
عنوان:
Hands-On APIs for AI and Data Science
نویسنده:
Ryan Day
انتشارات:
O'Reilly Media, Inc
تاریخ انتشار
2025
حجم:
5.7MB
معرفی کتاب: " APIهای عملی برای هوش مصنوعی و علم داده "
برای موفقیت در هوش مصنوعی و علم داده، ابتدا باید بر مفهومی کلیدی یعنی APIها مسلط شوید. این کتاب عملی، راهنمایی جامع برای ساخت و استفاده از APIها با زبان Python است و به شما کمک میکند تا پروژههای دادهمحور و هوش مصنوعی را بهصورت حرفهای پیادهسازی کنید.
در این کتاب میآموزید:
- چگونه با استفاده از Python و FastAPI اقدام به ساخت APIهای سریع و قابلگسترش کنید
- نحوه استقرار APIها در فضای ابری با استفاده از پلتفرمهای روز
- چگونگی بهرهگیری از APIها در پروژههای علم داده با ابزارهای حرفهای
- اتصال APIها به مدلهای زبانی بزرگ (LLM) و هوش مصنوعی مولد با کمک ابزارهایی مثل ChatGPT و LangChain
ساختار کتاب:
- بخش اول: ساخت پروژههای واقعی با FastAPI و استقرار در کلاد
- بخش دوم: یکپارچهسازی APIها با جریان کاری علم داده
- بخش سوم: افزودن قابلیتهای هوش مصنوعی به APIها با استفاده از LLM و ابزارهای مولد
مخاطبان این کتاب:
این کتاب برای دانشمندان داده، مهندسان نرمافزار، و توسعهدهندگان هوش مصنوعی طراحی شده است که میخواهند APIمحور فکر کنند و سیستمهای هوشمند و دادهمحور خود را به شکلی مؤثر و قابل استفاده توسط دیگران ارائه دهند.
فهرست مطالب
- Preface
- I. Building APIs for Data Science
- 1. Creating APIs That Data Scientists Will Love
- How Do Data Scientists Use APIs?
- What Tools Do Data Scientists Use?
- Designing APIs for Data Scientists
- Introducing Your Part I Portfolio Project
- Every API Has a Story
- Selecting the First API Products
- Additional Resources
- Summary
- 2. Selecting Your API Architecture
- API Architectural Styles
- Technology Architecture
- Software Used in This Chapter
- Getting Started with Your GitHub Codespace
- Additional Resources
- Summary
- 3. Creating Your Database
- Components of Your API
- Software Used in This Chapter
- Creating Your SQLite Database
- Accessing Your Data Using Python
- Additional Resources
- Summary
- 4. Developing the FastAPI Code
- Continuing Your Portfolio Project
- Software Used in This Chapter
- Copying Files from Chapter 3
- Installing the New Libraries in Your Codespace
- Creating Python Files for Your API
- Testing Your API
- Launching Your API
- Additional Resources
- Summary
- 5. Documenting Your API
- Sending a Signal of Trust
- Making Great API Docs
- Reviewing Examples of API Documentation
- Viewing Your API’s Built-in Documentation
- Working with Your OpenAPI Specification File
- Continuing Your Portfolio Project
- Updating Your README.md
- Additional Resources
- Summary
- 6. Deploying Your API to the Cloud
- Benefits and Responsibilities of Cloud Deployment
- Choosing a Cloud Host for Your Project
- Setting Up Your Project Directory
- Using GitHub Codespaces as a Cloud Host
- Deploying to Render
- Shipping Your Application in a Docker Container
- Deploying to AWS
- Updating Your API Documentation
- Additional Resources
- Summary
- 7. Batteries Included: Creating a Python SDK
- SDKs Bridge the Gap
- Picking a Language for Your SDK
- Starting with a Minimum Viable SDK
- Building a Feature-Rich SDK
- Completing Your Part I Portfolio Project
- Additional Resources
- Summary
- II. Using APIs in Your Data Science Project
- 8. What Data Scientists Should Know About APIs
- Using a Variety of API Styles
- HTTP Basics
- How to Consume APIs Responsibly
- Separation of Concerns: Using SDKs or Creating API Clients
- How to Build APIs
- How to Test APIs
- API Deployment and Containerization
- Using Version Control
- Introducing Your Part II Portfolio Project
- Getting Started with Your GitHub Codespace
- Running the SportsWorldCentral (SWC) API Locally
- Additional Resources
- Summary
- 9. Using APIs for Data Analytics
- Custom Metrics for Sports Analytics
- Using APIs as Data Sources for Fantasy Custom Metrics
- Creating a Custom Metric: The Shark League Score
- Software Used in This Chapter
- Installing the New Libraries in Your Codespace
- Launching Your API in Codespaces
- Creating an API Client File
- Creating Your Jupyter Notebook
- Adding General Configuration to Your Notebook
- Working with Your API Data
- Calculating the League Balance Score
- Calculating the League Juice Score
- Creating the Shark League Score
- Additional Resources
- Summary
- 10. Using APIs in Data Pipelines
- Types of Data Sources for Data Pipelines
- Planning Your Data Pipeline
- Orchestrating the Data Pipeline with Apache Airflow
- Installing Apache Airflow in GitHub Codespaces
- Creating Your Local Analytics Database
- Launching Your API in Codespaces
- Configuring Airflow Connections
- Creating Your First DAG
- Coding a Shared Function
- Running Your DAG
- Summary
- 11. Using APIs in Streamlit Data Apps
- Engaging Users with Interactive Visualizations
- Software Used in This Chapter
- Installing Streamlit and nfl_data_py
- Launching Your API in Codespaces
- Reusing the Chapter 9 API Client File
- Creating Your Streamlit App
- Updating the Entrypoint File
- Running Your Streamlit App
- Creating the Team Rosters Page
- Creating the Team Stats Page
- Deploying Your Streamlit App
- Completing Your Part II Portfolio Project
- Additional Resources
- Summary
- III. Using APIs with Artificial Intelligence
- 12. Using APIs with Artificial Intelligence
- The Overlap of AI and APIs
- Designing APIs to Use with Generative AI and LLMs
- Defining Artificial Intelligence
- Generative AI and Large Language Models (LLMs)
- Creating Agentic AI Applications
- Introducing Your Part III Portfolio Project
- Getting Started with Your GitHub Codespace
- Additional Resources
- Summary
- 13. Deploying a Machine Learning API
- Training Machine Learning Models
- New Software Used in This Chapter
- Installing the New Libraries in Your Codespace
- Using the CRISP-DM Process
- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment
- Additional Resources
- Summary
- 14. Using APIs with LangChain
- Calling AI Using APIs (via LangChain)
- Creating a LangGraph Agent
- Installing the New Libraries in Your Codespace
- Creating Your Jupyter Notebook
- Chatting with the LangGraph Agent
- Running the SportsWorldCentral (SWC) API Locally
- Installing the swcpy Software Development Kit (SDK)
- Creating a LangChain Toolkit
- Calling APIs Using AI (with LangGraph)
- Chatting with Your Agent (with Tools)
- Additional Resources
- Summary
- 15. Using ChatGPT to Call Your API
- Architecture of Your Application
- Getting Started with ChatGPT
- Creating a Custom GPT
- Launching Your GitHub Codespace
- Running the SportsWorldCentral (SWC) API in GitHub Codespaces
- Adding the Servers Section to Your OAS File
- Creating a GPT Action
- Testing the APIs in Your GPT
- Chatting with Your Custom GPT
- Completing Your Part III Portfolio Project
- Summary
- Index
- About the Author
مشخصات
نام کتاب
Hands-On APIs for AI and Data Science
نویسنده
Ryan Day
انتشارات
O'Reilly Media, Inc
تاریخ انتشار
2025
ISBN
9781098164416
تعداد صفحات
744
زبان
انگلیسی
فرمت
حجم
5.7MB
موضوع
Artificial Intelligence