
عنوان:
Artificial Intelligence: A Modern Approach
نویسنده:
Stuart J. Russell, Peter Norvig
انتشارات:
Pearson
نسخه:
حجم:
36MB
معرفی کتاب: "کتاب هوش مصنوعی: رویکردی نوین"
ویرایش چهارم کتاب Artificial Intelligence: A Modern Approach که مدتها مورد انتظار بوده است، گسترهی وسیع و عمیق حوزهی هوش مصنوعی (AI) را بررسی میکند. این نسخهی جدید، خوانندگان را با جدیدترین فناوریها آشنا کرده، مفاهیم را به شکلی منسجمتر ارائه میدهد و پوشش گستردهتری از موضوعاتی مانند یادگیری ماشین، یادگیری عمیق، یادگیری انتقالی، سیستمهای چندعاملی، رباتیک، پردازش زبان طبیعی، علیت، برنامهنویسی احتمالاتی، حریم خصوصی، عدالت و AI ایمن را شامل میشود.
فهرست مطالب
- Cover
- Information Science and Statistics
- Pattern Recognition and Machine Learning
- ©
- Preface
- Mathematical notation
- Contents
- Chapter 1: Introduction
- 1.1 Example: Polynomial Curve Fitting
- 1.2 Probability Theory
- 1.3 Model Selection
- 1.4 The Curse of Dimensionality
- 1.5 Decision Theory
- 1.6 Information Theory
- Exercises
- Chapter 2: Probability Distributions
- 2.1 Binary Variables
- 2.2 Multinomial Variables
- 2.3 The Gaussian Distribution
- 2.4 The Exponential Family
- 2.5 Nonparametric Methods
- Exercises
- Chapter 3: Linear Models for Regression
- 3.1 Linear Basis Function Models
- 3.2 The Bias-Variance Decomposition
- 3.3 Bayesian Linear Regression
- 3.4 Bayesian Model Comparison
- 3.5 The Evidence Approximation
- 3.6 Limitations of Fixed Basis Functions
- Exercises
- Chapter 4: Linear Models for Classification
- 4.1 Discriminant Functions
- 4.2 Probabilistic Generative Models
- 4.3 Probabilistic Discriminative Models
- 4.4 The Laplace Approximation
- 4.5 Bayesian Logistic Regression
- Exercises
- Chapter 5: Neural Networks
- 5.1 Feed-forward Network Functions
- 5.2 Network Training
- 5.3 Error Backpropagation
- 5.4 The Hessian Matrix
- 5.5 Regularization in Neural Networks
- 5.6 Mixture Density Networks
- 5.7 Bayesian Neural Networks
- Exercises
- Chapter 6: Kernel Methods
- 6.1 Dual Representations
- 6.2 Constructing Kernels
- 6.3 Radial Basis Function Networks
- 6.4 Gaussian Processes
- Exercises
- Chapter 7: Sparse Kernel Machines
- 7.1 Maximum Margin Classifiers
- 7.2 Relevance Vector Machines
- Exercises
- Chapter 8: Graphical Models
- 8.1 Bayesian Networks
- 8.2 Conditional Independence
- 8.3 Markov Random Fields
- 8.4 Inference in Graphical Models
- Exercises
- Chapter 9: Mixture Models and EM
- 9.1 K-means Clustering
- 9.2 Mixtures of Gaussians
- 9.3 An Alternative View of EM
- 9.4 The EM Algorithm in General
- Exercises
- Chapter 10: Approximate Inference
- 10.1 Variational Inference
- 10.2 Illustration: Variational Mixture of Gaussians
- 10.3 Variational Linear Regression
- 10.4 Exponential Family Distributions
- 10.5 Local Variational Methods
- 10.6 Variational Logistic Regression
- 10.7 Expectation Propagation
- Exercises
- Chapter 11: Sampling Methods
- 11.1 Basic Sampling Algorithms
- 11.2 Markov Chain Monte Carlo
- 11.3 Gibbs Sampling
- 11.4 Slice Sampling
- 11.5 The Hybrid Monte Carlo Algorithm
- 11.6 Estimating the Partition Function
- Exercises
- Chapter 12: Continuous Latent Variables
- 12.1 Principal Component Analysis
- 12.2 Probabilistic PCA
- 12.3 Kernel PCA
- 12.4 Nonlinear Latent Variable Models
- Exercises
- Chapter 13: Sequential Data
- 13.1 Markov Models
- 13.2 Hidden Markov Models
- 13.3 Linear Dynamical Systems
- Exercises
- Chapter 14: Combining Models
- 14.1 Bayesian Model Averaging
- 14.2 Committees
- 14.3 Boosting
- 14.4 Tree-based Models
- 14.5 Conditional Mixture Models
- Exercises
- Appendix A. Data Sets
- Appendix B. Probability Distributions
- Appendix C. Properties of Matrices
- Appendix D. Calculus of Variations
- Appendix E. Lagrange Multipliers
- References
- Index
مشخصات
نام کتاب
Artificial Intelligence: A Modern Approach
نویسنده
Stuart J. Russell, Peter Norvig
انتشارات
Pearson
تاریخ انتشار
2021
ISBN
9780134610993, 1292401133, 9781292401133, 9781292401171
تعداد صفحات
1167
زبان
انگلیسی
فرمت
حجم
36MB
موضوع
Artificial Intelligence