
عنوان:
Math and Architectures of Deep Learning
نویسنده:
Krishnendu Chaudhury
انتشارات:
Manning
تاریخ انتشار:
2024
حجم:
12.6MB
معرفی کتاب:"Math and Architectures of Deep Learning؛ مفاهیم ریاضی و معماری یادگیری عمیق"
کتاب Math and Architectures of Deep Learning راهنمایی جامع و عملی برای درک جعبه سیاه مدلهای یادگیری عمیق است. این کتاب مفاهیم کلیدی ریاضی، تئوری و برنامهنویسی را بهصورت موازی بررسی کرده و با مثالهای کدنویسی در Python و PyTorch در عمل پیادهسازی میکند.
آنچه در این کتاب یاد میگیرید:
- مفاهیم Linear Algebra، Vector Calculus و Multivariate Statistics برای یادگیری عمیق
- ساختار شبکههای عصبی و طراحی اصولی آنها
- پیادهسازی معماریهای یادگیری عمیق با Python و PyTorch
- خطایابی و بهینهسازی مدلهای دارای عملکرد ضعیف
- کدهای عملی در قالب Jupyter Notebook برای تمرین و توسعه
نویسنده کتاب، Krishnendu Chaudhury، متخصص یادگیری عمیق و مدیر فنی استارتاپ Drishti Technologies است که سابقهای طولانی در Google و Adobe دارد.
این کتاب شکاف میان مقالات آکادمیک پیچیده و کاربردهای عملی را پُر کرده و به شما کمک میکند درک عمیقتری از عملکرد مدلها، الگوریتمها، و ریاضیات پشتیبان آنها پیدا کنید.
مناسب چه کسانی است؟
اگر با زبان Python آشنایی دارید و مفاهیم پایهای Algebra و Calculus را میدانید، این کتاب برای ورود حرفهای شما به حوزه یادگیری عمیق و هوش مصنوعی بسیار مناسب است.
برخی مباحث کلیدی کتاب:
- تئوری و ساختار شبکههای عصبی
- Regularization و Optimization برای مدلهای ضعیف
- درک عمیق الگوریتمها و پیادهسازیها با تمرکز بر تفسیر کد
- آموزش مفاهیم ریاضی در کنار کدنویسی واقعی
با مطالعه Math and Architectures of Deep Learning میتوانید از یک مهندس معمولی به یک متخصص در درک و توسعه مدلهای یادگیری عمیق تبدیل شوید.
فهرست مطالب
- Cover
- Brief Contents
- Contents
- Foreword
- Preface
- Chapter 1. An overview of machine learning and deep learning
- A first look at machine/deep learning: A paradigm shift in computation
- A function approximation view of machine learning: Models and their training
- A simple machine learning model: The cat brain
- Geometrical view of machine learning
- Regression vs. classification in machine learning
- Linear vs. nonlinear models
- Higher expressive power through multiple nonlinear layers: Deep neural networks
- Summary
- Chapter 2. Vectors, matrices and tensors in machine learning
- Vectors and their role in machine learning
- PyTorch code for vector manipulations
- Matrices and their role in machine learning
- Python code: Introducing matrices, tensors and images via PyTorch
- Basic vector and matrix operations in machine learning
- Python code: Basic vector and matrix operations via PyTorch
- Linear combinations, vector spans, basis vectors and collinearity preservation
- Linear transforms: Geometric and algebraic interpretations
- Multidimensional arrays, multilinear transforms and tensors
- Linear systems and matrix inverse
- Eigenvalues and eigenvectors: Swiss Army knives of machine learning
- Orthogonal (rotation) matrices and their eigenvalues and eigenvectors
- Matrix diagonalization
- Spectral decomposition of a symmetric matrix
- An application relevant to machine learning: Finding the axes of a hyperellipse
- Summary
- Chapter 3. Classifiers and vector calculus
- Geometrical view of image classification
- Error, aka loss function
- Minimizing loss functions: Gradient vectors
- Local approximation for the loss function
- PyTorch code for gradient descent, error minimization and model training
- Convex and nonconvex functions and global and local minima
- Convex sets and functions
- Summary
- Chapter 4. Linear algebraic tools in machine learning
- Distribution of feature data points and true dimensionality
- Quadratic forms and their minimization
- Spectral and Frobenius norms of a matrix
- Principal component analysis
- Singular value decomposition
- Machine learning application: Document retrieval
- Summary
- Chapter 5. Probability distributions in machine learning
- Probability: The classical frequentist view
- Probability distributions
- Basic concepts of probability theory
- Joint probabilities and their distributions
- Geometrical view: Sample point distributions for dependent and independent variables
- Continuous random variables and probability density
- Properties of distributions: Expected value, variance and covariance
- Sampling from a distribution
- Some famous probability distributions
- Summary
- Chapter 6. Bayesian tools for machine learning
- Conditional probability and Bayes’ theorem
- Entropy
- Cross-entropy
- KL divergence
- Conditional entropy
- Model parameter estimation
- Latent variables and evidence maximization
- Maximum likelihood parameter estimation for Gaussians
- Gaussian mixture models
- Summary
- Chapter 7. Function approximation: How neural networks model the world
- Neural networks: A 10,000-foot view
- Expressing real-world problems: Target functions
- The basic building block or neuron: The perceptron
- Toward more expressive power: Multilayer perceptrons (MLPs)
- Layered networks of perceptrons: MLPs or neural networks
- Summary
- Chapter 8. Training neural networks: Forward propagation and backpropagation
- Differentiable step-like functions
- Why layering?
- Linear layers
- Training and backpropagation
- Training a neural network in PyTorch
- Summary
- Chapter 9. Loss, optimization and regularization
- Loss functions
- Optimization
- Regularization
- Summary
- Chapter 10. Convolutions in neural networks
- One-dimensional convolution: Graphical and algebraical view
- Convolution output size
- Two-dimensional convolution: Graphical and algebraic view
- Three-dimensional convolution
- Transposed convolution or fractionally strided convolution
- Adding convolution layers to a neural network
- Pooling
- Summary
- Chapter 11. Neural networks for image classification and object detection
- CNNs for image classification: LeNet
- Toward deeper neural networks
- Object detection: A brief history
- Faster R-CNN: A deep dive
- Summary
- Chapter 12. Manifolds, homeomorphism and neural networks
- Manifolds
- Homeomorphism
- Neural networks and homeomorphism between manifolds
- Summary
- Chapter 13. Fully Bayes model parameter estimation
- Fully Bayes estimation: An informal introduction
- MLE for Gaussian parameter values (recap)
- Fully Bayes parameter estimation: Gaussian, unknown mean, known precision
- Small and large volumes of training data and strong and weak priors
- Conjugate priors
- Fully Bayes parameter estimation: Gaussian, unknown precision, known mean
- Fully Bayes parameter estimation: Gaussian, unknown mean, unknown precision
- Example: Fully Bayesian inferencing
- Fully Bayes parameter estimation: Multivariate Gaussian, unknown mean, known precision
- Fully Bayes parameter estimation: Multivariate, unknown precision, known mean
- Summary
- Chapter 14. Latent space and generative modeling, autoencoders and variational autoencoders
- Geometric view of latent spaces
- Generative classifiers
- Benefits and applications of latent-space modeling
- Linear latent space manifolds and PCA
- Autoencoders
- Smoothness, continuity and regularization of latent spaces
- Variational autoencoders
- Summary
- Appendix
- Notations
- Index
مشخصات
نام کتاب
Math and Architectures of Deep Learning
نویسنده
Krishnendu Chaudhury
انتشارات
Manning
تاریخ انتشار
2024
ISBN
9781617296482
تعداد صفحات
553
زبان
انگلیسی
فرمت
حجم
12.6MB
موضوع
Computers > Cybernetics: Artificial Intelligence