
عنوان:
Python Tools for Scientists
نویسنده:
Lee Vaughan
انتشارات:
No Starch Press, Inc
تاریخ انتشار
2023
حجم:
9.4MB
معرفی کتاب: "ابزارهای پایتون برای دانشمندان: مقدمه ای بر استفاده از Anaconda، JupyterLab و کتابخانه های علمی پایتون"
کتاب ابزارهای پایتون برای دانشمندان راهنمایی جامع و کاربردی برای آشنایی با مهمترین ابزارهای کدنویسی در تحقیقات علمی است. این کتاب شما را با محیطهایی مانند Anaconda، Spyder، Jupyter Notebooks و JupyterLab آشنا میکند و کتابخانههای کلیدی پایتون برای تحلیل و تجسم دادهها مانند NumPy، matplotlib و pandas را بهصورت گامبهگام معرفی مینماید.
آنچه در این کتاب میآموزید:
- راهاندازی محیط برنامهنویسی حرفهای برای پروژههای علمی
- دوره فشرده آموزش اصول برنامهنویسی پایتون
- استفاده از کتابخانههای علمی برای تجزیه و تحلیل داده، ترسیم نمودار، و شبیهسازی پدیدهها
- کاربرد عملی ابزارها از طریق پروژههایی مانند شبیهسازی خوشههای ستارهای یا ساخت شبیهساز جنگ
- راهنمای انتخاب بهترین کتابخانههای تجسم داده متناسب با نیاز کاربر
درباره نویسنده:
نویسنده این کتاب با آگاهی از چالشهای پیشروی دانشمندان در استفاده از ابزارهای برنامهنویسی، مسیر ساده و ساختاریافتهای را برای بهرهگیری مؤثر از اکوسیستم پایتون طراحی کرده است.
چرا این کتاب ارزشمند است؟
- بدون نیاز به دانش قبلی برنامهنویسی، از مفاهیم پایه تا ابزارهای پیشرفته را آموزش میدهد
- مناسب برای دانشجویان، پژوهشگران و مهندسان در حوزههای مختلف علمی
- پوشش جامع کتابخانههای محبوب پایتون مانند NumPy، pandas، seaborn و scikit-learn
- تمرکز بر حل مسائل واقعی و علمی با کدنویسی عملی
مناسب چه کسانی است؟
برای همهی پژوهشگران، دانشجویان و اساتیدی که میخواهند پایتون را بهعنوان ابزاری حرفهای در تحقیقات و پروژههای علمی خود بهکار بگیرند؛ حتی اگر سابقه برنامهنویسی نداشته باشند.
در پایان این کتاب:
قادر خواهید بود بهترین ابزارهای پایتون را برای تحلیل داده، شبیهسازی، و ارائهی نتایج علمی انتخاب و استفاده کنید، و از قدرت کامل این زبان در محیطهای تحقیقاتی بهره ببرید.
فهرست مطالب
- Cover Page
- Title Page
- Copyright Page
- Dedication
- About the Author
- About the Technical Reviewer
- BRIEF CONTENTS
- CONTENTS IN DETAIL
- ACKNOWLEDGMENTS
- INTRODUCTION
- PART I: SETTING UP YOUR SCIENTIFIC CODING ENVIRONMENT
- Chapter 1. INSTALLING AND LAUNCHING ANACONDA
- About Anaconda
- Installing Anaconda on Windows
- Installing Anaconda on macOS
- Installing Anaconda on Linux
- Getting to Know Anaconda Navigator
- Summary
- Chapter 2. KEEPING ORGANIZED WITH CONDA ENVIRONMENTS
- Understanding Conda Environments
- Working with Conda Environments Using Navigator
- Working with Conda Environments Using the Command Line Interface
- Summary
- Chapter 3. SIMPLE SCRIPTING IN THE JUPYTER QT CONSOLE
- Installing seaborn
- Installing and Launching the Jupyter Qt Console Using Navigator
- Installing and Launching the Jupyter Qt Console Using the CLI
- The Qt Console Controls
- Summary
- Chapter 4. SERIOUS SCRIPTING WITH SPYDER
- Installing and Launching Spyder with Anaconda Navigator
- Installing and Launching Spyder Using the CLI
- Launching Spyder from the Start Menu
- Configuring the Spyder Interface
- Using Spyder with Environments and Packages
- Using Project Files and Folders
- The Help Pane
- The IPython Console
- The Editor Pane
- The Code Analysis Pane
- The Variable Explorer Pane
- The Profiler Pane
- The Debugger Pane
- Summary
- Chapter 5. JUPYTER NOTEBOOK: AN INTERACTIVE JOURNAL FOR COMPUTATIONAL RESEARCH
- Installing Jupyter Notebook
- Your First Jupyter Notebook
- Getting Help
- Using Notebook Extensions
- Working with Widgets
- Sharing Notebooks
- Turning Notebooks into Slideshows
- Summary
- Chapter 6. JUPYTERLAB: YOUR CENTER FOR SCIENCE
- When to Use JupyterLab Instead of Notebook?
- Installing JupyterLab
- Building a 3D Astronomical Simulation
- Taking Advantage of the JupyterLab Interface
- Using the Text Editor
- Using JupyterLab Extensions
- Sharing
- Summary
- PART II: A PYTHON PRIMER
- Chapter 7. INTEGERS, FLOATS, AND STRINGS
- Mathematical Expressions
- Error Messages
- Data Types
- Summary
- Chapter 8. VARIABLES
- Variables Have Identities
- Assigning Variables
- Naming Variables
- Getting User Input
- Using Comparison Operators
- Summary
- Chapter 9. THE CONTAINER DATA TYPES
- Tuples
- Lists
- Sets
- Dictionaries
- Summary
- Chapter 10. FLOW CONTROL
- The if Statement
- Loops
- Handling Exceptions
- Tracing Execution with Logging
- Summary
- Chapter 11. FUNCTIONS AND MODULES
- Defining Functions
- Functions and the Flow of Execution
- Advanced Function Topics
- Modules
- Summary
- Chapter 12. FILES AND FOLDERS
- Creating a New Spyder Project
- Working with Directory Paths
- Working with Text Files
- Working with Complex Data
- Summary
- Chapter 13. OBJECT-ORIENTED PROGRAMMING
- When to Use OOP
- Creating a New Spyder Project
- Defining the Frigate Class
- Defining a Guided-Missile Frigate Class Using Inheritance
- Objects Within Objects: Defining the Fleet Class
- Reducing Code Redundancy with Dataclasses
- Making a Class Module
- Summary
- Chapter 14. DOCUMENTING YOUR WORK
- Comments
- Docstrings
- Summary
- PART III: THE ANACONDA ECOSYSTEM
- Chapter 15. THE SCIENTIFIC LIBRARIES
- The SciPy Stack
- A General Machine Learning Library: scikit-learn
- The Deep Learning Frameworks
- The Computer Vision Libraries
- The Natural Language Processing Libraries
- The Helper Libraries
- Summary
- Chapter 16. THE INFOVIS, SCIVIS, AND DASHBOARDING LIBRARIES
- InfoVis and SciVis Libraries
- Dashboards
- Choosing a Plotting Library
- Summary
- Chapter 17. THE GEOVIS LIBRARIES
- The Geospatial Libraries
- Choosing a GeoVis Library
- Summary
- PART IV: THE ESSENTIAL LIBRARIES
- Chapter 18. NUMPY: NUMERICAL PYTHON
- Introducing the Array
- Manipulating Arrays
- Doing Math Using Arrays
- Reading and Writing Array Data
- Summary
- Chapter 19. DEMYSTIFYING MATPLOTLIB
- Anatomy of a Plot
- The pyplot and Object-Oriented Approaches
- Using the pyplot Approach
- Using the Object-Oriented Style
- Styling Plots
- Summary
- Chapter 20. PANDAS, SEABORN, AND SCIKIT-LEARN
- Introducing the pandas Series and DataFrame
- The Palmer Penguins Project
- Summary
- Chapter 21. MANAGING DATES AND TIMES WITH PYTHON AND PANDAS
- Python datetime Module
- Time Series and Date Functionality with pandas
- Summary
- APPENDIX. ANSWERS TO THE “TEST YOUR KNOWLEDGE” CHALLENGES
- INDEX
مشخصات
نام کتاب
Python Tools for Scientists
نویسنده
Lee Vaughan
انتشارات
No Starch Press, Inc
تاریخ انتشار
2023
ISBN
9781718502673
تعداد صفحات
980
زبان
انگلیسی
فرمت
حجم
9.4MB
موضوع
data-science