, you only have to change the

View. Figure 10.1 illustrates what the MVC design looks

like.

Figure 10.1 Model/View/Controller paradigm.

Remember that much of what we have been learning

about object-oriented development has to do with

interfaces versus implementation. As much as possible,

we want to separate the interface from the

implementation. We also want to separate interface from

interface as much as possible. For example, we do not

want to combine multiple interfaces that do not have

anything to do with one another (or the solution to the

problem at hand). The MVC was one of the early

pioneers in this separation of interfaces. The MVC

explicitly defines the interfaces between specific

components pertaining to a very common and basic

programming problem—the creation of user interfaces

and their connection to the business logic and data

behind them.

If you follow the MVC concept and separate the user

interface, business logic, and data, your system will be

much more flexible and robust. For example, assume

that the user interface is on a client machine, the

business logic is on an application server, and the data is

located on a data server. Developing your application in

this way would allow you to change the way the GUI

looks without having an impact on the business logic or

the data. Likewise, if your business logic changes and you

calculate a specific field differently, you can change the

business logic without having to change the GUI. And

finally, if you want to swap databases and store your data

differently, you can change the way the data is stored on

the data server without affecting either the GUI or the

business logic. This assumes, of course, that the

interfaces between the three do not change.

MVC Example

One example is that of a listbox used in a user interface. Consider a GUI that
includes a list of phone numbers. The listbox is the view, the phone list is the
model, and the controller is the logic that binds the listbox to the phone list.

MVC Drawbacks

Although the MVC is a great design, it can be somewhat complex in that a lot
of attention must be paid to the upfront design. This is a problem with object-
oriented design in general—there is a fine line between a good design and a
cumbersome design. The question remains: How much complexity should you
build into the system with regard to a complete design?

TYPES OF DESIGN PATTERNS

Design Patterns features 23 patterns grouped into the

three categories that follow. Most of the examples are

written in C++, with some written in Smalltalk. The time

of the book’s publication is indicative of the use of C++

and Smalltalk. The publication date of 1995 was right at

the cusp of the Internet revolution and the

corresponding popularity of the Java programming

language. After the benefit of design patterns became

apparent, many other books rushed in to fill the newly

created market.

In any event, the actual language used is irrelevant.

Design Patterns is inherently a design book, and the

patterns can be implemented in any number of

languages. The authors of the book divided the patterns

into three categories:

Creational patterns create objects for you, rather than having you

instantiate objects directly. This gives your program more flexibility in

deciding which objects need to be created for a given case.

Structural patterns help you compose groups of objects into larger

structures, such as complex user interfaces or accounting data.

Behavioral patterns help you define the communication between

objects in your system and how the flow is controlled in a complex

program.

The following sections discuss one example from each of

these categories to provide a flavor of design patterns.

For a comprehensive list and description of individual

design patterns, refer to the books listed at the end of

this chapter.

Creational Patterns

The creational patterns consist of the following

categories:

Abstract factory

Builder

Factory method

Prototype

Singleton

As stated earlier, the scope of this chapter is to describe

what a design pattern is—not to describe each and every

pattern in the GoF book. Thus, we will cover a single

pattern in each category. With this in mind, let’s consider

an example of a creational pattern and look at the factory

pattern.

The Factory Method Design Pattern

Creating, or instantiating, objects may well be one of the

most fundamental concepts in object oriented

programming. It goes without saying that you can’t use

an object unless that object exists. When writing code,

the most obvious way to instantiate an object is to use

the new keyword.

To illustrate, let’s revisit the Shape example used

throughout this book. Here we have the familiar parent

class Shape, which is abstract, and the child class

Circle, which is the concrete implementation. We

instantiate a Circle class in the usual way by employing

the new keyword:

abstract class Shape {

}

class Circle extends Shape {

}

Circle circle = new Circle();

Although this code certainly works, there may be many

other places in your code where you need to instantiate a

Circle, or any other Shape for that matter. In many

cases, you will have specific object creation parameters

that need to be handled each time you create a Shape.

As a result, any time you change the way objects are

created, the code must be changed in every location

where a Shape object is instantiated. The code is highly

coupled because a change in one location necessitates

code changes in potentially many other locations.

Another problem with this approach is that it exposes the

object creation logic to the programmers using the

classes.

To remedy these situations, we can implement a factory

method. In short, the factory method is responsible for

encapsulating all instantiation so that it is uniform

across the implementation. You use the factory to

instantiate, and the factory is responsible for

instantiating properly.

Factory Method Pattern

The fundamental intent of the factory method pattern is

to create objects without having to specify the exact class

—in effect, using interfaces to create new types of objects.

To illustrate how to implement a factory pattern, let’s

create a factory for the Shape class example. The class

diagram in Figure 10.2 helps visualize how the various

classes in the example interact.

Figure 10.2 Creating a factory for the Shape class.

In some ways, you can think of a factory as a wrapper.

Consider the fact that there may be some significant logic

involved in instantiating an object and you don’t want

the programmer (user) to be concerned with this logic. It

is almost like the concept of an accessor method (getters

and setters) when the retrieval of a value is inside some

logic (like when a password is required). Using a factory

method is useful when you don’t know ahead of time

which specific class you might need. For example, you

may know that a shape is required, but you don’t know

the specific shape (at least not yet). With this in mind, all

possible classes must be in the same hierarchy; that is, all

the classes in this example must be a subclass of Shape.

In fact, a factory is used precisely because you don’t

know what you need, allowing you to add some of the

classes later. If you knew what you needed, you could

simply “inject” the instance via a constructor or a setter

method.

Basically, this is the definition of polymorphism.

We create an enum to contain the types of shapes. In this

case, we will define CIRCLE, SQUARE, and TRIANGLE.

enum ShapeType {
 CIRCLE, SQUARE, TRIANGLE
}

We define the Shape class as abstract with just a

constructor and an abstract method called generate().

abstract class Shape {

 private ShapeType sType = null;

 public Shape(ShapeType sType) {
 this.sType = sType;
 }

 // Generate the shape
 protected abstract void generate();

}

The child classes, CIRCLE, SQUARE, and TRIANGLE,

extend the Shape class, identify themselves, and provide

the concrete implementation of the generate()

method.

Click here to view code image

class Circle extends Shape {

 Circle() {
 super(ShapeType.CIRCLE);
 generate();
 }

 @Override
 protected void generate() {
 System.out.println("Generating a
Circle");
 }
}

class Square extends Shape {

 Square() {
 super(ShapeType.SQUARE);
 generate();
 }

 @Override
 protected void generate() {
 System.out.println("Generating a
Square");
 }
}

class Triangle extends Shape {

 Triangle() {
 super(ShapeType.TRIANGLE);
 generate();
 }

 @Override
 protected void generate() {
 System.out.println("Generating a
Triangle");
 }
}

The ShapeFactory class, as the name implies, is the

actual factory. Focus on the generate() method. While

a Factory provides many advantages, note that the

generate() method is the only location within the

application that actually instantiates a Shape.

Click here to view code image

class ShapeFactory {
 public static Shape generateShape(ShapeType
sType) {
 Shape shape = null;
 switch (sType) {

 case CIRCLE:
 shape = new Circle();
 break;

 case SQUARE:
 shape = new Square();
 break;

 case TRIANGLE:
 shape = new Triangle();
 break;

 default:
 // throw an exception
 break;
 }
 return shape;
 }
}

The traditional approach to instantiating these individual

objects is to have the programmer directly instantiate the

objects using the new keyword as follows:

Click here to view code image

public class TestFactoryPattern {
 public static void main(String[] args) {

 Circle circle = new Circle();
 Square square = new Square();
 Triangle triangle = new Triangle();

 }
}

However, properly using the factory requires that the

programmer use the ShapeFactory class to obtain any

Shape object:

Click here to view code image

public class TestFactoryPattern {
 public static void main(String[] args) {

ShapeFactory.generateShape(ShapeType.CIRCLE);

ShapeFactory.generateShape(ShapeType.SQUARE);

ShapeFactory.generateShape(ShapeType.TRIANGLE);

 }
}

Structural Patterns

Structural patterns are used to create larger structures

from groups of objects. The following seven design

patterns are members of the structural category:

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

As an example from the structural category, let’s take a

look at the adapter pattern. The adapter pattern is also

one of the most important design patterns. This pattern

is a good example of how the implementation and

interface are separated.

The Adapter Design Pattern

The adapter pattern is a way for you to create a different

interface for a class that already exists. The adapter

pattern basically provides a class wrapper. In other

words, you create a new class that incorporates (wraps)

the functionality of an existing class with a new and—

ideally—better interface. A simple example of a wrapper

is the Java class Integer. The Integer class wraps a

single Integer value inside it. You might wonder why

you would bother to do this. Remember that in an object-

oriented system, everything is an object. In Java,

primitives, such as ints, floats, and so on, are not objects.

When you need to perform functions on these primitives,

such as conversions, you need to treat them as objects.

Thus, you create a wrapper object and “wrap” the

primitive inside it. Thus, you can take a primitive like the

following:

int myInt = 10;

and wrap it in an Integer object:

Integer myIntWrapper = new Integer (myInt);

Now you can do a conversion, so you can treat it as a

string:

String myString = myIntWrapper.toString();

This wrapper enables you to treat the original integer as

an object, thus providing all the advantages of an object.

As for the adapter pattern itself, consider the example of

a mail tool interface. Let’s assume you have purchased

some code that provides all the functionality you need to

implement a mail client. This tool provides everything

you want in a mail client, except you would like to change

the interface slightly. In fact, all you want to do is change

the API to retrieve your mail.

The following class provides a very simple example of a

mail client for this example:

Click here to view code image

package MailTool;
public class MailTool {
 public MailTool () {
 }
 public int retrieveMail() {

 System.out.println ("You've Got Mail");

 return 0;
 }
}

When you invoke the retrieveMail() method, your

mail is presented with the very original greeting “You’ve

Got Mail.” Now let’s suppose you want to change the

interface in all your company’s clients from

retrieveMail() to getMail(). You can create an

interface to enforce this:

package MailTool;
interface MailInterface {
 int getMail();
}

You can now create your own mail tool that wraps the

original tool and provide your own interface:

Click here to view code image

package MailTool;
class MyMailTool implements MailInterface {
 private MailTool yourMailTool;
 public MyMailTool () {
 yourMailTool= new MailTool();
 setYourMailTool(yourMailTool);
 }
 public int getMail() {
 return getYourMailTool().retrieveMail();
 }

 public MailTool getYourMailTool() {
 return yourMailTool ;
 }
 public void setYourMailTool(MailTool
newYourMailTool) {
 yourMailTool = newYourMailTool;
 }
}

Inside this class, you create an instance of the original

mail tool that you want to retrofit. This class implements

MailInterface, which will force you to implement a

getMail() method. Inside this method, you literally

invoke the retrieveMail() method of the original

mail tool.

To use your new class, you instantiate your new mail tool

and invoke the getMail() method.

Click here to view code image

package MailTool;
public class Adapter
{
 public static void main(String[] args)
 {
 MyMailTool myMailTool = new MyMailTool();

 myMailTool.getMail();

 }
}

When you invoke the getMail() method, you are using

this new interface to invoke the retrieveMail()

method from the original tool. This is a very simple

example; however, by creating this wrapper, you can

enhance the interface and add your own functionality to

the original class.

The concept of an adapter is quite simple, but you can

create new and powerful interfaces using this pattern.

clbr://internal.invalid/book/OEBPS/Images/ch10_images.xhtml#p171pro02

Behavioral Patterns

The behavioral patterns consist of the following

categories:

Chain of response

Command

Interpreter

Iterator

Mediator

Memento

Observer

State

Strategy

Template method

Visitor

As an example from the behavioral category, let’s take a

look at the iterator pattern. This is one of the most

commonly used patterns and is implemented by several

programming languages.

The Iterator Design Pattern

Iterators provide a standard mechanism for traversing a

collection, such as a vector. Functionality must be

provided so that each item of the collection can be

accessed one at a time. The iterator pattern provides

information hiding, keeping the internal structure of the

collection secure. The iterator pattern also stipulates that

more than one iterator can be created without interfering

with each other. Java provides its own implementation of

an iterator. The following code creates a vector and then

inserts a number of strings into it:

Click here to view code image

clbr://internal.invalid/book/OEBPS/Images/ch10_images.xhtml#p172pro01

package Iterator;

import java.util.*;
public class Iterator {
 public static void main(String args[]) {

 // Instantiate an ArrayList.
 ArrayList<String> names = new
ArrayList();

 // Add values to the ArrayList
 names.add(new String("Joe"));
 names.add(new String("Mary"));
 names.add(new String("Bob"));
 names.add(new String("Sue"));

 //Now Iterate through the names
 System.out.println("Names:");
 iterate(names);
 }

 private static void iterate(ArrayList<String>
arl) {
 for(String listItem : arl) {

System.out.println(listItem.toString());
 }
 }
}

Then we create an enumeration so that we can iterate

through it. The method iterate() is provided to

perform the iteration functionality. In this method, we

use the Java enumeration method

hasMoreElements(), which traverses the vector and

lists all the names.

ANTIPATTERNS

Although a design pattern evolves from experiences in a

positive manner, antipatterns can be thought of as

collections of experiences that have gone awry. It is well

documented that most software projects are ultimately

deemed unsuccessful. In fact, as indicated in the article

“Creating Chaos” by Johnny Johnson, fully one-third of

all projects are cancelled outright. It would seem obvious

that many of these failures are caused by poor design

decisions.

The term antipattern derives from the fact that design

patterns are created to proactively solve a specific type of

problem. An antipattern, on the other hand, is a reaction

to a problem and is gleaned from bad experiences. In

short, whereas design patterns are based on solid design

practices, antipatterns can be thought of as practices to

avoid.

In the November 1995 C++ Report, Andrew Koenig

described two facets of antipatterns:

Those that describe a bad solution to a problem, which result in a bad

situation.

Those that describe how to get out of a bad situation and how to

proceed from there to a good solution.

Many people believe that antipatterns are more useful

than design patterns. This is because antipatterns are

designed to solve problems that have already occurred.

This boils down to the concept of root-cause analysis. A

study can be conducted with data that might indicate

why the original design, perhaps an actual design

pattern, did not succeed. It might be said that

antipatterns emerge from the failure of previous

solutions. Thus, antipatterns have the benefit of

hindsight.

For example, in his article “Reuse Patterns and

Antipatterns,” Scott Ambler identifies a pattern called a

robust artifact and defines it as follows:

An item that is well-documented, built to meet general

needs instead of project-specific needs, thoroughly

tested, and has several examples to show how to work

with it. Items with these qualities are much more likely

to be reused than items without them. A Robust Artifact

is an item that is easy to understand and work with.

However, there are certainly many situations when a

solution is declared reusable and then no one ever reuses

it. Thus, to illustrate an antipattern, he writes:

Someone other than the original developer must review a

Reuseless Artifact to determine whether or not anyone

might be interested in it. If so, the artifact must be

reworked to become a Robust Artifact.

Thus, antipatterns lead to the revision of existing

designs, and the continuous refactoring of those designs

until a workable solution is found.

Some Good Examples of Antipatterns

Singleton

Service locator

Magic strings/magic numbers

Interface bloat

Coding by exception

Error hiding/swallowing

CONCLUSION

In this chapter, we explored the concept of design

patterns. Patterns are part of everyday life, and this is

just the way you should be thinking about object-

oriented designs. As with many things pertaining to

information technology, the roots for solutions are

founded in real-life situations.

Although this chapter covered design patterns only

briefly, you should explore this topic in greater detail by

picking up one of the books referenced at the end of this

chapter.

REFERENCES

Alexander, Christopher, et al. 1977. A Pattern Language:

Towns, Buildings, Construction. Cambridge, UK: Oxford

University Press.

Ambler, Scott. “Reuse Patterns and Antipatterns.” 2000

Software Development Magazine.

Gamma, Erich, et al. 1995. Design Patterns: Elements of

Reusable Object-Oriented Software. Boston, MA:

Addison-Wesley.

Grand, Mark. 2002. Patterns in Java: A Catalog of

Reusable Design Patterns Illustrated with UML, Second

Edition, volume 1. Hoboken, NJ: Wiley.

Jaworski, Jamie. 1999. Java 2 Platform Unleashed.

Indianapolis, IN: Sams Publishing.

Johnson, Johnny. “Creating Chaos.” American

Programmer, July 1995.

Larman, Craig. 2004. Applying UML and Patterns: An

Introduction to Object-Oriented Analysis and Design

and Iterative Development, Third Edition. Hoboken, NJ:

Wiley.

11. Avoiding Dependencies

and Highly Coupled Classes
As presented in Chapter 1, “Introduction to Object-

Oriented Concepts,” the traditional criteria of classical

object-oriented programming are encapsulation,

inheritance, and polymorphism. Theoretically, to

consider a programming language as an object-oriented

language, it must follow these three principles. In

addition, as also covered in Chapter 1, I like to include

composition.

Thus, when I teach object-oriented programming, my list

of fundamental concepts looks like this:

Encapsulation

Inheritance

Polymorphism

Composition

Tip

Perhaps I should add interfaces to this list, but I have always considered
interfaces to be a specific type of inheritance.

Adding composition to this list is even more important in

today’s development environment because of the debate

over how to use inheritance appropriately. Concerns

about using inheritance are not a recent phenomenon. In

the past several years, this debate has heated up. Many

developers I talk to advocate for using composition

rather than inheritance (often called composition over

inheritance). In fact, some avoid using inheritance at all,

or at least limit the use of inheritance to a single

hierarchical level.

The reason for focusing on how to use inheritance

revolves around the issue of coupling. The arguments for

using inheritance are, most certainly, reusability,

extensibility, and polymorphism; however, inheritance

can cause problems by creating dependencies between

classes—in effect, coupling the classes. These

dependencies create potential problems for maintenance

and testing. Chapter 7, “Mastering Inheritance and

Composition,” discussed how inheritance might actually

weaken encapsulation, which seems counterintuitive

because they are both fundamental concepts.

Nevertheless, this is actually part of the fun, and requires

that we really think about how we should use

inheritance.

Caution

Be aware that I am not advocating avoiding inheritance. The discussion here is
actually about avoiding dependencies and highly coupled classes. When to
use inheritance is an important part of this discussion.

This debate leads to the following question: if not

inheritance, then what? The short answer is to use

composition. This should not be surprising because

throughout the book I contend that there are really only

two ways to reuse classes: using inheritance and using

composition. You can either create a child from a parent

class via inheritance or contain one class within another

class using composition.

If, as some people advocate, inheritance is to be avoided,

why do we spend time learning it? The answer is simple:

A lot of code utilizes inheritance. As most developers

soon come to understand, the vast majority of the code

encountered appears in maintenance mode. Thus, it is

imperative to understand how to fix, enhance, and

maintain code written using inheritance. You may even

write some new code using inheritance. In short, a

programmer needs to cover all the possible bases and

learn the entire developers’ toolkit. However, this also

means that we have to keep adding tools to that kit as

well as rethink how we use them.

Again, please understand that I am not making any value

judgments here. I am not claiming that inheritance is

problematic and to avoid it. What I am saying is that it is

important to fully grasp how inheritance is used,

carefully study alternative ways of design, and then

decide for yourself. Thus, the intent of the examples in

this chapter is not necessarily to describe the optimal

way to design your classes; they are educational exercises

meant to get you thinking about the issues associated

with deciding between inheritance and composition.

Remember that it is important for all technologies to

evolve, keep the good, and refine the not-so good.

Moreover, composition poses its own coupling issues. In

Chapter 7 I discussed the various types of composition:

associations and aggregations. Aggregations are objects

that are embedded in other objects (created with the new

keyword) while associations are objects that are passed

into other objects via a parameter list. Because

aggregations are embedded in objects, they are highly

coupled, which we want to avoid.

Therefore, while inheritance may have obtained a

reputation as encouraging highly coupled classes,

composition (using aggregations) also can create highly

coupled classes. Let’s revisit the stereo component

example used in Chapter 9, “Building Objects and

Object-Oriented Design,” to bring all of these concepts

together in a specific example.

Creating a stereo with aggregations can be likened to

creating a boombox, which is a product that has all the

components embedded inside a single unit. In many

situations, this can be very convenient. It can be picked

up, moved easily, and requires no special assembly.

However, this design can also lead to many problems. If

one component, say the MP3 player, breaks, you must

take in the entire unit for repair. Even worse, many

problems may arise to render the entire boombox

unusable, such as an electrical issue.

Creating a stereo with associations can mitigate many of

the problems encountered with aggregations. Think of a

component stereo system as a bunch of associations

connected by patch cords (or wireless). In this design,

there is a central object called a receiver connected to

several other objects such as speakers, CD players, even

turntables and cassette players. In fact, think of this as a

vendor-neutral solution because we can simply obtain a

component off the shelf, which is a major advantage.

In this situation, if the CD player breaks, you simply

disconnect it, providing the opportunity to either fix the

CD player (while still enjoying the use of the other

components) or swapping it out with a new CD player

that works. This is the advantage of using associations

and keeping the coupling between classes to a minimum.

Tip

As pointed out in Chapter 9, although highly coupled classes are generally
frowned upon, there might be times when you are willing to accept the risk of a
highly coupled design. The boombox is one such example. Despite the fact
that it has a highly coupled design, it is sometimes the preferred choice.

Now that we have reviewed the coupling issues of both

inheritance and composition, let’s explore examples of

some highly coupled designs using both inheritance and

composition. As I often do in the classroom, we will

iterate through these examples until we use a technique

called dependency injection to mitigate the coupling

issues.

COMPOSITION VERSUS INHERITANCE

AND DEPENDENCY INJECTION

To begin, we can focus on how to take an inheritance

model (gleaned from examples often used in this book)

and redesign it, not with inheritance but with

composition. The second example shows how we can

redesign with composition—albeit using aggregation,

which is not necessarily an optimal solution. The third

example shows how to avoid aggregations and design

with associations instead—the concept of dependency

injection.

1) Inheritance

Whether or not you buy into the argument of

composition over inheritance, let’s begin by presenting a

straightforward example of inheritance and explore how

it might otherwise be implemented using composition,

revisiting the mammal example used throughout the

book.

In this case, we introduce a bat—a mammal that can fly,

as seen in Figure 11.1.

Figure 11.1 Using inheritance to create mammals.

In this example specifically, inheritance appears to be the

obvious choice. Creating a Dog class that inherits from

Mammal is a slam dunk—isn’t it? Look at the following

code, which utilizes inheritance in this manner:

Click here to view code image

class Mammal {
 public void eat () {System.out.println("I am
Eating");};
}
class Bat extends Mammal {
 public void fly () {System.out.println("I am
Flying");};
}
class Dog extends Mammal {
 public void walk () {System.out.println("I am
Walking");};
}
public class TestMammal {

 public static void main(String args[]) {

 System.out.println("Composition over
Inheritance");;

 System.out.println("\nDog");
 Dog fido = new Dog();
 fido.eat();
 fido.walk();
 System.out.println("\nBat");
 Bat brown = new Bat();
 brown.eat();
 brown.fly();
 }
}

In this design, a Mammal has a single behavior, eat(),

assuming that all mammals must eat. However, we start

to see the problem with inheritance immediately when

we add two Mammal subclasses, Bat and Dog. While a

dog can walk, not all mammals walk. In addition, while a

bat can indeed fly, not all mammals fly. So the question

is, where do these methods go? Just like in our earlier

penguin example, because not all birds fly, deciding

where to place methods in an inheritance hierarchy can

be tricky.

Separating the Mammal class into FlyingMammals and

WalkingMammals is not a very elegant solution because

this is only the tip of the proverbial iceberg. Some

mammals can swim, some mammals even lay eggs.

Moreover, there are likely countless other behaviors that

individual mammal species possess, and it might be

impractical to create a separate class for all of these

behaviors. Thus, rather than approaching this design as

an is-a relationship, perhaps we should explore it using a

has-a relationship.

2) Composition

In this strategy, rather than embedding the behaviors in

the classes themselves, we create individual classes for

each behavior. Therefore, rather than placing behaviors

in an inheritance hierarchy, we can create classes for

each behavior and then build individual mammals by

including just the behaviors that they require (via

aggregation).

Thus, we create a class called Walkable and a class

called Flyable, as seen in Figure 11.2.

Figure 11.2 Using composition to create mammals.

For example, look at the following code. We still have the

Mammal class with its eat() method, and we still have

the Dog and Bat classes. The major design difference

here is that the Dog and Bat classes obtain their

behaviors via aggregation using composition.

Caution

Be aware that the term aggregation is used in the preceding paragraph. This
example illustrates how composition can be used in lieu of inheritance;
however, in this example, we are using aggregation, which still contains
significant coupling. Thus, consider this an intermediate, educational step
moving toward the next example using interfaces.

Click here to view code image

class Mammal {
 public void eat () {System.out.println("I am
Eating");};
}
class Walkable {
 public void walk () {System.out.println("I am
Walking");};
}
class Flyable {
 public void fly () {System.out.println("I am
Flying");};
}
class Dog {
 Mammal dog = new Mammal();
 Walkable walker = new Walkable();
}
class Bat {
 Mammal bat = new Mammal();
 Flyable flyer = new Flyable();
}
public class TestMammal {

 public static void main(String args[]) {

 System.out.println("Composition over
Inheritance");;
 System.out.println("\nDog");;
 Dog fido = new Dog();
 fido.dog.eat();
 fido.walker.walk();

 System.out.println("\nBat");;
 Bat brown = new Bat();
 brown.bat.eat();
 brown.flyer.fly();

 }

}

Note

The intent of this example is to illustrate how to use composition in lieu of
inheritance; that does not mean that you cannot use inheritance at all in your
designs. If you determine that absolutely all mammals eat, then, for example,
perhaps you would decide to place the eat() method in the Mammal class and
have Dog and Bat inherit from Mammal. As always, this is a design decision.

Perhaps the heart of this discussion lies in the concept

we covered earlier, that inheritance breaks

encapsulation. This is easy to understand because a

change in the Mammal class would require a

recompilation (and perhaps even a redeployment) of all

the Mammal subclasses. This means that the classes are

highly coupled, and this is counter to our stated goal of

uncoupling classes as much as possible.

In our composition example, if we wanted to add a

Whale class, none of the previously written classes

would need a rewrite. You would add a class called

Swimmable and a class called Whale. Then the

Swimmable class could be reused for, say, a Dolphin

class.

Click here to view code image

class Swimmable {
 public void fly () {System.out.println("I am
Swimming");};
}
class Whale {
 Mammal whale = new Mammal();
 Walkable swimmer = new Swimmable ();
}

The main application can add this functionality with no

changes to the classes that previously existed.

System.out.println("\nWhale");
Whale shamu = new Whale();
shamu.whale.eat();
shamu.swimmer.swim();

One rule of thumb is to use inheritance in only truly

polymorphic situations. Thus, Circles and

Rectangles inheriting from Shape may well be a

legitimate use of inheritance. On the other hand,

behaviors such as walking and flying might not be good

candidates for inheritance because overriding them

could be problematic. For example, if you overrode the

fly()method in Dog, the only obvious option would be

a no-op (do nothing). Again, as we have seen with the

earlier Penguin example, you don’t want a Dog to run

over a cliff, execute the available fly()method and

then, to Fido’s great chagrin, find that the fly()method

doesn’t do anything.

While this example does indeed implement this solution

using composition, there is a serious flaw to the design.

The objects are highly coupled, since the use of the new

keyword is obvious.

class Whale {
 Mammal whale = new Mammal();
 Walkable swimmer = new Swimmable ();
}

To complete our exercise of decoupling the classes, we

introduce the concept of dependency injection. In short,

rather than creating objects inside other objects, we will

inject the objects from the outside via parameter lists.

The discussion focuses solely on the concept of injecting

dependencies.

Dependency Injection

The example in the previous section uses composition

(with aggregation) to provide the Dog with a behavior

called Walkable. The Dog class literally created a new

Walkable object within the Dog class itself, as the

following code fragment illustrates:

class Dog {
 Walkable walker = new Walkable();
}

Although this does in fact work, the classes remain

highly coupled. To completely decouple the classes in the

previous example, let’s implement the concept of

dependency injection mentioned previously. Dependency

injection and inversion of control are often covered

together. One definition of inversion of control (IOC) is

to make it someone else’s responsibility to make an

instance of the dependency and pass it to you. This is

exactly what we will implement in this example.

Because not all mammals walk, fly, or swim, to begin the

decoupling process, we create interfaces to represent the

behaviors for our various mammals. For this example, I

will focus on the walking behavior by creating an

interface called IWalkable as seen in Figure 11.3.

Figure 11.3 Using interfaces to create mammals.

The code for the IWalkable interface is as follows:

interface IWalkable {
 public void walk();

}

The only method in this interface is walk(), which is left

to the concrete class to provide the implementation.

Click here to view code image

class Dog extends Mammal implements IWalkable{
 Walkable walker;
 public void setWalker (Walkable w) {
 this.walker=w;
 }
 public void walk () {System.out.println("I am
Walking");};
}

Note that the Dog class extends the Mammal class and

implements the IWalkable interface. Also note that the

Dog class provides a reference and a constructor that

provides the mechanism to inject the dependency.

Walkable walker;
public void setWalker (Walkable w) {
 this.walker=w;
}

In a nutshell, this is what dependency injection is. The

Walkable behavior is not created inside the Dog class

using the new keyword; it is injected into the Dog class

via the parameter list.

Here is the complete example:

Click here to view code image

class Mammal {
 public void eat () {System.out.println("I am
Eating");};
}
interface IWalkable {
 public void walk();
}

class Dog extends Mammal implements IWalkable{
 Walkable walker;
 public void setWalker (Walkable w) {
 this.walker=w;
 }
 public void walk () {System.out.println("I am
Walking");};
}
public class TestMammal {
 public static void main(String args[]) {
 System.out.println("Composition over
Inheritance");
 System.out.println("\nDog");
 Walkable walker = new Walkable();
 Dog fido = new Dog();
 fido.setWalker(walker);
 fido.eat();
 fido.walker.walk();
 }
}

While this example uses injection by constructor, it is not

the only way to handle dependency injection.

Injection by Constructor

One way to inject the Walkable behavior is to create a

constructor within the Dog class that, when invoked, will

accept an argument from the main application as

follows:

class Dog {
 Walkable walker;
 public Dog (Walkable w) {
 this.walker=w;
 }
}

In this approach, the application instantiates a

Walkable object and inserts it into the Dog via the

constructor.

Walkable walker = new Walkable();

Dog fido = new Dog(walker);

Injection by Setter

Although a constructor will initialize attributes when an

object is instantiated, there is often a need to reset values

during the lifetime of an object. This is where accessor

methods come into play—in the form of setters. The

Walkable behavior can be inserted into the Dog class by

using a setter, here called setWalker():

class Dog {
 Walkable walker;
 public void setWalker (Walkable w) {
 this.walker=w;
 }
}

As with the constructor technique, the application

instantiates a Walkable object and inserts it into the

Dog via the setter:

Walkable walker = new Walkable();
Dog fido = new Dog();
fido.setWalker(walker);

CONCLUSION

Dependency injection decouples your class’s

construction from the construction of its dependencies.

It is like buying something off the shelf (from a vendor)

rather than building it on your own each time.

This plays to the heart of the discussion of Inheritance

and composition. It is very important to note that this is

simply a discussion. The purpose of this chapter is not

necessarily to describe the “optimal” way to design your

classes but to get you thinking about the issues

associated with deciding between Inheritance and

composition. In the next chapter, we explore The SOLID

principles of object-oriented design, concepts highly

regarded and accepted by the software development

community.

REFERENCES

Martin, Robert, et al. Agile Software Development,

Principles, Patterns, and Practices. 2002. Boston:

Pearson Education, Inc.

Martin, Robert, et al. Clean Code. 2009. Boston: Pearson

Education, Inc.

12. The SOLID Principles of

Object-Oriented Design
One of the most common statements that many

developers make regarding object-oriented programming

is that a primary advantage of OOP is that it models the

real world. I admit that I use these words a lot when I

discuss classical object-oriented concepts. According to

Robert Martin (in at least one lecture that I viewed on

YouTube), the idea that OO is closer to the way we think

is simply marketing. Instead, he states that OO is about

managing dependencies by inverting key dependencies

to prevent rigid code, fragile code, and non-reusable

code.

For example, in classical object-oriented programming

courses, the practice often models the code directly to

real-life situations. For example, if a dog is-a mammal,

then this relationship is an obvious choice for

inheritance. The strict has-a and is-a litmus test has

been part of the OO mindset for years.

However, as we have seen throughout this book, trying to

force an inheritance relationship can cause design

problems (remember the barkless dog?). Is trying to

separate barkless dogs from barking dogs, or flying birds

from flightless birds, a smart inheritance design choice?

Was this all put in place by object-oriented marketers?

OK; forget the hype. As we saw in the previous chapter,

perhaps focusing on a strict has-a and is-a decision is

not necessarily the best approach. Perhaps we should

focus more on decoupling the classes.

In the lecture I mentioned previously, Robert Martin,

often referred to as Uncle Bob, defines these three terms

to describe non-reusable code:

Rigidity—When a change to one part of a program can break another

part

Fragility—When things break in unrelated places

Immobility—When code cannot be reused outside its original

context

SOLID was introduced to address these problems and

strive to attain these goals. It defines five design

principles that Robert Martin introduced to “make

software designs more understandable, flexible, and

maintainable.” According to Robert Martin, though they

apply to any object-oriented design, the SOLID

principles can also form a core philosophy for

methodologies such as agile development or adaptive

software development. The SOLID acronym was

introduced by

Michael Feathers.

The five SOLID principles are

SRP—Single Responsibility Principle

OCP—Open/Close Principle

LSP—Liskov Substitution Principle

IPS—Interface Segregation Principle

DIP—Dependency Inversion Principle

This chapter focuses on covering these five principles

and relates them to the classical object-oriented

principles that have been in place for decades. My goal in

covering SOLID is to explain the concepts in very simple

examples. There is a lot of content online, including

several very good YouTube videos. Many of these videos

target developers, not necessarily students new to

programming.

As I have attempted to do with all the examples in this

book, my intent is not to get overly complicated but to

distill the examples to the lowest common denominator

for educational purposes.

THE SOLID PRINCIPLES OF OBJECT-

ORIENTED DESIGN

In Chapter 11, “Avoiding Dependencies and Highly

Coupled Classes,” we discussed some of the fundamental

concepts leading up to our discussion of the five SOLID

principles. In this chapter, we dive right in and cover

each of the SOLID principles in more detail. All SOLID

definitions are from the Uncle Bob site:

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOf

Ood.

1) SRP: Single Responsibility Principle

The Single Responsibility Principle states that a class

should have only a single reason to change. Each class

and module in a program should focus on a single task.

Thus, don’t put methods that change for different

reasons in the same class. If the description of the class

includes the word “and,” you might be breaking the SRP.

In other words, every module or class should have

responsibility over a single part of the functionality

provided by the software, and that responsibility should

be entirely encapsulated in the class.

Creating a shape hierarchy is one of the classic

illustrations of inheritance. It is used often as a teaching

example, and I use it a lot throughout this chapter (as

well as the book). In this example, a Circle class

inherits from an abstract Shape class. The Shape class

provides an abstract method called calcArea() as the

contract for the subclass. Any class that inherits from

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Shape must provide its own implementation of

calcArea():

abstract class Shape{
 protected String name;
 protected double area;
 public abstract double calcArea();
}

In this example, we have a Circle class that inherits

from Shape and, as required, provides its

implementation of calcArea():

class Circle extends Shape{
 private double radius;

 public Circle(double r) {
 radius = r;
 }
 public double calcArea() {
 area = 3.14*(radius*radius);
 return (area);
 };
}

Caution

In this example, we are only going to include a Circle class to focus on the
Single Responsibility Principle and keep the example as simple as possible.

A third class called CalculateAreas sums the areas of

different shapes contained in a Shape array. The Shape

array is of unlimited size and can contain different

shapes, such as squares and triangles.

Click here to view code image

class CalculateAreas {
 Shape[] shapes;
 double sumTotal=0;
 public CalculateAreas(Shape[] sh){
 this.shapes = sh;

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p189pro01

 }
 public double sumAreas() {
 sumTotal=0;
 for (inti=0; i<shapes.length; i++) {
 sumTotal = sumTotal +
shapes[i].calcArea();
 }
 return sumTotal;
 }
 public void output() {
 System.out.println("Total of all areas =
" + sumTotal);
 }
}

Note that the CalculateAreas class also handles the

output for the application, which is problematic. The

area calculation behavior and the output behavior are

coupled—contained in the same class.

We can verify that this code works with the following test

application called TestShape:

Click here to view code image

public class TestShape {
 public static void main(String args[]) {

 System.out.println("Hello World!");

 Circle circle = new Circle(1);

 Shape[] shapeArray = new Shape[1];
 shapeArray[0] = circle;

 CalculateAreas ca = new
CalculateAreas(shapeArray);

 ca.sumAreas();
 ca.output();
 }
}

Now with the test application in place, we can focus on

the issue of the Single Responsibility Principle. Again,

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p190pro01

the issue is with the CalculateAreas class and that

this class contains behaviors for summing the various

areas as well as the output.

The fundamental point (and problem) here is this: If you

want to change the functionality of the output()

method, it requires a change to the CalculateAreas

class regardless of whether the method for summing the

areas changes. For example, if at some point we want to

present the output to the console in HTML rather than in

simple text, we must recompile and redeploy the code

that sums the area because the responsibilities are

coupled.

According to the Single Responsibility Principle, the goal

is that a change to one method would not affect the other

method, thus preventing unnecessary recompilations. “A

class should have one, and only one, reason to change—a

single responsibility to change.”

To address this, we can put the two methods in separate

classes, one for the original console output and one for

the newly included HTML output:

Click here to view code image

class CalculateAreas {
 Shape[] shapes;
 double sumTotal=0;

 public CalculateAreas(Shape[] sh){
 this.shapes = sh;
 }

 public double sumAreas() {
 sumTotal=0;

 for (inti=0; i<shapes.length; i++) {

 sumTotal = sumTotal +
shapes[i].calcArea();

 }

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p190pro02

 return sumTotal;
 }
}
class OutputAreas {
 double areas=0;
 public OutputAreas(double a){
 this.areas = a;
 }
 public void console() {
 System.out.println("Total of all areas =
" + areas);
 }

 public void HTML() {
 System.out.println("<HTML>");
 System.out.println("Total of all areas =
" + areas);
 System.out.println("</HTML>");
 }
}

Now, using the newly written class, we can add

functionality for HTML output without impacting the

code for the area summing:

Click here to view code image

public class TestShape {
 public static void main(String args[]) {

 System.out.println("Hello World!");

 Circle circle = new Circle(1);

 Shape[] shapeArray = new Shape[1];
 shapeArray[0] = circle;

 CalculateAreas ca = new
CalculateAreas(shapeArray);

 CalculateAreas sum = new
CalculateAreas(shapeArray);
 OutputAreasoAreas = new
OutputAreas(sum.sumAreas());

 oAreas.console(); // output to console
 oAreas.HTML(); // output to HTML

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p191pro01

 }
}

The main point here is that you can now send the output

to various destinations depending on requirements. If

you want to add another output possibility, such as

JSON, you can add it to the OutputAreas class without

having to change the CalculateAreas class. As a

result, you can redistribute the CalculateAreas class

independently without having to do anything to the other

classes.

2) OCP: Open/Close Principle

The Open/Close Principle states that you should be able

to extend a class’s behavior, without modifying it.

Let’s revisit the shape example yet again. In the following

code, we have a class called ShapeCalculator that

accepts a Rectangle object, calculates the area of that

object, and then returns that value. It is a simple

application but it works only for rectangles.

Click here to view code image

class Rectangle{
 protected double length;
 protected double width;

 public Rectangle(double l, double w) {
 length = l;
 width = w;
 };
}
class CalculateAreas {

 private double area;

 public double calcArea(Rectangle r) {

 area = r.length * r.width;

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p192pro01

 return area;

 }
}
public class OpenClosed {
 public static void main(String args[]) {

 System.out.println("Hello World");

 Rectangle r = new Rectangle(1,2);

 CalculateAreas ca = new CalculateAreas
();

 System.out.println("Area = "+
ca.calcArea(r));

 }
}

The fact that this application works only for rectangles

brings us to a constraint that illustrates the Open/Closed

Principle: If we want to add a Circle to the

CalculateArea class (change what it does), we must

change the module itself. Obviously, this is at odds with

the Open/Closed Principle, which stipulates that we

should not have to change the module to change what it

does.

To comply with the Open/Closed Principle, we can

revisit our tried and true shape example, where an

abstract class called Shape is created and then all shapes

must inherit from the Shape class, which has an abstract

method called getArea().

At this point, we can add as many different classes as we

want without having to change the Shape class itself (for

example, a Circle). We can now say that the Shape

class is closed.

The following code implements this solution for a

rectangle and a circle, and allows for the creation of

unlimited shapes:

Click here to view code image

abstract class Shape {
 public abstract double getArea();
}
class Rectangle extends Shape
{
 protected double length;
 protected double width;

 public Rectangle(double l, double w) {
 length = l;
 width = w;
 };
 public double getArea() {
 return length*width;
 }

}
class Circle extends Shape
{
 protected double radius;

 public Circle(double r) {
 radius = r;
 };
 public double getArea() {
 return radius*radius*3.14;
 }
}
class CalculateAreas {
 private double area;

 public double calcArea(Shape s) {
 area = s.getArea();
 return area;
 }
}
public class OpenClosed {
 public static void main(String args[]) {

 System.out.println("Hello World");

 CalculateAreas ca = new CalculateAreas();

 Rectangle r = new Rectangle(1,2);

 System.out.println("Area = " +

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p193pro01

ca.calcArea(r));

 Circle c = new Circle(3);

 System.out.println("Area = " +
ca.calcArea(c));

 }
}

Note that in this implementation, the

CalculateAreas() method does not have to change

when you add a new Shape.

You can scale your code without having to worry about

legacy code. At its core, the Open/Closed Principle states

that you should extend your code via subclasses and the

original class does not need to be changed. However, the

word extension is problematic in several discussions

relating to SOLID. As we will cover in detail, if we are to

favor composition over inheritance, how does this affect

the Open/Closed Principle?

When following one of the SOLID principles, code may

also comply with one of the other SOLID principles. For

example, when designing to follow the Open/Closed

Principle, the code may also comply with the Single

Responsibility Principle.

3) LSP: Liskov Substitution Principle

The Liskov Substitution Principle states that the design

must provide the ability to replace any instance of a

parent class with an instance of one of its child classes. If

a parent class can do something, a child class must also

be able to do it.

Let’s examine some code that might look reasonable but

violates the Liskov Substitution Principle. In the

following code, we have the typical abstract class called

Shape. Rectangle then inherits from Shape and

overrides its abstract method calcArea(). Square, in

turn, inherits from Rectangle.

Click here to view code image

abstract class Shape{
 protected double area;

 public abstract double calcArea();
}
class Rectangle extends Shape{
 private double length;
 private double width;

 public Rectangle(double l, double w){
 length = l;
 width = w;
 }
 public double calcArea() {
 area = length*width;
 return (area);
 };

}
class Square extends Rectangle{
 public Square(double s){
 super(s, s);
 }
}

public class LiskovSubstitution {
 public static void main(String args[]) {

 System.out.println("Hello World");

 Rectangle r = new Rectangle(1,2);

 System.out.println("Area = " +
r.calcArea());

 Square s = new Square(2);

 System.out.println("Area = " +
s.calcArea());

 }
}

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p194pro02

So far so good: a rectangle is-a shape so everything looks

fine. Because a square is-a rectangle we are still fine—or

are we?

Now we enter into a somewhat philosophical discussion:

Is a square really a rectangle? Many people would say

yes. However, while the square may well be a specialized

type of a rectangle, it does have different properties than

a rectangle. A rectangle is a parallelogram (opposite sides

are congruent), as is a square. Yet, a square is also a

rhombus (all sides are congruent), whereas a rectangle is

not. Therefore, there are some differences.

The geometry is not really the issue when it comes to OO

design. The issue is how we build rectangles and squares.

Here is the constructor for the Rectangle class:

public Rectangle(double l, double w){
 length = l;
 width = w;
}

The constructor obviously requires two parameters.

However, the Square constructor requires just one, even

though its parent class, Rectangle, is expecting two.

class Square extends Rectangle{
 public Square(double s){
 super(s, s);
 }

In actuality, the functionality to compute area is subtly

different for the two classes. In fact, the Square is kind

of faking the Rectangle out by passing it the same

parameter twice. This may seem like an acceptable

workaround, but it really is something that may confuse

someone maintaining the code and could very well cause

unintended maintenance headaches down the road. This

is an inconsistency at minimum and, perhaps, a

questionable design decision. When you see a

constructor calling another constructor, it might be a

good idea to pause and reconsider the design—it might

not be a proper child class.

How do you address this specific dilemma? Simply put, a

square is not a substitute for a rectangle and should not

be a child class. Thus, they should be separate classes.

Click here to view code image

 abstract class Shape {
 protected double area;

 public abstract double calcArea();
}

class Rectangle extends Shape {

 private double length;
 private double width;

 public Rectangle(double l, double w) {
 length = l;
 width = w;
 }

 public double calcArea() {
 area = length*width;
 return (area);
 };
}

class Square extends Shape {
 private double side;

 public Square(double s){
 side = s;
 }
 public double calcArea() {
 area = side*side;
 return (area);
 };
}
public class LiskovSubstitution {
 public static void main(String args[]) {

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p196pro01

 System.out.println("Hello World");

 Rectangle r = new Rectangle(1,2);

 System.out.println("Area = " +
r.calcArea());

 Square s = new Square(2);

 System.out.println("Area = " +
s.calcArea());

 }
}

4) IPS: Interface Segregation Principle

The Interface Segregation Principle states that it is better

to have many small interfaces than a few larger ones.

In this example, we are creating a single interface that

includes multiple behaviors for a Mammal, eat() and

makeNoise():

Click here to view code image

interface IMammal {
 public void eat();
 public void makeNoise();
}
class Dog implements IMammal {
 public void eat() {
 System.out.println("Dog is eating");
 }
 public void makeNoise() {
 System.out.println("Dog is making
noise");
 }
}
public class MyClass {
 public static void main(String args[]) {

 System.out.println("Hello World");

 Dog fido = new Dog();
 fido.eat();

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p197pro02

 fido.makeNoise();
 }
}

Rather than creating a single interface for Mammal, we

can create separate interfaces for all the behaviors:

Click here to view code image

interface IEat {
 public void eat();
}
interface IMakeNoise {
 public void makeNoise();
}
class Dog implements IEat, IMakeNoise {
 public void eat() {
 System.out.println("Dog is eating");
 }
 public void makeNoise() {
 System.out.println("Dog is making
noise");
 }
}
public class MyClass {
 public static void main(String args[]) {

 System.out.println("Hello World");

 Dog fido = new Dog();
 fido.eat();
 fido.makeNoise();
 }
}

In reality, we are decoupling the behaviors from the

Mammal class. Thus, rather than creating a single

Mammal entity via inheritance (actually interfaces) we

are moving to a composition-based design, similar to the

strategy taken in the previous chapter.

In short, by using this approach, we can build Mammals

with composition rather than being forced to utilize

behaviors contained in a single Mammal class. For

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p198pro01

example, suppose someone discovers a Mammal that

doesn’t eat but instead absorbs nutrients through its

skin. If we were inheriting from a single Mammal class

that contains the eat() behavior, the new mammal

would not need this behavior. However, if we separate all

the behaviors into separate, single interfaces, we can

build each mammal in exactly the way it presents itself.

5) DIP: Dependency Inversion Principle

The Dependency Inversion Principle states that code

should depend on abstractions. It often seems like the

terms dependency inversion and dependency injection

are used interchangeably; however, here are some key

terms to understand as we discuss this principle:

Dependency inversion—The principle of inverting the

dependencies

Dependency injection—The act of inverting the dependencies

Constructor injection—Performing dependency injection via the

constructor

Parameter injection—Performing dependency injection via the

parameter of a method, like a setter

The goal of dependency inversion is to couple to

something abstract rather than concrete.

Although at some point you obviously have to create

something concrete, we strive to create a concrete object

(by using the new keyword) as far up the chain as

possible, such as in the main() method. Perhaps a

better way of thinking of this is to revisit the discussion

presented in Chapter 8,

“Frameworks and Reuse: Designing with Interfaces and

Abstract Classes,” where we discuss loading classes at

runtime, and in Chapter 9, “Building Objects and Object-

Oriented Design,” where we talk about decoupling and

creating small classes with limited responsibilities.

In the same vein, one of the goals of the Dependency

Inversion Principle is to choose objects at runtime, not at

compile time. (You can change the behavior of your

program at runtime.) You can even write new classes

without having to recompile old ones (in fact, you can

write new classes and inject them).

Much of the foundation for this discussion was put forth

in Chapter 11, “Avoiding Dependencies and Highly

Coupled Classes.” Let’s build on that as we consider the

Dependency Inversion Principle.

Step 1: Initial Example

For the first step in this example, we revisit yet again one

of the classical object-oriented design examples used

throughout this book, that of a Mammal class, along with

a Dog and a Cat class that inherit from Mammal. The

Mammal class is abstract and contains a single method

called makeNoise().

abstract class Mammal
{
 public abstract String makeNoise();
}

The subclasses, such as Cat, use inheritance to take

advantage of Mammal’s behavior, makeNoise():

class Cat extends Mammal
{
 public String makeNoise()
 {
 return "Meow";
 }
}

The main application then instantiates a Cat object and

invokes the makeNoise() method:

Mammal cat = new Cat();;

System.out.println("Cat says " +
cat.makeNoise());

The complete application for the first step is presented in

the following code:

Click here to view code image

 public class TestMammal {
 public static void main(String args[]) {

 System.out.println("Hello World\n");

 Mammal cat = new Cat();;
 Mammal dog = new Dog();

 System.out.println("Cat says " +
cat.makeNoise());
 System.out.println("Dog says " +
dog.makeNoise());

 }
}
abstract class Mammal
{
 public abstract String makeNoise();
}
class Cat extends Mammal
{
 public String makeNoise()
 {
 return "Meow";
 }
}
class Dog extends Mammal
{
 public String makeNoise()
 {
 return "Bark";
 }
}

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p200pro01

Step 2: Separating Out Behavior

The preceding code has a potentially serious flaw: It

couples the mammals and the behavior (makingNoise).

There may be a significant advantage to separating the

mammal behaviors from the mammals themselves. To

accomplish this, we create a class called MakingNoise

that can be used by all mammals as well as non-

mammals.

In this model, a Cat, Dog, or Bird can then extend the

MakeNoise class and create their own noise-making

behavior specific to their needs, such as the following

code fragment for a Cat:

abstract class MakingNoise
{
 public abstract String makeNoise();
}
class CatNoise extends MakingNoise
{
 public String makeNoise()
 {
 return "Meow";
 }
}

With the MakingNoise behavior separated from the

Cat class, we can use the CatNoise class in place of the

hard coded behavior in the Cat class itself, as the

following code fragment illustrates:

abstract class Mammal
{
 public abstract String makeNoise();
}
class Cat extends Mammal
{
 CatNoise behavior = new CatNoise();
 public String makeNoise()
 {
 return behavior.makeNoise();

 }
}

The following is the complete application for the second

step:

Click here to view code image

public class TestMammal {
 public static void main(String args[]) {

 System.out.println("Hello World\n");

 Mammal cat = new Cat();;
 Mammal dog = new Dog();

 System.out.println("Cat says " +
cat.makeNoise());
 System.out.println("Dog says " +
dog.makeNoise());

 }
}

abstract class MakingNoise
{
 public abstract String makeNoise();
}
class CatNoise extends MakingNoise
{
 public String makeNoise()
 {
 return "Meow";
 }
}
class DogNoise extends MakingNoise
{
 public String makeNoise()
 {
 return "Bark";
 }
}
abstract class Mammal
{
 public abstract String makeNoise();
}

class Cat extends Mammal
{

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p201pro01

 CatNoise behavior = new CatNoise();
 public String makeNoise()
 {
 return behavior.makeNoise();
 }
}
class Dog extends Mammal
{
 DogNoise behavior = new DogNoise();
 public String makeNoise()
 {
 return behavior.makeNoise();
 }
}

The problem is that although we have decoupled a major

part of the code, we still haven’t reached our goal of

dependency inversion because the Cat is still

instantiating the Cat noise-making behavior.

CatNoise behavior = new CatNoise();

The Cat is coupled to the low-level module CatNoise.

In other words, the Cat should not be coupled to

CatNoise but to the abstraction for making noise. In

fact, the Cat class should not instantiate its noise-

making behavior but instead receive the behavior via

injection.

Step 3: Dependency Injection

In this final step, we totally abandon the inheritance

aspects of our design and examine how to utilize

dependency injection via composition. You do not need

inheritance hierarchies, which is one of the major

reasons why the concept of composition over inheritance

is gaining momentum. You compose a subtype rather

than creating a subtype from a hierarchical model.

To illustrate, in the original implementation, the Cat and

the Dog basically contain the same exact code; they

simply return a different noise. As a result, a significant

percentage of the code is redundant. Thus, if you had

many different mammals, there would be a lot of noise-

making code. Perhaps a better design is to take the code

to make noise out of the mammal.

The major leap here would be to abandon the specific

mammals (Cat and Dog) and simply use the Mammal

class as shown here:

class Mammal
{
 MakingNoise speaker;

 public Mammal(MakingNoisesb)
 {
 this.speaker = sb;
 }
 public String makeNoise()
 {
 return this.speaker.makeNoise();
 }
}

Now we can instantiate a Cat noise-making behavior

and provide it to the Animal class, to make a mammal

that behaves like a Cat. In fact, you can always assemble

a Cat by injecting behaviors rather than using the

traditional techniques of class building.

Mammal cat = new Mammal(new CatNoise());

The following is the complete application for the final

step:

Click here to view code image

public class TestMammal {
 public static void main(String args[]) {

 System.out.println("Hello World\n");

 Mammal cat = new Mammal(new CatNoise());
 Mammal dog = new Mammal(new DogNoise());

clbr://internal.invalid/book/OEBPS/Images/ch12_images.xhtml#p203pro01

 System.out.println("Cat says " +
cat.makeNoise());
 System.out.println("Dog says " +
dog.makeNoise());

 }
}
class Mammal
{
MakingNoise speaker;

 public Mammal(MakingNoisesb)
 {
 this.speaker = sb;
 }
 public String makeNoise()
 {
 return this.speaker.makeNoise();
 }
}
interface MakingNoise
{
 public String makeNoise();
}
class CatNoise implements MakingNoise
{
 public String makeNoise()
 {
 return "Meow";
 }
}
class DogNoise implements MakingNoise
{
 public String makeNoise()
 {
 return "Bark";
 }
}

When discussing dependency injection, when to actually

instantiate an object is now a key consideration. Even

though the goal is to compose objects via injection, you

obviously must instantiate objects at some point. As a

result, the design decisions revolve around when to do

this instantiation.

As stated earlier in this chapter, the goal of dependency

inversion is to couple to something abstract rather than

concrete, even though you obviously must create

something concrete at some point. Thus, one simple goal

is to create a concrete object (by using new) as far up the

chain as possible, such as in the main() method. Always

evaluate things when you see a new keyword.

CONCLUSION

This concludes the discussion of SOLID. The SOLID

principles are one of the most influential sets of object-

oriented guidelines used today. What is interesting about

studying these principles is how they relate to the

fundamental object-oriented encapsulation, inheritance,

polymorphism, and composition, specifically in the

debate of composition over inheritance.

For me, the most interesting point to take away from the

SOLID discussion is that nothing is cut and dried. It is

obvious from the discussion on composition over

inheritance that even the age-old fundamental OO

concepts are open for reinterpretation. As we have seen,

a bit of time, along with the corresponding evolution in

various thought processes, is good for innovation.

REFERENCES

Martin, Robert, et al. Agile Software Development,

Principles, Patterns, and Practices. 2002. Boston:

Pearson Education, Inc.

Martin, Robert, et al. Clean Code. 2009. Boston: Pearson

Education, Inc.

Index

SYMBOLS

{ } (braces), 58

+ (plus sign), 62

/ (slash), comment notations using, 69

A

aborting applications, 54

abstraction

abstract classes

interfaces compared to, 133–135

overview of, 121–123, 128–131

abstract factory design pattern, 165

abstract interfaces, 41–42

abstract methods, 129

nonportable code, 84

overview of, 25–26, 30–31

accessor methods, 13–14, 73–75

adapter design pattern, 169–171

aggregations

association and, 153

concept of, 112–113, 151–152, 153, 180

Alexander, Christopher, 162

Ambler, Scott, 173

analysis, role in system design, 95

antipatterns, 173–174

applications

aborting, 54

recovering, 54–55

“The Architecture of Complexity” (Simon), 149

artifacts

Reuseless, 173

Robust, 173

associations

aggregation and, 153

concept of, 112–113, 152–153

multiple object, 157–158

optional, 158–159

attributes

class, 18, 61–62, 69–71

importance of, 57–58

initialization of, 48

local, 58–59

object, 12, 59–61

public versus private, 20

static, 83

B

base classes, 24–25

behavioral inheritance, 63

behavioral patterns

categories of, 171–172

iterator, 172–173

behaviors, object. See also methods

overview of, 13–16, 44

separating out, 200–202

bitwise copies, 64

builder design pattern, 165

buyInventory() method, 142

C

C / C++ development. See OO (object-oriented)

development

C# development. See OO (object-oriented)

development

C++ Report, 173

Cabbie class

accessors, 73

attributes, 69–71

class diagram, 115–116

comments, 69

constructors

default, 49

example of, 47–48

overview of, 71–72

name, 68

overloaded methods, 50

calcArea() method, 188–189

CalculateAreas class, 189, 190–191, 192

CalculatePay() method, 14

calling constructors, 48

Car class, 137, 138

cardinality, 155–157

Cat class, 199, 202

catch keyword, 55–57

catching exceptions, 56–57

categories, design pattern, 164–165

CatNoise class, 201, 204

chain of response, 171

CIRCLE class, 167–169

Circle class, 27–30, 119, 130–131, 189

class diagrams

cardinality in, 156–157

composition, 113–114

creating, 51–52

DataBaseReader class, 51

Dog class, 159

e-business case study, 142–146

CustList class, 143

DonutShop class, 143–144

PizzaShop class, 144

Shop class, 142

overview of, 19–20, 92

class keyword, 67–69

classes. See also interfaces; methods; objects

abstract. See also abstraction

interfaces compared to, 133–135

overview of, 121–123, 128–131

attributes

class scope, 61–62

example of, 69–71

initialization of, 48

local scope, 58–59

object scope, 59–61

overview of, 18, 61–62

public versus private, 20

Cabbie

accessors, 73

attributes, 69–71

class diagram, 115–116

comments, 69

constructors, 47–49, 71–72

name, 68

overloaded methods, 50

CalculateAreas, 189, 190–191, 192

Car, 137, 138

Cat, 199, 202

CatNoise, 201, 204

Circle, 27–30, 119, 130–131, 167–169, 189

comments

design guidelines, 81–82

notation, 69

number of, 82

composition

advantages of, 175–177

aggregations, 112–113, 151–152, 153

associations, 112–113, 152–153, 157–159

building in phases, 149–151

cardinality, 155–157

class diagrams, 113–114

definition of, 105

dependencies, 154–155

example of, 112, 159–160

object reuse, 105–106

overview of, 30

relationships, 148–149

constructors

calling, 48

default, 48–49

design of, 53–54, 80–81

example of, 71–72

injection by, 184

lack of, 71

multiple, 49–50, 72

overview of, 47–48

purpose of, 48

return values, 47

Count, 49–50

CustList, 143

data hiding, 20

database reader example, 36–40

DataBaseReader

class diagrams, 51

constructors, 52

overview of, 36–40

testing, 87–88

definition of, 16–17

design guidelines, 10

code reuse, 82

comments, 81–82

constructors/destructors, 80–81

copying and comparison, 84

extensibility, 83

implementation, hiding, 79–80

interaction, 82

maintainability, 86

marshalling, 89

naming conventions, 83–84

nonportable code, 84

object persistence, 88–89

public interface, 78–79

real-world system modeling, 77–78

scope, 84–85

serialization, 89

stubs, 86–88

top-down, 77

destructors, 80–81

Dog

class diagram, 159–160

contract, 137–138

defining, 134

dependency injection, 182–184

design decisions, 110–112

generalization-specialization, 109–110

inheritance, 107–109

DonutShop, 143–144

Employee

behaviors, 13–16

cardinality, 155–157

multiple object associations, 157–158

optional associations, 158–159

encapsulation

importance of, 113–114

inheritance weakened by, 115–117

overview of, 20

error handling

applications, aborting, 54

design guidelines, 81

exceptions, catching, 56–57

exceptions, throwing, 55–57

ignoring problems, 54

overview of, 54

recovery, 54–55

Head, 133

highly coupled, 86, 175–177. See also dependencies

identifying, 96

implementation

characteristics of, 36

hiding, 79–80

inheritance

advantages and limitations, 106–109

behavioral, 63

composition as alternative to, 175–177, 179–182

definition of, 105

design decisions, 110–112

example of, 159–160, 177–179

generalization-specialization, 109–110

implementation, 63

multiple, 26, 63, 131–132

object reuse, 105–106

overview of, 23–24

polymorphism, 27–30

relationships, 131, 147

single, 26

subclasses, 24–25

superclasses, 24–25

weakened by encapsulation, 115–117

Integer, 169–170

interface/implementation paradigm

model of, 22–23

overview of, 21

real-world example, 21–22

interfaces

abstract, 41–42

characteristics of, 36

database reader example, 36–40

design guidelines, 41–42

extending, 79

IMammal, 197

implementation versus, 34–35

ISP (Interface Segregation Principle), 197–198

IWalkable, 183–184

minimum public, 78–79

overview of, 20–21, 131–132

prototypes, 97

public, 44–45, 75

testing, 86–88

Iterator, 172

MailTool, 170

MainApplication, 98

MakingNoise, 200

Mammal, 203

composition, 179–182

defining, 133

inheritance, 178–179

interfaces for, 197–198

makeNoise() method, 199

Math, 85

messages, 19

model of, 96–97

MyMailTool, 170–171

names, 67–69

Number

class attributes, 61–62

local attributes, 58–59

object attributes, 59–61

objects, creating from, 17–18

OpenClosed, 192, 194

Person

attributes, 18

class diagram, 19–20

creating, 18

extensibility, 83

methods, 19

PizzaShop, 144

Planet, 136, 137

polymorphism

object responsibility, 118–119

overview of, 117

Rectangle, 117, 119, 130–131, 192, 194–197

references, 64

relationships

has-a, 31

is-a, 26–27, 107

scope, 84–85

setters, injection by, 184

Shape, 165

calcArea() method, 188

child classes, 167–168

class hierarchy, 128–131

factory method design pattern, 165–169

generate() method, 167

is-a relationships, 26–27

polymorphism, 27–30, 117–121

ShapeFactory class, 168–169

ShapeCalculator, 192

ShapeFactory, 168–169

Shop, 142

SomeMath, 100

Sound, 101

Square, 22–23, 167–169

Star, 119

superclasses, 53

Swimmable, 181

TestBeep, 101

TestFactoryPattern, 169

TestMammal, 200, 201–202, 203–204

TestMath, 100

TestShape, 119–121, 190, 191

TestShop, 145–146

Triangle, 120, 167–169

Whale, 181

Window, 117

wrapping, 101–102

Coad, Peter, 106, 115

code reuse. See also abstraction; object reuse

advantages and limitations, 125

contracts

defining, 136–138

overview of, 128

as system plug-in points, 138–139

design guidelines for, 82

e-business case study

code reuse for, 141–142

non-reuse approach, 139–141

scenario, 139

UML object model, 142–146

frameworks, 126–127

interfaces

abstract, 41–42

abstract classes compared to, 133–135

characteristics of, 36

database reader example, 36–40

design guidelines, 41–42

extending, 79

IMammal, 197

implementation versus, 34–35

interface/implementation paradigm, 21–23

is-a relationships, 135–136

ISP (Interface Segregation Principle), 197–198

IWalkable, 183–184

minimum public interface, 78–79

overview of, 20–21, 131–132

prototypes, 97

public, 44–45, 75

terminology, 131

testing, 86–88

UML diagrams, 132

command design pattern, 171

comments

design guidelines, 81–82

notation, 69

number of, 82

communication, object-to-object, 10–11

comparing objects, 84

composition, 30

advantages of, 175–177

aggregations

association and, 153

concept of, 112–113, 151–152, 153

associations

aggregation and, 153

concept of, 112–113, 152–153

multiple object, 157–158

optional, 158–159

building in phases, 149–151

cardinality, 155–157

class diagrams, 113–114

definition of, 105

dependencies, avoiding, 154–155

example of, 112, 159–160, 179–182

object reuse, 105–106

relationships, 148–149

concatenation of strings, 62

conditions, 98–99

consequences, 162

constraints, environmental, 44

constructors

calling, 48

default, 48–49

design of, 53–54, 80–81

example of, 71–72

injection, 80

injection by, 184, 199

lack of, 71

multiple, 49–50, 72

overview of, 47–48

purpose of, 48

return values, 47

contracts

defining, 136–138

overview of, 128

as system plug-in points, 138–139

copies, 64–65

copying objects, 84

Count class, 49–50

coupling, 86, 175–177

“Creating Chaos” (Johnson), 173

creational patterns

categories of, 165

factory method, 165

curly braces ({}), 58

CustList class, 143

customers, 79

D

data hiding, 9, 20

data transfer objects (DTOs), 78

DataBaseReader class

class diagram, 51

constructors, 52

overview of, 36–40

testing, 87–88

databases. See also DataBaseReader class

NoSQL, 89

relational, 89

declaring methods

private implementation methods, 76

public interface methods, 75

static, 73–74

decoupling. See dependencies

deep copies, 64

default constructors, 48–49

definition inheritance. See inheritance

dependencies, 154–155. See also dependency

injection; inheritance

composition, 30

advantages of, 175–177

example of, 179–182

DIP (Dependency Inversion Principle), 3

dependency injection and, 202–204

initial example, 199–200

overview of, 198–199

separating out behavior, 200–202

inheritance

composition as alternative to, 175–177, 179–182

issues with, 179–182

dependency injection, 182–184

by constructor, 80, 184, 199

definition of, 198

DIP (Dependency Inversion Principle), 3, 202–204

initial example, 199–200

overview of, 198–199

separating out behavior, 200–202

example of, 182–184

by parameters, 199

by setter, 184

Dependency Inversion Principle. See DIP

(Dependency Inversion Principle)

design

classes, 10

code reuse, 82

comments, 81–82

constructors/destructors, 80–81

copying and comparison, 84

extensibility, 83

identifying, 96

implementation, hiding, 79–80

interaction, 82

maintainability, 86

naming conventions, 83–84

nonportable code, 84

public interface, 78–79

real-world system modeling, 77–78

scope, 84–85

comments, 81–82

constructors, 53–54

error handling, 81

global data, 8–9, 85

guidelines and best practices

iteration in, 86

marshalling, 89

object persistence, 88–89

serialization, 89

stubs, 86–88

top-down design, 77

inheritance, 110–112

interfaces, 41–42

objects, 12

patterns

adapter, 169–171

advantages of, 162

antipatterns, 173–174

best practices, 161

categories of, 164–165

elements of, 162

factory method, 165–169

iterator, 172–173

MVC (Model/View/Controller), 163–164

overview of, 161–162

SOLID principles

DIP (Dependency Inversion Principle), 198–204

ISP (Interface Segregation Principle), 197–198

LSP (Liskov Substitution Principle), 194–197

OCP (Open/Close Principle), 192–194

overview of, 187–188

SRP (Single Responsibility Principle), 187–188

system

analysis, 95

building in phases, 149–151

class identification, 96

class model, 96–97

object wrappers, 97–102

OO design process, 91–94

requirements documents, 95

safety versus economics, 94

SOW (statement of work), 95

system prototypes, 96

user interface prototypes, 97

waterfall model, 92–93

design patterns

adapter, 169–171

advantages of, 162

antipatterns, 173–174

best practices, 161

categories of, 164–165

elements of, 162

factory method, 165–169

iterator, 172–173

MVC (Model/View/Controller), 163–164

overview of, 161–162

Design Patterns (Gamma et al), 161–162. See

also design patterns

destructors, 80–81

diagrams, class

cardinality in, 156–157

composition, 113–114

creating, 51–52

DataBaseReader class, 37, 51

Dog class, 156–157, 159

e-business case study, 142–146

CustList class, 143

DonutShop class, 143–144

PizzaShop class, 144

Shop class, 142

overview of, 19–20, 92

diagrams, interface, 132

Dictionary.com, 128

DIP (Dependency Inversion Principle), 3

dependency injection, 202–204

initial example, 199–200

overview of, 198–199

separating out behavior, 200–202

documentation. See also diagrams, class

amount of, 82

comments

design guidelines, 81–82

notation, 69

requirements documents, 95

SOW (statement of work), 95

Dog class, 182, 184

class diagram, 159–160

defining, 134, 137, 138

design decisions, 110–112

generalization-specialization, 109–110

inheritance, 107–109

domains, mixing, 155

DonutShop class, 143–144

draw() method, 119, 128–131

DTOs (data transfer objects), 78

E

e-business case study

code reuse for, 141–142

non-reuse approach, 139–141

scenario, 139

UML object model, 142–146

CustList class, 143

DonutShop class, 143–144

PizzaShop class, 144

Shop class, 142

economics, safety versus, 94

Effective C++ (Meyers), 63, 78, 109

Employee class

behaviors, 13–16

cardinality, 155–157

multiple object associations, 157–158

optional associations, 158–159

Employee object, 14

encapsulation

definition of, 10

importance of, 113–114

inheritance weakened by, 115–117

overview of, 20

enums, 167

environmental constraints, 44

error handling

aborting application, 54

design guidelines, 81

exceptions

catching, 56–57

throwing, 55–57

ignoring problems, 54

overview of, 54

recovery, 54–55

exceptions

catching, 56–57

throwing, 55–57

extensibility

design guidelines, 83

interfaces, 79

F

factory method design pattern, 165–169

flat file systems, 89

fragility, 187

frameworks, 126–127

G

Gamma, Erich, 161–162

Gang of Four, 161–162

garbage collection, 80

generalization-specialization, 109–110

generate() method, 167–168

generateHeat() method, 133

getArea() method, 29–30

getInventory() method, 142

getMail() method, 171

getSize() method, 133

getSocialSecurityNumber(), 14

getters, 13–14, 73–74

Gilbert, Stephen, 115

giveDestination() method, 75, 76

global data, 8–9, 85

GoF (Gang of Four), 161–162

H

handling errors. See error handling

has-a relationships, 31

hasMoreElements() method, 173

Head class, 133

Helm, Richard, 161–162

hiding

data, 9

implementation, 79–80

highly coupled classes, 86, 175–177. See also

dependencies

hybrid apps, 7

I

ignoring problems, 54

IMammal interface, 197

immobility, 187

implementations. See also inheritance

characteristics of, 36

database reader example, 36–40

hiding, 79–80

identifying, 45–46

interface/implementation paradigm

model of, 22–23

overview of, 21

real-world example, 21–22

interfaces versus, 34–35

private implementation methods, 76

inheritance. See also composition; encapsulation

advantages and limitations, 106–109

behavioral, 63

composition as alternative to, 175–177, 179–182

definition of, 105

design decisions, 110–112

example of, 159–160

generalization-specialization, 109–110

implementation, 63

is-a relationships, 107

multiple, 26, 63, 131–132

object reuse, 105–106

overview of, 23–24

polymorphism, 27–30

relationships, 26–27, 131, 135–136, 147

single, 26

weakened by encapsulation, 115–117

init keyword, 47

initialization, attribute, 48

injection, dependency. See dependency injection

Integer class, 169–170

interaction, design guidelines for, 82

Interface Segregation Principle (ISP), 3, 197–198

interfaces

abstract, 41–42

abstract classes compared to, 133–135

characteristics of, 36

database reader example, 36–40

design guidelines, 41–42

extending, 79

IMammal, 197

interface/implementation paradigm, 34–35

model of, 22–23

overview of, 21

real-world example, 21–22

is-a relationships, 135–136

ISP (Interface Segregation Principle), 197–198

IWalkable, 183–184

Nameable, 132, 136, 137

overview of, 20–21, 131–132

prototypes, 97

public, 44–45

methods, 75

minimum public interface, 78–79

terminology, 131

testing, 86–88

UML diagrams, 132

internal customers, 79

interpreter design pattern, 171

Inversion of Control (IoC), 72

IOC (inversion of control), 182

IPS. See Interface Segregation Principle (ISP)

is-a relationships, 26–27, 107, 135–136

ISP (Interface Segregation Principle), 3, 197–198

iterate() method, 173

iterations, 86, 99

Iterator class, 172

iterator design pattern, 172–173

IWalkable interface, 183–184

J

Java. See OO (object-oriented) development

Java Design (Coad and Mayfield), 106

Java development. See OO (object-oriented)

development

Java Primer Plus (Tyma, Torok, and Downing),

54

Johnson, Johnny, 173

Johnson, Ralph, 161–162

K

keywords. See also methods

catch, 55–57

class, 68

classes, 67–69

init, 47

new, 47, 53, 165, 169, 181

null, 71–72

private, 69–71, 76

public, 75–76

static, 61–62, 69–71, 74–75

this, 60

try, 55–57

Koenig, Andrew, 173

L

Larman, Craig, 1

leaks, memory, 81

legacy systems, OO (object-oriented) concepts

with, 6–7

Liskov Substitution Principle (LSP), 3, 109, 194–

197

local attributes, 58–59

LSP. See Liskov Substitution Principle (LSP)

M

MailTool class, 170

MainApplication class, 98

maintainability, 86

makeNoise() method, 133, 199

MakingNoise class, 200

Mammal class, 203

composition, 179–182

defining, 133

inheritance, 178–179

interfaces for, 197–198

makeNoise() method, 199

marshalling objects, 89

Martin, Robert, 7, 187

Math class, 85

Mayfield, Mark, 106, 115

McMarty, Bill, 115

mediator design pattern, 172

memento design pattern, 172

memory leaks, 81

messages, 19

methods, 13. See also keywords

abstract, 129

accessors, 13–14, 73–75

buyInventory(), 142

calcArea(), 188–189

CalculatePay(), 14

constructors

calling, 48

default, 48–49

design of, 53–54, 80–81

example of, 71–72

injection by, 184

lack of, 71

multiple, 49–50, 72

overview of, 47–48

purpose of, 48

return values, 47

destructors, 80–81

draw(), 119, 128–131

generate(), 167–168

generateHeat(), 133

getArea(), 29–30

getInventory(), 142

getMail(), 171

getSize(), 133

getSocialSecurityNumber(), 14

getters, 13–14, 73–74

giveDestination(), 75, 76

hasMoreElements(), 173

iterate(), 173

makeNoise(), 133, 199

mutators, 13–14

open(), 39–40

overloading, 50–51

overview of, 19

private implementation, 76

public interface, 75

retrieveMail(), 170

setSize(), 133

setters, 13–14, 73–74, 184

setWalker(), 184–185

signatures, 50–51

static, 74–75, 83

turnRight(), 76

virtual, 121–123

walk(), 183

Meyers, Scott, 63, 78, 109

middleware, 37–39

minimum public interface, 78–79

mobile web, 7

modeling tools, 15

Model/View/Controller (MVC) design pattern,

163–164

multiple constructors, 49–50, 72

multiple inheritance, 26, 63, 131–132

multiple object associations, 157–158

mutator methods, 13–14

MVC (Model/View/Controller) design pattern,

163–164

MyMailTool class, 170–171

N

Nameable interface, 132, 136, 137

naming conventions

classes, 67–69

design guidelines for, 83–84

patterns, 162

new keyword, 47, 53, 165, 169, 181

nonportable code, 84, 101

NoSQL databases, 89

null value, 71–72

Number class

class attributes, 61–62

local attributes, 58–59

object attributes, 59–61

O

object attributes, 59–61

The Object Primer (Ambler), 86

object reuse, 105–106, 204

composition, 30

advantages of, 175–177

aggregation, 112–113, 151–152

aggregations, 153

association, 112–113

associations, 152–153, 157–159

building in phases, 149–151

cardinality, 155–157

class diagrams, 113–114

definition of, 105

dependencies, avoiding, 154–155

example of, 112, 159–160, 179–182

object reuse, 105–106

relationships, 148–149

inheritance. See also composition

behavioral, 63

composition as alternative to, 175–177, 179–182

definition of, 105

design decisions, 110–112

example of, 159–160

generalization-specialization, 109–110

implementation, 63

is-a relationships, 26–27

multiple, 26, 63

object reuse, 105–106

overview of, 23–24

polymorphism, 27–30

relationships, 147

single, 26

object wrappers

definition of, 7

design guidelines, 97–98

for existing classes, 101–102

for nonportable code, 101

overview of, 97–98

for structured code, 98–100

Objective-C, 2

Object-Oriented Design in Java (Gilbert and

McCarty), 44, 54, 64, 78, 155

object-oriented development. See OO (object-

oriented) development

objects. See also classes; methods; object reuse

attributes, 12

class scope, 61–62

example of, 69–71

initialization of, 48

local, 58–59

object scope, 59–61

public versus private, 20

behaviors, 13–16, 44

comparing, 84

copies, 64–65

copying, 84

creating, 17–18

definition of, 8, 12

design, 12

Employee, 14

marshalling, 89

object-to-object communication, 10–11

operations, 63–65

Payroll, 14

persistence, 39, 88–89

properties, 13

responsibility, 118–119

scope

class attributes, 61–62

importance of, 57–58

local attributes, 58–59

object attributes, 59–61

serialization, 89

wrappers

definition of, 7

design guidelines, 97–98

observer design pattern, 172

OCP. See Open/Close Principle

OO (object-oriented) development, 11. See also

abstraction; classes; code reuse; dependencies;

objects

abstraction

abstract classes, 121–123, 128–131, 133–135

abstract factory design pattern, 165

abstract interfaces, 41–42

abstract methods, 129

nonportable code, 84

overview of, 25–26, 30–31

advantages of, 11–12

comments

design guidelines, 81–82

notation, 69

number of, 82

composition, 30

advantages of, 175–177

aggregations, 112–113, 151–152, 153

associations, 112–113, 152–153, 157–159

building in phases, 149–151

cardinality, 155–157

class diagrams, 113–114

definition of, 105

dependencies, avoiding, 154–155

example of, 112, 159–160, 179–182

object reuse, 105–106

relationships, 148–149

contracts

defining, 136–138

overview of, 128

as system plug-in points, 138–139

data hiding, 9

e-business case study

code reuse for, 141–142

non-reuse approach, 139–141

scenario, 139

UML object model, 142–146

encapsulation

definition of, 10

importance of, 113–114

inheritance weakened by, 115–117

environmental constraints, 44

error handling

aborting application, 54

design guidelines, 81

exceptions, catching, 56–57

exceptions, throwing, 55–57

ignoring problems, 54

overview of, 54

recovery, 54–55

evolution of, 5

frameworks, 126–127

implementations

characteristics of, 36

database reader example, 36–40

hiding, 79–80

identifying, 45–46

interface/implementation paradigm, 21–23

interfaces versus, 34–35

private implementation methods, 76

inheritance

advantages and limitations, 106–109

behavioral, 63

composition as alternative to, 175–177, 179–182

definition of, 105

design decisions, 110–112

example of, 159–160, 177–179

generalization-specialization, 109–110

implementation, 63

multiple, 26, 63, 131–132

object reuse, 105–106

overview of, 23–24

polymorphism, 27–30

relationships, 131, 135–136, 147

single, 26

subclasses, 24–25

superclasses, 24–25

weakened by encapsulation, 115–117

interface/implementation paradigm

model of, 22–23

overview of, 21

real-world example, 21–22

interfaces

abstract, 41–42

abstract classes compared to, 133–135

characteristics of, 36

database reader example, 36–40

design guidelines, 41–42

extending, 79

IMammal, 197

implementation versus, 34–35

interface/implementation paradigm, 21–23

is-a relationships, 135–136

ISP (Interface Segregation Principle), 197–198

IWalkable, 183–184

minimum public interface, 78–79

overview of, 20–21, 131–132

prototypes, 97

public, 44–45, 75

terminology, 131

testing, 86–88

UML diagrams, 132

iteration in, 86

legacy systems and, 6–7

object-to-object communication, 10–11

operators, overloading, 62–63

polymorphism

object responsibility, 118–119

overview of, 117

procedural programming compared to, 7–11

relationships

has-a, 31

is-a, 26–27, 107

scope

class attributes, 61–62

design guidelines, 84–85

importance of, 57–58

local attributes, 58–59

object attributes, 59–61

SOLID principles

DIP (Dependency Inversion Principle), 198–204

ISP (Interface Segregation Principle), 197–198

LSP (Liskov Substitution Principle), 194–197

OCP (Open/Close Principle), 192–194

overview of, 187–188

SRP (Single Responsibility Principle), 188–191

stacks, 29

users, determining, 43–44

open() method, 39–40

Open/Close Principle, 192–194

Open/Close Principle (OCP), 3, 192–194

OpenClosed class, 192, 194

operations, object, 63–65

operators, overloading, 62–63

optional associations, 158–159

overloading

methods, 50–51

operators, 62–63

P

parameters, injection by, 199

parent class, 24–25

passing references, 71

A Pattern Language (Alexander), 162

patterns, design

adapter, 169–171

advantages of, 162

antipatterns, 173–174

best practices, 161

categories of, 164–165

elements of, 162

factory method, 165–169

iterator, 172–173

MVC (Model/View/Controller), 163–164

overview of, 161–162

Payroll object, 14

persistence, 39, 88–89

Person class

attributes, 18

class diagram, 19–20

creating, 18

extensibility, 83

methods, 19

PizzaShop class, 144

Planet class, 136, 137

plus sign (+), 62

polymorphism

object responsibility, 118–119

overview of, 27–30, 117

private attributes, 20

private implementation methods, 76

private keyword, 69–71, 76

problems, 162

procedural programming

data model, 11

OO (object-oriented) programming compared to, 7–11

properties, object, 13

protocols, 121–123

prototype design pattern, 165

prototypes

system, 96

user interface, 97–98

public attributes, 20

public interfaces, 44–45, 75

public keyword, 75–76

Q-R

recovery, 54–55

Rectangle class, 117, 119, 130–131, 192, 194–197

references

classes and, 64

passing, 71

relational databases, 89

relationships

composition, 148–149

has-a, 31

inheritance, 131, 147

is-a, 26–27, 107, 135–136

requirements documents, 95

responsibility, SRP (Single Responsibility

Principle), 187–188

retrieveMail() method, 170

return values, 47

reuse of code. See code reuse

“Reuse Patterns and Antipatterns” (Ambler), 173

Reuseless Artifact, 173

rigidity, 187

Robust Artifacts, 173

S

safety, economics versus, 94

scope

class attributes, 61–62

design guidelines, 84–85

importance of, 57–58

local attributes, 58–59

object attributes, 59–61

separating out behavior, 200–202

sequences, 98–99

serialization, 89

setSize() method, 133

setters, 13–14, 73–74, 184

setWalker() method, 184–185

shallow copies, 64

Shape class, 165

calcArea() method, 188

child classes, 167–168

class hierarchy, 128–131

factory method design pattern, 165–169

generate() method, 167

is-a relationships, 26–27

polymorphism, 27–30, 117–121

ShapeFactory class, 168–169

ShapeCalculator class, 192

ShapeFactory class, 168–169

ShapeType enum, 167

Shop class, 142

signatures, 21, 50–51

Simon, Herbert, 149

single inheritance, 26

Single Responsibility Principle (SRP), 3, 187–188

singleton design pattern, 165

slash (/), 69

Smalltalk

development of, 163

MVC (Model/View/Controller) design pattern, 164–165

SOLID principles, 2–3, 109

DIP (Dependency Inversion Principle)

dependency injection, 202–204

initial example, 199–200

overview of, 198–199

separating out behavior, 200–202

ISP (Interface Segregation Principle), 197–198

LSP (Liskov Substitution Principle), 194–197

OCP (Open/Close Principle), 192–194

overview of, 187–188

SRP (Single Responsibility Principle), 187–188

solutions, 162

SomeMath class, 100

Sound class, 101

SOW (statement of work), 95

specialization, 109–110

Square class, 22–23, 167–169

SRP. See Single Responsibility Principle (SRP)

stacks, 29

standalone applications, 39

Star class, 119

state design pattern, 172

statement of work (SOW), 95

static attributes, 83

static keyword, 61–62, 69–71, 74–75

static methods, 83

strategy design pattern, 172

strings, concatenation of, 62

structural patterns

adapter, 169–171

categories of, 169

structured code

conditions, 98–99

sequences, 98–99

wrapping, 99–100

stubs, 86–88

subclasses, 24–25

substitution, LSP (Liskov Substitution

Principle), 194–197

superclasses, 24–25, 53

Swift

exceptions, 55–57

init keyword, 47

multiple inheritance, 63

scope, 58

Swimmable class, 181

system design

analysis, 95

building in phases, 149–151

class identification, 96

class model, 96–97

object wrappers, 97–98

for existing classes, 101–102

for nonportable code, 101

overview of, 97–98

for structured code, 98–100

OO design process, 91–94

requirements documents, 95

safety versus economics, 94

SOW (statement of work), 95

system prototypes, 96

user interface prototypes, 97

waterfall model, 92–93

system prototypes, 96

T

template method, 172

TestBeep class, 101

TestFactoryPattern class, 169

testing interfaces, 86–88

TestMammal class, 200, 201–202, 203–204

TestMath class, 100

TestShape class, 119–121, 190, 191

TestShop class, 145–146

this keyword, 60

throwing exceptions, 55–57

top-down design, 77

Triangle class, 120, 167–169

troubleshooting. See error handling

try keyword, 55–57

try/catch blocks, 55–57

turnRight() method, 76

U

UML (Unified Modeling Language)

class diagrams, 14–15, 19–20, 92

creating, 51–52

DataBaseReader, 37

interface diagrams, 132

user interface prototypes, 97

users

customers versus, 79

determining, 43–44

V

variables, global, 85

virtual methods, 121–123

visitor design pattern, 172

Visual Basic .NET, 2

exceptions, 55–57

multiple inheritance, 63

New keyword, 47

operator overloading, 63

Vlissides, John, 161–162

W-X-Y-Z

walk() method, 183

waterfall model, 92–93

Whale class, 181

Window class, 117

word processing framework, 126–127

wrappers

advantages of, 38

design guidelines, 97–98

for existing classes, 101–102

for nonportable code, 101

overview of, 7, 97–98

for structured code, 98–100

Xerox PARC, 163

Code Snippets
Many titles include programming code or configuration

examples. To optimize the presentation of these

elements, view the eBook in single-column, landscape

mode and adjust the font size to the smallest setting. In

addition to presenting code and configurations in the

reflowable text format, we have included images of the

code that mimic the presentation found in the print

book; therefore, where the reflowable format may

compromise the presentation of the code listing, you will

see a “Click here to view code image” link. Click the link

to view the print-fidelity code image. To return to the

previous page viewed, click the Back button on your

device or app.

	Cover Page
	About This E-Book
	Half Title Page
	Title Page
	Copyright Page
	Dedication Page
	Contents at a Glance
	Table of Contents
	Acknowledgments
	About the Author
	We Want to Hear from You!
	Reader Services
	Figure Credits
	Introduction
	This Book’s Scope
	What’s New in the Fifth Edition
	The Intended Audience
	The Book’s Approach
	Source Code Used in This Book

	1. Introduction to Object-Oriented Concepts
	The Fundamental Concepts
	Objects and Legacy Systems
	Procedural Versus OO Programming
	Moving from Procedural to Object-Oriented Development
	What Exactly Is an Object?
	What Exactly Is a Class?
	Using Class Diagrams as a Visual Tool
	Encapsulation and Data Hiding
	Inheritance
	Polymorphism
	Composition
	Conclusion

	2. How to Think in Terms of Objects
	Knowing the Difference Between the Interface and the Implementation
	Using Abstract Thinking When Designing Interfaces
	Providing the Absolute Minimal User Interface Possible
	Conclusion
	References

	3. More Object-Oriented Concepts
	Constructors
	Error Handling
	The Importance of Scope
	Operator Overloading
	Multiple Inheritance
	Object Operations
	Conclusion
	References

	4. The Anatomy of a Class
	The Name of the Class
	Comments
	Attributes
	Constructors
	Accessors
	Public Interface Methods
	Private Implementation Methods
	Conclusion
	References

	5. Class Design Guidelines
	Modeling Real-World Systems
	Identifying the Public Interfaces
	Designing Robust Constructors (and Perhaps Destructors)
	Designing Error Handling into a Class
	Designing with Reuse in Mind
	Designing with Extensibility in Mind
	Designing with Maintainability in Mind
	Using Object Persistence
	Conclusion
	References

	6. Designing with Objects
	Design Guidelines
	Object Wrappers
	Conclusion
	References

	7. Mastering Inheritance and Composition
	Reusing Objects
	Inheritance
	Composition
	Why Encapsulation Is Fundamental to OO
	Conclusion
	References

	8. Frameworks and Reuse: Designing with Interfaces and Abstract Classes
	Code: To Reuse or Not to Reuse?
	What Is a Framework?
	What Is a Contract?
	An E-Business Example
	Conclusion
	References

	9. Building Objects and Object-Oriented Design
	Composition Relationships
	Building in Phases
	Types of Composition
	Avoiding Dependencies
	Cardinality
	Tying It All Together: An Example
	Conclusion
	References

	10. Design Patterns
	Why Design Patterns?
	Smalltalk’s Model/View/Controller
	Types of Design Patterns
	Antipatterns
	Conclusion
	References

	11. Avoiding Dependencies and Highly Coupled Classes
	Composition versus Inheritance and Dependency Injection
	Conclusion
	References

	12. The SOLID Principles of Object-Oriented Design
	The SOLID Principles of Object-Oriented Design
	Conclusion
	References

	Index
	Code Snippets

