کتاب هوش مصنوعی: رویکردی نوین Artificial Intelligence: A Modern Approach

عنوان:

Artificial Intelligence: A Modern Approach

نویسنده:

Stuart J. Russell, Peter Norvig

انتشارات:

Pearson

نسخه:

pdf

حجم:

36MB

دانلود

معرفی کتاب: "کتاب هوش مصنوعی: رویکردی نوین"

ویرایش چهارم کتاب Artificial Intelligence: A Modern Approach که مدت‌ها مورد انتظار بوده است، گستره‌ی وسیع و عمیق حوزه‌ی هوش مصنوعی (AI) را بررسی می‌کند. این نسخه‌ی جدید، خوانندگان را با جدیدترین فناوری‌ها آشنا کرده، مفاهیم را به شکلی منسجم‌تر ارائه می‌دهد و پوشش گسترده‌تری از موضوعاتی مانند یادگیری ماشین، یادگیری عمیق، یادگیری انتقالی، سیستم‌های چندعاملی، رباتیک، پردازش زبان طبیعی، علیت، برنامه‌نویسی احتمالاتی، حریم خصوصی، عدالت و AI ایمن را شامل می‌شود.

فهرست مطالب

  • Cover
  • Information Science and Statistics
  • Pattern Recognition and Machine Learning
  • ©
  • Preface
  • Mathematical notation
  • Contents
  • Chapter 1: Introduction
  • 1.1 Example: Polynomial Curve Fitting
  • 1.2 Probability Theory
  • 1.3 Model Selection
  • 1.4 The Curse of Dimensionality
  • 1.5 Decision Theory
  • 1.6 Information Theory
  • Exercises
  • Chapter 2: Probability Distributions
  • 2.1 Binary Variables
  • 2.2 Multinomial Variables
  • 2.3 The Gaussian Distribution
  • 2.4 The Exponential Family
  • 2.5 Nonparametric Methods
  • Exercises
  • Chapter 3: Linear Models for Regression
  • 3.1 Linear Basis Function Models
  • 3.2 The Bias-Variance Decomposition
  • 3.3 Bayesian Linear Regression
  • 3.4 Bayesian Model Comparison
  • 3.5 The Evidence Approximation
  • 3.6 Limitations of Fixed Basis Functions
  • Exercises
  • Chapter 4: Linear Models for Classification
  • 4.1 Discriminant Functions
  • 4.2 Probabilistic Generative Models
  • 4.3 Probabilistic Discriminative Models
  • 4.4 The Laplace Approximation
  • 4.5 Bayesian Logistic Regression
  • Exercises
  • Chapter 5: Neural Networks
  • 5.1 Feed-forward Network Functions
  • 5.2 Network Training
  • 5.3 Error Backpropagation
  • 5.4 The Hessian Matrix
  • 5.5 Regularization in Neural Networks
  • 5.6 Mixture Density Networks
  • 5.7 Bayesian Neural Networks
  • Exercises
  • Chapter 6: Kernel Methods
  • 6.1 Dual Representations
  • 6.2 Constructing Kernels
  • 6.3 Radial Basis Function Networks
  • 6.4 Gaussian Processes
  • Exercises
  • Chapter 7: Sparse Kernel Machines
  • 7.1 Maximum Margin Classifiers
  • 7.2 Relevance Vector Machines
  • Exercises
  • Chapter 8: Graphical Models
  • 8.1 Bayesian Networks
  • 8.2 Conditional Independence
  • 8.3 Markov Random Fields
  • 8.4 Inference in Graphical Models
  • Exercises
  • Chapter 9: Mixture Models and EM
  • 9.1 K-means Clustering
  • 9.2 Mixtures of Gaussians
  • 9.3 An Alternative View of EM
  • 9.4 The EM Algorithm in General
  • Exercises
  • Chapter 10: Approximate Inference
  • 10.1 Variational Inference
  • 10.2 Illustration: Variational Mixture of Gaussians
  • 10.3 Variational Linear Regression
  • 10.4 Exponential Family Distributions
  • 10.5 Local Variational Methods
  • 10.6 Variational Logistic Regression
  • 10.7 Expectation Propagation
  • Exercises
  • Chapter 11: Sampling Methods
  • 11.1 Basic Sampling Algorithms
  • 11.2 Markov Chain Monte Carlo
  • 11.3 Gibbs Sampling
  • 11.4 Slice Sampling
  • 11.5 The Hybrid Monte Carlo Algorithm
  • 11.6 Estimating the Partition Function
  • Exercises
  • Chapter 12: Continuous Latent Variables
  • 12.1 Principal Component Analysis
  • 12.2 Probabilistic PCA
  • 12.3 Kernel PCA
  • 12.4 Nonlinear Latent Variable Models
  • Exercises
  • Chapter 13: Sequential Data
  • 13.1 Markov Models
  • 13.2 Hidden Markov Models
  • 13.3 Linear Dynamical Systems
  • Exercises
  • Chapter 14: Combining Models
  • 14.1 Bayesian Model Averaging
  • 14.2 Committees
  • 14.3 Boosting
  • 14.4 Tree-based Models
  • 14.5 Conditional Mixture Models
  • Exercises
  • Appendix A. Data Sets
  • Appendix B. Probability Distributions
  • Appendix C. Properties of Matrices
  • Appendix D. Calculus of Variations
  • Appendix E. Lagrange Multipliers
  • References
  • Index

مشخصات

نام کتاب

Artificial Intelligence: A Modern Approach

نویسنده

Stuart J. Russell, Peter Norvig

انتشارات

Pearson

تاریخ انتشار

2021

ISBN

9780134610993, 1292401133, 9781292401133, 9781292401171

تعداد صفحات

1167

زبان

انگلیسی

فرمت

pdf

حجم

36MB

موضوع

Artificial Intelligence