

The Software Architect Elevator
Redefining the Architect’s Role in the Digital

Enterprise

Gregor Hohpe

The Software Architect Elevator
by Gregor Hohpe

Copyright © 2020 Gregor Hohpe. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editors: Ryan Shaw,
Melissa Duffield

Development Editor: Melissa Potter

Production Editor: Deborah Baker

Copyeditor: Octal Publishing, LLC

Proofreaders: Kim Wimpsett, Justin Billing

Indexer: Judith McConville

Cover Design: Randy Comer

Interior Designer: Monica Kamsvaag

Illustrators: Rebecca Demarest, Jose Marzan Jr.

April 2020: First Edition

http://oreilly.com/

Revision History for the First Edition

2020-04-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492077541 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The
Software Architect Elevator, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-07754-1

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492077541

Foreword by Simon Brown
My aspiration to become a software architect stemmed from my interest in
the technical side of software design. I really enjoy discussions about how
we can best use technology to solve a problem, and how to create codebases
that are highly modular, well-structured, and easy to work with.

What nobody tells you though, is that these technical aspects are just one
part of the architecture puzzle. It’s not just about technology and designing
software. It’s about designing software and solving problems within a
specific organizational context, and being aware of what’s happening
around you, so that you can successfully navigate and influence that context
where necessary. It’s crucial, therefore, that architects realize they need to
communicate and influence at different levels, with different audiences,
both inside and outside of their immediate team environment.

As an industry, however, we do a relatively poor job teaching software
developers how to move into software architecture roles, let alone providing
help for those who are currently in such a role. This is especially true for the
nontechnical aspects. A quick browse of your favorite bookstore will reveal
a plethora of books about software architecture, architectural styles,
architectural patterns, DevOps, automation, enterprise architecture, Lean,
Agile, and so on. You’ll find far fewer books related to people and
communication. And it’s even rarer to find a single book that covers all of
these topics.

The Software Architect Elevator fills this gap by discussing an architect’s
role from a broader set of perspectives than usual. It will teach you how to
avoid the traditional, somewhat dysfunctional “business versus IT” mindset,
how to see the bigger picture to map and influence the organizational
landscape, how to make effective decisions, how to deal with vendors, and
how to communicate across all levels of an organization. All of this is
essential for those who want to be successful in their role as an architect.

References to additional reading complement the practical tips and
techniques presented in the book. Many of the relatable stories will,
unfortunately, sound far too familiar! Although Gregor’s stories will relate

more to people working in larger organizations with a traditional IT
function, many of them are equally applicable to the newer wave of “digital
companies.” I’ve been surprised to see some of these situations play out in
such organizations, too!

In summary, this is a fabulous book for current and aspiring architects,
going beyond what you will find in other books on the subject. It’s a great
way to fast-track the collection of tools in your architecture toolbox. I
thoroughly recommend this book to aspiring software architects and CTOs
alike. Whether you’re looking to broaden your skills and get a feel for what
architecture is all about, or you’ve been tasked with improving
organizational productivity and performance, there’s something here for
everybody.

Simon Brown, author of Software Architecture for Developers

Foreword by David Knott
I remember the first time I was asked to form an architecture team within an
IT function. I didn’t know what it meant, but thought it sounded cool, and
was confident that I could figure it out. That confidence lasted about five
minutes, until a team member asked whether we were going to be
technology architects or enterprise architects, and I realized that I didn’t
know the difference!

Twenty years later, I am privileged to be chief architect of a global
organization, and although I still haven’t found a perfect job description for
architects, I have learned that being comfortable with ambiguity is one of
the most important attributes of a good architect—asking awkward
questions, as my team member illustrated, being another!

This book will help you understand what being an architect is like by
painting a vivid picture of an architect’s life and mission in the current
phase of the information technology revolution. Riding the architecture
elevator is how my team and I spend our time: racing from one part of our
organization to another, connecting, explaining, questioning, and trying to
make good decisions about complex systems with imperfect information.
The elevator takes us from code to business strategy and back again, all
within the same day.

Architecture has been intermittently in and out of fashion within enterprise
technology, and architects are sometimes accused of “not making
anything.” I believe that architects make two things that are of vital
importance and in short supply: they make sense and they make decisions.
Whenever architects help their organizations understand a world that is
increasingly difficult to grasp, figure out what decisions need to be taken,
and help take those decisions in a rational way at the right time, then they
have had a good day at the office. And, as this book explains, if you’re not
taking meaningful decisions (see Chapter 6), making them explicit, and
helping people understand them, you’re not doing architecture.

However, these are difficult skills to master. Humans have been shown to
be notoriously bad at understanding complexity and at making good

decisions with limited information. Architects can help themselves and their
companies by adopting techniques and ways of thinking which have been
won through years of experience. They can create understanding by making
sure that they turn learning curves into ramps rather than cliffs and can
make better decisions by adopting the language of the market (see
Chapter 18), as well as by selling options to the business (see Chapter 9).

One of the reasons that architecture has been in and out of fashion is that
what organizations need from architects has changed. At many points in my
career, the organizations I worked for believed that they wanted me to
define their current state and future state, and to figure out the path between
them. This was an understandable belief: it seems reasonable to want to
know where we are, where we want to go, and how we are going to get
there. But it was also based on a static view of the world, in which all
change was deviation from a steady state.

In today’s world, the technology running any organization must be
dynamic, and the organization must be able to change that technology to
adapt to economies of speed (see Chapter 35). The job of architects now is
to create the conditions for speed and dynamism within their organizations:
to satisfy the design goals of change velocity and service quality at the same
time (and to help people understand that these goals are not in conflict; see
Chapter 40). If you still believe that the job is to define future state
architectures delivered through a multiyear plan, you would do well to read
Part V of this book.

The image of the architecture elevator is apt because it is one of continuous
motion running through the center of an organization. Elevators are also a
transformational technology: they are one of the inventions which made
skyscrapers possible, and changed our skylines forever. If you want to be an
architect then you are signing up for a life of movement and transformation.
If you are curious and have a need to explain, a desire to connect, and the
drive to make decisions, then it might be the job for you. You still won’t get
a job description that describes everything you need to do, but this book
will help you figure it out.

Dr. David Knott, Chief Architect, HSBC

About This Book

As the digital economy changes the rules of the game for traditional
enterprises, the role of architects also fundamentally changes. Rather than
focus on technical implementations alone, they must connect the
organization’s penthouse, where the business strategy is set, with the
technical engine room, where the enabling technologies are implemented.
Only if both parts are connected can IT change its role from a cost center to
a competitive digital advantage. Making this connection by walking from
one organizational floor to the next won’t work. Instead, modern architects
bypass existing structures by taking the fast track: the Architect Elevator.

This book helps (aspiring) architects embrace a new view of what it means
to be an architect and equips them to ride the architect elevator across many
levels, aligning organization and technology and effecting lasting change.

A Chief Architect’s Life: It’s Not That Lonely
at the Top
A lot is expected from IT leaders and chief architects: they must maneuver
in an organization in which IT is often still seen as a cost center, operations
means “run” as opposed to “change,” and middle management has become
cozy neither understanding the business strategy nor the underlying
technology. All the while they are expected to stay up to date with the latest
technology, manage vendors, translate buzzwords into a solid strategy, and
recruit top talent. It’s no surprise, then, that senior software and IT
architects have become some of the most sought-after IT professionals
around the globe.

With such high expectations, though, what does it take to become a
successful chief architect? And after you get there, how do you keep up?
When I became a chief IT architect, I wasn’t expecting any magic answers,

but I was looking for a book that would at least spare me from having to
reinvent the wheel all the time. I attended many CIO/CTO events, which
proved useful but focused mainly on high-level direction instead of on how
to actually accomplish the mission on a technical level. Having been unable
to find such a book, I decided to collect my experience of over two decades
as software engineer, consultant, startup cofounder, and chief architect into
a book of my own.

What Will I Learn?
This book is organized into major sections that correspond to an architect’s
journey of supporting a large-scale IT transformation. The journey begins
close to the IT engine room and slowly inches up to the organizational
penthouse:

Part I, Architects

Understanding the qualities of an architect in the enterprise context

Part II, Architecture

Redefining architecture’s value proposition as a change driver

Part III, Communication

Conveying technical topics effectively to a variety of stakeholders

Part IV, Organizations

Using an architectural mindset to understand organizational structures
and systems

Part V, Transformation

Effecting lasting change in an organization

Part VI, Epilogue: Architecting IT Transformation

Living the life of a change agent

You are invited to read this book from beginning to end, following the
progression from technical to organizational topics. However, you are just
as welcome to peruse the book and start reading whichever chapter piques
your interest, using the extensive cross-references I’ve provided to aid your
nonlinear navigation. After all, that’s how the internet works, so I figured it
would probably also work for my book.

This isn’t a technical book. It’s a book about how to grow your horizon as
an architect to effectively apply your technical skill in large organizations.
This book won’t teach you how to configure a Hadoop cluster or how to set
up container orchestration with Docker and Kubernetes. Instead, it teaches
you how to reason about large-scale architectures; how to ensure your
architecture benefits the business strategy; how to leverage vendors’
expertise; and how to communicate critical decisions to upper management.

Is It Proven to Work?
If you’re looking for a scientifically proven, repeatable “method” of
transforming a technical organization, you might be disappointed (but if
you are, please let me know). This book’s structure is rather loose, and you
might even be annoyed at having to read through little anecdotes when all
you want is the one bit of advice you need in order to be successful.
However, that’s what the life of an architect is like. You won’t be able to
copy-paste other people’s decisions, but you can learn from their experience
to make better decisions of your own.

This book is based on my daily experiences of two decades in IT, which led
me through being a startup cofounder (lots of fun, not lots of money),
system integrator (made tax audits more efficient), consultant (lots of
PowerPoint), author (collecting and documenting insights), internet
software engineer (building the future), chief architect of a large
multinational organization (tough, but rewarding), and CTO advisor (lots of
insights and sharing). I felt that taking a personal account of IT
transformation might be appropriate because architecture is by nature a
somewhat personal business. When looking at a famous building, you can

easily identify the architect from afar. White box: Richard Meier; all
crooked: Frank Gehry; looks like made from fabric: Zaha Hadid. Although
not quite as dramatic, every (chief) IT architect also has their personal
emphasis and style that’s reflected in their works.

The collection of insights that make up this book reflect my personal point
of view but are written such that the “nuggets” can be easily extracted and
put to broader use. Sidebars show you experiences from both traditional and
digital companies.

Architects are busy people. I therefore tried to package my insights into
anecdotes that are easy to consume and hopefully even a bit fun to read. I
hope you’ll experience a mix of “I’m not the only person facing this
problem” and “that’s a new way of looking at things” along the way.

There’s a lot more to say about architecture and transformation than would
ever fit into a book. You’ll therefore find many references to other books
and articles that help you dive deeper into any particular topic.

Tell Me a Story
I chose to structure the book as a collection of stories because in our
complex world, telling stories is a great way to teach. Studies have shown
that people remember stories much better than sheer facts, and there
appears to be evidence that listening to a story activates additional parts of
our brain that help with understanding and retention. Aristotle already knew
that a good speech contains not only logos, the facts and structure, but also
ethos, a credible character, and pathos, emotions, usually triggered by a
good story.

To transform an organization, you don’t need to solve mathematical
equations. You need to move people, and that’s why you need to be able to
tell a good story and paint a compelling vision. It’s fine to start out by using
some of the attention-catching slogans from this book (“Zombies will eat
your brain!”) and later supplement them with your own stories. Have you
seen people cry and laugh when watching movies, even though they know

exactly that the story is fictitious and all acting is fake? That’s the power of
storytelling in action.

Conventions Used in This Book
This book contains many real-life stories that highlight the contrast between
traditional and digital companies. The respective examples are indicated by
the following icons:

The “manager” icon indicates examples describing how traditional IT
organizations think and work.

The “digital native” icon indicates examples describing how modern, “digital”
organizations operate.

This icon signifies a general note or comment.

This icon indicates a warning or caution.

Staying Up-to-Date
My brain doesn’t stop generating new ideas with the publication date. To
see what’s on my mind and to chime in:

Follow me on Twitter: https://twitter.com/ghohpe

https://twitter.com/ghohpe

Find me on Linkedin: http://www.linkedin.com/in/ghohpe

And find bigger ideas and articles on my blog:
https://architectelevator.com/blog

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, please visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

http://www.linkedin.com/in/ghohpe
https://architectelevator.com/blog
http://oreilly.com/
http://oreilly.com/

707-829-0104 (fax)

You can access the web page for this book, where we list errata and any
additional information, at https://oreil.ly/Software_Architect_Elevator.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For more information about our books and courses, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many people have knowingly or unknowingly contributed to this book
through hallway conversations, meeting discussions, manuscript reviews,
Twitter dialogues, or casual chats over a beer. It’s challenging to give due
credit to all of the people I learned from, but I’d like to highlight a few
whose input has significantly shaped this book. Michael Plöd, Simon
Brown, Jean-Francois Landreau, and Michele Danieli have been a
substantial source of suggestions and feedback. Matthias “Maze” Reik has
been an enormously thorough proofreader, while Andrew Lee spotted a few
more typos. My former boss, Barbara Karuth, reviewed and approved many
stories that emerged from insightful conversations with current and former
colleagues. And, last but certainly not least, Kleines Genius provided
untiring moral support.

https://oreil.ly/Software_Architect_Elevator
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Part I. Architects

Architects have an exciting but sometimes challenging life in corporate IT.
Some managers and technical staff might consider them to be overpaid
ivory tower residents who, detached from reality, bestow their thoughts
upon the rest of the company with slides and wall-sized posters, while their
quest for irrelevant ideals causes missed project timelines.

On the upside, IT architects have become some of the most sought-after IT
professionals as traditional enterprises are looking to transform their IT
landscape to compete with digital disruptors. Ironically, though, many of
the most successful digital companies have a world-class software and
systems architecture, but don’t have architects at all.

So, what makes a person an architect, besides that it’s printed on their
business card?

What Architects Are Not

Sometimes, it’s easier to describe what something isn’t rather than trying to
come up with an exact definition of what it is. In the case of architects,
exaggerated expectations can paint a picture of someone who solves
intermittent performance problems in the morning and then transforms the
enterprise culture in the afternoon. This leads to a scenario in which
architects are pulled into several roles that clearly miss the purpose of being
an architect:

Senior developer

Developers often feel they need to become an architect as the next step
in their career (and their pay grade). However, becoming an architect
and a superstar engineer are two different career paths, with neither
being superior to the other. Architects tend to have a broader scope,
including organizational and strategic aspects, whereas engineers tend
to specialize and deliver running software. Mature IT organizations
understand this and offer parallel career paths.

Firefighter

Many managers expect architects to be able to troubleshoot and solve
any crisis based on their broad understanding of the current system
landscape. Architects shouldn’t ignore production issues, because they
provide valuable feedback into possible architectural weaknesses. But
an architect that runs from one fire drill to the next won’t have time to
think about architecture. Architecture isn’t operations.

Project manager

Architects must be able to juggle many distinct, but interrelated topics.
Their decisions also take into account—and affect—project time lines,
staffing, and required skill sets. As a result, upper management often
comes to rely on architects for project information, especially if the
project manager is busy filling out status report templates (Chapter 30).
This is a slippery slope for an architect because it’s valuable work, but it
distracts from the architect’s main responsibility.

Scientist

Architects need to sport a sharp intellect and must be able to think in
models and systems (Chapter 10), but the decisions they make impact
real business projects. Hence, many organizations separate the role of
the chief architect from that of a chief scientist. Personally, I prefer the
title chief engineer to highlight that architects produce more than paper.
Lastly, although scientists may get their papers published by making
things sound complex and difficult to understand, an architect’s job is
the inverse: making complex topics easy to digest (Chapter 18).

Many Kinds of Architects

Architects operate at different levels of abstraction. Just like real-life
architecture has city planners, building, landscape, and interior architects,
IT architects can have many specializations: you’ll have network architects,
security architects, software architects, solution architects, enterprise
architects, and many more. Just like in the real world, no one architect is
more important than the other. For example, living in a house with great
architecture in a poorly planned city with endless traffic jams but few public
facilities is going to be equally frustrating to living in a house with poor
architecture in a well-functioning city. The same is true in IT—your
beautifully designed and perfectly modularized application isn’t any good if
it solves the wrong problem or is duplicating an existing application.
Likewise, if the application is unable to connect to the corporate network,
few users will be able to appreciate it. Therefore, it’s not about which type
of architect is more important; it’s about getting all types of architects to
work together.

Architects Deal with
Nonrequirements

It’s commonly assumed that developers deal with functional requirements,
whereas architects deal with nonfunctional requirements, often referred to
as the “ilities”: scalability, maintainability, availability, interoperability, and
so on. The reality isn’t as simple, though. I find that more often, architects

deal with nonrequirements. This term doesn’t indicate things that aren’t
required; rather, it refers to requirements that aren’t stated anywhere. This
includes context, tacit assumptions, hidden dependencies, and other things
that were never spelled out. Unearthing these implicit requirements and
making them explicit is one of an architect’s most valuable contributions.
Again, this work can take place at any level from enterprise architect to
software architect—it’s the connection that counts.

Measuring an Architect’s Value

Articulating an architect’s value isn’t always easy. I often explain to people
that if an IT system can still absorb high rates of change after many years,
the project team probably included a good architect. Now, waiting several
years to assess an architect’s value is slightly impractical. Instead, we can
see architects bringing value in several dimensions:

Architects “connect the dots”

Often, each individual element of an IT architecture is well thought out
and well run, but the sum of all these fine systems still isn’t delivering
what the business needs. Architects look between the boxes to make
sure interdependencies are well understood.

Architects see trade-offs

System design and development involves innumerous decisions. Most
meaningful decisions don’t just have upsides, but also downsides.
Architects see both sides of the coin and balance trade-offs in line with
overarching goals and principles.

Architects look beyond products

Too much of IT decision-making is driven by product selection
(Chapter 16). Architects look beyond the product names and feature lists

to distill decision options and trade-offs.

Architects articulate strategy

IT’s purpose is to support the business strategy. Architects establish this
linkage by translating business needs into technical drivers.

Architects fight complexity

IT is complex. Architects harmonize to reduce complexity, for example,
through governance in form of architecture review boards and inception
(see Chapter 32). It also includes “retiring” systems (in the Blade
Runner sense of the word), lest you want to live among zombies
(Chapter 12).

Architects deliver

Staying grounded in reality and receiving feedback on decisions from
real project implementations is vital for architects. Otherwise, control
remains an illusion (Chapter 27).

So, architects do a lot more than draw pretty architecture diagrams!

Architects as Change Agents

Today’s successful architects aren’t just IT specialists, they’re also major
change agents. Architects must therefore possess a special set of skills
beyond just technology.

The chapters in this part prepare you for this role by teaching you how to:

Chapter 1, The Architect Elevator

Transcend organizational levels by riding the architect elevator.

Chapter 2, Movie-Star Architects

Adopt multiple personas that might resemble movie characters.

Chapter 3, Architects Live in the First Derivative

Live in the first derivative.

Chapter 4, Enterprise Architect or Architect in the Enterprise?

Connect business and IT.

Chapter 5, An Architect Stands on Three Legs

Bring more than skill because that’s just one of the three legs architects
stand on.

Chapter 6, Making Decisions

Exercise good decision-making discipline in the face of uncertainty.

Chapter 7, Question Everything

Get to the root of problems by questioning everything.

Chapter 1. The Architect
Elevator

From the Penthouse to the Engine Room and Back

Tall buildings need someone to ride the elevator

Architects play a critical role as a connecting and translating element,
especially in large organizations where departments speak different
languages, have different viewpoints, and drive toward conflicting
objectives. Many layers of management only exacerbate the problem as
communicating up and down the corporate ladder resembles the telephone
game. The worst-case scenario materializes when people holding relevant
information or expertise aren’t empowered to make decisions, whereas the
decision makers lack relevant information. Not a good state to be in for a
corporate IT department, especially in the days when technology has
become a driving factor for most businesses.

The Architect Elevator
Architects can fill an important void in large enterprises: they work and
communicate closely with technical staff on projects, but are also able to
convey technical topics to upper management without losing the essence of
the message (Chapter 2). Conversely, they understand the company’s
business strategy and can translate it into technical decisions that support it.

If you picture the levels of an organization as the floors in a building,
architects can ride what I call the architect elevator: they ride the elevator
up and down to move between a large enterprise’s board room and the
engine room where software is being built. Such a direct linkage between
the levels has become more important than ever in times of rapid IT
evolution and digital disruption.

Stretching the analogy to that of a large ship, if the bridge officers spot an
obstacle and need to turn the proverbial tanker, they will set the engines to
reverse and the rudder to hard starboard. But if in reality the engines are
running full speed ahead, a major disaster is preprogrammed. This is why
even old steamboats had a pipe to echo commands directly from the captain
to the boiler room and back. In large enterprises architects need to play
exactly that role!

1

The value of the architects in
the elevator metaphor
shouldn’t be measured by how
“high” they travel but by how
many floors they span.

Some Organizations Have More Floors Than
Others
Coming back to the building metaphor, the number of floors an architect
has to ride in the elevator depends on the type of organization. Flat
organizations might not need the elevator at all—a few flights of stairs are
sufficient. This also means that the up-and-down role of an architect might
be less critical: if management is keenly aware of the technical reality at the
necessary level of detail and technical staff have direct access to senior
management, fewer “enterprise” architects are needed. We could say that
digital companies live in a bungalow and hence don’t need the elevator.

However, classic IT shops in large
organizations tend to have many, many
floors above them. They work in a
skyscraper so tall that a single architect
elevator might not be able to span all
levels. In this case, it’s OK if a technical
architect and an enterprise architect meet

in the middle and cover their respective “halves” of the building. The value
of the architects in this scenario shouldn’t be measured by how “high” they
travel but by how many floors they span. In large organizations, the folks in
the penthouse might make the mistake of seeing and valuing only the
architects in the upper half of the building. Conversely, many developers or
technical architects consider such “enterprise” architects less useful because
they don’t code. This can be true in some cases—such architects often
enjoy life in the upper floors so much that they aren’t keen to take the
elevator down ever again. But an “enterprise” architect who travels halfway
down the building to share the strategic vision with technical architects can
have a significant value.

Not a One-Way Street
Invariably you will meet folks who ride the elevator, but only once to the
top and never back down. They enjoy the good view from the penthouse too
much and feel that they didn’t work so hard to still be visiting the grimy
engine room. Frequently you can identify these folks by statements like: “I
used to be technical.” I can’t help but retort: “I used to be a manager” (it’s
true) or “Why did you stop? Were you no good at it?” If you want to be
more diplomatic (and philosophical) about it, cite Fritz Lang’s movie
Metropolis in which the separation between penthouse and engine room
almost led to the city’s complete destruction before people realized that “the
head and the hands need a mediator.” In any case, the elevator is meant to
be ridden up and down. Eating caviar in the penthouse while the basement
is flooded isn’t the way to transform corporate IT.

Riding the elevator up and down the organization is also an important
mechanism for the architect to obtain feedback on decisions and to
understand their ramifications at the implementation level. Long project
implementation cycles don’t provide a good learning loop (Chapter 36) and
can lead to an “Architect’s Dream, Developer’s Nightmare” scenario, in
which the architects have achieved their abstract ideals, but the actual
implementation is impractical. Allowing architects to only enjoy the view
from high up invariably leads to the dreaded authority without
responsibility antipattern. This pattern can be broken only if architects
have to live with, or at least observe, the consequences of their decisions.
To do so, they must keep riding the elevator.

High-Speed Elevators
In the past, IT decisions were fairly far removed from the business strategy:
IT was pretty “vanilla,” and the main parameter, or key performance
indicator (KPI), was cost. Therefore, riding the elevator wasn’t as critical as
new information was rare. Nowadays, though, the linkage between business
goals and technology choices has become much more direct, even for
“traditional” businesses. For example, the desire for faster time-to-market to

2

meet competitive pressures translates into the need for an elastic cloud
approach to computing, which in turn requires applications that scale
horizontally and thus should be designed to be stateless. Targeted content
on customer channels necessitates analytical models, which are tuned by
churning through large amounts of data via a Hadoop cluster, which in turn
favors local hard-drive storage over shared-network storage. The fact that in
one or two sentences a business need has turned into application or
infrastructure design highlights the need for architects to ride the elevator.
Increasingly they need to take the express elevator, though, to keep up with
the pace at which business and IT are intertwined.

In traditional IT shops, the lower floors of the building can be exclusively
occupied by external consultants (Chapter 38), which allows enterprise
architects to avoid getting their hands dirty. However, because it focuses
solely on efficiency and ignores economies of speed (Chapter 35), such a
setup doesn’t perform well in times of rapid technology evolution.
Architects who are used to such an environment must stretch their role from
being pure consumers of vendors’ technology roadmaps to actively defining
it. To do so, they need to develop their own IT worldview (Chapter 16).

Other Passengers
If you are riding the elevator up and down as a successful architect, you
might encounter other folks riding with you. You might, for example, meet
business or nontechnical folks who learned that a deeper understanding of
IT is critical to the business. Be kind to those folks, take them with you, and
show them around. Engage them in a dialogue—it will allow you to better
understand business needs and goals. They might even take you to the
higher floors you haven’t been to.

You might also encounter folks who ride the elevator down merely to pick
up buzzwords to sell as their own ideas in the penthouse. We don’t call
these people architects. People who ride the elevator but don’t get out are
commonly called lift boys. They benefit from the ignorance in the
penthouse to pursue a “technical” career without touching actual

technology. You might be able to convert some of these folks by getting
them genuinely interested in what’s going on in the engine room. If you
don’t succeed, it’s best to maintain the proverbial elevator silence, avoiding
eye contact by examining every ceiling tile in detail. Keep your “elevator
pitch” for those moments when you share the cabin with a senior executive,
not a mere messenger.

The Dangers of Riding the Elevator
You would think that architects riding the elevator up and down are highly
appreciated by their employer. After all, they provide significant value to
businesses transforming their IT to better compete in a digital world.
Surprisingly, such architects can encounter resistance. Both the penthouse
and the engine room might actually have grown quite content with being
disconnected: the company leadership is under the false impression that the
digital transformation is proceeding nicely, whereas the folks in the engine
room enjoy the freedom to try out new technologies without much
supervision. Such a disconnect between penthouse and engine room
resembles a cruise ship heading for an iceberg with the engines running at
full speed ahead: by the time the leadership realizes what’s going on, it’s
likely too late.

I was once criticized by the engine room for pushing corporate agenda against
the will of the developers while at the same time corporate leadership
chastised me for wanting to try new solutions just for fun. Ironically, this
likely meant I found a good balance.

One can liken such organizations to the Leaning Tower of Pisa where the
foundation and the penthouse aren’t vertically aligned. Riding the elevator
in such a building is certainly more challenging. When stepping into such
an environment, the elevator architect must be prepared to face resistance
from both sides. No one ever said being a disruptor is easy, especially as
systems resist change (Chapter 10).

The best strategy in these situations is to start linking the levels carefully,
waiting for the right moment to share information. For example, you could
begin by helping the folks in the engine room convey to management what
great work they are doing. It will give them more visibility and recognition
while you gain access to detailed technical information.

Other corporate denizens not content with you riding the elevator can be
found on the middle floors: seeing you whiz by to connect leadership and
the engine room makes them feel bypassed. Thus, the organization has an
“hourglass” shape of appreciation for your work: top management sees you
as a critical transformation enabler, whereas the folks in the engine room
are happy to have someone to talk to who actually understands and
appreciates their work. The folks in the middle, though, see you as a threat
to their livelihood, including their children’s education and their vacation
home in the mountains. This is a delicate affair. Some might even actively
block you on your way: being stopped at every floor to give an explanation
—aka aligning (Chapter 30)—makes riding the elevator not really faster
than taking the stairs.

Lastly, because folks riding the elevator are rare, being good at one thing
often leads others to conclude that you aren’t good at anything else. For
example, architects giving meaningful and inspiring presentations to
management are often assumed to not be great technologists, even though
that’s the very reason their presentations are meaningful. So, every once in
a while, you’re going to want to let the upper floors know that you can hold
your own down in the engine room.

Flattening the Building
Instead of tirelessly riding the elevator up and down, why not get rid of all
those unnecessary floors? After all, the digital companies your business is
trying to compete with have much fewer floors. Unfortunately, you can’t
simply pull some floors out of a building. And blowing the whole thing up
just leaves you with a pile of rubble, not a lower building. The guys on the
middle floors are often critical knowledge holders about the organization

and IT landscape, especially if there’s a large black market (Chapter 29), so
the organization can’t function without them in the near term.

Flattening the building little by little can be a sound long-term strategy, but
it would take too long because it requires fundamental changes to the
company culture. It also changes or eliminates the role played by the folks
inhabiting the middle floors, who will put up a fierce resistance. This isn’t a
fight an architect can win. However, an architect can start to loosen things
up a little bit; for example, by getting the penthouse interested in
information from the engine room or by providing faster feedback loops.

1 In the telephone game, children form a circle and relay a message from one child to the next.
By the time the message returns to the originator, it typically has completely changed along the
way.

2 “Authority Without Responsibility,” Wikiwikiweb, 2004, https://oreil.ly/WhXg-.

https://oreil.ly/WhXg-

Chapter 2. Movie-Star
Architects

Most Architects Carry Multiple Personas

The architect walk of fame

What should an architect be doing besides riding the elevator? Let’s try
another analogy: movie characters.

Before the movie starts, you get to watch advertisements or short films. In
our case, it’s a short film about the origin of the word architect: it derives
from the Greek ἀρχιτέκτων (architekton), which roughly translates into
“master builder.” Keeping in mind that this word was meant for people who
built houses and structures, not IT systems, we should note that the word
implies “builder,” not “designer”—an architect should be someone who
actually builds, not someone who only draws pretty pictures. An architect is
also expected to be accomplished in their profession as to deserve the
attribute of being a “master.” Now to the main feature…

The Matrix: The Master Planner
If you ask tech folk to name a prototypical architect in the movies, they’ll
likely mention the The Matrix trilogy. The Architect of the Matrix is (per
Wikipedia) a “cold, humorless, white-haired man in a light-gray suit,”
qualities he largely owes to the fact that he is a computer program himself.
Wikipedia also notes that the Architect “speaks in long logical chains of
reasoning,” something that many IT architects are known to do. So perhaps
the analogy holds?

Fun fact: Vint Cerf, one of the key architects of the internet, bears a
remarkable resemblance to the Matrix Architect. Considering Vint designed
much of the Matrix we live in, this might not be pure coincidence.

The Matrix Architect is also the ultimate authority: he designed the
“Matrix” (the computer program that simulates reality to humans who are
being farmed by machines as an energy source) and knows and controls
everything. The enterprise architect is sometimes seen as such a person—
the all-knowing decision maker. Some even wish themselves into such a
role, partly because it is neat to be all-knowing and partly because it gets
you a lot of respect.

Naturally, this role model has some issues: all-knowingness turns out to be
a little too ambitious for humans, leading to poor decision-making and all
sorts of other problems. Even if the architect is a super-smart person, they
can base decisions on only those facts that are known to them. In large
companies with a complex IT, it would be impossible to stay in touch with
all technology that is in place, no matter how often they ride the elevator
(Chapter 1) down to the engine room. They’ll therefore inevitably need to
rely on presentations, documents, or statements from management on the
middle floors. Such an information channel to the supreme decision maker
has severe challenges: every floor through which such a document passes
understands its value as an influencing vehicle. This means that the middle
floors are tempted to inject their favorite messages and project proposals,

https://oreil.ly/xuDWC

often irrespective of any technical merit. Further up, any real technical
content or potentially controversial topics are sure to be removed. As a
result, the top architect is being fed indirect, distorted, and often biased
information. Making decisions based on such information is dangerous.

I have observed senior management briefings in which the proposed solutions
were rather a list of people’s favorite projects than actual solutions.
Interestingly, and fortunately, despite having less IT experience, top
management sensed that there was a missing link between the two.

In summary: corporate IT is no movie, and its role isn’t to provide an
illusion for humans being farmed as power sources. We should be cautious
with this architect model.

Edward Scissorhands: The Gardener
A slightly more fitting analogy for enterprise architects is that of a gardener.
I tend to depict this metaphor with a character from one of my favorite
movies, Edward Scissorhands. Large-scale IT is much like a garden: things
evolve and grow on their own, with weeds growing the fastest. The role of
the gardener is to trim and prune what doesn’t fit and to establish an overall
balance and harmony in the garden, keeping in mind the plants’ needs. For
example, shade-loving plants should be planted near large trees or bushes,
just like automated testing and continuous integration (CI)/continuous
development (CD) will be happier in the neighborhood of rapidly evolving
systems.

A good gardener, just like a good architect, is no dictatorial master planner
and certainly doesn’t make all the detailed decisions about which direction
a strain of grass should grow—Japanese gardens being a possible exception.
Rather, gardeners see themselves as the caretaker of a living ecosystem.
Some gardeners, like Edward, are true artists!

I like this analogy because it has a soft touch to it. Complex enterprise IT
does feel organic, and good architecture has a sense of balance, which we

can often find in a nice garden. Top-down governance with weed killer is
unlikely to have a lasting effect and usually does more harm than good.
Whether this thinking leads to a new application for The Nature of Order, I
am not sure yet. I should go read it.

Vanishing Point: The Guide
Erik Dörnenburg, ThoughtWorks’ head of technology, Europe, introduced
me to another very apt metaphor. Erik closely works with many software
projects, which tend to loathe the ostensibly all-knowing, all-decision-
making architect who is disconnected from reality. Erik even coined the
term architecture without architects, which might cause some architects to
worry about their career.

Erik likens an architect to a tour guide, someone who has been to a certain
place many times, can tell a good story about it, and can gently guide you to
pay attention to important aspects and avoid unnecessary risks. This is a
guiding role: tour guides cannot force their guests to follow their advice,
except maybe those who drop off a bus load of tourists at a tourist-trap
restaurant in the middle of nowhere.

This type of architect needs to “lead by influence” and must be hands-on
enough to earn the respect of those whom they’re leading. The tour guide
also stays along for the ride and doesn’t just hand a map to the tourists like
some consultant architects are known to do. An architect who acts as a
guide often depends on strong management support because evidence that
good things happened due to their guidance can be subtle. In purely
“business case–driven” environments, this could be limiting the “tour
guide” architect’s impact or career.

An unconventional guide out of another one of my favorite movies is the
blind DJ Super Soul from the 1971 road movie Vanishing Point. Like so
many IT projects, the movie’s protagonist, Kowalski, is on a death march to
meet an impossible deadline and overcome numerous obstacles along the
way. He isn’t delivering code, but a 1970 Dodge Challenger R/T 440
Magnum from Denver to San Francisco—in 15 hours. Kowalski is being

1

guided by Super Soul who has tapped the police network, just like
architects plugging into the management network, to get access to crucial
information. The guide tracks Kowalski’s progress and keeps the hero clear
of all sorts of traps that police (i.e., management) have set up. After Super
Soul is compromised by “management,” the “project” goes adrift and ends
like too many IT projects: in a fiery crash.

The Wizard of Oz
Architects can sometimes be seen as wizards who can solve just about any
technical challenge. Although that can be a short-term ego boost, it’s not a
good job description and expectation to live up to. Hence, by the “wizard”
architect analogy, I don’t mean an actual wizard waving the magic wand but
the “Mighty Oz”: a video projection that appears large and powerful but is
in fact controlled by a mere human “wizard,” who turns out to be an
ordinary man using the big machinery to garner respect.

A gentle dose of such engineered deception can be of use in large
organizations in which “normal” developers are rarely involved in
management discussions or major decisions. This is where the “architect”
title can be used to make oneself a bit more “great and mighty.” The
projection can garner the respect of the general population and can even be
a precondition to taking the elevator to the top floors. Is this cheating? I
would say “no” as long as you don’t get enamored in so much wizardry that
you forget about your technical roots.

Superhero? Superglue!
Similar to the wizard, a common expectation of an architect is that of the
superhero: if you believe some job postings, enterprise architects can
single-handedly catapult companies into the digital age, solve just about any
technical problem, and are always up to date on the latest technology. These
are tough expectations to fulfill, so I’d caution any architect against taking
advantage of this common misconception.

Amir Shenhav from Intel appropriately pointed out that instead of the
superhero we need “super glue” architects—the guys who hold architecture,
technical details, business needs, and people together across a large
organization or complex projects. I like this metaphor because it resembles
the analogy of an architect being a catalyst. We just need to be a little
careful: being the glue (or catalyst) means understanding a good bit about
the things you glue together. It’s like being a good matchmaker: you need to
find matching parts, and to do that you need to understand what your parts
are made from.

Making the Call
Which type of architect should you be? First, there are likely many more
types and movie analogies. You could play Inception and create
architectural dream worlds with a (dangerous) twist. Or be one of the two
impostors debating Chilean architecture in There’s Something about Mary
or (more creepily) Anthony Royal in the utopian drama High-Rise—the
opportunities are manifold.

In the end, most architects exhibit a combination of these prototypical
stereotypes. Periodic gluing, gardening, guiding, impressing, and a little bit
of all-knowing every now and then can make for a pretty good architect.

1 Christopher Alexander, The Nature of Order (Berkeley, CA: Center for Environmental
Structure, 2002).

Chapter 3. Architects Live in the
First Derivative

In a Constantly Moving World, Your Current Position Isn’t Very
Meaningful

Deriving the need for architecture

Defining a system’s architecture is a balancing act between many, often-
conflicting goals: flexible systems can be complex; high-performing
systems can be difficult to understand; easy-to-maintain systems can take
more effort to construct initially. Although this is what makes an architect’s
work so interesting, it also makes it difficult to pin down what exactly
drives architectural decisions.

Rate of Change Defines Architecture
If I had to name one primary factor that influences architecture, I’d put rate
of change at the top of my list, based on reasoning about the inverse
question: when does a system not need any architecture at all? Although as
an architect this isn’t a natural question to ask (nor to answer), it can reveal
what system property makes architecture valuable. In my mind, the only
system that wouldn’t benefit from architecture is one that doesn’t change at
all. If everything about a system is 100% fixed, just getting it working
somehow seems good enough.

Now, reverting the logic back to the original proposition, it appears natural
that the rate of change is a major driver of architecture’s value and
architectural decisions. It’s easy to see that a system that doesn’t need to
change much will have a substantially different architecture than one that
needs to absorb frequent changes over long periods of time. Good
architects, therefore, deal with change. This means that they live in the
system’s first derivative: the mathematical expression for how quickly a
function’s value changes.

Once we understand the influence change has on architecture, it’s useful to
consider the various forms of change affecting an IT system. The first
change that comes to mind is a change in functional requirements, but
there’s a lot more: changes in the volume of traffic or data to be processed,
changing the runtime environment to the cloud, or changes to the business
context such as using the system in different languages or by different
people.

1

Change = Business as Unusual?
Despite the popular saying that “the only constant is change,” traditional IT
organizations tend to have a somewhat uneasy relationship with change.
This mindset is often revealed by a popular engine room slogan: “never
touch a running system” (Chapter 12). When change can’t be avoided, IT
departments neatly package it into a project. The most celebrated part of an
IT project is the end, or launch, which ironically is often the first time real
users actually get to use the system. The reason for celebration is that things
can return to “business as usual,” that is, stable operations without any
change.

Packaging change into projects reflects an organization’s belief that “no
change” is the normal, desired state and “change” is the intermittent, unusual
state.

Thus, many organizational systems are designed to control and prevent
change: budgeting processes limit spending on change; quality gates limit
changes going to production; project planning and requirements documents
limit scope changes. Transforming a software delivery organization such
that it embraces constant change requires adjusting these processes to
support rather than prevent change without ignoring the (generally useful)
motivation for setting them up in the first place. That’s not an easy task and
is the reason why this book devotes an entire part to transformation
(Part V).

Varying Rates of Change
Technology is a fast-moving field: we don’t think much of IT products
carrying a three-part version number: “well, if you’re still on 2.4.14, I can’t
help you much; it’s really time to upgrade to .15.”

Luckily, not everything in IT moves fast: the most common processor
architecture, the base for Intel’s x86 processors, originates from 1978. The

Things are moving fast and
are only getting faster. If rate
of change is a driver for
architecture, it looks like we’ll
need more of it!

ARM chips that dominate today’s mobile devices are based on a design
from around 1985. Both Linux and Windows operating systems are well
past their teenage years, and even Java passed the 20-year mark at version 9
some years ago, closely followed by the Java Spring Framework, which has
surpassed a respectable 15 years.

Naturally, such low rates of change can largely be observed in lower layers
of the so-called IT stack: hardware and operating systems have such a vast
installed base and so many dependencies that the cost of an all-out
replacement would be huge. Hence, we tend to see more evolution than
revolution here. These technologies are essentially the base of the pyramid
(Chapter 28), giving us a stable foundation to build on.

On top, things move a lot faster. For example, the popular AngularJS
framework was essentially replaced by the very different Angular
framework just five years after its inception. Google’s Fabric framework
also lived just five years before being subsumed by Firebase. And Google
Mashup Editor, one of my favorites of the day, survived a mere two years.

Although we’re surely sad to witness
products’ early demise, the rate at which
new products and tools arrive paints an
even more dramatic picture. For example,
a look at the Cloud Native Interactive
Landscape offered by the Cloud Native
Computing Foundation (CNCF) will

quickly convince you that building modern applications requires a fast-
growing list of ingredients.

A Software System’s First Derivative
If the first derivative is an architect’s primary concern, how does this
somewhat abstract concept translate into the reality of systems architecture?
We can get a hint by thinking about which part of a software system
determines its rate of change. For a custom-built system, the critical
element for change is the build toolchain, the part that converts source code

https://oreil.ly/bnk5E

A software system’s first
derivative is its build and
deployment toolchain.

into an executable format that is subsequently deployed onto the runtime
infrastructure.

All changes to the software (better) go
through this build and deployment
toolchain. Knowing that the software
toolchain is the first derivative, increasing
a software system’s rate of change requires

a well-tuned toolchain (Chapter 13).

It’s no surprise, then, that in recent years the industry has put much
attention and effort into reducing friction in software delivery: Continuous
Integration (CI), Continuous Deployment (CD), and configuration
automation are all aspects of increasing the first derivative of software
systems and thus speeding up software delivery. Without such innovations,
daily or hourly software deployments wouldn’t be possible, and companies
wouldn’t be able to compete in digital markets, which thrive on constant
improvement and frequent updates.

Whereas build systems previously were the proverbial shoemaker’s
children, meaning they didn’t get a lot of attention, they now run on the
same type of infrastructure as the production systems. Containerized, fully
automated, elastic, cloud-based, on-demand build systems are quickly
becoming the norm. Teams building and maintaining such sophisticated
build systems clearly live in the first derivative!

Designing for the First Derivative
When designing a system for change, it’s again helpful to think about the
opposite—the aspects that impede change:

Dependencies

Too many interdependencies between a system’s components will result
in small changes needing adjustments in many places, increasing both
effort and risk. Systems with fewer interdependencies—for example,
because they are modular and cleanly separate responsibilities—localize

changes and can therefore generally absorb a higher rate of change. The
research conducted by the authors of the book Accelerate shows that
decoupling system components is the biggest contributor to sustained
software delivery.

Friction

Both cost and risk of change increase with friction, generated, for
example, by long lead times for infrastructure provisioning or numerous
manual deployment steps. Teams that live in the first derivative
therefore ensure that their software build chain is fully automated.

Poor quality

There’s a common misbelief that good quality requires extra time and
effort. The inverse is actually true: poor quality slows down software
delivery. Changes to a poorly tested or poorly built system take more
time and are more likely to break things.

Fear

Often ignored, a programmer’s attitude has a major impact on the rate
of change. Poor quality and low levels of automation make change a
risky proposition. Developers will thus be afraid of making changes.
This leads to code rot, which in turn increases the risk of change—a
nasty spiral.

The list shows that an architect has several levers with which they can
increase velocity, some technical in nature and others that relate to team
attitude. It’s another example of how technical and organizational
architecture go hand in hand.

Confidence Brings Speed
If fear slows you down, confidence should speed you up. Automated tests
do just that: they give teams confidence and thus increase the rate of
change. That’s why determining whether a system has sufficient test

2

coverage shouldn’t be measured in the percentage of lines of code covered.
Rather, it should be measured by whether teams can make changes
confidently.

Propose to a development team that they let you delete 20 arbitrary lines from
their source code. Then, they’ll run their tests—if they pass, they’ll push the
code straight into production. From their reaction, you’ll know immediately
whether their source code has sufficient test coverage.

Despite an abundance of tools that are supposed to speed up software
delivery, the determining factor remains decidedly human. The change
that’s never made out of fear cannot be accelerated by the world’s best
toolchain.

Rate of Change Trade-Offs
Increasing an organization’s rate of change is not an all-or-nothing affair
and involves balancing trade-offs. Borrowing one more time from the
routinely overstretched analogy between IT architecture and building
architecture yields useful advice on the multiple facets of designing for
change. If either a large software project or housing project is undertaken
without a conscious decision about its architecture, the “default”
architecture converges toward the “Big Ball of Mud,” also referred to by its
real-world incarnation of a shantytown (Chapter 8).

A shantytown, or slum, is generally constructed using cheap materials and
unskilled labor. Low cost and a broad labor pool are actually desirable
properties. Additionally, local changes, such as adding a wall or even
another floor, are often quick and inexpensive—in contrast to fancier high-
rise buildings. However, besides not providing a very comfortable living
environment, slums also lack common infrastructure, such as a well-built
electrical or sewer system. The lack of such infrastructure ultimately limits
their rate of growth. This is a good reminder that optimizing for local or
short-term change can inhibit global or long-term change.

Multispeed Architectures
If a system’s rate of change influences its architecture, it would seem
natural to construct a system such that components are separated by rate of
change. This approach forms the basis for the popular concepts of two-
speed architecture or bi-modal IT, which suggest that traditional companies
looking to become competitive in a digital world should initially increase
the rate of change in the interaction layer (“Systems of Engagement”) while
keeping legacy systems (“Systems of Record”) stable. In doing so, rapid
changes can supposedly be applied to the customer-facing systems, whereas
the record-keeping systems are kept stable and reliable.

Although dividing systems by rate of change is a fair idea, this particular
approach has significant shortcomings. First, it’s based on the flawed
assumption that one can move faster by compromising quality (Chapter 40).
Otherwise we wouldn’t need to keep a low rate of change in systems of
record to maintain their reliability. Second, a company will be hard pressed
to localize change into the interaction layer. For example, the addition of a
simple field to the system of engagement typically also requires a change to
the system of record, coupling the two systems’ rates of change: if the
system of record follows a six-month release cycle, there won’t be much
speed inside this two-speed architecture.

It turns out that the separation between systems of engagement and systems
of record is artificial and doesn’t line up well with the overall rate of change
from a business or end-user perspective. This insight is underlined by the
fact that hardly any digital business follows such a setup.

Digital companies only know one speed: fast.

Separating rate of change along a different dimension might well be
beneficial, though. For example, a company’s accounting or payroll system
will likely have a lower rate of change and can utilize a different

architecture from the core business systems, which form a competitive
differentiator for the organization, and hence should support a higher rate of
change.

The Second Derivative
If the first derivative describes a software system’s rate of change,
following our mathematical analogy, increasing the rate of change is
dependent on a positive second derivative. Using the speed of a car as
analogy, a car’s speed is the first derivative of its position: it defines how
much distance it can cover over a given time interval. Accelerating—that is,
increasing the speed—is the second derivative.

Back in IT, the second derivative is the essence of most transformation
programs: they aim to increase the rate of change in an organization or its
IT systems. Thus, for an organization to appreciate and successfully
conduct a transformation program, it first needs to appreciate the
importance of the first derivative; that is, it must understand economies of
speed (Chapter 35). It’s hard to sell a stronger engine and a shorter gear
ratio for faster acceleration to someone who prefers to coast along on cruise
control.

Rate of Change for Architects
Lastly, technical systems and organizations aren’t the only systems that
need to increase their rate of change. Architects also do because new
technologies arrive at an ever-faster pace, leaving architects with an
enormous challenge of staying up to date. If they don’t, they might be
relegated to life in the ivory tower (Chapter 1), far away from the engine
room.

How can architects expect to keep up in today’s world of rapid innovation?
Trying to do so by yourself appears futile—no one can stay current on
everything. Instead, architects should be part of a trusted but diverse
network of experts, which can provide unbiased information.

When you sit near a large IT budget that’s being vied for by vendors, you’ll
have many folks wanting to update you on new technologies, or rather
products (Chapter 16). However, neutrality is an architect’s major asset, so
they’re expected to cut through the buzzword fog to discern what’s really
new and what’s just clever repackaging of old concepts.

Even though living in a world that’s moving ever faster can be tiring, it’s
also what keeps architects’ jobs interesting and makes architecture more
valuable. So, embrace life in the first derivative!

1 The derivative of a function measures the sensitivity to change of the function’s output value
with respect to a change in its input value.

2 Nicole Fosgren, Jez Humble, and Gene Kim, Accelerate: Building and Scaling High
Performing Technology Organizations (Portland, Oregon: IT Revolution, 2018).

Chapter 4. Enterprise Architect
or Architect in the Enterprise?

The Upper and Lower Floors of the Ivory Tower

Architecture from the ivory tower

When I was hired as an enterprise architect, the head of enterprise
architecture to be more precise, I had little idea what enterprise architecture
really entailed. I also wondered whether my team should be called the “Feet
of Enterprise Architecture,” but that contemplation didn’t find much love.
The driver behind the tendency to prefix titles with “head of” was aptly
described in an online forum I stumbled upon:

This title typically implies that the candidate wanted a
director/VP/executive title but the organization refused to extend the title.
By using this obfuscation, the candidate appears senior to external
parties but without offending internal constituencies.

I am not particularly fond of the “head of xyz” title because it focuses on
the person heading (no pun intended) a team rather than accomplishing a
specific function. I’d rather name the person by what they need to achieve,
assuming that they don’t do this alone but have a team supporting them.

All title prefixes aside, when IT folks meet an enterprise architect, their
initial reaction is to place this person high up into the penthouse
(Chapter 1), where they draw pretty pictures that bear little resemblance to
reality. To receive a warmer welcome from IT staff, one should therefore be
careful with the label enterprise architect. However, what is an architect
who works at enterprise scale supposed to be called, then?

Enterprise Architecture
The recurring challenge with the title enterprise architect tends to be that it
could describe a person who architects the enterprise as a whole (including
the business strategy level) or someone doing IT architecture at the
enterprise level (as opposed to a departmental architect, for example).

To help resolve this ambiguity, let’s defer to the defining book on the topic,
Enterprise Architecture as Strategy by Jeanne Ross, Peter Weill, and David
Robertson. Here, we learn the following:

1

2

Enterprise architecture is the organizing logic for business processes and
IT infrastructure reflecting the integration and standardization
requirements of the company’s operating model.

Following this definition, enterprise architecture (EA) isn’t a pure IT
function but also considers business processes, which are part of a
company’s operating model. In fact, the book’s most widely publicized
diagram shows four quadrants depicting business operating models with
higher or lower levels of process standardization (uniformity across lines of
business) and process integration (sharing of data and interconnection of
processes). Giving industry examples for all quadrants, Weill and Robertson
map each model to a suitable high-level IT architecture strategy. For
example, a data and process integration program might yield little value if
the business operating model is one of highly diversified business units with
few shared customers. For such enterprises, IT should instead provide a
common infrastructure, on top of which each division can implement its
diverse processes. Conversely, a business that’s composed of largely
identical units, such as a franchise, benefits from a highly standardized
application landscape. The matrix demonstrates perfectly how EA forges
the connection between the business and IT. Only if the two are well
aligned does IT provide value to the business.

Connecting Business and IT
Connecting business and IT is easier if the business side of the organization
also has a well-defined architecture. Luckily, as business environments
become more complex and digital disruptors force traditional enterprises to
evolve their business models more rapidly, the notion of business
architecture has gained significant attention in recent years. Business
architecture translates the structured, architectural way of thinking
(Chapter 8) that’s guided by a formalized view of components and
interrelationships into the business domain. Rather than connecting
technical system components and reasoning about technical system
properties such as security and scalability, business architecture describes

https://oreil.ly/D8ehD

Most digital giants don’t have
EA departments because their
business and IT are tightly
interlinked.

the “the structure of the enterprise in terms of its governance structure,
business processes and business information.”

The business architecture essentially defines the company operating model,
including how business areas are structured and integrated, derived from the
business strategy. Meanwhile, the IT architecture builds the corresponding
IT capabilities. If the two work seamlessly side by side, you don’t need
much else. In the more likely case that the two aren’t well connected, you
need something to pull them together. Therefore, here’s my proposed
definition of enterprise architecture:

Enterprise architecture is the glue between business and IT architecture.

This definition clarifies that EA, unlike IT architecture at enterprise level,
isn’t an IT function. Accordingly, the EA team should be positioned close to
the company leadership and not be buried deep within the IT organization,
so that it can balance business, technical, and organizational considerations.

The definition also implies that after business and IT are tightly interlinked,
you won’t need much EA, which is one reason why you don’t find much
EA within so-called digital giants.

Alas, don’t panic! The translation between
business needs and IT architecture remains
a domain that’s perennially short of talent.
It appears that most folks find comfort on
one or the other side of the fence, but only
a few can, and choose to, credibly play in

both worlds. It’s a good time to be an enterprise architect.

IT Is from Mars, Business Is from Venus
The strict separation between IT and business that is commonly found in
enterprises seems troublesome to me. I tend to jest that in the old days,
when everything was running on paper instead of computers, companies
also didn’t have a separate “paper” department and a CPO—the chief paper

3

officer. In digital companies business and IT are inseparable; IT is the
business, and the business is IT.

Connecting business and IT gives EA a whole new relevance but also new
challenges. It’s like adding a mid-floor elevator that connects the business
folks in the penthouse with the IT folks in the engine room because the
respective elevators don’t quite reach each other. Although highly valuable,
in the long run such an enterprise architecture department’s objective must
be to make itself obsolete, or at least smaller, by extending the respective
elevators. But no worries, rapid changes in both the business and technical
environments make it unlikely that the need for enterprise architecture
disappears altogether.

Building a fruitful, bidirectional connection between business and IT
architecture becomes easier if the business architecture is at a comparable
level of maturity as IT architecture. More often than not, though, business
architecture is even less mature as a domain than IT architecture. That’s not
because businesses had no architecture; rather, it’s because the folks doing
business architecture were not identified as such but were the business
leaders, division heads, or COOs. Also, designing the business was rather
attributed to business acumen than structured thinking. Where the business
produced architecture-like artifacts, they often ended up being “functional
capability maps” that don’t include any lines (Chapter 23).

Supporting the business is the ultimate goal and raison d’être of all
enterprise functions. Positioning IT architecture on par with business
architecture highlights, though, that the days when IT was a simple order-
taker that provides a commodity resource at the lowest possible cost are
(luckily) over. In the digital age, IT is a competitive differentiator and
opportunity driver, not a commodity like electricity.

Digital giants like Google or Amazon aren’t technology companies; they are
advertising or fulfillment companies that understand how to use technology
for competitive advantage.

Therefore, the common excuse that “Google and Amazon are technology
companies while we are an insurance company/bank/manufacturing
business” no longer holds. These companies will compete with you, and if
you want to be competitive, you also need to change your view of IT. It’s
not an easy thing to do, but the digital giants have demonstrated how
powerful that insight is.

Value-Driven Architecture
The scale and complexity of doing architecture at enterprise scale makes
large-scale IT architecture exciting, but it also presents one of the biggest
dangers. It’s far too easy to become lost in this complexity and have an
interesting time exploring it without ever producing tangible results. Such
instances are the source of the stereotype that EA resides in the ivory tower
and delivers little value. EA teams therefore need to have a clearly
articulated path to value: any effort that is made needs to be paid back by
providing value to the organization.

Another danger lies in the long feedback cycles. Judging whether someone
performs good EA takes even longer than judging good application
architecture. Even though the digital world forces shorter cycles, many EA
plans still span three to five years. Thus, enterprise architecture can become
a hiding ground for wanna-be cartographers. That’s why enterprise
architects need to show impact (Chapter 5).

Fools with tools
Some enterprise architects associate themselves closely with a specific EA
tool that captures the diverse aspects of the enterprise landscape. These
tools allow structured mapping from business processes and capabilities,
ideally produced by the business architects, to IT assets such as applications
and servers.

Make sure that your tools work for you, not the other way around!

Done well, such tools can be the structured repository that builds the bridge
between business and IT architecture. Done poorly, they become a never-
ending discovery and documentation process that produces a deliverable
that’s missing an emphasis (Chapter 21) and is outdated by the time it’s
published. Needless to say, such a deliverable provides little value.

Visit All Floors
My definition of EA also implies that some IT architects, who aren’t
enterprise architects, work at enterprise scope. These are largely the folks I
refer to in this book. Because they are the technical folks who have learned
to ride the elevator (Chapter 1) to the upper floors to engage with
management and business architects, they are a critical element in any IT
transformation.

How is being an “enterprise-scale architect” different from a “normal” IT
architect? First, everything is bigger. Many large enterprises are
conglomerates of different business units and divisions, each of which can
be a multibillion-dollar business and can be engaged in a different business
model. As things get bigger, you will also find more legacy: businesses
grow over time or through acquisitions, both of which breed legacy. This
legacy isn’t constrained to systems, but also to people’s mindsets and ways
of working. Enterprise-scale architects must therefore be able to navigate
organizations (Chapter 34) and complex political situations.

Performing true EA is as complex and as valuable as fixing a Java
concurrency bug. There’s enormous complexity at all levels, but the good
news is that you can use similar patterns of thinking at the different levels.
For example, software architects need to balance their system’s granularity
and interdependencies: a giant monolith is rather inflexible, whereas a

thousand tiny services will be difficult to manage and can incur significant
communication overhead. The exact same considerations apply to business
architecture when considering the size of divisions and product lines.
Lastly, EA also faces the same trade-offs when having to decide which
systems should be centralized, which simplifies governance but can also
stifle local flexibility. Architecture, if taken seriously, provides significant
value at all levels.

Enterprises resemble a fractal structure: the more you zoom in or out, the
more things look similar. The short film Powers of 10, produced in 1977 by
Charles and Ray Eames for IBM, illustrates this beautifully: the film zooms
out from a picnic in Chicago by one order of magnitude every 10 seconds
until it reaches 10

24, showing a sea of galaxies. Subsequently, it zooms in
until at 10

−18 it shows the realm of quarks. Interestingly, the two views
don’t look all that different.

1 Keith Rabois, Quora, May 11, 2010, “What does “Head” usually mean in job titles like “Head
of Social,” “Head of Product,” “Head of Sales,” etc.?”, https://oreil.ly/5LmbY.

2 Jeanne W. Ross, Peter Weill, and David C. Robertson, Enterprise Architecture as Strategy:
Creating a Foundation for Business Execution (Boston, MA: Harvard Business Review Press,
2006).

3 Object Management Group website, http://www.omg.org/bawg.

https://oreil.ly/5LmbY
http://www.omg.org/bawg

Chapter 5. An Architect Stands
on Three Legs

A Three-Legged Stool Does Not Wobble

A three-legged stool does not wobble

What do IT architects do? You could say that they are the people who make
IT architecture, but that leaves you with having to define what architecture
is, which we won’t do until Part II. More interesting yet, what sets a good
architecture apart from an average one? And what does an architect become
after many successful years? A penthouse resident (Chapter 1)? Hopefully
not! A chief technology officer (CTO)? Not a bad choice. Or do they remain
a (more senior) architect? That’s what famous building architects do, after
all.

It’s time to have a look at the progression of architects.

Knowledge is like having a
drawer chest full of tools.
Skill implies knowing when to
open which drawer and which
tool to use.

Skill, Impact, Leadership
When asked to characterize the seniority of an architect, I apply a simple
framework: a successful architect must stand on three “legs”:

Skill

The foundation for practicing architects. It requires knowledge and the
ability to apply it to solve real problems.

Impact

The measure of how well an architect applies his or her skill to benefit
the company.

Leadership

Determines whether an architect advances the state of the practice.

This nomenclature maps well to other professional fields that rely on highly
trained and experienced individuals. For example, in the medical field after
studying and acquiring skill, doctors practice and treat patients before they
go on to publish in medical journals and pass their learnings on to the next
generation of doctors. The legal field works similarly.

Let’s have a brief look at each “leg.”

Skill
Skill is the ability to apply relevant
knowledge which can relate to specific
technologies (such as Docker) or
architectures (such as microservices
architectures). Such knowledge can
usually be acquired by taking a course,
reading a book, or perusing online

material. Most (but not all) professional certifications focus on verifying
knowledge, partly because it’s easily mapped to a set of multiple choice
questions. Skill brings this knowledge to life by successfully applying it to

specific problems. For example, defining the right domain boundaries and
service granularity for a complex microservices architecture is a skill.
Knowledge is like having a drawer chest full of tools. Skill implies knowing
when to open which drawer and which tool to use.

Impact
Impact is measured by the benefit achieved for the business, usually in form
of additional revenue or reduced cost. Faster times to market or the ability
to incorporate unforeseen requirements late in the product cycle also
positively affect revenue and therefore count as impact. Focusing on impact
is a good exercise for architects to not drift off into PowerPoint-land. As I
converse with colleagues about what distinguishes a great architect, we
often identify rational and disciplined decision making (Chapter 6) as a key
factor in translating skill into impact. This doesn’t mean that just being a
good decision maker makes you a good architect. You still need to know
your stuff.

Leadership
The leadership leg acknowledges that experienced architects do more than
make architecture. Mentoring junior architects can save a new generation of
architects many years of learning by doing. Senior architects should also
further the state of the field as a whole; for example, by sharing what
they’ve learned or mental models they’ve developed. Such sharing can be
done via numerous channels, including academic publications, magazine
articles, teaching at university, teaching professional courses, speaking at
conferences, or blogging.

When someone with the title “senior architect” proposes to meet me, I tend to
do a quick internet search for their name before I reply. If nothing much
comes up, I have doubts as to how “senior” they are. It will also make it more
difficult for them to get my time.

A Chair Can’t Stand on Two Legs
Just as a stool cannot stand on two legs, it’s important to appreciate the
balance between the three aspects. Skill without impact is where new
architects start out as students or apprentices. But soon it is time to get out
into the world and make an impact—architects who don’t make an impact
don’t have a place in a for-profit business.

Impact without leadership is a typical place for architects who are deeply
ingrained in projects but “don’t get out much.” Such architects will plateau
at an intermediate level, which is bad for them and their employer. The
architects will likely hit a glass ceiling in their career because they won’t be
able to see beyond their current environment. Likewise, such an architect
won’t lead the company to much-needed innovative or transformative
solutions, ultimately limiting their impact.

Many companies are penny wise and pound foolish by not placing sufficient
emphasis on nurturing their architects. They fear that any distraction from
daily project work will be unproductive. However, they miss out on growing
world-class architects.

Mature companies, in contrast, go as far as formalizing the aspect of
leadership as “give back”: for example, IBM distinguished engineers and
fellows are expected to demonstrate giving back to the community both
internally (e.g., via mentoring) and externally (e.g., via conference
presentations or publications).

Lastly, leadership without (prior) impact lacks foundation and might be a
warning signal that an architect has become an ivory tower resident with a
weak link to reality. This undesirable effect can also occur when the impact
stage of an architect lies many years or even decades back: the architect
might preach methods or insights that are no longer applicable to current
technologies. Although some insights are timeless, others age with
technology: putting as much logic as possible into the database as stored
procedures because it speeds up processing is no longer a wise approach as

databases often turn out to be the bottleneck in modern web-scale
architectures. The same is true for architectures that rely on nightly batch
cycles. Modern 24/7 real-time processing doesn’t know any nighttime.

The Virtuous Cycle
But there’s more to the three facets of being a good architect: each element
contributes back to the other, as shown in Figure 5-1.

As an architect applies their skill to generate impact, they also learn what
skills to prioritize to maximize that impact. Most likely you learned a lot of
things that don’t easily translate into daily life in corporate IT—the
Ackerman function (Chapter 39) is one of my favorites. Given the rate of
innovation in our field, being able to prioritize your learning time is a major
asset. So, there’s a symbiotic relationship between building up skill and
applying it.

Figure 5-1. An architect’s virtuous cycle

Often, the best way to learn something is to apply it to a real-world problem.
That’s why my house is full of home automation. It’s not that I really need all
things to be automated; most of these were learning projects.

Exercising leadership further amplifies an architect’s impact: 10 well-
mentored junior architects will surely generate more impact than one senior
architect. As architects, we know that scaling vertically (getting smarter)
works only up to a certain level and can lead to a single point of failure

(you!). Therefore, you need to scale horizontally (Chapter 30) by deploying
your knowledge to multiple architects. The scarcity of good architects
makes this step more important than ever.

Interestingly, though, mentoring not only benefits the mentee, but also the
mentor. The old saying that to really understand something you need to
teach it to someone else is most true for architecture. Likewise, giving a talk
or writing a paper (Chapter 18) requires you to sharpen your thoughts,
which often leads to renewed insight. Also, in a fast-moving world, mentors
can receive reverse mentoring about new technologies or approaches,
which can often help offload existing assumptions that no longer hold true
(Chapter 26).

Authoring books and sharing openly has given me access to the most amazing
communities and has allowed me to have much more impact.

Lastly, sharing openly and demonstrating thought leadership offers another
huge benefit: it can give you access to a powerful community of other
thought leaders, which in turn makes you a better architect. Most tight-knit
communities share certain expectations for their members. While usually
not spelled out, they typically involve giving back to the community in the
form of conference talks, authoring books or blog posts, or contributing to
open source projects.

You Spin Me Right Round…
Experienced architects will correctly interpret this 1980s reference (others
can resort to Wikipedia) to mean that an architect doesn’t complete the
virtuous cycle just once. This is partly driven by ever-changing
technologies and architectural styles. A person might already be a thought
leader in relational databases, but they might need to acquire new skills in
NoSQL databases. The second time around acquiring skill is usually
significantly faster because you can build on what you already know. After

1

2

a sufficient number of cycles, we might in fact experience what the
curmudgeons always knew: that there is really not much new in software
architecture and that we’ve seen it all before.

Another reason to repeat the cycle is that the second time around our
understanding can be at a much deeper level. The first time around we
might have learned how to do things, but only after the second time might
we understand why. For example, it’s likely no misrepresentation that
writing Enterprise Integration Patterns is a form of thought leadership.
Still, some of the elements such as the pattern icons or the decision trees
and tables in the chapter introductions were more accidental than based on
deep insight. It’s only now in hindsight that we understand them as
instances of a visual pattern language or pattern-aided decision approaches.
Thus, it’s often worthwhile to make another cycle.

Architect as Last Stop?
Even though architects have one of the most exciting jobs, some people
might be sad to see that being an architect implies that you’ll likely remain
one for most of your career. I am not so worried about that. First, this puts
you in a good peer group of CEOs, presidents, doctors, lawyers, and other
high-end professionals. Second, in technically minded organizations,
software engineers should feel the same: your next career step should be to
remain a software engineer, except a senior one, or staff engineer or perhaps
a principal engineer.

The goal is, therefore, to detach the job title of software engineer or IT
architect from a specific seniority level.

At many digital organizations the software engineer career ladder reaches all
the way to the senior vice president level, with commensurate standing and
compensation.

3

Some organizations even include a chief engineer, which, if you think about
it, might be a better title than chief architect. Personally, I prefer to get
better at what I like doing than trying to chase something else just for the
title. Keep architecting!

1 Jennifer Jordan and Michael Sorell, “Why Reverse Mentoring Works and How to Do It
Right,” Harvard Business Review, Oct. 3, 2019, https://oreil.ly/bjAET.

2 Wikipedia, “You Spin Me Round (Like a Record),” https://oreil.ly/fDcRP.

3 Gregor Hohpe and Bobby Woolf, Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions (Boston, MA: Addison-Wesley, 2003).

https://oreil.ly/bjAET
https://oreil.ly/fDcRP

Chapter 6. Making Decisions

Deciding Not to Decide Is a Decision

(IT) Life is full of choices

You buy a lottery ticket and win. What a fantastic decision! You cross the
road at night, on red, on a busy street, slightly intoxicated, and with your
eyes closed, and arrive safely on the other side. Also a good decision?
Doesn’t sound like it. But what’s the difference? Both decisions had
positive outcomes. In the latter case, though, we judge by the risk involved
while in the former we focus on the outcome, ignoring the ticket price and
the (usually low) odds of winning. However, you can’t judge a decision by
the outcome alone, simply because you didn’t know the outcome when you
made the decision.

Here’s another exercise: in front of you is a very large jar. It contains
1,000,000 pills. They all look the same, are all tasteless, and benign—
except one, which will kill you instantly and painlessly. How much money
does someone have to pay you to take a pill from this jar? Most people will
answer 1 million dollars, 10 million dollars, or straight-out refuse.
However, the same people are quite willing to cross the road on a red light
(with their eyes open), which carries the same risk as swallowing a couple

of pills. It’d be difficult to argue that the 30 seconds you saved by crossing
on red would have earned you the equivalent of a few million dollars.

Humans are terrible decisions makers, especially when small probabilities
and grave outcomes like death are involved. Kahneman’s book Thinking,
Fast and Slow shows so many examples of how our brain can be tricked, it
can make you wonder how humanity could get this far despite being such
terrible decision makers. I guess we had a lot of tries.

Making decisions is a critical part of an enterprise-scale architect’s job.
Being a good architect therefore warrants a conscious effort to becoming a
better decision maker.

The Law of Small Numbers
Contrived examples make erratic or illogical behavior quite apparent. But
when faced with complex business decisions, poor decision-making
discipline often isn’t as obvious.

I attended weekly operations meetings that labeled weeks “good” or “bad”
based on the number of critical infrastructure outages. I relabeled those weeks
as “lucky” because lowering the number and severity of incidents in the long
run is the real metric to observe.

Hoping for a week with fewer outages is the corporate IT equivalent of the
(flawed) roulette strategy of “after five times black it’s gotta be red!” My
shocker version of highlighting such flawed thinking consists of a
(fictitious) sequence of events during Russian Roulette: “click—I am a
genius!—boom.” Kahneman calls this “The law of small numbers”; people
tend to jump to conclusions based on sample sizes that are way too small to
be significant. For example, zero outages in a week are no cause for
celebration in a large enterprise.

1

Google’s mobile ads team used rigid metrics for A/B testing experiments that
affected ad appearance or selection. The dashboard included metrics to check
click-through rates (more clicks = more money) but also to understand
whether ads distract from the search results (users come for search, not ads).
Each metric’s confidence interval represented the range that 95% of sample
sets would randomly fall into. If your experiment’s improvement landed
inside the confidence interval, you’d need to extend the experiment to get
valid data before implementing the suggested change (for normal
distributions, the confidence interval narrows with the square root of the
number of sample points).

Alas, not all data leads to better decisions. When selecting a product, IT
often compiles extensive requirement lists that are summed up into scores.
However, when you pick the “winner” with a score of 82.1 over the “loser”
with 79.8, it would be challenging to prove the statistical significance of
this decision.

Still, numeric scores might be better than traffic light comparison tables that
rate each attribute as “green,” “yellow,” or “red.” A product might get
“green” for allowing time travel but “red” for requiring planned downtime.
Although this might make it look roughly equivalent to one with the
opposite properties, I know which one I’d prefer.

Traditional IT organizations often reverse engineer score charts from a
specific outcome so that they have data to back up their preference.

Sadly, such comparison charts are reverse engineered from a preferred
outcome. Others are designed to protect the status quo by demanding quirks
only present in existing products.

I have seen IT requirements analogous to demanding that a new car must
rattle at 60 mph and have a squeaky door so that it can appropriately replace
the existing one.

Bias
Kahneman’s book lists many ways in which our thinking is biased. For
example, confirmation bias describes our tendency to interpret data in such
a way that it supports our own hypotheses. The Google Ad dashboard was
designed to overcome this bias.

Another well-known bias is prospect theory: when faced with an
opportunity, people tend to favor a smaller but guaranteed gain over the
uncertain chance for a larger one: “A sparrow in the hand is better than the
pigeon on the roof.” When it comes to taking a loss, however, people are
likely to take a (long) shot at avoiding the penalty over coughing up a
smaller amount for sure. We tend to “feel lucky” when we can hope to
escape a negative event, an effect called loss aversion.

You have likely seen project managers avoid the certain loss in short-term
velocity for performing a major refactoring because the payoff in system
stability or sustained velocity is uncertain.

The following scenario shows how loss aversion tricks us into making
irrational decisions. When you offer someone a coin toss that makes them
pay $100 on heads but gives them $120 on tails, the expected return of
taking the gamble is $10 (0.5 × –$100 + 0.5 × $120)—easy money.
However, most people will kindly decline due to their loss aversion. Losing
$100 to them feels worse than the chance to gain $120. Most people will
only accept the offer when the payout is between $150 and $200.

Priming
Another phenomenon, priming, can influence decisions based on recent
data we received. In the extreme case, when faced with enormous
uncertainty, it can make us pick a number we recently heard or saw even if
it’s totally unrelated. This effect plays a role when many people answer one
million dollars when faced with the one-million-pills example.

Priming is routinely used in retail scenarios. When you go to buy a piece of
clothing—let’s say a sweater—the store clerk is almost guaranteed to first
show you something expensive, even outside your price range. A sweater
for $399? It’s made from cashmere and feels very soft and comfortable;
tempting, but it’s simply too expensive. But the almost-as-nice sweater for
$199 seems a reasonable compromise, and you’ll happily buy it. Next door,
decent sweaters can be had for $59. You fell victim to priming, setting a
context that influences your decision. Priming can even make you walk
more slowly if your mindset is on elderly people.

William Poundstone’s book Priceless: The Myth of Fair Value shows that
products that no one actually buys can shift purchasing behavior
significantly, thanks to priming. When presented with a choice between a
“premium” beer for $2.60 and a “bargain” one for $1.80, about two thirds
of test subjects (students) chose the premium beer. Adding a third, “super-
premium” beer for a whopping $3.40 shifted student’s desire so that 90%
ordered the premium beer and 10% the super-premium.

If we are such horrible decision makers, what can we do to get better at it?
Understanding these pitfalls can help you avoid or at least compensate for
them. However, mathematics can also help.

Micromort
One of the most interesting classes that I took at Stanford was Ron
Howard’s class on decision analysis, which was entertaining, thought
provoking, and challenging. Decision analysis helps us think rationally
about our earlier jar-with-pills example. A one-in-one-million chance of
dying is called one micromort. Taking one pill from the jar amounts to
being exposed to exactly one micromort. The amount you are willing to pay
to avoid this risk is called your micromort value. Micromorts help us reason
about decisions with small probabilities but very serious outcomes, such as
deciding whether to undergo surgery that eliminates lifelong pain but fails
with a 1% probability, resulting in immediate death.

2

3

To calibrate the micromort value, it helps to consider the risks of different
life activities: a day of skiing clocks in at between one and nine micromorts,
whereas motor vehicle accidents amount to about 0.5 per day. So a ski trip
can run you some five micromorts—the same as swallowing five pills. Is it
worth it? You’d need to compare the enjoyment value you derive from
skiing against the trip’s cash expense plus the “cost” of the micromort risk
you are taking.

So how much should you demand to take one pill? Most people’s
micromort value lies between $1 and $20. Assuming a prototypical value of
$10, the ski trip that might cost you $100 in gas and lift tickets costs you an
extra $50 in risk of death. You should therefore decide whether a day in the
mountains is worth $150 to you. This also shows why a micromort value of
$1,000,000 makes little sense: you’d hardly be willing to pay $5,000,100
for a one-day ski trip unless you are filthy rich! Lastly, the model helps you
judge whether buying a helmet for $100 is a worthwhile investment for you
if it reduces the risk of death in half.

The micromort value isn’t the same for all people. It goes up with income
(or rather, consumption) and goes down with age. This is to be expected as
the monetary value you assign to your remaining life increases with your
income. A wealthy person should easily decide to buy a $100 helmet,
whereas a person who is struggling to make ends meet is more likely to
accept the risk. As you age, the likelihood of death from natural causes
unstoppably increases until it reaches about 100,000 micromorts annually,
or almost 300 per day, by the age of 80. At that point, the value derived
from buying a risk reduction of two micromorts is rather small.

Luckily, Ron Howard and Ali Abbas have captured the mathematics of
decision making in their book Foundations of Decision Analysis. The book
isn’t cheap, though, listing at around $200. Should you buy a book for $200
that could make you a better decision maker? Think about it…

4

Model Thinking
Decision models can go a long way toward making us better decision
makers. Thanks to George Box, it’s well known that “all models are wrong,
but some are useful.” So, don’t dismiss a model just because it makes
simplifying assumptions. It’s likely to help you make a much better
decision than your gut. The best overview of models and their application I
have come across is Scott Page’s Coursera course on Model Thinking. He
also recently published the content in his book The Model Thinker.

Decision trees are very simple models that help us make more rational
decisions (see Figure 6-1). Suppose that you want to buy a car, but there’s a
40% chance that the dealer will offer a $1,000 cash-back promotion starting
next month. You need a car now, so if you defer the purchase, you’ll need to
rent a car for $500 for the coming month, even if the rebate doesn’t come
through. What should you do? If you buy now, you’ll pay the list price,
which we calibrate to $0 for simplicity’s sake. If you rent first, you are
down by $500 with a 40% chance to gain $1,000, so the expected value is
0.4 × $1,000 – $500 = –$100, lower than the list price. You should buy the
car now.

Figure 6-1. A decision tree helps you decide whether to buy a car now

5

6

https://oreil.ly/qKWp3

Let’s make the scenario a bit more interesting: assume that an insider offers
to tell you whether the cash-back promotion happens next month or not. He
asks $150 for this information. Should you buy it? Having this information,
your new decision tree (see Figure 6-2) would allow you to buy now if
you’re told that there’s no cash back (in 60% of cases) and to buy later if
there is (in 40% of cases). Having information up front increases the
expected value to 0.6 × 0 + 0.4 × (1,000 – 500) = $200. As your current best
scenario (i.e., buying now) yielded a value of $0, it’s worth paying $150 for
the extra information.

Figure 6-2. Should you pay someone to tell you whether there will be a rebate?

How do you know that the chance of the cashback is exactly 40%? You
don’t. But using the model helps you reason in face of uncertainty. You can
rerun the model for a 50% likelihood and see whether your decision
changes.

IT Decisions
Deadly pills, premium beers, and car dealer rebates—how do we bring our
learnings back to IT decision making? Many IT decisions—especially those
related to cybersecurity risks or system outages—share similar
characteristics of small probability but severe downsides. Therefore,
separating likelihood from impact and baselining probabilities can help
remove emotion, resulting in more rational decisions. Maybe you even find
it useful to define a concept of microfail for your systems: a one-in-a-
million chance of a catastrophic system failure.

A classic case for decision making is system uptime. Suppose that a single
server can achieve 99.5% availability, meaning that 99.5% of the time it
will be available to your application’s users. This means that over the
course of an average month, which has 730 hours, the system can be
“down” for 730 / 200 = 3.65 hours. That’s not horrible, but also not great.
99.9% is generally considered a good uptime—the allowed downtime
would be less than roughly 45 minutes per month. However, to achieve this,
you generally need redundant hardware, meaning that you need a second set
of servers ready to go in case your primary server fails. This will double
your hardware cost, often require additional failover machinery, and in
some cases also double your software license cost. Are three hours
downtime less per month worth double the cost? Sounds like a perfect case
for decision analysis!

Avoiding Decisions
With all this science behind decision making, what’s the best decision? It’s
the one that you don’t need to take! That’s what Martin Fowler indicated
when he observed that “one of an architect’s most important tasks is to
eliminate irreversibility in software designs.” Those are the decisions that
don’t need to be made or can be made quickly because they can be easily
changed later thanks to you having built-in options (Chapter 9). In a well-
designed software system, decisions aren’t as final as when taking deadly
pills from a jar.

1 Daniel Kahneman, Thinking, Fast and Slow (New York: Farrar, Straus and Giroux, 2013).

2 John A. Bargh, Mark Chen, and Lara Burrows, “Automaticity of Social Behavior,” Journal of
Personality and Social Psychology 71, no. 2 (Aug. 1996): 230-244.

3 William Poundstone, Priceless: The Myth of Fair Value (New York: Hill and Wang, 2011).

4 Ronald A. Howard and Ali E. Abbas, Foundations of Decision Analysis (Prentice Hall, 2015).

5 George Box, “Science and Statistics,” Journal of the American Statistical Association (1976).

6 Scott E. Page, The Model Thinker: What You Need to Know to Make Data Work for You (New
York: Basic Books, 2018).

7

7 Martin Fowler, “Who Needs an Architect?,” IEEE Software, July/August 2003,
https://oreil.ly/djeuH.

https://oreil.ly/djeuH

Chapter 7. Question Everything

Wer Nicht Fragt, Bleibt Dumm!

The architect riddler

It’s a common misconception that chief architects know everything better
than “normal” architects—why else would they be the “chief”? Such
thinking is actually pretty far from the truth. Hence, I often introduce
myself as a person who knows the right questions to ask. Wrangling one
more reference from the movie The Matrix, visiting the chief architect is a
bit like visiting the Oracle: you won’t get a straight answer, but you will
hear what you need to hear.

Five Whys
Asking questions isn’t a new technique and has been widely publicized in
the “five whys” approach devised by Sakichi Toyoda as part of the Toyota
Production System. It’s a technique to get to the root cause of an issue by
repeatedly asking why something happened. If your car doesn’t start, you
should keep asking “why” to find out the starter doesn’t turn because the
battery is dead because you left the lights on because the beeper that warns
you of parking with your lights on didn’t sound because of an electronics
problem. So, before you jump-start the car, you should fix the electronics to
keep the problem from happening again. In Japanese the method is called
naze-naze-bunseki (なぜなぜ分析), which roughly translates into “why,
why analysis.” I therefore consider the “five whys” more of a guideline to
not give up too early—you surely didn’t cheat if you identified the actual
root cause with just four whys.

The technique can be quite useful but requires discipline because people
can be tempted to inject their own preferred solutions or assumptions into
their answers. I have seen people conducting root-cause analysis on
production outages repeatedly answer the second or third question with
“because we don’t have sufficient monitoring” and the next one with
“because we don’t have enough budget.” The equivalent answer from the
car example would be “because the car is old.” That’s not root-cause
analysis but opportunism or excuse-ism, a word that made it into the Urban
Dictionary, but not yet into Merriam-Webster.

https://oreil.ly/h_aFt
https://oreil.ly/CVz6U

Repeatedly asking questions can annoy people a bit, so it’s good to have the
reference to the Toyota Production System handy to highlight that this is a
widely adopted and useful technique and not you just being difficult. It’s
also helpful to remind your counterparts that you are not challenging their
work or competence, but that your job requires you to understand systems
and problems in detail so that you can spot potential gaps or misalignments.

Whys Reveal Decisions and Assumptions
When conducting architecture reviews, “why” is a useful question because
it helps draw attention to the decisions (Chapter 8) that were made as well
as the assumptions and principles that led to those decisions. Too often,
results are presented as “god-given” facts that “fell from the sky” or
wherever you believe the all-deciding divine creator (the real chief
architect!) resides. Uncovering the assumptions that led to a decision can
provide much insight and increase the value of an architecture review. An
architecture review is not only looking to validate the results but also the
thinking and decisions behind it all. To emphasize this fact one should
request an architecture decision record from any team submitting an
architecture for review.

Unstated assumptions can be the root of much evil if the environment has
changed since the assumptions were made. For example, traditional IT
shops often write elaborate graphical configuration tools that could be
replaced with a few lines of code and a standard software development tool
chain. Their decisions are based on the assumption that writing code is slow
and error prone, which no longer holds universally true as we learn once we
overcome our fear of code (Chapter 11). If you want to change the behavior
of the organization, you often need to identify and overcome outdated
assumptions first (Chapter 26).

Coming back to The Matrix, the explanation given by the Oracle—“You
didn’t come here to make the choice, you’ve already made it. You’re here to
try to understand why you made it”—could make a somewhat dramatic but
very appropriate opening to an architecture review.

1

A Workshop for Every Question
A clear and present danger of asking questions in large organizations lies in
the fact that people often don’t know, can’t express, or are unwilling to give
the answer. Their counterproposal is usually to hold a meeting, most likely a
very long one, which is labeled as “workshop,” with the purported goal of
sharing and documenting the answer. In the actual workshop, though, it
frequently turns out that the answer is unknown, leaving you with the job of
answering your own questions. The team might also bring external support
to defend against you asking too many undesired questions.

Asking questions in traditional organizations might not get you insights but
defensiveness to cover up the lack of decision discipline.

Soon, your calendar will be full of workshop invitations, allowing teams to
blame you for being the bottleneck that slows their progress because you
aren’t available for their important meetings. And they aren’t even lying!
Such organizational behavior is an example of systems resisting change
(Chapter 10).

If your goal is to not just review architecture proposals but also to change
the behavior of the organization, you need to take up this challenge and
change the system. For example, you can redefine the expectations for
architecture documentation and obtain management buy-in for doing so; for
example, to increase transparency. If satisfactory documentation isn’t
produced before the meeting, the workshop must be canceled. If teams are
unable to produce such documentation, you can offer them architects who
perform this task on a project basis. The actual workshop becomes more
effective when you moderate and work off a list of concrete questions.
Cutting the scheduled time in half brings additional focus.

On the upside, running architecture documentation workshops and
sketching bank robbers (Chapter 24) can give you an invaluable set of
system documentation that you can later use as a reference. This effort

requires good writing skills (Chapter 18) and adequate staffing, which you
can obtain only by taking the architect elevator (Chapter 1) to the upper
floors and clearly articulating the value of documenting system
architectures. For example, such documents could allow faster staff ramp-
up, reveal architectural inconsistencies, and allow rational, fact-based
decision making, which in turn supports evolution toward a harmonized IT
landscape. In top-down organizations, sometimes you need to lob things to
the top so they can trickle back down.

No Free Pass
Occasionally, teams that are sent into architecture review would like to just
obtain a “rubber stamp” for what they have done, and they aren’t excited
about you asking any questions at all. These are often the same candidates
who answer the “why” questions with “because we have no time” after they
purposefully waited until the very last minute. For such cases, I have a
stated principle of, “You can avoid my review, but you cannot get a free
pass.” If management decides that no architecture review is needed because
it doesn’t see architecture as a first-class citizen, I’d rather avoid the review
altogether than hold a show trial.

I see this as in line with my professional reputation: be tough but fair and
make tasty hamburgers out of holy cows. My boss once summarized this in
a nice compliment: she stated that she likes to have the architecture team
involved because, “we have nothing to sell, no one can fool us, and we take
the time to explain things well.” This would make a nice mandate for any
architecture team.

If you’re wondering about the meaning of the German subtitle of this
chapter, it’s from the title song of the German version of Sesame Street,
which rhymes nicely and goes "Wieso, weshalb, warum, wer nicht fragt,
bleibt dumm!,” which literally translates into “why? who doesn’t ask,
remains stupid!” Don’t remain stupid!

1 Michael Nygard, “Documenting Architecture Decisions,” Relevance, Nov. 15, 2011,
https://oreil.ly/1sniB.

https://oreil.ly/1sniB

Part II. Architecture

Defining architecture isn’t an easy task—there appear to be almost as many
definitions of IT architecture as there are practicing architects.

Beyond Software Architecture

Most software architecture definitions cite a system’s elements and
components plus their interrelationships. In my view, this covers only one
aspect of architecture. First, IT architecture is much more than software
architecture: unless you outsourced all your IT infrastructure into the public
cloud, you need to architect networks, datacenters, computing
infrastructure, storage, and much more. And even if you did, you still need a
deployment architecture, a data architecture, and a security architecture.
Second, defining which “components” you are focusing on constitutes a
significant aspect of architecture.

A manager once stated that he can’t understand the many network issues
despite all the network stuff “being there.” His view was a physical one:
Ethernet cables plugged into servers and switches. The complexity of network
architecture, however, lies in virtual network segregation, routing, address
translation, and much more. Different stakeholders see different parts of the
architecture.

Three Kinds of Architecture

When speaking about architecture, people routinely refer to three quite
different concepts, all of which relate to IT but are very different in nature:

1. A system’s architecture, defined by its structure, as in
"microservices architecture"

2. The act of defining a system’s structure, as in “the architecture
committee"

3. A team that is involved in defining architecture, as in “we’re
setting up enterprise architecture"

So, while every system has an architecture, not every organization has an
architecture (unit) and even if it does, they may not get much architecture
done.

To make things a little less confusing, when I mention “architecture,” I
generally refer to a system’s properties. For organizational aspects, I speak
about “architects”—it’s based on humans after all.

There Always Is an Architecture

When speaking about a system’s architecture, it’s worth pointing out that all
systems have one. You can’t build anything out of several pieces that
doesn’t have any structure. Even clumping everything together into a giant
monolith is an architecture decision. Once we come to this realization,
statements like “we don’t have time for architecture” aren’t particularly

meaningful. It’s simply a matter of whether you consciously choose your
architecture or whether you let it happen to you. History has shown that the
latter approach invariably leads to the infamous Big Ball of Mud
architecture, also referred to as shantytown. Although that architecture does
allow for rapid implementation without central planning or specialized
skills, it also lacks critical infrastructure and doesn’t make for a great living
environment. Fatalism isn’t a great enterprise architecture strategy, so I
suggest you pick your architecture.

The Value of Architecture

Because there always is an architecture, an organization should be clear on
what it expects from setting up an architecture function. Setting up an
architecture team and then not letting it do its job—for example, by
routinely subjecting architecture decisions to management decisions—is
actually worse than intentionally letting things drift into a Big Ball of Mud:
you pretend to define your architecture, but in reality you don’t. Worse yet,
good architects don’t want to be in a place where architecture is seen as a
form of corporate entertainment. If you don’t take architecture seriously,
you won’t be able to attract and retain serious architects.

IT management often believes that “architecture” is a long-term investment
that will only pay off far into the future. Although this is true for some
aspects—for example, managed system evolution over time—architecture
can also pay off in the short-term, such as when you can accommodate a
customer requirement late in the development cycle, when you gain
leverage in vendor negotiations because you avoided lock-in, or when you
can easily migrate your systems to a new datacenter location. Good
architecture can also make a team more productive by allowing concurrent
development and testing of components. Generally, good architecture buys

1

you flexibility. In a rapidly changing world, this seems like a smart
investment.

Principles Drive Decisions

Architecture is a matter of trade-offs: there rarely is one single “best”
architecture. For example, the option to be able to move your application to
the cloud likely increased cost and complexity. Architects therefore must
take the context into consideration when making architectural decisions,
because that context will help them weigh the trade-offs against one
another.

Architects should also strive for conceptual integrity, that is, uniformity
across system designs. This is best accomplished by selecting a well-
defined set of architecture principles that are consistently applied to
architectural decisions. Deriving these principles from a declared
architecture strategy assures that the decisions support the strategy.

Vertical Cohesion

A good architecture is not only consistent across systems but also considers
all layers of a software and hardware stack. Investigating new types of
scale-out compute hardware or software-defined networks is useful, but if
all your applications are inflexible monoliths with hardcoded IP addresses,
you gain little. Architects therefore not only need to ride the elevator
(Chapter 1) across the organization but also up and down the technology
stack.

Vertical cohesion doesn’t stop at technology, but also needs to consider the
business architecture. For example, many IT decisions can’t be made by IT
alone but require input from the business and an understanding of the
business structure and context.

Architecting the Real World

The real world is full of architectures, not just building architectures but
also cities, corporate organizations, or political systems. The real world
must deal with many of the same issues faced by large enterprises: lack of
central governance, difficult to reverse decisions, enormous complexity,
constant evolution, slow feedback cycles. That’s why architects should walk
through the world with open eyes, always looking to learn from the
architectures they encounter.

Architecture in the Enterprise
When defining architecture in large organizations, architects need to know a
lot more than how to draw UML diagrams. They need to be able to do the
following, as well:

Chapter 8, Is This Architecture?

Distinguish whether something is architecture in the first place.

Chapter 9, Architecture Is Selling Options

Be able to sell options to the business.

Chapter 10, Every System Is Perfect…

Tackle complexity by thinking in systems.

Chapter 11, Code Fear Not!

Know that configuration isn’t better than coding.

Chapter 12, If You Never Kill Anything, You Will Live Among Zombies

Hunt zombies so that they don’t have their brain eaten.

Chapter 13, Never Send a Human to Do a Machine’s Job

Automate everything and make the rest self-service.

Chapter 14, If Software Eats the World, Better Use Version Control!

Think like software developers as everything becomes software defined.

Chapter 15, A4 Paper Doesn’t Stifle Creativity

Build platforms and set standards that don’t stifle creativity.

Chapter 16, The IT World Is Flat

Navigate their IT landscape with an undistorted world map.

Chapter 17, Your Coffee Shop Doesn’t Use Two-Phase Commit

Gain architecture insights from waiting in line at the coffee shop.

1 Brian Foote and Joseph Yoder, “Big Ball of Mud,” Laputan.org, Nov. 21, 2012,
http://www.laputan.org/mud.

http://www.laputan.org/mud

Chapter 8. Is This Architecture?

Look for Decisions!

Would you pay an architect for this?

Part of my job as chief architect is to review and approve system
architectures. When I ask teams to show me “their architecture,” I
frequently don’t consider what I receive to be an architecture document.
Their counter-question of “what do you expect?” isn’t so easy for me to
answer: despite many formal definitions, it isn’t immediately clear what
architecture is or whether a document really depicts an architecture. Too
often we have to fall back to the “I know it when I see it” test famously
applied by a US Supreme Court judge to obscene material. We’d hope that
identifying architecture is a more noble task than identifying obscene
material, so let’s try a little harder. I am not a big believer in all-
encompassing definitions but prefer to use lists of defining characteristics
or tests that can be applied. One of my favorite tests for architecture

1

documentation is whether it contains any nontrivial decisions and the
rationale behind them.

Defining Software Architecture
So many attempts at defining software architecture have been made that the
Software Engineering Institute (SEI) maintains a reference page of these
definitions.

Among the most widely used is this definition from Garlan and Perry, from
1995:

The structure of the components of a system, their interrelationships, and
principles and guidelines governing their design and evolution over time.

In 2000 the ANSI/IEEE Std 1471 chose the following definition (adopted as
ISO/IEC 42010 in 2007):

The fundamental organization of a system, embodied in its components,
their relationships to each other and the environment, and the principles
governing its design and evolution.

The Open Group adopted a variation thereof for TOGAF:

The structure of the components, their interrelationships, and principles
and guidelines governing their design and evolution over time.

One of my personal favorites is from Desmond D’Souza and Alan Cameron
Wills’s book on the Catalysis method:

The set of design decisions about any system that keeps its implementors
and maintainers from exercising needless creativity.

The key point here isn’t that architecture should dampen all creativity, but
needless creativity, of which I witness ample amounts. It also highlights the
importance of making decisions (Chapter 6).

2

https://oreil.ly/48Opd

Architectural Decisions
These well-thought-out definitions aren’t easy to work with, however, when
someone walks up with a PowerPoint slide showing boxes and lines
(Chapter 23), claiming, “This is my system architecture.” The first test I
tend to apply is whether the documentation contains meaningful decisions.
After all, if no decisions needed to be made, why employ an architect and
prepare architectural documentation?

Martin Fowler’s knack for explaining the essence of things using extremely
simple examples motivated me to illustrate the “architectural decision test”
with the simplest example I could think of, drawing from the (admittedly
limping) analogy to building architecture.

Consider the drawing of a house on the lefthand side in Figure 8-1. It has
many of the elements required by the popular definitions of systems
architecture: we see the main components of the system (door, windows,
roof) and their interrelationships (door and windows in the wall, roof on the
top). We might be a tad thin, though, on principles governing its design, but
we do notice that we have a single door that reaches the ground and
multiple windows, which follows common building principles.

Figure 8-1. Is this architecture?

Yet, to build such a house I wouldn’t want to pay an architect. This house is
“cookie-cutter,” meaning I don’t see any nonobvious decisions that an
architect would have made. Consequently, I wouldn’t consider this
architecture.

Let’s compare this to the sketch on the right side of the figure. The sketch is
equally simple, and the house is almost the same, except for the roof. This
house has a steep roof and for a good reason: the house is designed for a
cold climate where winters bring extensive snowfall. Snow is quite heavy
and can easily overload the roof of the house. A steep roof allows the snow
to slide off and be easily removed thanks to gravity, a pretty cheap and
widely available resource. Additionally, an overhang prevents the sliding
snow from piling up right in front of the windows.

To me, this is architecture: nontrivial decisions have been made and
documented. The decisions are driven by the system context; in this case,
the climate: it’s unlikely that the customer explicitly stated a requirement
that the roof not be crushed by snowfall. Additionally, the documentation
highlights relevant decisions and omits unnecessary noise.

If you believe these architectural decisions were pretty obvious, let’s look at
a very different house in Figure 8-2.

Figure 8-2. Great architecture on a napkin

This house in Figure 8-2 is quite different: the walls are made out of glass.
While providing a stellar view, glass walls have the problem that the sun
heats up the building, making it feel more like a greenhouse than a
residence. The solution? Extending the roof well beyond the glass walls
keeps the interior in the shade, especially in summer when the sun is high in
the sky. In the winter, when the sun is low on the horizon, the sun reaches
through the windows and helps warm the building interior. Again, the
architecture is defined by a fairly simple but fundamental decision,
documented in an easy-to-understand format that highlights the essence of
the decision and the rationale behind it.

Fundamental Decisions Needn’t Be
Complicated
If you think the idea of building an overhanging roof isn’t all that original
or significant, try buying one of the first homes to feature such a design; for

Architecture isn’t good or
bad, it’s fit or unfit for a
purpose.

example, the Case Study House No 22 in Los Angeles by architect Pierre
Koenig. It’s easily in the league of most recognized residential building in
Los Angeles or beyond (aided by Julius Shulman’s iconic photograph) and
surely isn’t for sale. You can tour it, though, if you sign up far in advance.
Significant architectural decisions may look obvious in hindsight, but that
doesn’t diminish their value. No one is perfect, though: UCLA PhD
students have measured that the overhang works better on the south-facing
facade than west or east.

Fit for Purpose
The simple house example also highlights another important property of
architecture: rarely is an architecture simply “good” or “bad.” Rather,
architecture is fit or unfit for purpose. A house with glass walls and a flat
roof might be regarded as great architecture, but probably not in the Swiss
Alps where it will collapse after a few winters or suffer from a leaking roof.
It also doesn’t do much good near the equator where the sun’s path on the
sky remains fairly constant throughout the year. In those regions, you are
better off with thick walls, small windows, and lots of air conditioning.

Assessing the context and identifying
implicit constraints or assumptions in
proposed designs is an architect’s key
responsibility. Architects are commonly
described as the people dealing with

nonfunctional requirements. I generally refer to hidden assumptions as
nonrequirements—requirements that were never explicitly stated (Part I).

Even the dreaded Big Ball of Mud can be “fit for purpose”; for example,
when you need to make a deadline at all costs and can’t care much about
what happens afterward. This may not be the context you wish for, but just
like houses in some regions have to be earthquake proof, some architectures
have to be management proof.

3

http://www.laputan.org/mud

All meaningful decisions have
downsides.

Passing the Test
Having stretched the overused building architecture analogy one more time,
how do we translate it back to software systems architecture? Systems
architecture doesn’t need to be something terribly complicated. It must
include, however, significant decisions that are well documented and are
based on a clear rationale. The word “significant” can be open to some
interpretation and depend on the level of sophistication of the organization,
but “we separate frontend from backend code” or “we use monitoring”
surely have the ring of “my door reaches the ground so people can walk in”
or “I put windows in the walls so light can enter.”

Instead, when discussing architectures, let’s talk about what isn’t obvious.
For example, “do you use a service layer and why?” (some people may find
even this obvious) or “why are you spreading your application across
multiple cloud providers?” A good test is whether the chosen option also
has downsides—decisions without downsides are unlikely to be
meaningful.

It’s quite amazing how many “architecture
documents” don’t pass this relatively
simple test. I hope our set of house
sketches provides a simple and

nonthreatening way to provide feedback and to motivate architects to better
document their designs and decisions.

1 Wikipedia, "Jacobellis v. Ohio,” Sept. 7, 2019, https://oreil.ly/EwvpU.

2 Desmond F. D’Souza and Alan Cameron Wills, Objects, Components, and Frameworks with
UML: The Catalysis Approach (Boston: Addison-Wesley Professional, 1998).

3 P. La Roche, “The Case Study House Program in Los Angeles: A Case for Sustainability,” in
Proc. of Conference on Passive and Low Energy Architecture (2002).

https://oreil.ly/EwvpU

Chapter 9. Architecture Is
Selling Options

In Uncertain Times It’s Good to Have a Few Options

Options on sale

Quite frequently I am being asked about the value of architecture,
sometimes out of actual curiosity, and at other times as a (welcome)
challenge. Sadly, I also consistently find out just how difficult it can be to
answer this seemingly harmless question in a succinct and convincing
manner for a nontechnical audience. I thus consider having a good answer
to this question a valuable skill for any senior architect.

A colleague once suggested that an architect’s key performance indicator
(KPI) should be the number of decisions made. While decision making is a
defining element of doing architecture, I had a feeling that making as many
decisions as possible isn’t what drives my profession.

Measuring an architect’s contribution by the number of decisions they’re
making reminded me of trying to measure developers’ productivity in lines
of code written. That metric is widely known as a bad idea because poor
developers tend to write verbose code with lots of duplication, whereas
good developers find short and elegant solutions to complex problems.
After a little bit of pondering, I remembered one of Martin Fowler’s most
popular articles that also involves decision making, but from a very
different point of view.

Reversing Irreversible Decision Making
Many conventional definitions of software architecture include the notion
of making difficult- (or expensive-) to-reverse decisions. Ideally, these
decisions would be made early in the project to give the project a direction
and avoid “analysis paralysis,” the dangerous state in a project when
requirements gathering drags on without any code being written. Making
critical decisions early comes with a major challenge, though: the beginning
of the project is also the time of highest ignorance because little is known
about the project as well as the technologies to be used. Therefore,
architects are generally expected to draw on their ability to abstract from
their past experience to get those decisions “right.” Consistent project cost
and timeline overruns have hinted, though, that deciding the system
structure early in a project is difficult at best, even for an all-knowing
architect (Chapter 2).

Martin Fowler concluded some time ago that the opposite is actually true:
“one of an architect’s most important tasks is to eliminate irreversibility in
software designs.” So, instead of entrusting all crucial decisions to one
person, a project can be better off by minimizing the number of early and

1

irreversible decisions. For example, choosing a flexible or modular design
can localize the scope of a later change and thus minimize the extent of up-
front decision making. Now one could posit that deciding on a modular
design is a second-degree up-front decision—we’ll come back to that point
later.

The desire to make decisions up front is frequently driven by the project’s
surrounding structures and processes as opposed to technical needs. For
example, time-consuming budget approval and procurement processes may
require teams to make product selections well before development can start.
Likewise, enterprise software and hardware vendors have a tendency to
push for early tooling decisions in order to secure a deal. They might
promise unsuspecting IT management spectacular results, including
reducing or removing the need for expensive programmers, if only their
tool is chosen right from the start.

So if the organization is better off with an architect not making decisions,
how do we eloquently articulate this to upper management?

Deferring Decisions with Options
Communicating to upper management becomes easier if you avail yourself
of the business’s concepts and vocabulary. Along the way you may even
discover business concepts that lend themselves to a new way of looking at
IT. Financial services present us with just that: options.

Decision making is a common activity in financial services, especially in
stock trading. Buying shares in a company requires you to put up cash now
in hopes of a future return—somewhat similar to buying a new car
(Chapter 6), though the future price is unknown. Now, if you could travel
into the future and see the stock price one year from now, making a decision
would be very easy as long as you can still buy the stock at today’s price.
Time travel isn’t available quite yet, but the example makes clear that being
able to defer a decision while fixing the parameters has value. That’s
intuitive because you’ll know more by the time the decision has to be made,
allowing you to make a better decision.

I tend to buy my ski passes on the day as I’ll have checked for good weather
and snow conditions the night before. I choose to forgo a prepurchase
discount for the value of being able to defer my decision.

The closest approximation to time travel in financial services is the concept
of a financial option. An option is defined as “the right, but not the
obligation, to execute a financial transaction at fixed parameters in the
future.” It’s a lot simpler to understand with an example:

You may acquire the option to buy a stock for $100 (the “strike price”) in
a year’s time (assuming a European option). After a year passes, it’s
trivial to decide whether to exercise this option: if the stock price trades
higher than $100, you can instantly make money by exercising your
option to buy the stock for $100 and selling it at a profit. If the actual
stock price is less than $100, you let the option expire, meaning you don’t
use your right to buy at $100. Coincidentally, this doesn’t mean buying
the option was a bad decision (see Chapter 6).

An option allows you to defer a decision: instead of deciding to buy or sell
a stock today, you can buy the option today and thus acquire the right to
make that decision in the future.

Good IT architecture can also offer options. For example, by coding in Java
or another language that’s widely supported you are offering an option to
run that software on different operating systems, deferring that decision
until a later date. Luckily, your option won’t expire as long as Java keeps
being supported on many platforms.

Options Have Value
The financial industry knows quite well that deferring decisions has value,
and therefore an option has a price, C. There’s a whole market for buying
and selling options and other derivatives. Two very smart gentlemen,
Fischer Black and Myron Scholes, scored a Nobel prize for computing the
value of an option, a formula known as the Black-Scholes formula:

2

3

C (S, t) = N (d1)S − N (d2)Ke
−r(T−t)

d1 = 1
σ√T−t

[ln (S

K
) + (r + σ2

2) (T − t)]

d2 = d1 − σ√T − t

There’s a lot going on here, but we can see how a few key parameters
influence the price. For example, a higher strike price (K) reduces the value
of the option as we’d expect. We can also see that if the option is valid right
now (T = t), the option price becomes the current price (S) minus the strike
price (K).

So, it’s nice to have mathematical proof that options have value: if
architects sell options, that means they bring value!

An Architecture Option: Elasticity
Luckily, IT architects need neither complex formulas nor a Nobel prize. All
you need to do is design your system such that it defers decisions. You
accomplish that by providing options that can be exercised in the future.

A classic example is server sizing: before deploying an application,
traditional IT teams would conduct a lengthy sizing study to calculate the
amount of hardware required to run the application. Sadly, infrastructure
sizing leads only to one of two possible outcomes: either too large or too
small, which either results in wasted money or a poorly performing
application. What a great opportunity to defer some decisions!

For this example, the option the architect creates is horizontal scaling,
allowing compute resources to be added or subtracted at a later time.
Clearly, this option has a value: infrastructure can be sized according to the
application’s actual needs and can grow (or shrink) as required. Also, this
option isn’t free given that the system has to be designed to be able to scale
out; for example, by making application components stateless or by using a
distributed database.

Essentially, you’re paying for the option with increased complexity. Given
that complexity is one of the primary factors slowing down system delivery,
it’s no small price to pay. Also, to take advantage of the application’s scale-
out capability, you likely need to deploy the application on an elastic cloud
platform, which might lock you into a particular vendor. So, in effect you’re
paying for one option by giving up another.

Architecture options are rarely free. For example, you may pay with increased
complexity or loss of another option.

Just like financial options, architecture options also allow you to hedge your
bets in case you want to limit your downside if a desired outcome doesn’t
materialize. For example, providing an abstraction from a vendor-specific
interface can hedge against the vendor increasing license fees or going out
of business.

Strike Prices
Now all the architect can do is offer the option for sale, describing the
nature and price of the option. Someone has to decide whether to buy it. As
mentioned a moment ago, making an application horizontally scalable or
adding a layer of indirection isn’t free, so while it might be good
architectural practice, decision discipline teaches us to examine whether
this option is actually needed.

The financial world sells options with different strike prices, which is the
price you pay per share when you exercise the option in the future. It’s easy
to see (and reflected in the Black-Scholes formula) that options with a
lower strike price command a higher up-front price: the lower the price to
execute the option in the future, the higher your potential gain. It’s useful to
note that the option still has value even if the strike price is higher than
today’s price—after all, the price might increase in the future.

The effect translates easily into the earlier IT example: by migrating to a
cloud provider we can lower the strike price for horizontal scaling to near
zero, thanks to full automation. However, this reduction in strike price isn’t
free: you’ll most likely pay with being locked into this specific provider’s
APIs, access control, account setup, and machine types. So, the strike price
for switching providers will be high.

To reduce the strike price for switching cloud providers, you can build an
abstraction layer that allows you to move your applications to any cloud
provider by clicking a button. Container platforms make this feasible, but
you also need to abstract all your storage, billing, and access control needs.
You may also be bound by commercial agreements. So, aiming for a near-
zero-cost cloud migration carries a huge up-front development cost: this is
an expensive option to buy. Considering the low chance of needing to
switch providers, this option might not be worth buying.

Minimizing the strike price—that is, switching cost from one vendor to
another—is often seen as the architectural ideal, but it’s rarely the most
economical choice.

Alternatively, consciously managing your application’s dependencies and
deploying in containers might be a better balance. It carries a higher strike
price—migrating will still incur some effort—but has a much lower up-
front investment. Good architects offer a range of options at different strike
prices and cost instead of aiming for a minimum strike price at all cost.

Uncertainty Increases an Option’s Value
Consequently, just as with financial markets, pricing and buying
architecture options takes some consideration. There’s a second factor,
though, that has a major impact on the value of an option: uncertainty. The
more uncertain about the future I am, the more value I derive from
deferring a decision. For example, the option to scale horizontally isn’t that
valuable if my application is built for a small and constant number of users.

4

However, if I am building an internet-facing application that could have 100
or 100,000 users, the option becomes much more valuable.

The same is true in the financial world: the Black-Scholes formula contains
a critical parameter, σ (“sigma”), which indicates the volatility. You’ll see
this sigma squared in the numerator of the equation, indicating a strong
correlation between volatility and option price.

The business not wanting to be involved in technical decisions leads to
suboptimal decision making because IT alone can’t judge the value of an
option. Instead, it’s the architect job to translate technical options into
meaningful choices for the business.

Therefore, architects who put up options for sale need to understand the
context and its volatility. Most likely, such input needs to come from the
business side and can’t be made by IT alone. This implies that the business
side stating that it doesn’t want to be involved in technical decisions is a
bad idea because it will lead to suboptimal decision making.

Time Is Fleeting
Another parameter influences an option’s value: time. The time at which the
option can be exercised—that is, the option’s maturity date—is represented
by the parameter T in the Black-Scholes formula, whereas the current time
is identified as t. The further out the maturity is in the future, the higher its
value. This makes intuitive sense because your uncertainty increases the
further you are looking into the future, making the option more valuable.

Architects and project managers typically work under different time horizons
and thus value the same option differently.

This effect can help explain why architects and project managers often
debate the merit of architecture options: project managers typically have a

shorter time horizon than enterprise architects, who need to assure
architectural integrity over many years and sometime decades. Due to the
different time horizons, each of them has a different perceived (and, in fact,
calculated) value of the same option. Interestingly, during such arguments,
both parties are making rational but different decisions because their input
parameters differ. A model, such as the options model, can help reduce such
arguments to differences in input parameters and thus lead to better decision
making.

Real Options
The idea of applying options theory outside of financial instruments isn’t
just limited to IT and is referred to as real options. Real options guide
corporate investment decisions, such as acquisitions or buying real estate,
and are commonly broken down into categories, which map very well to
software architecture and projects:

Option to defer

The ability to make an investment, such as adding a feature, at a later
time.

Option to abandon

The ability to use or resell parts of a project in case the project as
planned has to be abandoned. In IT architecture, this option can equate
to building self-contained modules or services that can be salvaged for
use in other projects.

Option to expand

The ability to increase capacity; for example, to scale out an application
by adding hardware.

Option to contract

The ability to elegantly reduce capacity; for example, by using elastic
infrastructure.

5

6

Just like with buying hot chocolate (Chapter 17), we can learn from looking
at the real world outside IT.

Arbitrage
In the financial world, markets are generally assumed to be efficient,
meaning instruments are priced fairly according to their risk and expected
return. Every once in a while, though, someone figures out a way to make
immediate returns through arbitrage, an opportunity to profit at no risk.
Architects should similarly look out for such opportunities where they can
provide options at very low cost. For example, using an open source object-
relational mapping (ORM) framework is both best practice and an
inexpensive option to make switching database vendors easier.

Agile and Architecture
Some Agile developers question architecture’s value because it was closely
associated with a big, up-front-design approach that would look to make all
decisions at the outset. Understanding architecture as providing options,
you can easily see that the opposite is true. Both Agile methods and
architecture are ways to deal with uncertainty, meaning that working in an
Agile fashion allows you to benefit more from architecture.

The value of both Agile methods and architecture increases with uncertainty,
so they are friend, not foe.

Evolutionary Architecture
What should you do if meaningful options aren’t known, or at least not
known far enough in advance? In that case, you need an architecture that
can evolve along with your increased understanding of technology and
customer needs—an approach that’s described as evolutionary

architecture. Just like in natural history, what sets evolution apart from a
series of changes is a fitness function that guides change by examining how
well a solution serves an intended purpose. Choosing the right fitness
function can now become the evolutionary architect’s contribution, rather
than choosing a specific architecture up front. If you feel that’s an
application of the well-known motto “all problems can be solved with one
more level of indirection,” you might be onto something.

Amplifying Metaphors
When I first shared the “selling options” metaphor with a senior financial
services executive, the former head of asset management, he instantly
embraced the metaphor and quickly concluded that higher volatility
increases the value of an option. Translating this back into IT, he stated that
in times of high uncertainty, as we are facing them today both in business
and technology, the value of architecture options also increases. Businesses
should therefore invest more into architecture.

Isn’t it fantastic when a person from a different field adopts a metaphor and
takes it to the next level?

1 Fowler, “Who Needs an Architect?”

2 You can also use options for selling shares, the so-called put options. These are commonly
used to hedge against major drops in a stock price, essentially acting like an insurance policy
for your investment.

3 Wikipedia, “Black–Scholes Model,” https://oreil.ly/2ZcmI.

4 Gregor Hohpe, “Don’t Get Locked Up into Avoiding Lock-in,” MartinFowler.com (2019),
https://oreil.ly/jWDAW.

5 Stewart C. Myers, Determinants of Corporate Borrowing (Cambridge, MA: MIT Sloan
School of Management, 1976).

6 Lenos Trigeorgis, Real Options: Managerial Flexibility and Strategy in Resource Allocation
(Cambridge, MA: MIT Press, 1996).

7 Neal Ford, Matthew McCullough, and Nathaniel Schutta, Presentation Patterns: Techniques
for Crafting Better Presentations (Boston: Addison-Wesley Professional, 2012).

7

https://oreil.ly/2ZcmI
https://oreil.ly/jWDAW

Chapter 10. Every System Is
Perfect…

For What It Was Designed to Do!

Analyzing system behavior

Much of what architects do is reason about the behavior of complex
systems: systems that have many pieces and complex interrelationships.
There’s an entire field dedicated to such reasoning, called systems thinking
or complex systems theory. While popular software architecture definitions
focus on a system’s components and interrelationships, systems thinking
emphasizes behavior (Chapter 8). As architects, we should view structure
simply as a means to achieve a desired behavior. Thinking in systems helps
us do so.

Heater as a System
A residential heater provides a canonical example of a system, which we
also look at when we realize that control is an illusion (Chapter 27). As

demonstrated in Figure 10-1, a heating system’s typical architecture
diagram would depict the components and their relationships: a furnace
generates hot water or air, a radiator or air duct delivers the heat to the
room, and a thermostat controls the furnace. The structural/control system
theory point of view, shown at the top of the figure, considers the
thermostat the central element: it switches the furnace on and off as needed
to regulate the room temperature.

Figure 10-1. A structural view (top) and a systems view (bottom) of a heater

In contrast, the systems thinking point of view, at the bottom of Figure 10-
1, focuses on the room temperature as the central variable and the reasons
why it is influenced: the burning furnace increases the room temperature
while heat dissipation to the outside reduces it. Heat dissipation depends on
both the room and the outside temperature: in cold weather more heat
dissipates through walls and windows. That’s why smart heating systems
increase the heating power in cold weather. In a way, systems thinking is a

parallel universe that looks at the same system from a completely different
angle, an angle that helps us better understand why we are building
something.

Feedback Loops
Systems thinking helps us understand interrelated behavior; for example,
feedback loops. The room thermostat establishes a negative feedback loop,
which is typical for control systems: if the room temperature is too high, the
furnace turns off, letting the room cool down again. Negative feedback
loops usually aim to keep a system in a relatively stable state—the room
temperature will still oscillate slightly depending on the hysteresis of the
thermostat and the inertia of the heating system. The self-stabilizing range
of most systems is limited, though: a heater cannot cool a room in the heat
of summer or compensate for an open window during winter.

Positive feedback loops behave in the opposite way: an increase in one
system variable fuels a further increase. We know the dramatic effects of
such behavior from explosives (heat releases more oxygen to burn hotter),
nuclear reactions (a classical “chain reaction”), or hyperinflation (a spiral of
price and wage increases). Another positive feedback loop consists of more
cars on the road leading to investments in roads as opposed to public transit,
which makes it more compelling to commute by car. Likewise, rich people
tend to have more investment options to achieve higher returns, leading to a
“the rich getting richer” symptom, as for example described in Piketty’s
Capital in the Twenty-First Century.

Positive feedback loops can be dangerous due to their “explosive” nature.
Policies are often designed to counteract such positive feedback loops with
negative ones; for example, by applying higher tax rates to higher incomes
or by increasing gasoline tax while subsidizing public transit. However, it’s
difficult to balance out the exponential character of positive feedback loops.
Thinking in systems helps us reason about such effects.

1

Organized Complexity
Gerald Weinberg highlighted the importance of thinking in systems by
dividing the world into three areas: organized simplicity is the realm of
well-understood mechanics, such as levers or electrical systems consisting
of discrete resistors and capacitors. You can calculate exactly how these
systems behave. On the other end of the spectrum, unorganized complexity
doesn’t allow us to understand exactly what’s going on, but we can model
the system as a whole statistically because the behavior is unorganized,
meaning the parts don’t interrelate much. Modeling the spread of a virus
falls into this category. The tricky domain is the one of organized
complexity, where structure and interaction between components matter, but
the system is too complex to solve it by using a formula. This is the area of
systems. And the area of systems architecture.

System Effects
If we can’t determine system behavior with mathematical formulas, how
can systems thinking help us? Complex systems, especially systems
involving humans, tend to be subject to recurring system effects or patterns.
These effects explain why fishermen keep overfishing, depleting their own
livelihood, and why tourists flocking to the same destination destroy exactly
what attracted them. Understanding these patterns allows us to better
predict system behavior and influence it. Donella Meadows’s book
Thinking in Systems contains a list of common effects, including these
typical ones:

Bounded rationality, a term coined by Nobel laureate Herbert A.
Simon, captures the effect that people will generally do what is
rational, but only within the context that they observe. For
example, if an apartment building has a central heating system
without consumption-based billing, people will leave the heater on
all day and open the windows to cool down the apartment as
needed. Obviously, this is a giant waste of energy and leads to

2

3

A system’s structure is simply
a means to achieve a desired
behavior.

pollution, resource depletion, and global warming. However, if
your bounded context is just that of the temperature in your
apartment and your wallet, this behavior is the rational thing to do,
whether you like it or not: keeping the heater running allows you to
control the room temperature more easily as you avoid the inertia
of the heating system having to warm up.

The idea of the tragedy of the commons derives from the concept
of the commons, a shared pasture in old Irish and English villages
that was open to grazing by all the villagers’ animals. As this
common resource is free, villagers are incentivized to acquire more
cattle to feed on the commons. Of course, as the commons is a
finite resource, this behavior will lead to resource depletion and
poverty; hence, the tragedy. One reason such a system doesn’t self-
regulate is delay: the effect of the wrong behavior will only
become apparent when it is too late.

The complexity of these effects is underlined by the fact that Elinor Ostrom,
the only woman to win the Nobel Prize in Economics, famously debunked
the concept of the tragedy of the commons.

Understanding System Behavior
Systems documentation, especially in IT, tends to depict the static structure
but rarely the behavior of the system. Ironically, however, the system’s
behavior is what’s most interesting: systems generally exist to exhibit a
certain, desirable behavior. For example, the heating system was created to
keep the temperature in your house at a comfortable level. Server
infrastructure is made redundant to increase availability. In both cases the
system structure is simply a means to an end.

The difficulty in deriving system behavior
from its components can be illustrated by
the heating system in my apartment, which
supplies both floor heating and wall

4

radiators with hot water and comprises a handful of major components: the
gas burner heats the water inside a primary circuit driven by a built-in
pump. Two additional external pumps feed the hot water from the primary
circuit to the floor heating and wall radiators, respectively. A
misconfiguration caused the secondary pumps to not draw enough water,
and therefore heat, from the primary circuit, which quickly overheated.
This, in turn, caused the gas heater to shut off for a fixed duration, leading
to a lack of heating power: naturally, the house cannot get warm when the
heater is not burning. Because the house wouldn’t warm up, the technician’s
intuition was to increase the burner’s heating power. However, this only
exacerbated the problem: the system wasn’t able to move enough heat away
from the primary circuit, so increasing the gas burner’s power only
overheated it faster. After almost a dozen attempts, the heating system still
wasn’t operating as designed, because the technicians might understand the
individual system components but they are not comprehending the complex
system behavior.

Seems a little complicated? For architects, this stuff is our daily bread and
butter. Understanding complex interrelationships between system
components and influencing them to achieve a desired behavior is what
architects do. Often a good diagram (Chapter 22) will help.

Influencing System Behavior
Most of what users see from a system are events: things happening as a
result of the system behavior, which in turn is determined by the system
structure, that is often invisible. If the users are unhappy with those events,
such as the heater shutting off despite the room being cold, they often try to
inflict a change, such as setting the room thermostat higher, without
analyzing or changing the system behind them. The book Inviting Disaster
provides dramatic examples of how misunderstanding a system led to major
catastrophes such as the Three Mile Island nuclear reactor incident or the
capsizing of the Deepwater Horizon drilling platform. In both cases,
compromised system displays led operators to perform the very action that

5

caused the disaster because they didn’t understand the underlying system
and its behavior from the events they observed. Their mental model
deviated from the real system, causing them to make fatal decisions.

It has repeatedly been observed that humans are particularly bad at steering
systems that have slow feedback loops, meaning those that exhibit reactions
to changing inputs only after a significant delay. A classic example is MIT’s
“beer game” in which participants on average perform almost 10 times
worse than the ideal scenario. Overuse of credit cards is another classic
example: people keep piling on debt until they are no longer able to pay
even the interest and wonder how they got themselves into such a mess.

Also, humans who don’t think about the system as a whole are prone to
taking actions that have the opposite of the intended effect. For example,
people react to overly full work calendars by setting up “blockers,” which
make the calendars even fuller. Instead, we need to understand and fix what
causes the full calendars; for example, a misaligned organizational structure
that requires too many alignment meetings. You can’t fix a system by
merely addressing the symptoms.

Understanding system effects can help you devise more effective ways to
influence the system and thus its behavior. For example, transparency is a
useful antidote to the bounded rationality effect because it widens people’s
bounds. An example from Donella Meadows’s book illustrates that having
the electricity meter visible in the hallway caused people to be more
conservative with their energy consumption without additional rules or
penalties. Interestingly, systems thinking can be applied to both
organizational and technical systems. We’ll learn this, for example, when
we scale an organization (Chapter 30).

John Gall’s Systems Bible gives a humorous but also insightful account of
the ways in which systems behave, often against our intention or intuition.

6

7

Systems Resist Change
Changing systems is difficult not only because of their complex structure,
but also because most of them actively resist change. Organizational
systems’ change resistance achieves longevity, for example, through well-
defined processes, but presents a challenge when a shift in the environment
requires the organization to change. Frederic Laloux describes it as a key
characteristic of amber organizations: they are built on the assumption that
what worked in the past will work in the future, and it often served them
well over thousands of years.

As described in Chapter 7, if you request better documentation for
architecture reviews, “the system” might respond by scheduling lengthy
workshops that drain your available time. If you increase pressure, the system
will respond with subquality documentation that increases your review cycles.
You must therefore get to the root of the problem and highlight the value of
good documentation, properly train architects, and allocate time for this task
in project schedules.

Most organizational systems have settled into a steady state over time and
serve their purpose well enough. If the business environment demands a
different system behavior, the system will actively resist by wanting to
revert to its previous state. It’s like trying to push a car out of a ditch: the
car keeps rolling back until you finally get it over the hump. This system
effect makes organizational transformation so challenging.

1 Thomas Piketty, Capital in the Twenty-First Century (Boston: Belknap Press, 2014).

2 Gerald M. Weinberg, An Introduction to General Systems Thinking (Dorset House, 2001).

3 Donella H. Meadows, Thinking in Systems: A Primer (White River Junction, VT: Chelsea
Green Publishing, 2008).

4 David Bollier, “The Only Woman to Win the Nobel Prize in Economics Also Debunked the
Orthodoxy,” Evonomics, July 28, 2015, https://oreil.ly/9Na0H.

5 James R. Chiles, Inviting Disaster: Lessons from the Edge of Technology (New York: Harper
Business, 2002).

8

https://oreil.ly/9Na0H

6 John D. Sterman, “Modeling Managerial Behavior,” Management Science, Vol. 35, No. 3
(March 1989), https://oreil.ly/wrtzb.

7 John Gall, The Systems Bible, Third Edition (Walker, MN: General Systemantics Press, 2002).

8 Frederic Laloux and Ken Wilber, Reinventing Organizations: A Guide to Creating
Organizations Inspired by the Next Stage in Human Consciousness (Nelson Parker, 2014).

https://oreil.ly/wrtzb

Chapter 11. Code Fear Not!

Programming in a Poorly Designed Language Without Tool Support Is No
Fun

Who dares run this code?

Yoda, the wise teacher of Jedi apprentice Luke Skywalker in the Star Wars
movies, knows that fear leads to anger; anger leads to hate; hate leads to
suffering. Likewise, corporate IT’s fear of code and the love of
configuration can lead it down a path to suffering from which it is difficult
to escape. Beware of the dark side, which has many faces, including
vendors peddling products that “only require configuration,” as opposed to
tedious, error-prone coding. Sadly, most complex configuration really is just
programming, albeit in a poorly designed, rather constrained language
without decent tooling or useful documentation.

Fear of Code
Corporate IT, which is often driven by operational considerations, tends to
consider code the stuff that contains all the bugs, causes performance
problems, and is written by expensive external consultants (Chapter 38)
who are difficult to hold liable because they’ll have long moved to another
project by the time the problems surface. Some IT leaders even proudly
proclaim that they are a “proper business” and not a software development
company, so they shouldn’t bother with coding stuff.

The most grotesque example of fear of code I have observed was corporate IT
providing application servers as a shared service. Once you deploy code on
them, you’d no longer receive operational support. It’s like voiding a car’s
warranty after you start the engine—after all, the manufacturer has no idea
what you will do to it!

Corporate IT’s eternal fear of code plays to the advantage of enterprise
vendors who offer configuration as the safe alternative to coding. As we
shall see, that’s a rather short-sighted proposition.

Good Intentions Don’t Lead to Good Results
IT’s aversion to coding originates from a good principle. Most enterprise IT
rightly follows a buy-over-build strategy: buying commercial off-the-shelf
(COTS) solutions not only saves IT departments time and money but also
lets someone else worry about regular updates and security patches. Once
purchased, solutions can be customized and configured to the enterprise’s
specific needs.

Likewise, common libraries and open source tools are a great way of
reusing existing work. Open source tools are also often accompanied by an
extensive community that can provide support and make technology
adoption easier. For example, who would you want to write their own XML
serializer? There’s a library for that.

There’s a catch, though…well, actually, two: first, if you expect to
configure a piece of software that you bought, you are relying on the vendor
having anticipated the need for your case of customization, meaning the
vendor gave you the option (Chapter 9). Doing this well would mean the
vendor has perfected big, up-front design, correctly anticipating all possible
requirements, while the rest of us are still trying to become more Agile
(Chapter 31). Second, configuration means working in an abstraction
provided by the software vendor. Now, abstractions are generally a good
thing because they allow you to get away from the nitty-gritty details, but
some abstractions also come with downsides.

Levels of Abstraction: Simplicity Versus
Flexibility
Raising the level of abstraction is one of the primary techniques that makes
developers’ lives easier. Thanks to abstraction, very few programmers still
write assembly code, read single data blocks from a hard disk, or put
individual data packets onto the network. This level of detail has been
nicely wrapped behind high-level languages, files, and socket streams.
These programming abstractions are very convenient and dramatically
increase productivity: try doing without them!

If abstractions are this useful, you might legitimately wonder whether
adding further abstraction layers could boost productivity even more. For
example, you could use libraries or services for all business functions.
Ultimately, you could do away with coding altogether and allow solution
development simply by, let’s say, configuration. If this sounds a bit too
good to be true, that’s because it is.

When raising the level of abstraction, you face a fundamental dilemma:
how do you make a really simple model without losing too much
flexibility? For example, if a developer needs rapid direct-access to any file
location, the file stream abstraction actually gets in the way because it
requires reading files sequentially. The best abstractions are therefore those

that solve and encapsulate the difficult part of the problem while leaving the
user with sufficient flexibility.

If an abstraction takes away too many or the wrong things, it becomes overly
restrictive and no longer applicable. If it takes away too few things, it didn’t
accomplish much in terms of simplification and hence isn’t very valuable.

Or as Alan Kay elegantly stated: Simple things should be simple, complex
things should be possible. MapReduce, a framework for distributed data
processing, is a positive example: it abstracts away the gnarly parts of
distributed data processing, such as controlling and scheduling many
worker instances, dealing with failed nodes, aggregating data across nodes,
and so on. But it nevertheless leaves the programmer enough flexibility to
solve a wide range of problems and was extremely widely used within
Google.

When Are We Configuring?
So, if configuration promises us to abstract away the details of
programming, we should look a little closer at the trade-offs that were
made. But before we get there, it turns out that it’s not even trivial to
determine when something is configuration as opposed to coding. The
notion of configuration is mostly made by conflating several, unrelated
aspects:

The representation (e.g., visuals versus text)

Whether you provide data or instructions

Whether you make changes before or after deployment

Let’s dissect each of these a bit.

1

Model Versus Representation
Coding abstractions such as libraries take away implementation details, but
you’re still coding, although against more powerful objects and methods.
Enterprise software abstraction often comes in different packaging, a
graphical user interface (GUI) that enables spiffy drag-and-drop demos,
which make the whole exercise seem trivial.

At first sight, we might believe that painting a thin visual veneer over an
existing programming model can provide a higher level of abstraction.
Many business users might at first agree: typing in commands surely looks
like coding, whereas drawing diagrams feels a lot more like PowerPoint.
Unfortunately, that’s an illusion: a GUI changes the representation, but not
the underlying model. A complex model, such as a workflow engine that
includes concepts like concurrency, synchronization, correlation, long-
running transactions, compensating actions, and more, inherently carries
heavy conceptual weight: there’s a lot of stuff to consider. Wrapping it in
pretty visual packaging can make it more appealing, but it won’t remove
this weight. If your synchronization bar is drawn in the wrong place, your
workflow is just as broken as when making a coding mistake.

This isn’t to say visual representations have no value. For example,
representing visual workflows as graphs can be naturally expressive. But
although they may reduce some of the initial learning curve, they generally
don’t scale very well: once applications grow, it becomes difficult to follow
what’s going on via a giant canvas of symbols. Zooming out means text
won’t be readable anymore. Debugging and version control can also be a
nightmare given that these tools mostly lack familiar diff functions.

To test whether the visuals are just a thin veneer or really a better model, I
generally apply two tests when vendors provide a demo of visual
programming tools:

I ask them to enter a typo into one of the fields where the user is
expected to enter some logic. Often this leads to cryptic error
messages or obscure exceptions in generated code later on. This is

“tightrope programming”: as long as you stay exactly on the line,
everything is well. One misstep and the deep abyss awaits you.

I ask them to leave the room for two minutes while we change a
few random elements of their demo configuration. Upon return,
they would have to debug and figure out what was changed.

So far, no vendor has taken the bait; they presumably know that failure
doesn’t respect abstraction.

Code or Data? Or Both?
Leaving visuals aside, at which level of abstraction can we call something
“configuration” versus “high-level programming”? We’ve seen that despite
repeated vendor messaging, a visual user interface doesn’t suffice. Many
programmers will tell you that files in XML (or JSON or YAML) syntax are
configuration. However, anyone who has programmed in XSLT, which uses
XML syntax, can attest that this isn’t configuration but heavy-duty
declarative programming. There’s nothing simple about it.

A better decision criterion could be whether what you provide to the system
is executable or pieces of data. If the algorithm is predefined and you
supply only a few key values, it may be fair to call this configuration. For
example, let’s assume a program needs to classify users of different ages
into children, adults, and seniors. The code will contain a chain of if-else
or a switch statement. A configuration file could now supply the values for
the decision thresholds; for example, 18 and 65. This would fit our
definition of configuration.

We might now conclude that changing those values is safe: typing in a
number keeps you from having to understand programming language
syntax and operator precedence. Alas, it doesn’t save you from screwing up
the program. If you accidentally enter the values 65 and 18, the program is
likely to not work as expected. The exact program behavior in this case is
impossible to predict as it depends on the way the algorithm is coded. If the
program checks for children first, you may have declared everyone as a

2

child, whereas if the program checks for seniors first, you may have made
everyone a senior. So while configuration is safer, it isn’t foolproof.

The distinction between code and data blurs further when the data you enter
determines execution order. For example, the “data” you enter may be a
sequence of instruction codes. Or the data may resemble a declarative
programming language; for example, to configure a rules engine or even
XSLT. Aren’t coding instructions just data for the execution engine? Von
Neumann would have said so. Apparently, it’s not so black and white.

Deployment at Design-Time Versus Runtime
Another way configuration is commonly distinguished from code is that we
can change configuration after the application is deployed. This is certainly
useful given that we can’t foresee some parameters until runtime; for
example, the number of servers we need (Chapter 9). The distinction is
based on the underlying assumption, though, that changing code is
something that’s slow (because you have to rebuild and redeploy the whole
application) and risky (because you may be introducing new defects).
Microservices architectures and automated build-test-and-deploy chains put
quite a few question marks behind these assumptions: they enable teams to
rebuild, test, and deploy application code rapidly, repeatably, and with high
quality.

Rather than trying to anticipate changes for configuration, you may want to
invest in your tool chain to allow incremental, rapid deployment.

This doesn’t mean that configuration is useless, but it does mean that
modern software delivery has given us other tools to achieve much of what
configuration was intended to do. If we can make changes in the code, we
don’t have to decide a priori which parameters we allow to be configured
later, leading to much simpler code. Plus, we benefit from a fast range of
tools like version control, editor support, and automated testing.

3

When enterprise vendors tout their configuration suites, I challenge them to
speed up their software delivery model.

The lack of tooling makes the common assumption that configuration is
safer, a questionable one. For example, “Configuration changes” have
caused major outages at several cloud services providers.

Higher-Level Programming
In many cases, what’s being passed as configuration is really higher-level
programming. For example, when composing distributed systems by
connecting them via named message channels, “configuration” files often
determine over which channel(s) a component communicates. Two
components talk to each other when they use the same channel. Entering
this data in local XML configuration files seems convenient, but it’s prone
to mistakes because a simple typo would mean that components don’t
communicate or are chained together in the wrong order.

Composing a messaging system isn’t a matter of configuration, but a high-
level programming model for the composition layer of the system. Treating
the configuration files as first-class citizens by checking them into source
control and by creating validation and management tools can help
debugging and troubleshooting enormously.

Configuration Programming
Whenever there’s a choice to be made—in our case programming versus
configuration—you can be assured that someone has found a compromise.
In our case this would be configuration programming: an approach that
advocates the use of a separate configuration language to specify the
coarse-grained structure of programs. Configuration programming is

4

5

6

particularly attractive for concurrent, parallel, and distributed systems that
have inherently complex program structures.

Configuration Hiding as Code?
So, is there a good place for configuration? Yes, for example, injecting
runtime parameters into highly distributed programs or setting up cloud
infrastructure (Chapter 14) are great use cases for configuration. Oddly,
much of these approaches run under the moniker infrastructure as code
(IaC) these days, even though most of the tools really are configuration.
Someone must have felt that code sounds more powerful than configuation.

Abstractions are a very useful technique, but believing that labeling
something as “configuration” is going to eliminate complexity or the need
to hire developers is a fallacy. Instead, think about whether this
“configuration” is really higher-level programming. And in either case,
make sure that it undergoes the same best practices of design, testing,
version control, and deployment management that defines modern software
delivery. Otherwise, you’d have created a proprietary, poorly designed
language without tooling support. Then you would have been better off
coding.

1 Wikiquote, “Alan Kay,” https://oreil.ly/SBC39.

2 Gregor Hohpe, “Failure Doesn’t Respect Abstraction,” The Architect Elevator (blog), January
21, 2019, https://oreil.ly/ejTmy.

3 Wikipedia, “von Neumann architecture,” https://oreil.ly/ilzNC.

4 Benjamin Treynor Sloss, “An Update on Sunday’s Service Disruption,” Inside Google Cloud
(blog), June 3, 2019, https://oreil.ly/yaGr6.

5 Gregor Hohpe, “Visualizing Dependencies,” Enterprise Integration Patterns (blog), July 12,
2004, https://oreil.ly/1j4-7.

6 FOLDOC, “Configuration Programming,” https://oreil.ly/DkiV0.

https://oreil.ly/SBC39
https://oreil.ly/ejTmy
https://oreil.ly/ilzNC
https://oreil.ly/yaGr6
https://oreil.ly/1j4-7
https://oreil.ly/DkiV0

Chapter 12. If You Never Kill
Anything, You Will Live Among
Zombies

And They Will Eat Your Brain

The night of the living legacy systems

Corporate IT lives among zombies: old systems that are half alive and have
everyone in fear of going anywhere near them. They are also tough to kill
completely. Worse yet, they eat IT staff’s brains. It’s like Shaun of the Dead
minus the funny parts.

Despite being a reality in corporate IT, living legacy systems are becoming
more difficult to justify in a world that’s changing faster and faster. It’s time
to put some zombies to rest.

Legacy
Legacy systems are built on outdated technology and are often poorly
documented but (ostensibly) still perform important business functions. In
many cases, the exact scope of the function they perform is not completely
known. Ironically, most legacy systems generate a lot of revenue because
otherwise they would have been killed a long time ago.

When discussing what sets modern “digital” companies apart from traditional
ones, “lack of legacy” regularly comes up as a key factor.

Systems fall into the state of legacy because technology moves faster than
the business: life insurance systems often must maintain data and
functionality for decades, rendering much of the technology used to build
the system obsolete. With a bit of luck, the systems don’t have to be
updated anymore, so IT might be inclined to “simply let it run,” following
the popular advice to “never touch a running system.” Unfortunately,
changing regulations or security vulnerabilities in old versions of the
application or the underlying software stack are likely to interfere with such
an approach.

Traditional IT sometimes justifies their zombies with having to support the
business: how can you shut down a system that may be needed by the
business? They also feel that digital companies don’t have such problems
because they are too young to have accumulated legacy. 150 Google

developers attending Mike Feathers’s talk about Working Effectively with
Legacy Code might make us question this assumption. Because Google’s
systems evolve rapidly, they also accumulate legacy more quickly than
traditional IT. So it’s not that they have been blessed with not having
legacy, they must have found a better way of dealing with it.

Fear of Change
Systems become legacy zombies by not evolving with the technology. This
happens in classic IT largely because change is seen as a risk (Chapter 26).
Once again: “never touch a running system.” System releases are based on
extensive, often manual test cycles that can last months, making updates or
changes a costly endeavor. Worse yet, there’s no “business case” for
updating the system technology. This widespread logic is about as sound as
considering changing the oil in your car a waste of money—after all, the car
still runs if you don’t. And it even makes your quarterly profit statement
look a little better; that is, until the engine seizes.

Slogans like “Never touch a running system” reflect the belief that change
bears risk.

A team from Credit Suisse described how to counterbalance this trap in its
aptly titled book Managed Evolution. The key driver for managed
evolution is to maintain agility in a system. A system that no one wants to
touch has no agility at all: it can’t be changed. In a very static business and
technology environment, this might not be all that terrible, but that’s not the
environment we live in anymore!

In today’s environment, the inability to change a system becomes a major
liability for IT and the business.

1

2

Hoping for the Best Isn’t a Strategy
Most things are the way they are for a reason. This is also true for the fear
of change in corporate IT. These organizations typically lack the tools,
processes, and skills to closely observe production metrics and to rapidly
deploy fixes in case something goes awry. They hence try to test for all
scenarios before deploying and then running the application more or less
“blind,” hoping that nothing breaks. This behavior looks to maximize
MTBF—the mean time between failures.

While increasing the time between failures is a worthwhile approach,
focusing on MTBF alone has two major downsides. First, it slows down
hardware provisioning and software deployment due to excessive up-front
testing. It also leads to a situation where the response to an actual failure
becomes “this wasn’t supposed to happen.” It’s unlikely that those are the
words you want to hear from an operations team.

Such teams often ignore the other side of the equation: the mean time to
recovery (MTTR). This metric indicates how quickly a system can recover
from an error. Modern teams look at both aspects. As an analogy, you’d
want to use fire-retardant materials but also a fire brigade that can be onsite
in a few minutes. The top benchmark for incident response time I observed
was at a large chemical factory where the fire brigade would be at the
incident site in 45 seconds (!). Airports generally achieve two to three
minutes.

Traditional organizations “hope for the best” by relying on ways to maximize
MTBF, whereas modern organizations also “prepare for the worst” by
minimizing MTTR.

Reducing MTTR involves very different mechanisms such as high system
transparency, version control, and automation. In fact, reducing MTTR is
such a game changer for IT organizations that it’s one of the four software
delivery performance measures used by the authors of the book
Accelerate.

3

4

Version Upgrades
The zombie problem is not limited to systems written in PL/1 running on an
IBM/360, though. Often updating basic runtime infrastructures like
application servers, JDK versions, browsers, or operating systems scare the
living daylights out of IT, causing version updates to be deferred until the
vendor ceases support. The natural reaction then is to pay the vendor for
extended support to avoid the horror scenario of having to migrate your
software to a new version.

Often the inability to migrate cascades across multiple layers of the
software stack: one cannot upgrade to a newer JDK because it doesn’t run
on the current application server version, which can’t be updated because it
requires a new version of the operating system, which deprecates some
library or feature the software depends on.

I have seen IT shops that are stuck on Internet Explorer 6 because their
software utilizes a proprietary feature not present in later versions.

Looking at the user interfaces of most corporate applications, you would
find it difficult to imagine that they eked out every little bit of browser
capability. They surely would have been better off not depending on such a
peculiar feature and instead being able to benefit from browser evolution.
Such a line of thought requires a conscious trade-off between optimizing for
the short term versus assuring long-term velocity (Chapter 3).

Ironically, IT’s widespread fear of code (Chapter 11) leads it down a dark
and narrow road toward heavily customized frameworks. Version upgrades
become very difficult and expensive to make, and another zombie grows.
Anyone who has done an SAP upgrade can relate.

Run Versus Change
The fear of change is even encoded in many IT organizations that separate
“run” (operating) from “change” (development), establishing that running
software doesn’t imply change. Rather, it’s the opposite of change, which is
done by application development—those guys who produce the flaky code
IT is afraid of. Structuring IT teams this way will guarantee that systems
will age and become legacy because no change could be applied to them.

You might think that by not changing running systems, IT can keep the
operational cost low. Ironically, the opposite is true: many IT departments
spend more than half of their IT budget on “run” and “maintenance,”
leaving only a fraction of the budget for “change” that can support the
evolving demands of the business. That’s because running and supporting
legacy applications is expensive: operational processes are often manual;
the software may not be stable, necessitating constant attention; the
software may not scale well, requiring the procurement of expensive
hardware; lack of documentation means time-consuming trial-and-error
troubleshooting in case of problems. These are reasons why legacy systems
tie up valuable IT resources and skills, effectively devouring the brains of
IT that could be applied to more useful tasks; for example, delivering
features to the business.

Planned Obsolescence
When selecting a product or conducting a request for proposal (RFP),
classic IT tends to compile a list containing dozens or hundreds of features
or capabilities that a candidate product has to offer. Often, these lists are
created by external consultants unaware of the business need or the
company’s IT strategy. However, they can produce very long lists, and
longer appears to be better to some IT staff, whose main motivation lies in
demonstrating that the selection was “thorough.”

To cite another car analogy, this is a bit like evaluating a car by having an
endless list of more or less (ir)relevant features like “must have a 12V

lighter outlet,” “speedometer goes above 200 km/h,” “can turn the front
wheels,” and then scoring a BMW versus a Mercedes for these. How likely
this is to steer (pun intended) you toward the car you will enjoy the most is
questionable at best.

One item routinely missing from such “features” lists is planned
obsolescence: how easy is it to replace the system? Can the data be
exported in a well-defined format? Can business logic be extracted and
reused in a replacement system to avoid vendor lock-in? During the new
product selection honeymoon, this can feel like discussing a prenup before
the wedding—who likes to think about parting ways when you are about to
embark on a lifelong journey? In the case of an IT system, you better hope
the journey isn’t lifelong; systems are meant to come and go. So better to
have a prenup in place than being held hostage by the system (or vendor)
you are trying to part with.

If It Hurts, Do It More Often
How do you break out of the “change is bad” cycle? As mentioned earlier,
without proper instrumentation and automation, making changes is not only
scary but indeed risky. The reluctance to upgrade or migrate software is
similar to the reluctance to build and test software often. Martin Fowler
issued the best advice to break this cycle: “If it hurts, do it more often.”
Behind the provocative name sits the insight that deferring a painful task
generally makes it disproportionately more painful: if you haven’t built
your source code in months, it’s guaranteed not to go smoothly. Likewise, if
the application server your software is running on is three versions behind,
you’ll have the migration from hell.

Performing such tasks more frequently provides a forcing function to
automate some of the processes; for example, with automated builds or test
suites. Dealing with migration problems will also become routine. This is
the reason emergency workers train regularly; otherwise, they’ll freak out in
case of an actual emergency and won’t be effective. Of course, training
takes time and energy. But what’s the alternative?

5

Culture of Change
Digital companies also have to deal with change and obsolescence.

The going joke at Google was that every API had two versions: the obsolete
one and the not-yet-quite-ready one. Actually, it wasn’t a joke, but pretty close
to reality.

Dealing with constant change is painful at times—every piece of code you
write could break at any time because of changes in its dependencies. But
living this culture of change allows Google to keep up the pace
(Chapter 35), which is the most important of today’s IT capabilities. Sadly,
it’s rarely listed as a performance indicator for project teams. Even Shaun
knows that zombies can’t run fast.

1 Michael Feathers, Working Effectively with Legacy Code (Upper Saddle River, NJ: Prentice
Hall, 2004).

2 Stephan Murer and Bruno Bonati, Managed Evolution: A Strategy for Very Large Information
Systems (Berlin: Springer, 2011).

3 Wikipedia, “Airport crash tender,” https://oreil.ly/e4DNF.

4 Nicole Forsgren, Jez Humble, and Gene Kim, Accelerate: The Science of Lean Software and
DevOps: Building and Scaling High Performing Technology Organizations (Portland, OR: IT
Revolution, 2018).

5 A prenuptial agreement often clarifies asset division in case of a divorce.

https://oreil.ly/e4DNF

Chapter 13. Never Send a
Human to Do a Machine’s Job

Automate Everything; What You Can’t Automate, Make a Self-Service

Sending a machine to do a human’s job

Who would have thought that you can learn so much about large-scale IT
architecture from the movie trilogy The Matrix? Acknowledging that the
Matrix is run by machines, it should not be completely surprising to find
some nuggets of system design wisdom, though: Agent Smith teaches us
that one should never send a human to do a machine’s job after his deal

with Cypher, one of Morpheus’ human crew members, to betray and hand
over his boss failed.

Automate Everything!
There’s a certain irony in the fact that corporate IT, which has largely
established itself by automating business processes, is often not very
automated itself. Early in my corporate career, I shocked a large assembly
of infrastructure architects by declaring my strategy as: “automate
everything and make those parts that can’t be automated a self-service.”
The reaction ranged from confusion and disbelief to mild anger. Still, this is
exactly what Amazon et al. have done. And it has revolutionized how
people procure and access IT infrastructure along the way. These companies
have also attracted the top talent in the industry to build said infrastructure.
If corporate IT wants to remain relevant, this is the way it ought to be
thinking!

It’s Not Only About Efficiency
Just like test-driven development is not a testing technique (it’s primarily a
design technique), automation is not just about efficiency but primarily
about repeatability and resilience. A vendor’s architect once stated that
automation shouldn’t be implemented for infrequently performed tasks
because it isn’t economically viable. Basically, the vendor calculated that
writing the automation would take more hours than would ever be spent
completing the task manually (the vendor also appeared to be on a fixed-
price contract).

I challenged this reasoning with the argument of repeatability and
traceability: wherever humans are involved, mistakes are bound to happen,
and work will be performed ad hoc without proper documentation. That’s
why you don’t send humans to do a machine’s job. The error rate is actually
likely to be the highest for infrequently performed tasks because the
operators are lacking routine.

The second counter-example is disaster scenarios and outages: we hope that
they occur infrequently, but when they happen, the systems better be fully
automated to make sure they can return to a running state as quickly as
possible. The economic argument here isn’t about saving manpower but
minimizing the loss of business during the outage, which far exceeds the
manual labor cost. To appreciate this thinking, you need to understand
economies of speed (Chapter 35). Otherwise, you may as well argue that the
fire brigade should use a bucket chain because all those fire trucks and
pumps are not economically viable given how rarely buildings actually
catch fire.

Repeatability Grows Confidence
When I automate tasks, the biggest immediate benefit I usually derive is
increased confidence. For example, when I wrote the original self-published
version of the book in Markdown, I had to maintain two slightly different
versions: the ebook version used hyperlinks for chapter references, whereas
the print version used chapter numbers. After quickly becoming tired of
manually converting between the formats, I developed two simple scripts
that switch between print and epub versions of the text. Because it was easy
to do, I also made the scripts idempotent, meaning that running a script
multiple times caused no harm. With these scripts at hand, I didn’t even
worry a split-second about switching between formats because I could be
assured that nothing would go wrong. Automation is hugely liberating and
hence speeds up work significantly.

Self-Service
Once things are fully automated, users can directly execute common
procedures in a self-service portal. To provide the necessary parameters—
for example, the size of a server—they must have a clear mental model of
what they are ordering. Amazon Web Services provides a good example of
an intuitive user interface, which not only alerts you that your server is

reachable from any computer in the world but even detects your IP address
to make it easy to restrict access.

When filling out the spreadsheet required to order a Linux server, I was told
to just copy the network settings from an existing server because I wouldn’t
be able to understand what I need anyway.

Designing good user interfaces can be a challenging but valuable exercise
for infrastructure engineers who are largely used to working in hiding on
rather esoteric “plumbing.” It’s also a chance for them to show the Pirate
Ship (Chapter 19), which is far more exciting than all the bits and pieces it’s
made out of.

Self-service gives you better control, accuracy, and traceability than semi-
manual processes.

Self-service doesn’t at all imply that infrastructure changes become a free-
for-all. Just like a self-service restaurant still has a cashier, validations and
approvals apply to users’ change requests. However, instead of a human
having to re-enter a request submitted in free-form text or an Excel
spreadsheet, when a self-service request is approved the workflow pushes
the requested change into production without further human intervention
and possibility of error. Self-service also reduces input errors: because free-
form text or an Excel spreadsheet rarely perform validations, input errors
lead to lengthy email cycles or pass through unnoticed. An automated
approach gives immediate feedback to the user and makes sure the order
actually reflects what the user needs.

Beyond Self-Service
Self-service portals are a major improvement over emailing spreadsheets.
However, the best place for configuration changes is the source code

repository, where approvals can be handled via pull requests and merge
operations. Approved changes trigger an automated deployment into
production. Source code management has long known how to administer
large volumes of complex changes through review and approval processes,
including commenting and audit trails. You should leverage these processes
for configuration changes so that you can start to think like a software
developer (Chapter 14). Because it seems that any good idea needs a
buzzword these days, using a source repository to manage code and
configuration is now referred to as “GitOps.”

Most enterprise software vendors pitch GUIs as the ultimate in ease of use
and cost reduction. However, in large-scale operations the opposite is the
case: manual entry into user interfaces is cumbersome and error prone,
especially for repeated requests or complex setups. If you need 10 servers
with slight variations, would you want to enter this data 10 times by hand?
Fully automated configurations should therefore be done via APIs, which
can be integrated with other systems or scripted as part of higher-level
automation.

I once set a rule that no infrastructure changes could be made from a user
interface but had to be done through version-controlled automation. This put a
monkey wrench into many vendor demos.

Allowing users to specify what they want and providing it quickly in high
quality would seem like a pretty happy scenario. However, in the digital
world, you can always push things a little further. For example, Google’s
“zero-click search” initiative, which resulted in Google Now, considered
even one user click too much of a burden, especially on mobile devices.
The system should anticipate the users’ needs and answer before a question
is even asked. It’s like going to McDonalds and finding your favorite happy
meal already waiting for you at the counter. Now that’s customer service!
An IT world equivalent may be autoscaling, which allows the infrastructure
to automatically provision additional capacity under high load situations
without any human intervention.

Automation Is Not a One-Way Street
Automation usually focuses on the top-down part; for example, configuring
a piece of low-level equipment based on a customer order or the needs of a
higher-level component. However, we will learn that control can be an
illusion (Chapter 27) wherever humans are involved. Also, “control”
necessitates two-way communication that references the current system
state: when your room is too hot, you want the control system to turn on the
air conditioning instead of the heater. The same is true in IT system
automation: to specify how much hardware to order or what network
changes to request, you likely first need to examine the current state.
Therefore, full transparency on existing system structures and a clear
vocabulary are paramount. In one case, it took us weeks just to understand
whether a datacenter has sufficient spare capacity to deploy a new
application. All order process automation doesn’t help if it takes weeks to
understand the current state of affairs.

If you manage to fully automate and make your infrastructure immutable,
meaning no manual changes are allowed at all, you can start working under
the assumption that reality matches what’s specified in the configuration
scripts. In that case, transparency becomes trivial: you just look at the
scripts. While such a setup is a desirable end-state, it might take significant
effort to consistently implement across a large IT estate. For example,
legacy hardware or applications might not be automatable.

Explicit Knowledge Is Good Knowledge
Tacit knowledge is knowledge that exists only in employees’ heads but isn’t
documented or encoded anywhere. Such undocumented knowledge can be a
major overhead for large or rapidly growing organizations because it can
easily be lost and requires new employees to relearn things the organization
already knew. Encoding tacit knowledge, which existed only in an
operator’s head, into a set of scripts, tools, or source code makes these
processes visible and eases knowledge transfer.

Tacit knowledge is also a sore spot for any regulatory body whose job it is
to assure that businesses in regulated industries operate according to well-
defined and repeatable principles and procedures. Full automation forces
processes to be well defined and explicit, eliminating unwritten rules and
undesired variation inherent in manual processes. As a result, automated
systems are easier to audit for compliance. Ironically, classic IT often insists
on manual steps in order to maintain separation of duty, ignoring the fact
that manually approving an automated process achieves both separation of
concerns and repeatability.

A Place for Humans
If we automate everything, is there a place left for humans? Computers are
much better at executing repetitive tasks, but even though we humans are
no longer unbeatable at the board game Go, we are still number one in
coming up with new and creative ideas, designing things, or automating
stuff. We should stick to this separation of duty and let the machines do the
repeatable tasks without fearing that Skynet will take over the world any
moment.

Chapter 14. If Software Eats the
World, Better Use Version
Control!

When Your Infrastructure Becomes Software-Defined, You Need to Think
Like a Software Developer

Software eats infrastructure

If software does indeed eat the world, it will have IT infrastructure for
breakfast: the rapidly advancing virtualization of infrastructure from VMs
and containers to serverless architectures turns provisioning code onto a
piece of hardware into a pure software problem. While this is an amazing
capability and one of the major value propositions of cloud computing,
corporate IT’s uneasy relationship with code (Chapter 11) and lack of
familiarity with the modern development life cycle can make this a
dangerous proposition.

SDX: Software-Defined Anything
Much of traditional IT infrastructure is either hardwired or semi-manually
configured: servers are racked and cabled, network switches are manually
configured with tools or configuration files. Operations staff, who
endearingly refer to their equipment as “metal,” is usually quite happy with
this state of affairs: it keeps the programmer types away from critical
infrastructure where the last thing you need is bugs and stuff like “Agile”
development, which is still widely misinterpreted (Chapter 31) as doing
random stuff and hoping for the best.

This is rapidly changing, though, and that’s a good thing. The continuing
virtualization of infrastructure makes resources that were once shipped by
truck or wired by hand available via a call to a cloud service provider’s API.
It’s like going from haggling in a car dealership and waiting four months for
delivery just to find out that you should have ordered the premium seats
after all to hailing an Uber from your mobile phone and being shuttled off
three minutes later.

Virtualized and programmable infrastructure is an essential element to
keeping up with the scalability and evolution demands of digital
applications. You can’t run an Agile business model when it takes you four
weeks to get a server and four months to get it on the right network
segment.

Operating system–level virtualization is by no means a new invention, but
the “software defined” trend has extended to software-defined networks
(SDNs) and full-blown software-defined datacenters (SDDC). If that isn’t
enough, you can opt for SDX—software-defined anything, which includes
virtualization of compute, storage, network, and whatever else can be found
in a datacenter, hopefully in some coordinated manner. Other marketing
departments coined the term infrastructure as code (IaC), apparently
oblivious to the fact their tools mostly accomplish it via configuration, not
code (Chapter 11).

As so often, it’s possible to look into the future of IT by reading Google’s
research papers describing its systems of five-plus years ago (the official

paper on Borg, Google’s cluster manager, was published in 2015, almost a
decade after its internal introduction). To get a glimpse of where SDN is
headed, look at what Google has done with the so-called Jupiter Network
Architecture. If you are too busy to read the whole thing, this three-liner
will do to get you excited:

Our latest-generation Jupiter network [...] delivering more than 1
Petabit/sec of total bisection bandwidth. This means that each of 100,000
servers can communicate with one another in an arbitrary pattern at 10
Gb/s.

Such capability can be achieved only by having a network infrastructure
that can be configured based on the applications’ needs and is considered as
an integral part of the overall infrastructure virtualization.

The Loomers’ Riot?
New tools necessitate a new way of thinking, though, to be useful. It’s the
old “a fool with a tool is still a fool.” I actually don’t like this saying
because you don’t have to be a fool to be unfamiliar with a new tool and a
new way of thinking. For example, many folks in infrastructure and
operations are far detached from the way contemporary software
development is done. This doesn’t make them fools in any way, but it
prevents them from migrating into the “software-defined” world. They
might never have heard of unit tests, continuous integration (CI), or build
pipelines. They may have been led to believe that “Agile” is a synonym for
“haphazard” and also haven’t had enough time to conclude that
immutability is an essential property because rebuilding/regenerating a
component from scratch beats making incremental changes.

As a result, despite being the bottleneck in an IT ecosystem that demands
ever-faster changes and innovation cycles, operations teams are often not
ready to hand over their domain to the “application folk” who can script the
heck out of the software-defined anything. One could posit that such
behavior is akin to the Loomer Riots because the economic benefits of a

1

2

software-defined infrastructure are too strong for anyone to put a stop to it.
At the same time, it’s important to get those folks on board who keep the
lights on and who understand the existing systems the best. So, we can’t
ignore this dilemma.

If software eats the world, there will be only two kinds of people: those who
tell the machines what to do and those for whom it’s the other way around.

Explaining to everyone What Is Code? can be a useful first step. Having
more senior management role models who can code would be another good
step. However, living successfully in a software-defined world isn’t a
simple matter of learning programming or scripting.

Software Developers Don’t Undo, They Re-
Create
A vivid example of how software developers think differently is
reversibility; that is, the ability to quickly revert to a known stable state if a
new configuration isn’t working.

When our team requested the ability to revert to a known good infrastructure
configuration state from an infrastructure vendor, the response was that this
would require an explicit “undo” script for each possible action, a huge
additional investment in their eyes. Apparently, they didn’t think like software
developers.

With manual updates, reverting to a known good state is very difficult and
time consuming at best. In a software-defined world, it’s much easier.
Experienced software developers know that if their automated build system
can build an artifact, such as a binary image or a piece of configuration,
from scratch, they can easily revert to a previous version. So, rather than
explicitly undoing a change these developers reset version control to the last

3

4

known good version, rebuild from scratch, and republish this “undone”
configuration, as illustrated in Figure 14-1.

Figure 14-1. A traditional and a version-controlled mindset

This mindset stems from software being ephemeral—re-creating it from
scratch isn’t a major effort. By making infrastructure software-defined, it
can also become ephemeral. This is a huge shift in mindset, especially when
you consider the annual depreciation cost of all that hardware. But only
thinking this way can provide the true benefit of being software defined.

In complex software projects, rolling things back is a quite normal
procedure, often instigated by the so-called “build cop” after failing
automated tests cause the build to go “red.” The build cop will ask the
developer who checked in the offending code to make a quick fix or simply
revert that code submission. Configuration automation tools have a similar
ability to regain a known stable state and can be applied to reverting and
automatically reconfiguring infrastructure configurations.

Melt the Snowflakes
Software-defined infrastructure shuns the notion of “snowflake” or “pet”
servers—servers that have been running for a long time without a reinstall,
have a unique configuration,footnote:[Just like every snowflake is unique,
“snowflake servers” are those that don’t match a standard configuration.
and are manually maintained with great care.

“This server has been up for three years” isn’t bragging rights but a risk: who
could re-create this “pet” server if it does go down?

In a software-defined world, a server or network component can be
reconfigured or re-created automatically with ease, similar to re-creating a
Java build artifact. You no longer have to be afraid to mess up a server
instance because it can easily be re-created via software in minutes.

Software-defined infrastructure therefore isn’t just about replacing
hardware configuration with software, but primarily about adopting a
rigorous development life cycle based on disciplined development,
automated testing, and CI. Over the past decades, software teams have
learned how to move quickly while maintaining quality. Turning hardware
problems into software problems allows you to take advantage of this body
of knowledge.

Automated Quality Checks
One of Google’s critical infrastructure pieces was a router, which would
direct incoming traffic to the correct type of service instance. For example,
HTTP requests for maps.google.com would be forwarded to a service
serving up maps data, as opposed to the search page. The router was
configured via a file consisting of hundreds of regular expressions. Of
course, this file was under version control, as it should be.

Despite rigorous code reviews, invariably someday someone checked a
misconfiguration into the service router, which immediately brought down
most of Google’s services because the requests weren’t routed to the
corresponding service instance. Luckily, the previous version was quickly
restored thanks to version control. Google’s answer wasn’t to disallow
changes to this file, because that would have slowed things down. Rather,
automatic checks were added to the code submit pipeline to make sure that
syntax errors or conflicting regular expressions are detected before the file is
checked into the code repository.

When working with software-defined infrastructure, you need to work like
you would in professional software development.

Use Proper Language
One curiosity about Google is that no one working there ever used
buzzwords like “big data,” “cloud,” or “software-defined datacenter”
because Google had all these things well before these buzzwords were
created by industry analysts. Much of Google’s infrastructure was already
software defined more than a decade ago. As the scale of applications grew,
configuring the many process instances that were being deployed into the
datacenter became tedious. For example, if an application consists of seven
frontends, 1 through 7, and two backends, A and B, frontends 1 through 4
would connect to backend A, whereas frontends 5 to 7 would connect to
backend B. Maintaining individual configuration files for each instance
would be cumbersome and error prone, especially as the system scales up
and down. Instead, developers generated configurations via a well-defined
functional language called Borg Configuration Language (BCL), which
supports templates, value inheritance, and built-in functions like map() that
are convenient for manipulating lists of values.

While avoiding the trap of configuration files (Chapter 11), learning a
custom functional language to describe deployment descriptors may not be
everyone’s cup of tea, but for software developers that’s the natural
approach.

https://oreil.ly/2qfVz

When configuration programs became more complex, causing testing and
debugging configurations to become an issue, folks wrote an interactive
expression evaluator and unit testing tools. That’s what software people do
to solve a problem: solve software problems with software!

The BCL example highlights what a real software-defined system looks
like: well-defined languages and tooling that make infrastructure part of the
software development life cycle. GUIs for infrastructure configuration,
which vendors often like to show off, should be banned because they don’t
integrate well into a software life cycle, aren’t testable, and are error prone.

Software Eats the World, One Revision at a
Time
There’s much more to being software defined than a few scripts and
configuration files. Rather, it’s about making infrastructure part of your
software development life cycle (SDLC). First, make sure your SDLC is
fast but disciplined, and automated but quality oriented. Second, apply the
same thinking to your software-defined infrastructure; or else you may end
up with SDA, Software-Defined Armageddon.

1 A. Verma et al., “Large-Scale Cluster Management at Google with Borg,” Google, Inc.,
https://oreil.ly/uGbf5.

2 Amin Vahdat, “Pulling Back the Curtain on Google’s Network Infrastructure,” Google AI
Blog, August 18, 2015, https://oreil.ly/JWczw.

3 After the introduction of the power loom in the UK in the early 1800s led to widespread
unemployment and reduction in wages among loomers, they organized to destroy this new type
of loom.

4 Paul Ford, “What Is Code?” BusinessWeek, June 11, 2015, https://oreil.ly/n2hmb.

https://oreil.ly/uGbf5
https://oreil.ly/JWczw
https://oreil.ly/n2hmb

Chapter 15. A4 Paper Doesn’t
Stifle Creativity

A Solid Platform Gives Developers a Blank Sheet of Paper

Creativity knows no boundaries

Today’s IT departments must meet two major but seemingly conflicting
goals. First, the business environment puts pressure on IT spend, whereas
digital disruptors require IT to increase the rate of change and innovation.
One of IT’s major cost levers is harmonization of the IT landscape:
reducing the number of different applications and technologies in use
provides better economies of scale, better negotiating power with vendors,
and fewer skills requirements, which can be a major factor in times of skill
scarcity.

At first sight, such an effort does seem at odds with innovation, though;
how can a company be innovative if too many parameters are fixed?
Doesn’t innovation require freedom to experiment and questioning
established norms and standards? Interestingly, some harmonization not
only doesn’t get in the way of innovation but actually boosts it.

Following a recurring theme from this book, we can once again get a hint
from the real world: paper.

A4 Paper
One of the most well-known standards—at least outside the US—is the
standard for paper sizes. The most common size of paper used around the
world for printing or writing is A4 size paper. A4 paper sets a precise
standard of 210 mm wide × 297 mm long for a sheet of paper. At first
glance, setting such a standard may appear both arbitrary and constraining.
On a second look, though, it’s neither.

The family of DIN A paper sizes, defined in 1922, are far from arbitrary.
The ratio between length and width is always equal to the square root of 2.
Thanks to this unique property, two sheets of a smaller size put next to each
other along the long edge are the same size as a single sheet of paper of the
next larger size. For example, two A4 papers make an A3 paper. And if you
are out of A5 paper, you can fold a sheet of A4 paper in the center and tear
it to receive two perfectly sized sheets of A5 paper. Pretty handy, huh?

But there’s more. If two A4-size sheets make an A3-size sheet, and two A3
sheets make an A2 sheet, and so on, 16 A4 sheets make up an A0 size sheet.
But how big should such a sheet be? Easy: one square meter, again with the
edge dimensions having a square root of 2 relationship, resulting in a size of
841 mm × 1189 mm. So, if you ever wonder if 3 sheets of common “80
gram” paper require extra postage, you can quickly compute that each sheet
weighs 1/16th of that of a square meter, which is 80/16 = 5 grams per the
paper classification. For comparison, try calculating the weight of three
letter size sheets of #20 paper in ounces.

1

2

On top of all this, standardizing paper sizes eliminates the need to select
from myriad paper sizes. It also stacks neatly and allows the use of same-
size sleeves, envelopes, drawers, paper punches, and copiers, so you don’t
have to worry about any of those. A4-size paper is so ubiquitous that even
my laptop is A4 size so that it will neatly fit into any briefcase that is
designed to hold a sheet of paper.

Importantly, despite being rather prescriptive, the paper standard doesn’t
stifle creativity. You can still draw and write on it, whatever you prefer. I
haven’t seen a person who was unable to work on a blank sheet of paper
due to its particular dimensions. It’s fair to say that A4 paper actually
increases creativity because it allows users to focus on the creative aspects
—what they put on the paper, as opposed to dealing with paper format
ecosystem entropy.

So, when we are standardizing IT components, we should look for a result
that resembles paper formats: standardize what simplifies life and achieves
economies of scale, but give users a blank sheet of paper to work on.

Product Standards Restrict, Interface
Standards Enable
When IT departments are looking to harmonize their portfolio, they usually
aim to standardize products (Chapter 32); for example, which databases or
applications servers should be used across applications. Standardizing
products reduces diversity and can save money by bundling purchasing
power, a classic economies of scale (Chapter 35) maneuver: the bigger a
company’s spend on a particular product or vendor, the better a deal it can
likely secure. However, unlike A4-size paper, such product standards do
tend to limit developers’ choices and are therefore quite unpopular.

The most successful technical standards in the world, in contrast, have been
those that affect how products or components can be combined. We call
such standards interface standards or compatibility standards. The most
dramatic example of an interface standard that affects IT is the hypertext

transfer protocol (HTTP). HTTP enabled the internet revolution because it
allowed any browser to connect to any web server, implemented in any
programming language or technology. As a result, parts became easily
interchangeable and enabled independent evolution. For example, anyone
could develop a higher-performing web server without having to replace all
browsers.

Platform Standards
There’s a useful and increasingly common approach that, done right,
combines the benefits of interface and product standards to act more like
A4-size paper than a corporate rule book. These standards are referred to as
platform standards or simply platforms. Platform standards essentially split
the IT into two parts: a lower layer that standardizes those elements that are
unlikely to form a competitive differentiator and an upper layer of in-house-
developed software that provides direct business value and competitive
differentiation.

This concept of platforms has long been known to the car industry where
multiple, outwardly distinct vehicle models share the same “infrastructure”
of chassis, suspension, safety equipment, and engine options. Because these
components require significant engineering effort and cost but are less
visible to the end customer, it makes sense to reuse them across as many
models as possible. Meanwhile, interior and exterior elements differ among
models as they often serve as differentiating factors across market
segments. For a nice model that allows plotting elements by how visible
and how commoditized they are, I highly recommend Wardley maps.

Back in IT, layering certainly isn’t a new idea. If anything, it’s one of the
oldest concepts to reduce complexity and achieve reuse (Chapter 28). The
best candidates for the lower layer are traditionally found in the networking
and hardware environments. There are two reasons for this. First, for most
enterprises, there’s little business value in different types of processor
architectures, networking equipment, monitoring frameworks, or

3

application servers. Second, their lower rate of change (Chapter 3) makes it
easier to standardize them into a common base layer.

Layers Versus Platforms
So, if platforms use layering, which is a well-known concept, what makes
platforms different and interesting? At least three aspects spring to mind:

Self service

In traditional IT, the interaction between the layers occurred by means
of service requests or emailing spreadsheets (Chapter 13), vaguely
based on a model that the lower layers hold the power (that’s
governance, after all!) and the folks in the upper layer have to beg for
access. Modern platforms, epitomized by cloud service providers, turn
this concept on its head by allowing people in the upper layers to
request services through online portals or APIs. It’s customer centricity
applied to IT services.

Dividing line

The dividing line between the IT layers used to be infrastructure versus
applications, often even reflected in the organization’s structure, where
you’d find an application team and an infrastructure team. Cloud
computing platforms have shifted the boundary dramatically and keep
shifting it. For example, serverless computing shifts the platform all the
way up to the code for a single function.

Center of gravity

Modern platforms don’t just focus on the compute runtime, such as
network, servers, and storage as previous approaches did. They also
include software delivery tool chains because they are a key element
that defines delivery velocity (Chapter 3). They also often include
monitoring and communication, such as service meshes. As a result,
they offer applications a well-rounded ecosystem of services.

Done well, standardizing lower layers doesn’t constrain what functionality
can be delivered to the business. However, it relieves development teams
from having to choose and operate a whole stack of software and hardware.
It also channels developers’ creative energy into those parts that generate
business value as opposed to developing yet-another-persistence-
framework. Interestingly, this matches my favorite definition of software
architecture: design decisions that keep implementors from exercising
needless creativity (Chapter 8).

At a major financial services provider, we defined an Agile Delivery Platform
that was a lot more than just a private cloud runtime; it included an on-
premises source code repository, a containerized build tool chain, common
monitoring and visualization, and security features. It became the de facto
platform for new application delivery and sped up adoption of modern
development techniques.

Digital Discipline
Digital companies are great examples of high velocity necessitating
discipline (Chapter 31). They realized that strictness in some aspects
actually boosts the rate of innovation. Often, this strictness comes in form
of an A4-style platform. For example, Google, which is well-known for
rapid innovation, has very strict platform standards (Chapter 32) for
application deployment and operations: there’s essentially one way to
deploy an application, on one type of operating system, observed by one
monitoring framework. Google found the exact level at which to abstract to
allow people to innovate where it matters without exercising needless
creativity.

Google is a great example of enforcing strict platform standards that
nevertheless boost the speed of innovation.

Avoid the Skipping Stones
There’s a very silly TV show called Takeshi’s Castle, which makes
contestants compete by enduring several rather sadistic exercises, much to
the enjoyment of the audience. An all-time favorite is Skipping Stones,
called “Dragon God Pond” in the Japanese original. The contestants are
tasked with crossing a pond filled with a murky, rather uninviting liquid via
a sequence of stepping stones. It wouldn’t be funny, though, if there weren’t
a catch: most stones are solid, but some are merely floating pieces of
Styrofoam. They are visually indistinguishable, but designed to quickly
give way to any unlucky contestant’s misstep, resulting in spectacular falls,
which are best watched in slow motion.

Some platforms seem to make their customers play Takeshi’s Castle—their
components appear solid, but some suddenly give way. IT platforms give
way by deprecating components, having inconsistent interfaces, or being
poorly integrated. Needless to say that this isn’t much fun for the
contestant: you. So, don’t build platforms that look like the Skipping
Stones! Instead, follow a few critical aspects to assure that your platform is
solid, but flexible enough to spur adoption and innovation:

Choose a useful level of abstraction

Would standardizing pens and pencils still improve creativity or run the
risk of stifling it? Useful standards are those that shield significant
complexity but can be utilized by a wide range of tools: you can draw
on A4 paper with pen, pencil, chalk, watercolor, and more, so it’s a
concrete standard that allows many uses.

Constantly fine tune

Nothing is eternal, especially in IT. The same holds true for IT
standards. They need to be able to evolve along with the technology and
new insights. Today’s best innovation platform can be a road block in
just a few years.

Keep it up to date

Although your customers may want your platform to be stable, they
don’t want it to be outdated or full of security holes because of lacking
patches. Keep your product versions up to date!

Make it real

Standards that just exist on paper are unlikely to be followed. Therefore,
make sure your standards come alive in ready-to-use tools and
platforms. Many people may not care for A4 paper, but if it’s the easy
choice available in any store, they probably don’t mind.

Reward compliance

You want to reward people who adopt the standards; for example, by
offering lower prices, better service, or shorter provisioning times when
compared to nonstandard solutions.

Cloud providers don’t set standards just on paper, but provide an
implementation that allows rapid delivery through self-service interfaces.
Cloud platforms also continuously evolve and grow, making them excellent
examples of solid platforms that enable innovation.

One of the critical decisions making the Agile Delivery Platform a success
was to regularly update the platform, against common practice (and advice
from the infrastructure teams). The traditional approach, which would have
required all application owners’ agreement before updating, would have made
the platform outdated within just a few months.

After initially mostly offering virtual machines as infrastructure as a service
(IaaS), most cloud providers now offer platform as a service (PaaS) for
applications and functions as a service (FaaS)/“serverless” for single code
snippets. Focusing on common (de facto) standards like Docker for
containers has fueled the creation of platforms and boosted the rate of
innovation among platform users.

One Size Might Not Fit All Tastes
As powerful as platforms and standards are, establishing global standards
can be harder than expected. For example, despite all the virtues of A4-size
paper, so-called “letter-size” paper at 8.5 × 11 inches remains a standard in
the United States. Though Wikipedia describes its precise origin as “not
known” —the most credible hypothesis ascribes it to historical
manufacturing by hand—a migration to DIN-sized paper appears unlikely.
Until then, I’ll have to use two different paper cartridges for my venerable
HP LaserJet 4 and be frequently reminded to PC LOAD LETTER.

1 DIN stands for Deutsches Institut für Normung, which is the current name of the German
national institution that sets official domestic standards.

2 20 is the weight in pounds of a ream (500 sheets) of Bond paper, which measures 22 × 17
inches. Converting that to ounces per sheet is left as an exercise to the reader.

3 S. Wardley, “Wardley maps,” Medium.com, March 7, 2018, https://oreil.ly/bk3sL.

4 Wikipedia, “Paper Size,” https://oreil.ly/et7UH.

5 Wikipedia, “PC LOAD LETTER,” https://oreil.ly/ou-b8.

4

5

https://oreil.ly/bk3sL
https://oreil.ly/et7UH
https://oreil.ly/ou-b8

Chapter 16. The IT World Is Flat

Without a Map, Any Road Looks Promising

Living in the Middle Kingdom—by Kwong Hing Yen (江慶人)

Maps have been valuable tools for millennia, despite most of them,
especially world maps, being quite badly distorted. The fundamental
challenge of plotting the surface of a sphere onto a flat sheet of paper forces
maps to make compromises when depicting angles, sizes, and distances—if
the earth were flat, things would be much easier. For example, the
historically popular Mercator projection provides true angles for seafarers,
meaning you can read an angle off the map and use the same angle on the
ship’s compass (compensating for the discrepancy between geographic and
magnetic north). The price to pay for this convenient property, which avoids
distorting angles, is area distortion: the further away countries are from the
equator, the larger they appear on the map. That’s why Africa looks
disproportionately small on such maps, a trade-off that might be acceptable
when navigating by boat: misestimating the distance is likely a lesser
problem than heading into the wrong direction.

1

Plotting the surface of a sphere also presents the challenge of deciding
where the “middle” is. Most world maps conveniently position Europe in
the center, supported by 0 degree longitude (the prime meridian) going
through Greenwich, England. This depiction results in Asia being in the
“East” and the Americas being in the “West.” The keen observer will
quickly conclude that when living on a sphere, notions of West and East are
somewhat relative to the viewpoint of the beholder. The same type of
thinking likely motivated the residents of East Asia to historically put their
country in the middle of the map and even name it accordingly: 中國 , the
“middle kingdom.”

Although many centuries later we might regard such a world view as a tad
self-centered, at the time it simply made practical sense: having the most
detail about places that are near you makes putting your starting point in the
middle of your map natural. It also roughly lines up the map boundaries
with your travel limits.

IT landscapes are also vast, and navigating a typical enterprise’s range of
products and technologies can be equally daunting to sailing Cape Horn.
Despite some similarities, each IT landscape tends to be its own planet,
making universal IT world maps hard to come by. Aside from some useful
attempts like the Big Data Landscape by Matt Turck, enterprise architects
therefore often rely on maps provided by their vendors.

Vendors’ Middle Kingdoms
As chief architect of a large company, you’ll quickly gather new friends:
account managers, (presales) solution architects, field CTOs, and sales
executives, to name a few. Their job is to sell their products to large
enterprises like yours that rely heavily on external hardware, software, and
services. It makes sense to buy systems that aren’t a competitive
differentiator or to lease them via a software as a service (SaaS) model.
Creating an accounting system yourself is in most cases as valuable as
creating your own electricity. It’s important to have such things, but they
won’t give you any competitive advantage. So just as you’re unlikely to

https://oreil.ly/_yNxO

benefit from operating your own power plant, you should also abstain from
building your own accounting system.

Enterprise vendors are also an important source of information, especially
for architects, as vendors keep close track of industry trends. Do keep in
mind, however, that the information you are given might be skewed by the
vendor’s worldview. That’s because enterprise vendors live in their own
middle kingdom, generally depicting their home state disproportionately
large and accepting a fair degree of distortion on the periphery. Distortion
can take the form of vendors defining product categories or buzzwords by
features that only their product has. For example, I have seen “Zero Trust”
pegged to safe web browsing and “GitOps” tied to Kubernetes. Both are a
stretch of imagination at best.

I often joke that if you have no concept whatsoever of what a car is and only
ever talked to one specific German automaker, you’d end up walking away
with the firm belief that a star emblem on the hood is a defining feature of an
automobile.

IT architects in large enterprises must therefore develop their own, balanced
worldview so that they can safely navigate the treacherous waters of
enterprise architecture and IT transformation. Vendors’ distortion doesn’t
imply deception; it’s largely a byproduct of the context people grew up in.
If you develop databases, it’s natural to view the database as the center of
any application: after all, that’s where the data is stored. Server and storage
hardware are viewed as parts of a database appliance, whereas application
logic becomes a data feed. Conversely, to a storage hardware manufacturer,
everything else is just “data,” and databases are lumped into a generic
“middleware” segment. It’s like me on my first trip to Australia considering
a quick hop to New Zealand because I thought it was so super close.
Realizing that it’s still a good three-and-a-half-hour flight from Melbourne
to Auckland proved that my world map is also distorted on the periphery.

Plotting Your World Map
To avoid falling into the “star on the hood” or the “it’s all a database” trap,
it’s important that your architecture team first develops its own, undistorted
map of the IT landscape—a great exercise for enterprise architects
(Chapter 4). Luckily, the world of IT is flat, so it’s a bit easier to plot on a
whiteboard or a piece of paper. Your own map gives you a much better,
product-neutral understanding and may, for example, illustrate that a car’s
drive train is much more relevant than the hood emblem.

Any architect who carries a product name in their title likely carries the
vendor’s map as opposed to your own.

It’s OK to draw the map piece-by-piece, starting, for example, where a new
product needs to be set up or an old one replaced—rate of change
(Chapter 3) is once again a good indicator for architecture. Another good
starting point is where existing products represent critical differentiators for
the company.

Drawing your map requires you to piece together information from various
sources, which will often be distorted. Maybe one day we’ll have an AI-
driven application that can do this for enterprise architecture the same way
smartphones can stitch together multiple photos into a panorama. Until
then, you have to collect information from vendors, blogs, industry analyst
reports, and your infrastructure and development teams. Resist the
temptation to simply ask your favorite two- or three-lettered enterprise
supplier to make the map for you. For one, it will once again be distorted,
and second, at today’s rate of innovation many of them are outdated, as
well.

When placing countries and territories on your map, focus on function and
relationships as opposed to product names.

Describing the architecture of a big data system as “Microsoft SQL Server” is
no more useful than claiming the architecture of a house is “Ytong.” Both
may be good choices, but neither describes the architecture.

Because IT architecture operates between the buzzwords and the product
names, it’s less concerned with the pieces than with how they are put
together. This is why it’s so important to look not only at the boxes but also
the lines (Chapter 23).

Defining Borders
Where to place the “borders” in your map is a key aspect of doing
architecture in the enterprise. Although we all like to think of boundary-free
architecture, if we want to establish a meaningful map and vocabulary for
our enterprise, we need to place some borders. For example, should our
“data” continent be separated into data warehouses, data lakes, data marts,
and databases? Would databases then break down into relational and
NoSQL databases, which could further break down into graph databases,
object stores, and so on? Would you want to distinguish managed cloud
databases like DynamoDB or Spanner from other databases? Would you
want to separate operational databases from those used for analytics? There
are many ways to slice, and defining these boundaries is a key element of
doing architecture at an enterprise level. The word reference architecture
even comes to mind, but you need to keep in mind that architecture isn’t a
copy-paste exercises. You need to define the continents and countries that
are meaningful for your organization, your business strategy, and your
business architecture, as illustrated in Figure 16-1.

2

Figure 16-1. A plausible database continent

A colleague of mine conducted a thorough mapping exercise for application
monitoring that includes black-box monitoring, white-box monitoring,
troubleshooting, log analysis, alerting, and predictive monitoring. All are
distinct but interrelated aspects of an application monitoring solution. Many
vendors, especially those with a history in application performance
monitoring, will also include performance testing because that’s the middle
of their map. Whether you want to do the same or whether it’s part of the
development tool chain is your decision.

When I see most reference architectures, I feel that they ought to print a
disclaimer at the bottom, similar to those used for movies: “Any similarities
with real persons or systems is purely coincidental.”

Charting Territory
As soon as your IT world map has undisputed borders, you can start
populating “countries” with vendor products that may be in use or available
on the market. The map will help you assess how well a vendor’s product
fits your map. Some products may not completely cover the gap, while
others have significant overlap with solutions already in place.

Placing products on an IT world map is a bit like playing Tetris: the piece that
fits best depends on what you already have in place. This means that rather
than picking the “best” product, you should select the one that fits best.

Most large IT organizations govern their product portfolio (Chapter 32) via
a standards group. Standards reduce product diversity and allow enterprises
to harvest economies of scale; for example, by bundling purchasing power.
When defining standards, the world map can be an enormous help because
it can determine what kind of standards you’ll want and at which level
you’d want to apply them. For example, defining different types of
databases or data stores on your “database continent” can tell you whether
you need a different standard for relational databases and NoSQL databases
or whether you distinguish light-weight use cases from mission-critical
ones. Having a good map is essential to navigating the complexity of
vendor offerings.

A vivid example of the difficulty of discussing product fit without a good map
came up in a conversation about a web portal: a divisional IT manager using a
shared web portal lamented the lack of documentation on port forwarding.
The project’s architect replied that a web server isn’t part of their solution,
assuming port forwarding is done in a web server. Much debate and confusion
ensued because the division implemented port forwarding in an integrated
network management tool, not in a web server. They used different world
maps and continued to talk past each other for some time.

Looking at the map to get the proverbial “lay of the land” can help a lot to
resolve misunderstandings. For example, a map might show that port
forwarding is part of the concept of an Application Delivery Controller
(ADC), which manages web traffic by including functions such as reverse
proxying, load balancing, and also port forwarding. You can utilize a web
server as ADC in simple cases or purchase an integrated product like F5.

Ironically, conducting the worthwhile exercise of plotting your own IT world
map can be challenged by traditional IT managers as “academic.” This can be
especially amusing in Germany where IT management is littered with PhDs
(not necessarily in any technical major) who carry the title “Dr.” as part of
their legal name. If pragmatic means “haphazard,” I am happy to be in the
“academic” camp: I am paid to think and plan, not to play product lottery.

Product Philosophy Compatibility Check
When plotting vendor offerings onto your map, it’s not enough to just
understand the vendor’s current product portfolio, but also where it is
headed—the world of IT never stands still. That’s why I first like to
understand whether a vendor’s and our worldviews align.

Meeting with vendors’ senior technical staff, such as a CTO, is most
effective when discussing worldview and comparing maps because too
many “solution architects” are just glorified technical salespeople, who
navigate purely off the vendor’s map, the “middle kingdom” so to speak. I
need a world map, though.

When an account manager starts the meeting with “please help us understand
your environment,” which roughly translates into “please tell me what I
should sell to you,” I typically preempt the exercise by asking the senior
person about their product philosophy. It’s a bit of a big word, but it’s helpful
in shifting the conversation to the vendor’s world map.

I prefer to ask vendors two key questions to understand their world map:

What base assumptions did you have to make? No one can operate
on a completely empty map without borders, so the vendor must
have made choices and picked boundaries. The answer to this
question tells you where the edge of their map is.

What’s the toughest problem you had to solve? The answer to this
question will tell you where the center of their map is.

Discussing what base assumptions and decisions are baked into a product
gives you great insight into a vendor’s world map (see Figure 16-2), both
about the center and the edge (remember the IT world is flat, so it has
edges).

Figure 16-2. A product vendor’s core and periphery

Naturally, this works only when talking to someone who is actually
defining the vendor’s corporate or product strategy. Looking at the
company leadership page can help you identify the right people. Looking at
the leadership’s history can also help you understand “where they come
from”; that is, under which assumptions they operate.

When asking these questions of a monitoring vendor, it became clear that the
core of their map was being able to monitor running applications without
having access to the source code. This feature is particularly useful if you
look at the problem from an operational point of view, especially if you work
in an organization that separates “change” from “run” (Chapter 12).
However, in a “you build it, you run it” environment where development
teams are directly involved in operational aspects, this intellectual property
would be less valuable. You can end up paying for something that you don’t
need. Understanding the vendor’s world map can help you make better
decisions.

Comparing world maps isn’t about finding out which one is right and which
one is wrong; it’s about comparing worldviews. For example, I believe that
a good programming language and a disciplined software development life
cycle (SDLC) beats “easy” configuration (Chapter 11). That’s because I
come from a software engineer mindset. Other folks might be happy to not
have to hassle with git stash and compilation errors and prefer the
vendor’s configuration tools.

Shifting Territory
While the real world is relatively static (continental drift is pretty slow and
the trend of splitting countries in the ’90s has also slowed down a bit), the
world of IT is changing faster than ever. Because it’s difficult for a vendor
to change its product philosophy, you will likely encounter old products
with a new coat of paint on it. Your job as an architect is to look through the
shiny new paint and see whether there’s any rust or filler underneath.

1 “The True Size Of Africa,” Information Is Beautiful, Oct. 14, 2010, https://oreil.ly/yeVps.

2 Ytong is the name of a popular brand of aerated concrete bricks used in Europe for building
construction.

https://oreil.ly/yeVps

Chapter 17. Your Coffee Shop
Doesn’t Use Two-Phase Commit

Learn About Distributed System Design While in the Queue!

Grande, durable, nonatomic, soy chai latte

When designing solutions, architects often look at technical solutions like
ACID (Atomic, Consistent, Isolated, Durable) transactions and binary
values in order to craft a well-defined and perfect system. In reality, though,
designing complex systems isn’t that easy, so there’s one more source of
design guidance that you should consider: the real world.

Hotto Cocoa o Kudasai
You know you’re a geek when going to the coffee shop gets you thinking
about interaction patterns between loosely coupled systems. This happened
to me on a trip to Japan. Some of the more familiar sights in Tokyo are the
numerous Starbucks coffee shops, especially in the areas of Shinjuku and
Roppongi. After stretching my limited Japanese skills by muttering “Hotto
Cocoa o Kudasai” (“A hot chocolate, please”), I returned to my bubble of
foreigner-ness and started thinking about how Starbucks processes drink
orders.

Starbucks, like most other businesses, is primarily interested in maximizing
throughput of orders because more orders equal more revenue.
Interestingly, the optimization for throughput results in a concurrent and
asynchronous processing model: when you place your order, the cashier
marks a coffee cup with the details of your order (e.g., tall, nonfat, soy, dry,
extra hot latte with double shot) and places it into the queue, which is quite
literally a queue of coffee cups lined up on top of the espresso machine.
This queue decouples cashier and barista, allowing the cashier to keep
taking orders even if the barista is momentarily backed up. If the store
becomes busy, multiple baristas can be deployed in a competing-consumer
scenario, meaning that they work off items in parallel without duplicating
work.

Asynchronous processing models can be highly scalable but are not without
challenges. Still waiting for my hot chocolate, I started thinking about how
Starbucks dealt with some of these issues. Maybe we can learn something
from the coffee shop about designing successful asynchronous messaging
solutions?

1

2

Correlation
Parallel and asynchronous processing causes drink orders to be not
necessarily completed in the same order in which they were placed. This
can happen for two reasons. First, order processing time varies by type of
beverage: a blended smoothie takes more time to prepare than a basic drip
coffee. A drip coffee ordered last might thus arrive first. Second, baristas
might make multiple drinks in one batch to optimize processing time.

Starbucks therefore has a correlation problem: drinks that are delivered out
of sequence must be matched up to the correct customer. Starbucks solves
the problem with the same “pattern” used in messaging architectures: a
correlation identifier uniquely marks each message and is carried through
the processing steps. In the US, most Starbucks use an explicit correlation
identifier by writing your name on the cup at the time of ordering, calling it
out when the drink is ready. Other countries might correlate by the type of
drink. When I had difficulties in Japan understanding the baristas calling
out the types of drinks, my solution was to order extra-large “venti” drinks
because they’re uncommon and therefore easily identifiable, that is,
“correlatable.”

Exception Handling
Exception handling in asynchronous messaging scenarios presents another
challenge. What does the coffee shop do if you can’t pay? They will toss the
drink if it has already been made or otherwise pull your cup from the
“queue.” If they deliver you a drink that’s incorrect or unsatisfactory, they
will remake it. If the machine breaks down and they cannot make your
drink, they will refund your money. Apparently, we can learn quite a bit
about error-handling strategies by standing in the queue!

Just like Starbucks, distributed systems often cannot rely on two-phase-
commit semantics that guarantee consistent outcomes across multiple
actions. They therefore employ the same error-handling strategies.

3

Write Off
The simplest error-handling strategy is doing nothing. If the error occurs
during a single operation, you just ignore it. If the error happens during a
sequence of related actions, you can ignore the error and continue with the
subsequent steps, ignoring or discarding any work done so far. This is what
the coffee shop would do when a customer is unable to pay: discard the
drink and move on.

Doing nothing about an error might seem like a bad plan at first, but in the
reality of a business transaction, this option might be perfectly acceptable:
if the loss is small, building an error correction solution is likely more
expensive than just letting things be. When humans are involved, correcting
errors also has a cost and might delay serving other customers. Moreover,
error handling can lead to additional complexity—the last thing you want is
an error-handling mechanism that has errors. So, in many cases “simple
does it.”

I worked for a number of ISP providers who would choose to write off errors
in the billing/provisioning cycle. As a result, a customer might end up with
active service but would not get billed. The revenue loss was small enough
that it didn’t hurt the business and customers rarely complained about getting
free service. Periodically, they would run reconciliation reports to detect the
“free” accounts and close them.

Retry
When simply ignoring an error won’t do, you might want to retry the failing
operation. This is a plausible option if there’s a realistic chance that a
renewed attempt will actually succeed; for example, because a temporary
communications glitch has been fixed or an unavailable system has
restarted. Retrying can overcome intermittent errors, but it doesn’t help if
the operation violates a firm business rule. Starbucks will retry to make
your beverage if it’s not to your liking but they won’t if the power is out.

When encountering a failure in a group of operations (i.e., “transaction”),
things become simpler if all components are idempotent, meaning they can
receive the same command multiple times without duplicating the
execution. You can then simply reissue all operations because the receivers
that already completed them will simply ignore the retried operation.
Shifting some of the error-handling burden, i.e., detecting duplicate
messages, to the receivers thus simplifies the overall interaction.

It’s amazing how frequently a basic retry operation succeeds in systems that
were built out of zeros and ones. The common saying that defines insanity
as “doing the same thing over and over again and expecting different
results” apparently doesn’t apply to computer systems.

Compensating Action
The final option to put the system back into a consistent state after a failed
operation is to undo the operations that were completed so far. Such
“compensating actions” work well for monetary transactions that can
recredit money that has been debited. If the coffee shop can’t make the
coffee to your satisfaction, it will refund your money to restore your wallet
to its original state.

Because real life is full of failures, compensating actions can take many
forms, such as a business calling a customer to ask them to ignore a letter
that has been sent or to return a package that was sent in error. The classic
counter-example to compensating an action is sausage making. Some
actions are not easily reversible.

Transactions
All of the strategies described so far differ from a two-phase commit that
relies on separate prepare and execute phases. In the Starbucks example, a
two-phase commit would equate to waiting at the cashier desk with the
receipt and the money on the table until the drink is finished. Once the drink
is added to the items on the table, money, receipt, and drink can change

hands in one swoop. Neither the cashier nor the customer would be able to
leave until this “transaction” is completed.

Using such a two-phase-commit approach would eliminate the need for
additional error-handling strategies, but it would almost certainly hurt
Starbucks’s business because the number of customers it can serve within a
set time interval would decrease dramatically. This is a good reminder that a
two-phase-commit approach can make life a lot simpler, but it can also hurt
the free flow of messages (and therefore the scalability) because it has to
maintain stateful transaction resources across multiple, asynchronous
actions. It’s also an indication that a high-throughput system should be
optimized for the happy path instead of burdening each transaction for the
rare case when something goes wrong.

Backpressure
Despite working asynchronously, the coffee shop cannot scale infinitely. As
the queue of labeled coffee cups gets longer and longer, Starbucks can
temporarily reassign a cashier to work as a barista. This helps reduce the
wait time for customers who have already placed an order while exerting
backpressure to customers still waiting to place their order. No one likes
waiting in line, but not yet having placed your order provides you with the
option to leave the store and forgo the coffee or to wander to the next, not-
very-far-away coffee shop.

Conversations
The coffee shop interaction is also a good example of a simple but common
conversation pattern that illustrates sequences of message exchanges
between participants. The interaction between two parties (customer and
coffee shop) consists of a short synchronous interaction (ordering and
paying) and a longer, asynchronous interaction (making and receiving the
drink). This type of conversation is quite common in purchasing scenarios.
For example, when an order is placed on Amazon, the short synchronous

4

interaction assigns an order number, whereas all subsequent steps (charging
credit card, packaging, shipping) are performed asynchronously. Customers
are notified via email (asynchronous) when the additional steps complete. If
anything goes wrong, Amazon usually compensates the customer (refunds
payment) or retries (resends the lost goods).

Canonical Data Model
A coffee shop can teach you even more about distributed system design.
When Starbucks was relatively new, customers were both enamored and
frustrated by the new language they had to learn just to order a coffee.
Small coffees are now “tall,” while a large one is called “venti.” Defining
your own language is not only a clever marketing strategy but also
establishes a canonical data model that optimizes downstream processing.
Any uncertainties (soy or nonfat?) are resolved right at the “user interface”
by the cashier, thus avoiding a lengthy dialogue that would burden the
barista.

Welcome to the Real World!
The real world is mostly asynchronous: our daily lives consist of many
coordinated but asynchronous interactions, such as reading and replying to
email, buying coffee, etc. This means that an asynchronous messaging
architecture can often be a natural way to model these types of interactions.
It also means that looking at daily life can help design successful messaging
solutions. Domo arigato gozaimasu!

1 This chapter was published (in slightly different form) in IEEE Software, Vol. 22, and Best
Software Writing, ed. J. Spolsky (Apress).

2 Gregor Hohpe, “Competing Consumers,” Enterprise Integration Patterns,
https://oreil.ly/NShD-.

3 Gregor Hohpe, “Correlation Identifier,” Enterprise Integration Patterns, https://oreil.ly/NkR28.

5

6

https://oreil.ly/NShD-
https://oreil.ly/NkR28

4 Gregor Hohpe, “Conversation Patterns,” Enterprise Integration Patterns, https://oreil.ly/g-
wvQ.

5 Gregor Hohpe, “Canonical Data Model,” Enterprise Integration Patterns,
https://oreil.ly/8SU8U.

6 “Thank you very much!”

https://oreil.ly/g-wvQ
https://oreil.ly/8SU8U

Part III. Communication

Architects don’t live in isolation. It’s their job to gather information from
disparate departments, articulate a cohesive strategy, communicate
decisions, and win supporters at all levels of the organization.
Communication skills are therefore paramount for architects. Conveying
technical content to a diverse audience is challenging, though, because
many classical presentation or writing techniques don’t work well for
highly technical subjects. For example, slides with single words
superimposed on dramatic photographs may draw the audience’s attention,
but they aren’t going to convey the intricacies of your cloud computing
platform strategy. Instead, architects need to focus on a communication
style that emphasizes content, but in an engaging and approachable manner.

You Can’t Manage What You
Can’t Understand

“You can’t manage what you can’t measure” is a common management
slogan. However, for the measurements to be meaningful, you have to
understand the dynamics of the system you are managing. Otherwise, you
can’t tell which levers you should pull to influence the system behavior
(Chapter 10).

Understanding what you are managing becomes an enormous challenge for
decision makers in a world in which technology invades all parts of
personal and professional lives. Even though business executives aren’t

expected to code a solution themselves, ignoring technological evolution
and capabilities invariably leads to missed business opportunities or missed
expectations when IT systems don’t deliver what the business needs.
Managing complex technology projects by timeline, staffing, and budget
considerations alone is no longer going to suffice in the digital world that
demands ever faster delivery of functionality at high quality (Chapter 40).

Architects must help close the gap between technical knowledge holders
and high-level decision makers by clearly communicating the ramifications
of technical decisions on the business; for example, through development
and operational cost, flexibility, or time-to-market. It’s not only the
“business types” who face challenges in understanding complex technology,
though. Even architects and developers cannot possibly keep up with all
aspects of intricate technical solutions, forcing them to also rely on easy-to-
understand but technically accurate descriptions of architectural decisions
and their implications.

Getting Attention

Technical material can be very exciting, but ironically more so to the
presenter than to the audience. Keeping attention through a lengthy
presentation on code metrics or datacenter infrastructure can be taxing for
even the most enthusiastic audience. Decision makers don’t just want to see
the hard facts, but also be engaged and motivated to support your proposal.
Architects therefore have to use both halves of their brain to not only make
the material logically coherent but to also craft an engaging story.

Pushing (Less) Paper

The technical decision papers published by my team in the past yielded
much praise, but also unexpected criticism like, “All you architects do is
produce paper.” You might want to preempt such criticism by reminding
people that documentation provides value in numerous ways:

Coherence

Agreeing on and documenting design principles and decisions improves
consistency of decision making and thus preserves the conceptual
integrity of the system design.

Validation

Structured documentation can help identify gaps and inconsistencies in
the design.

Clarity of thought

You can write only what you have understood.

Education

New team members become productive faster if they have access to
good documentation.

History

Decisions (Chapter 8) are based on a specific context, which may have
changed since. Documentation can help you understand that context.

Stakeholder communication

Architecture documentation can help steer a diverse audience to the
same level of understanding.

Nevertheless there seems to be an unfounded resistance against writing
documentation among development teams.

If someone claims that writing their thoughts down is too much effort, I
routinely challenge them that this is likely because they haven’t really
understood things in the first place.

Useful documentation doesn’t imply reams of paper, rather the opposite:
short documents are more likely to be read. That’s why most technical
documents that my teams write are subject to a five-page limit.

Isn’t the Code the
Documentation?

Never shy of arguments, some developers claim that the source code is their
documentation. So writing anything down is just duplication, right? They
might have a point as long as all audience groups have access to the code,
the code is well structured, and tools such as search are available. Still, your
source code is highly unlikely to explain your value proposition and your
critical decisions to your executive sponsors. For that, you’re going to want
to take the Architect Elevator (Chapter 1) up to the penthouse, equipped
with a crystal clear piece of documentation.

Generating diagrams and documentation from code can be useful, but the
resulting visuals often struggle to help people see the forest for the trees.
Also, they don’t do a great job at explaining why things were done the way
they are because they generally fail to place the appropriate emphasis.
Defining what is “interesting” or “noteworthy” luckily remains a human
task.

Choosing the Right Words

Technical writing is difficult, as evidenced by user manuals, which must
rank as some of the most ridiculed pieces of literature, if we can even call
them that. They might be surpassed in lack of empathy only by tax form
instruction sheets.

Architects must therefore be able to engage readers who wasted years of
their career perusing poorly written manuals and who may never want to
read anything technical again outside of the occasional Dilbert comic.
Careful choice of words and clean sentence structures go a long way toward
assisting readers in grasping difficult concepts.

Communication Tools

This part helps overcome some common challenges of creating engaging
technical communication and highlights that documentation can be a
tremendously useful tool for architects:

Chapter 18, Explaining Stuff

Helping management reason about complex technical topics requires
you to build a careful ramp for the audience.

Chapter 19, Show the Kids the Pirate Ship!

Excite your audience by showing not just the building blocks but also
the pirate ship.

Chapter 20, Writing for Busy People

Busy executives won’t read every line you write, so make it easy for
them to navigate your documents.

Chapter 21, Emphasis Over Completeness

There’s always too much to tell. Focus on the essence.

Chapter 22, Diagram-Driven Design

Not only can a picture say more than a thousand words, but it can
actually help you design better systems.

Chapter 23, Drawing the Line

Your architecture doesn’t just include a list of components, but also
their relationships. You must draw a line.

Chapter 24, Sketching Bank Robbers

Technical staff might struggle to create a good picture of a system, even
though they know it best. Help them by sketching bank robbers.

Chapter 25, Software Is Collaboration

Version control/continuous integration isn’t just for software
development. It’s a key part of collaboration.

Chapter 18. Explaining Stuff

Build a Ramp for the Reader, Not a Cliff!

Build a ramp, not a cliff for the reader—by Miu Tsutsui

Martin Fowler occasionally introduces himself as a guy “who is good at
explaining things.” Although this certainly has a touch of British
Understatement™, it also highlights a critically important but rare skill in
IT. Too often technical people either produce an explanation at such a high
level that it is almost meaningless or spew out reams of technical jargon
with no apparent rhyme or reason.

Build a Ramp, Not a Cliff
A team of architects once presented a new hardware and software stack for
high-performance computing to a management steering committee. The
material covered everything from workload management down to storage
hardware. It contrasted vertically integrated stacks like Hadoop and Hadoop
Distributed File System (HDFS) against standalone workload management
solutions like Platform Load Sharing Facility (LSF). In one of the
comparison slides “POSIX compliance” jumped out as a selection criteria.

https://oreil.ly/FQmQY

While this may be entirely appropriate, how do you explain to someone
who knows little about filesystems what this means, why it is important,
and what the ramifications are?

We often refer to learning curves as steep, meaning it is tough for
newcomers to become familiar with, or “ramp up” on, a new system or tool.
I tend to assume my executive audience is quite intelligent (you don’t get
that high up simply by brown-nosing and playing politics), so they can in
fact climb up a pretty steep learning ramp. What they cannot do is climb up
a vertical cliff. Building a logical sequence that enables the audience to
draw conclusions in an unfamiliar domain can be “steep” but doable. Being
bombarded with out-of-context acronyms or technical jargon constitutes a
“cliff.” “POSIX compliance” is a cliff for most people.

You can turn it into a ramp by explaining that POSIX is a standard
programming interface for file access, which is widely adhered to by Unix
distributions, thus reducing lock-in in case you’re maintaining multiple
Linux flavors. With this ramp, executives can reason that because they
already standardized on a single Linux distribution, POSIX compliance
doesn’t add much value. It’s also not relevant for vertically integrated
systems like Hadoop, which include the filesystem.

By building a ramp out of just a few words, you managed to involve
someone who isn’t deeply technical in the decision-making process. The
ramp might not take the audience into the depths of POSIX versions and
Linux flavors, but it provides a mental model to reason within the scope of
the proposed decision.

A steep ramp is suitable for a quick climb but becomes tiresome if you are
trying to lead your audience up Mount Everest. Therefore, consider how
high (or deep) your audience needs to go to reason about what is presented.
When defining terms, define them within the context of your problem,
highlighting the relevant properties and omitting irrelevant detail. For
example, details about POSIX history and Linux Standard Base aren’t
pertinent to the decision above and should be omitted.

Mind the Gap
The ramp should not only provide a reasonable incline but also avoid gaps
or jumps in logic. Experts often don’t perceive these gaps because their
mind silently fills them in. This is a phenomenal feature of our brain, but an
audience not intimately familiar with the topic is likely to stumble over
even a minor gap and lose track of the line of reasoning. This effect is
known as the curse of knowledge: once you know something, it’s very hard
to imagine how someone else learns it.

At a discussion about network security, a team of architects presented their
requirement that servers located in the untrusted network zone have separate
network interfaces, so-called NICs, for incoming and outgoing network traffic
to avoid a direct network path from the internet to trusted systems. They
continued with a statement that the vendor’s “three-NIC design” cannot meet
their requirement. To me, this made no sense: why is a server with three
network interfaces unable to support a design requiring two interfaces, one for
incoming traffic and one for outgoing? The answer was “obvious” to those
who are familiar with the context: each server uses one additional network
interface each for backup and management tasks, bringing the number of
required ports to four, which clearly exceeds three. Skipping this detail
created a gap large enough for the audience (and me) to stumble.

How big a gap they are creating is difficult to judge for the presenter. That’s
the curse of knowledge. In the example above, just a few words or two
additional labeled lines in the diagram would have been enough to bridge
the gap. That, however, doesn’t imply that the gap itself was small—it
might have been narrow, but plenty deep.

Presenting your line of reasoning to a person not familiar with the topic and
asking them to “teach back” what you explained to them, similar to holding a
pop quiz (Chapter 21), can be a great help in finding gaps.

First, Create a Language
When preparing technical conversations, I tend to use a two-step approach:
first I set out to establish a basic mental model based on plain vocabulary
without product names or acronyms. Once equipped with this, the audience
is able to reason in the problem space and to discern the relevance of
parameters. This mental model doesn’t have to be anything formal, it
merely needs to give the audience a way to make a connection between the
different elements that are being described.

In the aforementioned filesystem example, I would first describe how file
access is composed of a layered stack spanning from hardware (i.e., disk),
basic block storage (like a SAN) to filesystems, and ultimately the
operating system, which hosts the applications on top. This explanation
doesn’t even occupy half a slide and would nicely fit into a picture of
layered blocks (see Figure 18-1).

As a second step, I can use this vocabulary to explain that Hadoop is
integrated from the application layer all the way down to the local
filesystem and disks without any SAN or the like. This setup has specific
advantages, such as low cost and data locality, but requires you to build
applications for this particular framework. In contrast, standalone
filesystems for high-performance computing, for example GPFS or pNFS,
either build on top of standard filesystems or provide “adapters” that make
the proprietary filesystem available through widespread APIs, such as
POSIX.

Figure 18-1. Comparing filesystems

You depict this in a diagram by having the Hadoop “stack” reach all the
way from top to bottom, whereas other systems provide “seams,” including
POSIX compliance. The audience can now easily understand why the
POSIX feature is important, but HDFS doesn’t need to provide it.

Consistent Level of Detail
Determining the appropriate level of detail to support the line of reasoning
is difficult. For example, we pretended “POSIX” is a single thing when in
reality there are many different versions and components, the Linux
Standard Base, and so on. The ability to draw the line at roughly the right
level of detail is an important skill of an architect. Many developers or IT
specialists love to inundate their audience with irrelevant jargon. Others
consider it all terribly obvious and leave giant gaps by omitting critical
details. As so often, the middle ground is where you want to be.

Drawing the line at the correct level of detail depends on you knowing your
audience. If your audience is mixed, building a good ramp is ever more
important because it allows you to catch up folks who aren’t familiar with

the details without boring those who are. The highest form is building a
ramp that audience members already familiar with the subject matter
appreciate despite not having learned anything new. This is tough to achieve
but is a noble goal to aim for.

Building a steep, but logical ramp allows those unfamiliar with the topic to
get up to speed without boring those who are.

Getting the level of detail “just right” is usually a crapshoot, even if you do
know the audience. At least as important, though, is sticking to a consistent
level of detail. If you describe high-level filesystems on slide one and then
dive into bit encoding on magnetic disks in slide two, you are almost
guaranteed to either bore or lose your audience. Therefore, strive to find a
line that maintains cohesion for reasoning about the architectural decision at
hand, without leaving too many “dangling” aspects.

Algorithm-minded people would phrase this challenge as a graph partition
problem: your topic consists of many elements that are logically connected,
just like a graph of nodes connected by edges. Your task is to split the graph
(i.e., to cover only a subset of the elements), while minimizing the number
of edges (i.e., logical connections) being cut.

I Wanted to Have Liked To, but Didn’t Dare
Be Allowed
This poor translation of Karl Valentin’s famous quote “Mögen hätt’ ich
schon wollen, aber dürfen habe ich mich nicht getraut” reminds me of the
biggest challenge in explaining technical matter: too many architects
believe their audience will never “get” their explanations, anyway. Some
are also afraid that presenting technical detail will make them appear unfit
for management. Therefore, even though they might have been able to,
they’re shying away from attempting to present technical concepts to a
senior audience. In my view, this is a missed opportunity. I see every

Every interaction with senior
management is also a
teaching opportunity. Use it!

interaction with management also as a teaching opportunity. It’s the basis
for the Architect Elevator.

Others go a step further and actually prefer
to confuse management with random
jargon, acronyms, and product names so
that their “decisions” (often simply
preferences or vendor recommendations)

aren’t unnecessarily put into question by the audience. This usually happens
when technical teams, which see approval meetings as a nuisance rather
than an opportunity to gather feedback, play off management’s insecurity
when it comes to technical topics.

I have a rather critical view of such behavior and generally advise
management not to approve anything that isn’t crystal clear to them. After
all, if something isn’t easily comprehensible, it’s due to lack of clarity, not
the audience.

Your role as an architect is to build a broad understanding of the
ramifications of decisions and assumptions that were made. Without it, big
problems are bound to pop up. For example, if a few years down the road
an IT system can no longer serve the business needs, it is often due to a
constraint or an invalid assumption that was made but never clearly
communicated. Communicating decisions and explaining trade-offs clearly
protects both you and the business.

Chapter 19. Show the Kids the
Pirate Ship!

Why the Whole Is Much More Than the Parts

This is what people want to see

When you look at the cover of a box of LEGOs you don’t see a picture of
each individual brick that’s inside. Instead, you see the picture of an
exciting, fully assembled model, such as a pirate ship. To make it even more
exciting, the model isn’t sitting on a living room table but is positioned in a
life-like pirate’s bay with cliffs and sharks—Captain Jack Sparrow would
be jealous.

What does this have to do with communicating system architecture and
design? Sadly, not much, but it should! Technical communication too

frequently does the opposite: it lists all the individual elements in
painstaking detail but forgets to show the pirate ship. The results are tons of
boxes (and hopefully some lines; see Chapter 23), without a clear gestalt or
overall value proposition.

Is this a fair comparison, though? LEGO is selling toys to kids, whereas
architects need to explain the complex interplay between components to
management and other professionals. Furthermore, IT professionals have to
explain issues like network outages due to flooded network segments,
something much less fun than playing pirates. I’d posit that the analogy
holds and we can learn quite a few things from the pirate ship for the
presentation of IT architecture.

Grab Attention
The initial purpose of the pirate ship is to draw attention among all the other
competing toy boxes. While kids come to the toy store to hunt for new and
shiny toys, many corporate meeting attendees are there because they were
delegated by their boss, not because they want to hear your content.
Grabbing their attention and getting them to put down their smartphones
requires you to show something exciting.

Sadly, many presentations start with a table of contents, which I consider
rather silly. First, it isn’t exciting: it’s like a list of assembly instructions
instead of the ship. Second, the purpose of a table of contents is to allow a
reader to navigate a book or a magazine. If the audience must sit through
the entire presentation anyhow, there is no point in giving them a table of
contents at the beginning.

Starting a presentation with a table of contents isn’t useful, because the
audience doesn’t get to jump to Chapter 3. It also makes for a boring start:
have you ever seen a movie that begins with the outline of its storyline?

The old adage of “tell them what you are going to tell them,” which is
vaguely attributed to Aristotle, certainly doesn’t translate into a slide
showing a table of contents. You are going to tell them how to build a pirate
ship!

Build Excitement
The moment children and your audience look at the pirate ship, they should
feel excitement. How cool is this? There are sharks and pirates, daggers and
cannons, chests of gold, and the parrot. You can feel the story unravel in
your head just as you are reading the list of play pieces. Why should PaaS,
API gateways, web application firewalls, and build pipelines tell a less
exciting story? It’s a story of gaining speed in the treacherous waters of the
digital world where automated tests and build pipelines keep you safe
despite the fast pace. Automated deployments industrialize your delivery,
and PaaS allows your fleet to grow and shrink as needed while you’re
trying to avoid running ashore in the vicious land of vendor lock-in. That’s
at least as exciting as a pirate story!

I am convinced that IT architecture can be much more exciting and
interesting than people commonly believe. In an interview with my friend
Yuji back in 2004, I explained that software development is quite a bit more
exciting than it appears on the outside—it is as exciting as you make it. If
you regard software development as a pile of LEGOs, you haven’t seen the
pirate ship! People who find software and architecture boring or just a
necessary tedium haven’t scratched the surface of software design and
architecture thinking. They also haven’t understood that IT isn’t any longer
a means to an end but an innovation driver for the business. They consider
IT as randomly stacking LEGO bricks, when in reality we are building
exciting pirate ships!

https://oreil.ly/79lq9

Focus on Purpose
Coming back to the pirate ship, the box also clearly shows the purpose of
the pieces inside. The purpose isn’t for the bricks to be randomly stacked
together but to build a cohesive, balanced solution. The whole really is
much more than the sum of the parts in this case. It’s the same with system
design: a database and a few servers are nothing special, but a scale-out,
masterless NoSQL database is quite exciting.

Alas, the technical staff who had to put all the pieces together is prone to
dwell on said pieces instead of drawing attention to the purpose of the
solution they built. They feel that the audience should appreciate all the
hard work that went into assembling the pieces as opposed to the usefulness
of the complete solution. Here’s the bad news: no one is interested in how
much work it took you; people want to see the results you achieved.

Pirate Ship Leads to Better Decisions
A pirate ship can do more than build excitement. It can also be a tool to
make better decisions. My Architect Elevator workshops include an
exercise to draw a system architecture. To see different ways of illustrating
a common architecture, I picked a system that’s quite well understood to
most attendees, an application monitoring system. I hand each group of
attendees about a dozen cards, each of which contains common monitoring
components like log aggregator, time series database, thresholds, alerting,
and ask them to draw an architecture containing these pieces.

Attendees will typically draw diagrams that put the components into a
logical sequence; for example, by data flow, as demonstrated in Figure 19-
1. Sometimes components are further grouped into major functions, such as
data collection, data processing, and user interface. That’s what architecture
diagrams normally look like.

https://architectelevator.com/workshops/

Figure 19-1. A typical architecture drawing of a monitoring system

After looking at such diagrams, I ask an innocent-sounding question:
“What’s this system’s purpose?” Initially, attendees mention detecting
anomalies and alerting someone. After some contemplation and prodding,

the architects start to see the bigger picture. They correctly identify the real
purpose of a monitoring system as maximizing system availability by
minimizing system downtime. This is easily validated by assuming the
opposite: the only time you don’t need any monitoring is if you don’t care
about system availability.

Soon after, participants realize that the original picture shows only half the
equation: a monitoring system is useful only if a detected problem can be
analyzed and corrected. Based on this insight, they start to augment or redo
the diagrams to show the pirate ship; that is, the main purpose, as depicted
in Figure 19-2.

Figure 19-2. Showing the pirate ship of a monitoring system

They can now add the equivalent of the shark and the parrot by illustrating
the purpose in the center of the diagram: minimize MTTR, the time from
the error to recovery. As the MTTR spans the whole circle, we can think
about both sides: how long does it take to detect an outage, and how long
does it take to resolve it?

Thanks to the completed model, this aspect is apparent, and we can better
reason about whether the company should invest in an upgraded monitoring

system. Investing in a monitoring system that reduces the time to detect
outages from half an hour to a few minutes thanks to better sensors and
smarter analytics may seem like a good idea. If resolving an outage takes
several hours, though, the picture changes: spending, for instance, half a
million dollars to reduce the MTTR from 4.5 hours to 4.1 hours doesn’t
look that great anymore. Instead, you’d be looking to reduce the time spent
resolving outages. This can be achieved, for example, by better
transparency across systems or higher levels of automation (Chapter 13)
that can quickly roll back the deployed software to an earlier, stable version.
Drawing a better picture has helped us make better decisions (Chapter 22).

The Product Box
A successful concept similar to the pirate ship is the product box, one of
Luke Hohmann’s “innovation games,” from his book of the same title.
This game asks participants to design a physical retail box for their product.
To be appealing to potential buyers, such a box would want to show
common usages and highlight benefits instead of just features.

Thinking of your product like a retail item can help focus on tangible benefits
instead of technical features.

If teams do well, they’ll put an exciting pirate ship on the cover, as shown
in Figure 19-3.

1

Figure 19-3. A product box for cloud computing

Designing the Pirate Ship
Drawing a pirate ship is generally a new, and occasionally uncomfortable,
exercise for product and engineering teams. A few techniques can overcome
initial hurdles.

Show Context
The LEGO box cover image shows the pirate ship within a useful context,
such as a (fake) pirate’s bay. Likewise, the context in which an IT system is
embedded is at least as relevant as the intricacies of the internal design.
Hardly any system lives in isolation, and the interplay between systems is
often more difficult to engineer than the innards of a single system. So you
should show a system in its natural habitat.

Many architecture methods begin with a system context diagram. While
well intentioned, too many times it fails to be useful because it aims for a
complete system specification without placing an emphasis (Chapter 21).
Such diagrams show an endless ocean, but not the pirate ship.

The Content on the Inside
LEGO toys also show the exact part count and their assembly, but they do
so on a leaflet inside the box, not on the cover. Correspondingly, technical
communication should display the pirate ship on the first page or slide and
keep the description of the bricks and how to stack them together for the
subsequent pages. Get your audience’s attention, then take them through the
details. If you do it the other way around, they might all be asleep by the
time the exciting part finally comes.

Consider the Audience
Just like LEGO has different product ranges for different age groups, not
every IT audience is suitable for the pirate ship. To some levels of
management that are far removed from technology, you may need to show
the little duckie made from a handful of LEGO DUPLO bricks.

Pack Some Pathos
Some might feel that excitement is a bit too frivolous for a serious
workplace discussion. That’s where you should look back at Aristotle, who
gave us great advice on communicating, some 2,300 years ago (Figure 19-
4). He concluded that a good argument is based on logos, facts and
reasoning; ethos, trust and authority; and pathos, emotion! Most technical
presentations deliver 90% logos, 9% ethos, and maybe 1% pathos. From
that starting point, a small extra dose of pathos can go a long way. You just
have to make sure that your content can match the picture presented on the
cover: pitching a pirate ship and not having the cannons inside the box is
bound to lead to disappointment.

Figure 19-4. Three modes of persuasion

Play Is Work
While on the topic of toys: building pirate ships would be classified by most
people as playing—something that is commonly seen as the opposite of
work. Pulling another reference from the ’80s movie archives reminds us
that “all work and no play makes Jack a dull boy.” Let’s hope that lack of
play doesn’t have the same effect on IT architects as it had on the author
Jack in the movie The Shining—he went insane and attempted to kill his
family. But it certainly stifles learning and innovation.

Most of what we know we didn’t learn from our school teachers, but from
playing and experimenting. Sadly, most people seem to have forgotten how
to play, or were told not to, when they entered their professional life. This
happens due to social norms, pressure to always be (or appear) productive,
and fear. Playing knows no fear and no judgment; that’s why it gives you an
open mind for new things.

Playing is learning, so in times of rapid change architects need to play more.

If playing is learning, times of rapid change that require us to learn new
technologies and adapt to new ways of working should re-emphasize the
importance of playing. I actively encourage engineers and architects in my
team to play. Interestingly, LEGO offers a successful method called Serious
Play for executives to improve group problem solving. They might be
building pirate ships.

1 Luke Hohmann, Innovation Games: Creating Breakthrough Products Through Collaborative
Play (Boston: Addison-Wesley), 2007.

http://www.seriousplay.com/

Chapter 20. Writing for Busy
People

Don’t Expect Everyone to Read Word for Word

If you don’t have time to read, look at the pictures

Most organizations are full of boring documents that remain largely unread.
That doesn’t mean that documentation is a bad idea. Done well, it’s still the
best vehicle to proverbially get everyone on the same page across a wide
audience. Over time, brief but accurate technical position and decision
papers have become a trademark of my architecture teams.

While the title of this chapter is a pun on the titles of popular books such as
Japanese for Busy People, it intentionally implies an ambiguity that we are
both writing for a busy audience and are busy authors as well.

Writing Scales
Sadly, writing takes much more effort than reading, but skimping on writing
is penny-wise and pound foolish because the written word has enormous
advantages over the spoken word or slide presentations:

It scales

You can address a large audience without gathering everyone in one
room (podcasts, admittedly, can also accomplish that).

It’s fast

People read two to three times faster than they can listen.

It’s searchable

You can find what you want to read quickly.

It can be edited and versioned

Everybody sees the same, versioned content.

So, writing pays off when you have a large (or important) enough audience.
The biggest benefit, though, is Richard Guindon’s insight that “Writing is
nature’s way of telling us how sloppy our thinking is.” That alone makes
writing a worthwhile exercise because it requires you to sort out your
thoughts so that you can put them into a somewhat cohesive storyline.
Unlike most slide decks, well-written documents are also self-contained, so
they can be widely distributed without further commentary.

Quality Versus Impact
The catch with writing is that although you can to some extent force people
to (at least pretend to) listen to you, it’s much more difficult to force anyone
to read your text. I remind writers that “the reader is by no means required
to turn the page. They decide based on what they read so far.”

Assuming the topic is interesting and relevant to the readership, I have
repeatedly observed a nonlinear relationship between the quality of the
writing and the attention it will receive, which is a good proxy metric for
the impact of a technical paper. If the paper doesn’t meet a minimum bar for
quality—for example, because it is verbose, poorly structured, full of typos,
or displayed in some ridiculous, difficult to read font—people won’t read it
at all, resulting in zero impact. I call this the “trash-bin” zone, named after
the likely reader reaction. At the other end of the spectrum, additional
impact from quality improvement ultimately tapers off as the document
approaches the “gold-plating” zone.

So, you want to get the quality of your writing into the “sweet spot” and
then focus on content instead of polishing further. While the sweet spot
depends on the topic and the audience, I posit that the trash-bin zone is
wider, and therefore more dangerous, than most developers believe. Key
influencers—your most important readers—are very busy people and tend
to shy away from anything that is more than a few pages long, perhaps
unless it is from a high-paid consultancy, in which case they make someone
else read it because they paid so much money for it.

A senior executive once refused to read a paper because his first name was
misspelled on the cover page. I think he was right.

For this impatient readership, clarity of wording and brevity aren’t nice-to-
haves: a lack thereof will quickly put your paper quite literally into the
trash-bin zone. Blatant typos or grammar issues are like the proverbial fly in
the soup: the taste is arguably the same, but the customer is unlikely to
come back for more.

“In the Hand”—First Impressions Count
When Bobby Woolf and I wrote Enterprise Integration Patterns, the
publisher highlighted the importance of the “in the hand” moment, which

occurs when a potential buyer picks the book from the shelf to give a quick
glimpse at the front and back cover, maybe the table of contents, and to leaf
through. The reader makes the purchasing decision at this very moment, not
when they stumble on your ingenious conclusion on page 326. This is one
reason why we included many diagrams in that book: almost all facing
pages contain a graphical element, such as an icon (aka “Gregorgram”), a
pattern sketch, a screenshot, or a UML diagram: roughly 350 in total. We
wanted to send a strong message to potential readers that it isn’t an
academic book, but a pragmatic and approachable one. Technical papers
should do the same: use a clean layout, insert a handful of expressive
diagrams, and, above all, keep it short and to the point!

To assess what a short paper will “feel” like to the reader without wasting
printer paper, I zoom out my WYSIWYG editor far enough that all pages
appear on the screen, as illustrated in Figure 20-1. I can’t read the text
anymore, but I can see the headings, diagrams, and overall flow; for
example, the length of paragraphs and sections. This is exactly how a reader
will see it when flipping through your document to decide whether it’s
worth reading. If they see an endless parade of bullet points, bulky
paragraphs, or a giant mess, the paper will leave “the hand” quite quickly as
gravity teleports it into the recycling bin.

Figure 20-1. Zooming out from a technical paper

The Curse of Writing: Linearity
Text is linear: one word comes after the other, one paragraph after the
previous. However, hardly any relevant technical topic is one-dimensional.
One of the major challenges of technical writing (or speaking) is therefore
to map a complex topic space into a linear storyline. For the algorithmically
inclined, writing is a bit like coding a graph traversal problem: you can go
breadth-first or depth-first. Breadth-first means that you cover all your
topics at a high level, gradually descending down into the detail. Depth-first
covers each topic in depth before moving on to the next topic.

A well-thought-out logical structure can help overcome this limitation. It’s
easier to traverse a tree than a complex graph with many loops. Barbara
Minto captures the essence of this approach in her book The Pyramid
Principle. The “pyramid” in this context denotes the hierarchy of content;
that is, a tree, not the pyramids in IT (Chapter 28).

A Good Paper Is Like the Movie Shrek
Most animated movies have to entertain multiple audiences: the kids who
love the cute characters plus the adults who had to shell out 30 bucks to
take the family to the movies and spend two hours watching cute characters.
Great animated movies like Shrek manage to address both audiences by
including humor for kids and adults. The audiences might laugh at slightly
different scenes but aren’t distracted by each other.

Technical papers that address a diverse audience should aim to do the same.
They need to supply technical detail while also highlighting important
decisions and recommendations, so they can be read at two levels. A few
simple techniques can help make reading your paper a little bit like
watching Shrek:

Storytelling headings

These replace an executive summary: your reader should get the gist of
the paper just by reading the headings. Headings like “introduction” or

1

“conclusion” aren’t telling a story and have no place in a short paper.

Anchor diagrams

These provide a visual cue for important sections. Readers who flip
through a paper likely pause at a diagram, so it’s good to position them
strategically.

Sidebars

These are the short sections that are offset in a different font or color,
indicating to the reader that this additional detail can be safely skipped
without losing the train of thought.

This way, executives can just read the headings and look at the diagram to
get the essence of your paper in a minute or two (Figure 20-2). Most readers
will read the paper but might skip the callouts, whereas specialists will pay
particular attention to the detail in the callouts. This way, you can help
break the curse of linearity a tiny bit by giving different readers different
paths through the document.

Figure 20-2. Breaking the curse of linearity

Making It Easy for the Reader
After a positive first impression, your readers will begin reading your paper.
For advice on technical writing, I recommend the book Technical Writing
and Professional Communication, which sadly appears out of print but is
widely available used. It covers a lot of ground in its 700 pages, including
authoring different types of documents, such as resumes. I find the sections
toward the end on parallelism and paragraph structure most helpful.
Parallelism demands that all entries in a list follow the same grammatical
structure; for example, all start with a verb or an adjective. A
counterexample would be the left column of the following, with the right-
hand side showing a better approach:

System A is preferred because: System A is preferred due to:

It’s faster Performance

Flexible Flexibility

We want to reduce cost Economics

Stable Stability

Inconsistent writing uses too many of your reader’s brain cells just to parse
the text instead of focusing on your message. Taking the “noise” out of the
language reduces friction and allows your reader to focus on the content.
Parallelism is not only useful in lists but also in sentences; for example,
when drawing analogies or contrasting.

Each paragraph should focus on a single topic and introduce that topic at
the beginning, like this very paragraph: readers can glean from the first few
words that this paragraph is about paragraphs. They can also rest assured
that I don’t start talking about lists halfway through, so if they already know
how to write a good paragraph, they can safely skip this one. That’s why “It

2

is further important to note that in some circumstances one has to pay
special attention to…” makes for a very poor paragraph opening.

Lists, Sets, Null Pointers, and Symbol Tables
Most programming languages support sets—i.e., unordered collections of
elements—but books (and speeches) don’t: every list has an order. Because
you can’t avoid it, you’d better choose the order consciously. Valid options
are time (chronological), structure (relationships), or ranking (importance).
Note that “alphabetical” and “serendipitous” aren’t valid choices.

“How is this ordered?” has become a standard question I ask when reviewing
documents containing a list or grouping.

Loose usage of the word this as a stand-alone reference is another pet peeve
of mine; for example, stating that “this is a problem” without being clear
what “this” actually refers to. Jeff Ullman cites such a “non-referential this”
as one of the major impediments to clear writing, exemplified in his
canonical example:

If you turn the sproggle left, it will jam, and the glorp will not be able to
move. This is why we foo the bar.

Do we foo the bar because the glorp doesn’t move or because the sproggle
jammed? Programmers well understand the dangers of dangling pointers
and Null Pointer Exceptions, but they don’t seem to apply the same rigor to
writing—maybe because your readers don’t throw a stack trace at you?

Another fantastic piece of advice from Minto is the following:

Making a statement to a reader that tells him something he doesn’t know
will automatically raise a logical question in his mind […] the writer is
now obliged to answer that question. The way to ensure total reader
attention, therefore, is to refrain from raising any questions in the
reader’s mind before you are ready to answer them.

3

My translation for software engineers: when writing, assume that your
readers use a single-pass compilation algorithm and don’t have access to a
complete symbol table. This means that forward references aren’t allowed:
you can only refer to terms and concepts that were already introduced. For
the algorithmically minded, you’ll need to do a topological sort on your
topic graph. What if there’s a circle? You’ll get a stack overflow, just like
your audience!

Following this simple advice will place your technical paper above 80% of
the rest, because, sadly, the bar for technical documents is so low.

An internal presentation once stated on the first slide: “only technology
ABCD has proven to be a viable solution.” When I asked for proof, it turned
out that none existed due to “lack of time and funding.” These aren’t just
wording issues, but fatal flaws. A reader no longer wants to see page 2 if they
cannot trust page 1.

Lastly, make sure to avoid unsubstantiated claims. I refer to this
phenomenon as the “hourglass presentation”: it starts with a lot of
buzzwords and promises, then becomes very narrow, and ends with bold
requests for funding and headcount.

In der Kürze liegt die Würze
In technical writing, your readers are not out to appreciate your literary
creativity, but to understand what you are saying. Therefore, less is more
when it comes to word count. Although Walker Royce spends a good part
of his book musing about English words, his advice on brevity and editing
is sound. His paraphrased citation from Zinsser on the usage of “I might
add,” “It should be pointed out,” and “It is interesting to note,” hits the
mark:

If you might add, add it. If it should be pointed out, point it out. If it is
interesting to note, make it interesting.

4

5

6

Royce also gives many concrete suggestions on how to replace long-winded
expressions or “big” words with single, simple words, thereby not only
reducing noise but also aiding non-native speakers.

If you are up to a more rigorous evaluation of properly linking words into
sentences and you are willing to put up with a few tirades and snipes, I
recommend Barzun’s Simple & Direct, which isn’t simple, but pedantically
direct.

Our team’s internal editing cycles routinely cut word count by 20 to 30%
despite including additional material or detail. To the first-time author this
might be shocking, but Saint-Exupéry’s adage that “perfection is achieved
not when there is nothing more to add, but when nothing is left to take
away” is especially true for technical papers (and good code for that
matter). I actually edited this very chapter down by 15%.

When this type of cruel editing was first bestowed upon me by a
professional copy editor, I felt that the document no longer sounded “like
me.” Over the years, I have come to appreciate that being crisp and accurate
is a great way to have a technical paper sound like me. Longer, more
personal pieces like this book allow some “slack” to help the reader keep
attention after many pages.

Unit Testing Technical Papers
The most effective vehicle for improving technical papers is to hold a
writer’s workshop. Such a workshop entails attendees discussing a paper,
which they have read, while the author is allowed to listen but not to speak.
This setup simulates someone reading and trying to understand a paper. The
author must remain silent because they cannot pop out of their paper to
explain to each reader what was really meant—a document must be self-
contained. Because writer’s workshops are time intensive, they are best
applied after the paper has gone through an initial review.

7

8

Technical Memos
A document doesn’t need to be all encompassing—who reads an
encyclopedia, anyway? Twenty years ago, Ward Cunningham defined the
notion of a technical memo, a document that describes a particular aspect of
the system, in his Episodes pattern language:

Maintain a series of well formatted technical memoranda addressing
subjects not easily expressed in the program under development. Focus
each memo on a single subject. […] Traditional, comprehensive design
documentation […] rarely shines except in isolated spots. Elevate those
spots in technical memos and forget about the rest.

Keep in mind, though, that writing technical memos is more useful, but not
necessarily easier, than producing reams of mediocre documentation. The
classic example of this noble idea gone wrong is a project wiki full of
random, mostly outdated, and incohesive documentation. This isn’t the
tool’s fault (the wiki was not quite coincidentally also invented by Ward);
rather, it’s due to a lack of emphasis over completeness (Chapter 21) by the
writers.

The Pen Is Mightier Than the Sword, but Not
Mightier Than Corporate Politics
Producing high-quality position papers can lead to an unexpected amount of
organizational headwind. The word perfection is invariably used with a
negative connotation by those who are poor writers or want to avoid sharing
their team’s work. Ironically, these are often the same departments that love
to be entertained by colorful vendor presentations.

Other teams claim that their “Agile” approach spares them from any need to
produce documentation, notwithstanding the fact that those teams have no
running code to show either. Agile software development places the
emphasis on producing working code that is worth reading, but multiyear IT

9

strategy plans are unlikely to manifest themselves in code alone. Alas, good
documents seem to be even more difficult to find than good code.

Some corporate denizens actively resent writing clear and self-contained
documents because they prefer to “tune” their story for each audience.
Naturally, this approach doesn’t scale (Chapter 30).

Writing good documents in an organization that is generally poor at writing
can give you significant visibility, but it can also rock the political system.

The first time I sent a positioning paper on digital ecosystems to senior
management, a person complained to both my boss and my boss’s boss about
me not having “aligned” the paper with her.

Communication is a mighty tool, and some people in your organization will
fight hard to control it. Pick your targets wisely.

1 Barbara Minto, The Pyramid Principle: Logic in Writing and Thinking (Upper Saddle River,
NJ: Prentice Hall, 2010).

2 Leslie A. Olsen and Thomas N. Huckin, Technical Writing and Professional Communication,
2nd ed. (New York: McGraw-Hill, 1991).

3 Jeff Ullman, “Viewpoint: Advising students for success,” Communications of the ACM 52,
No. 3 (March 2009).

4 Literally, “brevity gives spice,” ironically translating into “short and sweet.”

5 Walker Royce, Eureka!: Discover and Enjoy the Hidden Power of the English Language
(New York: Morgan James Publishing, 2011).

6 William Zinsser, On Writing Well: The Classic Guide to Writing Nonfiction (New York:
Harper, 2006).

7 Jacques Barzun, Simple & Direct (New York: Harper Perennial, 2001).

8 Richard P. Gabriel, Writers’ Workshops & the Work of Making Things: Patterns, Poetry…
(Upper Saddle River, NJ: Pearson Education, 2002).

9 John Vlissides, James O. Coplien, and Norman L. Kerth, Pattern Languages of Program
Design 2 (Reading, MA: Addison-Wesley, 1996).

Chapter 21. Emphasis Over
Completeness

Show the Forest, Not the Trees

Can you spot the performance bottleneck in this database schema?

When sharing a diagram, you might receive feedback such as, “System
ABC is missing.” Even though it’s well intentioned, completeness shouldn’t
be your architecture diagrams’ primary goal. Rather, you should depict the
appropriate scope. What’s the right scope? One that’s big enough to be
meaningful, small enough to be comprehensible, and cohesive enough to
make sense.

In large organizations, there’s a constant danger of being overcome by the
sheer size and complexity of the environment. So, putting some blinders on
is allowed, and in fact encouraged.

All models are wrong, but
some are useful. To know
which ones, you must first

Diagrams Are Models
When discussing architecture diagrams, it’s good to remind ourselves why
we draw them in the first place. Architecture diagrams are models of reality
(Chapter 22). The most common model of reality we use in daily life is a
map: maps help us decide where to go and how to get there. To do so, maps
select a specific scope and emphasis. For example, a Chicago street map
that shows only half of downtown would be awkward. However, including
all of Lake Michigan wouldn’t be very useful, just like adding Springfield
at the same scale. A map designer chooses conscious boundaries and a
conscious level of detail based on the map’s intended purpose.

Models, whether maps or architecture diagrams, aren’t about being right or
wrong. In fact, they’re all wrong (Chapter 6) because they aren’t reality.
The opening paragraph of William Kent’s book Data and Reality aptly
reminds us: “Rivers do not have dotted lines in them and freeways are not
painted red.”

Instead of trying to make models right, you should think about whether
your models are useful. To answer that question, though, you need to first
know what the model’s use, or purpose, is. For a model to be useful, it
needs to help you answer a question or make a better decision. Otherwise,
your diagram is just art, and having looked at thousands of architecture
diagrams, my impression is that most architects aren’t particularly gifted
artists.

So, before setting out to draw a specific diagram or design a presentation
slide, you must first decide which questions you are looking to answer. A
broad “lay of the land” might be needed to build your world map
(Chapter 16), but it isn’t very useful as an architecture diagram. Think of it
this way: a travel bureau will show you beaches and palm trees, not a map
of the whole continent.

When deciding on a diagram’s scope and
boundaries, I am not always able to do so
a priori. Sometimes, I need to have the
diagram in front of my eyes to decide

1

know which question you’re
trying to answer.

whether I prefer to split it into two. I
therefore almost always work iteratively.

The Five-Second Test
Architecture diagrams or slides are designed to get a specific point across
and therefore must place a clear emphasis. This distinguishes them from
reference books or manuals, which aim to be comprehensive. Still, too
many slides I see try to give the big picture as the best possible
approximation of reality without knowing which part is actually worth
looking at.

When faced with overly “noisy” slides, I tend to apply a strict but useful
five-second rule, which isn’t related to food safety:

I show the audience a slide for a mere five seconds and ask them to
describe what they saw. In most cases, the responses boil down to a few
words from the headline and statements like “two yellow boxes and one
blue barrel below.” If you are aiming to convey a shared database
pattern, you likely succeeded, but most authors will be disappointed to
hear such a dramatic simplification of their precious content.

Slides that don’t pass this test are likely to confuse the audience when first
shown: viewers’ eyes will chase across the visuals, trying to discern what’s
important and what’s the meaning of it all. During that time your audience
isn’t listening to you explaining the content because they’re busy with the
visuals. Of course, you will show the actual slide for more than five
seconds, but first impressions count—for every slide you show.

A useful presentation technique is to verbally introduce the concept of the
next slide before actually showing it. The audience is more likely to listen
because they’re aren’t distracted by the new visual and you’re building up a
bit of suspense. Naturally, this requires you to know which slide comes next
rather than use the slides as a reminder what to talk about.

2

https://oreil.ly/VQ20P

Some organizations create slides that try to act like documents, meaning
they are also meant to be read as handouts. The resulting slideument, a term
coined by Garr Reynolds, is rarely a useful presentation and never passes
the five-second test because there’s way too much content on a slide. Sadly,
most of them don’t make a meaningful document either because it usually
lacks a clear structure and storyline. Interestingly, Martin Fowler realized
that there’s a use case for documents created in a presentation tool, for
which he’s coined the term Infodecks. Nancy Duarte shows a similar
approach with SlideDocs. Both can be a useful communication medium
when being read as opposed to being projected.

A Pop Quiz
I participate in many architecture reviews and decision boards. While such
boards often exist due to an undesirable separation of decision makers and
knowledge holders (Chapter 1), many large enterprises depend on them to
harmonize their technical landscape and to gain an overview across many
functional silos. The topics for these meetings can be fairly technical in
nature, making me skeptical whether the audience is truly following along.

A presentation pop quiz consists of blanking the presentation and having a
member of the audience explain what they saw and understood. It’s a test for
the presenter, not the audience.

To test whether the decision body understands what they are deciding, I
inject a pop quiz into the presentation by telling the presenter to pause and
blank the slide (hitting “B” will do this in PowerPoint) and asking who
among the audience would like to recap what was said up to this point in
their own words. Sadly, this exercise is more likely to trigger nervous
laughter, frantic staring at the floor, and sudden checking of incoming
emails as opposed to a good summary. As a result, I might ask the presenter
to briefly recap the key points for everyone’s benefit. It’s also useful to
highlight to the audience that this is a test for the presenter, not for them.

3

4
5

6

Simple Language
I don’t exclude myself from the pop quiz. When replaying what the speaker
said, I often intentionally use very simple language to make sure I really
capture the essence.

In a presentation about network security architecture in the untrusted network
zone, after watching a handful of rather busy slides, I summarized the
speaker’s statement as follows: “What worries you is the black line going all
the way from top to bottom?” His resounding “yes” confirmed both that I had
correctly summarized the issue and that the presenter took away an insight
into how to better communicate this very aspect.

This technique might seem overly simplistic at first, but it validates that
there is a solid connection between the model being presented (such as
vertical lines depicting legal network paths from the internet to the trusted
network) and the problem statement (direct paths pose a security risk).
Removing all noise and reducing the statement down to the “black line”
sharpens the message.

Diagramming Basics
If I had to name the number-one enemy of useful architecture diagrams, it
would likely be Visio’s default 10-point font size and skimpy line width,
augmented by poor user judgment regarding component placement. It’s
really in the same league as PowerPoint’s autosize feature that gives people
an endless supply of bullet points to neutralize their audience. True, the tool
isn’t solely responsible, but Visio’s default settings, which are tuned for
detailed engineering schematics, lure the user into creating visuals that are
unsuitable for projecting something evocative on the wall.

My advice for creating diagrams that can convey a clear message without
dumbing down the content therefore starts with the following basic
techniques.

Avoid the Ant Font
Text that isn’t readable isn’t adding value, so avoid ant fonts unless you
consider “I know you can’t read this” an engaging introduction into a slide.
Using sans-serif fonts of decent size and good color contrast will be
appreciated in any presentation. I can’t count the number of times I see
slides that contain tiny fonts but consist of 50% empty space that could
have been used for larger boxes and larger fonts, similar to Figure 21-1.
Architecture diagrams aren’t the place for minimalism—go bold.

Figure 21-1. Use the available space to make text easily readable

Most tools allow you to set defaults for line width and font sizes. Use them.
Also, periodically zoom down the diagram on your screen to 25% to see
what’s still readable.

Maximize the Signal-to-Noise Ratio
Differences in elements that don’t have meaning are nothing but
distractions. Therefore, reduce visual noise; for example, by properly
aligning elements and using a consistent form and shape (see Figure 21-2).
It’s also good to be careful with too much decoration, such as rounded
corners, shadows, and so on—they can distract from the core message
you’re trying to convey. If things look different, make sure that this
expresses meaning, as detailed in Chapter 23.

Figure 21-2. Make same things look the same

Great advice on placement, visual layout, and emphasis can be found in
Nancy Duarte’s book slide:ology.

7

8

Let Arrows Point
One of the my most frequent maneuvers in presentation tools is to increase
the size of arrowheads. If you use directed arrows to express semantics
(Chapter 23), you’re going to want them to be easily recognizable, as
depicted in Figure 21-3. If direction isn’t critical to understanding the
diagram, omit the arrowheads to reduce noise.

Figure 21-3. If direction is important, make the arrowhead big enough to see

If your tool won’t cooperate, place a triangle over the line; never let the tool
be an excuse for poor diagrams. It’s like the cook coming out of the kitchen
and telling you that your meal isn’t tasty because the farmer didn’t grow
tasty tomatoes. You’re unlikely to be extraordinarily sympathetic.

Legends Are Crutches
Although they’re a standard feature in scientific circles and charts exported
from Excel, a visual legend requires a viewer to correlate patterns or colors
in a diagram with explanatory labels below or next to it. Having the label
where the data is located is much easier to digest, as shown in Figure 21-4.

Figure 21-4. Label your data as opposed to making the reader read a legend

Therefore, use legends only when absolutely unavoidable. Most of the time
you can remove clutter or increase the size of boxes to put the labels where
they belong. I have redrawn stacked bar graphs exported from Excel export

to have better control over sizing and labeling. The investment of a mere
five minutes saved a room full of executives much time and effort in
reading the data.

Layer Visually
As we already learned, a good document reads like watching the movie
Shrek (Chapter 20). The same is true for diagrams, which might be required
to illustrate complex interrelationships that lead to a particular system
behavior (Chapter 10). They should nevertheless pass the five-second test
by having a clear high-level structure that is visible first, augmented by
additional detail that reveals itself later and doesn’t interfere with the big
picture. Figure 21-5 first reveals that the system consists of two identical
zones, after which you can “zoom in” to see how each zone is internally
composed.

Figure 21-5. Give your diagrams a clear high-level structure

I occasionally use a build slide or incremental reveal for this purpose,
acknowledging that there are strong opinions for and against such visual
effects. I find build slides to work well as they give the viewer time to
understand each element before adding the next batch. For this to work, let
the new elements simply appear, avoiding any temptation to select one of
those amazing spiral-twist-fade-rotate reveals.

If you layer a diagram perfectly, the visuals will reveal themselves
incrementally. If you can’t quite get there every time, incremental build

slides are a reasonable substitute.

The Style of Elements
Most architects will develop their own visual style over time and can use it
as a valuable branding tool. Many of my technical papers and diagrams are
easily recognizable—for example, when sitting on someone’s desk—thanks
to a consistent set of colors and a bold, almost cartoon-like style that favors
large lettering over subtle aesthetics.

My diagrams virtually always have lines (Chapter 23), but I keep the lines’
semantics to two or at most three concepts. Each type of relationship that I
depict with lines should be intuitive. For example, I might depict a data
flow with broad, gray arrows, whereas control flow is shown in thin, black
lines, as illustrated in Figure 21-6, which depicts the Control Bus pattern
from Enterprise Integration Patterns.

Figure 21-6. The Control Bus pattern illustrates line semantics

The line width suggests that a large amount of data flows through the
system’s data flow while the control flow is much smaller but significant.
The best visual style, borrowed from advice on writing, is the one “that
keeps solely in view the thought one wants to convey.”

9

10

Making a Statement
When preparing a slide or a document paragraph, the title sets the tone for a
clear and focused statement. For most circumstances, I prefer titles that are
full sentences because the title alone tells the essence of the story. Using
this approach also assures that each slide or paragraph focuses on a single
main statement.

I make an exception for keynote presentations to a large and diverse
audience for which I use titles consisting of single words or short phrases
like the Architect Elevator (Chapter 1). Such short titles mesh well with
simple visuals that are truly a visual aid to me, the speaker, to draw the
audience’s attention and help them memorize the content via a visual
metaphor.

For technical presentations that are prepared for a review or decision-
making session, however, I prefer clear statements, with which one can
either agree or disagree. These statements are much better represented as
full sentences, akin to the story-telling headings (Chapter 20) in documents
for busy people. In such cases, “Stateless services and automation support
elastic scale-out” is a better title than “Server Architecture.”

What you certainly want to avoid are verbose phrases or crippled sentences
that confuse the reader but don’t make any form of statement: “Server
infrastructure and application architecture overview diagram (abstracted for
simplicity’s sake).” Trust me, I’ve seen even worse.

Twenty Slides, One Story
When structuring presentations, I realize that too many technical
presentations tell one story per slide. While it’s good to focus on one
message per slide, the sequence of messages needs to form a cohesive story,
as demonstrated in the bottom half of Figure 21-7. Interestingly, you can
test this easily using PowerPoint’s Outline View, which shows all slide
headings in a sidebar.

Figure 21-7. Telling one story supported by slides aids flow and saves time

Creating this cohesion not only makes a single story line for a more logical
flow, it also drastically shortens the time to needed to present. If each slide
tells a new story, the speaker will easily spend half a minute looking at and
introducing each slide. Multiply this by the typical 20 to 30 slides in a
presentation, and you’ll find that having a connected storyline can save you
up 15 minutes. So, when someone worries that they don’t have enough time
for their content, I advise them to make sure that they have a single story.

For a good collection of slide decks that tell a story, I recommend a visit to
https://speakerdeck.com.

Nothing Is Confusing in and of Itself
The closing advice I give to anyone creating documents and visuals that
need to explain complex topics is the following: things might be
complicated, but whether it’s confusing, that’s up to you.

1 William Kent, Data and Reality: A Timeless Perspective on Perceiving and Managing
Information in Our Imprecise World, 3rd ed. (Westfield, NJ: Technics Publications, LLC,
2012).

2 Wikipedia, “Five-Second Rule,” https://oreil.ly/1Z397.

https://speakerdeck.com/
https://oreil.ly/1Z397

3 Garr Reynolds, "Slideuments and the Catch-22 for Conference Speakers,” Presentation Zen
(blog), April 5, 2006, https://oreil.ly/yw45r.

4 Martin Fowler, “Infodeck,” MartinFowler.com, Nov. 16, 2012, https://oreil.ly/yvgTq.

5 Nancy Duarte, “PowerPoint Presentations vs. Slidedocs,” Duarte.com, https://oreil.ly/MjKny.

6 A pop quiz is a short test given by a teacher in class without prior announcement. It goes
without saying that this is fairly unpopular with students.

7 Neal Ford, Matthew McCullough, and Nathaniel Schutta, Presentation Patterns: Techniques
for Crafting Better Presentations (Boston: Addison-Wesley Professional, 2012).

8 Nancy Duarte, slide:ology: The Art and Science of Creating Great Presentations (Sebastopol,
CA: O’Reilly Media, 2008).

9 Hohpe and Woolf, Enterprise Integration Patterns.

10 Barzun, Simple & Direct.

https://oreil.ly/yw45r
https://oreil.ly/yvgTq
https://oreil.ly/MjKny

Chapter 22. Diagram-Driven
Design

Cheating in a Picture Is Much Harder Than Cheating in Words

Designing with Diagrams

Some years ago, the Crested Butte Enterprise Architecture Summit once
again proved that sticking a bunch of geeks in a remote town can lead to
creative results. In our case, the result was an A-to-Z list of 26 new
development strategies, starting from activity-driven development (ADD)
and ending on zero-defect development (ZDD). Domain-driven design
(DDD) was dedicated to Eric Evans’s fantastic book Domain-Driven

Design. However, another “DDD” sprang to mind: diagram-driven design,
and it turned out that there’s actually a serious idea behind the fun exercise.

Presentation Skills: More Than a Wide
Stance
While working for Google in Japan, I created and taught a class on
presentation skills for engineers, which included some common ideas of
using strong, impactful visuals inspired by books like Presentation Zen.
Following my own advice equipped me with high-resolution graphics of
confident managers, fuel gauges indicating that your mileage may indeed
vary, shoes that apparently do not fit all, and so on. Still, however impactful
fancy graphics may be, for most technical presentations a wide stance, deep
voice, and Steve Jobs–like hand gestures (turtleneck optional) are unlikely
to teach the audience how a multicloud strategy increases your system
architecture complexity.

Instead, you need “meat”: what design alternatives did the team have? How
do they differ? What design principles made you choose one over the other?
What are the main building blocks of the systems and how do they interact
(Chapter 23)? How did you track down that performance bottleneck and
what did you learn from it? When Garr Reynolds, the author of
Presentation Zen, came to Google to talk about his book, he acknowledged
that technical discussions often require detailed diagrams or even snippets
of source code. He suggested to provide those as a handout instead of
including it in the presentation to make it easier for the audience to read and
digest them. Still, most technical presentations I see do contain source code
or diagrams to explain technical concepts in detail, so we’d better figure out
how to do so effectively.

Ed Tufte already ran bullet points through the grinder by blaming them for
the inaction that led to the Space Shuttle Columbia disaster upon re-entry
(and he might not be wrong judging from the slides they put together).
“Death by PowerPoint” was immortalized by a Dilbert comic strip as early
as 2000. You can’t fit a lot of source code on a slide either, especially if you

1

2

3

are using a verbose language with checked exceptions. That leaves you with
diagrams as your main communication vehicle for technical concepts.

Diagramming as Design Technique
Back at Crested Butte, we looked at our list and pondered whether some of
our concoctions actually had meaning. Interestingly, as we discussed how to
draw meaningful diagrams in a later session, I highlighted the importance
of a consistent visual vocabulary, which would omit unnecessary details but
highlight the essence of the design decisions (Chapter 8). During this
discussion, we realized that to draw a good picture, you need to have a
decent design in the first place. If reality is completely convoluted, it’s hard
to depict order in retrospect. Taking this thought a step further, we realized
that good diagramming contributes to good system design in general.
Diagram-driven design had become a reality!

When talking about diagram-driven design, I don’t imply that we’d
generate code from UML diagrams. I am pretty firmly rooted in Martin
Fowler’s UML as Sketch camp, meaning UML is a picture to aid human
comprehension, not a programming language or specification. If people
don’t quite agree, I refer to Grady Booch, who as co-creator of the UML
remarked that “The UML was never intended to be a programming
language.” Instead, I am talking about a picture that conveys important
concepts—the proverbial big picture that does not get caught up in
irrelevant details.

Designing with Diagrams
An excellent example of designing with diagrams is the book Enterprise
Integration Patterns coauthored by Bobby Woolf and myself in 2003. The
book defines a pattern language for designing asynchronous messaging
solutions, which is represented both in text form and as a set of icons. The
consistent visual style and the simple composition model of messaging

4

5

solutions allows the visual language to become a design tool, as shown in
the illustration from the book (Figure 22-1).

Figure 22-1. Designing with Enterprise Integration Patterns

The resulting diagrams aren’t just illustrations but also help validate the
design. For example, the visual language reminds you that for every
splitting or distribution of messages, you need to aggregate them back later.
It also validates a logical grouping of the elements.

One great historical example of diagram-driven design are the graphical
train schedules created to plot trains’ paths along two axes by distance
(vertical) and time (horizontal). The faster a train moves, the steeper the line
will drop. The lines on such charts intersect where trains running in
opposing directions pass each other (see Figure 22-2). On a single-track
railroad, you’d want to make sure that these occur at a station where there
are two tracks and platforms. Having the train schedules laid out visually is
a great design aid.

Well-known examples of these maps go back to Étienne-Jules Marey and
his book La Méthode Graphique (1878). They are also featured prominently
in Tufte’s The Visual Display of Quantitative Information, perhaps the
standard text on charting and diagramming.

6

Figure 22-2. Visually designing train schedules

Diagram-Driven Design Techniques
Once you embrace diagramming as a design technique, you’ll find several
connections between good visual design and good system design, which we
examine in the following sections.

Establish a Visual Vocabulary and Viewpoints
Good diagrams use a consistent visual language. A box means something
(for example, a component, a class, a process), a solid line something else
(maybe a build dependency, data flow, or an HTTP request), and a dashed
line means something else yet. No, you don’t need a Meta-Object Facility
and correctness-proven semantics, but you need to have an idea what
element or relationship you are depicting how. Picking this visual
vocabulary is important to define the architectural viewpoint you are going
to concern yourself with, such as source code dependencies, runtime
dependencies, call trees, or allocation of processes to machines.

Good design is often tied to the ability to think in abstractions. Diagrams
are visual abstractions and can be instrumental in this process.

Limit the Levels of Abstraction
One of the most frequent problems I encounter in technical documents is a
wild mix of different levels of abstraction (the same problem can be found
in source code). For example, the way configuration data affects a system’s
behavior can be described like this:

The system configuration is stored in an XML file, whose “timetravel”
entry can be set to either true or false. The file is read from the local
filesystem or alternatively from the network, but then you need NFS
access or to have Samba installed. It uses a SAX parser to avoid building
the whole DOM tree in memory. The “Config” class, which reads these
settings, is a singleton because…

In these few sentences you learn about the file format, project design
decisions, implementation detail, performance optimizations, and more. It’s
rather unlikely that a single reader is actually interested in this smörgåsbord
of facts.

Now try to draw a picture of this paragraph! It will be nearly impossible to
get all of these concepts onto a single sheet of paper.

Drawing a diagram thus forces us to clean up our thinking by considering
one level of abstraction at a time. While drawing a picture doesn’t
automagically make the problem of mixing abstractions disappear, it puts it
in your face much more bluntly than a meandering chain of prose, which
from afar might not look all that bad. A well-known German proverb
proclaims that Papier ist geduldig (“paper is patient”), meaning paper is
unlikely to object to what garbage you scribble on it. Diagrams are a little
less patient. If you do compare architecture diagrams to modern art, you’ll
want the Mondrian, not the Pollock.

Reduce to the Essence
Billboard-sized database schema posters, which include every single table,
stick to a single level of abstraction but are still fairly useless because they
try to convey reality without placing an emphasis (Chapter 21). When
shrunken down to fit on a single presentation slide, they start to look like
abstract art—something better placed in the museum than in architecture
documentation.

Therefore, omit unimportant detail to concentrate on what’s most relevant!
The same is true for system design: it’s important to know “what kind of
thing” your system is; for example, by defining a system metaphor
(Chapter 24).

Find Balance and Harmony
Limiting the levels of abstraction and scope does not yet guarantee a useful
diagram. Good diagrams lay out important entities such that they are
logically grouped, relationships become naturally clear, and an overall
balance and harmony emerges. If such a balance doesn’t emerge, it may just
be that your system doesn’t have one.

I once reviewed a relatively small module of code that consisted of a rather
entangled mess of classes and relationships. When the developer and I tried to
document this module, we just couldn’t come up with a half-decent way to
sketch what was going on. After a lot of drawing and erasing we came up
with a picture that vaguely resembled a data-processing pipeline. We
subsequently refactored the entangled code to match this new system
metaphor. It improved the structure and testability of the code significantly,
thanks to diagram-driven design!

A well-balanced diagram will show coupling, cohesion, and a high-level
structure, concepts that equally help with good system design.

Indicate Degrees of Uncertainty
When looking at a piece of code, you can always figure out what was done,
but it’s much harder to understand why it was done. It can be even more
difficult to understand which decisions were made consciously and which
ones simply happened.

When creating diagrams, you have more tools at hand to express these
nuances, so you should use them. For example, you can use a hand-drawn
sketch to convey that your design is merely a basis for discussion. Once you
have full agreement and want to convey that every detail is critical, you can
use a visual style that resembles an engineering blueprint. Many books,
including Eric Evans’s, use this technique effectively. That’s also the reason
this book uses sketches: we are discussing architecture approaches and
ways of thinking, not concrete tools and processes.

When drawing, consider the precision versus accuracy dilemma: “next
week it will be roughly 15.235 degrees” doesn’t make sense as it’s precise
but inaccurate. Don’t make precise-looking slides if you know they aren’t
accurate.

Diagrams Are Art
Diagrams can (and should) be beautiful—little works of art, even. I am a
firm believer that system design has a close relationship to art and
(nontechnical) design. Both visual and technical design start with a blank
slate and virtually unlimited possibilities. Decisions are often influenced by
multiple, usually conflicting, forces. Good design resolves these forces to
create a functional solution, which attains a good balance and some degree
of beauty. This may explain why many of my friends who are great
(software) designers and architects have an artistic vein or at least interest.

No Silver Bullet (Point)
Not all diagrams are useful as a design technique. Drawing a messy picture
won’t make your poor design any better. Beautiful marchitecture diagrams,
which have little to do with the actual system being built, are also of limited
value. In technical discussions, though, I have observed many occasions for
which drawing a good diagram has greatly improved the conversation and
the resulting design decisions. If you are unable to draw a good diagram
(and it isn’t due to lack of skill), it might just be because your actual system
structure is not what it should be.

1 Eric Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software (Upper
Saddle River, NJ: Addison-Wesley, 2003).

2 Garr Reynolds, Presentation Zen: Simple Ideas on Presentation Design and Delivery, 3rd ed.
(New Riders, 2019).

3 Edward Tufte, “PowerPoint Does Rocket Science: and Better Techniques for Technical
Reports,” EdwardTufte.com, https://oreil.ly/kDihX.

4 Martin Fowler, “UML as Sketch,” MartinFowler.com, https://oreil.ly/WLUgR.

5 Mark Collins-Cope, “Interview with Grady Booch,” Objective View Magazine, Issue 12, Sept.
12, 2014, https://oreil.ly/HGc5j.

6 Edward R. Tufte, The Visual Display of Quantitative Information (Cheshire, CT: Graphics
Press, 2001).

7 Marchitecture denotes marketing pictures disguised as architecture.

7

https://oreil.ly/kDihX
https://oreil.ly/WLUgR
https://oreil.ly/HGc5j

Chapter 23. Drawing the Line

Architecture Without Lines Likely Isn’t One

A functional architecture of a car

The sketch above depicts the architecture of a car. All the important
components are there, including their relationships: the engine is under the
hood; passenger seats are appropriately located inside the passenger
compartment, close to the steering wheel; wheels are assembled nicely at
the bottom of the car in the chassis. This diagram appears to fulfill most
definitions of architecture (except my favorite one because I am looking for
decisions; see Chapter 8).

However, it does precious little to help you understand how a car functions:
could you omit the gas tank because it’s far away from the engine, anyway?
Are engine and transmission side by side under the hood by coincidence or
do they have a special relationship? Does the car need exactly four wheels
or will three also do? If you had to build the car in stages, what subset
would make sense to assemble first? Would just the cabin with the seats be
a good start? How can you distinguish a good car from a bad one? Which
aspects are common in virtually all cars (e.g., the wheels being at the
bottom) and which ones vary (Porsche 911, VW Beetle, or DeLorean
owners would be quick to point out that their engine isn’t under the hood)?

The picture doesn’t really answer any of these questions. It depicts the
location of the components, but it doesn’t convey their relationships or
function in the overall system “car.” Even though the picture is factually
correct and actually reasonably detailed, it doesn’t allow us to reason much
about the system it is describing, especially its behavior. Coincidentally, it
might also not be a good example of diagram-driven design (Chapter 22).

Behold the Line!
The critical element that’s missing in the picture are lines connecting the
components. Without lines, it’s quite difficult to represent rich relationships.
The line is so important that boxes, labels, and lines suffice to make up
Kent Beck’s only half-joking Galactic Modeling Language. Without lines,
there wouldn’t be much of a modeling language left. Also, as often stated,
“the lines are more interesting than the boxes.” Where does stuff usually go
wrong? In the integration between two well-tested pieces. Where do I need
to look to achieve strong or loose coupling? Between the boxes. How do I
tell a well-structured architecture from a Big Ball of Mud? By the lines.

The importance of lines is most easily understood from a simple example,
illustrated in Figure 23-1.

1

2

Figure 23-1. Without lines, an architecture diagram is rather meaningless

The system on the left and the system on the right are made from the same
components, A, B, C, and D. Would the two systems have different
properties and behaviors? The system on the left has a neat, layered
architecture, which provides clear dependencies and makes it easy to
replace a component with a different one. It can also suffer from long
latency because messages or commands have to travel through each
component in sequence. Also, each component can become a single point of
failure: if C fails, the chain is broken, and the system is unable to function.

The system on the right has almost the exact opposite properties:
interdependencies are a bit messy, making it difficult to replace a
component. However, the system provides shorter communication paths
and is more resilient: if C fails, A can still talk to D.

If I see an architecture
diagram without lines, I am
inclined to reject it because it
won’t convey the system’s
behavior.

Now imagine that this diagram had no
lines. You would never know whether the
system is built like the one on the left or
the one on the right, resulting in a rather
meaningless architecture diagram.
Therefore, if I see an architecture diagram
without any connecting lines, I am

skeptical as to whether it qualifies as a meaningful depiction of an
architecture. Unfortunately, many diagrams fail this basic test.

The Metamodel
Stating that the diagram of the car doesn’t show any relationships isn’t quite
true. The picture does contain two primary relationships between
components:

Containment

One box is enclosed by another.

Proximity

Some boxes are close to one another, whereas others are farther apart.

Containment corresponds to real-world semantics in this drawing: seats are
actually contained inside the passenger cell, and the hood (the engine
compartment to be more precise) houses engine and transmission. Engine
and transmission are also next to each other, giving them proximity, which
underlines them sharing a strong relationship: one makes little sense
without the other. But the proximity semantics in this picture are relatively
weak: the gas tank and spare tire are also next to each other, but for the
function of the car this doesn’t have any meaning. The vague
correspondence of proximity in the diagram to real-life proximity has no
relationship to function and thus renders an odd mix of a logical and
physical representation.

I routinely challenge diagrams that limit relationships between components
to containment. Such diagrams make it difficult to reason about the system,
as seen in the car example we looked at earlier. Reasoning about the system
is one of the main purposes of drawing an (architecture) diagram, so we
need to do better.

Diagrams that are based only on containment and proximity generally could
have been just as easily represented as an indented bullet list: subbullets are
contained by outer bullets and bullets next to each other are in proximity. In
our example, you would end up with a list like this (showing only a portion
to avoid death by bullet points):

Hood

Engine

Transmission

Passenger cell

Speedometer

Steering wheel

Four seats

In this case, the picture doesn’t say the proverbial 1,000 words. The list and
the picture are just different projections of the same tree structure. And
people say intentional programming is difficult! You might like the picture
better than the list, but you must be aware that both representations have the
same richness, or poorness, of expression. The picture adds the size and
shape of the boxes, which aren’t represented in the textual list, but the
semantics of size and shape in our example are unclear: all components are
rectangles, but the wheels are circles. It’s a crude approximation of reality,
but for reasoning about the system it doesn’t add much.

3

The Semantics of Semantics
When I was told for the first time that “UML sequence diagrams have weak
semantics,” I was doubtful whether this rather academic statement had any
relevance for me as a normal programmer. The short answer is: “yes, it
does.” Prior to UML 2, sequence diagrams depicted only one possible
sequence of interactions between objects, albeit allowing for concurrency.
They couldn’t express the complete set of legal interaction sequences, such
as loops (repeating interactions) or branches (either/or choices). Because
loops and branches are some of the most fundamental control flow
constructs, sequence diagrams’ weak semantics rendered them essentially
useless as a specification. UML 2 improved the semantics but at the cost of
much reduced readability.

Why worry so much about the semantics of a diagram? The purpose of
design diagrams or engineering drawings is to give viewers an
understanding of the system, particularly the system behavior. A drawing is
a model, so it’s by definition wrong (Chapter 6). However, it can be useful;
for example, by allowing the viewer to reason about the system. The visual
elements, such as boxes and lines, must neatly map to concepts in the
abstract model so that the viewer can build the model in their head. For the
viewer to grasp the meaning of the drawing, the visual elements need
semantics: semantics is the study of meaning.

Elements—Relationship—Behavior
Without lines, it is impossible to ascertain a system’s behavior. It’s like
listing the ingredients for a meal without the recipe. Whether something
tasty comes out primarily depends on the way it’s prepared: potatoes can
turn into French fries, gratin, boiled potatoes, mashed potatoes, baked
potatoes, fried potatoes, hash browns, and more. A meaningful architecture
diagram, therefore, needs to depict the relationships between components
and provide semantics for these relationships.

Electric circuit diagrams provide a canonical example of system behavior
that depends heavily on connections between components. One of the most
versatile elements in analog circuitry is the operational amplifier, or op-amp
for short. Paired with a few resistors and a capacitor or two, this element
can act as a comparator, amplifier, inverted amplifier, differentiator, filter,
oscillator, wave generator, and much more. The system’s behavior, which
varies widely, doesn’t depend on the list of elements, but solely on how
they are connected. In the world of IT, a database can act as a cache, ledger,
file storage, data store, content store, queue, configuration input, and much
more. How the database is connected to its surrounding elements is
fundamental, just like the op-amp.

Architecture Diagrams
If you feel that this is about as much as one could and should say about a
contrived sketch of a car, rest assured that I get to see many architecture
diagrams without any lines. These diagrams do depict proximity, simply
because some boxes have to be next to each other, but whether any
semantics are tied to this fact remains unclear. If you are lucky, proximity
represents a form of “layering” from top to bottom, which in turn implies a
dependency from things on “top” to things “further down.” In the worst
case, proximity was defined by the order in which the author drew the
boxes.

So-called “capability diagrams” or “functional architectures” are
particularly likely to be devoid of lines. These diagrams tend to list (pun
intended) capabilities that are needed to perform a certain business function.
For example, to manage customer relationships you need customer
channels, campaign management, a reporting dashboard, etc. The set of
capabilities forms a “laundry list” of things that are needed, but we aren’t
closer to architecture than listing windows, doors, roof for a house. I,
therefore, prefer such input to be represented as textual lists so that this
distinction becomes clear. Wrapping text in boxes doesn’t constitute
architecture.

UML
Speaking of lines, UML has a beautiful abundance of line styles: in a class
diagram, classes (boxes) can be connected through association (a simple
line), aggregation (with a hollow diamond on one end), composition (a solid
diamond), or generalization (triangle). Navigability can be indicated by an
open arrow, and a dependency by a dashed line. On top of this,
multiplicities—for example, a truck having four to eight wheels but only
one engine—can be added to the relationship lines. In fact, UML class
diagrams allow so many kinds of relationships that Martin Fowler decided
to split the discussion into two separate chapters inside his defining book
UML Distilled. Interestingly, UML allows composition to be visually
expressed through a line or as containment, that is, drawing one box inside
the other.

With such a rich visual vocabulary, why invent your own? The challenge
with UML notation is that you can appreciate the nuances of the
relationship semantics between classes only if you have in fact read UML
Distilled or the UML specification. That’s why such diagrams aren’t as
useful when addressing a broad audience: the visual translation of solid
diamond versus hollow diamond or solid line versus dotted line isn’t
immediately intuitive. This is where containment works well: a box inside
another is easily understood without having to add a legend.

Beware of Extremes
As so often, the opposite of bad is also troublesome. I have seen diagrams
in which elements have different shapes, sizes, colors, and border widths;
connecting lines have solid arrows, open arrows, no arrows; are dotted,
dashed, and of different color. These cases either result from sloppiness, in
which case the visual variation has no meaning and is simply “noise,” or
from a metamodel that’s so rich (or convoluted) that a diagram likely isn’t
the right way to convey it. The rule I apply is that any visual variation in a
diagram should have meaning—in other words, semantics. If it doesn’t, the
variance should be eliminated to reduce visual noise, which only distracts

4

the viewer and, worse yet, can cause the viewer to interpret this noise as
semantics that were in fact never intended. Because you cannot look inside
the viewer’s head, such misunderstandings or misinterpretations are
difficult to detect. In short: making all boxes the same size won’t crimp
your artistic talent, but it will make clear to the viewer that the model
behind the diagram considers all boxes to have the same properties. It’ll
also help draw attention to the lines.

The standard text on charting and diagramming is Tufte’s The Visual
Display of Quantitative Information plus his subsequent books. Although
the books initially focus on display of numeric information, later volumes
cover broader aspects, including many examples that package complex
concepts into diagrams that remain crisp and easy to grasp.

1 “Galactic Modeling Language,” Wikiwikiweb, https://oreil.ly/XT4lF.

2 Neal Harrison, Brian Foote, and Hans Rohnert, Pattern Languages of Program Design 4
(Boston: Addison-Wesley, 1999).

3 “Intentional Programming,” Wikiwikiweb, https://oreil.ly/5bGf-.

4 Martin Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd
ed. (Boston: Addison-Wesley Professional, 2003).

5 Edward R. Tufte, The Visual Display of Quantitative Information (Cheshire, CT: Graphics
Press, 2001).

5

https://oreil.ly/XT4lF
https://oreil.ly/5bGf-

Chapter 24. Sketching Bank
Robbers

Architects as Police Sketch Artists

That’s what he looked like!

With a demanding job like that of an architect in a large IT organization, it’s
a healthy exercise to do more of those things you enjoy and fewer of those
you don’t enjoy. Of course, this requires you to know what you truly enjoy

(and truly despise) in the first place—a task that can be a little more
challenging than it sounds, especially for left-brained IT architects. The
latter is generally more easily answered: in my case it’s 8 a.m. meetings
with no particular objective that end up in a monologue by the highest-paid
person. The former usually takes a bit more reflection. Over the years, I
have realized that one of my favorite work activities is to listen to system
owners or solution architects describe their system, often in fragments, and
to draw a cohesive picture for them. The most satisfying moment happens
when they exclaim, “That’s exactly what it looks like,” without them having
been able to draw the picture themselves. This exercise is also a great
opportunity to learn about those system details that aren’t documented
anywhere.

Asking people to tell you about their system so that you can draw it for
them may remind you of the old joke that describes consultants
(Chapter 38) as those people who borrow your watch to tell you what time
it is (and charge you a lot of money for it). Drawing expressive architecture
diagrams, though, is a bit more involved than reading the time off a watch.
It extracts people’s knowledge and presents it in a way that they weren’t
able to create themselves.

Being able to build a system doesn’t automatically mean the same person is
gifted at representing it in an intuitive way. Therefore, helping such a
person draw a picture of their system can be quite valuable. I liken this task
to that of a police sketch artist.

Everyone Saw the Perpetrator
If a bank is robbed and you ask those people who saw the perpetrator to
draw a picture, you’ll likely end up with stick figures or very rough
sketches. In any case, you won’t get anything particularly useful even
though the witnesses have a firsthand account of the person. Knowing
something, being able to articulate it, and being able to draw it are three
very different skills.

That’s why a professional police sketch artist is usually brought in,
especially in cases where security cameras could not get precise footage.
The artist interviews the witnesses, asking them a series of questions that
they can easily answer, such as “Was the person tall?” Based on the
descriptions the artist draws the picture, frequently obtaining feedback from
the witnesses. After initially giving trivial facts like “He was tall,” people
end up confirming, “He looked just like that!”

A Police Sketch Artist
A police sketch artist is a fairly specialized job whose education includes
both art and human anatomy. For example, a police sketch artist will
undergo training in dental and bone structure because they influence the
appearance of the suspect. The same is true for architecture artists: they
need to have a minimum level of artistic skill, probably not quite at the
level of the criminal sketch artist, but they must also have the mental model
and visual vocabulary to express architectural concepts.

Interestingly, sketch artists break down the problem and work with well-
known “patterns”: after initially asking very broad questions like “tell me
about the person,” the artist will guide the witness with these typical
patterns, for example, ethnicity, or defining features such as nose, eyes, or
hair. To exaggerate, they won’t discover that the person had two ears, two
eyes, and one nose (if they don’t, that’s certainly worth mentioning!), but
they do drive toward discriminating and defining features, just like we do
when we try to tell whether something is architecture (Chapter 8). In the
world of IT, we would do the equivalent. For example, when looking at data
storage, we’d ask if it’s an RDBMS or a NoSQL DB, perhaps a
combination, whether it uses caching, replication, and so on.

Sketching Architectures
When assuming the role of an “architecture sketch artist,” I tend to combine
two different approaches:

The System Metaphor
First, I look for noteworthy or defining features; for instance, for the key
decisions (Chapter 8). Is it a pretty vanilla website for a customer to review
information, like a customer information portal? Or, is it rather a new sales
channel, or even a piece of a cross-channel strategy? Is it designed to
handle tons of volume, or is it rather an experiment that will see little traffic
but must evolve very quickly? Or, is it a spike to test out new technologies
and the use case is secondary? After I have established this frame, I start
filling in the details.

I am a big fan of Kent Beck’s notion of a system metaphor that describes
what kind of “thing” the system is. As Kent wisely states in Extreme
Programming Explained:

We need to emphasize the goal of architecture, which is to give everyone
a coherent story within which to work, a story that can easily be shared
by the business and technical folks. By asking for a metaphor we are
likely to get an architecture that is easy to communicate and elaborate.

In the same book, Kent also states that “Architecture is just as important in
XP [Extreme Programming] projects as it is in any software project,”
something to be kept in mind by folks who are tempted to shun architecture
because they are Agile (Chapter 31).

Just like with diagram-driven design (Chapter 22), architecture sketching
can also be a useful design technique. If the picture makes no sense (and the
architecture sketch artist is talented), something might be inconsistent or
wrong in the architecture.

Viewpoints
As soon as I have a rough idea about the nature of the system, I let the
metaphor drive which aspects or viewpoints to examine. This is where
doing an architecture sketch differs from performing an architecture
analysis. An analysis typically walks through a fixed, structured set of
aspects, as defined for example by methods such as C4 or arc42. This is

1

https://c4model.com/
http://arc42.org/

useful as a “checklist” to uncover missing aspects or gaps. In contrast, a
police sketch artist doesn’t want to draw the details of a person’s trouser
finishings (hemmed? cuffed?), but wants to highlight those characteristics
that are unique or noteworthy. The same is true for the architecture sketch
artist.

Following a fixed set of viewpoints always runs the risk of becoming a
paint-by-numbers exercise in which one fills in every section of a template,
but forgets to place an emphasis (Chapter 21) or omits critical points in the
process. I therefore find the viewpoint descriptions in Nick Rozanski and
Eoin Woods’s Software Systems Architecture useful because they don’t
prescribe a fixed notation, but highlight concerns and pitfalls. Nick and
Eoin also separate perspectives from views. When sketching an architecture,
you are most likely interested in a specific perspective, such as performance
and security, that spans multiple viewpoints; for example, a deployment or
functional view.

Visuals
Each artist has their own style, and to some degree architecture sketches
will also differ. I am not a big fan of molding all system documentation into
a single notation because we are not creating a system specification (that’s
in the code), but a sketch that gives humans a better vehicle to reason about
the system. For me, it’s important that every visual feature of the notation
has meaning in the context, or perspective, that we are analyzing.
Otherwise, it’s just noise. Of course, the diagram must not only show the
components but also their relationships (Chapter 23).

The best diagrams are rich in expressiveness but don’t require a legend
because the notation is intuitive from the start, or because the viewer can
learn the notation from simple examples and apply what they learned to
more complex aspects of the diagram. This is very much how user
interfaces work: no user wants to read a long manual, but they will use what
they see to build a mental model and use it to set expectations for how more
complex features should work. Why not think of a diagram as a user

2

interface? You might feel that it lacks interactivity, and you are right, but
viewers navigate complex diagrams very much like users navigate user
interfaces.

Architecture Therapy
Grady Booch drew analogies between having teams depicting their
architecture and family therapy, which asks children to draw a picture of
their family in a method referred to as Kinetic Family Drawings (KFD).
The drawings give therapists insight into the family dynamics, such as
proximity, hierarchy, or behavioral patterns. I have experienced the same
with development teams, so you shouldn’t outright discard their drawings
as meaningless or incomplete, but derive insight into the team’s thinking
and hierarchy from them: is the database in the middle of it all? Maybe the
schema designer is calling the shots in the team (I know a case of that
happening). Are there many boxes, but no lines? Probably the team’s
thinking is focused on structural concerns but ignores system behavior. This
is often the case when the architect is too far removed from code and
operational aspects.

That’s Wrong! Do It Again!
A common situation when sketching an architecture for someone else is
them stating, “This is wrong!” This is a good thing; it means that you
discovered a mismatch between your and their understanding. If you hadn’t
drawn it, you would have never realized. Also, if you assume you are a
reasonable proxy for subsequent consumers of the diagram, you also saved
them from the same misunderstanding. Therefore, sketching out
architecture is almost always an iterative process. Bring an eraser.

1 Kent Beck, Extreme Programming Explained: Embrace Change (Boston: Addison-Wesley,
1999).

3

2 Nick Rozanski and Eoin Woods, Software Systems Architecture: Working With Stakeholders
Using Viewpoints and Perspectives, 2nd ed. (Upper Saddle River, NJ: Addison-Wesley, 2011).

3 Grady Booch, “Draw Me a Picture,” IEEE Software 28, no. 1 (Jan./Feb. 2011).

Chapter 25. Software Is
Collaboration

Got Git?

Hello Peter, what’s happening?

Much has (rightly) been said and written about the differences between IT
architecture and classic building architecture, which we often refer to in our
metaphors. For example, although buildings do evolve over time (just very
slowly), achieving high rates of change at low cost is something that brick-1

and-mortar objects can’t do. But many things can, and it’s not at all limited
to software development.

Who Says Software Is for Computers Only?
Enterprises spend significant effort creating, revising, and sharing
documents, be they strategic plans, schedules, design documents, or status
reports (Chapter 30). Typically, these documents need input from multiple
parties and undergo iterations and quality checks until they are released.
Such artifacts are really a form of software—they surely aren’t hardware,
even though they may be printed on physical paper on occasion (witnessing
someone print 25 copies of a large slide deck on digital transformation will
forever be burned into my mind).

So, if documents are in fact software, if we want to optimize and accelerate
our collaboration and communication, we might be able to learn a bit by
looking at how software delivery teams, especially widely distributed open
source teams, work.

Version Control
The one tool you won’t be able to pry out of any developer’s dead cold
hands is version control (Chapter 14). Version control is the safety net that
gives developers the confidence to move fast because they have the
assurance that they can revert quickly in case they take a wrong turn. One
of the most popular version control tools these days is Git. The model
behind this software takes some getting used to, but once you adapt your
flow, you’ll never want to go back to anything else.

I wrote the precursor to this book in Markdown, a simple text format. I
used Git for version control and Dropbox for file synchronization with the
publishing engine. After the book was published, I kept ideas for additional
chapters (like this one) in a backlog. Without thinking too much about it, I
reverted to writing the backlog in Microsoft Word as these chapters weren’t
done and weren’t going to be published soon.

2

I instantly noticed that my rate of progress slowed down: should I remove
or rewrite this paragraph? What if I change my mind later and want to keep
it? I better make a copy and “park” it somewhere for later. By the way,
where did I keep the latest version? Should I use the Track Changes feature
instead? When working with text files and version control, I would not have
spent a second on any of this because I’d be assured that I could revert to a
prior version at any time. I’d also be able to see all the changes I made over
time, so I could track progress easily.

Of course, I could have checked my Word documents into Git or a
document management system like Microsoft SharePoint. However, two
main factors would be missing: first, version comparison between Word
files is much more laborious than on simple text files. Word’s review mode
tracks history but is much more geared toward minor revision changes as
opposed to iterative creation of a document. More important, the build tool
chain to produce the book works with Markdown files, so I would not enjoy
the benefits of Continuous Integration, meaning I can create a preview copy
of the book any time I make a change.

Anyone who has looked at a corporate file server notices that I am not the
only one who appreciates version control. You’ll find 20-some copies of the
same document, with the filename either suffixed with a version number,
prefixed with the date (for easy sorting), tagged with the last author’s initials
to indicate branching, etc. Someone had the right idea but stumbled in the
implementation.

Single Source of Truth
Version control is a powerful tool, if all team members look at the same
version. Emailing documents around that are kept on local drives means
that each person has their own source of truth, which is going to lead to
friction in the best case and lost information in the worst. Therefore, version
control must be coordinated among team members.

The most transformative change in collaboration patterns I have witnessed
was the advent of Google Docs (then called “Writely”) around 2006, and it
wasn’t due to my seven years of drinking Google Kool-Aid. Google Docs
popularized a browser-based document editing model that allows multiple
users to simultaneously edit the same document. Interestingly, when Google
Docs first became available internally at Google for dogfooding
(Chapter 37), its feature maturity resembled that of Microsoft Word 5.0
from 1989. Getting two bullet points to be the same size was already a
challenge.

Still, being able to collaborate in real time on a shared document
fundamentally changed the way people worked together. No time was
wasted on maintaining, mailing, finding, or merging multiple versions of
documents. Almost all “my version versus your version” discussions went
away as it was clear that the team worked toward a single shared outcome.
Adding collaborators became easy and natural. Having had to go back to
sharing Word and PowerPoint documents by email has been a rather
frustrating experience.

Trunk-Based Development
Most version control tools allow branching. Branches are separate versions
of the codebase, often used to develop a special feature that’s not yet ready
to be released. The major advantage of branching is that a person working
in a branch can make many changes without having to worry about what
else is going on. Alas, that freedom is usually short lived. Sooner or later,
the branch must be “merged” back into the authoritative version, also called
the trunk, following the analogy of a version “tree.”

Unfortunately, while a person was working in the branch, time wasn’t
actually standing still: many other changes occurred to the documents or
source code. As a result, merging becomes a rather unpleasant and often
wasteful exercise: perhaps someone copyedited the paragraph that you just
rewrote. That’s wasted effort! Also, while you are working in your branch,
no one else can benefit from what you have done. If branches remind you of

locally stored document versions, you are onto something. A version control
system where each person works in their own branch doesn’t really help
much in terms of collaboration.

As a result, many folks advocate trunk-based development, an approach
that mandates all changes going into a single authoritative version of the
codebase or document. Naturally, doing so avoids any drift between
different authors’ versions.

However, how can you put unfinished work into the main version of a
document? There are quite a few options:

The most obvious but also most underused solution is to break
down big changes into a series of smaller tasks (Chapter 30).

Software teams use feature toggles to enable or disable a feature,
allowing code to be integrated into the system but not yet available
to users. The equivalent for presentations are hidden slides: you
can happily work on those knowing that they won’t be shown to
the audience.

Making very short branches that last only a single day is also OK
and won’t break the trunk-based model. This way you can iterate
and tinker and merge before you leave work.

Having code in the trunk doesn’t mean it’s instantly released to production.
Many teams use separate release branches, which undergo additional review
and testing. The equivalent for documents and presentations would be to cut
a PDF at a known-good-state for subsequent distribution.

Always Be Ready to Ship
When collaborating on a slide deck, usually multiple authors contribute
parts, which are then reviewed over the course of multiple iterations until
it’s considered good enough and meets the corporate style guidelines. The
key question is when is something good “good enough”? To me, the most
important elements of a presentation are the key messages and the storyline

3

they are woven into (Chapter 20). Interestingly, both can be done well
before painstakingly aligning all the boxes and converting graphics to the
corporate color palette. A presentation with a solid storyline and simple
graphics is also far more impactful than a half-finished one with fancy stock
photographs, so we should work on those aspects first.

When working on slides, we can learn from modern software development
techniques such as Agile development and DevOps, which aim to always
have software that could be released if need be.

I tend to ask my teams: “what if we had to present in one hour?” Do we have
a core storyline and some essential slides to support it? When you are at that
point, you can refine and improve slides with much less stress.

Always being ready to ship highlights the difference between working
iteratively and incrementally. Many people make slides incrementally and
have only half a slide deck after half the time elapsed. They are not ready to
present. Following the DevOps mindset nudges you to work iteratively,
meaning you have a rough version of the whole story that you can share
immediately if needed (see Figure 25-1).

4

Figure 25-1. Building presentations incrementally versus iteratively

Style Versus Substance
Some folks might counter that even if a storyline is decent, presenting it in
rough packaging means it “isn’t ready” or even “not professional.” I am a
big fan of good design and spend a fair amount of time giving my stage
presentations a clean and professional appearance. However, if I have to
choose between a solid message and pretty pictures, I’d have to choose the
message because I am an architect and not an artist—analogous to the Agile
Manifesto’s preference of running software over documents.
Documentation is important, but if you can have only one or the other,
you’d want to pick running software.

You’ll encounter the same argument when working in formats like
Markdown or simple collaboration tools. Because such systems aren’t as
full featured as desktop-publishing or word-processing tools, teams that are
used to focusing on visuals over content often dismiss them as not meeting
their needs, failing to realize that this is exactly what they need.

Transparency
On many software projects, you can see a monitor or a glowing orb that
shows the project’s current build status. Just by walking by, you can see
how many builds have been made, how many are green (free of errors), and
how many are red. Such a project is fully transparent, which builds trust
outside the project and motivation within. The same level of transparency
can be applied to any project; for example, showing how many servers were
migrated out of an old datacenter over time or how many systems have
become compliant with the IT security guidelines.

On a prior team we had a glowing LED display that showed the total number
of pushes to our source code repository. Not only was it a great conversation
piece, it also led to a minor celebration when four digits weren’t sufficient
anymore.

In an enterprise context, you are likely to encounter two major hurdles
against such transparency. First, project managers prefer to “massage” their
message carefully in status meetings instead of sharing it widely. Second,
many teams don’t have the relevant data ready at hand. Whereas the former
is annoying, the latter is worse: how do they steer the project if they don’t
have the vital metrics at their fingertips?

Pairing
The most debated practice of modern software delivery is pair
programming. However, when producing slides or documents, you’ll find a
joint working session to be much more productive than emailing redlined
documents and comments back and forth.

I have seen slide review cycles that oscillate between review meetings,
assigning tasks, people making changes (often misunderstanding what was
discussed), and reconvening for weeks and months. If everybody sat in a
room and developed the slides together, they could have been done in a few
hours.

“Pairing” on slide decks—I call it “pair PowerPointing”—can save lengthy
review and edit cycles and generally leads to better results.

Resistance
Of course, there’s always resistance. Star Wars couldn’t possibly have had
nine episodes’ worth of storyline without The Resistance. Besides purely
politically motivated arguments against transparency, you may find that

people consider working in text formats like Markdown to be “too
technical.”

I was once alerted by a large company’s digital innovation branch that
“Markdown is too technical.” My initial reaction was to ask them whether it’s
the hash mark or the star that tripped them up…

More serious, you’ll find that working with a version control system like
Git is not to everyone’s liking and carries a learning curve.

During my early days using Git I missed staging a new file. When I checked
out an older branch, the file was still in my working directory (it wasn’t under
Git’s control), so I concluded that I should delete it. When reverting to the
original branch, I was shocked to find my file didn’t come back. Thank God
for hard drive backups.

When asking people to embrace version control, it’s important to teach the
concept of a version control system first; that is, a commit, a branch, etc., in
the context of real work scenarios. It then becomes easier to get used to
Git’s occasionally quirky model. When they’re past this hurdle, though,
people will consider working without version control like driving without a
seatbelt.

1 Stewart Brand, How Buildings Learn: What Happens After They’re Built (New York: Penguin
Books, 1995).

2 A simple text-based language, originally intended to author web pages without having to learn
HTML.

3 Paul Hammant et al., “Trunk Based Development,” https://trunkbaseddevelopment.com.

4 Jeff Patton, “Don’t Know What I Want, But I Know How to Get It,” Jeff Patton and
Associates website, https://oreil.ly/biPNX.

https://trunkbaseddevelopment.com/
https://oreil.ly/biPNX

Part IV. Organizations

Architects in the enterprise live at the intersection of the technical and
business worlds. In fact, getting these two pieces to work together
seamlessly is one of an architect’s key contributions (Chapter 4). Therefore,
a good architect needs to not only understand the interplay between system
components, but also the interplay in a large and dynamic system that is
known as organization.

Organizational Architecture:
The Static View

The most common depiction of an organization’s architecture is the
organizational chart (“org chart”). These charts depict who reports to
whom, and one can measure people’s importance by how far they are from
the CEO. Assuming you count from zero in good computer-science
tradition, I am often at level two or three below a group CEO, a divisional
CEO, and perhaps a COO in between. For an architect in a large
organization, this isn’t bad at all—many people find themselves at level 6
or 7.

Luckily, org charts have lines and thus pass our test for architecture
diagrams (Chapter 23). Computer-science-educated folks may recognize an
org chart as a tree, a noncyclical, connected directed graph with a single
root (math folks consider trees to be undirected, but that’s fine also). Alas,

it’s only showing part of the picture: depicting the static structure tells us
little about how people interact to make the business work.

Organizational Architecture:
The Dynamic View

An org chart depicts engineering, manufacturing, marketing, and finance
departments as separate pillars of the organizational pyramid. However, in
reality, engineering must design a product that can be easily and reliably
manufactured, marketed to customers, and sold at a profit. How well
organizations work is rarely defined by the organization’s structure—most
organizations will have the aforementioned functions—but by how they
interact: how slow or fast are their development cycles; do they work in a
Waterfall or an Agile model; who talks to customers, who, interestingly,
aren’t depicted in the org chart?

Coworkers also routinely talk to one another to solve problems without
following the lines in the organizational pyramid. This is a good thing
because otherwise managers would quickly become communication
bottlenecks. In many cases the org chart shows the control flow of the
organization—for example, to give budget approvals, whereas the data flow
is much more open and dynamic. Ironically, the way people actually work
with one another is rarely depicted in a diagram. Part of the reason might be
that this data is difficult to gather; the other part could be that it doesn’t
look nearly as neat as the org chart pyramid.

When people coordinate and communicate electronically, the actual,
dynamic organizational structure can be more easily observed. For example,
if developers collaborate via a version-control system, we can analyze code
reviews or check-in approvals to see the real collaboration taking place.
Google had another interesting system that allowed you to see which

persons are sitting nearby a given person. Because interaction and
collaboration are often still based on ad hoc conversations, physical
proximity can be a better predictor of collaboration patterns than the org
chart structure.

The Matrix (Not the Movie)

In large organizations, people can have multiple reporting lines: a “dotted
line” to their project or program manager, and a “solid line” to their
department or “line manager.” Such an arrangement is often part of a so-
called matrix organization in which people report horizontally to the project
and vertically to their manager. Or is it the other way around? If you find
this a little confusing, you’re not alone. High-performance delivery
organizations generally shun such arrangements, making sure people are
fully assigned to, and responsible for, a single project. I often jest that I
want all people working on a project to be on the same boat without life
vests and no rescue lines to other parts of the organization. A team needs a
shared success or, if it so happens, shared failure. Don’t worry, they are all
able to swim.

Organizations as Systems

As architects, we know well how to design systems; for example, when to
apply horizontal scaling, loose coupling, caching. We often are also trained
in systems thinking (Chapter 9), which teaches us how to reason about the
relationship between elements in a system and the overall system behavior,
driven, for example, by positive or negative feedback loops. However, we

often hesitate to apply such rational thinking to organizations because
organizations have a very human face, which makes us feel bad if we
degrade our nice and not-so-nice coworkers into the boxes and lines
(Chapter 23) of some system architecture.

However, even though they’re composed of individuals, large organizations
behave much more like complex systems, including technical ones.
Therefore, as architects we can apply our architectural mindset and rational
systems thinking to large organizations in order to understand and influence
them. It’s a bit like a reverse engineering, debugging, and refactoring
exercise.

Organizations as People

All rational reasoning aside, organizations are made up of individuals. We
also shouldn’t forget that for many of them work is just a small part of their
lives: they have families to take care of, bills to pay, doctors to visit, home
repairs to make, or hangovers from the party last night to overcome.
Understanding organizations depends on understanding people’s emotions
and motivations. This can be a stretch for left-brain-type architects, but one
they need to make. Consider this yoga for your brain.

Navigating Large Organizations

Dealing with organizations can be challenging for architects. However,
many concepts that are well known in the context of architect systems can
also be applied to understanding organizations:

Chapter 26, Reverse-Engineering Organizations

To bring lasting change, you need to help organizations unlearn existing
beliefs.

Chapter 27, Control Is an Illusion

Command-and-control structures aren’t a one-way street.

Chapter 28, They Don’t Build ’Em Quite Like That Anymore

Pyramids went out of vogue 4,500 years ago, but are still widely used in
IT.

Chapter 29, Black Markets Are Not Efficient

High-friction organizations breed black markets, which are dangerous.

Chapter 30, Scaling an Organization

Experience in distributed systems design can be applied to
organizations.

Chapter 31, Slow Chaos Is Not Order

Slow-moving things can seem well coordinated when in reality they’re
just slow-motion chaos.

Chapter 32, Governance Through Inception

Governance by decree is difficult and better done by planting ideas.

Chapter 26. Reverse-
Engineering Organizations

Learning Is Hard; Unlearning Is Much Harder

Attaching some probes to the organization

To change a system’s observed behavior, you need to change the system
itself (Chapter 10). For organizational systems, the systemic behavior is
primarily guided by its culture. A significant portion of this culture derives
from shared beliefs held by the organization’s members. So, to permanently
change an organization’s observed behavior, you need to identify and
change those beliefs.

Unfortunately, these shared beliefs aren’t written down anywhere; there
aren’t any motivational posters for shared beliefs. Also, most people won’t
even be aware that they carry them. So, you’ll need to apply one of your
well-honed engineering skills: reverse engineering.

Dissecting IT Slogans
A good starting point for reverse-engineering an organization’s hidden
beliefs are popular slogans. Anyone who has worked in IT for a little bit
surely has heard the saying “never touch a running system” (Chapter 12).
Why would people not want to touch a system that’s running? Apparently
because they believe that change is risky: if you touch it, you might break
it. Deeper down, they may also believe that fixing broken things is
cumbersome, so it’s better not to break them in the first place.

The well-known IT slogan “never touch a running system” reflects the
underlying belief that change is risky. And, worse yet, it also assumes that not
changing anything bears no risk.

Importantly, though, there’s an additional assumption behind this simple
slogan: if you don’t touch the system, all will be fine. This belief—that no
change implies no risk, is worrisome. First, from an operational perspective,
systems that aren’t maintained will rot and, for example, use outdated
libraries and operating systems that pose security risks. Also, in the digital
world, which is constantly evolving, standstill is regress: competitors move
ahead with frequent updates and rapid feature evolution. Ultimately, not
changing can be fatal for organizations—consider Kodak, Blockbuster, or
BlackBerry.

Second, you’ll notice how simple slogans can become self-fulfilling
prophecies. When you avoid changing a system for a long time this actually
does increase the risk of change: important details will have been long
forgotten, and undocumented manual steps increase the odds that something
will go wrong. Such experiences confirm and fuel the belief.

Unknown Beliefs
Not all organizational beliefs manifest in slogans, though. In most cases,
people might not even be aware that they carry certain beliefs until their

You can’t just ask people what
their beliefs are because most
are unaware of them.

assumptions are being challenged. I had that very experience at a Munich
beer festival.

The well-known Munich Oktoberfest has a springtime cousin, the Starkbier
Fest (“strong beer festival”). As the name suggests, this festival serves beer
with an alcohol content about 50% higher than the Oktoberfest, in the same
1 liter jugs. Needless to say, “having a beer or two” can make the way home
somewhat challenging. The more surprised I was when my younger
colleague commented that he drove to the festival in a convertible to take
advantage of the sunny weather. My immediate reaction was: “Are you out
of your mind to drive to a beer fest?” His calm answer was, “No, I leave the
car here.”

Not only did I feel old, I also realized that
I had been carrying a fundamental belief
about cars: if you drive somewhere, you
(hopefully) come back with the same car;
otherwise, it would be difficult to go

somewhere else tomorrow. What broke this assumption, which was useful
in the past? Car sharing—the ability to pick up a car near your home, to rent
it by the minute, and to leave it at your destination. Without ubiquitous
smart phones, GPS, telematics, and other good stuff, my assumption was
handy and never challenged; now it limited my thinking.

Because most people are unaware of the assumptions they hold, you can’t
just ask them what their beliefs are. If you had asked me about my beliefs
about cars, I might have said that you must have liability insurance and fuel
in the tank.

Beliefs Are Proven Until Disproven
Beliefs stick because people often have living proof or firsthand experience.
When the environment changes, though, and the belief is no longer
applicable, their past experience makes them reluctant to change.

Think of kids who learned that touching a stove top is a bad idea. Some of
them learned this the very hard and painful way, others were told many
times. They therefore embraced a useful belief that prevents accidents. Alas,
the invention of the induction cooktop makes this belief obsolete: induction
cookers heat pots directly through electromagnetic fields, leaving the
cooktop surface relatively cool. You will find it difficult, though, to make
children touch this new cooktop, because they learned their lesson well. The
best way might be to touch the cooktop yourself to demonstrate the change.

Because most people have living proof for their beliefs, just telling them
otherwise is unlikely to succeed.

The same is true in IT: most IT folks will be able to tell you a story in
which someone did touch a running system, causing it to fail, and needing
operations teams to stay up 48 hours straight trying to get it back up and
running. Simply telling people that they are wrong or that magically
everything is different is unlikely to be successful. Trying to convince them
that change isn’t risky by spewing out buzzwords and acronyms like TDD,
IaC, Git, and Spinnaker is like explaining to kids that an induction stove is
safe to touch by citing Faraday’s law. Instead, you might start by explaining
the tenets of DevOps, such as deployment automation, version control, and
automated testing. Also, making smaller changes reduces the risk of change.
Better yet, you demonstrate the effect with a real software delivery project.

Unlearning Old Habits
Bringing change into an organization can easily stumble over existing,
strongly held beliefs that are part of the existing culture. For example,
selling Continuous Delivery to a person who equates change with risk is
going to be quite a challenge. We therefore need to help the organization
unlearn these old habits before lasting change can take hold. Learning new
things isn’t easy, but unlearning old habits, especially ones that served us

well many times, is much more difficult. It seems that replacing existing
beliefs requires you to free up a memory slot in the brain first before you
can program it again.

Common IT Beliefs
When trying to reverse-engineer existing beliefs, there’s one ray of hope:
many IT organizations hold similar beliefs because they were subject to the
same learning, or priming (Chapter 6). Hence, the following list of beliefs
can give you a head start:

Speed and Quality Are Opposed (“Quick and Dirty”)
The so-called project management triangle is both one of the most popular
and most dangerous tools in IT management because it purports that scope,
time, and resources have a simple relationship. For example, twice as many
people would be able to accomplish the same work in half the time. Worse
yet, it assumes that by compromising quality, things can be sped up further.

While the triangle might work for simple, physical tasks, it surely doesn’t
work in software delivery where the opposite is often the case. For
example, if a developer wanted to secretly sabotage a software project, a
suitable way would be to introduce subtle, hard-to-find bugs. How then, can
lower quality speed things up?

Modern developers know that in software development the opposite effect
takes place: we speed things up by automating them, which also increases
quality (Chapter 40) and repeatability.

Quality Can Be Added Later
Classic software projects end with a “QA” phase, the quality assurance
phase, which consists of a team of testers checking whether the deliverable
is of high quality. Behind this common approach rests a fundamental belief
that quality is something that can be added to an existing work product: if
something of poor quality goes into QA, it comes out with higher quality.

1

Detecting bugs and reworking can improve some aspects of software, but it
cannot correct fundamental deficiencies in the internal quality of a software
system, such as its structure or testability. Those must be built in from the
beginning. Methods such as shift-left testing follow this approach.

This belief and the previous one are related. If you work under the
assumption that quality is added at the end, compressing the schedule will
most likely decimate the (manual) QA activity, actually resulting in lower
quality.

All Problems Can Be Solved with More People or Money
Also guided by the scope-resources-time triangle, some organizations
assume that more people reduce time under constant scope.

There’s a common saying that when a project manager in a typical bank tells
the business that it’s impossible to deliver the project in three months, the
business responds by asking “how much more money do you need?”

Fred Brooks already documented four decades ago that adding people
requires onboarding and increases communication overhead, both of which
will slow down a project. Also, large projects often come to a grinding halt
due to excessive complexity. Adding more resources is likely to increase
complexity, exacerbating the problem.

Therefore, if you want to speed up a project, look to reduce friction instead
of adding more resources. If your car’s (or your organization’s) handbrake
is set, you’ll want to release the brake, not step harder on the gas pedal.

Following a Proven Process Leads to Proven Good
Results
Much of an organization’s way of working is encoded in well-defined
processes, which aim to reduce risk, control spending, and assure high-

2

3

quality deliverables. Many large organizations even have entire departments
whose job it is to define and update processes.

Even though most processes, such as approvals or budget reviews, are well
intended, following them assures only one thing: that the process was
followed. There’s a big leap from someone checking a box or completing a
task to actually achieving the desired result, such as reducing spend or
assuring architecture compliance. Especially if processes are cumbersome,
people will be inclined to just obtain the necessary process check marks
without fulfilling the intention of the process, possibly leading to a
flourishing black market (Chapter 29). Some organizations therefore police
and audit for process compliance by investigating projects and their
implementations, resulting in a catch me if you can kind of game.

Attempting to achieve desirable results via processes and check lists
typically stems from a lack of transparency. If you can’t see what a project
does or what kind of code it develops, the next best thing you could do is to
make sure a certain process was followed. Modern development and
deployment practices such as central code repositories, automated code
quality checks, automated policy checkers, and cloud runtimes provide a
much higher level of transparency and allow much more effective
compliance checks.

Late Changes Are Expensive or Impossible
Did you ever wonder why a typical IT project has an endless list of
requirements that appears to anticipate any possible use case or scenario for
the next five years? It’s based on a simple belief: the business has learned
that late changes are expensive or even impossible.

An old joke goes that IT tends to deliver only half of what it promised, so the
business asks for twice as much in the hope that they get the right half.

This belief stems from IT service providers’ common practice of charging
large sums for late changes. Because they compete aggressively on the
initial bid for a project, they compensate by charging astronomical sums for
changes during project execution when the customer doesn’t have a lot of
alternatives. Even internal projects that are subject to budget approvals or
are poorly architected might have reconfirmed this belief because they are
difficult to change later.

Welcoming late changes is a key tenet of Agile development, dispelling this
common belief. It’s best illustrated by Mary Poppendieck’s observation that
“a late change in requirements is a competitive advantage.”

Agility Opposes Discipline
Because Agile development welcomes change during a project, it is often
seen as being at odds with stable processes. After all, change and stability
are opposites of each other. Following this logic, some organizations even
believe that in the absence of rigid steering and control mechanisms, things
descend into utter chaos.

However, the opposite is true: Agile development is actually a very
disciplined process because speed and lack of discipline don’t mix
(Chapter 31). Agile methods prioritize on delivering value early and
maintain velocity through a rigid adherence to regular (re)planning and
tracking of progress and quality, something often missing in traditional
projects.

The Unexpected Is Undesired
After spending a lot of time creating a plan, traditional organizations expect
things to go according to their plan. Deviations from the plan or unexpected
outcomes are undesired and considered a failure.

However, when something unexpected happens, the most learning happens.
That’s because the unexpected can tell you that you made a poor
assumption or that an error was hidden in the system. Therefore, successful
businesses run experiments to verify or falsify a hypothesis. Either way, the

outcome implies learning and isn’t a failure at all. This means that
traditional enterprises learn less, which is dangerous in a world that’s
constantly changing.

Rather than avoid deviations, enterprise should identify valuable hypothesis
that they can test quickly and cheaply. Therefore, minimizing the cost of
experimentation is a better goal than minimizing deviation.

Reprogramming the Organization
Given how strongly existing beliefs influence an organization’s ability to
transform, how do you best go about identifying and changing them? There
is no magic three-step recipe, but you can combine several behaviors to
tackle them:

Observe carefully

You can’t just ask people about their beliefs, because most of the time
they aren’t even aware of them. Instead, observe how people behave
and look for unusual or unexpected decisions. Then, consider which
belief would make such a decision appear rational.

Ask questions

Keep asking people (Chapter 7) why they would choose a particular
option to uncover what drives their behavior.

Explain carefully

Acknowledge the usefulness of their belief in the past, but explain what
has changed since then.

Define new beliefs

Because it’s difficult for people to unlearn things, establish clear new
beliefs that can replace the old ones.

Be patient

Change takes time (Part V).

Your goal isn’t to turn everyone’s belief upside-down but to identify and
dislodge those beliefs that impede the change you are trying to bring.
Reverting too many beliefs will make folks insecure and confused.

Handed-Down Beliefs
Whereas most beliefs stem from actual experience, others are handed down
through generations. A classic (unconfirmed) story of beliefs taking a life of
their own involves monkeys, water, and bananas: several primates were in a
cage with bananas hung in the middle. As soon as any monkey would reach
for the tempting bananas, all monkeys would be sprayed with cold water,
something they weren’t particularly fond of. Every now and then, a monkey
was replaced with a new one. If the new arrival would reach for the
bananas, the others would be quick to hold them back because they knew
what was going to happen. Even after all the original monkeys have been
replaced and none of the resident monkeys have ever been sprayed with
water, the best practice of “don’t touch the bananas” lives on.

This story isn’t based on scientific evidence, but sometimes it does feel that
despite all the technical advances we have made, our basic behavior hasn’t
evolved that much from reaching for bananas.

1 Barry O’Reilly, Unlearn: Let Go of Past Success to Achieve Extraordinary Results (New
York: McGraw-Hill, 2018).

2 Wikipedia, “Shift-Left Testing,” https://oreil.ly/iotex.

3 Fredrick P. Brooks, The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition (Boston: Addison-Wesley Professional, 1995).

https://oreil.ly/iotex

Chapter 27. Control Is an
Illusion

It’s When You’re Told Exactly What You Want to Hear

Who’s in control here?

While working in Asia, I’ve become accustomed to sharing a few of my
personal details before presenting to a group of people. I like the idea
because it didn’t have the flavor of bragging about professional
accomplishments; rather, it gives the audience an impression about the
speaker’s background to better understand what shaped their thinking. In a
presentation to a group of CEEMA (the Central-Eastern Europe, Middle-
East, and Africa region) COOs and CIOs, I once opened with a slide
summarizing my core beliefs in the form of the pin buttons that many
people used to wear in the 1980s.

The one slogan that received immediate attention was “Control is an
illusion.” Even more attention was paid to my explanation: “You feel that
you have control when people tell you exactly what you want to hear.”
Perhaps this wasn’t the kind of control these senior executives wanted to
have over their business.

The Illusion
How can control be an illusion? “Having control” is based on the
assumption that a direction set from top down is actually being followed
and has the desired effect. And this can be a big illusion. How would you
know that it does, if you are simply sitting at the top, pushing (control)
buttons instead of working alongside the staff? You can rely on
management status reports, but then you make a major assumption that the
presented information reflects reality. This might be yet another big illusion.

Steven Denning uses the term semblance of control in contrast to actual
control for this phenomenon in large organizations. A more cynical version
would be to claim that the inmates are running the asylum. In either case,
it’s not the state you want your organization to be in.

Control Circuits
A brief look at control theory sheds some light on where the illusion
originates. Control circuits, such as a room thermostat, keep a system in a
stable condition—in this example, keeping a room at a constant
temperature. They do so based on sensors and feedback: the thermostat
senses the room temperature and turns the furnace on when the room is
cold. When the desired temperature is reached, it turns off the furnace.

The feedback loop compensates for external factors such as the outside
temperature or someone opening the window. This runs counter to many
project planning approaches that attempt to predict all factors up front and
then look to execute according to plan. It’s like running the heater for
exactly two hours and then blaming the cold weather for the room not being

1

warm enough. Embarrassingly, a cheap thermostat can give us better
control than some project managers.

A Two-Way Street
Jeff Sussna describes the importance of feedback loops in his book
Designing Delivery, drawing on the notion of cybernetics. While most
people think of cyborgs and terminators when they hear the term,
cybernetics is actually a field of study that deals with “control and
communication in the animal and the machine.” Such control and
communication is almost always based on a closed signaling loop.

When we portray large organizations as “command-and-control” structures,
we often focus only on the top-down steering part, and less on the feedback
from the “sensors.” But not using the sensors means one is flying blind,
possibly with a feeling of control, but one that’s disconnected from reality.
It’s like driving a car at night without headlights and turning the steering
wheel with no clue where the car is actually headed—a very dumb idea. It’s
shocking to see how such behavior, which borders on absurdity, can
establish itself in large organizations.

Problems on the Way Up
Even if an organization uses sensors—for example, by obtaining the
infamous status reports—not all is necessarily well. Anyone who has heard
the term watermelon status understands: these are the projects whose status
is “green” on the outside but “red” on the inside, meaning that they are
presented as going well but in reality suffer from serious issues. Corporate
project managers and status reporters aren’t straight-out liars, but they
might be overly optimistic or take some literary license to make their
project look good. “700 happy passengers reach New York after Titanic’s
maiden voyage” is also factually correct, but not the status report you’d
want to get.

2

Observing how much trust some senior executives place in PowerPoint
slides might make you believe that it not only has a built-in spell checker
but also a lie detector. Digital companies are generally suspicious of
fabricated presentations and “massaged” messages, but instead believe in
hard data, preferably rendered in live metrics dashboards.

Google’s Mobile Ads team in Japan reviewed the performance of all ad
experiments, run as A/B tests, every week, and decided which experiments
should be accepted into production, which ones should be rejected, and which
ones needed to run longer in order to become conclusive. The decisions were
based on hard user data, not projections or promises.

Working based off hard data can be frustrating because getting a solution
running doesn’t yet earn you much praise: that’s expected anyway. Praise
comes once your solution receives attention and traffic from actual users—
data that’s much harder to fabricate.

Smart Control
Some control circuits take in more feedback signals and refine how they
drive the system. For example, some heating systems measure the outside
temperature to predict energy loss through windows and walls. Google’s
Nest thermostat takes it a step further: it takes in additional information,
such as the weather forecast (the sun helps warm the house), and when you
are usually home or away. It also learns about the inertia of the heating
system, which can lead to overheating the house due to heat capacity left in
the radiators when the furnace is switched off. Nest is thus called a
“learning” or “smart” thermostat; it takes in additional signals and
optimizes what it does based on that feedback. It would be fantastic if we
could apply that label to more project managers.

Saupreiß, ned so Damischer
When people speak about command-and-control structures, they are quick
to cite the military, which, after all, is run by commanders. The military
organization most equated with stodginess and “iron discipline” is the
Prussian army. For people living in Bavaria, in Germany’s southern region,
Prussia is externalized in the concept of the Preiß, a not-so-friendly term
referring to people born north of their state.

Ironically, the Prussian military understood very well that one-way control
is merely an illusion. Carl von Clausewitz wrote a 1,000-page tome, On
War, in the early 1800s, in which he cites sources of friction: the external
gap between desired and actual outcomes (uncertainty) and the internal gap
between plans and the actions of an organization.

In his book The Art of Action, Stephen Bungay extends this concept into
three gaps, as illustrated in Figure 27-1: the knowledge gap between what
you’d like to know and actually do know, the alignment gap between plans
and actions, and the effects gap between what you expect your actions to
achieve and what actually happens.

Figure 27-1. The three gaps that can make control an illusion (adapted from Bungay)

3

You can recognize organizations that believe they can close these gaps by
the methods they apply. They try to close the knowledge gap by generating
thick requirements documents, which are often outdated by the time they
are completed. They try to tackle the alignment gap by developing
extensive project plans and micro-managing according to them. Lastly, the
effects gap is a bit more difficult to close. Such organizations try
nonetheless, either through the aforementioned watermelon status reports or
by using proxy metrics (Chapter 40), things that are easily measured but
don’t quite reflect reality. Essentially, these organizations create their own
reality, or illusion.

Many IT organizations believe they can close the knowledge, alignment, and
effects gaps, an approach that has been disproven some 200 years ago.

Unlike some IT organizations, the Prussians already knew that the gaps
couldn’t be eliminated. Instead, they accepted the gaps and adjusted their
management style accordingly, replacing a concrete order with the concept
of Auftragstaktik, best translated as “mission command” or “directive.”
Understanding the purpose of the mission enabled the troops to adjust to
unforeseen circumstances (knowledge or effects gaps) without having to
report back to central command. This would save valuable time and lead to
better decisions in the local context.

The difference between an order and a mission command becomes clear with
a simple example. Suppose that a small platoon is given the order to take a
hill. As it climbs up the hill, the soldiers realize that there’s no resistance at all
and progress easily. Should they march to the top? If they have been given a
simple command, they’ll do so. This might be correct if the intent, the
Auftrag, was to take the hill as a strategic position. However, if the intent was
to attack troops positioned on the hill, advancing to the top makes little sense.

Auftragstaktik doesn’t mean people are left to do whatever they deem
appropriate. It’s based on discipline, but active discipline, one that respects

the commander’s intentions, as opposed to passive obedience, which
demands blind execution. Also, when deciding on an action, teams pull
from a well-defined repertoire of tactics that are well known and
extensively trained.

So, the Preißn weren’t so stodgy after all and were possibly ahead of many
modern IT departments.

Actual Control: Autonomy
Ironically, it turns out that giving teams decision autonomy actually
increases control as it accepts the gaps and avoids operating in an illusion.
But be careful: many organizations equate autonomy to “everyone does
what they think is best.” Now, unfortunately, that’s not autonomy, that’s
anarchy: whether we like it or not, anarchists do what they believe is right.

Everyone doing what they think is best isn’t autonomy, it’s anarchy.

How can large-scale IT organizations establish autonomy without falling
into anarchy? In my experience, it requires the interplay between three
elements (see Figure 27-2):

Enablement

It may sound trivial, but first you need to enable people to perform their
work. Sadly, corporate IT knows many mechanisms that disable people:
HR processes that restrict recruiting, approval processes that take weeks
to provision servers, black markets (Chapter 29) that are inaccessible to
new hires. Just like a thermostat connected to a furnace with a plugged
gas line won’t do much good, high friction negates autonomy. In IT,
platforms such as cloud computing can enable employees and at the
same time assure consistency in “tactics” as they provide a common set
of tools to select from.

Feedback

Autonomous teams can make better decisions because they have the
shortest feedback cycles (Chapter 36). This way, they can learn fast and
improve. This works only if teams see the consequences for their
decisions. If the thermostat is mounted in another room than the
radiator, there’s no control circuit.

Strategy

To make good decisions, teams need to be able to distinguish which
decisions are good. They therefore need to have specific goals; for
example, revenue generated or quantifiable user engagement. These
goals aren’t specific commands but overall objectives to be achieved. A
thermostat is useful only if someone sets the desired temperature.

Figure 27-2. Strategy, feedback, and enablement separate autonomy from anarchy

This system won’t work if you omit one or more elements: strategy without
enablement will lead to zero progress but lots of frustration. Autonomy
without strategy or feedback will resemble anarchy as teams can’t judge the
appropriateness of their decisions. And enablement without strategy will

only make anarchy more efficient. For example, the Spotify Squad Model
found that increasing alignment on a common strategy supports increasing
autonomy.

Many enterprise architecture teams (Chapter 4) set direction without being
responsible for the consequences. Applying the logic that lack of strategy and
feedback leads to anarchy implies a rather disconcerting outcome.

Another insight might surprise traditional organizations that are looking to
give teams more autonomy: autonomous teams need better management.
Managing nonautonomous teams is comparatively easy: they’ll largely do
as told. Autonomous teams, in contrast, require leadership: they need to be
told the overall intent and goals. So, ironically, organizations that are
looking to increase autonomy in their teams might need to strengthen
management first.

Autonomous teams need better management.

Controlling the Control Loop
Even though a control circuit’s job is to keep a system in a steady state
without someone having to monitor it, observing the circuit’s behavior can
still be useful in a larger context, meaning we shouldn’t blindly trust the
autopilot. For example, if the air filter in a forced-air heating system
becomes clogged or the furnace collects soot, it will take longer to warm
the house under otherwise identical conditions. A “dumb” thermostat will
simply run the heater longer, covering up the issue. A smart control system,
in contrast, can measure the length of the thermostat dutycycle; for instance,
how long the furnace runs to reach or maintain a certain room temperature.
If this duty cycle extends, the controller can give a hint that the system is no
longer operating as efficiently as before. Therefore, a control loop shouldn’t

4

be a black box; instead, it should expose health metrics based on what it has
“learned.”

Advanced cloud features like server autoscaling, which are able to absorb
sudden load spikes without human intervention, are handy, but they can also
mask serious problems. For example, if a new version of the software
performs poorly, the infrastructure might attempt to autocompensate this
problem by deploying more servers. You might just find out a bit later via
your monthly bill.

In control theory, observing the behavior of a control loop is considered an
“outer loop” that observes the behavior of the inner control loop and can
trigger adjustments to the system.

1 Steve Denning, “Ten Agile Axioms That Make Managers Anxious,” Forbes, June 17, 2018,
https://oreil.ly/Dn1es.

2 Jeff Sussna, Designing Delivery: Rethinking IT in the Digital Service Economy (Sebastopol,
CA: O’Reilly, 2015).

3 Stephen Bungay, The Art of Action: How Leaders Close the Gaps between Plans, Actions and
Results (London: Nicholas Brealey Publishing, 2010).

4 Henrik Kniberg, “Spotify Engineering Culture (part 1),” Spotify Labs, March 27, 2014,
https://oreil.ly/d3MAI.

https://oreil.ly/Dn1es
https://oreil.ly/d3MAI

Chapter 28. They Don’t Build
’Em Quite Like That Anymore

No One Lives in a Foundation

The Great Pyramid at 30% completion: effort completion, that is

The great pyramids are impressive buildings and attract hordes of tourists
even several millennia after their construction. The attraction results not
only from the engineering marvel, such as the perfect alignment and
balance, but also from the fact that pyramids are quite rare. Besides the US
one-dollar bill, you’ll find them only in Egypt, Central America, and IT
organizations!

Why IT Architects Love Pyramids
Pyramids are a fairly common sight in IT architecture diagrams and tend to
give architects, especially the ones nearer to the penthouse, a noticeable
sense of satisfaction. In most cases, the pyramid diagram indicates a
layering concept with a base layer that includes functionality commonly
needed by the upper layers. For example, the base layer could contain
generic functions, while the next layer up would contain industry-specific
functions, followed by functionality for specific business functions, and
being topped off with customer-specific configuration (Chapter 11).

Layering is a very popular and useful concept in systems architecture
because it constrains dependencies between system components to flow in a
single direction, as opposed to a Big Ball of Mud (Chapter 8). Depicting the
layers in the shape of a pyramid suggests that the upper layers are much
smaller and more specialized than the base layers, which provide most of
the common functionality.

IT is enamored with this model because it implies that a large portion of the
base layer code can be shared or acquired given that it’s identical across
many businesses and applications. For example, a better Object-Relational
Mapping (ORM) framework or a common business component such as a
billing system are unlikely to present a competitive advantage and should
simply be bought. Meanwhile, necessary and valuable customizations can
be performed in the “tip” with relatively little effort or by lesser-skilled
labor. The analogy is consistent with the pyramids of Giza, where the top
third of the pyramid’s height makes up only roughly 4% of the material.

Organizational Pyramids
The other place littered with pyramids are slide decks depicting
organizational structures, where they refer to hierarchical structures. Almost
all organizations are hierarchical: multiple people from a lower tier report
to a single person on the next upper tier, resulting in a directed tree graph,
which, when the root is placed on the top, resembles a pyramid. Even “flat”

organizations tend to have some hierarchy, as a single person generally acts
as a chairman or CEO. Such a setup makes sense because directing work
takes less effort than actually conducting the work, meaning an organization
needs fewer managers or supervisors than workers (unless they are trying to
buy love; see Chapter 38). Having fewer leaders also helps with consistent
decision making and setting a single strategic direction.

No Pyramid Without Pharaoh
Still, there’s a good reason why the Egyptians abandoned the idea of
building pyramids some 4,500 years ago: the base layers of a pyramid
require an enormous amount of material. It’s estimated that the Great
Pyramid of Giza consists of more than two million blocks weighing in at
several tons each. Assuming workers toiled day and night over the course of
one decade, they would have had to lay an average of three large limestone
blocks per minute. Three quarters of the material had to be laid for the first
50 meters of height alone. Even though the result is undoubtedly impressive
and long lasting, it can hardly be called efficient.

The economics of building pyramids can function only if there’s an
abundance of cheap or forced labor (historians still debate whether the
pyramids were built by slaves or paid workers) or a pharaoh’s unbelievable
accumulation of wealth. In addition to resources, one also needs to bring a
lot of patience. Building pyramids doesn’t mix well with economies of
speed (Chapter 35). Some of the pyramids in Egypt weren’t even finished
during the pharaoh’s lifetime.

No One Lives in a Foundation
Functional pyramids as we find them in IT system designs face another
challenge: the folks building the base layer not only need to move
humongous amounts of material, they also must anticipate the needs of the
teams building the upper layers. That’s a lot more difficult to do in IT
pyramids where things tend to evolve over time (Chapter 3).

Building an IT pyramid purely from the bottom up incurs several problems:

First, the lower layers alone don’t provide much value to the
business—they are merely a foundation for more things to come.
The result is a large investment with a slow return of value, not
something a typical business is looking for.

It also negates the Agile principle of “use before reuse.” Building a
base layer means designing functions to be reused later without
first actually using them. This can be a guessing game at best.

Lastly, it also dangerously ignores the Build-Measure-Learn cycle
(Chapter 36) of learning what’s needed from observing actual
usage. What if the business expected a different pyramid?

No one likes to live in a foundation. Therefore, delivering only a base layer
has limited business value.

Not limited to pyramids but applicable to any layered system is the
challenge of defining the appropriate seams between the layers. Done well,
these seams form abstractions that hide the complexity of the layer below
while leaving the layer above with sufficient flexibility (Chapter 11). It’s not
easy to find examples that work well—like abstracting packet-based
network routing behind data streams (sockets)—but when implemented
well, this enables major transformations like the internet. Normal IT teams
can’t expect to be quite that lucky.

Building Pyramids from the Top
If you’re determined to build an IT pyramid, the best way to do so is from
the top down. This is not something you can do with real pyramids, but
software does allow us to defy gravity in this case. When I mention “top
down,” I am referring to the way the pyramid is constructed, not the way

the project is managed. Ironically, “top-down management” leads to
pyramids being built bottom up.

To build an IT pyramid from the top, you start with a specific application or
service that delivers customer value, thus assuring use before considering
resue and avoiding the dangerous notion of “reusable.” When multiple
applications can utilize a specific feature or functionality, you can let the
related components “sift down” into a lower layer of the pyramid, making
them more broadly available. Building the pyramid this way ensures that
the base layer contains functionality that’s actually needed as opposed to
functions that some people, often the enterprise architects (Chapter 4) far
away from actual software development, believe might be needed
somewhere, sometime.

“Reusable” can be a dangerous word. It describes components that were
designed to be widely used but aren’t.

Anticipating some needs ahead of time, such as the much-mentioned ORM
framework, is fine. So is building some of the pyramid base layers like
operating systems. In many ways, cloud computing is a massive base layer,
but one with very nice seams.

Building pyramids from the top can lead to some amount of duplication; for
example, if two independent development teams build similar functionality
that’s not yet part of the base layer. Transparency across teams—for
example, by using a common source code repository or a common service
registry—can help detect such duplication early. While too much
duplication may be undesired, we must keep in mind that avoiding
duplication isn’t free (Chapter 35).

I have seen base services layers that force a consumer to make many remote
calls even to execute a simple function. This approach was chosen by the
base-layer architects because it ostensibly provides more flexibility. The first
client developer coding against this interface described his experience in quite
unkind words, citing well-known issues such as sequencing, partial failure,
and maintaining state. The base-layer team’s retort was a new dispatcher layer
on top of their service layer to “enhance the interaction.” The team was
building the pyramid from the bottom up.

Building the pyramid from the top down also typically results in much more
usable APIs (programming interfaces) into the lower layers. Because in the
layered model the consumers of the lower layers live on top, building APIs
from the top equates to being customer centric: rather than guessing what
your customers (other development teams in this case) might want, you
aderive it from actual use.

Celebrating the Base Layer
Building pyramids is popular in IT for another reason: the completion of the
pyramid’s base layer provides a proxy metric for actual product success. It
allows teams to claim major progress without any meaningful validation of
business impact.

It’s analogous to developers’ love of building frameworks: you get to devise
your own requirements, and upon delivery of those requirements, you
declare success without any actual user having validated the need nor the
implementation. In other words, designing pyramid base layers allows
penthouse architects (Chapter 1) to purport the notion that they are
connected to the engine room without facing the scrutiny of actual product
development teams or, worse yet, real customers.

The folks highest up in the organizational pyramid love to design the bottom
layers of the IT system pyramid, far away from actual users.

It’s ironic that the folks highest up in the organizational pyramid love to
design the bottom layers of the IT system pyramid. The reason is clear:
building successful applications is more difficult than generic and
unvalidated base layers. Unfortunately, by the time the bluff becomes
apparent, the penthouse architects are almost guaranteed to have moved to
another project.

Living in Pyramids
While IT building pyramids can be debated, organizational pyramids are
largely a given: we all report to a boss, who reports to someone else, and so
on. In large organizations, we often define our standing by how many
people are above us in the corporate hierarchy. The key consideration for an
organization is whether they actually live in the pyramid; in other words,
whether the lines of communication and decision making follow the lines in
the hierarchy. If that’s the case, the organization will face severe difficulties
in times that favor economies of speed (Chapter 35) because pyramid
structures can be efficient, but they are neither fast nor flexible: decisions
travel up and down the hierarchy, often suffering from a bottleneck in the
coordination layer (Chapter 30).

Luckily, many organizations don’t actually work in the patterns described
by the org chart but follow a concept of feature teams, tribes, or squads.
These organizational elements typically have complete ownership of an
individual product or service: decisions are pushed down to the level of the
people actually most familiar with the problem. This speeds up decision
making and provides shorter feedback loops.

Some organizations are looking to speed things up by overlaying
communities of practice over their structural hierarchy, bringing people
with a common interest or area of expertise together. Communities can be
useful change agents, but only if they are empowered and have clear goals
(Chapter 27). Otherwise, they run the risk of becoming communities of
leisure, a hiding place for people to debate and socialize without
measurable results.

We should wonder, then, why organizations are so enamored with org charts
that they adorn the second slide of almost any corporate project
presentation. My hypothesis is that static structures carry a lower semantic
load than dynamic structures: when presented with a picture showing two
boxes, A and B, connected by a line, the viewer can easily derive the model:
A and B have a relationship. One can almost imagine two physical
cardboard boxes connected by a string wire. Dynamic models are more
difficult to internalize: if A and B have multiple lines between them that
depict interaction over time, possibly including conditions, parallelism, and
repetition, it’s much more difficult to imagine the reality the model is trying
to depict. Often, only an animation can make it more intuitive. Hence, we
are more content with static structures even though understanding a system’s
behavior (Chapter 10) is generally much more meaningful than seeing its
structure.

It Always Can Get Worse
Running an organization as a pyramid can be slow and inhibit feedback
cycles, which are needed to drive innovation. However, some organizations
have a pyramid model that’s even worse: the inverse pyramid. In this
model, a majority of people manage and supervise a minority of people
doing actual work. Besides the apparent imbalance, the inevitable need of
the managers to obtain updates and status reports from the workers is
guaranteed to grind progress to a halt. Such pathetic setups can occur in
organizations that once depended completely on external providers
(Chapter 38) for IT implementation work and are now starting to bring IT
talent back in-house. It can also happen during a crisis, such as a major
system outage, which gets so much management attention that the team
spends more time preparing status calls than resolving the issue.

A second antipattern ironically occurs when organizations attempt to fix the
issues inherent in their hierarchical pyramid setup. They supplement the
existing top-down reporting organization (often referred to as a line
organization) with a new project organization. The combination is typically

called a matrix organization (for once, this isn’t a movie reference) as
people have a horizontal reporting line into their project and a vertical
reporting line into the hierarchy. However, organizations that are not yet
flexible and confident enough to give project teams the necessary autonomy
(Chapter 27) are prone to creating a second pyramid, the project pyramid.
Now employees struggle not only with one but with two pyramids.

Building Modern Structures
If pyramids aren’t the way to go, how should you build systems, then? I
view both systems and organizational design as an iterative, dynamic
process that’s driven by the need to deliver business value. When building
IT systems, you should add new components only if they provide
measurable value. Once you observe a sizable set of common functions, it’s
good to push those down into a common base layer. If you don’t find such
components, that’s also OK. It simply means that a pyramid model doesn’t
fit your situation.

Chapter 29. Black Markets Are
Not Efficient

But They Reveal How Things Actually Get Done

I got anythin’ you need, bro

A common complaint about large organizations is that they are slow and
mired in processes that are designed to exert control (Chapter 27) as
opposed to supporting people in getting their work done quickly. For
example, I used to be allowed to make technical decisions involving tens of
millions of dollars, but I had to obtain management approval to purchase a
$200 plane ticket. By the time I got the approval, often the fare had
increased.

Most organizations consider such processes as crucial to keeping the
organization running smoothly. “What would happen if everyone did what
they wanted?” is the common justification. Most organizations never dare
to find out, not because they fear chaos and mayhem, but because they fear
that everything will be fine, and the people creating and administering the
processes will no longer be needed.

Black Markets to the Rescue
Ironically, beneath the covers of law and order, such organizations are
intrinsically aware that their processes hinder progress. That’s why these
organizations tolerate a “black market” where things get done quickly and
informally without following the self-imposed rules. Such black markets
often take the innocuous form of needing to “know who to talk to” to get
something done quickly. You need a server urgently? Instead of following
the standard process, you call your buddy who can “pull a few strings.”
Setting up an official “priority order” process, usually for a higher price, is
fine. Bypassing the process to get special favors for those who are well
connected is a black market.

If the answer to “how long does it take to get a server?” is “it depends on
who’s asking,” then you have a black market.

Another type of black market can originate from “high up.” While it’s not
uncommon to offer different service levels, including “VIP support,”

providing senior executives with support that ignores the very process- or
security-related constraints imposed by the executives in the first place is a
black market. Such a black market appears, for example, in the form of
executives sporting sexy mobile devices that are deemed too insecure for
employees, notwithstanding the fact that executives’ devices often contain
the most sensitive data.

Black Markets Are Rarely Efficient
What these examples have in common is that they are based on unwritten
rules and undocumented, or sometimes secret, relationships. That’s why
black markets are rarely efficient, as you can see from countries where
black markets constitute a major portion of the economy: black markets are
difficult to control and deprive the government of much-needed tax income.
They also tend to circumvent balanced allocation of resources: those with
access to the black market will be able to obtain goods or favors that others
cannot. Black markets therefore stifle economic development because they
don’t provide broad and equal access to resources. This is true for countries
as much as large enterprises.

Black markets stifle innovation because they don’t provide equal access to
resources. The digital world democratizes access, which is exactly the
opposite.

In organizations, black markets often contribute to slow chaos (Chapter 31),
in which the outside of the organization appears to be disciplined and
structured, but the reality is completely different. They also make it difficult
for new members of the organization to gain traction because they lack
connections into the black market, presenting one way systems resist
change (Chapter 10).

Black markets also cause inefficiency by forcing employees to learn the
black-market system. Knowing how to work the black market is
undocumented organizational knowledge that’s unique to the organization.

The time it takes employees to learn the black market doesn’t benefit the
organization and presents a real but rarely measured cost. Once acquired,
the knowledge doesn’t benefit the employee either, because it has no market
value outside of the organization. Ironically, this effect can contribute to
large organizations tolerating black markets: it aids employee retention
because much of their knowledge consists of undocumented processes,
special vocabulary, and black-market structures, which ties them to the
organization.

Worse yet, black markets break necessary feedback cycles: if procuring a
server is too slow to compete in the digital world, the organization must
resolve the issue and speed up that process. Circumventing it in a black-
market fashion gives management a false sense of security, which often
goes along with fabricated heroism: “I knew we could get it done in two
days.” Amazon can get it done in a few minutes for a hundred thousand
customers. The digital transformation is driven by democratization; that is,
giving everyone rapid access to resources. That’s exactly the opposite of
what a black market does.

You Cannot Outsource a Black Market
Another very costly limitation of black markets is that they cannot be
outsourced. Large organizations tend to outsource commodity processes
like human resources or IT operations, exactly those areas that are subject
to black market economies. Specialized outsourcing providers have better
economies of scale and lower cost structures, partly because they follow
officially established processes. Because services are now performed by a
third-party provider, and processes are contractually defined, the unofficial
black market bypass no longer works. Essentially, the business has
subjected itself to a work-to-rule slowdown. Organizations that rely on an
internal black market, therefore, will experience a huge loss in productivity
when they outsource part of their service portfolio.

Beating the Black Market
How do you avoid running the organization via a black market? More
control and governance could be one approach: just like the DEA cracks
down on the black market for drugs, you could identify and shut down the
black-market traders. However, one must recall that the IT organization’s
black market isn’t engaged in trading illegal substances. Rather, people
circumvent processes that don’t allow them to get their work done.
Knowing that overambitious control processes caused the black market in
the first place makes more control and governance an unlikely solution.
Still, some organizations will be tempted to do so, which is a perfect
example of doing exactly the opposite of what has the desired effect
(Chapter 10).

You can’t eliminate black markets with more control and governance. After
all, those are the very mechanisms that caused the black market in the first
place.

The only way to avoid a black market is to build an efficient “white
market,” one that doesn’t hinder progress but enables it. An efficient white
market reduces people’s desire to maintain an alternate black-market
system, which does take some effort after all. Trying to shut down the black
market without offering a functioning white market is likely to result in
resistance and substantial reduction in productivity.

Self-service systems are a great tool to starve black markets because they
remove the human connection and friction by giving everyone equal access,
thus democratizing the process. If you can order IT infrastructure through a
self-explanatory tool that provides fast provisioning times, there’s much
less motivation to do it “through the back door.” Automating undocumented
processes is cumbersome, though, and often unwelcome because it can
highlight the slow chaos (Chapter 31).

Feedback and Transparency
Black markets generally originate as a response to cumbersome processes,
which result from process designers prioritizing reporting and control:
inserting a checkpoint or quality gate at every step provides accurate
progress tracking and valuable metrics. However, it makes people using the
process jump through an endless sequence of hurdles to get anything done.
That’s the reason I have never seen a single user-friendly HR or expense
reporting system. Forcing the people designing processes to use them for
their own daily work can highlight the amount of friction the processes
create and thus provide a valuable feedback loop (Chapter 27). This means
no more VIP support but support that’s good enough for everyone to use.
Wouldn’t everyone like to be treated like a VIP? Similarly, HR teams
should apply for their own job postings to experience the process firsthand.

When recruiting, I routinely apply for my own job openings so I can detect
any hurdles in the process.

Transparency is a good antidote to black markets. Black markets are
inherently nontransparent, providing benefit to only a small subset of
people. When users gain full transparency of the official processes, such as
ordering a server, they might be less inclined to want to order one from the
black market, which does carry some overhead and uncertainty. For
example, will a black market server be supported or perhaps reallocated
during the next inventory sweep? Therefore, full transparency should be
embedded into an organization’s systems as a main principle.

Replacing a black market with an efficient, democratic white market also
makes control less of an illusion (Chapter 27): if users employ official,
documented, and automated processes, the organization can observe actual
behavior and exert governance; for example, by requiring approvals or
issuing usage quotas. No such mechanisms exist for black markets.

The main hurdle to drying up black markets is that improving processes has
a measurable up-front costs while the cost of the black market is usually not
measured. This gap leads to the cost of no change (Chapter 33) being
perceived as being low, which in turn reduces the incentive to change.

Chapter 30. Scaling an
Organization

How to Scale an Organization? The Same Way You Scale a System!

Horizontal scaling seems more natural

The digital world is all about scalability: millions of websites, billions of
hits per month, petabytes of data, more tweets, more images uploaded. To
make this work, architects have learned a ton about scaling systems: make
services stateless and horizontally scalable, minimize synchronization
points to maximize throughput, keep transaction scope local, avoid
synchronous remote communication, use clever caching strategies, and
shorten your variable names (just kidding!).

With everything around us scaling to never-before-seen throughput, the
limiting element in all of this is bound to be us, the human users, and the
organizations we work in. You might wonder, then, whether IT architects,
who know so much about scalability, can apply their expertise to scaling
and optimizing throughput in organizations. I might have become an
architect astronaut suffering from oxygen deprivation due to exceedingly
high levels of abstraction, but I can’t help but feel that many of the
scalability and performance approaches known to experienced IT architects
can just as well be applied to scaling organizations. If a coffee shop
(Chapter 17) can teach us about maximizing a system’s throughput, maybe
our knowledge of IT systems design can help improve an organization’s
performance?

Component Design—Personal Productivity
Increasing throughput starts with the individual. Some folks are simply 10
times more productive than others. For me it’s hit or miss: when I am “in
the zone,” I can be incredibly productive but lose traction just as quickly
when I am being frequently interrupted or annoyed by something. So, I
won’t bestow on you any great personal advice, but instead refer you to the
many resources like GTD (Getting Things Done), which advises you to
minimize your inventory of open tasks (making the Lean folks happy) and
to break down large tasks into smaller ones that are immediately actionable.
For example, “I really ought to replace that old clunker” turns into “visit
three dealerships this weekend.” Incoming stuff is categorized and either
immediately processed or parked until it’s actionable, thus reducing the
number of concurrent threads. The suggestions are very sound, but as
always it takes a bit of trust and lots of discipline to succeed at
implementing them.

1

2

Avoid Sync Points—Meetings Don’t Scale
Let’s assume people individually do their best to be productive and have
high throughput, meaning we have efficient and effective system
components. Now we need to look at the integration architecture, which
defines the interaction between components; in other words, people. One of
the most common interaction points (short of email, more on that later)
surely is the meeting. The name alone gives some of us goose bumps
because it suggests that people get together to “meet” one another, but
doesn’t define any specific agenda, objective, or outcome.

Meetings are synchronization points—a well-known throughput killer.

From a systems design perspective, meetings have another troublesome
property: they require multiple humans to be (mostly) in the same place at
the same time. In software architecture, we call this a synchronization point,
widely known as one of the biggest throughput killers. The word
“synchronous” derives from Greek and essentially means things happening
at the same time. In distributed systems for things to happen at the same
time, some components must wait for others, which is quite obviously not
the way to maximize throughput.

The longer the wait for the synchronization point, the more dramatic the
negative impact on performance becomes. In some organizations finding a
meeting time slot among senior people can take a month or longer. Such
resource contention on people’s time significantly slows down decision
making and project progress (and hurts economies of speed; see
Chapter 35). The effect is analog to locking database updates: if many
processes are trying to update the same table record, throughput suffers
enormously as most processes just wait for others to complete, eventually
ending up in the dreaded deadlock. Administrative teams in large
organizations acting as transaction monitor underlines the overhead caused
by using meetings as the primary interaction model. Worse yet, full

schedules cause people to start blocking time “just in case,” a form of
pessimistic resource allocation, which has exactly the opposite of the
intended effect on the system behavior (Chapter 10).

Getting together can be useful for brainstorming, critical discussions, or
decisions, but the worst kind of meetings must be status meetings. If
someone wants to know where a project stands, why would they want to
wait for the next status meeting that takes place in a week or two? To top it
off, many status meetings I attended had someone read text off a document
that wasn’t distributed ahead of the meeting lest someone read through it
and escape the meeting.

Interrupts Interrupt—Phone Calls
When you can’t wait for the next meeting, you tend to call the person. I
know well as I log half a dozen incoming calls a day, which I routinely
don’t answer (they typically lead to an email starting with the phrase “I was
unable to reach you by phone,” whose purpose I never quite understood).
Phone calls have short wait times when compared to meetings, but are still
synchronous and thus require all resources to be available at the same time.
How many times have you played “phone tag” where you were unable to
answer a call just to experience the reverse when you call back? I am not
sure there’s an analog to this in system communication (I should know;
after all, I am documenting conversation patterns), but it’s difficult to
imagine this as effective communication.

Phone calls are “interrupts” (they are blockable by muting your ringer), and
in an open environment, they not only interrupt you but also your
coworkers. That’s one reason that Google Japan’s engineering desks were
by default not equipped with phones—you had to specifically request one,
which was looked upon as a little old fashioned. The damage ringing
phones can do in open office spaces was already illustrated in Tom
DeMarco and Tim Lister’s classic Peopleware. The “tissue trick” won’t
work anymore with digital phones, but luckily virtually all of them have a
volume setting. My pet peeve related to phones is people busting into my

3

4

office while I am talking on the speaker phone, so I’d like to build a mini
project to illuminate an “on air” sign while I am on the phone.

Piling on Instead of Backing off
Retrying an unsuccessful operation is a typical conversation pattern. It’s
also a dangerous operation because it can escalate a small disturbance in a
system into an onslaught of retries, which brings everything to a grinding
halt. That’s why _Exponential Backoff is a well-known pattern and forms
the basis of many low-level networking protocols, such as Carrier Sense,
Multiple Access with Collision Detection (CSMA/CD), which is a core
element of the Ethernet protocol.

Ironically, humans tend to not back off if a phone call fails, but have a
tendency to pile on: if you don’t pick up, they tend to call you at ever
shorter intervals to signal that it’s urgent. Ultimately, they will back off, but
only after burdening the system with overly aggressive retries. Such
behavior contributes to uneven resource utilization. It seems that either
everyone seems to be calling you or it’s extremely quiet. Asynchronous
communication with queues in contrast can perform traffic shaping—spikes
are absorbed by the queue, allowing the “service” to process requests at the
optimal rate without becoming overloaded. That’s why I prefer to receive an
email starting with “I was unable to reach you by phone”: I converted a
synchronous operation into an asynchronous one.

Asynchronous Communication—Email, Chat,
and More
In corporate environments, email tends to draw almost as much ire as
meetings. It has one big advantage, though: it’s asynchronous. Instead of
being interrupted, you can process your email whenever you have a few
minutes to spare. Getting a response might take slightly longer, but it’s a
classic “throughput over latency” architecture, best described by Clemens
Vaster’s analogy of building wider bridges, not faster cars, to solve the

5

perennial congestion on the two-lane floating bridge that’s part of
Washington State Route 520 between Seattle and Redmond.

Email also has drawbacks, the main one being people flooding everyone’s
inbox because the perceived cost of sending mail is zero. Unfortunately, the
cost of reading an email isn’t. You must therefore have a good inbox filter if
you want to survive. Also, mail isn’t collectively searchable—each person
has their own record of history. I guess you could call that an eventually
consistent architecture of sorts and just live with it, but it still seems
horribly inefficient. I wonder how many copies of that same 10 MB
PowerPoint presentation plus all its prior versions are stored on a typical
Exchange server.

Integrating chat with email can overcome some of these limitations: if you
don’t get a reply or the reply indicates that a real-time discussion is needed,
the “reply by chat” button turns the conversation into quasi-synchronous
mode: it still allows the receiver to answer at will (so it’s asynchronous) but
allows for much quicker iterations than mail. Products like Slack, which
favor a chat/channel paradigm, also enable asynchronous communication
without email. Systems architects would liken this approach to tuple spaces,
which, based on a blackboard architectural style, are well suited for
scalable, distributed systems thanks to loose coupling and avoiding
duplication.

Asking Doesn’t Scale—Build a Cache!
Much of corporate communication consists of asking questions, often via
synchronous communication. This doesn’t scale because the same questions
are asked again and again. Architects would surely introduce a cache into
their system to offload the source component, especially when they receive
repeated requests for basic information, such as a photo of a new team
member. In such cases, I simply type the person’s name into Google and
reply with a hyperlink to an online picture, asking Google instead of
another person.

Search scales, but only if the answers are available in a searchable medium.
Therefore, if you receive a question, reply so that everyone can see (and
search) the answer; for example, on an internal forum—that’s how you load
the cache. Taking the time to explain something in a short document or
forum post scales: 1,000 people can search for and read what you have to
share. 1,000 one-on-one meetings to explain the same story would take half
of your annual work time.

One cache killer that I have experienced is the use of different templates,
which aim for efficiency but hurt data reuse. For example, when I answer
requests for my resume with a link to my home page or LinkedIn, I observe
a human transcribing the data found online into a prescribed Word template.
Some things are majorly wrong in the digital universe.

Poorly Set Domain Boundaries—Excessive
Alignment
Even though some communication styles might scale better than others, all
will ultimately collapse under heavy traffic because humans can handle
only so much throughput, even in chat or asynchronous communication.
The goal therefore mustn’t only be to tune communication but also to
reduce it. Large corporations suffer from a lot of unnecessary
communication, caused, for example, by the need “to align.” I often jest
that “aligning” is what I do when my car doesn’t run straight or wears the
tires unevenly. Why I need to do it at work all the time puzzled me,
especially as “alignment” invariably triggers a meeting with no clear
objective.

In corp speak, to align means to coordinate on an issue and come to some
sort of common understanding or agreement. A common understanding is
an integral part of productive teamwork, but the act of “aligning” can start
to take on a life of its own. My suspicion is that it’s a sign of misalignment
(pun intended) between the project and organizational structures: the people
who are critical to a project’s success or are vital decision makers aren’t
part of the project, requiring frequent “steering” and “alignment” meetings.

The system design analog for this problem is setting domain boundaries
poorly, drawing on Eric Evans’s Domain-Driven Design concept of a
Bounded Context. Slicing a distributed system across poorly set domain
boundaries is almost guaranteed to increase latency and burden both the
system and its developers, who must grapple with increased complexity.
Sam Newman would surely agree.

Self-Service Is Better Service
Self-service generally has poor connotations: if the price were the same,
would you rather eat at McDonald’s or in a white-tablecloth restaurant with
waiter service? If you are a food chain looking to optimize throughput,
though, would you rather be McDonald’s or the quaint Italian place with
five tables? Self-service scales.

Requesting a service or ordering a product by making a phone call or
emailing spreadsheet attachments for someone to manually enter data
doesn’t scale, even if you lower the labor cost with near- or offshoring. To
scale, automate everything (Chapter 13): make all functions and processes
available online on the intranet, ideally both as web interfaces and as
(access protected) service APIs so that users can layer new services or
custom user interfaces on top; for example, to combine popular functions.

Staying Human
Does scaling organizations like computer systems mean that the digital
world shuns personal interaction, turning us into faceless email and
workflow drones that must maximize throughput? I don’t think so. I very
much value personal interaction for brainstorming, negotiation, solution
finding, bonding, or just having a good time. That’s what we should
maximize face-to-face time for. Having someone read slides aloud or
calling me the third time to ask the same question could be achieved many
times faster by optimizing communication patterns. Am I being impatient?
Possibly, but in a world in which everything moves faster and faster,

6
7

8

patience might not be the best strategy. High-throughput systems don’t
reward patience.

1 Joel Spolsky, “Don’t Let Architecture Astronauts Scare You,” April 21, 2001, Joel on
Software (blog), https://oreil.ly/MafCn.

2 Wikipedia, "Getting Things Done,” https://oreil.ly/PRfdu.

3 Hohpe, “Conversation Patterns,” Enterprise Integration Patterns, https://oreil.ly/qHzFw.

4 Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams, 3rd ed.
(Upper Saddle River, NJ: Addison-Wesley, 2013).

5 Wikipedia, “Exponential Backoff,” https://oreil.ly/A4QbL.

6 Eric Evans, “About Domain Language,” Domain Language (website), https://oreil.ly/m71x1.

7 Martin Fowler, “Bounded Context,” MartinFowler.com, https://oreil.ly/AtY88.

8 Sam Newman, Building Microservices: Designing Fine-Grained Systems (O’Reilly, 2015).

https://oreil.ly/MafCn
https://oreil.ly/PRfdu
https://oreil.ly/qHzFw
https://oreil.ly/A4QbL
https://oreil.ly/m71x1
https://oreil.ly/AtY88
http://shop.oreilly.com/product/0636920033158.do

Chapter 31. Slow Chaos Is Not
Order

Going Fast? Bring Discipline!

Agile or just fast? The next turn will tell.

We all have our pet peeves or hot buttons, things that we’ve come across
often enough that, despite their insignificance, really annoy us. In private
life, these issues tend to revolve around things like toothpaste tubes: cap off
versus cap on, or squeezed from the bottom versus from the middle. Such
differences have been known to put numerous marriages and live-in
relationships in danger (hint: a second tube runs about $1.99).

In the corporate IT world, pet peeves tend to be related to things more
technical in nature. Mine is people using the word agile without having
understood its meaning, almost two decades after the Agile Manifesto was
authored. Surely you have overheard conversations like the following:

http://agilemanifesto.org/

What’s your next major deliverable? Dunno—we are Agile!

What’s your project plan? Because we are Agile, we are so fast that
we couldn’t keep the plan up to date!

Could I see your documentation? Don’t need it—we are Agile!

Could you tell me about your architecture? Nope—Agile projects
don’t need this!

And when one dares to ask how the teams know that they are Agile, you’re
sure to hear the following response:

We are guaranteed to be Agile because we’re officially certified!

Such ignorance is topped only by statements that Agile methods aren’t
suited for your company or department because they are too chaotic for
such a structured environment. Ironically, the opposite is usually the case:
corporate environments often lack the discipline to implement Agile
processes.

Fast Versus Agile
My first annoyance about the widespread abuse of the word agile is
repeatedly having to remind people that the method is called “Agile,” not
“fast,” and for a good reason. Agile methods are about hitting the right
target through frequent recalibration and embracing change rather than
trying to predict the environment and eliminating uncertainty. Firing from
afar at a moving target is fast, but not Agile: you will likely miss. Agile
methods allow course corrections along the way, more like a guided missile
(though I am not fond of the weapons analogy). Agile quickly gets you
where you need to be. Running in the wrong direction faster isn’t a method,
but foolishness.

Speed and Discipline
When observing something that moves fast, it’s easy to feel a sense of
chaos: too many things are happening at the same time for someone to
judge how it all really fits together. A good example is a Formula 1 pit stop:
screech, whir, whir, roar, and the car has four new tires in under four
seconds (refueling is no longer allowed in F1 racing). Watching this process
happening at such high speeds leaves one feeling slightly dizzy and that it’s
some sort of miracle or in fact a bit chaotic. If you watch the procedure a
few times, ideally in slow motion, you can appreciate that few teams are
more disciplined than a pit stop crew: every movement is precisely
choreographed and trained hundreds of times. After all, at F1 speed a
second longer in the pit means lagging almost 100 meters behind.

Moving fast in the IT world likewise requires discipline. Automated tests
are your safety belt—how else would you be able to deploy code into
production at a moment’s notice, e.g., in case of a serious problem? The
most valuable time for an online retailer to deploy code is right in the
middle of the holiday season, when customer traffic is at its peak. That’s
when a critical fix or a new feature can have the biggest positive impact on
the bottom line. Ironically, that’s exactly the time when most corporate IT
shops impose a “frozen zone,” during which they forbid the deployment of
code changes. Making a code push in peak traffic takes confidence. Having
iron discipline and lots of practice can make you more confident and fast.
Fear will slow you down. Confidence without discipline will make you
crash and burn.

Fast and Good
Agile development overcomes the perception that things are either fast or of
high quality by adding a new dimension (Chapter 40). This admittedly
makes it difficult to really grasp the concept without seeing it in action. I
often claim that “Agile cannot be taught, it can only be shown,” meaning
that you should learn Agile methods by working on an Agile team, and not
from a textbook.

I describe the attributes required for fast software development and
deployment as follows:

Velocity

Development velocity assures that you can make code changes swiftly.
If the code base is fraught with technical debt, such as duplication, you
will lose speed right there.

Confidence

Once you made a code change, you must have the confidence in your
code’s correctness, e.g., through code reviews, rigorous automated tests,
and small, incremental releases. If you lack confidence, you will
hesitate, and you can’t be fast.

Repeatable

Deployment must be repeatable, usually by being 100% automated. All
your creativity should go into writing great features for your users, not
into making each deployment work. Once you decide to deploy, you
must depend on the deployment working exactly as it did the last 100
times.

Elastic

Your runtime must be elastic because once your users like what you
built, you must be able to handle the traffic.

Feedback

You need feedback from monitoring to make sure you can spot
production issues early and to learn what your users need. If you don’t
know in which direction to head, moving faster is no help.

Secure

And last but not least, you need to secure your runtime environment
against accidental and malicious attacks, especially when deploying

new features frequently, which may contain, or rely on libraries that
contain, security exploits.

In unison, these qualities make for a disciplined but fast-moving and agile
development process. People who haven’t seen such a process live often
cannot quite believe how liberating it is to work with confidence. Even with
the 15-year-old build system for my Enterprise Integration Patterns website
I don’t hesitate for a second to delete all build artifacts to rebuild and
redeploy them from scratch.

Slow-Moving Chaos
If high speed requires high discipline (or ends up in certain disaster), is it
true then that slow speed allows sloppiness? While not logically equivalent,
the reality shows that this is usually the case. Once you look under the
cover of traditional processes, you realize that there’s a lot of messiness,
rework, and uncontrolled black markets (Chapter 29). For example, US auto
plants in the 1980s apparently dedicated up to one-quarter of the floor space
to rework. No wonder Japanese car companies came in and ate their lunch
with a disciplined, zero-defect approach, which acknowledged that stopping
a production line to debug a problem is more effective than churning out
faulty cars. These manufacturing companies were disrupted 30 years ago
much in the same way digital companies are disrupting slow and chaotic
service businesses now. Hopefully, you can learn something from their
mistakes!

Alarmingly, you can find the same level of messiness in corporate IT: why
would it take two weeks to provision a virtualized server? For one, because
most of this time is spent in queues (Chapter 35), and second, because of
“thorough testing.” Hold on, why would you need to test a virtual server
that should be provisioned in a 100% automated and repeatable fashion?
And why would it take two weeks? Usually because the process being
followed isn’t actually 100% automated and repeatable: a little duct tape is
added here, a little optimization is done over there, a little script is edited,

1

https://oreil.ly/hV3NG

and someone forgot to mount the storage volumes. Oops. That’s one reason
to never send a human to do a machine’s job (Chapter 13).

Once you look under the veil of “proven processes,” you quickly discover
chaos, defined as a state of confusion or disorder. It’s just so slow moving
that you have to look a few times to recognize it. A good way to test for
chaos is to request precise documentation of the aforementioned proven
processes: most of the time it doesn’t exist, is outdated, or is not meant to
be shared. Yeah, right…

ITIL to the Rescue?
If you challenge IT operations about slow chaos, you will likely receive a
stare of disbelief and a reference to ITIL, a proprietary but widely adopted
set of practices for IT service management. ITIL provides common
vocabulary and structure, which can be of huge value when supplying
services or interfacing with service providers. ITIL is also a bit daunting,
consisting of five volumes of some 500 pages each.

When an IT organization refers to ITIL, I am generally suspicious whether
there’s a gap between perception and reality; i.e., does the organization
really follow ITIL, or is this label used to shield further investigation into
the slow chaos? A few quick tests give valuable hints: I ask a sysadmin
which ITIL process they primarily follow. Or I ask an IT manager to show
me the strategic analysis of the customer portfolio described in section
4.1.5.4 of the volume on service strategy. Most of the time we find that the
ITIL ideal and the ITIL reality differ dramatically.

I prominently displayed a set of ITIL manuals in my office to thwart anyone’s
temptation of hand-waving their way through a conversation.

ITIL itself is a very useful collection of service management practices.
However, just like placing a math book under your pillow didn’t get you an
“A” grade in school, just referencing ITIL doesn’t repel slow chaos.

2

Objectives Require Discipline
Many organizations are managed by objectives and grant teams autonomy
in achieving these objectives. While this in general is a sound approach, it
can fail spectacularly in organizations that lack discipline, because teams
may use any means to achieve the objective, compromising on base values
such as quality. If reaching objectives by any means is rewarded, result-
oriented objectives can actually cause a lack of discipline.

A provider’s large datacenter migration project had been set a clear goal of
migrating a certain number of applications into a new datacenter location (a
quite sensible objective). Alas, the provider had difficulties reliably
provisioning servers in the new datacenter, causing many migration issues. To
drive out this issue first, I suggested creating an automated test that repeatedly
placed orders for servers in a variety of configurations and validated that all
servers were delivered to spec. We would then start application migration
once reliable provisioning was proven. The project manager exclaimed that if
they did that, they’d never migrate a single application in 10 years! The team
preferred to migrate applications regardless of their underlying problems, just
so that they could achieve the project objective.

Setting output-oriented objectives therefore requires an agreed-upon
discipline as a baseline for achieving those objectives. This is why the
Prussian ideal of Auftragstaktik (Chapter 27) depended on active discipline:
increasing an organization’s discipline allows more far-reaching and
meaningful objectives to be set.

The Way Out
You may be asking yourself: why does no one clean up the slow chaos?
Many traditional but successful organizations simply have too much money
(Chapter 38) to really notice or bother with it. They must first realize that
the world has changed from pursuing economies of scale to pursuing
economies of speed (Chapter 35). Speed is a great forcing function for
automation and discipline. For most situations besides dynamic scaling, it’s

OK if provisioning a server takes a day. But if it takes more than 10
minutes, you know there’ll be the temptation to perform a piece of it
manually. And that’s the dangerous beginning of slow-moving chaos.
Instead, let software eat the world (Chapter 14) and don’t send humans to
do a machine’s job (Chapter 13). You’ll be fast and disciplined.

1 John Roberts, The Modern Firm: Organizational Design for Performance and Growth
(Oxford: Oxford University Press, 2007).

2 “ITIL—IT service management,” Axelos (website), https://oreil.ly/PN_Mj.

https://oreil.ly/PN_Mj

Chapter 32. Governance
Through Inception

I Am from Headquarters, I Am Here to Help You

Corporate governance circa 1984

Corporate IT tends to have its own vocabulary. A top contender for the most
frequently used phrase must be to align, which translates vaguely into the
activity of holding a meeting with no particular objective beyond mulling
over a topic and coming to some sort of agreement short of an official
approval. Large IT organizations tend to get slowed down (Chapter 30) by
doing this a lot. After alignment, governance likely comes in second.

Living in Perfect Harmony
Governance generally describes the act of harmonizing and standardizing
things across the organization by means of rules, guidelines, and standards.
IT harmonization done well increases purchasing power through economies
of scale, reduces downtime thanks to less operational complexity, and
boosts IT security by eliminating unnecessary diversity.

While pursuing harmonization is a rather worthwhile goal, governance can
also do harm; for example, by converging on a lowest common
denominator, which in the end doesn’t meet the business’s need. Also, many
enterprises standardize on an all-encompassing solution that ends up being
too expensive for many use cases. Lastly, if the wrong things are
standardized, it can stifle creativity.

Harmonization can reduce cost and complexity, increase uptime, and
strengthen cybersecurity. But, if done in the abstract, it can also stifle
innovation, lead to a lowest-common-denominator solution, or propose
overengineered and overpriced universal solutions.

One common cause of suboptimal standards is that those setting the
standards don’t have the necessary skill set and the full context of a
situation. Worse yet, these teams often lack meaningful feedback on the
effect of the standards they set. Things may look orderly from the top—e.g.,
everyone uses the same type of laptop—but developers lack administrative
access and main memory, while frequent travelers must lug around a
desktop-equivalent monster laptop.

In many large IT organizations, top decision makers don’t use the very tools
they standardize. For example, they rarely use the standard workplace or HR
tools (Chapter 29), because they’re entitled to special solutions or they have
admins who do this work for them. They hence can lack both the situational
context and a critical feedback cycle.

Exerting governance in an existing organization or one that grew by
acquisition involves migrating from the “wrong” system implementation to
the “standard.” Such migrations bring cost and risk without an apparent
benefit for the local entity, making enforcement difficult. The enemy of
governance is the “shadow IT,” which describes local development outside
the reaches of central governance.

The Value of Standards
Standardization has enormous value, as epitomized by what happened
during a devastating 1904 fire in Baltimore, Maryland. When much of
downtown Baltimore was ablaze, firemen from surrounding cities rushed to
help with their fire engines. Sadly, many of these firefighters and much of
their equipment ended up standing idle because the fire hose connections of
other cities’ departments wouldn’t fit Baltimore’s fire hydrants. The
National Fire Protection Association was quick to learn from this disaster
and in 1905 established a standard for fire hose connections, still known as
the “Baltimore Standard.”

Corporate governance typically starts by defining a set of standards that are
to be adhered to. A standards organization will define and administer these
standards for many types of products that are being used. For example, they
may decree that software ABC shall be used as the internet browser and
vendor product XYZ for databases. But if we look at the real world, the most
successful standards have been of a different nature.

The standards with the biggest economic impact have been compatibility or
interface standards: specifications that allow interchangeability of parts.
Fire hoses and hydrants are a great example, as is HTTP. In an IT
environment, interface standards translate to standardizing interfaces rather
than products; for example, standardizing on HTTP or a specific minimum
version of HTML, as opposed to setting Internet Explorer as the browser.

The most successful IT standards over the past half-century have been TCP/IP
and HTTP—these brought us universal connectivity and the internet.
However, neither is a product standard, but both are interface standards. Also,
both are open standards.

Interface Standards
Interface standards bring flexibility and network effects: when many
elements can interconnect, the benefit to all participants increases. The
internet, originally based on the HTML and HTTP standards for content and
connectivity, is the perfect example. Thanks to these standards, any browser
could connect to any web server regardless of the implementation
technology used. Such effects also highlight again how lines are more
interesting than boxes (Chapter 23).

Enterprises must therefore articulate their main driver behind setting
standards: standardizing vendor products aims to reduce cost and
complexity through economies of scale, while compatibility or connectivity
standards boost flexibility and innovation. Both are useful, but call for
different types of standards.

Not all interface standards look like interfaces. For example, when
standardizing inside an enterprise, elements, or “boxes,” can act as
connecting elements. Monitoring and version control systems are great
examples: while they are components, their purpose is to connect many
applications so that one can gain a unified view across software
development or operational status, respectively. That’s why in my view it’s
more beneficial to standardize the version control system than standardize
the integrated development environment (IDE) that developers use: the
former is a connecting element, while the latter is a node. Storing all
sources in a single repository allows easy reuse or shared code ownership,
something that shared IDEs can’t do.

It’s more beneficial to standardize connecting elements, such as monitoring or
source control, than endpoints such as laptops or IDEs. Google took this to
the extreme by storing (almost) all of its source code in a single version
control system.

Mapping Standards
However, setting standards, even for interfaces, isn’t quite as simple. For
example, sizing all fire hose connections the same turns out to not be such a
good idea. For a standard to be useful, it needs to be based on a common
worldview and vocabulary (Chapter 16) that specifies the standard’s scope.
For example, IT standards for databases, application servers, or integration
run the risk of being meaningless without a distinction of the types of
databases or servers under consideration.

The Baltimore fire hydrant standard distinguishes two kinds of standards, one
for pumper connections and one for fire hose connections. Pumper
connections feed water from the hydrant to a pump truck and have a large
diameter. Hose connections feed an individual fire hose and are smaller in
diameter.

For example, if an organization wants to standardize database products,
you’d need to first define whether you standardize relational databases
separately from NoSQL databases and, if so, whether you want to
distinguish between document and graph databases (Chapter 16). Only then
should you look at products: before you visit a car dealer you should know
whether you want a minivan or a two-seater sports car. Or visit Porsche—
they seem to be making everything these days.

For storage, you need to distinguish a SAN from NAS and differentiate
backup storage from direct-attached storage (DAS). And you may be
looking into HDFS and converged/so-called “hyperconverged” storage (a
storage virtualization layer over local disks).

Governance by Decree
Enforcing standards can be a bit like herding cats, even when the economic
value is blatantly obvious. For example, almost one hundred years after the
Baltimore standard, fighting large fires such as the Oakland Hills Fire of
1991 is still impeded by cities not following the standard. Often, the
deviation from the standard is a historical artifact or purposely driven by
vendors to gain lock-in.

In many organizations, a diagnostic “police” will visit different entities to
ascertain their standard compliance, which gives rise to the joke about the
biggest lie in a corporate environment: “I am from headquarters; I am here
to help you.” Cybersecurity can be a useful vehicle to drive standardization:
nonstandard or outdated versions of software generally carry a higher risk
of vulnerability than well-maintained, harmonized environments.

A specific challenge is posed by users who also use a standard, in addition
to their own solution. They thus will correctly proclaim “yes, we do drive
BMW cars,” in line with a corporate standard that they do so, despite the
parking lot being full of Mercedes, Rolls-Royces, and Yugos. In another
phenomenon, users employ a standard, but for the wrong purpose. For
example, they may use the standard BMW as a meeting room for four
people, and don’t actually drive it (they prefer Mercedes for that). Sounds
absurd? I have seen many similarly absurd examples in corporate IT!

Governance Through Infrastructure
Interestingly, in my seven years at Google no one ever mentioned the word
governance (or SOA or big data, for that matter). Knowing that Google not
only has a fantastic service architecture and world-leading big data
analytics, you might guess then that it also has strong governance. In fact,
Google has an extremely strong governance in places where it matters most;
for example, runtime infrastructure. Employees were free to write code in
Emacs, vi, Notepad, IntelliJ, Eclipse, or any other editor, but there was
basically only one way to deploy software to the production infrastructure,

1

on one kind of OS (in the old days, you could choose between 32 or 64 bit),
on one kind of hardware.

While occasionally painful, this strictness worked because most software
developers would put up with pretty much anything to have their software
run on a Google-scale infrastructure: it was, and likely still is, a decade
ahead of what most other companies were using. The governance didn’t
need to take the form of a decree because the system was vastly superior to
anything else, rendering not following it a guaranteed waste of time. If the
corporate car is a Ferrari or has a flux capacitor for time travel, people
won’t be running to the VW dealer. In Google’s case, the flux capacitor was
the amazing “Borg” deployment and machine management system, which
has been publicly described in a Google research paper. For Google the
system’s economies of scale worked so well that in the end it became
reasonable to have everyone drive a Ferrari while enjoying the fast pace.

Runtime Governance
Netflix exerts governance over application design and architecture by
running their infamous chaos monkey against deployed software to verify
that the software is resilient. Noncompliant software will be pummeled in
production by automated compliance testers. Hardly any organization that
brags about its corporate governance group would have the guts to do the
same.

Inception
In large IT organizations the motivation is generally a little less pronounced
and the infrastructure a little less advanced. If you’ve been to the movies in
recent years you must have come across Inception, an ingenious
Christopher Nolan flick depicting corporate criminals who steal trade
secrets from victims’ subconscious minds. The title derives from the plot, in
which the corporate team usually operates in “read only” mode to extract
secrets from the victim’s memory, but that for their big coup they must
actively implant an idea into a victim’s mind to cause him to take a

2

3

https://oreil.ly/Xgm7_

particular action—a process referred to “inception.” In the movie the tricky
part is to make the victim truly believe it was his idea.

If we could perform inception, corporate governance would be much easier:
IT units would independently come to the conclusion to use the same
software. This isn’t quite as absurd as it sounds because there’s one magic
ingredient in today’s IT world that makes it possible: change. With change
comes the need to update systems (still have Lotus Notes somewhere?) and
the opportunity to set new standards without any additional migration costs.
You “simply” have to agree on which incarnation of the new piece of
technology you want to employ, for example for a software-defined
network, a big data cluster, or an on-premise platform-as-a-service. That
you have to do by inception.

Inception in corporate IT works only if the governing body is ahead of the
rest of the world, so they can set the direction before the widespread need
arises. Acting as an educator, they supply new ideas to their audience and
can inject, or incept, ideas, such as demand for a specific product or
standard. In a sense, that’s what marketing has been doing for centuries:
creating demand for the product that manufacturing happened to have built.

In times of change, the “new” will ultimately replace the “old” and through
constant inception the landscape becomes more standardized. The key
requirement is that “central” needs to innovate faster than the business units
so that when a division requests a big data analytics cluster, corporate IT
already has clear guidance and a reference implementation. Doing so
requires foresight and funding, but beats chasing business units for
noncompliance and facing migration costs.

The Emperor’s New Clothes
Traditional IT governance can also cause an awkward scenario best
described as the “emperor’s new clothes”: a central team develops a product
that exists primarily in slide decks, so-called vaporware. When such a
product is decreed as a standard, which is essentially meaningless,
customers may happily adopt it because it’s an easy way to earn a “brownie

point,” or even funding, for standard compliance without the need for much
actual implementation. In the end everyone appears happy, except the
shareholders: it’s a giant and senseless waste of energy.

Governance Through Necessity
In an interesting book about refugee camps in the Western Sahara, I
learned that almost everyone in these camps who owns a car has the same
older car models, either a Land Rover all-terrain vehicle or an early 1990s
Mercedes sedan. Together, these models make up more than 90% of all
local cars, with 85% of sedans being Mercedes—a corporate governor’s
dream! Why? Residents chose an inexpensive and very reliable car that
could withstand the rough terrain and heat. The standardization came
through simple necessity, however: buying another model of car would
mean not being able to take advantage of the existing skill set and the pool
of available spare parts. In an environment of economic constraints, these
are major considerations. Corporate IT has the same forces, especially
regarding IT skill set availability for new technologies. The observed
diversity in corporate environments is therefore a rich company problem
(Chapter 38): the scarcity of skills or resources just isn’t strong enough to
drive joint decision making—they can easily be solved with more money.
You could also argue that the refugee camps had the advantage of a so-
called greenfield installation, even though that term seems awfully
inappropriate for people being displaced in the desert.

1 Momar Seck and David Evans, “Major U.S. Cities Using National Standard Fire Hydrants,
One Century After the Great Baltimore Fire,” NISTIR 7158, National Institute of Standards
and Technology.

2 A reference to the ’80s movie Back to the Future.

3 A. Verma et al., “Large-Scale Cluster Management at Google with Borg.”

4 Manuel Herz, From Camp to City: Refugee Camps of the Western Sahara (Lars Muller,
2012).

4

Part V. Transformation

When setting up modern technology in a large IT organization, you’ll
invariably find that there’s an impedance mismatch. Using elastic billing
from a cloud provider won’t work well if you have to make an annual
budget forecast anyway. And being able to provision infrastructure with an
API call becomes a lot less exciting if there’s a two-month approval process
attached to it. Therefore, the last and final leg on your architect journey is
being able to change the way organizations work.

Change Is Risky

Bringing change into large organizations is rewarding but challenging,
requiring you to utilize everything you’ve learned so far: you must first use
your architectural thinking to understand how complex organizations work
and which “levers” you may have. Superb communication skills help you
garner support, while leadership skills are needed to effect a lasting change.
Last, your IT architect skills are needed to plan and implement the technical
changes necessary for the organization to work in a different way. As an
architect you are best qualified to understand how technical and
organizational changes depend on each other so that you can solve the
Gordian knot of interdependencies.

Citing The Matrix one more time (after all, Neo is quite a change agent in a
tough environment!), the exchange between the Architect and the Oracle
draws the apt context:

The Architect: You played a very dangerous game.

The Oracle: Change always is.

Interestingly, in The Matrix, the Architect is the main entity trying to
prevent change. You should identify yourself with Neo, instead, making
sure to have an Oracle to back you up.

Not All Change Is
Transformation

Not every kind of change deserves to be called “transformation.” You
change the layout of the furniture in your living room, but you transform
(or maybe convert) your house into a club, retail store, or place of worship.
The word trans-form has its origin in Latin with a literal meaning of “to
change shape or structure.” When we speak of IT transformation, we
therefore imply not an incremental evolution, but a fundamental
restructuring of the technology landscape, the organizational setup, and the
culture. Basically, expect to have to turn the house upside down, cut it into
pieces, and put it back together in a new shape.

Bursting the Boiler

A prevalent risk in corporate transformation agendas is upper management
recognizing the need for change and subsequently applying pressure to the
organization to become faster, more agile, more customer centric, etc.
However, the organization, and especially middle management, is often not

ready to transform and attempts to achieve the targets set by upper
management within the old way of working. This can put enormous strain
on the organization and is unlikely to meet the ambitions. I compare this to
a steam engine that is surpassed by a fast electric train. In an attempt to
speed up, the steam-engine operator throws more coals onto the fire to
increase the boiler pressure. While it may initially speed up the steam
engine, soon the boiler will burst. You can’t compete with an electric train
by putting more pressure on the boiler. Instead, you need to devise a new
engine that can keep up. That’s what architects do.

Why Me?

As an architect, you might think: “Why me? Isn’t this where the high-paid
consultants come in?” They can certainly help, but you can’t just inject
change from the outside with a slide deck. Lasting change must come from
the inside through role models, rapid feedback cycles, celebrated
achievements, and much more. To effect lasting change in an organization
you’ll need to understand the following:

Chapter 33, No Pain, No Change!

Organizations are unlikely to change if there’s no pain.

Chapter 34, Leading Change

You must show a better way of doing things.

Chapter 35, Economies of Speed

Organizations need to think in economies of speed instead of economies
of scale.

Chapter 36, The Infinite Loop

Running in circles is an essential part of digital organizations.

Chapter 37, You Can’t Fake IT

You must be digital on the inside to be digital on the outside.

Chapter 38, Money Can’t Buy Love

There is no SKU for transformation.

Chapter 39, Who Likes Standing in Line?

You can speed up organizations by waiting less instead of working
more.

Chapter 40, Thinking in Four Dimensions

To transform, organizations need to think in new dimensions.

1 SKU = Stock Keeping Unit, used for order and inventory management.

1

Chapter 33. No Pain, No
Change!

And Watching Late-Night TV Does Not Help…

Go, go, gooooo!

A colleague of mine once attended a “digital showcase” event in his
company, which highlighted many innovative projects and external
hackathons the company had organized. Upon returning to his desk, though,
he found himself in the same old corporate IT world where he is forced to
clock time, cannot get a server in less than three weeks, and isn’t allowed to
install software on his laptop. He was wondering whether he was caught in
some twisted incarnation of two-speed IT, but that made little sense; after
all, his project was part of the fast-moving “digital” speed.

Stages of Transformation
I had a different answer: transformation is a difficult and time-consuming
process that doesn’t happen overnight. People just don’t wake up one day
and behave completely differently, no matter how many TED Talks they
listened to the day before. (A talk I once attended illustrated how difficult it
is to change which part of the body you dry first with your towel after
taking a shower in the morning. I guess the speaker was right—I never
changed that.)

To illustrate the stages a person or an organization tends to go through when
transforming their habits, I drew up the example of someone changing from
eating junk food to leading a healthy lifestyle. With no scientific evidence, I
quickly came up with 10 stages:

1. You eat junk food. Because it’s tasty.

2. You realize eating junk food is bad for you. But you keep eating it.
Because it is tasty.

3. You start watching late-night TV weight-loss programs. While
eating junk food. Because it is so tasty.

4. You order a miracle exercise machine from the late-night TV
program. Because it looked so easy.

5. You use the machine a few times. You realize that it’s hard work.
Worse yet, no visible results were achieved during the two weeks
you used it. Out of frustration you eat more junk food.

6. You force yourself to exercise even though it’s hard work and the
results are meager. You’re still eating some junk food, though.

7. You force yourself to eat healthier, but find it not tasty.

8. You actually start liking vegetables and other healthy food.

9. You become addicted to exercise. Your motivation changed from
losing weight to doing what you truly like.

10. Friends ask you for advice on how you did it. You have become a
source of inspiration to others.

Change happens incrementally, and it will take a lot of time plus dedication.

Digital Transformation Stages
Drawing the analogy between my colleague’s situation and my freshly
created framework, I concluded that they must be somewhere between stage
3 and 4 on their transformation journey. What he attended was the digital
equivalent of watching late-night miracle solutions. Maybe the company
even invested in or acquired one of the nifty startups, which are young, hip,
and use DevOps. But upon returning to his desk, he experienced that the
organization was still eating lots of junk food.

I suggest that the transformation scale from 1 to 10 isn’t linear: the critical
steps occur from stage 1 to 2 (awareness, not to be underestimated!), 5 to 6
(overcoming disillusionment) and from 7 to 8 (wanting instead of forcing
yourself). I would therefore give his company a lot of credit for starting the
journey, but warn them that disillusionment is likely to lie ahead.

Wishful Thinking Sells Snake Oil
It can be amazing how gullible smart individuals and organizations become
when they are presented with miracle claims for a better life. As soon as
people or organizations have entered stage 3, whole industries that are built
on selling “snake oil” eagerly await them, overweight individuals and slow-
paced corporate IT departments alike: late-night weight-loss commercials
and shiny demos showing business people building cloud solutions in no
time. As Russell Ackoff once pointedly put it, in “A Lifetime of Systems
Thinking”:

Managers are incurably susceptible to panacea peddlers. They are
rooted in the belief that there are simple, if not simple-minded, solutions
to even the most complex of problems.

1

When you are looking for a quick change, it’s difficult to resist, especially if
you don’t have your own world map (Chapter 16).

Digital natives have it easy because, as the name suggests, they were born
on the upper levels of the digital transformation scale and never had to
make it through this painful change process. Others feel the pain and tend to
search for an easy way out. The problem is that this approach will never get
you beyond stage 5, where real change hasn’t happened yet.

Tuning the Engine
Not everyone who buys snake oil is a complete fool, though. Many
organizations adopt worthwhile practices but don’t understand that these
practices don’t work outside of a specific context. For example, sending a
few hundred managers to become Scrum Master certified doesn’t make you
agile. You need to change the way people think and work and establish new
values. Holding a standup meeting every day that resembles a status call
where people report 73% progress also doesn’t transform your organization.
It’s not that standup meetings are a bad idea, rather the opposite, but they
are about much more than standing up. Real transformation has to go far
beyond scratching the surface and change the system.

Systems theory (Chapter 10) teaches us that to change the observed
behavior of a system, you must change the system itself. Everything else is
wishful thinking. It’s like wanting to improve the emissions of a car by
blocking the exhaust pipe. If you want a cleaner running car, there’s no
other way than going all the way back to the engine and tuning it or
transforming it into an electric car. When you want to change the behavior
of a company, you need to go to its engine—the people and the way they
are organized. This is the burdensome, but only truly effective way.

Help Along the Way
Some enterprise IT vendors do resemble the folks selling overpriced
workout machines on late-night TV: their products work, but not quite as

2

https://oreil.ly/Le5-n

advertised, and they are in fact overpriced. A good walk in the park every
day likely produces the same results for free. You just need to be smart
enough to know that and disciplined enough to stick to it.

Many enterprise IT vendors provide genuine innovation to their customers,
but at a price. Enterprise vendors range from “old school” to “selling an
imitation of the new world to old enterprises” and “truly new world.” The
further left on this scale your organization is, the more you will pay. My
goal, therefore, is to build sufficient internal skill to use products as far to
the right on that spectrum as possible. As I once stated in a slightly
exaggerated way: “Corporate IT tends to pay for its stupidity. If you are
stupid, you better be rich!” An organization that doesn’t have the required
skill yet pays “tuition,” a concept well-known in German as Lehrgeld. If
spending the money helps them do better next time, it’s a good investment.
As always, I make sure to document such decisions (Chapter 8).

The consultants and enterprise vendors that surround traditional
enterprises (Chapter 38) have a limited incentive to fully transform their
clients into becoming digital: digital companies tend to shun consultants
and largely employ open-source technology, often developed by
themselves. Because externals are set to profit from the transformation path
itself, they are useful in helping an enterprise start the transformation, as
this brings the willingness to invest money. However, they aren’t quite as
keen to catapult their customers into a state where their advice or products
are no longer needed. This love-hate relationship is likely to affect the role
an architect plays in the transformation effort: you can’t achieve it without
external help, but you have to be aware that it’s a co-opetition rather than
true collaboration.

The Pain of Not Changing
The biggest risk during the transformation journey is suffering a relapse
after having bought “snake oil” just to realize that it doesn’t achieve the
promised results, or at least not as quickly as anticipated. This risk is
particularly high at stages 4 or 5 of my model.

The inevitable pain of changing makes the lure of the easy path, that is, not
changing or giving up halfway, a clear-and-present danger. The long-term
effects of not changing are easily put aside because that pain isn’t
happening yet. Plus, you already accepted the current state, even if it clearly
isn’t optimal. The certainty of knowing the current state proves to be a
major force against change, which carries a large amount of uncertainty—
who knows whether all the projected benefits will actually materialize? It
could be getting worse for all we know. This is one of the many ways we
are biased and thus poor decision makers (Chapter 6).

IT organizations, especially operations teams, tend to equate change to risk
(Chapter 26). The insight that change was needed often comes much later,
when the cost of not having changed becomes blatantly and painfully
apparent. Sadly, at that time the list of available options tends to be much
shorter, or empty. This is true for individuals (“I wish I had started a
healthier life when I was young”) as well as organizations (“We wish we
had cleaned up our IT before we became disrupted”). When people reflect
on their lives, they are much more likely to regret not having done things as
opposed to the things they did. The logical conclusion is simple: do more
things and keep doing those that work well.

Getting Over the Hump
A linear chain of events has one tricky property: the probability of making it
through all steps computes as the product of the individual transition
probabilities between each step and the next. Let’s say you are a quite
determined person and have a 70% chance of making it from one step to the
next, even though the machine you ordered from late-night TV didn’t work
quite as advertised. If you compound this probability across the 9 steps
needed to go from stage 1 to stage 10, you arrive at a 4% probability, 1 in
25, of making it to the goal. If you assume a fifty-fifty chance at each step,
which might be more realistic (just look on eBay for barely used exercise
machines), you end up with 1/29 = 0.2% or 1 in 512 (!). “Against All

Odds” comes to mind, even though it’s probably not Phil Collins’s best
song.

The biggest enemy of change is complacency: if things aren’t so bad, the
motivation to change is low. Organizations can artificially increase the pain
of not changing, e.g., by creating fear or conjuring a (fake) crisis before the
real crisis occurs. Such a strategy can work but is risky. It cannot be applied
many times as people will start ignoring the repeated “fire drill.” Still,
conjuring a crisis beats undergoing a real crisis. Many organizations only
really start to change when they have a “near-death” experience. The
problem is that near-death often results in actual death.

1 Russell Ackoff, “A Lifetime of Systems Thinking,” The Systems Thinker (website),
https://oreil.ly/DP_Ea.

2 Jason Yip, “It’s Not Just Standing Up: Patterns for Daily Standup Meetings,”
MartinFowler.com, Feb. 21, 2016, https://oreil.ly/Le5-n.

https://oreil.ly/DP_Ea
https://oreil.ly/Le5-n

Chapter 34. Leading Change

The Island of Sanity in the Sea of Desperation

Don’t get voted off the island!

Demonstrating positive results from a different way of doing things in a
small team can help overcome complacency and the fear of uncertainty, and
thus is a good way to start a transformation. We shouldn’t forget, though,
that the “trailblazers” on such teams have a doubly tough job: they need to
overcome the pain of change and do so in an environment that’s still at
stage 1 of the transformation journey. This is comparable to eating healthy
when everyone around you at the table is having tasty cake and the
restaurant has nothing healthy on the menu at all.

To succeed, you need a firm belief and perseverance. The corporate IT
equivalent of trying to eat healthy at the cake party is trying to be Agile
when it takes four weeks to get a new server or when contemporary
development tools and hardware aren’t allowed because they violate
corporate security standards. You’ve got to be willing to swim upstream to
effect change.

A Tractor Passing the Race Car
One particular danger of leading change with a different approach is that the
existing, slow approaches are often more suitable for the current
environment. This is a form of systems resisting change (Chapter 10) and
can result in your fancy new software/hardware/development approach
being pummeled by the old, existing ways. I compare this to building a full-
fledged race car, just to find out that in your corporate environment each car
has to pull three tons of baggage in the form of rules and regulations. And
instead of a nice, paved racetrack, you find yourself in a foot-deep sea of
process mud. You will find out that the old corporate tractor slowly but
steadily passes your shiny new Formula 1 car, which is busily throwing up
mud while shredding its rear tires. In such a scenario, it becomes difficult to
argue that you devised a better way of doing things.

It’s therefore critical to change processes and culture along with introducing
new technology. A race car in a tractor pulling contest will be laughable at
best. You need to build a proper road before it makes sense to commission a
race car. You also need to employ your communication skills (Part III) to
secure management support when setbacks happen.

Setting Course
To motivate people for change, you can either dangle the digital carrot,
painting pictures of a happy, digital life on the far horizon, or wield the
digital stick, warning of impending doom through disruption. In the end,
you’ll likely need a little bit of both, but the carrot is generally the more
noble approach. For the carrot to work, you need to paint a tangible picture
of the alternate future and set visible, measurable targets based on the
company strategy. For example, if the corporate strategy is based on
increasing speed to reduce time-to-market, a tangible and visible goal
would be to cut the release cycle for your division’s software products or
services in half (or more) every year. If the goal is resilience, you set a goal
of halving average recovery times (Chapter 12) for outages. Some goals can
even be enforced through automation.

Digital companies may enforce a goal to improve resilience by deploying a
chaos monkey (Chapter 32) that randomly disables components.

Setting goals can be a tricky affair, as the organization might meet the goals
without completing the intended change. For example, setting a reduction in
number of outages as a goal surfaces two major issues. First, it incentivizes
hiding outages and, second, it’ll make teams invest in more up-front testing,
slowing down the organization. Lastly, it’s not necessarily the number of
outages that negatively affect the business, but the total observed downtime.

Venturing Off the Mainland
You cannot expect everyone to instantly join you on your journey, though,
simply because you’re telling stories about the magic land awaiting them in
the far distance. You will surely find some explorers or adventurers-at-heart
who are willing to get on the boat just based on your vision or charisma.
Some may not even believe your promises, but find sailing to unknown
shores more appealing than just sitting around. These folks are your early
adopters and can become powerful multipliers for your mission. Find them,
connect them in a community, and take them along.

Others will wait to see whether your ship actually floats. Be kind to them
and pick them up for the journey once they are ready. These folks may
actually be more committed as they overcame an initial hurdle or fear. Yet
others will want to see you return with your ship loaded with gold. That’s
also fine—some have to see to believe. So you need to be patient and
recruit for your transformation journey in waves.

Burning the Ships
Even after folks have joined you on the transformation journey, the chance
of a relapse is high: on your journey you will encounter storms, pirates,

sharks, sandbanks, icebergs, and other adverse conditions. Captains of a
digital transformation have to be skilled sailors, but also strong leaders. A
tough approach is to “burn the ships,” derived from the story that upon
arriving on a new shore the captain would burn the ships so no one could
propose to retreat and go back home. I am not sure whether this approach
really increases the odds of success. You want a team that’s committed and
believes in success, as opposed to one that has doubts but no ship on which
to return.

Offshore Platforms
Some companies’ change programs sail far off the mainland to overcome
the constraints imposed by the old world. Copying what they observe in
successful so-called “digital” companies, teams move into colorful
buildings with open seating plans and baristas, use Apple laptops full of
open source stickers, and wear shorts or hoodies. Such units, resembling
offshore drilling platforms far from the mainland—run under fancy labels
like “innovation center,” “digital hub,” or “digital factory”—can be a lot of
fun, but suffer from several major issues:

1. These new islands often don’t have a meaningful bridge back to
the mainland, meaning they largely operate in isolation. They
therefore don’t act as a transformation vehicle for the main island.
My cynical advice for such a setup is: “if you want to show that
smart people in an ideal environment can create valuable things,
you could have just bought Facebook stock.”

2. Such islands often don’t have economic pressure because they are
well-funded by the mothership. They thus end up being “digital
trust fund” playgrounds that don’t deliver concrete business value.
Those setups could be handy for press releases and corporate tours,
but not for working in rapid-value delivery cycles.

3. And last, copying digital leaders’ working environments isn’t
going to make you “digital.” This fallacy, known as the cargo

You can’t copy-paste culture.

cult, ignores the mechanisms behind the visual facade. A barista
stand doesn’t magically accelerate your release cycles: you can’t
copy-paste culture.

So, just building a new island in a different
ocean isn’t going to help with an
organization’s transformation. You need to

strike a balance between sufficiently reducing constraints but still being
relevant to the mainland. How to find the right balance? The best approach I
found is to keep iterating (Chapter 36).

The Island of Sanity
Still, the temptation to create a better working environment for at least a
subset of the organization can be strong. I followed this approach, which I
refer to as building an “island of sanity in the sea of desperation,” myself in
the year 2000. Back then, just before the internet bubble burst, our
somewhat traditional consulting company vied for talent with internet
startups like WebVan and Pets.com (a plastic bag and a sock puppet
decorate my private internet bubble archive). I therefore helped create an
environment that would be attractive for such candidates and was
successful in recruiting a stellar team of top-notch technologists.

Sooner or later, though, your island will become too small for the people on
it, causing them to feel constrained in their career options. If the island has
drifted far from the mainland because the mainland hasn’t changed much at
all, reintegration will be very difficult, increasing the risk that people leave
the company altogether. That’s what happened to most of my team in 2001.
Second, people will wonder why they have to live on a small and remote
island when other companies feature the same, desirable (corporate)
lifestyle on their extensive mainland. Wouldn’t that seem much easier? Or,
as a friend once asked, or, rather, challenged me in a very pointed way:
“Why don’t you just quit and let them die?” While transformation is hard
work, you also gotta know when you’re trying too hard.

1

Skunkworks That Works
People working in a separate location can however create significant
innovations and transform the mothership, though. The best-known
example perhaps is the IBM PC, which was developed far away from
IBM’s New York headquarters in Boca Raton, Florida. The development
bypassed many corporate rules, for example, by mostly using parts from
outside manufacturers, by building an open system, or by selling through
retail stores. It’s hard to imagine where IBM (and the rest of the computer
industry) would be if they hadn’t created the PC.

IBM was certainly not a company used to moving quickly, with insiders
claiming that it “would take at least nine months to ship an empty box.” But
the prototype for the IBM PC was assembled in one month and the
computer was launched only one year later, which required not only
development, but also manufacturing to be set up. Several factors likely
contributed to the team’s success:

This skunkworks was tasked with launching a real, sustainable
product on the market. It wasn’t a playground.

The team streamlined many processes but didn’t circumvent all
corporate guidance. For example, its products passed the standard
IBM quality assurance tests and thus gained acceptance on the
mainland. The team didn’t deliver a toy but a successful
commercial product.

Lastly, teams back on the mainland probably didn’t see this project
as a threat. They were simply convinced that it was impossible for
IBM to make a computer for less than $15,000 and were happy to
be proven wrong.

These factors led to the IBM PC becoming a positive example of an
ambitious project team questioning existing assumptions while being led by
existing management. A more recent example that large-scale
transformation can work is Microsoft under CEO Satya Nadella, who opted

not to sail off the mainland but rather led the transformation by
“rediscovering the soul of Microsoft.”

Leaving Your Island Will Get Your Feet Wet
You also need to be cautious that most systems (Chapter 10) operate on a
local optimum. While that local optimum might be extremely far removed
from the much more agile and fast way digital organizations work, it’s
usually still better than the “surrounding” operating modes that you end up
with when you make a small change to the system.

For example, an organization may only be able to push code into production
every six months, which is a practical joke in the digital world. However, it
has managed to establish processes that make this cadence workable. If you
change the release cycle to three months, you will make people’s lives
worse and may hurt the product quality and even the company’s reputation.
Hence, you should first introduce automated build and deployment tools to
form the basis for faster releases. Sadly, doing so also makes the operations
staff’s lives worse because they are already very busy with production
support, and now in addition they must attend training and learn new tools.
They will also make mistakes while doing so.

In your view, the organization might live on a tiny molehill while you know
of a high mountain of gold somewhere else. However, between the molehill
and the mountain is a muddy swamp. Because you won’t be able to leap
straight to the mountain of gold, you first have to get folks off the molehill,
convincing them to keep moving after their feet get wet and muddy. That’s
why you must communicate a clear vision and prepare them for tougher
times ahead before the new optimum can be reached.

The Country of the Blind
One shouldn’t underestimate the resistance to change and innovation in
large and successful enterprises that have “done things this way” for a long
time. H. G. Wells’s short story “The Country of the Blind” comes to mind:

2

an explorer falls down a steep slope and discovers a village in a valley that
is completely separated from the rest of the world. Unbeknownst to the
explorer, a genetic disease has rendered all of the villagers unable to see.
Upon realizing this peculiarity, the explorer feels that because “the one-
eyed man is king” in this town he can teach and rule them. However, his
ability to see proves to be of little advantage in a place designed for blind
people, without windows or lights. After struggling to take advantage of his
gift, the explorer is to have his eyes removed by the village doctor to cure
his strange obsessions.

Oddly, two versions of this story exist, each with a different ending: in the
original version, the explorer escapes the village after struggling back up
the slope. The revised story has him observe that a rockslide is about to
destroy the village and he’s the only one able to escape, along with his blind
girlfriend. In either case, it’s not a happy ending for the villagers. Be careful
not to fall into the “in the land of the blind, the one-eyed man is king” trap.
Complex organizational systems settle into specific patterns over time and
actively resist change. If you want to change their behavior, you have to
change the system.

1 Wikipedia, “Cargo Cult,” https://oreil.ly/GpesJ.

2 Satya Nadella, Hit Refresh: The Quest to Rediscover Microsoft’s Soul and Imagine a Better
Future for Everyone (New York: HarperBusiness, 2017).

https://oreil.ly/GpesJ

Chapter 35. Economies of
Speed

Death by Efficiency Is Slow and Painful

Economies of scale versus economies of speed

Large companies looking to speed up are used to optimizing the way they
work: they can make production a few percent more efficient, negotiate a
slightly higher discount from vendors, and reduce budget by printing in
black and white. Sadly, though, their digital competitors don’t move 10%
faster, but 10 times faster, leaving traditional IT departments somewhat
puzzled by how this is even possible.

30,000 Times Faster
A quick example showing how a 10-times speed-up can still be a quite
conservative figure comes from setting up a version control system. A large

IT organization looking to define a standard for source control invested six
months of community work to conclude that the company should be using
Git (Chapter 25). However, it was considered too difficult to migrate other
projects off Subversion, so both products were recommended. The
preparation cycle for the global architecture steering board meeting took
another month, bringing the total elapsed time to seven months or roughly
210 days.

Some tasks that would take traditional organizations months of preparation
and approvals, digital companies can accomplish in a few minutes.

A modern IT organization or startup would have spent a few minutes
deciding on the product and have accounts set up, a private repository
created, and the first commit made in about 10 minutes. The speed-up factor
between the two examples comes to 210 days * (24 hours/day) * (60
minutes/hour) / 10 minutes ≈ 30,000!

If that number alone doesn’t scare you, keep in mind that one organization
published a paper (without selecting or implementing a product such as
BitBucket, GitHub, or GitLab) and is merrily dragging along its legacy. Its
“decision” is thus about as meaningful as prescribing that men should wear
black shoes, but brown is also allowed for historical reasons. Meanwhile,
the other organization is already committing code in a live repository.

Admittedly, large organizations have more parties to align across, existing
source repositories, and many other factors that will make it difficult to set
up a shared service in 10 minutes. However, if you augment the timeline to
include vendor selection, license negotiation, internal alignment,
paperwork, and setting up the running service, the ratio could well end up in
the hundreds of thousands. Should these organizations be scared? Yes!

Old Economies of Scale
How can modern organizations act at orders of magnitude faster than
traditional ones? Traditional organizations pursue economies of scale,
meaning they are looking to benefit from their size. Size can indeed be an
advantage, as can be seen in cities: density and scale provide short
transportation and communication paths, diverse labor supply, better
education, and more cultural offerings. Cities grow because the
socioeconomic factors scale in a superlinear fashion (a city of double the
size offers more than double the socioeconomic benefits), while increases in
infrastructure costs are sublinear (you don’t need twice as many roads for a
city twice the size). But density and size also bring pollution, risk of
epidemics, and congestion problems, which ultimately limit the size of
cities. Still, cities grow larger and live longer than corporate organizations.
One reason lies in the fact that organizations suffer more severely from the
overhead introduced by processes and control structures that are required or
perceived to be required to keep a large organization in check. Geoffrey
West, past president of the Santa Fe Institute, summarized this dynamic in
his fascinating video conversation “Why Cities Keep Growing,
Corporations and People Always Die, and Life Gets Faster.”

In corporations, economies of scale are generally driven by the desire for
efficiency: resources such as machines and people must be used as
efficiently as possible, avoiding downtimes due to idling and retooling. This
efficiency is often pursued by using large batch sizes: making 10,000 of the
same widget in one production run costs less than making 10 different
batches of 1,000 each. The bigger you are, the larger batches you can make,
and the more efficient you become. This view is overly simplistic, though,
as it ignores the cost of storing intermediate products, for example. Worse
yet, it doesn’t consider revenue lost by not being able to serve an urgent
customer order because you are in the midst of a large production run: such
an organization values resource efficiency over customer efficiency.

The manufacturing business realized this about half a century ago, resulting
in most things being manufactured in small batches or in one continuous
batch of highly customized products. Think about today’s cars: the number

1

of options you can order is mind boggling, causing the traditional “batch”
thinking to completely fall apart. Cars are essentially batches of one. With
all the thinking about “Lean” and “Just-in-Time” manufacturing, it’s
especially astonishing that the IT industry is often still chasing efficiency
instead of speed.

A software vendor once stated that, “Obviously the license cost per unit goes
down if you buy more licenses.” To me, this isn’t obvious at all as there’s no
distribution cost per unit of software, aside from that very salesperson sitting
across the table from me. Whether 10,000 customers download one license or
one customer buys 10,000 licenses should be the same, as long as the
software vendor doesn’t send humans to do a machine’s job (Chapter 13).
Cloud computing finally broke the old model.

It looks like enterprise software sales and enterprise procurement both have
some transformations ahead of themselves. In their defense, though, you
have to admit that their behavior is determined by enterprise customers still
stuck in the old thought pattern: supersize it to get a better deal!

In the digital world, the limiting factor for an organization’s size becomes
its ability to change. While in static environments being big is an advantage
thanks to economies of scale, in times of rapid change economies of speed
win out and allow startups and digital-native companies to disrupt much
larger companies. Or as Jack Welch famously stated: “If the rate of change
on the outside exceeds the rate of change on the inside, the end is near.”

Behold the Flow!
The quest for efficiency focuses on the individual production steps, looking
to optimize their utilization. What’s completely missing is the awareness of
the production flow, i.e., the flow of a piece of work through a series of
production steps. Translated into organizations, individual task optimization
results in every department requiring lengthy forms to be filled out before
work can begin: I have been told that some organizations require that
firewall changes be requested 10 days in advance. And all too often the

customer is subsequently told that some thing or another is missing from
the request form and is sent back to the beginning of the line. After all,
helping the customer fill out the form would be less efficient. If that
reminds you of government agencies, you might get the hint that such
processes aren’t designed for maximum speed and agility.

Besides the inevitable frustration with such setups, they trade off flow
efficiency for processing efficiency: the work stations are nicely efficient,
but the customers (or products or widgets) chase from station to station, fill
out a form, pick a number, and wait. And wait (Chapter 39). And wait some
more just to find out they are in the wrong line or their need cannot be
processed. This is dead time that isn’t measured anywhere except in the
customers’ blood pressure. Come to think of it, in most of these places, the
people going through the flow are not customers in the true sense given that
they don’t choose to visit this process, but are forced to. That’s why you are
bound to experience such setups at government offices, where you could at
least argue that misguided efficiency is driven by the pursuit to preserve
taxpayer money. You’ll also commonly find it in IT departments that exert
strong governance (Chapter 32).

Cost of Delay
For innovation and product development processes, this type of efficiency
is pure poison. While digital companies do care about resource utilization
(at Google, datacenter utilization was a CEO-level topic), their real driver is
speed: time-to-market.

Traditional organizations often misunderstand or underestimate the value of
speed. In a joint business-IT workshop, a business owner once described his
product as carrying substantial revenue opportunities. At the same time, the
product owner asked for a specific feature that required significant
development effort, but which would realize value only when rolled out in
another country. Deferring that feature would speed up the initial launch,
thus harvesting the portrayed revenue opportunities sooner.

Flow-based thinking calls this concept the cost of delay (see the excellent
book The Principles of Product Development Flow), which must be added
to the cost of development. Launching a promising product later means that
you lose the opportunity to gain revenue during the time of delay. For
products with large revenue upside, the cost of delay can be higher than the
cost of development, but it’s often ignored. On top of avoiding the cost of
delay, deferring a feature and launching sooner also allows you to learn
from the initial launch and adjust your requirements accordingly. The initial
launch may be an utter failure, causing the product to never be launched in
the second country. By deferring this feature you avoided wasting time
building something that would have never been used. Gathering more
information allows you to make a better decision (Chapter 6).

A great example of a non-high-tech company that embraced economies of
speed is the fashion brand Zara, part of the Inditex fashion empire. When
the pursuit of efficiency drove most fashion retailers to outsource
production to low-cost suppliers in Asia, Zara implemented a vertically
integrated model and manufactured three-quarters of its clothing in Europe,
which allowed it to bring new designs into stores in a matter of weeks as
opposed to the industry average of three to six months. In the fast-moving
fashion retail industry, speed is such a significant advantage that this
strategy propelled Inditex’s founder to be one of the 10 richest people on
the planet. However, the world of fashion is also one of constant change and
even “fast fashion” retailers face stiff competition from online retailers such
as boohoo, which works in small batch sizes coupled with extremely short
product cycles.

The Value and Cost of Predictability
Why do intelligent people ignore basic economic arguments such as
calculating the cost of delay? Because they are working in a system that
favors predictability over speed. Adding a feature later or, worse yet,
deciding later whether to add it or not may require going through lengthy
budget approval processes. Those processes exist because the people who

2

control the budget value predictability over agility. Predictability makes
their lives easier because they plan the budget for the next 12 to 24 months,
and sometimes for good reasons: they don’t want to disappoint shareholders
with runaway costs that unexpectedly reduce the company profit. As these
teams manage cost, not opportunity, they don’t benefit from an early
product launch.

Optimizing for predictability ignores the cost of delay.

Chasing predictability causes another well-known phenomenon:
sandbagging. Project and budget plans sandbag by overestimating timelines
or cost in order to more easily achieve their target. Keep in mind that
estimates aren’t single numbers but probability distributions: a project may
have a 50% chance of being done in four weeks’ time. If “you are lucky and
all goes well,” it may be done in three weeks, but with only a 20%
likelihood. Sandbaggers pick a number far off on the other end of the
probability spectrum and would estimate eight weeks for the project, giving
them a greater than 95% chance of meeting the target. Even worse, if the
project happens to be done in four weeks, the sandbaggers idle for another
four weeks before release to avoid having their time or budget estimates cut
the next time. If a deliverable depends on a series of activities, sandbagging
compounds and can extend the time to delivery enormously.

The Value and Cost of Avoiding Duplication
On the list of inefficiencies, duplication of work must be high up: what
could be more inefficient than doing the same thing twice? That’s sound
reasoning, but you must also consider that avoiding duplication doesn’t
come for free: you need to actively de-duplicate, i.e., detect duplicates and
merge them.

The primary cost involved in de-duplication is coordination: to avoid
duplication you first need to detect it. In a large codebase this can be done
efficiently through code search. In a large organization, it can require many
“alignment” meetings—synchronization points—high up in the hierarchy,
which we know not to scale (Chapter 30) in both computer systems and
organizations.

A story on duplication, attributed to Jeff Bezos, CEO of Amazon: When a
manager pointed out that efforts might be duplicated, the senior executive
walked to the board and wrote “2 > 0.”

Evolving a widely reused resource also requires coordination because
changes must be compatible with all existing systems or users. Such
coordination can slow down innovation. On the flip side, modern
development tools, such as automated testing, can reduce the traditional
dangers of duplication. Some digital companies have even begun to
explicitly favor duplication because their business environment rewards
economies of speed.

How to Make the Switch?
Changing from efficiency-based thinking to speed-based thinking can be
difficult for organizations: after all, it’s less efficient! In most people’s
minds being less efficient translates into wasting money. On top of that,
people being idle is more visible than the damage done by missed market
opportunities.

Usually, this change in attitude happens only when IT is seen as driving
business opportunity instead of being a cost center. While corporate IT is
stuck in a cycle of cutting cost and increasing efficiency, economies of scale
will prevail, which gives the digital giants an ever-bigger lead over
traditional companies that dream of becoming digital but cannot shed their
old habits.

1 Geoffrey West, “Why Cities Keep Growing, Corporations and People Always Die, and Life
Gets Faster,” Edge, May 23, 2011, https://oreil.ly/UAh5C.

2 Donald G. Reinertsen, The Principles of Product Development Flow: Second Generation
Lean Product Development (Redondo Beach, CA: Celeritas Publishing, 2009).

https://oreil.ly/UAh5C

Chapter 36. The Infinite Loop

Sometimes Running in Circles Can Be Productive

The corporate innovation circuit. Best lap time: unknown

In programming, an infinite loop is rarely a good thing (unless you are
Apple, Inc., and your address is 1 Infinite Loop in Cupertino, California).
But even Apple HQ appears to be moving off the infinite loop, which is a
noteworthy feat in and of itself. In poorly run organizations (not Apple!)
employees often make cynical remarks about how they run in circles and
when the desired results aren’t achieved, management tells them to run
faster. You surely don’t want to be part of that infinite loop!

Build-Measure-Learn
There’s one loop, though, that’s a key element of most digital companies:
the continuous learning loop. Because digital companies know well that
control is an illusion (Chapter 27), they are addicted to rapid feedback. Eric
Ries eternalized this concept in his book The Lean Startup as the Build-
Measure-Learn cycle: a company builds a minimum viable product and
launches it into production to measure user adoption and behavior. Based
on the insights from live product usage, the company learns and refines the
product. Jeff Sussna aptly describes the “learning” part of the cycle as
“operate to learn”—the goal of operations isn’t to maintain the status quo
but to deliver critical insights into making a better product.

Digital RPMs
The critical KPI for most digital companies is how much they can learn per
dollar or time-unit spent, i.e., how many revolutions through the Build-
Measure-Learn cycle they can make. The digital world has thus changed the
nature of the game completely and it would be foolish at best (fatal at
worst) to ignore this change.

Taking book authoring as an example: publishing Enterprise Integration
Patterns took a year of writing, followed by some six months of editing and
three months of production. While we had a feeling that the book might be
a success, it wasn’t until another year later that we could measure the
success in actual copies sold. So, making one-half revolution from Build to
Measure took about four years! Completing the cycle, i.e., publishing a
second edition, would have taken another 6 to 12 months. In comparison, I
wrote the original version of this book as an ebook that was published while
it was still a work in progress. The book sold several hundred copies before
it was even done, and I received reader feedback by email and Twitter
almost in real time as I was writing.

The same is true for many other industries: digital technology has made
customer feedback immediate. This is a huge opportunity, but also a huge

1

challenge as customers have learned to expect rapid changes based on their
feedback. If I don’t post an update to my book in two or three weeks,
people may worry that I might have given up on writing. Luckily, I find
instant feedback (comments as well as purchases) hugely motivating, so I
have been far more productive in writing this book than ever before.

Adopting learning as an organization’s key metric is good news for another
reason. While many tasks are taken over by machines, learning how to build
a product that excites users remains firmly in the hands of humans.

Old-World Hurdles
Unfortunately, traditional companies aren’t built for rapid feedback cycles.
They often still separate run from change (Chapter 12) and assume a
project is done by the time it reaches production. Launching a product is
about the 120-degree mark in the innovation wheel of fortune, so making
one-third of a single revolution counts for nothing if your competition is on
its one-hundredth refinement.

What keeps traditional organizations from completing rapid learning
cycles? Their structuring as a layered hierarchy: in a fairly static, slow-
moving world, organizing into layers has distinct advantages; it allows a
small group of people to steer a large organization without having to be
involved in all details. Information that travels up is aggregated and
translated for easy consumption by upper management. Such a setup works
very well in large organizations, but has one fundamental disadvantage: it’s
horribly slow to react to changes in the environment or to insights at the
working level. It takes too much time for information to travel all the way
up to make a decision because each “layer” in the organization brings
communication overhead and requires a translation. Even if architects can
ride the elevator (Chapter 1), it still takes time for decisions to trickle back
down through a web of budgeting and steering processes. Once again, we
aren’t talking about a difference of 10% but of factors in the hundreds or
thousands: traditional organizations often run feedback cycles to the tune of
18 months while digital companies can do it in days or weeks.

Layered organizations benefit from separation of concerns. However, it
becomes a liability in Economies of Speed.

In times when nearly every organization wants to become more “digital”
and the technical platforms are readily available as open source or cloud
services, building a fast-learning organization is a critical success factor.

Looping in Externals
With every revolution, the organization not only learns what features are
most useful for the users, but the project team also learns how to build
enticing user experiences, how to speed up development cycles, or how to
scale the system to meet increasing demand. This learning cycle is critical
for the organization’s digital transformation because it enables in-house
innovation and rapid iterations.

Digital transformation begins with changing HR and recruiting practices.

Inversely, if corporate IT depends heavily on the work of external
providers, which is rather common, the ones benefiting from this learning
are the external consultants. Organizations should therefore place their
internal staff inside the learning cycle and use external support mainly to
coach or teach them. Taking this logic a step further, digital transformation
begins with transforming HR and recruiting practices to hire qualified staff
and to educate existing employees so that they can become part of the
learning cycle.

Pivoting the Layer Cake
To speed up the feedback engine you need to turn the organizational layer
cake on its side by forming teams that carry full responsibility from product
concept to technical implementation, operations, and refinement. Often
such an approach carries the label of “tribes,” “feature teams,” or
“DevOps,” which is associated with a “you build it, you run it” attitude.
Doing so not only provides a direct feedback loop to the developers about
the quality of their product (pagers going off in the middle of the night are a
very immediate form of feedback), but it also scales the organization
(Chapter 30) by removing unnecessary synchronization points: all relevant
decisions can be made within the project team.

Running in independent teams that focus on rapid feedback has one other
fundamental advantage: it brings the customer back into the picture. In the
traditional pyramid of layered command-and-control, the customer is
nowhere to be found—at best somewhere interacting with the lowest layer
of the organization, far from where decisions are made and strategies are
set. In contrast, “vertical” teams draw feedback and their energy directly
from the customer.

The main challenge in assembling such teams is to get a complete range of
skill sets into a compact team, ideally not exceeding the size of a “two-
pizza team”; that is, one that can be fed by two large pizzas. This requires
qualified staff, a willingness to collaborate across skill sets, and a low-
friction environment. The Spotify team concepts of chapters and guilds are
likely the most useful resource in this context.

Maintaining Cohesion
If all control rests in the vertically integrated team, what ensures that these
teams are still part of one company and for example use common branding
and common infrastructure? It’s OK to have some pie crust on the vertical
layer cake: for example, one at the top for branding and overall strategy and

2

one at the bottom for common infrastructure that never sends a human to do
a machine’s job (Chapter 13).

Once you have perfected the rapid Build-Measure-Learn feedback cycle,
you may wonder how many revolutions you will need to make. In digital
companies the feedback engine stops spinning only when the product is
dead. That’s why, for once, it’s good to be part of an infinite loop.

1 Eric Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses (New York: Crown Business, 2011).

2 Henrik Kniberg, “Spotify Engineering Culture (Part 1).”

Chapter 37. You Can’t Fake IT

To Be Digital on the Outside, You First Need to Be Digital on the Inside

Who can spot the dinosaur programmer?

Rapid feedback cycles (Chapter 36) help digital companies understand
customer demand and improve the product or service offered. Naturally,
this feedback loop works best when the product or service has direct
exposure to the end customer or consumer. Corporate IT, in contrast, is
relatively far removed from the end customer because it supplies IT
services to the business, which in turn is in contact with the customer. Does
this imply that corporate IT shouldn’t be the focal point for digital
transformation as it’s too far removed from digital customers? Many digital
transformation initiatives that are driven “from the top” appear to support

this notion: they have special teams engage with customers in focus groups
before handing down the specs to IT for implementation.

Laying the Foundation
But just like you cannot build a fancy new house on an old, fragile
foundation, you cannot be digital on the outside without transforming the IT
engine room: IT must deliver those capabilities to the business that are
needed to become Agile and to compete in the digital marketplace. If it
takes eight weeks to procure a virtual server based on an email request, the
business cannot scale up with demand, unless it stockpiles a huge number
of idling servers, which would be the exact opposite of what cloud
computing promises. Worse yet, if these servers are set up with an old
version of the OS, modern applications may not run on them. On top of all
this, necessary manual network changes are guaranteed to break things or
slow them down.

Feedback Cycles
Rapidly deploying servers can be achieved with private cloud technologies,
but that alone doesn’t make IT “digital.” For corporate IT to credibly offer
services to businesses competing in a digital world, it must itself be ready to
compete in the digital world of IT service providers, not only from a cost
and quality perspective, but also from an engagement model point of view:
corporate IT must become customer centric and learn from customers using
its products in an infinite loop (Chapter 36).

If the servers that are provisioned aren’t the ones the customer needs,
provisioning them faster accomplishes nothing. Moreover, the customer
may not want to order servers at all, but prefers to deploy applications on a
so-called “serverless” architecture. To understand these trends, IT must
engage with their internal customers—the business units—in a rapid
feedback loop, just as the business units do with their end customers.

Delivering on Your Promises
Engaging with customers is helpful only if you can deliver on their
demands. In the case of IT delivering services to its customers, the business
units, it must have the capability and the attitude to deliver digital services
rapidly at high quality. An MIT study showed that those companies that
aligned business and IT without first improving their IT delivery capability
actually spent more money on IT but suffered from below-average revenue
growth. You can’t fake being digital.

Customer Centricity
Customer centricity is a common phrase incorporated into many a
company’s motto or “value statement.” What company wouldn’t want to be
customer centric after all? Even institutions whose customers are decreed
by law, such as the Internal Revenue Service, have exhibited a good dose of
customer awareness in recent years. For many organizations, though, it’s
difficult to move beyond the simple slogan and truly become customer
centric because it requires fundamental changes to the organizational
culture and setup: hierarchical organizations are CEO centered, not
customer centered. Operational teams following ITIL processes are process
centered, not customer centered. IT run as a cost center is likely cost
centered as opposed to customer centered. Running a customer-centric
business on top of a process- or CEO-centric IT is bound to generate
enormous friction.

Cocreating IT Services
To support a business in digital transformation, it’s no longer enough for IT
to develop and push commodity services to their customers, the business
units, via governance (Chapter 32). IT must start to behave like a digital
business, generating “pull” demand instead of pushing product. This can be
done well by developing products jointly with customers, which goes under
the fancy moniker of “cocreation.” While many internal customers will

1

welcome the change in mindset and the opportunity to influence a service
being built, others may not want to engage unless you present a firm price
and service-level agreement. Being digital works only if your customers are
digital.

Eat Your Own Dog Food
Some IT departments are relatively far from the end customer, so they
wonder how they can get feedback cycles started. They tend to ignore a
large, readily available pool of customers that’s very close by: their own
employees. Employees are friendly and motivated customers that are
usually eager to try out new stuff. Ironically, the common name for this
clever practice is dogfooding, assuming people will eat their own dog food.
I’d side with an old friend here who determined that it’s unfair that his dog
eats dog food while he’s having a tasty dinner. So he decided to share his
meal with his dog instead—the vet confirmed the dog is perfectly healthy
doing this.

Google is famous for dogfooding its products, meaning its employees get to
try alpha or beta versions of new products. While the name doesn’t make it
sound too appealing, Google’s “food” includes pretty exciting products, some
of which never reach the eyes of the consumer.

Dogfooding is effective because it enables an extremely rapid feedback and
learning cycle in a safe and controlled environment. I start all my IT
services by offering them first as an internal beta release. Once we better
understand customer expectations and work out the kinks, we offer them to
external customers.

Google took things a step further and merged employee and customer
accounts into a single user-management system, making customers and
employees appear identical to most applications, differentiated only by their
domain name (google.com) and their access from the corporate network.
Merging the previously disparate systems was rather painful, but the effect
was hugely liberating as employees were treated as customers.

In contrast, traditional organizations can look at employees and customers
very differently, as illustrated by this example:

At a large financial services company, employees weren’t supposed to use
Android phones. Without even debating the technical merit, I couldn’t
help but wonder how this company can then support customers using
Android devices, which make up some 80% of the market. If Android isn’t
considered secure enough for the company’s financial services
employees, how can it be considered secure enough for its customers?

Rather than trying to control the user base, it’d be more helpful to
understand and address potential weaknesses, for example through two-
factor authentication, mobile device management, fraud monitoring, or
disallowing old versions of the OS, both for customers and employees.

Digital Mindset
Besides starting to use their own products and learning to iterate, one of the
biggest hurdles in making corporate IT more digital can be the employees’
mindset. When employees use previous-generation BlackBerry phones and
internal processes are handled by emailing spreadsheets based on rules
documented in a slide deck, it’s difficult to believe that an organization can
act digitally. While it’s a touchy subject, the age distribution in traditional
IT can be an additional challenge: the average age in corporate IT is often in
the 40s or early 50s, far removed from the digital natives being courted as
the new digital customer segment. Bringing younger employees into the
mix can help companies become digital as it brings some of your target
customer segment in-house.

The good news is that change can happen gradually, starting with small
steps. When employees start using LinkedIn to pull photos or resumes
instead of emailing resume templates, it’s a step toward becoming digital.
Checking Google Maps to find convenient hotels instead of the clunky
travel portal is another. Building small internal applications to automate
approval processes is a small but very important step: it gets people into a
“maker mindset” that motivates them to tackle problems by building
solutions, not by referring to outdated rule books. The digital feedback
cycle can work only if people can build solutions. This may be the biggest
hurdle for corporate IT departments, because they are too afraid of code
(Chapter 11). Code is what software innovation is made of, so if you want
to be digital, you’d better learn to code!

Opportunities for making small steps toward becoming digital are plentiful.
I tend to look for little problems to solve or small things to speed up and
automate.

At Google, getting a USB charger cable was a matter of 2.5 minutes: 1 minute
to walk to the nearest Tech Stop, 30 seconds to swipe your badge and scan the
cable at the self-checkout, and 1 minute to walk back to your desk. To do this
in corporate IT, I had to mail someone, who mailed someone, who asked me
the type of phone I use and then entered an order, which I had to approve.
Elapsed time: about 2 weeks. Speed factor: 14 days × 24 hours/day × 60
minutes/hour / 2.5 minutes = 8064, in the same league as setting up a source
code repository (Chapter 35).

Fixing this would make a great miniproject. You don’t see a positive
business case? That’s probably because your company isn’t yet set up to
develop solutions rapidly. A digital company could likely build this solution
in an afternoon, including database and web user interface, and host it in its
private cloud basically for free. If you never start building small, rapid
solutions, your IT will be paralyzed and likely unable to act in a digital
environment.

The Stack Fallacy
As much of corporate IT is focused on infrastructure and operations,
becoming software minded (Chapter 14) requires a huge shift. For example,
my idea to build an on air sign (Chapter 30) that illuminates when my IP
desk phone is off the hook never materialized because the team rolling out
the devices didn’t code or deal with software APIs.

The challenge an organization faces when “moving up the stack,” e.g., from
infrastructure to application software platform or from software platform to
end-user application is well-known and has aptly been labeled the stack
fallacy. Even successful companies underestimate the challenge and are
subject to the fallacy: VMware missed the shift from virtualization software
to Docker containers for many years, Cisco has been spending billions in
acquisitions to get closer to application delivery, and even mighty Google
failed to move from utility software like search and mail to an engaging
social network, a market dominated by Facebook.

For most of corporate IT, this means an uphill climb from a focus on
operating infrastructure to engaging users with rapidly evolving
applications and services. Though challenging, it is doable: internal IT
doesn’t need to compete in the open market, giving it the chance to change
in small increments.

1 David Shpilberg et al., “Avoiding the Alignment Trap in IT,” MIT Sloan Management Review,
October 1, 2007, https://oreil.ly/nK9ph.

2 Anshu Sharma, “Why Big Companies Keep Failing: The Stack Fallacy,” TechCrunch, Jan. 18,
2016, https://oreil.ly/OYCi-.

2

https://oreil.ly/nK9ph
https://oreil.ly/OYCi-

Chapter 38. Money Can’t Buy
Love

Or a Culture Change

I need that feature by Tuesday

After transitioning from a Silicon Valley company to a traditional business,
my new coworkers frequently reminded me that we’re a large corporation,
implying that what works for Google wouldn’t apply here. My routine retort
was that by applying the standard measure of market capitalization, I joined
a corporation 10 times smaller. More interesting, my coworkers also
pointed out that Google can do pretty much whatever it wants thanks to all
the money it has. My view, in contrast, was that many successful traditional
businesses suffer from exactly this problem of having too much money.

Innovator’s Dilemma
How can organizations have too much money? After all, their goal is to
maximize profits and shareholder returns. To do so, companies use stringent
budgeting processes that control spending. For example, proposed projects
are assessed by their expected rate of return against a benchmark typically
set by existing investments, sometimes called internal rate of return (IRR).

Such processes can hurt innovation, though, when new ideas must compete
with existing, highly profitable “cash cows.” Most innovative products
can’t match established products’ performance or profitability during early
stages. Traditional budgeting processes may therefore reject new and
promising ideas, a phenomenon that Christensen coined the Innovator’s
Dilemma. However, when these new innovations later surpass sustaining
technologies, they threaten organizations that didn’t invest early on and that
now lag behind.

Rich companies tend to have a high IRR and are therefore especially likely
to reject new ideas. Also, they perceive the risk of no change as low—after
all, things are going great. This dampens their appetite for change
(Chapter 33) and increases the danger of disruption.

Beware of the HiPPO
Despite its downsides, companies making investment decisions based on
expected return at least use a consistent decision metric. Many rich
companies have a different decision process: that of the highest paid
person’s opinion, or HiPPO. This approach isn’t just highly subjective but
also susceptible to shiny, HiPPO-targeted vendor demos, which peddle
incremental “enterprise” solutions as opposed to real innovation. Because
those decision makers are far removed from actual technology and software
delivery, they don’t realize how fast new solutions can be built on a
shoestring budget.

To make matters worse, internal “salespeople” exploit management’s
limited understanding to push their own pet projects, often at a cost orders

1

of magnitude higher than what digital companies would spend. I have seen
someone make it to board level with the idea of exposing functionality as an
API, at a cost of many million Euros. It’s easy to sell people in the stone
age a wheel.

Overhead and Tolerated Inefficiency
Many established companies with a profitable business model carry
significant overhead: fancy corporate offices, old labor contracts with
overly generous retirement provisions, overemployment for roles that are
no longer needed, an army of administrative staff for executives, company
cars, drivers, car washes, private dining rooms, coffee and cake being
served in boardrooms—the list is long. This overhead cost is generally
distributed across all cost centers, placing an enormous financial burden on
small and innovative teams working on disruptive technologies.

My small team of architects was loaded with enormous overhead cost ranging
from office space and cafeteria subsidies to workplace charges (computers,
phones), which I couldn’t influence. In comparison, free meals offered by
digital companies are a trivial expense.

Overhead costs also result from inefficiencies that are tolerated in wealthy
organizations because there’s little pressure to remove them. Examples are
manifold: labor-intensive manual processes (I have seen people manually
preparing spreadsheets from SAP data every month), lengthy meetings with
20 executives, half of whom have little to contribute, ordering processes
with long paper trails, people printing reams of paper as handouts for
meetings on digital strategy. All these line items add up and make it difficult
for large companies to compete in new segments where margins aren’t yet
rich enough to support such overhead.

Hollowed-Out IT
A particularly dangerous pitfall for wealthy organizations looking to
transform is the belief that any required skill can be bought at will. Years
ago, many companies considered IT a commodity: a necessity, but not one
that created a competitive advantage. That’s why they didn’t perceive any
risk in keeping IT skills outside of the company. Instead, they valued the
flexibility in ramping external IT staff up and down as needed just as they
would with administrative or cleaning staff. They perceived this model as
more efficient (Chapter 35).

In the late 1990s, the telecom business was very profitable thanks to a fast-
growing broadband internet market. These companies outsourced virtually all
technical work to external contractors and system integrators (where I was
employed). Solid profits allowed them to digest the high consulting fees, high
administrative overhead for contract management, and more than occasional
project cost overruns.

However, outsourcing software delivery has severe drawbacks in the digital
age: first, it prevents the organization from effectively participating in the
Build-Measure-Learn cycle (Chapter 36) because externals typically work
on a prenegotiated scope of work and therefore have little incentive to keep
iterating on products or to shorten release cycles. Second, the organization
won’t be able to develop a deep understanding of new technologies and
their potential, thus stifling innovation. Worse yet, in many cases
knowledge of a company’s existing system landscape rests with external
contractors, rendering the organization unable to make rational decisions
based on the status quo. If you don’t know your starting point, it’s difficult
to get on the road to change.

Outsourcing IT has severe drawbacks in the digital age because it excludes
the organization from the critical innovation cycle.

These companies’ IT departments degenerated into mere budget
administration structures with hardly any technology skill. The main skill
needed was securing budget and spending it. Those companies couldn’t
attract much real IT talent because qualified candidates realized that their
skills weren’t valued. Nevertheless, all was perceived as working well while
the money flowed freely.

Excessive Dependencies
But then everything changed: hardly any industry was overrun by internet
companies as spectacularly as telecommunications. Telecoms used to
“own” communication but completely failed to see the potential of the
smartphone and digital consumer services. Telecoms used to generate
billions of dollars in profits from short message service (SMS) products, a
market that dropped significantly in just a few years thanks to WhatsApp,
Facebook Messenger, and others.

Existing IT contracts focused on improving efficiency (Chapter 35) in
backend processing, such as billing; no internal skill was available to design
and deliver new services to customers; and existing organizational
structures and processes squashed any innovation that was trying to happen.
Eventually, telecoms were left with providing “dumb data pipes” in a
downward price spiral while digital companies enjoyed almost-trillion-
dollar valuations and rich profit margins. Experienced software architects
know that too many external dependencies get you in trouble. The same is
true for organizations.

Paying More May Get You Less
Other factors surely played a role in telecoms missing the “digital boat,” but
believing that technology skills can be acquired as needed is particularly
dangerous. Just like you cannot buy friends, a company cannot buy
motivated employees. Candidates with highly marketable skill sets, such as
cloud architecture or machine learning, are attracted to teams with strong,

My experience is that people
who come for money leave for
more money.

like-minded people. This presents traditional companies with a chicken-
and-egg problem.

Many companies try to overcome this hurdle by paying higher salaries.
However, compensation is often not the main motivator for top candidates;
they are looking for an employer where they can learn from their peers and
have the freedom to implement projects rapidly. That’s why it’s difficult for
companies to “buy” skilled employees.

Worse yet, trying to attract talent by
offering higher salaries can backfire
because it will attract “mercenary”
developers who work for the money alone.
My experience is that people who come

for money leave for more money. It won’t attract passionate developers who
want to be part of a high-performing team to change the world. I compare
this pitfall to the unpopular kid handing out candy at school: the kid won’t
make friends, but will be surrounded by children who are willing to pretend
to be a friend in exchange for candy.

Changing Culture from Within
Top consultants can surely help you implement new and exciting
technology projects, but they won’t significantly change the organization’s
culture; the cultural change must come from within. Roberts classifies the
describing characteristics of an organization as PARC–people, architecture
(structures), routines (processes), and culture. Restructurings and process
reengineering can change the organization’s architecture and routines, but
cultural changes must be instilled by the company leadership. This takes
time, lots of energy, and sometimes a leadership change: “to do change
management, sometimes you need to change management.”

Because digital transformation requires changing both technology and
culture, I opted to drive a large-scale IT transformation from the inside. It’s
the hard, but the only sustainable way.

2

1 Clayton M. Christensen, The Innovator’s Dilemma: When New Technologies Cause Great
Firms to Fail, reprint ed. (New York: HarperBusiness, 2011).

2 John Roberts, The Modern Firm: Organizational Design for Performance and Growth
(Oxford, England: Oxford University Press, 2007).

Chapter 39. Who Likes
Standing in Line?

Good Things Don’t Come to Those Who Wait

100% utilization

When in university, we often wonder whether and how what we learn will
help us in our future careers and lives. While I am still waiting for the
Ackerman function to accelerate my professional advancement (our first
semester in computer science blessed us with a lecture on computability),
the class on queuing theory was actually helpful: not only can you talk to
the people in front of you in the supermarket checkout line about M/M/1
systems and the benefits of single queue, multiple servers systems (which

most supermarkets don’t use), but it also gives you an important foundation
to reason about economies of speed (Chapter 35).

Looking Between the Activities
When looking to speed things up in enterprises, most people look at how
work is done: are all machines and people utilized, and are they working
efficiently? Ironically, when looking for speed, you mustn’t look at the
activities, but between them. By looking at activities you may find
inefficient activity, but between the activities is where you find inactivity,
things sitting around and waiting to be worked on.

Inactivity can have a much more detrimental effect on speed than inefficient
activity. If a machine is working well and almost 100% utilized but a
widget must wait three months to be processed by that machine, you may
have replicated the public healthcare system, which is guided by efficiency
but certainly not speed. Many statistics show that wait times in typical IT
processes, such as ordering a server, make up more than 90% of the total
elapsed time. Instead of working more, we should wait less!

A Little Bit of Queuing Theory
When you look between activities, you are bound to find queues, just like
the lines at your local department of motor vehicles or city office. To better
understand how they work and what they do to a system, let’s indulge in a
bit of queuing theory. My university textbook on queuing theory,
Kleinrock’s Queuing Systems, appears to be out of print, but is available
used. But don’t worry, you don’t need to digest 400 pages of queuing theory
to understand enterprise transformation.

My university professor reminded us that if we remember only one thing
from his class, it should be Little’s Result. This equation states that in a
stable system, the total processing time T, which includes wait time, is
equal to N, the number of items in the system (the ones in the queue plus
the ones being processed) divided by the processing rate λ; in short

1

T = N/λ. This makes intuitive sense: the longer the queue, the longer it
takes for new items to be processed. If you are processing two items per
second and there are 10 items on average in the systems, a newly arriving
item will spend five seconds in the system. You might correctly deduce that
most of those five seconds are spent in the queue, not actually processing
the item. The noteworthy aspect of Little’s result is that the relationship
holds for most arrival and departure distributions.

To build a bridge between speed and efficiency, let’s look at the relationship
between utilization and wait time. The system is utilized whenever an item
is being processed, meaning one or more items are in the system. If you
sum up the probability that a given number of items are in the system, for
instance, 0 items (the system is idle), 1 (one item being processed), 2 (one
item being processed plus one in the queue), etc., you find that the average
number of items in the system is equal to ρ / (1 – ρ), where ρ designates the
utilization rate, or the fraction of time the server is busy (we make the
assumption that arrivals are independent, which is described as a
memoryless system). From the equation you can quickly gather that high
levels of utilization (ρ moving closer to 100%) lead to extreme queue sizes
and therefore wait times. Increasing utilization from 60% to 80% almost
triples the average queue length: 0.6/(1 – 0.6) = 1.5 versus 0.8/(1 – 0.8) = 4.
Driving up utilization will drive away your customers because they get tired
of standing in line!

Finding Queues
Queuing theory proves that driving up utilization increases processing
times: if you live in a world in which speed counts, you have to stop
chasing task efficiency. Instead, you need to look at your queues.
Sometimes these queues are visible like the lines at government offices
where you take a number and wonder whether you’ll be served before
closing time. In corporate IT the queues are generally less visible—that’s
why so little attention is paid to them. By looking a little harder, though,
you can find them almost everywhere:

Busy calendars

When everyone’s calendar is 90% “utilized,” important decisions queue
for people to meet and discuss them. I waited for meetings with senior
executives for multiple months.

Steering meetings

Such regular meetings tend to occur once every month or quarter.
Topics will be queued up for them, again holding up decisions or project
progress.

Email

Inboxes fill up with items that would take you a mere three minutes to
take care of, but that you don’t get to for several days because you are
highly “utilized” in meetings all day. Stuff often rots in my inbox queue
for weeks.

Software releases

Code that is written and tested but waiting for a release is sitting in a
queue, sometimes for six months.

Workflow

Many processes ranging from getting an invoice paid to requesting a
raise for employees, have excessive wait times built in. For example,
ordering a book takes large companies multiple weeks, as opposed to
having it delivered the next day from Amazon.

To get a feeling for the damage done by queues, consider that ordering a
server often takes four weeks or more. The infrastructure team won’t
actually bend metal to build a brand-new server just for you: most servers
are provisioned as VMs these days (thanks to software eating the world
Chapter 14). If you reasonably assume that there are four hours of actual
work in setting up a server consisting of assigning an IP address, loading an
operating system image, and doing some nonautomated installations and
configurations, the time spent in the queue makes up 99.4% of the total

time! That’s why we should look at the queues. Reducing the four hours of
effort to two won’t make any difference unless you reduce the wait times.

Cutting the Line
Standing in line is hardly productive, but occasionally entertaining. When
waiting in line at the San Francisco Marina post office I observed the highly
utilized and actually quite friendly postal workers. To give myself a bit of
utilization I stepped over to grab Priority Mail envelopes for my next urgent
mailing (back then I didn’t know what cool things the Graffiti Research Lab
guys made from postal supplies). When returning to my spot in the line, the
guy behind me complained and after a brief argument he claimed, “You are
out of line.” I think the irony of his statement escaped him as I was the only
one who was amused.

Digital companies understand the danger of queues quite well. The
infamously tasty and free Google cafés have signs posted stating that “Cutting
the line is encouraged.” Google doesn’t like to bear the opportunity cost of 20
people politely waiting behind a person who transports salad leaves to their
plate one by one.

Making Queues Visible
“You can’t manage what you can’t measure,” goes the old saying,
apparently falsely attributed to W. Edwards Deming. In the case of queues,
making them visible can be a major step toward managing them. For
example, metrics extracted from the ticketing system can show the time
spent in each step or the ratio of effort over elapsed time (you will be
shocked!). Showing that most time is simply spent waiting could also help
the organization think in new dimensions (Chapter 40); for example, to
realize that more elapsed time doesn’t equate to higher quality.

For critical business processes such as insurance claims handling, queue
metrics are often managed under the umbrella of business activity

https://oreil.ly/RlScH/

monitoring (BAM). Corporate IT should use BAM to measure its own
business, such as provisioning software and hardware, and reduce lag times.
Slow IT these days means slow business.

Why are single queue, multiple server systems more efficient and why don’t
more supermarkets use them? Lining customers up in a single queue
reduces the chances that a server (i.e., cashier) is idling due to an uneven
distribution of customers across the queues. It also allows smooth increases
or reduction in the number of cashiers without everyone running to the
newly opened lane or being ticked off at a lane closing. Most important, it
eliminates the frustration that the other line is always moving faster!
However, a single queue requires a bit more floor space and a single entry
point for customers. You will see single queue, multiple server systems in
many post offices and some large electronic stores like Fry’s Electronics.
Apparently, they understand queuing theory!

Message Queues Aren’t All Bad
So how can the coauthor of a book on asynchronous message queues
conclude that queues are trouble? Queues are a great tool for building high
throughput and resilient systems. They buffer load spikes to allow resources
to work at optimum rates. Just imagine each person who wants to check out
of the supermarket just piling their items onto the checkout counter the
moment they reach it. Hardly a useful scenario. Many businesses, such as
Starbucks, use queues (Chapter 17) to optimize throughput.

Queues become troublesome when they get long due to excessive
utilization rates. High utilization and short response times don’t mix. Don’t
blame the queue for it.

1 Leonard Kleinrock, Queueing Systems. Volume 1: Theory (New York: Wiley-Interscience,
1975).

Chapter 40. Thinking in Four
Dimensions

More Degrees of Freedom Can Make Your Head Hurt

Stuck in two dimensions

A university class on coding theory taught us about spheres in an n-
dimensional space. Though the math behind it made a good bit of sense (the
spheres represent the “error radius” for encoding, while the space between
the sphere is “waste” in the coding scheme), trying to visualize four-
dimensional spheres can make your head hurt a good bit. However, thinking
in more dimensions can be the key to transforming the way you think about
your IT and your business.

Living Along a Line
IT architecture is a profession of trade-offs: flexibility brings complexity;
decoupling increases latency; distributing components introduces
communication overhead. The architect’s role is often to determine the
“best” spot on such a continuum, based on experience and an understanding
of the system context and requirements. A system’s architecture is
essentially defined by the combination of trade-offs made across multiple
continua.

Quality Versus Speed
When looking at development methods, one well-known trade-off is
between quality and speed: if you have more time, you can achieve better
quality because you have time to build things properly and to test more
extensively to eliminate remaining defects. If you count how many times
you have heard the argument “We would like to have a better (more
reusable, scalable, standardized) architecture, but we just don’t have time,”
you start to believe that this God-given trade-off is taught in the first lecture
of “IT project management 101.” The ubiquitous slogan “quick-and-dirty”
further underlines this belief (Chapter 26).

The folks bringing this argument often also like to portray companies or
teams that are moving fast as undisciplined “cowboys” or as building
software where quality doesn’t matter as much as in their “serious”
business, because they cannot distinguish fast discipline from slow chaos
(Chapter 31). The term banana product is sometimes used in this context—
a product that supposedly ripens in the hands of the customer. Again, speed
is equated with a disregard for quality.

Ironically, the cause for the “we don’t have time” argument is often self-
initiated as the project teams tend to spend many months documenting and
reviewing requirements or getting approval, until finally upper management
puts their fist on the table and demands some progress. During all these
preparation phases, the team “forgot” to talk to the architecture team until

someone in budgeting catches them and sends them over for an architecture
review that invariably begins with, “I’d love to do it better, but…” The
consequence is a fragmented IT landscape consisting of a haphazard
collection of ad hoc decisions because there was never enough time to “do
it right” and no business case to fix it later. The old saying, “nothing lasts as
long as the temporary solution,” certainly holds in corporate IT. Most of
these solutions last until the software they are built on is going out of
vendor support and becomes a security risk.

More Degrees of Freedom
So what if we add a dimension to the seemingly linear trade-off between
quality and speed? Luckily, we are moving only from one to two
dimensions, so our head shouldn’t hurt as much as with the n-dimensional
spheres. We’d simply have to plot speed and quality on two separate axes of
a coordinate system instead of on a single line, as illustrated in Figure 40-1.
Now we can portray the trade-off between the two parameters as a curve
whose shape depicts how much speed we have to give up to achieve how
much better quality.

Figure 40-1. Moving from one to two dimensions

For simplicity’s sake, you could assume that the relationship is linear,
depicted by a straight line. This probably isn’t quite true, though: as we aim
to approach zero defects the time we need to spend in testing probably goes

up a lot, and as we know, testing can prove only the presence of defects but
not their absence. Developing software for life- and safety-critical systems
or things that are shot into space are probably positioned on this end of the
spectrum, and rightly so. That they rarely achieve zero defects can be seen
by the example of the Mars Climate Orbiter, which disintegrated due to a
unit error between metric and US measures. At the other end of the
continuum, in the “now or never zone,” you may simply reach the limits of
how fast you can go. You’d need to slow down a good bit and spend at least
some time on proper design and testing to improve quality. So, the
relationship likely looks more like a concave curve that asymptotically
approaches the extremes at the two axes.

The trade-off between time (speed) and quality still holds in this two-
dimensional view, but you can reason much more rationally about the
relationship between the two. This is a classic example of how even a
simple model can sharpen your thinking (Chapter 6).

Changing the Rules of the Game
When you move into the two-dimensional space, you can ask a much more
profound question: “Can we shift the curve?” And: “If so, what would it
take to shift it?” Shifting the curve to the upper right would give you better
quality at the same speed or faster speed without sacrificing quality.
Changing the shape or position of the curve means we no longer need to
move along a fixed continuum between speed and quality. Heresy? Or a
doorstep to a hidden world of productivity?

Because digital companies see speed and quality as two dimensions, they can
think about how to shift the curve.

Probably both, but that’s exactly what digital companies have achieved:
they have shifted the curve significantly to achieve never-before-seen
speeds in IT delivery while maintaining feature quality and system stability.

How do they do it? A big factor is following processes that are optimized
for speed (Chapter 35), as opposed to optimizing for resource utilization
under the guises of efficiency (Chapter 39).

Digital companies can shift the curve because:

They understand that software runs fast and predictably, so they
never send a human to do a machine’s job (Chapter 13).

They optimize end-to-end instead of optimizing locally.

They turn as many problems as possible into software problems so
they can automate them and hence move faster and often more
predictably.

If something does go wrong, they can react quickly, often with the
users barely noticing. This is possible because everything is
automated and they use version control (Chapter 14).

They build resilient systems, ones that can absorb disturbance and
self-heal, instead of trying to predict and eliminate all failure
scenarios.

None of these techniques are rocket science. However, they require an
organization to change the way it thinks. And that’s not easy to do.

Inverting the Curve
If adding a new dimension doesn’t make folks’ head hurt enough, tell them
that modern software delivery can even invert the curve: faster software
often means better software! Much delay in software delivery is caused by
manual tasks: long wait times for servers or environments to be set up by
hand, manual regressing testing, and so on.

Removing this friction, usually by automating things, not only speeds up
software development but also increases quality because manual tasks are
often the biggest source of errors (Chapter 13). As a result, you can use
speed as a lever to increase quality. For example, you can demand shorter

The traditional definition of
quality is a proxy metric.

provisioning times for servers in order to increase the level of automation
and reduce defects due to human error.

What Quality?
When speaking about speed and quality, we should take a moment to
consider what quality really means. Most traditional IT folks would define
it as the software’s conformance to specification and possibly adherence to
a schedule. System uptime and reliability are surely also part of quality.
These facets of quality have the essence of predictability: we got what we
asked or wished for at the time we were promised it. But how do we know
whether we asked for the right thing? Probably someone asked the users, so
the requirements reflect what they wanted the system to do. But do they
know what they really want, especially if you are building a system the
users have never seen before? One of Kent Beck’s great sayings is, “I want
to build a system the users wish they asked for.”

The traditional definition of quality is a
proxy metric: we presuppose to know what
the customers want, or at least that they
know what they want. What if this proxy

isn’t a very reliable indicator? Companies living in the digital world don’t
pretend to know exactly what their customers want because they are
building brand-new solutions. Instead of asking their customers what they
want, they observe customer behavior (Chapter 36). Based on the observed
behavior they quickly adjust and improve their product, often trying out
new things using A/B testing. You could argue that this results in a product
of much higher quality, one that the customers wish they could have asked
for. So, you not only can shift the curve of how much quality you can get
for how much speed, you can also change what quality you are aiming for.
Maybe this is yet another dimension?

Losing a Dimension
What happens when a person who is used to working in a world with more
degrees of freedom enters a world with fewer, such as an IT organization
still holding the belief that quality and speed are opposites? This can lead to
a lot of surprises and some headaches, almost like moving from our three-
dimensional world to the Planiverse. The best way out is reverse
engineering the organization’s beliefs (Chapter 26) and then leading change
(Chapter 34).

1 Wikipedia, "The Planiverse,” https://oreil.ly/RncTp.

1

https://oreil.ly/RncTp

Part VI. Epilogue: Architecting
IT Transformation

This book’s main purpose is to encourage IT architects to take an active role
in transforming traditional IT organizations that must compete with digital
disruptors. “Why are technical architects supposed to take on this enormous
task?” you may ask, and rightly so: many managers or IT leaders may have
strong communication and leadership abilities that are needed to change
organizations. However, today’s digital revolution isn’t just any
organizational restructuring, but one that is driven by IT innovation: mobile
devices, cloud computing, data analytics, wireless networking, and the
Internet of Things, to name a few. Leading an organization into the digital
future therefore necessitates a thorough understanding of the underlying
technologies along with their application for competitive advantage.

Game On

Due to network effects, many digital business models follow a winner-
takes-all dynamic: Google owns search, Facebook owns social, Amazon
owns fulfillment and cloud, Netflix and Amazon jointly own content. Apple
and Google’s Android own mobile. Google tried to get into social and
floundered. Microsoft struggles in search and essentially withdrew from
mobile. Amazon also struggled in mobile just like Google repeatedly
dabbled in fulfillment without seeing a lot of traction. In cloud computing

even almighty Google is at best a runner-up with Amazon holding on to a
significant lead.

Following this battle of the titans from the sidelines of a traditional
organization resembles watching world-class athletes compete from the
bleachers while eating popcorn: these organizations sport evaluations close
to a trillion dollars (Netflix being the “baby” with roughly $150 billion
market capitalization in 2020), have access to the world’s top IT talent, and
are run by extremely talented and skilled management teams. How would
one even hope to compete?

There are several effects that play into the hands of incumbent companies.
First, the digital world is one of constant evolution, and every round brings
new opportunities. Uber disrupted the taxi industry by realizing that taxis
aren’t the only cars on the road and that taxi drivers aren’t the only ones
who can give others a ride. However, automotive manufacturers may have
an ace up their sleeve in the next round when they launch self-driving cars.
Second, traditional enterprises can utilize existing assets. For example, Fast
Retailing, Uniqlo’s parent company, rather than emulate an online business
model, uses the physical store as its key asset and is hugely successful at it.
Target, a major US retailer, sees huge uplift in ecommerce sales with its
curbside pick-up model—you just drive up and your order is loaded into
your car. The digital world is one of many opportunities, for those
companies that can question existing assumptions and turn IT into a major
innovation driver.

Transforming from the Bottom
Up

It’s hard to imagine that instigating a digital transformation purely from the
top down can be successful. Non-tech-savvy management can at best limp

along based on input from external consultants or trade journals. That’s not
going to cut it, though: competition in the digital world is fierce, and
customer expectations are increasing every day. When we hear of a
successful startup company that went public or was acquired for a huge sum
of money, we usually forget the dozens or even hundreds of startups in the
same space that didn’t make it despite a great idea and a bunch of smart
people working extremely hard on it. Architects, who are rooted in
technology but can ride the elevator to the penthouse, are needed to make
such a transformation successful.

Transforming from the Inside
Out

Watching vendor demos and purchasing a few new products aren’t going to
make an organization competitive against digital behemoths. As the overall
direction of the digital revolution has become fairly clear and technology
has been democratized to the point where every individual with a credit
card can procure servers and big data analytics engines within minutes, the
main competitive asset for an organization is its ability to learn fast.
External consultants and vendors can give a boost, but they cannot
substitute for an organization’s ability to learn (Chapter 36). Architects are
therefore needed to drive or at least support the transformation from within
the organization.

From Ivory Tower Resident to

Technology evolution has
become inseparable from
organizational evolution.
Correspondingly, the job of
the architect has broadened
from designing new IT
systems to also designing a
matching organization and
culture.

Corporate Savior

If you aren’t yet convinced that transforming the organization is part of
your job as an architect, you may not have much of a choice: recent
technology advances can be successfully implemented only if the
organizational structure, processes, and often the culture also change. For
example, DevOps-style development is enabled through the advent of
automation technologies but relies on breaking down change and run silos.
Cloud computing can reduce time-to-market and IT cost dramatically, but
only if the organization and its processes empower developers to actually
provision servers and make necessary network changes. Lastly, being
successful with data analytics requires the organization to stop making
decisions based on management slide sets, but on hard data. All these are
major organizational transformations.

In times of digital disruption, the job of the
IT architect has surely become more
challenging: keeping pace with ever-faster
technology evolution, but also being well
versed in organizational engineering,
understanding corporate strategy, and
communicating to upper management are
now part of being an architect. But the
architect’s job has also become more
meaningful and rewarding for those who
take up the challenge.

In a prior job, I often jested that I was the chief organizational engineer
disguised as the chief architect.

The new world doesn’t reward architects who draw diagrams while sitting
in the ivory tower. It has a lot in store, though, for hands-on innovation
drivers and change agents. I hope this book encourages you to take the
challenge and equips you with useful guidance, some clever slogans, and a
little wisdom along your journey.

Chapter 41. All I Have to Offer Is
the Truth

Giving Folks the Red Pill

It’s so much more comfortable up here

Embarking on a transformation journey can be quite a dramatic, sometimes
even traumatic, undertaking for many people working for traditional
enterprises. Digital companies are run, or at least perceived to be run, by
highly educated, 20-something digital natives who aren’t distracted by
family or social life and require little to no sleep. Their employers have
hardly any legacy to deal with and billions in the bank, despite offering
most services to consumers for free. For IT staff who have been working in
the same, traditional enterprise, following the same processes for decades,
this is likely to cause a mix of fear, denial, and resentment.

Getting these folks on board for a transformation agenda is thus a delicate
affair: if you are too gentle, people may not see a need to change. If you are
too direct, people may panic or resent you.

Nothing But the Truth
Extorting a final reference from the movie The Matrix, when Morpheus
asks Neo to choose between the red pill, which will eject him into reality,
and the blue pill, which will keep him inside the illusion of the Matrix, he
doesn’t describe what “reality” looks like. Morpheus merely states:

Remember: all I’m offering is the truth. Nothing more.

If he had told Neo that the truth translates into living in the confines of a
bare-bones hovercraft ship patrolling sewers in the middle of a war against
the machines who perpetually hunt the ship to chop it up with their
powerful laser beams, he may have taken the blue pill. But Neo had already
understood that there’s something wrong with the current state, the Matrix
illusion, and felt a strong desire to change the system. And while you also
sense that something’s not quite right with the existing system, most of your
corporate peers will be quite content with their current environment and
position. Sadly it’s not enough if you take the pill yourself, so you need to
push them a little bit to come along for the ride.

Just like in the movie The Matrix, though, the new digital reality that awaits
the red-pill-taking folks may not be exactly what they expected.

In a meeting, a fellow architect once proudly proclaimed that for
transformation to succeed the architect’s life needs to be made easier. He was
bound to be disappointed.

Aiming to make one’s life easier is unlikely to lead into the digital future
but will rather end up in disappointment. Technological advances and new
ways of working make IT more interesting and valuable to the business, but
they don’t make it easier: new technologies must be learned, and the

environment generally becomes more complex, all while the pace speeds
up. Digital transformation isn’t a matter of convenience, but of corporate
survival.

Digital Paradise?
Looking from the outside, working at digital companies appears to largely
consist of free lunches, massages, and riding Segways. While digital
companies do court their employees with an unheard-of list of perks, they
are also hugely competitive internally and externally. They firmly embrace
a culture of constant change and speed to remain competitive and drive
innovation. This means that employees rarely get to rest on the laurels of
their work but need to keep pushing on. Engineers don’t join digital
companies to relax but to push the envelope, innovate, and change the
world.

The rewards match the challenge, though, not just financially, but, most
important, in enabling engineers to really make a difference and accomplish
things they wouldn’t be able to accomplish on their own. More than a
decade ago at Google, you could scale an application you wrote to 100,000
servers and run analytics against petabytes of logs in a second or two. Most
traditional companies still dream of these capabilities a decade later. Such
are the rewards of the digital IT life. These examples also show traditional
companies why they should be scared.

Don’t Try This at Home
When looking to transform, traditional companies often identify practices
employed by digital disruptors and try to import them into their traditional
way of working. While it’s important to understand how your competitors
think and work, adopting their practices requires careful consideration.
Digital companies are known to do things like storing all their source code
in a single repository, not having any architects, or letting employees work
on whatever they like. When admiring these techniques, traditional

companies must realize that they are watching world-class superstars
pulling off amazing stunts. Yes, there are people who walk a tightrope
between skyscrapers or jump off a tower to glide into the rooftop pool of a
nearby building. This doesn’t mean you should try the same at home.

When adopting “digital” practices, an organization must understand the
interdependencies between these practices. A single code repository
requires a world-class build system that can scale to thousands of machines
and execute incremental build and test cycles. Sticking all your code into a
single repository without having such a system in place, and a team to
maintain it, is like jumping off a building without a parachute. It’s unlikely
you’ll be landing softly in the nearby rooftop pool.

Abandon Ship
For most organizations, sailing to the digital future is a matter of survival.
Imagine that you are an officer on the Titanic ocean liner and were just
informed that the ship will be slowly but surely sinking. Most of the
passengers are completely unaware of the severity of the situation and are
comfortably sipping champagne on the upper decks. If you walk up to the
passengers and individually inform them:

Sir, excuse me if you wouldn’t mind. Could you be so kind as to consider
relocating to the main deck so we may transfer you to a safer vessel?
After you finish your drink, obviously. Please kindly excuse the terrible
inconvenience. Your well-being is our primary concern.

You may not get much of a response, maybe just a doubtful stare. People
may order another champagne and then have a peek at the vessel you are
suggesting, the lifeboat, just to conclude that it appears much less safe and
convenient than staying on the world’s most modern and unsinkable ocean
liner.

On the other hand, if you speak to the passengers as follows:

This ship is sinking! Most of you will drown in the icy ocean because
there aren’t enough lifeboats.

you will cause widespread panic and a rush for the lifeboats that’s likely to
leave many passengers dead or injured before the ship even takes on water.

Motivating corporate IT staff to start changing the way they work, and to
leave behind the comfort of their current position is not dissimilar. They are
also unlikely to realize their ship is sinking. Where on the spectrum of
communication methods you should land depends on each organization and
individual. I tend to start gentle and “ratchet up” the rhetoric when I
observe perpetual inaction.

Looks Are Deceiving
Just as it seems unlikely that a simple block of ice can sink a modern (at the
time) marvel of engineering, small, digital companies may not appear
threatening to a traditional enterprise. Many startups are run by relatively
inexperienced, sometimes even naive, people who believe they can
revolutionize an industry while sitting on a beanbag because their office
space hasn’t been fully set up yet. They are often understaffed and need to
secure multiple rounds of external funding before turning profitable, if ever.

However, just like 90% of an iceberg’s volume lies under water, digital
companies’ enormous strength is hidden: it lies in their ability to learn much
faster, often orders of magnitude faster than traditional organizations.
Dismissing or trivializing startups’ initial attempts to enter an established
market could therefore be a fatal mistake. “They don’t understand our
business” is a common observation from traditional businesses. However,
what took a business 50 years to learn may take a disruptor only one year or
less because it is set up for economies of speed (Chapter 35) and has
amazing technology at its disposal.

Digital disruptors also don’t have to unlearn bad habits. Learning new
things is difficult, but unlearning existing processes, thought patterns, and
assumptions is disproportionately more difficult. Unlearning and
abandoning what made them successful in the past is one of the biggest
transformation hurdles for traditional companies (Chapter 26).

Some traditional businesses may feel safe from disruption because their
industry is regulated. To demonstrate how thin a safety net regulation
provides, I routinely remind business leaders that if the digitals have
managed to put electric and self-driving cars on the road and rockets into
space, they are surely capable of obtaining a banking or insurance license.
For example, they could simply acquire a licensed company. The fintechs
Lemonade (insurance) and N26 (banking) are vivid examples of successful
challengers in a regulated industry.

Digital companies are not out to replicate existing business models. Rather,
they choose weak spots that are highly inefficient or cause unhappy
customers.

Lastly, digital disruptors don’t tend to attack from the front. They tend to
choose weak spots in existing business models that are highly inefficient,
but not significant enough for large, traditional enterprises to pay attention
to. Airbnb didn’t build a better hotel, and fintech companies aren’t
interested in rebuilding a complete bank or insurance company. Rather, they
attack the distribution channels, where inefficiency, high commissions, and
unhappy customers allow new business models to scale rapidly with
minimum capital investment. Some researchers claim that had the Titanic
hit the iceberg head on, it might not have sunk. Instead, it was taken down
because the iceberg tore open a large portion of the relatively weak side of
the hull. That’s where the digitals hit.

Distress Signals
While transformation can be a scary endeavor, you aren’t the only architect
who is accepting the challenge. Just like ships in distress, it’s good to call
for help when things look dire. You shouldn’t be shy about sending a digital
SOS—no one has a proven recipe for transformation, so exchanging
experiences and anecdotes with your peers is highly beneficial. You may

even opt to share your experiences in a book. I’ll be one of your first
readers.

Index

A

abstractions, levels of, Levels of Abstraction: Simplicity Versus Flexibility

ACID transactions, Your Coffee Shop Doesn’t Use Two-Phase Commit

Agile methods, Agile and Architecture, Slow Chaos Is Not Order-The Way
Out

alignment

defined, The Dangers of Riding the Elevator

excessive, Poorly Set Domain Boundaries—Excessive Alignment

amber organizations, Systems Resist Change

analysis paralysis, Reversing Irreversible Decision Making

anarchy, Actual Control: Autonomy

Application Delivery Controller (ADC), Charting Territory

architect elevator, The Architect Elevator-Flattening the Building

architectural decisions, Architectural Decisions-Passing the Test

architecture

benefits of automation, Never Send a Human to Do a Machine’s Job-A
Place for Humans, Self-Service Is Better Service

benefits of including built-in options, Architecture Is Selling Options-
Amplifying Metaphors

benefits of layers, Why IT Architects Love Pyramids

defined, Architecture, Defining Software Architecture

evolutionary architecture, Evolutionary Architecture

gaining insights from the real world into, Your Coffee Shop Doesn’t
Use Two-Phase Commit-Welcome to the Real World!

identifying, Is This Architecture?-Passing the Test

multispeed, Multispeed Architectures

programming versus configuration, Code Fear Not!-Configuration
Hiding as Code?

skills needed to create sound, Architecting the Real World

value of, The Value of Architecture

architecture analysis, Viewpoints

architecture diagrams, Diagrams Are Models-Nothing Is Confusing in and
of Itself, Architecture Diagrams

architecture reviews, Whys Reveal Decisions and Assumptions, Is This
Architecture?

architecture sketches, Sketching Bank Robbers-That’s Wrong! Do It Again!

architecture without architects, Vanishing Point: The Guide

assumptions

overcoming, Reprogramming the Organization

uncovering, Whys Reveal Decisions and Assumptions, Dissecting IT
Slogans-The Unexpected Is Undesired

asynchronous communication, Asynchronous Communication—Email,
Chat, and More

asynchronous processing model, Hotto Cocoa o Kudasai

Auftragstaktik, Saupreiß, ned so Damischer

automation

benefits to architecture, Never Send a Human to Do a Machine’s Job-A
Place for Humans

configuration changes, A Software System’s First Derivative, Beyond
Self-Service

versus humans, A Place for Humans, Staying Human

levels of, Pirate Ship Leads to Better Decisions

repeatability and resilience gained by, It’s Not Only About Efficiency

scaling through, Self-Service Is Better Service

self-service portals, Self-Service

tacit versus explicit knowledge, Explicit Knowledge Is Good
Knowledge

understanding current system state, Automation Is Not a One-Way
Street

autonomy, Actual Control: Autonomy-Actual Control: Autonomy

B

backpressure, Backpressure

banana products, Quality Versus Speed

bi-modal IT, Multispeed Architectures

bias, Bias

Big Ball of Mud architecture, There Always Is an Architecture, Fit for
Purpose, Why IT Architects Love Pyramids

binary values, Your Coffee Shop Doesn’t Use Two-Phase Commit

black markets, Flattening the Building, Black Markets Are Not Efficient-
Feedback and Transparency

decision makers and, Living in Perfect Harmony

Black-Scholes formula for computing option values, Options Have Value,
Strike Prices

bottleneck

databases as, A Chair Can’t Stand on Two Legs

in IT systems, The Loomers’ Riot?

in organizations, Scaling an Organization

bounded rationality, System Effects

branching, Trunk-Based Development

breadth-first writing, The Curse of Writing: Linearity

browser-based document editing, Single Source of Truth

Build-Measure-Learn cycle, The Infinite Loop-Maintaining Cohesion

impediments to using, Hollowed-Out IT

business activity monitoring (BAM), Making Queues Visible

business architecture, Connecting Business and IT

business models, Looks Are Deceiving

buy-over-build strategy, Good Intentions Don’t Lead to Good Results

C

canonical data models, Canonical Data Model

cargo cult, Offshore Platforms

change, culture of, Culture of Change, Offshore Platforms, Changing
Culture from Within (see also resistance to change; transformation)

chaos monkey, Runtime Governance, Setting Course

checkpoints, Feedback and Transparency

chief architects

asking the right questions, Question Everything-No Free Pass

becoming successful, A Chief Architect’s Life: It’s Not That Lonely at
the Top-Is It Proven to Work?, Architects as Change Agents

role of, What Architects Are Not

chief engineers, What Architects Are Not

Clausewitz, Carl von, Saupreiß, ned so Damischer

code, fear of, Fear of Code-Configuration Hiding as Code?, Digital Mindset

coffee shop analogy, Your Coffee Shop Doesn’t Use Two-Phase Commit-
Welcome to the Real World!

collaboration

benefits of pairing, Pairing

benefits of version control, Version Control

coordinating among team members, Single Source of Truth

dealing with resistance, Resistance

progress transparency, Transparency

style versus substance, Style Versus Substance

trunk-based development, Trunk-Based Development

working iteratively, Always Be Ready to Ship

comments and questions, Staying Up-to-Date

commercial off-the-shelf (COTS) solutions, Good Intentions Don’t Lead to
Good Results

communication

asynchronous, Asynchronous Communication—Email, Chat, and
More

capturing audience interest, Show the Kids the Pirate Ship!-Play Is
Work

collaborating using version control, Software Is Collaboration-
Resistance

conveying technical topics effectively to upper management,
Communication-Communication Tools

corporate politics and, The Pen Is Mightier Than the Sword, but Not
Mightier Than Corporate Politics

creating architecture sketches, Sketching Bank Robbers-That’s Wrong!
Do It Again!

diagram-driven design, Diagram-Driven Design-No Silver Bullet
(Point)

enhancing focus by placing emphasis, Emphasis Over Completeness-
Nothing Is Confusing in and of Itself

expressing component relationships, Drawing the Line-Beware of
Extremes

presenting complex technical material, Explaining Stuff-I Wanted to
Have Liked To, but Didn’t Dare Be Allowed

software architects as connectors and translators, The Architect
Elevator

writing for busy people, Writing for Busy People-The Pen Is Mightier
Than the Sword, but Not Mightier Than Corporate Politics

compatibility standards, Product Standards Restrict, Interface Standards
Enable, The Value of Standards

compensating actions, Compensating Action

complex systems, Every System Is Perfect…

complexity management

feedback loops, Feedback Loops

heater analogy, Heater as a System

influencing system behavior, Influencing System Behavior

organized complexity, Organized Complexity

recurring system effects/patterns, System Effects

resistance to change, Systems Resist Change

systems thinking, Every System Is Perfect…

understanding system behavior, Understanding System Behavior,
Elements—Relationship—Behavior

conceptual integrity, Principles Drive Decisions

confidence, Fast and Good

configuration

applying design best practices to, Configuration Hiding as Code?

code versus data, Code or Data? Or Both?

versus coding, When Are We Configuring?

configuration programming, Configuration Programming

design-time versus runtime deployment, Deployment at Design-Time
Versus Runtime

versus higher-level programming, Higher-Level Programming

model versus representation, Model Versus Representation

configuration automation, A Software System’s First Derivative

configuration changes, Beyond Self-Service

confirmation bias, Bias

container, Strike Prices, Avoid the Skipping Stones

containment, The Metamodel

Continuous Deployment (CD), A Software System’s First Derivative

Continuous Integration (CI), A Software System’s First Derivative

continuous learning loop, Build-Measure-Learn

control flow, Organizational Architecture: The Dynamic View

control theory

and accurate reports, Problems on the Way Up

autonomy, Actual Control: Autonomy-Actual Control: Autonomy

closing gaps between plans, actions, and results, Saupreiß, ned so
Damischer

control circuits, Control Circuits

controlling the control loop, Controlling the Control Loop

feedback loops, A Two-Way Street

illusion of control, The Illusion

smart control, Smart Control

control, actual, The Illusion, Actual Control: Autonomy

Conversation Patterns, Conversations

correlation identifiers, Correlation

cost of delay, Cost of Delay

culture of change, Culture of Change, Offshore Platforms, Changing
Culture from Within

curse of knowledge, Mind the Gap

customer centricity, Layers Versus Platforms, Customer Centricity

customer feedback, Digital RPMs, Feedback Cycles

cybernetics, A Two-Way Street

D

data flow, Organizational Architecture: The Dynamic View

deadlocks, Avoid Sync Points—Meetings Don’t Scale

decision making

architectural decisions, Architectural Decisions-Passing the Test

avoiding decisions, Avoiding Decisions

benefits of seeing the big picture, Pirate Ship Leads to Better
Decisions-Pack Some Pathos

bias and, Bias

decision analysis, Micromort

decision models, Model Thinking

deferring decisions with options, Deferring Decisions with Options-
Deferring Decisions with Options

five whys approach to, Five Whys

importance of communication in, You Can’t Manage What You Can’t
Understand

IT decisions, IT Decisions

judging the quality of decisions, Making Decisions

minimizing irreversible, Reversing Irreversible Decision Making

poor decision-making discipline, The Law of Small Numbers

priming, Priming, Common IT Beliefs

revealing assumptions and principles leading to, Whys Reveal
Decisions and Assumptions, Reverse-Engineering Organizations-
Handed-Down Beliefs

decision trees, Model Thinking

delay, cost of, Cost of Delay

depth-first writing, The Curse of Writing: Linearity

designing systems, Your Coffee Shop Doesn’t Use Two-Phase Commit-
Welcome to the Real World!

details, in technical presentations, Consistent Level of Detail

DevOps, Pivoting the Layer Cake

diagram-driven design, Diagram-Driven Design-No Silver Bullet (Point)

diagrams, creating clear, A Good Paper Is Like the Movie Shrek, Avoid the
Ant Font-The Style of Elements, Diagramming as Design Technique-

Indicate Degrees of Uncertainty, Drawing the Line-Beware of Extremes

digital mindset, Digital Mindset

discipline, achieving speed with, Slow Chaos Is Not Order-The Way Out

discussion group, joining, Staying Up-to-Date

distributed system design, Your Coffee Shop Doesn’t Use Two-Phase
Commit-Welcome to the Real World!

documentation, corporate politics and, The Pen Is Mightier Than the Sword,
but Not Mightier Than Corporate Politics

dogfooding, Eat Your Own Dog Food

duplication of work, value and cost of, The Value and Cost of Avoiding
Duplication

dynamic models, Living in Pyramids

E

economies of scale, Old Economies of Scale

economies of speed, High-Speed Elevators, The Second Derivative, It’s Not
Only About Efficiency, Economies of Speed-How to Make the Switch?

efficiency, resource versus customer, Old Economies of Scale

efficiency-based thinking, How to Make the Switch?, A Little Bit of
Queuing Theory

elastic, Fast and Good

elasticity, An Architecture Option: Elasticity

engine room

defined, The Architect Elevator

disconnect from penthouse, The Dangers of Riding the Elevator

riding the architect elevator to and from, Not a One-Way Street

enterprise architects

developing an undistorted IT worldview, Plotting Your World Map

role of, Enterprise Architect or Architect in the Enterprise?

versus technical architects, Some Organizations Have More Floors
Than Others, Visit All Floors

understanding organization structures and systems, Organizations-
Navigating Large Organizations

enterprise architecture (EA)

versus business architecture, Connecting Business and IT-IT Is from
Mars, Business Is from Venus

challenges of, Value-Driven Architecture

defined, Enterprise Architecture

ethos, Tell Me a Story, Pack Some Pathos

evolutionary architecture, Evolutionary Architecture

exception handling, Exception Handling-Compensating Action

external consultants, High-Speed Elevators, Hollowed-Out IT

F

face-to-face time, Staying Human

feature teams, Pivoting the Layer Cake

feature toggles, Trunk-Based Development

feedback, Fast and Good

feedback loops, Control Circuits, Digital RPMs, Feedback Cycles

first derivative

defined, Rate of Change Defines Architecture

designing for, Designing for the First Derivative

of software systems, A Software System’s First Derivative

fitness function, Evolutionary Architecture

five whys technique, Five Whys

five-second test, The Five-Second Test

flow efficiency, Behold the Flow!-Cost of Delay

flow-based thinking, Behold the Flow!

G

Git, Version Control

economies of speed and, 30,000 Times Faster

learning curve and, Resistance

goal setting, Setting Course

governance

by decree, Governance by Decree

by inception, Inception

by infrastructure, Governance Through Infrastructure

defined, Living in Perfect Harmony

necessity of, Governance Through Necessity

value of standards for, The Value of Standards-Mapping Standards

H

harmonization, Living in Perfect Harmony

headings, in writing, A Good Paper Is Like the Movie Shrek

heating system analogy, Heater as a System

highest paid person’s opinion (HiPPO), Beware of the HiPPO

horizontal scaling, An Architecture Option: Elasticity

I

IBM PC development, as significant innovation, Skunkworks That Works

impact

architects and, Impact-Architect as Last Stop?

inactivity, effects of, Looking Between the Activities

inception, governance through, Governance Through Inception-Governance
Through Necessity

inefficiency, Overhead and Tolerated Inefficiency

infinite learning loops, The Infinite Loop-Maintaining Cohesion

infrastructure as code (IaC), Configuration Hiding as Code?, SDX:
Software-Defined Anything

innovation, IBM PC and, Skunkworks That Works

integration architecture, Avoid Sync Points—Meetings Don’t Scale

interface standards, Product Standards Restrict, Interface Standards Enable,
The Value of Standards

internal rate of return (IRR), Innovator’s Dilemma

IT beliefs

agility opposes discipline, Agility Opposes Discipline

all problems can be solved with more people or more money, All
Problems Can Be Solved with More People or Money

following a proven process leads to proven good results, Following a
Proven Process Leads to Proven Good Results

late changes are expensive or impossible, Late Changes Are Expensive
or Impossible

quality can be added later, Quality Can Be Added Later

speed and quality are opposed, Speed and Quality Are Opposed
(“Quick and Dirty”)

the unexpected is undesired, The Unexpected Is Undesired

IT components, standardizing, A4 Paper Doesn’t Stifle Creativity-One Size
Might Not Fit All Tastes

IT pyramids, They Don’t Build ’Em Quite Like That Anymore-Building
Modern Structures

IT worldview

challenges of establishing, The IT World Is Flat

charting territory, Charting Territory

defining borders, Defining Borders

developing, High-Speed Elevators

developing an undistorted map, Plotting Your World Map

product philosophy compatibility check, Product Philosophy
Compatibility Check

shifting territory, Shifting Territory

vendors' perspective, Vendors’ Middle Kingdoms

ITIL, ITIL to the Rescue?

K

key performance indicators (KPIs)

amount of learning per dollar spent, Digital RPMs

cost, High-Speed Elevators

decision making, Architecture Is Selling Options

knowledge gaps, Mind the Gap

L

law of small numbers, The Law of Small Numbers

layers

base layer as proxy metric, Celebrating the Base Layer

benefits of, Why IT Architects Love Pyramids

building from the top, Building Pyramids from the Top

challenges of building, No One Lives in a Foundation

drawbacks of, No Pyramid Without Pharaoh

efficiency versus speed, Living in Pyramids

inverse pyramids, It Always Can Get Worse

organizational pyramids, Organizational Pyramids

versus platforms, Layers Versus Platforms

leadership

architects and, Leadership-Architect as Last Stop?

learning loops, Not a One-Way Street

legacy systems

culture of change, Culture of Change

drawbacks of, If You Never Kill Anything, You Will Live Among
Zombies

embracing change, If It Hurts, Do It More Often

fear of change and, Fear of Change

MTBF versus MTTR, Hoping for the Best Isn’t a Strategy

planned obsolescence, Planned Obsolescence

separation of operating code versus development code, Run Versus
Change

version upgrades, Version Upgrades

lift boys, Other Passengers

linearity, curse of, The Curse of Writing: Linearity

lines, expressing component relationships with, Behold the Line!-Beware of
Extremes

logos, Tell Me a Story, Pack Some Pathos

M

maker mindset, Digital Mindset

mapping standards, Mapping Standards

marchitecture diagrams, No Silver Bullet (Point)

matrix organization, The Matrix (Not the Movie)

mean time between failures (MTBF), Hoping for the Best Isn’t a Strategy

mean time to recovery (MTTR), Hoping for the Best Isn’t a Strategy

meetings (synchronization points), Scaling an Organization

impact on performance, Avoid Sync Points—Meetings Don’t Scale-
Avoid Sync Points—Meetings Don’t Scale

mental model, dangers of, Influencing System Behavior

mentoring, The Virtuous Cycle

metamodels, The Metamodel, Beware of Extremes

microfail value, IT Decisions

micromort value, Micromort

models

business, Enterprise Architecture, Looks Are Deceiving

diagrams as, Diagrams Are Models

dynamic, Living in Pyramids

for asynchronous processing, Hotto Cocoa o Kudasai

for decision making, Model Thinking

using Wardley maps as, Platform Standards

versus representations, Model Versus Representation-Model Versus
Representation

motivation, Setting Course, Paying More May Get You Less

N

nonrequirements, Architects Deal with Nonrequirements

O

obsolescence, planned, Planned Obsolescence

open source tools, Good Intentions Don’t Lead to Good Results

options

Agile methods and, Agile and Architecture

dealing with lack of, Evolutionary Architecture

elasticity, An Architecture Option: Elasticity

horizontal scaling, An Architecture Option: Elasticity

no risk options, Arbitrage

real options, Real Options

strike prices, Strike Prices

time of exercise, Time Is Fleeting

uncertainty and, Uncertainty Increases an Option’s Value

value of, Options Have Value

options model, Time Is Fleeting

organizational charts, Organizational Architecture: The Static View

organizations

achieving speed with discipline, Slow Chaos Is Not Order-The Way
Out

amber organizations, Systems Resist Change

command-and-control structures, Control Is an Illusion-Controlling the
Control Loop

dangers of black markets, Black Markets Are Not Efficient-Feedback
and Transparency

flat versus classic, Some Organizations Have More Floors Than
Others-Flattening the Building

governance through inception, Governance Through Inception-
Governance Through Necessity

identifying and overcoming outdated assumptions, Reverse-
Engineering Organizations-Handed-Down Beliefs

layering to reduce complexity and achieve reuse, They Don’t Build
’Em Quite Like That Anymore-Building Modern Structures

navigating organizations to lead change, Leading Change-The Country
of the Blind

resistance to change in, The Dangers of Riding the Elevator, Systems
Resist Change

scaling, Scaling an Organization-Staying Human

understanding organization structures and systems, Organizations-
Navigating Large Organizations

organized complexity, Organized Complexity

outsourcing, Hollowed-Out IT

overhead costs, Overhead and Tolerated Inefficiency

P

pair programming and collaboration, Pairing

parallelism, in writing, Making It Easy for the Reader

pathos, Tell Me a Story, Pack Some Pathos

personal productivity, Component Design—Personal Productivity

pessimistic resource allocation, Avoid Sync Points—Meetings Don’t Scale

phone calls, Interrupts Interrupt—Phone Calls

planned obsolescence, Planned Obsolescence

platforms

adhering to standards, Platform Standards, Digital Discipline

building solid, yet flexible, Avoid the Skipping Stones-Avoid the
Skipping Stones

criteria for choosing, Avoid the Skipping Stones

layers versus platforms, Layers Versus Platforms

predictability, value and cost of, The Value and Cost of Predictability

presentations (see also writing skills)

collaborating using version control, Software Is Collaboration-
Resistance

creating useful models, Diagrams Are Models

degrees of trust placed in, Problems on the Way Up

diagram-driven design, Diagram-Driven Design-No Silver Bullet
(Point)

five-second test, The Five-Second Test

presenting clear and useful diagrams, Diagramming Basics-The Style
of Elements

recapping key points, A Pop Quiz

structuring, Twenty Slides, One Story

titles, Making a Statement

using simple language, Simple Language

priming, Priming, Common IT Beliefs

processing efficiency, Behold the Flow!

product box, The Product Box

product development flow, Behold the Flow!

product fit, Charting Territory

product philosophy compatibility checks, Product Philosophy Compatibility
Check

product standards, Product Standards Restrict, Interface Standards Enable

productivity

asynchronous communication, Asynchronous Communication—Email,
Chat, and More

automation and, Self-Service Is Better Service

excessive alignment and, Poorly Set Domain Boundaries—Excessive
Alignment

personal, Component Design—Personal Productivity

phone calls and, Interrupts Interrupt—Phone Calls

system, Avoid Sync Points—Meetings Don’t Scale

taking advantage of search, Asking Doesn’t Scale—Build a Cache!

project managers, What Architects Are Not

prospect theory, Bias

proximity, The Metamodel

Prussian army, Saupreiß, ned so Damischer

Q

quality

fallacy that quality can be added later, Quality Can Be Added Later

fallacy that speed and quality are opposed, Speed and Quality Are
Opposed (“Quick and Dirty”)

faster delivery of functionality at high quality, Thinking in Four
Dimensions-Losing a Dimension

quality gates, Feedback and Transparency

questions and comments, Staying Up-to-Date

queuing theory, A Little Bit of Queuing Theory-Message Queues Aren’t All
Bad

R

rapid feedback cycles, The Infinite Loop-Maintaining Cohesion

rate of change, Architects Live in the First Derivative-Rate of Change for
Architects

reference architecture, Defining Borders

repeatability, It’s Not Only About Efficiency

repeatable, Fast and Good

resilience, It’s Not Only About Efficiency, Setting Course

resistance to change

challenges of, Systems Resist Change

culture of change, Culture of Change

dealing with, The Dangers of Riding the Elevator, A Tractor Passing
the Race Car

embracing change, If It Hurts, Do It More Often

legacy systems, If You Never Kill Anything, You Will Live Among
Zombies-Culture of Change

persistence of beliefs, Beliefs Are Proven Until Disproven

retry error handling strategy, Retry

reverse engineering

common IT beliefs, Common IT Beliefs-The Unexpected Is Undesired

discovering unknown beliefs, Unknown Beliefs

dissecting IT slogans, Dissecting IT Slogans

need for, Reverse-Engineering Organizations

reluctance to change, Beliefs Are Proven Until Disproven

unlearning old habits, Unlearning Old Habits

reverse mentoring, The Virtuous Cycle

root-cause analysis, Five Whys

run versus change, Run Versus Change

S

sandbagging, The Value and Cost of Predictability

scaling, An Architecture Option: Elasticity, Scaling an Organization-Staying
Human

SDX (software-defined anything), If Software Eats the World, Better Use
Version Control!-Software Eats the World, One Revision at a Time

second derivative, The Second Derivative

secure, Fast and Good

self-service portals, Self-Service

self-service systems, Beating the Black Market, Self-Service Is Better
Service

selling options analogy, Architecture Is Selling Options-Amplifying
Metaphors

semantics, The Semantics of Semantics

semblance of control, The Illusion

senior developers, What Architects Are Not

server sizing, An Architecture Option: Elasticity

serverless architectures, If Software Eats the World, Better Use Version
Control!, Feedback Cycles

shantytown architecture, There Always Is an Architecture

sidebars, in writing, A Good Paper Is Like the Movie Shrek

skill

architects and, Skill-Architect as Last Stop?

skunkworks, Skunkworks That Works

slow chaos, Slow-Moving Chaos-Slow-Moving Chaos

software architect elevator, The Architect Elevator-Flattening the Building

software architects

ability to question everything, Question Everything-No Free Pass

becoming a successful chief architect, A Chief Architect’s Life: It’s
Not That Lonely at the Top-Is It Proven to Work?, Architects as
Change Agents

as change agents, Architects as Change Agents

changing roles of, About This Book, Architects-Architects Deal with
Nonrequirements

communication tips, Communication-Communication Tools

as connectors and translators, The Architect Elevator

enterprise versus technical architects, Some Organizations Have More
Floors Than Others

implicit requirements and, Architects Deal with Nonrequirements, Fit
for Purpose

measuring value of, Measuring an Architect’s Value

prototypical stereotypes of, Movie-Star Architects-Making the Call

rate of change and, Architects Live in the First Derivative-Rate of
Change for Architects

rational and disciplined decision making by, Making Decisions-
Avoiding Decisions

resistance encountered by, The Dangers of Riding the Elevator

skills needed to create sound architectures, Architecting the Real
World

specialization areas, Many Kinds of Architects

three facets of being a good architect, An Architect Stands on Three
Legs-Architect as Last Stop?

software architecture, defined, Defining Software Architecture (see also
architecture)

software development and deployment

attributes required for fast, Fast and Good

product development flow, Behold the Flow!

trunk-based development, Trunk-Based Development

software development life cycle (SDLC), Software Eats the World, One
Revision at a Time

software-defined networks (SDNs), SDX: Software-Defined Anything-
Software Eats the World, One Revision at a Time

speed

achieving with discipline, Speed and Discipline-The Way Out

achieving with queuing theory, Who Likes Standing in Line?-Message
Queues Aren’t All Bad

economies of speed, High-Speed Elevators, The Second Derivative,
Economies of Speed-How to Make the Switch?

efficiency versus speed in layers, Living in Pyramids

fallacy that speed and quality are opposed, Speed and Quality Are
Opposed (“Quick and Dirty”)

faster delivery of functionality at high quality, Thinking in Four
Dimensions-Losing a Dimension

multispeed architectures, Multispeed Architectures

two-speed architectures, Multispeed Architectures

speed-based thinking, How to Make the Switch?

stack fallacy, The Stack Fallacy

standardization

benefits of, The Value of Standards

creativity and, A4 Paper

drawbacks of, Living in Perfect Harmony

establishing global standards, One Size Might Not Fit All Tastes

interface and product standards, Product Standards Restrict, Interface
Standards Enable

layers versus platforms, Layers Versus Platforms

maps for, Mapping Standards

platform standards, Platform Standards-One Size Might Not Fit All
Tastes

rationale for, Interface Standards

Starbucks analogy, Your Coffee Shop Doesn’t Use Two-Phase Commit-
Welcome to the Real World!

strike prices, Options Have Value, Strike Prices-Strike Prices

synchronization points (meetings), Scaling an Organization

impact on performance, Avoid Sync Points—Meetings Don’t Scale-
Avoid Sync Points—Meetings Don’t Scale

system context diagrams, Show Context

system design, Your Coffee Shop Doesn’t Use Two-Phase Commit-
Welcome to the Real World!

systems theory and change, Tuning the Engine

systems thinking, Every System Is Perfect…-Influencing System Behavior

T

technical decision papers, Pushing (Less) Paper

technical memos, Unit Testing Technical Papers

Titanic, Problems on the Way Up, Abandon Ship, Looks Are Deceiving

tolerated inefficiency, Overhead and Tolerated Inefficiency

tragedy of the commons, System Effects

transaction monitors, Avoid Sync Points—Meetings Don’t Scale

transformation

achieving speed with queuing theory, Who Likes Standing in Line?-
Message Queues Aren’t All Bad

achieving truly digital internal IT, You Can’t Fake IT-The Stack
Fallacy

architecting IT transformation, Epilogue: Architecting IT
Transformation-From Ivory Tower Resident to Corporate Savior

dealing with complacency, Getting Over the Hump

economies of speed, Economies of Speed-How to Make the Switch?

effecting lasting change, Transformation-Why Me?

faster delivery of functionality at high quality, Thinking in Four
Dimensions-Losing a Dimension

infinite learning loops and, The Infinite Loop-Maintaining Cohesion

key to successful, Tell Me a Story

motivating corporate IT staff, All I Have to Offer Is the Truth-Distress
Signals

navigating organizations to lead change, Leading Change-The Country
of the Blind

pain of not changing, The Pain of Not Changing

perils of large budgets, Money Can’t Buy Love-Changing Culture
from Within

reprogramming organizations, Reprogramming the Organization

stages of, Stages of Transformation-Help Along the Way

tribes, Pivoting the Layer Cake

trunk-based development, Trunk-Based Development

two-phase commit approach, Transactions

two-speed architectures, Multispeed Architectures

U

UML diagrams, Diagramming as Design Technique, UML

upgrades, Version Upgrades, Software Developers Don’t Undo, They Re-
Create

V

velocity, Fast and Good

vendors, selecting, Vendors’ Middle Kingdoms-Shifting Territory

version control, Version Control-Single Source of Truth

learning curve and, Resistance

version upgrades, Version Upgrades

vertical cohesion, Vertical Cohesion

virtualization, SDX: Software-Defined Anything

virtuous cycle, The Virtuous Cycle

visuals

and configuration, Model Versus Representation

and sketching architectures, Visuals

in writing, A Good Paper Is Like the Movie Shrek

W

Wardley maps, Platform Standards

watermelon status report, Problems on the Way Up

white markets, Beating the Black Market

why, why analysis, Five Whys

working iteratively versus working incrementally, Always Be Ready to Ship

write-off error handling strategy, Write Off

writing skills

addressing diverse audiences, A Good Paper Is Like the Movie Shrek

brevity, In der Kürze liegt die Würze4

capturing audience interest, Show the Kids the Pirate Ship!-Play Is
Work

corporate politics and, The Pen Is Mightier Than the Sword, but Not
Mightier Than Corporate Politics

enhancing focus by placing emphasis, Emphasis Over Completeness-
Nothing Is Confusing in and of Itself

importance of first impressions, “In the Hand”—First Impressions
Count

mapping complex topics into linear storylines, The Curse of Writing:
Linearity

non-referential statements and unsubstantiated claims, Lists, Sets, Null
Pointers, and Symbol Tables

parallelism and paragraph structure, Making It Easy for the Reader

presenting complex technical material, Explaining Stuff-I Wanted to
Have Liked To, but Didn’t Dare Be Allowed

quality versus impact, Quality Versus Impact

technical memos, Technical Memos

writers' workshops, Unit Testing Technical Papers

written versus spoken presentations, Writing Scales

About the Author
Gregor Hohpe helps business and technology leaders transform not only
their technology platform, but also their organization. Riding the Architect
Elevator from the engine room to the penthouse, he assures that corporate
strategy lines up with the technical implementation and vice versa.

He has served as Smart Nation Fellow to the Singapore government, as
technical director in Google Cloud’s Office of the CTO, and as chief
architect at Allianz SE, where he oversaw the architecture of a global data
center consolidation and deployed the first private cloud software delivery
platform. Having worked for both digital native companies and traditional
enterprise IT allows him to reveal the many misconceptions that these
organizations have about each other in the form of pointed anecdotes
harvested from the daily grind of IT transformation.

Gregor is known as coauthor of the seminal book Enterprise Integration
Patterns (Addison-Wesley), which is widely cited as the reference
vocabulary for asynchronous messaging solutions. His articles have been
featured in numerous publications, including Best Software Writing
(Apress), selected and introduced by Joel Spolsky, and 97 Things Every
Software Architect Should Know (O’Reilly), by Richard Monson-Haefel.

Colophon
The cover photo, Modern Elevator, is by Auris. The cover font is Guardian
Sans. The text font is Scala Pro; the heading font is Benton Sans; and the
code font is Dalton Maag’s Ubuntu Mono.

	Foreword by Simon Brown
	Foreword by David Knott
	About This Book
	A Chief Architect’s Life: It’s Not That Lonely at the Top
	What Will I Learn?
	Is It Proven to Work?
	Tell Me a Story
	Conventions Used in This Book
	Staying Up-to-Date
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	I. Architects
	What Architects Are Not
	Many Kinds of Architects
	Architects Deal with Nonrequirements
	Measuring an Architect’s Value
	Architects as Change Agents

	1. The Architect Elevator
	The Architect Elevator
	Some Organizations Have More Floors Than Others
	Not a One-Way Street
	High-Speed Elevators
	Other Passengers
	The Dangers of Riding the Elevator
	Flattening the Building

	2. Movie-Star Architects
	The Matrix: The Master Planner
	Edward Scissorhands: The Gardener
	Vanishing Point: The Guide
	The Wizard of Oz
	Superhero? Superglue!
	Making the Call

	3. Architects Live in the First Derivative
	Rate of Change Defines Architecture
	Change = Business as Unusual?
	Varying Rates of Change
	A Software System’s First Derivative
	Designing for the First Derivative
	Confidence Brings Speed
	Rate of Change Trade-Offs
	Multispeed Architectures
	The Second Derivative
	Rate of Change for Architects

	4. Enterprise Architect or Architect in the Enterprise?
	Enterprise Architecture
	Connecting Business and IT
	IT Is from Mars, Business Is from Venus
	Value-Driven Architecture
	Fools with tools

	Visit All Floors

	5. An Architect Stands on Three Legs
	Skill, Impact, Leadership
	Skill
	Impact
	Leadership

	A Chair Can’t Stand on Two Legs
	The Virtuous Cycle
	You Spin Me Right Round…
	Architect as Last Stop?

	6. Making Decisions
	The Law of Small Numbers
	Bias
	Priming
	Micromort
	Model Thinking
	IT Decisions
	Avoiding Decisions

	7. Question Everything
	Five Whys
	Whys Reveal Decisions and Assumptions
	A Workshop for Every Question
	No Free Pass

	II. Architecture
	Beyond Software Architecture
	Three Kinds of Architecture
	There Always Is an Architecture
	The Value of Architecture
	Principles Drive Decisions
	Vertical Cohesion
	Architecting the Real World
	Architecture in the Enterprise

	8. Is This Architecture?
	Defining Software Architecture
	Architectural Decisions
	Fundamental Decisions Needn’t Be Complicated
	Fit for Purpose
	Passing the Test

	9. Architecture Is Selling Options
	Reversing Irreversible Decision Making
	Deferring Decisions with Options
	Options Have Value
	An Architecture Option: Elasticity
	Strike Prices
	Uncertainty Increases an Option’s Value
	Time Is Fleeting
	Real Options
	Arbitrage
	Agile and Architecture
	Evolutionary Architecture
	Amplifying Metaphors

	10. Every System Is Perfect…
	Heater as a System
	Feedback Loops
	Organized Complexity
	System Effects
	Understanding System Behavior
	Influencing System Behavior
	Systems Resist Change

	11. Code Fear Not!
	Fear of Code
	Good Intentions Don’t Lead to Good Results
	Levels of Abstraction: Simplicity Versus Flexibility
	When Are We Configuring?
	Model Versus Representation
	Code or Data? Or Both?
	Deployment at Design-Time Versus Runtime

	Higher-Level Programming
	Configuration Programming
	Configuration Hiding as Code?

	12. If You Never Kill Anything, You Will Live Among Zombies
	Legacy
	Fear of Change
	Hoping for the Best Isn’t a Strategy
	Version Upgrades
	Run Versus Change
	Planned Obsolescence
	If It Hurts, Do It More Often
	Culture of Change

	13. Never Send a Human to Do a Machine’s Job
	Automate Everything!
	It’s Not Only About Efficiency
	Repeatability Grows Confidence
	Self-Service
	Beyond Self-Service
	Automation Is Not a One-Way Street
	Explicit Knowledge Is Good Knowledge
	A Place for Humans

	14. If Software Eats the World, Better Use Version Control!
	SDX: Software-Defined Anything
	The Loomers’ Riot?
	Software Developers Don’t Undo, They Re-Create
	Melt the Snowflakes
	Automated Quality Checks
	Use Proper Language
	Software Eats the World, One Revision at a Time

	15. A4 Paper Doesn’t Stifle Creativity
	A4 Paper
	Product Standards Restrict, Interface Standards Enable
	Platform Standards
	Layers Versus Platforms
	Digital Discipline
	Avoid the Skipping Stones
	One Size Might Not Fit All Tastes

	16. The IT World Is Flat
	Vendors’ Middle Kingdoms
	Plotting Your World Map
	Defining Borders
	Charting Territory
	Product Philosophy Compatibility Check
	Shifting Territory

	17. Your Coffee Shop Doesn’t Use Two-Phase Commit
	Hotto Cocoa o Kudasai
	Correlation
	Exception Handling
	Write Off
	Retry
	Compensating Action

	Transactions
	Backpressure
	Conversations
	Canonical Data Model
	Welcome to the Real World!

	III. Communication
	You Can’t Manage What You Can’t Understand
	Getting Attention
	Pushing (Less) Paper
	Isn’t the Code the Documentation?
	Choosing the Right Words
	Communication Tools

	18. Explaining Stuff
	Build a Ramp, Not a Cliff
	Mind the Gap
	First, Create a Language
	Consistent Level of Detail
	I Wanted to Have Liked To, but Didn’t Dare Be Allowed

	19. Show the Kids the Pirate Ship!
	Grab Attention
	Build Excitement
	Focus on Purpose
	Pirate Ship Leads to Better Decisions
	The Product Box
	Designing the Pirate Ship
	Show Context
	The Content on the Inside
	Consider the Audience

	Pack Some Pathos
	Play Is Work

	20. Writing for Busy People
	Writing Scales
	Quality Versus Impact
	“In the Hand”—First Impressions Count
	The Curse of Writing: Linearity
	A Good Paper Is Like the Movie Shrek
	Making It Easy for the Reader
	Lists, Sets, Null Pointers, and Symbol Tables
	In der Kürze liegt die Würze4
	Unit Testing Technical Papers
	Technical Memos
	The Pen Is Mightier Than the Sword, but Not Mightier Than Corporate Politics

	21. Emphasis Over Completeness
	Diagrams Are Models
	The Five-Second Test
	A Pop Quiz
	Simple Language
	Diagramming Basics
	Avoid the Ant Font
	Maximize the Signal-to-Noise Ratio
	Let Arrows Point
	Legends Are Crutches
	Layer Visually

	The Style of Elements
	Making a Statement
	Twenty Slides, One Story
	Nothing Is Confusing in and of Itself

	22. Diagram-Driven Design
	Presentation Skills: More Than a Wide Stance
	Diagramming as Design Technique
	Designing with Diagrams
	Diagram-Driven Design Techniques
	Establish a Visual Vocabulary and Viewpoints
	Limit the Levels of Abstraction
	Reduce to the Essence
	Find Balance and Harmony
	Indicate Degrees of Uncertainty

	Diagrams Are Art
	No Silver Bullet (Point)

	23. Drawing the Line
	Behold the Line!
	The Metamodel
	The Semantics of Semantics
	Elements—Relationship—Behavior
	Architecture Diagrams
	UML
	Beware of Extremes

	24. Sketching Bank Robbers
	Everyone Saw the Perpetrator
	A Police Sketch Artist
	Sketching Architectures
	The System Metaphor
	Viewpoints

	Visuals
	Architecture Therapy
	That’s Wrong! Do It Again!

	25. Software Is Collaboration
	Who Says Software Is for Computers Only?
	Version Control
	Single Source of Truth
	Trunk-Based Development
	Always Be Ready to Ship
	Style Versus Substance
	Transparency
	Pairing
	Resistance

	IV. Organizations
	Organizational Architecture: The Static View
	Organizational Architecture: The Dynamic View
	The Matrix (Not the Movie)
	Organizations as Systems
	Organizations as People
	Navigating Large Organizations

	26. Reverse-Engineering Organizations
	Dissecting IT Slogans
	Unknown Beliefs
	Beliefs Are Proven Until Disproven
	Unlearning Old Habits
	Common IT Beliefs
	Speed and Quality Are Opposed (“Quick and Dirty”)
	Quality Can Be Added Later
	All Problems Can Be Solved with More People or Money
	Following a Proven Process Leads to Proven Good Results
	Late Changes Are Expensive or Impossible
	Agility Opposes Discipline
	The Unexpected Is Undesired

	Reprogramming the Organization
	Handed-Down Beliefs

	27. Control Is an Illusion
	The Illusion
	Control Circuits
	A Two-Way Street
	Problems on the Way Up
	Smart Control
	Saupreiß, ned so Damischer
	Actual Control: Autonomy
	Controlling the Control Loop

	28. They Don’t Build ’Em Quite Like That Anymore
	Why IT Architects Love Pyramids
	Organizational Pyramids
	No Pyramid Without Pharaoh
	No One Lives in a Foundation
	Building Pyramids from the Top
	Celebrating the Base Layer
	Living in Pyramids
	It Always Can Get Worse
	Building Modern Structures

	29. Black Markets Are Not Efficient
	Black Markets to the Rescue
	Black Markets Are Rarely Efficient
	You Cannot Outsource a Black Market
	Beating the Black Market
	Feedback and Transparency

	30. Scaling an Organization
	Component Design—Personal Productivity
	Avoid Sync Points—Meetings Don’t Scale
	Interrupts Interrupt—Phone Calls
	Piling on Instead of Backing off
	Asynchronous Communication—Email, Chat, and More
	Asking Doesn’t Scale—Build a Cache!
	Poorly Set Domain Boundaries—Excessive Alignment
	Self-Service Is Better Service
	Staying Human

	31. Slow Chaos Is Not Order
	Fast Versus Agile
	Speed and Discipline
	Fast and Good
	Slow-Moving Chaos
	ITIL to the Rescue?
	Objectives Require Discipline
	The Way Out

	32. Governance Through Inception
	Living in Perfect Harmony
	The Value of Standards
	Interface Standards
	Mapping Standards
	Governance by Decree
	Governance Through Infrastructure
	Runtime Governance

	Inception
	The Emperor’s New Clothes
	Governance Through Necessity

	V. Transformation
	Change Is Risky
	Not All Change Is Transformation
	Bursting the Boiler
	Why Me?

	33. No Pain, No Change!
	Stages of Transformation
	Digital Transformation Stages
	Wishful Thinking Sells Snake Oil
	Tuning the Engine
	Help Along the Way
	The Pain of Not Changing
	Getting Over the Hump

	34. Leading Change
	A Tractor Passing the Race Car
	Setting Course
	Venturing Off the Mainland
	Burning the Ships
	Offshore Platforms
	The Island of Sanity
	Skunkworks That Works
	Leaving Your Island Will Get Your Feet Wet
	The Country of the Blind

	35. Economies of Speed
	30,000 Times Faster
	Old Economies of Scale
	Behold the Flow!
	Cost of Delay
	The Value and Cost of Predictability
	The Value and Cost of Avoiding Duplication
	How to Make the Switch?

	36. The Infinite Loop
	Build-Measure-Learn
	Digital RPMs
	Old-World Hurdles
	Looping in Externals
	Pivoting the Layer Cake
	Maintaining Cohesion

	37. You Can’t Fake IT
	Laying the Foundation
	Feedback Cycles
	Delivering on Your Promises
	Customer Centricity
	Cocreating IT Services
	Eat Your Own Dog Food
	Digital Mindset
	The Stack Fallacy

	38. Money Can’t Buy Love
	Innovator’s Dilemma
	Beware of the HiPPO
	Overhead and Tolerated Inefficiency
	Hollowed-Out IT
	Excessive Dependencies
	Paying More May Get You Less
	Changing Culture from Within

	39. Who Likes Standing in Line?
	Looking Between the Activities
	A Little Bit of Queuing Theory
	Finding Queues
	Cutting the Line
	Making Queues Visible
	Message Queues Aren’t All Bad

	40. Thinking in Four Dimensions
	Living Along a Line
	Quality Versus Speed
	More Degrees of Freedom
	Changing the Rules of the Game
	Inverting the Curve
	What Quality?
	Losing a Dimension

	VI. Epilogue: Architecting IT Transformation
	Game On
	Transforming from the Bottom Up
	Transforming from the Inside Out
	From Ivory Tower Resident to Corporate Savior

	41. All I Have to Offer Is the Truth
	Nothing But the Truth
	Digital Paradise?
	Don’t Try This at Home
	Abandon Ship
	Looks Are Deceiving
	Distress Signals

	Index

