جلد کتاب APIهای عملی برای هوش مصنوعی و علم داده

عنوان:

Hands-On APIs for AI and Data Science

نویسنده:

Ryan Day

انتشارات:

O'Reilly Media, Inc

تاریخ انتشار

2025

حجم:

5.7MB

دانلود

معرفی کتاب: " APIهای عملی برای هوش مصنوعی و علم داده "

برای موفقیت در هوش مصنوعی و علم داده، ابتدا باید بر مفهومی کلیدی یعنی APIها مسلط شوید. این کتاب عملی، راهنمایی جامع برای ساخت و استفاده از APIها با زبان Python است و به شما کمک می‌کند تا پروژه‌های داده‌محور و هوش مصنوعی را به‌صورت حرفه‌ای پیاده‌سازی کنید.

در این کتاب می‌آموزید:

  • چگونه با استفاده از Python و FastAPI اقدام به ساخت APIهای سریع و قابل‌گسترش کنید
  • نحوه استقرار APIها در فضای ابری با استفاده از پلتفرم‌های روز
  • چگونگی بهره‌گیری از APIها در پروژه‌های علم داده با ابزارهای حرفه‌ای
  • اتصال APIها به مدل‌های زبانی بزرگ (LLM) و هوش مصنوعی مولد با کمک ابزارهایی مثل ChatGPT و LangChain

ساختار کتاب:

  1. بخش اول: ساخت پروژه‌های واقعی با FastAPI و استقرار در کلاد
  2. بخش دوم: یکپارچه‌سازی APIها با جریان کاری علم داده
  3. بخش سوم: افزودن قابلیت‌های هوش مصنوعی به APIها با استفاده از LLM و ابزارهای مولد

مخاطبان این کتاب:

این کتاب برای دانشمندان داده، مهندسان نرم‌افزار، و توسعه‌دهندگان هوش مصنوعی طراحی شده است که می‌خواهند APIمحور فکر کنند و سیستم‌های هوشمند و داده‌محور خود را به شکلی مؤثر و قابل استفاده توسط دیگران ارائه دهند.

فهرست مطالب

  • Preface
  • I. Building APIs for Data Science
  • 1. Creating APIs That Data Scientists Will Love
  • How Do Data Scientists Use APIs?
  • What Tools Do Data Scientists Use?
  • Designing APIs for Data Scientists
  • Introducing Your Part I Portfolio Project
  • Every API Has a Story
  • Selecting the First API Products
  • Additional Resources
  • Summary
  • 2. Selecting Your API Architecture
  • API Architectural Styles
  • Technology Architecture
  • Software Used in This Chapter
  • Getting Started with Your GitHub Codespace
  • Additional Resources
  • Summary
  • 3. Creating Your Database
  • Components of Your API
  • Software Used in This Chapter
  • Creating Your SQLite Database
  • Accessing Your Data Using Python
  • Additional Resources
  • Summary
  • 4. Developing the FastAPI Code
  • Continuing Your Portfolio Project
  • Software Used in This Chapter
  • Copying Files from Chapter 3
  • Installing the New Libraries in Your Codespace
  • Creating Python Files for Your API
  • Testing Your API
  • Launching Your API
  • Additional Resources
  • Summary
  • 5. Documenting Your API
  • Sending a Signal of Trust
  • Making Great API Docs
  • Reviewing Examples of API Documentation
  • Viewing Your API’s Built-in Documentation
  • Working with Your OpenAPI Specification File
  • Continuing Your Portfolio Project
  • Updating Your README.md
  • Additional Resources
  • Summary
  • 6. Deploying Your API to the Cloud
  • Benefits and Responsibilities of Cloud Deployment
  • Choosing a Cloud Host for Your Project
  • Setting Up Your Project Directory
  • Using GitHub Codespaces as a Cloud Host
  • Deploying to Render
  • Shipping Your Application in a Docker Container
  • Deploying to AWS
  • Updating Your API Documentation
  • Additional Resources
  • Summary
  • 7. Batteries Included: Creating a Python SDK
  • SDKs Bridge the Gap
  • Picking a Language for Your SDK
  • Starting with a Minimum Viable SDK
  • Building a Feature-Rich SDK
  • Completing Your Part I Portfolio Project
  • Additional Resources
  • Summary
  • II. Using APIs in Your Data Science Project
  • 8. What Data Scientists Should Know About APIs
  • Using a Variety of API Styles
  • HTTP Basics
  • How to Consume APIs Responsibly
  • Separation of Concerns: Using SDKs or Creating API Clients
  • How to Build APIs
  • How to Test APIs
  • API Deployment and Containerization
  • Using Version Control
  • Introducing Your Part II Portfolio Project
  • Getting Started with Your GitHub Codespace
  • Running the SportsWorldCentral (SWC) API Locally
  • Additional Resources
  • Summary
  • 9. Using APIs for Data Analytics
  • Custom Metrics for Sports Analytics
  • Using APIs as Data Sources for Fantasy Custom Metrics
  • Creating a Custom Metric: The Shark League Score
  • Software Used in This Chapter
  • Installing the New Libraries in Your Codespace
  • Launching Your API in Codespaces
  • Creating an API Client File
  • Creating Your Jupyter Notebook
  • Adding General Configuration to Your Notebook
  • Working with Your API Data
  • Calculating the League Balance Score
  • Calculating the League Juice Score
  • Creating the Shark League Score
  • Additional Resources
  • Summary
  • 10. Using APIs in Data Pipelines
  • Types of Data Sources for Data Pipelines
  • Planning Your Data Pipeline
  • Orchestrating the Data Pipeline with Apache Airflow
  • Installing Apache Airflow in GitHub Codespaces
  • Creating Your Local Analytics Database
  • Launching Your API in Codespaces
  • Configuring Airflow Connections
  • Creating Your First DAG
  • Coding a Shared Function
  • Running Your DAG
  • Summary
  • 11. Using APIs in Streamlit Data Apps
  • Engaging Users with Interactive Visualizations
  • Software Used in This Chapter
  • Installing Streamlit and nfl_data_py
  • Launching Your API in Codespaces
  • Reusing the Chapter 9 API Client File
  • Creating Your Streamlit App
  • Updating the Entrypoint File
  • Running Your Streamlit App
  • Creating the Team Rosters Page
  • Creating the Team Stats Page
  • Deploying Your Streamlit App
  • Completing Your Part II Portfolio Project
  • Additional Resources
  • Summary
  • III. Using APIs with Artificial Intelligence
  • 12. Using APIs with Artificial Intelligence
  • The Overlap of AI and APIs
  • Designing APIs to Use with Generative AI and LLMs
  • Defining Artificial Intelligence
  • Generative AI and Large Language Models (LLMs)
  • Creating Agentic AI Applications
  • Introducing Your Part III Portfolio Project
  • Getting Started with Your GitHub Codespace
  • Additional Resources
  • Summary
  • 13. Deploying a Machine Learning API
  • Training Machine Learning Models
  • New Software Used in This Chapter
  • Installing the New Libraries in Your Codespace
  • Using the CRISP-DM Process
  • Business Understanding
  • Data Understanding
  • Data Preparation
  • Modeling
  • Evaluation
  • Deployment
  • Additional Resources
  • Summary
  • 14. Using APIs with LangChain
  • Calling AI Using APIs (via LangChain)
  • Creating a LangGraph Agent
  • Installing the New Libraries in Your Codespace
  • Creating Your Jupyter Notebook
  • Chatting with the LangGraph Agent
  • Running the SportsWorldCentral (SWC) API Locally
  • Installing the swcpy Software Development Kit (SDK)
  • Creating a LangChain Toolkit
  • Calling APIs Using AI (with LangGraph)
  • Chatting with Your Agent (with Tools)
  • Additional Resources
  • Summary
  • 15. Using ChatGPT to Call Your API
  • Architecture of Your Application
  • Getting Started with ChatGPT
  • Creating a Custom GPT
  • Launching Your GitHub Codespace
  • Running the SportsWorldCentral (SWC) API in GitHub Codespaces
  • Adding the Servers Section to Your OAS File
  • Creating a GPT Action
  • Testing the APIs in Your GPT
  • Chatting with Your Custom GPT
  • Completing Your Part III Portfolio Project
  • Summary
  • Index
  • About the Author

مشخصات

نام کتاب

Hands-On APIs for AI and Data Science

نویسنده

Ryan Day

انتشارات

O'Reilly Media, Inc

تاریخ انتشار

2025

ISBN

9781098164416

تعداد صفحات

744

زبان

انگلیسی

فرمت

pdf

حجم

5.7MB

موضوع

Artificial Intelligence